(完整word版)高中物理原子与原子核知识点总结选修3-5

合集下载

高中物理选修3-5原子结构知识点

高中物理选修3-5原子结构知识点

第八章原子结构一、电子的发现:(一)电子的发现:1.电子是怎样发现的:汤姆生用测定粒子的荷质比的方法发现了电子。

汤姆生发现阴极射线在电场和磁场中的偏转现象,根据偏转方向,确认阴极射线是带负电的粒子流。

当他测定阴线射线粒子的荷质比时发现,不同物质做成的阴极发出的射极(粒子)都有相同的荷质比,这表明它们都能发射相同的带电粒子,因此这种带电粒子是构成物质的共同成份,这就是电子。

2.电子的发现对人类认识原子结构的重要性。

①电子的发现使人们认识到原子不是组成物质的最小微粒,原子本身也具有结构。

②由于原子含有带负电的电子,从物质的电中性出发,推想到原子中还有带正电的部分,这就提出了进一步探索原子结构、探索原子模型的问题。

(二)汤姆生的原子模型(枣糕模型)葡萄干面包模型二、原子的核式结构的发现(一)原子核式结构的发现:1.什么叫散射实验?用各种粒子——x射线、电子和α粒子轰击很薄的物质层,通过观察这些粒子穿过物质层后的偏转情况,获得原子结构的信息,这种实验叫做散射实验。

2.为什么用α粒子的散射(实验)现象可以研究原子的结构?原子的结构非常紧密,用一般的方法无法探测它内部的结构,要认识原子的结构,需要用高速粒子对它进行轰击。

①由于α粒子具有足够的能量可以接近原子的中心,②α粒子可以使荧光物质发光,如果α粒子与其他粒子发生相互作用,改变了运动的方向,荧光屏便能够显示出它的方向变化。

3.α粒子散射装置①放射源(Pa“坡”)玛丽·居里的祖国波兰。

②金箔:1μm,能透光,有3000多层原子厚。

③荧光屏荧光屏和显微镜能够围绕金箔在一个④显微镜圆周上转动,从而可以观察到穿过金箔后⑤转动圆盘偏转角度不同的α粒子4.实验过程:实验室建在地下,通道大拐角(防光进入)马斯登和盖革(卢瑟福的学生、助手)进入实验室后要静座半小时散瞳孔后进行观察(纯人工计数),这种观察是十分艰苦细致的工作,所用的时间也是相当长的。

(1909年~~1911年两年的时间)。

选修3-5原子物理-知识点总结

选修3-5原子物理-知识点总结

选修3-5知识纲要【一】、原子核式结构模型1、1897年英国物理学家汤姆生,对阴极射线进行了一系列的研究,从而发现了电子。

2、α粒子散射实验和原子核结构模型 (1)α粒子散射实验:1909年,卢瑟福 ①装置: ② 现象: a. 绝大多数α粒子穿过金箔后,仍沿原来方向运动,不发生偏转。

b. 有少数α粒子发生较大角度的偏转 c. 有极少数α粒子的偏转角超过了90度,有的几乎达到180度,即被反向弹回。

3、几个考点① 卢瑟福的α粒子散射,说明了原子具有核式结构。

② 汤姆孙发现电子,说明了原子可再分或原子有复杂结构 4、玻尔理论 (1)经典电磁理论不适用原子系统,玻尔从光谱学成就得到启发,利用普朗克的能量量了化的概念,提了三个假设:① 定态假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的 ②跃迁假设:电子跃迁辐射成吸收一定频率的光子,光子的能量由E m -E n =hv 严格决定 ③轨道量子化假设,原子的不同能量状态,跟电子不同的运行轨道相对应。

(2)玻尔的氢子模型: ①氢原子的能级公式和轨道半径公式: 氢原子中电子在第几条可能轨道上运动时,氢原子的能量E n ,和电子轨道半径r n 分别为:……、、3211221=⎪⎭⎪⎬⎫==n r n r n E E n n ② 氢原子的能级图:n=3、4、5、6跃迁到n=2为可见光,频率由大到小γ射线>X 光>紫外线>可见光(紫蓝青绿黄橙红)其中γ射线来源于原子核,X 光来源于核外内层电子跃迁,紫外线、可见光及红外线来源于最外层电子跃迁其中n =1的定态称为基态。

n =2第一激发态以上的定态,称为激发态。

③光子λνchh ==E ,n=3跃迁到n=1发出三种光子(2N C ),321λλλ>>则321chchchλλλ=+(3).谱线条数的确定方法:①一个氢原子跃迁发出可能的光谱线条数最多为(n-1) ②一群氢原子跃迁发出可能的光谱线条数的两种求解方法。

高中物理必修3-5原子核知识点

高中物理必修3-5原子核知识点

高中物理必修3-5原子核知识点原子核是高中物理必修3-5的内容,有哪些知识点需要我们了解?下面是店铺给大家带来的高中物理原子核知识点,希望对你有帮助。

高中物理原子核知识点一、原子核的组成1、1919年卢瑟福用α粒子轰击氮原子核发现质子即氢原子核。

2、卢瑟福预想到原子内存在质量跟质子相等的不带电的中性粒子,即中子。

查德威克经过研究,证明:用天α射线轰击铍时,会产生一种看不见的贯穿能力很强(10-20厘米的铅板)的不带电粒子,用其轰击石蜡时,竟能从石蜡中打出质子,此贯穿能力极强的射线即为设想中的中子。

3、质子和中子统称核子,原子核的电荷数等于其质子数,原子核的质量数等于其质子数与中子数的和。

具有相同质子数的原子属于同一种元素;具有相同的质子数和不同的中子数的原子互称同位素。

二、放射性元素的衰变1、天然放射现象(1)人类认识原子核有复杂结构和它的变化规律,是从天然放射现象开始的。

(2)1896年贝克勒耳发现放射性,在他的建议下,玛丽·居里和皮埃尔·居里经过研究发现了新元素钋和镭。

(3)用磁场来研究放射线的性质(图见3-5第74页):①α射线带正电,偏转较小,α粒子就是氦原子核,贯穿本领很小,电离作用很强,使底片感光作用很强;②β射线带负电,偏转较大,是高速电子流,贯穿本领很强(几毫米的铝板),电离作用较弱;③γ射线中电中性的,无偏转,是波长极短的电磁波,贯穿本领最强(几厘米的铅板),电离作用很小。

2、原子核由于放出某种粒子而转变为新核的变化叫做原子核的衰变。

在衰变中电荷数和质量数都是守恒的(注意:质量并不守恒。

)。

γ射线是伴随α射线或β射线产生的,没有单独的γ衰变(γ衰变:原子核处于较高能级,辐射光子后跃迁到低能级。

)。

2、半衰期:放射性元素的原子核有半数发生衰变需要的时间。

放射性元素衰变的快慢是由核内部本身的因素决定,与原子所处的物理状态或化学状态无关,它是对大量原子的统计规律。

高中物理选修3-5原子结构知识点

高中物理选修3-5原子结构知识点

第八章原子结构一、电子的发现:(一)电子的发现:1.电子是怎样发现的:汤姆生用测定粒子的荷质比的方法发现了电子。

汤姆生发现阴极射线在电场和磁场中的偏转现象,根据偏转方向,确认阴极射线是带负电的粒子流。

当他测定阴线射线粒子的荷质比时发现,不同物质做成的阴极发出的射极(粒子)都有相同的荷质比,这表明它们都能发射相同的带电粒子,因此这种带电粒子是构成物质的共同成份,这就是电子。

2.电子的发现对人类认识原子结构的重要性。

①电子的发现使人们认识到原子不是组成物质的最小微粒,原子本身也具有结构。

②由于原子含有带负电的电子,从物质的电中性出发,推想到原子中还有带正电的部分,这就提出了进一步探索原子结构、探索原子模型的问题。

(二)汤姆生的原子模型(枣糕模型)葡萄干面包模型二、原子的核式结构的发现(一)原子核式结构的发现:1.什么叫散射实验?用各种粒子——x射线、电子和α粒子轰击很薄的物质层,通过观察这些粒子穿过物质层后的偏转情况,获得原子结构的信息,这种实验叫做散射实验。

2.为什么用α粒子的散射(实验)现象可以研究原子的结构?原子的结构非常紧密,用一般的方法无法探测它内部的结构,要认识原子的结构,需要用高速粒子对它进行轰击。

①由于α粒子具有足够的能量可以接近原子的中心,②α粒子可以使荧光物质发光,如果α粒子与其他粒子发生相互作用,改变了运动的方向,荧光屏便能够显示出它的方向变化。

3.α粒子散射装置①放射源(Pa“坡”)玛丽·居里的祖国波兰。

②金箔:1μm,能透光,有3000多层原子厚。

③荧光屏荧光屏和显微镜能够围绕金箔在一个④显微镜圆周上转动,从而可以观察到穿过金箔后⑤转动圆盘偏转角度不同的α粒子4.实验过程:实验室建在地下,通道大拐角(防光进入)马斯登和盖革(卢瑟福的学生、助手)进入实验室后要静座半小时散瞳孔后进行观察(纯人工计数),这种观察是十分艰苦细致的工作,所用的时间也是相当长的。

(1909年~~1911年两年的时间)。

选修3-5原子结构整章知识点

选修3-5原子结构整章知识点

选修3—5第十八章原子结构第一节电子的发现第二节原子的核式结构模型第三节氢原子光谱第四节玻尔的原子模型二. 知识内容(一)1. 阴极射线:阴极射线的本质是带负电的粒子流,后来,组成阴极射线的粒子被称为电子。

2. 电子的发现:1897年英国的物理学家汤姆孙发现了电子,并求出了这种粒子的比荷。

(二)1. 汤姆孙的原子模型:原子是一个球体,正电荷弥漫性地均匀分布在整个球体内,电子镶嵌其中,有人形象地把汤姆孙模型称为“西瓜模型”或“枣糕模型”。

2. a粒子散射实验:(1)a粒子:a粒子是从放射性物质中发射出来的快速运动的粒子,带有两个单位的正电荷,质量为氢原子质量的4倍。

(2)实验现象:绝大多数a粒子穿过金箔后,基本上仍沿原来的方向前进,但有少数a粒子(约占八千分之一)发生了大角度偏转,偏转的角度甚至大于900,也就是说它们几乎被“撞了回来”。

(3)卢瑟福核式结构模型:原子中带正电的部分体积很小,但几乎占有全部质量,电子在正电体的外面运动。

按照卢瑟福的理论,正电体被称为原子核,卢瑟福的原子模型因而被称为核式结构模型。

3. 原子核的电荷与尺度:(1)电荷:原子核是由质子和中子组成的,原子核的电荷数就是核中的质子数。

(2)尺度:对于一般的原子核,核半径的数量级为10-16m,而整个原子半径的数量级是10-10m,两者相差十万倍之多,可见原子内部是十分“空旷”的。

(三)1. 光谱:(1)定义:把光按波长的大小分开,获得光的波长(频率)成分和强度分布的记录。

即光谱。

(2)分类:光谱分为线状谱和连续谱。

(3)特征:线状谱是一条条分立的亮线;连续谱是一条连续的光带。

2. 原子光谱:(1)定义:各种原子的发射光谱都是线状谱,不同原子的亮线位置不同,把这些亮线称为原子的特征谱线。

(2)光谱分析:每种原子都有自己的特征谱线,我们可以用它来鉴别物质和确定物质的组成成分,这种方法称为光谱分析。

3. 氢原子光谱:巴耳末公式:,式中R是里德伯常量,其值为R=1.10×l07m-1,n只能取整数,不能连续取值,波长也只会是分立的值。

高中物理选修3-5原子物理部分知识复习总结

高中物理选修3-5原子物理部分知识复习总结

高中物理选修3-5原子物理部分总结章节第一节能量量子化名称黑体与黑体辐射黑体辐射的实验规律黑体辐射公式(辐射强度按波长分布的理论公式)定义(内容)热辐射:一切物体都在辐射电磁波,这种辐射与物体温度有关。

黑体:如果某种物体能够完全吸收入射的各种波长的电磁波而不发生反射,这种物体就是绝对黑体,简称黑体。

随着温度的升高,一方面,各种波长的辐射强度都有增加;另一方面,辐射强度的极大值向波长较短的方向移动。

维恩公式:短波区与实验非常接近,长波区则与实验偏离很大。

(德国物理学家维恩1896年提出)瑞利公式(瑞利—金斯公式):长波区与实验基本一致,短波区与实验严重不符,不但不符,而且当波长趋于零时,辐射强度竟变成无穷大,这显然是荒谬的。

由于波长很小的辐射处于紫外线波段,故而由理论得出的这种荒谬结果被认为是物理学理论的灾难,当时被称为紫外灾难。

(英国物理学家瑞利1900年提出,被金斯修正)补充第十七章不可再分的最小能量值叫做能量子。

为了得出同实验hv波能量子相符得黑体辐射公式,德国物理学家普朗克于1900年h=6.626×10-34J·s粒二象性底提出,于1918年因此获得诺贝尔物理学奖。

1、照射到金属表面的光能使金属中的电子从表面逸出,单位:J v单位:s-1这个现象称为光电效应,这种电子常被称为光电子。

2、存在着饱和电流。

3、入射光越强,单位时间内发射的光电子数越多。

第二节4、存在这遏止电压U和截止频率cvc。

光的粒光电效应的实验规律5、光电子的能量只与入射光的频率有关。

mυ2=eU2e c c子性6、当入射光的频率减小到某一数值v时,即使不施加c反向电压也没有光电流,这表面已经没有光电子了,vc称为截止频率。

7、入射光的频率低于截止频率时不发生光电效应。

8、光电效应具有瞬时性,产生电流的时间不超过10-9s。

1逸出功光电效应解释中的疑难(按照光的电磁理论)爱因斯坦的光电效应方程使电子脱离某种金属所做功的最小值叫做这种金属的逸出功,用W表示。

高中物理选修3-5原子结构知识点复习

高中物理选修3-5原子结构知识点复习

高中物理选修3-5原子结构知识点复习原子结构是高中物理选修3-5重要知识点之一,那么哪些内容需要我们复习记忆?下面店铺给大家带来高中物理选修3-5原子结构知识点,希望对你有帮助。

高中物理选修3-5原子结构知识点一、电子的发现1897年汤姆生(英)发现了电子,提出原子的枣糕模型,揭开了研究原子结构的序幕。

(谁发现了阴极射线?)二、原子的核式结构模型1、1909年起英国物理学家卢瑟福做了α粒子轰击金箔的实验,即α粒子散射实验(实验装置见必修本P257)得到出乎意料的结果:绝大多数α粒子穿过金箔后仍沿原来的方向前进,少数α粒子却发生了较大的偏转,并且有极少数α粒子偏转角超过了90°,有的甚至被弹回,偏转角几乎达到180°。

(P53 图)2、卢瑟福在1911年提出原子的核式结构学说:在原子的中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间里绕着核旋转。

按照这个学说,可很好地解释α粒子散射实验结果,α粒子散射实验的数据还可以估计原子核的大小(数量级为10-15m)和原子核的正电荷数。

原子序数=核电荷数=质子数=核外电子数。

三、氢原子的光谱1、光谱的种类:(1)发射光谱:物质发光直接产生的光谱。

炽热的固体、液体及高温高压气体发光产生连续光谱; 稀薄气体发光产生线状谱,不同元素的线状谱线不同,又称特征谱线。

(2)吸收光谱:连续谱线中某些频率的光被稀薄气体吸收后产生的光谱,元素能发射出何种频率的光,就相应能吸收何种频率的光,因此吸收光谱也可作元素的特征谱线。

2、氢原子的光谱是线状的(这些亮线称为原子的特征谱线),即辐射波长是分立的。

3、基尔霍夫开创了光谱分析的方法:利用元素的特征谱线(线状谱或吸收光谱)鉴别物质的分析方法。

四、波尔的原子模型1、卢瑟福的原子核式结构学说跟经典的电磁理论发生矛盾(矛盾为:a、原子是不稳定的;b、原子光谱是连续谱),1913年玻尔(丹麦)在其基础上,把普朗克的量子理论运用到原子系统上,提出玻尔理论。

最新高考物理选修3-5光和原子核必背知识点资料

最新高考物理选修3-5光和原子核必背知识点资料

选修3-5 光和原子核知识点一、光的粒子性1、光电效应(1)光电效应在光(包括不可见光)的照射下,从物体发射出电子的现象称为光电效应。

(2)逸出功:使电子脱离该金属所做功的最小值。

(3)光电效应的实验规律:①任何一种金属都有一个截止频率(极限频率)0ν,入射光的频率大于这个极限频率能发生光电效应,低于极限频率的光不能发生光电效应。

②光电子的最大初动能与入射光的强度无关,随入射光频率的增大而增大。

③大于极限频率的光照射金属时,饱和电流强度(反映单位时间发射出的光电子数的多少),与入射光强度成正比。

④ 金属受到光照,光电子的发射几乎是瞬时的。

2、波动说在光电效应上遇到的困难波动说认为:光的能量即光的强度是由光波的振幅决定的与光的频率无关。

所以波动说对解释上述实验规律中的①②④条都遇到困难3、光子说(1)量子论:1900年德国物理学家普郎克提出:电磁波的发射和吸收是不连续的,而是一份一份的,每一份电磁波的能量E=hv=λc (2)光子论:1905年爱因斯坦提出:空间传播的光也是不连续的,而是一份一份的,每一份称为一个光子,光子具有的能量E 与光的频率v 成正比,即:E=hv 其中h 为普朗克恒量(3)爱因斯坦光电方程:W h mv m -=ν221W 为逸出功 W=h 0ν=0λc h 4、光子论对光电效应的解释金属中的自由电子,获得光子后其动能增大,当动能大于逸出功时,电子即可脱离金属表面,入射光的频率越大,光子能量越大,电子获得的能量才能越大,飞出时最大初动能也越大。

二、波粒二象性1、光的干涉和衍射现象,说明光具有波动性,光电效应和康普顿效应,说明光具有粒子性,即光具有波粒二象性。

光的粒了性是指光的能量不连续性,能量是一份一份的光子,没有一定的形状,也不占有一定空间,这与经典粒子概念有所不同。

光波是一种概率波,在单缝衍射和双缝干涉中,明条纹是光子到达概率较大地方,暗条纹是光子达概率较小的地方。

个别光子显示出粒子性,大量光子显示出波动性,频率越低、波长越大,波动性越显著;频率越高、波长越短,粒子性越显著。

第3章 4.原子核的结合能 知识点讲解汇总附练习 高中物理选修3-5 Word版含答案

第3章 4.原子核的结合能  知识点讲解汇总附练习 高中物理选修3-5 Word版含答案

4.原子核的结合能[先填空]1.结合能核子结合成原子核所释放的能量.2.质能关系(1)物体的能量与其质量的关系式E=mc2.(2)能量计算ΔE=Δmc2.3.质量亏损核反应中的质量减少称为质量亏损.[再判断]1.原子核的结合能就是核子结合成原子核时需要的能量.(×)2.质量亏损是因为这部分质量转化为能量.(×)3.质能方程E=mc2表明了质量与能量间的一种对应关系.(√)[后思考]有人认为质量亏损就是核子的个数变少了,这种认识对不对?【提示】不对.在核反应中质量数守恒即核子的个数不变,只是核子组成原子核时,仿佛变“轻”了一些,原子核的质量总是小于其全部核子质量之和,即发生了质量亏损,核子的个数并没有变化.1.对质量亏损的理解质量亏损,并不是质量消失,减少的质量在核子结合成核的过程中以能量的形式辐射出去了.物体质量增加,则总能量随之增加;质量减少,总能量也随之减少,这时质能方程也写为ΔE=Δmc2.2.核能的计算方法(1)根据质量亏损计算①根据核反应方程,计算核反应前后的质量亏损Δm.②根据爱因斯坦质能方程ΔE=Δmc2计算核能.其中Δm的单位是千克,ΔE的单位是焦耳.(2)利用原子质量单位u和电子伏特计算根据1原子质量单位(u)相当于931.5 MeV的能量,用核子结合成原子核时质量亏损的原子质量单位数乘以931.5 MeV,即ΔE=Δm×931.5 MeV.其中Δm的单位是u,ΔE的单位是MeV.1.(多选)一个质子和一个中子结合成氘核,同时放出γ光子,核反应方程是11H+10n→21 H+γ,以下说法中正确的是( )A.反应后氘核的质量一定小于反应前质子和中子的质量之和B.反应前后的质量数不变,因而质量不变C.反应前后质量数不变,但会出质量亏损D.γ光子的能量为Δmc2,Δm为反应中的质量亏损,c为光在真空中的速度【解析】核反应中质量数与电荷数及能量均守恒,由于反应中要释放核能,会出现质量亏损,反应中氘核的质量一定小于反应前质子和中子的质量之和,所以质量不守恒,但质量数不变,且能量守恒,释放的能量会以光子的形式向外释放,故正确答案为A、C、D.【答案】ACD2.(多选)关于质能方程,下列哪些说法是正确的( )【导学号:22482045】A.质量减少,能量就会增加,在一定条件下质量转化为能量B.物体获得一定的能量,它的质量也相应地增加一定值C.物体一定有质量,但不一定有能量,所以质能方程仅是某种特殊条件下的数量关系D.一定量的质量总是与一定量的能量相联系的【解析】质能方程E=mc2表明某一定量的质量与一定量的能量是相联系的,当物体获得一定的能量,即能量增加某一定值时,它的质量也相应增加一定值,并可根据ΔE=Δmc2进行计算,故B、D对.【答案】BD3.取质子的质量m p =1.672 6×10-27kg ,中子的质量m n =1.674 9×10-27kg ,α粒子的质量m α=6.646 7×10-27kg ,光速c =3.0×108m/s.请计算α粒子的结合能.(计算结果保留两位有效数字)【解析】 组成α粒子的核子与α粒子的质量差 Δm =(2m p +2m n )-m α 结合能ΔE =Δmc 2代入数据得ΔE =4.3×10-12J.【答案】 4.3×10-12J核能的两种单位两种方法计算的核能的单位分别为“J”和“MeV”,1 MeV =1×106×1.6×10-19J =1.6×10-13J.[先填空] 1.比结合能原子核的结合能ΔE 除以核子数A ,ΔEA称为原子核的比结合能,又叫平均结合能.2.核聚变和核裂变(1)核聚变:两个轻核结合成较重的单个原子核时会释放能量,这样的过程叫核聚变.两个氘核的聚变:21H +21H→42He.(2)核裂变:一个重核分裂为两个(或多个)中等质量的核时释放出能量,这样的过程叫核裂变.[再判断]1.原子核的核子数越多,比结合能越大.(×) 2.比结合能越大,原子核越稳定.(√)3.由比结合能曲线可知,核聚变和核裂变两种核反应方式都能释放核能.(√) [后思考]裂变反应发生后,裂变反应生成物的质量增加还是减小?为什么?【提示】 减小.裂变反应释放大量的能量,所以发生质量亏损,反应后的质量减小.比结合能与原子核稳定的关系(1)比结合能的大小能够反映原子核的稳定程度,比结合能越大,原子核就越难拆开,表示该原子核就越稳定.(2)核子数较小的轻核与核子数较大的重核,比结合能都比较小,表示原子核不太稳定;中等核子数的原子核,比结合能较大,表示原子核较稳定.(3)当比结合能较小的原子核转化成比结合能较大的原子核时,就可能释放核能.例如,一个核子数较大的重核分裂成两个核子数小一些的核,或者两个核子数很小的轻核结合成一个核子数大一些的核,都能释放出巨大的核能.4.下列关于结合能和比结合能的说法中,正确的有( )A.核子结合成原子核时吸收能量B.原子核拆解成核子时要吸收能量C.比结合能越大的原子核越稳定,因此它的结合能也一定越大D.重核与中等质量原子核相比较,重核的结合能和比结合能都大【解析】核子结合成原子核时放出能量,原子核拆解成核子时吸收能量,A错误,B 正确;比结合能越大的原子核越稳定,但比结合能越大的原子核,其结合能不一定大,例如中等质量原子核的比结合能比重核大,但由于核子数比重核少,其结合能比重核反而小,C、D选项错误.【答案】 B5.(多选)如图3­4­1所示是描述原子核核子的平均质量m与原子序数Z的关系曲线,由图可知下列说法正确的是 ( )图3­4­1A.将原子核A分解为原子核B、C一定放出能量B.将原子核D、E结合成原子核F可能吸收能量C.将原子核A分解为原子核B、F一定释放能量D.将原子核F、C结合成原子核B一定释放能量【解析】因B、C核子平均质量小于A的核子平均质量,故A分解为B、C时,会出现质量亏损,故放出核能,故A正确,同理可得B、D错,C正确.【答案】AC6.当两个中子和两个质子结合成一个α粒子时,放出28.30 MeV的能量,当三个α粒子结合成一个碳核时,放出7.26 MeV的能量,则当6个中子和6个质子结合成一个碳核时,释放的能量约为________.【解析】6个中子和6个质子可结合成3个α粒子,放出能量3×28.30 MeV=84.9 MeV,3个α粒子再结合成一个碳核,放出7.26 MeV能量,故6个中子和6个质子结合成一个碳核时,释放能量为84.9 MeV+7.26 MeV=92.16 MeV.【答案】92.16 MeV对比结合能曲线的理解由曲线可知中等质量的核的比结合能最大,核最稳定.质量较大的重核裂变成中等质量的核要释放能量,质量较小的轻核聚变时也要释放能量.3.光的波粒二象性[先填空]1.光的散射:光在介质中与物体微粒的相互作用,使光的传播方向发生偏转,这种现象叫光的散射.蔚蓝的天空、殷红的晚霞是大气层对阳光散射形成的,夜晚探照灯或激光的光柱,是空气中微粒对光散射形成的.2.康普顿效应康普顿在研究石墨对X射线的散射时,发现在散射的X射线中,除原波长外,还发现了波长随散射角的增大而增大的谱线.X射线经物质散射后波长变长的现象,称为康普顿效应.3.康普顿的理论当光子与电子相互作用时,既遵守能量守恒定律,又遵守动量守恒定律.在碰撞中光子将能量hν的一部分传递给了电子,光子能量减少,波长变长.4.康普顿效应的意义康普顿效应表明光子除了具有能量之外,还具有动量,深入揭示了光的粒子性的一面,为光子说提供了又一例证.[再判断]1.康普顿效应证实了光子不仅具有能量,也具有动量.(√)2.康普顿效应进一步说明光具有粒子性.(√)3.光子发生散射时,其动量大小发生变化,但光子的频率不发生变化.(×)4.光子发生散射后,其波长变大.(√)[后思考]1.太阳光从小孔射入室内时,我们从侧面可以看到这束光;白天的天空各处都是亮的;宇航员在太空中尽管太阳光耀眼刺目,其他方向的天空却是黑的.为什么?【提示】地球上存在着大气,太阳光经大气中的微粒散射后传向各个方向;而在太空中的真空环境下,光不再散射,只向前传播.2.光电效应与康普顿效应研究问题的角度有何不同?【提示】光电效应应用于电子吸收光子的问题,而康普顿效应应用于讨论光子与电子碰撞且没有被电子吸收的问题.1.对康普顿效应的理解(1)实验现象X射线管发出波长为λ0的X射线,通过小孔投射到散射物石墨上.X射线在石墨上被散射,部分散射光的波长变长,波长改变的多少与散射角有关.(2)康普顿效应与经典物理理论的矛盾按照经典物理理论,入射光引起物质内部带电粒子的受迫振动,振动着的带电粒子从入射光吸收能量,并向四周辐射,这就是散射光.散射光的频率应该等于粒子受迫振动的频率(即入射光的频率).因此散射光的波长与入射光的波长应该相同,不应该出现波长变长的散射光.另外,经典物理理论无法解释波长改变与散射角的关系.(3)光子说对康普顿效应的解释假定X射线光子与电子发生弹性碰撞.①光子和电子相碰撞时,光子有一部分能量传给电子,散射光子的能量减少,于是散射光的波长大于入射光的波长.②因为碰撞中交换的能量与碰撞的角度有关,所以波长的改变与散射角有关.2.康普顿的散射理论进一步证实了爱因斯坦的光量子理论,也有力证明了光具有波粒二象性.1.(多选)美国物理学家康普顿在研究石墨对X射线的散射时,发现在散射的X射线中,除了与入射波长λ0相同的成分外,还有波长大于λ0的成分,这个现象称为康普顿效应.关于康普顿效应,以下说法正确的是 ( )A.康普顿效应说明光子具动量B.康普顿效应现象说明光具有波动性C.康普顿效应现象说明光具有粒子性D.当光子与晶体中的电子碰撞后,其能量增加【解析】康普顿效应说明光具有粒子性,B项错误,A、C项正确;光子与晶体中的电子碰撞时满足动量守恒和能量守恒,故二者碰撞后,光子要把部分能量转移给电子,光子的能量会减少,D项错误.【答案】AC2.康普顿效应证实了光子不仅具有能量,也有动量.如图4­3­1给出了光子与静止电子碰撞后电子的运动方向,则碰后光子可能沿__________方向运动,并且波长________(选填“不变”“变短”或“变长”).图4­3­1【解析】因光子与电子在碰撞过程中动量守恒,所以碰撞之后光子和电子的总动量的方向与光子碰前动量的方向一致,可见碰后光子运动的方向可能沿1方向,不可能沿2或3方向;通过碰撞,光子将一部分能量转移给电子,能量减少,由ε=hν知,频率变小,再根据c=λν知,波长变长.【答案】 1 变长动量守恒定律不但适用于宏观物体,也适用于微观粒子间的作用;康普顿效应进一步揭示了光的粒子性,也再次证明了爱因斯坦光子说的正确性.[先填空]1.光的波粒二象性(1)光既具有波动性又具有粒子性,既光具有波粒二象性.光的波动性是指光的运动形态具有各种波动的共同特征,如干涉、衍射和色散等都有波动的表现.光的粒子性是指光与其他物质相互作用时所交换的能量和动量具有不连续性,如光电效应、康普顿效应等.(2)光子的能量和动量 ①能量:ε=h ν. ②动量:p =hλ.(3)意义能量ε和动量p 是描述物质的粒子性的重要物理量;波长λ和频率ν是描述物质的波动性的典型物理量.因此ε=h ν和p =hλ揭示了光的粒子性和波动性之间的密切关系.2.光是一种概率波光波在某处的强度代表着光子在该处出现概率的大小,所以光是一种概率波. [再判断]1.光的干涉、衍射、偏振现象说明光具有波动性.(√) 2.光子数量越大,其粒子性越明显.(×)3.光具有粒子性,但光子又不同于宏观观念的粒子.(√) 4.光子通过狭缝后落在屏上明纹处的概率大些.(√) [后思考]1.由公式E =h ν和λ=hp,能看出波动性和粒子性的联系吗?【提示】 从光子的能量和动量的表达式可以看出,是h 架起了粒子性与波动性之间的桥梁.2.在光的单缝衍射实验中,在光屏上放上照相底片,并设法控制光的强度,尽可能使光子一个一个地通过狭缝,曝光时间短时,可看到胶片上出现一些无规则分布的点;曝光时间足够长时,有大量光子通过狭缝,底片上出现一些平行条纹,中央条纹最亮最宽.请思考下列问题:(1)曝光时间短时,说明什么问题?【提示】 少量光子表现出光的粒子性,但其运动规律与宏观粒子不同,其位置是不确定的.(2)曝光时间足够长时,说明什么问题?【提示】大量光子表现出光的波动性,光波强的地方是光子到达的机会多的地方.(3)暗条纹处一定没有光子到达吗?【提示】暗条纹处也有光子到达,只是光子到达的几率特别小,很难呈现出亮度.1.对光的认识的几种学说在双缝干涉实验中,光子通过双缝后,对某一个光子而言,不能肯定它落在哪一点,但屏上各处明暗条纹的不同亮度,说明光子落在各处的可能性即概率是不相同的.光子落在明条纹处的概率大,落在暗条纹处的概率小.这就是说光子在空间出现的概率可以通过波动的规律来确定,因此说光是一种概率波.3.关于光的波粒二象性,下列说法中正确的是( )【导学号:22482062】A.光的频率越高,衍射现象越容易看到B.光的频率越高,粒子性越显著C.大量光子产生的效果往往显示粒子性D.光的波粒二象性否定了光的电磁说【解析】光具有波粒二象性,波粒二象性并不否定光的电磁说,只是说某些情况下粒子性明显,某些情况下波动性明显,故D错误.光的频率越高,波长越短,粒子性越明显,波动性越不明显,越不易看到其衍射现象,故B正确、A错误.大量光子的行为表现出波动性,个别光子的行为表现出粒子性,故C错误.【答案】 B4.(多选)在单缝衍射实验中,中央亮纹的光强占从单缝射入的整个光强的95%以上.假设现在只让一个光子能通过单缝,那么该光子( )A.一定落在中央亮纹处B.一定落在亮纹处C.可能落在亮纹处D.可能落在暗纹处【解析】根据光的概率波的概念,对于一个光子通过单缝落在何处,是不可确定的,但概率最大的是落在中央亮纹处,可达95%以上.当然也可能落在其他亮纹处,还可能落在暗纹处,只不过落在暗处的概率很小而已,故只有C、D正确.【答案】CD对光的波粒二象性的两点提醒1.光的干涉和衍射及偏振说明光具有波动性,而光电效应和康普顿效应是光具有粒子性的例证.2.波动性和粒子性都是光的本质属性,只是在不同条件下的表现不同.当光与其他物质发生作用时,表现出粒子的性质;少量或个别光子易显示出光的粒子性;频率高波长短的光,粒子性显著.大量光子在传播时表现为波动性;频率低波长长的光,波动性显著.对光子落点的理解1.光具有波动性,光的波动性是统计规律的结果,对某个光子我们无法判断它落到哪个位置,我们只能判断大量光子的落点区域.2.在暗条纹处,也有光子达到,只是光子数很少.3.对于通过单缝的大量光子而言,绝大多数光子落在中央亮纹处,只有少数光子落在其他亮纹处及暗纹处.。

人教版高中物理选修3-5章总结复习素材:第十九章 原子核知识点

人教版高中物理选修3-5章总结复习素材:第十九章 原子核知识点
选修 3-5 知识点 第十九章 原子核
19.1 原子核的组成 一、天然放射现象 1、物质发射射线的性质称为放射性,它可以穿透黑纸使照相底片感光。 2、具有放射性的元素称为放射性元素。 3、放射性的元素自发地发出射线的现象叫做天然放射现象。 二、射线到底是什么 1、三种射线分别叫做带正电荷α射线、带负电荷β射线和不带电γ射线。 2、α射线的穿透能力最弱,γ射线的穿透能力最强。 3、α射线是高速粒子流,粒子带正电,电荷量是电子的 2 倍,质量是氢原子的 4 倍, 电子质量的 7300 倍,实际上就是氦原子核。 4、β射线是高速电子流。 5、γ射线是能量很高的电磁波。 6、α射线,β射线都是高速运动的粒子, 能量很高,Y 射线是波长很短的光子,能 量也很高。 三、原子核的组成 1、质子 p:它是氢原子核,带正电,电量与电子相等。 2、中子 n:不带电,质量与质子相等。 3、核子:质子和中子组成的原子核。 4、原子核中的两个等式: ①核电荷数 Z=质子数=原子序数=荷外电子数 ②质量数 A=核子数=质子数+中子数 例如:23592U——铀原子核:有 92 个质子,143 个中子。质量数为 235。 5、同位素:具有相同质子数而中子数不同的原子核、在元素周期表中处于同一位置。 6、几种常用的原子核的表示
探测射线的方法
19.4 放射性的应用与防护 一、核反应 1、核反应分两种 (1)核自发衰变。(不可控) ①α衰变:α射线的实质就是高速运动的氦核流 ②β衰变:β射线的实质就是高速运动的电子流。 ③没有单独的γ衰变:γ射线是一种电磁波(光子)。 (2)人工转变:原子核在其他粒子的轰击下产生新原子核的过程。(可控) ①其他粒子指:α粒子、质子、中子,光子等 2、在核反应中,质量数守恒、电荷数守恒。 二、人工放射性同位素 1、同位素:具有相同质子数而中子数不同的原子核、在元素周期表中处于同一位置的 元素。有些同位素具有放射性,叫做放射性同位素。放射性同位素又分为天然和人工放 射性同位素。 2、与天然的放射性物质相比,人工放射性同位素的优点: ①放射强度容易控制 ③可以制成各种需要的形状 ④半衰期更短 ⑤放射性废料容易处理 三、放射性同位素的应用 ①使用射线来测厚度----利用γ射线的穿透性强的特点 ②放疗----利用细胞对射线承受力不同 ③选种和保鲜

物理选修3---5第十九章原子核知识点汇总说课讲解

物理选修3---5第十九章原子核知识点汇总说课讲解

物理选修3---5第十九章原子核知识点汇总物理选修3---5第十九章原子核知识点汇总(训练版)知识点一、原子核的组成1、天然放射现象(1)天然放射现象的发现:1896年法国物理学,贝克勒耳发现铀或铀矿石能放射出某种人眼看不见的射线。

这种射线可穿透黑纸而使照相底片感光。

天然放射现象的发现使人们意识到原子核具有复杂结构。

放射性:物质能发射出上述射线的性质称放射性。

放射性元素:具有放射性的元素称放射性元素。

天然放射现象:某种元素白发地放射射线的现象,叫天然放射现象。

(2)放射线的成份和性质:①用电场和磁场来研究放射性元素射出的射线,在电场中轨迹:对应粒子射出速度电离能力穿透能力对应粒子的产生α射线He42C101最强最弱α衰变中:HeHn4211122→+β射线e01-C10099较弱较弱β衰变中:eHn011110-+→②三种射线及其性质比较:2、原子核的组成 (1)质子p 的发现1919年卢瑟福发现质子,并预言了中子的存在。

发现方程 H O N He 1117814742+→+ (2)中子n 的发现:1932年,卢瑟福的学生查德威克发现中子。

发现方程 n C Be He 101269442+→+(3)原子核的组成:原子核是由质子和中子组成,质子和中子统称为核子。

在原子核中:质子数等于电荷数;核子数等于质量数;中子数等于质量数减电荷数.原子核常用符号:X AZX-----元素符号,A-----核的质量数(核子数),Z-----核电荷数(即原子序数)知识点二、放射性元素的衰变1、原子核的衰变:(1)衰变:原子核由于放出某种粒子而转变成新核的变化称为衰变。

①在原子核的衰变过程中,电荷数和质量数守恒。

如:衰变方程:α衰变:He Th U 422349023892+→ β衰变:e Pa Th 012349123490-+→②γ射线是伴随α、β衰变放射出来的高频光子流。

③在β衰变中新核质子数多一个,而质量数不变是由于反映中有一个中子变为一个质子和一个电子。

人教版高中物理选修3-5知识点整理及重点题型梳理] 原子核的基础知识

人教版高中物理选修3-5知识点整理及重点题型梳理]  原子核的基础知识

人教版高中物理选修3-5知识点梳理重点题型(常考知识点)巩固练习原子核的基础知识【学习目标】1.知道什么是天然放射性及其规律和发现的意义;2.知道三种射线的本质和区分方法;3.了解质子和中子的发现;4.知道原子核是由质子和中子组成的,掌握原子序数、核电荷数、质量数之间的关系;5.知道α和β衰变的规律及实质;6.理解半衰期的概念;7.学会利用半衰期解决相关问题;8.了解探测射线的仪器及原理;9.了解探测射线的方法;10.了解原子核人工转变及人工放射性同位素;11.了解放射性的应用;12.了解放射性同位素的应用.【要点梳理】要点一、原子核的组成1.天然放射现象——贝克勒尔的发现1896年,法国物理学家贝克勒尔发现,铀和含铀的矿物能发出一种看不见的射线,这种射线能穿透黑纸而使照相底片感光.这种元素白发地放出射线的现象叫天然放射现象。

物质发射看不见的射线的性质称为放射性,具有放射性的元素称为放射性元素.研究发现,自然界中原子序数大于或等于83的所有元素,都能、自发地放出射线;原子序数小于83的元素,有的也具有放射性.后来居里夫人发现了两种放射性很强的元素——钋和镭.虽然具有天然放射性的元素的种类很多。

但它们在地球上的含量很少.2.对放射线的研究(1)研究方法:让放射线通过电场或磁场来研究其性质.把样品放在铅块的窄孔中,在孔的对面放着照相底片,在没有电场和磁场时,发现在底片上正对孔的位置感光了.若在铅块和底片之间放一对电极或加上磁场,使电场方向或磁场方向跟射线方向垂直,结果在底片上有三个地方感光了,说明在电场或磁场作用下,射线分为三束,表明这些射线中有的带电,有的不带电,如图甲和乙所示.从感光位置知道,带正电的射线偏转较小,这种射线叫α射线;带负电的射线偏转较大,这种射线叫β射线;不偏转的射线叫γ射线.(2)各种射线的性质、特征①α射线:卢瑟福经研究发现,α射线粒子带有两个单位正电荷,质量数为4,即α粒子是氦核,速度约是光速的l 10/,有较大的动能.特征:贯穿本领小,电离作用强,能使沿途中的空气电离.②β射线:贝克勒尔证实,β射线是电子流,其速度可达光速的99%.特征:贯穿本领大,能穿透黑纸,甚至穿透几毫米厚的铝板,但电离作用较弱.③γ射线是一种波长很短的电磁波——光子流,是能量很高的电磁波,波长1010m λ-<.特征:贯穿本领最强,能穿透几厘米厚的铅板.电离作用最弱.3.天然放射现象的意义天然放射现象说明原子核是有内部结构的.元素的放射性不受单质和化合物存在形式的影响.化学反应决定于核外的电子,能量有限,不可能放出α粒子,也不可能放出高速的电子和γ光子来,因此三种射线只能是从原子核内放出的.说明原子核是有复杂结构的.4.原子核的组成卢瑟福建立了原子的核式结构模型,知道核外有带负电的电子,原子核内有带正电的物质,那么,原子核内的构成又是怎样的呢?(1)质子的发现.1919年,卢瑟福又用α粒子轰击氮核,结果从氮核中打出了一种粒子,并测定了它的电荷与质量,知道它是氢原子核,把它叫做质子.符号p 或11H .以后又从氟、钠、铝等原子核中打出了质子,所以断定质子是原子核的组成部分.一开始,人们以为原子核只是由质子组成的.但是,这不能正确地解释原子核的质量和原子核所带的电荷量.如果原子核只是由质子组成的,那么,某种原子核的质量跟质子质量之比,应该等于这种原子核的电荷跟质子电荷之比.实际上,绝大多数原子核的质量跟质子质量之比都大于原子核的电荷跟质子电荷之比(2)中子的发现.卢瑟福发现质子后,预言核内还有一种不带电的粒子,并给这种还未“出生”的粒子起了一个名字叫“中子”.卢瑟福的预言十年后就变成了现实,他的学生查德威克用实验证明了原子核内含有中子,中子的质量非常接近于质子的质量(用α粒子轰击铍原子核实验).(3)原子核的组成.原子核是由质子和中子组成的,质子和中子统称核子.原子核所带电荷都是质子电荷的整数倍,用Z 表示,叫做原子核的质子数,或叫核电荷数.原子核的质量是核内质子和中子质量的总和.由于质子和中子质量几乎相等,所以原子核的质量近似等于核子质量的整数倍,用这个整数代表原子核的质量,叫做原子核的质量数,用A 表示,原子核的符号可以表示为X A Z .其中X 为元素符号,A 为原子核的质量数,Z 为核电荷数,例如氦核,可表示为42He .表示氦核的质量数为4,电荷数为2,核内有2个质子和2个中子.238 92U 代表铀核,质量数为238,电荷数为92,质子数为92,中子数为146,有时也可写为238U 或简称为铀238.5.同位素原子核内的质子数决定了元素的化学性质,同种元素的原子质子数相同,核外电子数也相同,所以有相同的化学性质,但它们的中子数可以不同.定义:具有相同质子数、不同中子数的原子互称同位素.例如氢的三种同位素:氕(11H )、氘(21H )、氚(31H ).要点二、放射性元素的衰变1.原子核的衰变天然放射现象说明原子核具有复杂的结构.原子核放出α粒子或β粒子,并不表明原子核内有β粒子或β粒子(β粒子是电子流,而原子核内不可能有电子存在),放出后“就变成新的原子核”,这种变化称为原子核的衰变.(1)衰变规律:原子核衰变时,前后的电荷数和质量数都守恒.(2)衰变方程:α衰变:4422X Y He AA Z Z --→+, β衰变:011X Y e AA Z Z +-→+.(3)两个重要的衰变:238234492902U Th He →+,234234090911Th Pa e -→+. ①核反应中遵循质量数守恒而不是质量守恒,核反应过程中反应前后的总质量一般会发生变化(质量亏损)而释放出核能.②当放射性物质发生连续衰变时,原子核中有的发生α衰变,有的发生β衰变.同时伴随着γ辐射.(4)α粒子和β粒子衰变的实质要点诠释:在放射性元素的原子核中,2个中子和2个质子结合得比较紧密,有时会作为一个整体从较大的原子核中抛射出来,这就是放射性元素发生的仪衰变现象.原子核里虽然没有电子,但是核内的中子可以转化成质子和电子,产生的电子从核内发射出来,这就是β衰变.α粒子实质就是氦核,它是由两个质子和两个中子组成的.当发生α衰变时,原子核中的质子数减2,中子数也减2,因此新原子核的核电荷数比未发生衰变时的原子核的核电荷数少2,为此在元素周期表中的位置向前移动两位.β衰变是原子核中的一个中子转化成一个电子,即β粒子放射出去,同时还生成一个质子留在核内,使核电荷数增加.但β衰变不改变原子核的质量数,所以发生β衰变后,新原子核比原来的原子核在周期表中的位置向后移动一位.γ射线是在发生α或β衰变过程中伴随而生,且γ粒子是不带电的粒子,因此γ射线并不影响原子核的核电荷数,故γ射线不会改变元素在周期表中的位置.但γ射线是伴随α或β衰变而生,它并不能独立发生,所以,只要有γ射线必有α衰变或β衰变发生.因此从整个衰变过程来看,元素在周期表中的位置可能要发生改变.2.半衰期放射性元素具有一定的衰变速率,例如氡222经α衰变后变成钋218,发现经过3.8天后,有一半氡发生了衰变,再经过3.8天后,只剩下四分之一的氡,再经3.8天后,剩下的氡为原来的八分之一;镭226变为氡222的半衰期是1620年.不同元素的半衰期是不一样的.要点诠释:(1)定义:放射性元素的原子核有半数发生衰变所需的时间叫这种元素的半衰期.半衰期是表示放射性元素衰变快慢的物理量;不同的放射性元素,其半衰期不同,有的差别很大.(2)公式:用T 表示半衰期,0m 与0N 表示衰变前的质量和原子核数,m 和N 表示衰变后的质量和原子核数,n 表示半衰期数,则0022t T n m m m -==⋅, 0022t TtT N N N -==⋅. (3)影响因素:放射性元素衰变的快慢是由核内部的因素决定的,跟原子所处的物理状态(如温度、压强)或化学状态(如单质、化合物)无关.(4)规律理解:半衰期是个统计概念,只对大量原子核有意义,对少数原子核是没有意义的.某一个原子核何时发生衰变,是不可知的.若样品中有四个原子核,它们的半衰期为10天,10天后是否有两个原子核发生了衰变是无法确定的.3.核反应方程的配平及α、β衰变次数的确定方法(1)核反应方程中有两个守恒规律:质量数守恒,电荷数守恒.(2)确定衰变次数的原理是两个守恒规律.方法是:设放射性元素X A Z 经过n 次α衰变和m 次β衰变后,变成稳定的新元素''Y A Z ,则表示该核反应的方程为:'40'21X Y He e AA Z z n m -→++. 根据电荷数守恒和质量数守恒可列方程:4A A n =+', 2Z Z n m =+'-. 以上两式联立解得:'4A A n -=, ''2A A m Z Z -=+-. 由此可见确定衰变次数可归结为解一个二元一次方程组.(3)技巧上,为了确定衰变次数,一般是由质量数的改变先确定仪衰变的次数,这是因为β衰变的次数的多少对质量数没有影响,然后再根据衰变规律确定β衰变的次数.(4)几点说明:①核反应过程一般都不是可逆的,所以核反应方程式只能用单向箭头表示反应方向,不能用等号连接.②核反应的生成物一定要以实验为基础,不能凭空只依据两个守恒杜撰出生成物来写核反应方程. ③核反应中遵循质量数守恒而不是质量守恒,核反应过程中反应前后的总质量一般会发生变化(质量亏损)而释放出核能.④当放射性物质发生连续衰变时,原子核中有的发生α衰变,有的发生β衰变,同时伴随着γ辐射.要点三、探测射线的方法1.威耳逊云室(1)构造:主要部分是一个塑料或玻璃制成的容器,它的下部是一个可以上下移动的活塞,上盖是透明的,可以通过它来观察和拍摄粒子运动的径迹,云室里面有干净的空气.如图所示.(2)原理:把一小块放射性物质(放射源)放在室内侧壁附近(或放在室外,让放射线从窗口射入),先往云室里加少量的酒精,使室内充满酒精的饱和蒸气,然后使活塞迅速向下运动,室内气体由于迅速膨胀,温度降低,酒精蒸气达到过饱和状态.这时如果有射线粒子从室内气体中飞过,使沿途的气体分子电离,过饱和酒精蒸气就会以这些离子为核心,凝结成雾滴,这些雾滴沿射线经过的路线排列,于是就显示出了射线的径迹.这种云室是英国物理学家威耳逊于1912年发明的,故叫威耳逊云室.(3)放射线在云室中的径迹.① 粒子的质量比较大,在气体中飞行时不易改变方向.由于它的电离本领大,沿途产生的离子多,所以它在云室中的径迹直而粗.②β粒子的质量小,跟气体分子碰撞时容易改变方向,并且电离本领小,沿途产生的离子少,所以它在云室中的径迹比较细,而且常常弯曲.③γ粒子的电离本领很小,在云室中一般看不到它的径迹.④根据径迹的长短和粗细,可以知道粒子的性质;把云室放在磁场中,从带电粒子运动轨迹的弯曲方向,还可以知道粒子所带电荷的正负.2.气泡室气泡室的原理同云室的原理类似,所不同的是气泡室里装的是液体(如液态氢).控制气泡室内液体的温度和压强,使室内温度略低于液体的沸点.当气泡室内压强突然降低时,液体的沸点变低,因此液体过热,在通过室内射线粒子周围就有气泡形成,从而显示射线径迹.3.盖革—米勒计数器(1)构造:主要部分是盖革管,外面是一根玻璃管,里面是一个接在电源负极的导电圆筒,筒的中间有一条接正极的金属丝.管中装有低压的惰性气体和少量的酒精蒸气或溴蒸气,如图所示.(2)原理:在金属丝和圆筒两极间加上一定的电压,这个电压稍低于管内气体的电离电压.当某种射线粒子进入管内时,它使管内的气体电离,产生电子……这样,一个射线粒子进人管中后可以产生大量电子,这些电子到达阳极,阳离子到达阴极,在外电路中产生了一次脉冲放电,利用电子仪器可以把放电次数记录下来.(3)优缺点.优点:放大倍数很大,非常灵敏,用它来检测放射性是很方便的.缺点:它对于不同的射线产生的脉冲现象相同,因此只能用来计数,而不能区分射线的种类.如果同时有大量粒子,或两个粒子射来的时间间隔很短(少于200 ms )时,也不能计数.4.乳胶照相放射线能够使照相底片感光.放射线中的粒子经过照相底片上的乳胶时,使乳胶中的溴化银分解,经显影后,就有一连串的黑点示出粒子的径迹.要点四、放射性的应用与防护1.人工放射性同位素1932年,约里奥·居里和玛丽·居里用α粒子轰击铍、铝、硼等元素,发现了前所未见的穿透性强的辐射,后经查德威克的研究,确定为中子流.1934年,他们用α粒子轰击铝、硼时,除探测到预料中的中子外,还探测到了正电子.正电子是科学家在1923年发现的,它带一个单位正电荷,质量跟电子质量相同.若拿走α粒子放射源,铝箔不再发射中子,但仍不断地发射正电子,而且这种放射性跟天然放射性具有相同的性质和规律,也有半衰期.经进一步研究发现:铝核被α粒子击中后发生了如下一系列核变化.274301132150Al He P n +→+.这一反应生成的磷30是磷的一种同位素,具有放射性,它像天然放射性元素一样发生衰变,它衰变时放出正电子,衰变方程如下:3030015141P Si e →+.这种具有放射性的同位素叫放射性同位素,这是人类第一次得到的人工放射性物质,由于这一重大发现,约里奥·居里夫妇于1935年获诺贝尔奖.后来人们用质子、氘核、中子、γ射线等轰击原子核,也得到了放射性同位素.天然存在的放射性元素只有四十多种,但用人工方法得到的放射性同位素有一千多种,因而使放射性同位素具有广泛的应用.2.放射性同位素的应用(1)利用它放射出的射线.①利用γ射线的贯穿本领.利用钴60放出的很强的γ射线来检查金属内部有没有砂眼和裂纹,这叫γ射线探伤.利用γ射线可以检查30 cm 厚的钢铁部件.利用放射线的贯穿本领,可用来检查各种产品的厚度、密封容器中的液面高度等,从而自动控制生产过程.②利用射线的电离作用.放射线能使空气电离,从而可以消除静电积累,防止静电产生的危害. ③利用γ射线对生物组织的物理、化学效应使种子发生变异,培育优良品种.④利用放射线的能量,轰击原子核实现原子核的人工转变.⑤在医疗上,常用以控制病变组织的扩大.(2)作为示踪原子.把放射性同位素的原子掺到其他物质中去,让它们一起运动、迁移,再用放射性探测仪器进行追踪,就可知道放射性原子通过什么路径,运动到哪里了,是怎样分布的.我们把用作这种用途的放射性同位素叫做示踪原子.示踪原子有极为广泛的应用:①在工业上可用示踪原子检查地下输油管道的漏油情况.②在农业生产中,可用示踪原子确定植物在生长过程中所需的肥料和合适的施肥时间.③在医学上,可用示踪原子帮助确定肿瘤的部位和范围.④在生物科学研究方面,放射性同位素示踪法在生物化学和分子生物学领域应用极为广泛,它为揭示体内和细胞内理化过程的秘密,阐明了生命活动的物质基础起了极其重要的作用.使生物化学从静态进入动态,从细胞水平进入分子水平,阐明了一系列重大问题,如遗传密码、细胞膜受体、-逆转录等,使人类对生命基本现象的认识开辟了一条新的途径.RNA DNA例如:在给农作物施肥时,在肥料里放一些放射性同位素,这样可以知道农作物在各季节吸收含有哪种元素的肥料.利用示踪原子还可以检查输油管道上的漏油位置,在生物学研究方面,同位素示踪技术也起着十分重要的作用.3.放射性的污染和防护放射线在我们的生活中无处不在.在合理应用放射性的同时,又要警惕它的危害,进行必要的防护.过量的放射性会对环境造成污染,对人类和自然产生破坏作用.图示是世界通用的辐射警示标志.(1)放射性污染.过量的放射性会对环境造成污染,对人类和自然界产生破坏作用.几件需要记住的放射性污染是:①1945年美国向日本的广岛和长崎投了两枚原子弹,当日炸死了十多万人,另有无数的平民受到辐射后患有各种疾病,使无辜的平民痛不欲生.②1987年前苏联切尔诺贝利核电站的泄露造成了大量人员的伤亡,至今大片领土仍是生物活动的禁区.③美国在近几年的两次地区冲突(海湾地区、科索沃地区)中大量使用了含有放射性的贫铀弹,使许多人患有莫名其妙的疾病.【典型例题】类型一、原子核的组成例1天然放射现象的发现揭示了().A.原子不可再分B.原子的核式结构C.原子核还可再分D.原子核由质子和中子组成【思路点拨】汤姆孙发现了电子说明原子也可再分;卢瑟福通过α粒子散射实验提出了原子的核式结构;贝克勒尔发现了天然放射现象,说明了原子核也是有着复杂的结构的;天然放射现象的发现揭示了原子核还可再分;卢瑟福用α粒子轰击氮核,发现了质子,查德威克用仪粒子轰击铍核打出了中子,使人们认识到原子核是由质子和中子组成的.【答案】C【解析】本题涉及物理学史的一些知识.汤姆孙发现了电子说明原子也可再分;卢瑟福通过α粒子散射实验提出了原子的核式结构;贝克勒尔发现了天然放射现象,说明了原子核也是有着复杂的结构的;天然放射现象的发现揭示了原子核还可再分;卢瑟福用α粒子轰击氮核,发现了质子,查德威克用仪粒子轰击铍核打出了中子,使人们认识到原子核是由质子和中子组成的.所以正确选项为C .【总结升华】要了解一些科学的史实,了解人类对物质结构及物质运动规律的认识过程.正是这些伟大的发现才使我们逐步认识了我们所生存的世界.举一反三:【变式】将αβγ、、三种射线分别射入匀强磁场和匀强电场,图中表示射线偏转情况正确的是( ).【答案】A 、D【解析】已知α粒子带正电,β粒子带负电,γ射线不带电,根据正、负电荷在磁场中运动受洛伦兹力方向和正、负电荷在电场中受电场力方向,可知A 、B 、C 、D 四幅图中,α、β粒子的偏转方向都是正确的,但偏转的程度需进一步判断. 带电粒子在磁场中做匀速圆周运动,其半径mv r Bq=,将其数据代入,则α粒子与β粒子的半径之比为 40.11371.71/18400.992q r m v c r m v q c βαααβββα=⋅⋅=⨯⨯≈. 由此可见,A 项正确,B 项错误.带电粒子垂直进入匀强电场,设初速度为0v ,垂直电场线方向位移为x ,沿电场线方向位移为y ,则有0x v t =,212qE y t m=⋅, 消去t 可得2202qEx y mv =. 对某一确定的x 值,α、β粒子沿电场线偏转距离之比为22221/1840(0.99)114(0.1)237.5m v y q c y q m v c ββααββαα=⋅⋅=⨯⨯=, 由此可见,C 项错误,D 项正确.【总结升华】明确α射线、β射线及γ射线的本质特征,并能准确判断它们在电场和磁场中的受力情况.例2下列说法正确的是( ).A .23490Th 为钍核,由此可知,钍核的质量数为90,钍核的质子数为234B .94Be 为铍核,由此可知,铍核的质量数为9,铍核的中子数为4C .同一元素的两种同位素具有相同的质量数D .同一元素的两种同位素具有不同的中子数【答案】D【解析】A 项钍核的质量数为234,质子数为90,所以A 错;B 项的铍核的质子数为4,中子数为5,所以B 错;由于同位素是指质子数相同而中子数不同,即质量数不同,因而C 错,D 对.【总结升华】明确核子数、原子数、核外电子数及中子数的相互关系,是正确解答此类问题的关键.举一反三:【变式】已知镭的原子序数是88,原子核质量数是226,试问:(1)镭核中有几个质子?几个中子?(2)镭核所带的电荷量是多少?(3)若镭原子呈中性,它核外有几个电子?(4)22888Ra 是镭的一种同位素,让22688Ra 和22888Ra 以相同速度垂直射入磁感应强度为B 的匀强磁场中,它们运动的轨道半径之比是多少?【答案】见解析。

高二物理选修3-5原子核知识点总结

高二物理选修3-5原子核知识点总结

高二物理选修3-5原子核知识点总结原子核是每年高二物理期中考试都要出现的考点,学生需要认真掌握并学会运用相关知识点。

下面店铺给大家带来高二物理选修3-5原子核知识点,希望对你有帮助。

高二物理原子核知识点一、原子核的组成1、天然放射现象⑴天然放射现象的发现:1896年法国物理学,贝克勒耳发现铀或铀矿石能放射出某种人眼看不见的射线。

这种射线可穿透黑纸而使照相底片感光。

放射性:物质能发射出上述射线的性质称放射性。

放射性元素:具有放射性的元素称放射性元素。

天然放射现象:某种元素自发地放射射线的现象,叫天然放射现象。

这表明原子核存在精细结构,是可以再分的。

⑵放射线的成份和性质:用电场和磁场来研究放射性元素射出的射线,在电场中轨迹,如下图射线种类射线组成性质电离作用贯穿能力射线氦核组成的粒子流很强很弱射线高速电子流较强较强射线高频光子很弱很强2、原子核的组成原子核的组成:原子核是由质子和中子组成,质子和中子统称为核子。

在原子核中有:质子数等于电荷数、核子数等于质量数、中子数等于质量数减电荷数。

二、原子核的衰变;半衰期⑴衰变:原子核由于放出某种粒子而转变成新核的变化称为衰变在原子核的衰变过程中,电荷数和质量数守恒。

⑵半衰期:放射性元素的原子核的半数发生衰变所需要的时间,称该元素的半衰期。

放射性元素衰变的快慢是由核内部自身因素决定的,跟原子所处的化学状态和外部条件没有关系。

三、放射性的应用与防护;放射性同位素放射性同位素:有些同位素具有放射性,叫做放射性同位素。

同位素:具有相同的质子和不同中子数的原子互称同位素,放射性同位素:具有放射性的同位素叫放射性同位素。

正电子的发现:用粒子轰击铝时,发生核反应。

与天然的放射性物质相比,人造放射性同位素:①放射强度容易控制②可以制成各种需要的形状③半衰期更短④放射性废料容易处理放射性同位素的应用:①利用它的射线A.由于γ射线贯穿本领强,可以用来γ射线检查金属内部有没有砂眼或裂纹,所用的设备叫γ射线探伤仪。

(完整版)物理选修35原子核知识点汇总

(完整版)物理选修35原子核知识点汇总

物理选修3---5第十九章原子核知识点汇总(训练版)知识点一、原子核的组成1、天然放射现象(1)天然放射现象的发现:1896年法国物理学,贝克勒耳发现铀或铀矿石能放射出某种人眼看不见的射线。

这种射线可穿透黑纸而使照相底片感光。

天然放射现象的发现使人们意识到原子核具有复杂结构。

放射性:物质能发射出上述射线的性质称放射性。

放射性元素:具有放射性的元素称放射性元素。

天然放射现象:某种元素白发地放射射线的现象,叫天然放射现象。

(2)放射线的成份和性质:①用电场和磁场来研究放射性元素射出的射线,在电场中轨迹:对应粒子射出速度电离能力穿透能力对应粒子的产生α射线He42C101最强最弱α衰变中:HeHn4211122→+β射线e01-C10099较弱较弱β衰变中:eHn011110-+→γ射线光子C最弱最强核反应中新核从高能态向低能态跃迁时释放能量,即发出γ射线。

②三种射线及其性质比较: 2、原子核的组成(1)质子p 的发现1919年卢瑟福发现质子,并预言了中子的存在。

发现方程 H O N He 1117814742+→+(2)中子n 的发现:1932年,卢瑟福的学生查德威克发现中子。

发现方程 n C Be He 101269442+→+(3)原子核的组成:原子核是由质子和中子组成,质子和中子统称为核子。

在原子核中:质子数等于电荷数;核子数等于质量数;中子数等于质量数减电荷数. 原子核常用符号:XAZX-----元素符号,A-----核的质量数(核子数),Z-----核电荷数(即原子序数)知识点二、放射性元素的衰变1、原子核的衰变:(1)衰变:原子核由于放出某种粒子而转变成新核的变化称为衰变。

①在原子核的衰变过程中,电荷数和质量数守恒。

如:衰变方程:α衰变:He Th U 422349023892+→ β衰变:e Pa Th 012349123490-+→②γ射线是伴随α、β衰变放射出来的高频光子流。

(完整)高中物理原子与原子核知识点总结选修3-5,推荐文档

(完整)高中物理原子与原子核知识点总结选修3-5,推荐文档

高中物理原子与原子核知识点总结(选修3-5)原子、原子核 这一章虽然不是重点,但是高考选择题也会涉及到,其实只要记住模型和方程式,就不会在做题上出错,下面的一些总结希望对同学们有所帮助.一 波粒二象性1光电效应的研究思路(1)两条线索:h 为普朗克常数 h=6.63×3410 J·S ν为光子频率2.三个关系(1)爱因斯坦光电效应方程E k =hν-W 0。

(2)光电子的最大初动能E k 可以利用光电管实验的方法测得,即E k =eU c ,其中U c 是遏止电压。

(3)光电效应方程中的W 0为逸出功,它与极限频率νc 的关系是W 0=hνc 。

3波粒二象性波动性和粒子性的对立与统一(1)大量光子易显示出波动性,而少量光子易显示出粒子性。

(2)波长长(频率低)的光波动性强,而波长短(频率高)的光粒子性强。

(3)光子说并未否定波动说,E =hν=中,ν(频率)和λ就是波的概hcλ念。

光速C=λν(4)波和粒子在宏观世界是不能统一的,而在微观世界却是统一的。

3.物质波(1)定义:任何运动着的物体都有一种波与之对应,这种波叫做物质波,也叫德布罗意波。

(2)物质波的波长:λ==,h 是普朗克常量。

h p hmv 二 原子结构与原子核(1)卢瑟福的核式结构模型卢瑟福根据α粒子散射实验提出了原子的核式结构学说,玻尔把量子说引入到核式结构模型之中,建立了以下三个假说为主要内容的玻尔理论.认识原子核的结构是从发现天然放射现象开始的,发现质子的核反应是认识原子核结构的突破点.裂变和聚变是获取核能的两个重要途径.裂变和聚变过程中释放的能量符合爱因斯坦质能方程。

整个知识体系,可归结为:两模型(原子的核式结构模型、波尔原子模型);六子(电子、质子、中子、正电子、 粒子、 光子);四变(衰变、人工转变、裂变、聚变);两方程(核反应方程、质能方程)。

4条守恒定律(电荷数守恒、质量数守恒、能量守恒、动量守恒)贯串全章。

人教版高中物理选修3-5知识点整理及重点题型梳理] 原子结构

人教版高中物理选修3-5知识点整理及重点题型梳理]  原子结构

人教版高中物理选修3-5知识点梳理重点题型(常考知识点)巩固练习原子结构【学习目标】1.知道电子是怎样发现的;2.知道电子的发现对人类探索原子结构的重大意义; 3.了解汤姆孙发现电子的研究方法. 4.知道α粒子散射实验;5.明确原子核式结构模型的主要内容; 6.理解原子核式结构提出的主要思想.【要点梳理】要点诠释: 要点一、原子结构 1.阴极射线(1)气体的导电特点:通常情况下,气体是不导电的,但在强电场中,气体能够被电离而导电.平时我们在空气中看到的放电火花,就是气体电离导电的结果.在研究气体放电时一般都用玻璃管中的稀薄气体,导电时可以看到发光放电现象.(2)1858年德国物理学家普里克发现了阴极射线.①产生:在研究气体导电的玻璃管内有阴、阳两极.当两极间加一定电压时,阴极便发出一种射线,这种射线为阴极射线.②阴极射线的特点:碰到荧光物质能使其发光. 2.汤姆孙发现电子(1)从1890年起英国物理学家汤姆孙开始了对阴极射线的一系列实验研究. (2)汤姆孙利用电场和磁场能使带电的运动粒子发生偏转的原理检测了阴极射线的带电性质,并定量地测定了阴极射线粒子的比荷(带电粒子的电荷量与其质量之比,即e m). (3)1897年汤姆孙发现了电子(阴极射线是高速电子流).电子的电量()191.602177334910C e =⨯-,电子的质量319.109389710kg m =⨯-,电子的比荷111.758810C/kg em=⨯.电子的质量约为氢原子质量的1 1836.3.汤姆孙对阴极射线的研究(1)阴极射线电性的发现.为了研究阴极射线的带电性质,他设计了如图所示装置.从阴极发出的阴极射线,经过与阳极相连的小孔,射到管壁上,产生荧光斑点;用磁铁使射线偏转,进入集电圆筒;用静电计检测的结果表明,收集到的是负电荷.(2)测定阴极射线粒子的比荷.4.密立根实验美国物理学家密立根在1910年通过著名的“油滴实验”简练精确地测定了电子的电量密立根实验更重要的发现是:电荷是量子化的,即任何电荷只能是元电荷e的整数倍.5.电子发现的意义以前人们认为物质由分子组成,分子由原子组成,原子是不可再分的最小微粒.现在人们发现了各种物质里都有电子,而且电子的质量比最轻的氢原子质量小得多,这说明电子是原子的组成部分.电子是带负电,而原子是电中性的,可见原子内还有带正电的物质,这些带正电的物质和带负电的电子如何构成原子呢?电子的发现大大激发了人们研究原子内部结构的热情,拉开了人们研究原子结构的序幕.6.19世纪末物理学的三大发现对阴极射线的研究,引发了19世纪末物理学的三大发现:(1)1895年伦琴发现了X射线;(2)1896年贝克勒尔发现了天然放射性;(3)1897年汤姆孙发现了电子.要点二、原子的核式结构模型1.汤姆孙的原子模型“枣糕模型”.“葡萄干布丁模型”(如图所示).“葡萄干面包模型”.汤姆孙的原子模型是在发现电子的基础上建立起来的,汤姆孙认为,原子是一个球体,正电荷均匀分布在球内,电子像枣糕里的枣子一样,镶嵌在原子里面,所以汤姆孙的原子模型也叫枣糕式原子结构模型.【注意】汤姆孙的原子结构模型虽然能解释一些实验事实,但这一模型很快就被新的实验事实——仅粒子散射实验所否定.2.α粒子散射实验1909~1911年卢瑟福和他的助手做α粒子轰击金箔的实验,获得了重要的发现. (1)实验装置(如图所示)由放射源、金箔、荧光屏等组成.特别提示:①整个实验过程在真空中进行. ②金箔很薄,α粒子(42He 核)很容易穿过.(2)实验现象与结果.绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数α粒子发生了较大角度的偏转,极少数α粒子偏转角超过90︒,有的几乎达到180︒,沿原路返回.仅粒子散射实验令卢瑟福万分惊奇.按照汤姆孙的原子结构模型:带正电的物质均匀分布,带负电的电子质量比α粒子的质量小得多.α粒子碰到电子就像子弹碰到一粒尘埃一样,其运动方向不会发生什么改变.但实验结果出现了像一枚炮弹碰到一层薄薄的卫生纸被反弹回来这一不可思议的现象.卢瑟福通过分析,否定了汤姆孙的原子结构模型,提出了核式结构模型.3.原子的核式结构卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转.4.原子核的电荷与尺度由不同原子对α粒子散射的实验数据可以确定各种元素原子核的电荷.又由于原子是电中性的,可以推算出原子内含有的电子数.结果发现各种元素的原子核的电荷数,即原子内的电子数非常接近于它们的原子序数,这说明元素周期表中的各种元素是按原子中的电子数来排列的.原子核的半径无法直接测量,一般通过其他粒子与核的相互作用来确定,α粒子散射是估算核半径最简单的方法.对于一般的原子核半径数量级为1510m -,整个原子半径的数量级是1010m -,两者相差十万倍之多,可见原子内部是十分“空旷”的. 5.解题依据和方法(1)解答与本节知识有关的试题,必须以两个实验现象和发现的实际为基础,应明确以下几点: ①汤姆孙发现了电子,说明原子是可分的,电子是原子的组成部分.②卢瑟福“α粒子散射实验”现象说明:原子中绝大部分是空的,原子的绝大部分质量和全部正电荷都集中在一个很小的核上.(2)根据原子的核式结构,结合前面所掌握的动能、电势能、库仑定律及能量守恒定律等知识,是综合分析解决d 粒子靠近原子核过程中,有关功、能的变化,加速度,速度的变化所必备的知识基础和应掌握的方法.6.对α粒子散射实验的理解如果按照汤姆孙的“枣糕”原子模型,α粒子如果从原子之间或原子的中心轴线穿过时,它受到周围的正负电荷作用的库仑力是平衡的,α粒子不产生偏转;如果α粒子偏离原子的中心轴线穿过,两侧电荷作用的库仑力相当大一部分被抵消,α粒子偏转很小;如果α粒子正对着电子射来,质量远小于α粒子的电子不可能使α粒子发生明显偏转,更不可能使它反弹.所以α粒子的散射实验结果否定了汤姆孙的原子模型.按卢瑟福的原子模型(核式结构),当α粒子穿过原子时,如果离核较远,受到原子核的斥力很小,仅粒子就像穿过“一片空地”一样,无遮无挡,运动方向改变极少,由于原子核很小,这种机会就很多,所以绝大多数α粒子不产生偏转;只有当α粒子十分接近原子核穿过时,才受到很大的库仑斥力,偏转角才很大,而这种机会很少;如果α粒子几乎正对着原子核射来,偏转角就几乎达到180︒,这种机会极少.如图所示.卢瑟福根据α粒子散射实验,不仪建立了原子的核式结构,还估算出了原子核的大小.220121(1)4sin 2m Ze r Mv θπε=⋅+(θ为散射角).原子核的商径数量级在1510m -.原子直径数量级大约是1010m -,所以原子核半径只相当于原子半径的十万分之一.原子的核式结构初步建立了原子结构的正确图景,但跟经典的电磁理论发生了矛盾.(见玻尔的原子模型)7.原子结构的探索历史(1)发现原子核式结构的过程.实验和发现 说明了什么 电子的发现说明原子有复杂结构α粒子散射实验说明汤姆孙(枣糕式)原子模型不符合实际,卢瑟福重新建立原子的核式结构模型(2)原子的核式结构与原子的枣糕式结构的根本区别.核式结构枣糕式结构原子内部是非常空旷的,正电荷集中在一个很小的核里 原子是充满了正电荷的球体 电子绕核高速旋转 电子均匀嵌在原子球体内【典型例题】 类型一、原子结构例1.关于阴极射线的本质,下列说法正确的是( ). A .阴极射线本质是氢原子 B .阴极射线本质是电磁波 C .阴极射线本质是电子 D .阴极射线本质是X 射线【思路点拨】阴极射线基本性质.【答案】C【解析】阴极射线是原子受激发射出的电子,关于阴极射线是电磁波、X 射线都是在研究阴极射线过程中的一些假设,是错误的.【总结升华】对阴极射线基本性质的了解是解题的依据.举一反三:【变式】如图所示,在阴极射线管正上方平行放一通有强电流的长直导线,则阴极射线将( ).A .向纸内偏转B .向纸外偏转C .向下偏转D .向上偏转【答案】D【解析】本题综合考查电流产生的磁场、左手定则和阴极射线的产生和性质.由题目条件不难判断阴极射线所在处磁场垂直纸面向外,电子从负极射出,由左手定则可判定阴极射线(电子)向上偏转.【总结升华】注意阴极射线(电子)从电源的负极射出,用左手定则判断其受力方向时四指的指向和射线的运动方向相反.例2.汤姆孙用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图所示.真空管内的阴极K 发出的电子(不计初速、重力和电子间的相互作用)经加速电压加速后,穿过A '中心的小孔沿中心轴1O O 的方向进入到两块水平正对放置的平行极板P 和P '间的区域.当极板间不加偏转电压时,电子束打在荧光屏的中心O 点处,形成了一个亮点;加上偏转电压U 后,亮点偏离到O '点(O '点与O 点的竖直间距为d ,水平间距可忽略不计).此时,在P 和P '间的区域,再加上一个方向垂直于纸面向里的匀强磁场.调节磁场的强弱,当磁感应强度的大小为B 时,亮点重新回到O 点.已知极板水平方向的长度为1L ,极板间距为b ,极板右端到荧光屏的距离为2L (如图所示). (1)求打在荧光屏O 点的电子速度的大小. (2)推导出电子的比荷的表达式.【答案】(1)UBb(2)2121(/2)Ud B bL L L +【解析】(1)当电子受到的电场力与洛伦兹力平衡时,电子做匀速直线运动,亮点重新回到中心O点,设电子的速度为v ,则evB eE =, 得E v B =, 即U v Bb =. (2)当极板间仅有偏转电场时,电子以速度v 进入后,竖直方向做匀加速运动,加速度为eUa mb =. 电子在水平方向做匀速运动,在电场内的运动时间11L t v=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理原子与原子核知识点总结(选修3-5)原子、原子核这一章虽然不是重点,但是高考选择题也会涉及到,其实只要记住模型和方程式,就不会在做题上出错,下面的一些总结希望对同学们有所帮助.一波粒二象性1光电效应的研究思路(1)两条线索:10 J·Sh为普朗克常数 h=6.63×34ν为光子频率2.三个关系(1)爱因斯坦光电效应方程E k=hν-W0。

(2)光电子的最大初动能E k可以利用光电管实验的方法测得,即E k=eU c,其中U c是遏止电压。

(3)光电效应方程中的W0为逸出功,它与极限频率νc的关系是W0=hνc。

3波粒二象性波动性和粒子性的对立与统一(1)大量光子易显示出波动性,而少量光子易显示出粒子性。

(2)波长长(频率低)的光波动性强,而波长短(频率高)的光粒子性强。

(3)光子说并未否定波动说,E =h ν=hcλ中,ν(频率)和λ就是波的概念。

光速C=λν(4)波和粒子在宏观世界是不能统一的,而在微观世界却是统一的。

3.物质波(1)定义:任何运动着的物体都有一种波与之对应,这种波叫做物质波,也叫德布罗意波。

(2)物质波的波长:λ=h p =hmv ,h 是普朗克常量。

二 原子结构与原子核 (1)卢瑟福的核式结构模型卢瑟福根据α粒子散射实验提出了原子的核式结构学说,玻尔把量子说引入到核式结构模型之中,建立了以下三个假说为主要内容的玻尔理论.认识原子核的结构是从发现天然放射现象开始的,发现质子的核反应是认识原子核结构的突破点.裂变和聚变是获取核能的两个重要途径.裂变和聚变过程中释放的能量符合爱因斯坦质能方程。

整个知识体系,可归结为:两模型(原子的核式结构模型、波尔原子模型);六子(电子、质子、中子、正电子、 粒子、 光子);四变(衰变、人工转变、裂变、聚变);两方程(核反应方程、质能方程)。

4条守恒定律(电荷数守恒、质量数守恒、能量守恒、动量守恒)贯串全章。

1.(1)电子的发现:1897年,英国物理学家汤姆孙通过对阴极射线的研究发现了电子。

电子的发现证明了原子是可再分的。

(2)汤姆孙原子模型:原子里面带正电荷的物质均匀分布在整个原子球体中,而带负电的电子镶嵌在球内。

2.卢瑟福的核式结构模型(行星式模型)卢瑟福α粒子散射实验装置,现象,从而总结出核式结构学说α粒子散射实验是用α粒子轰击金箔,实验现象:结果是绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数α粒子发生了较大的偏转.这说明原子的正电荷和质量一定集中在一个很小的核上。

卢瑟福由α粒子散射实验提出:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间运动。

由α粒子散射实验的实验数据还可以估算出原子核大小的数量级是10-15m。

而核式结构又与经典的电磁理论发生矛盾:①原子是否稳定,②其发出的光谱是否连续3.玻尔模型(引入量子理论,量子化就是不连续性,整数n叫量子数)玻尔补充三条假设⑴定态--原子只能处于一系列不连续的能量状态(称为定态),电子虽然绕核运转,但不会向外辐射能量。

(本假设是针对原子稳定性提出的)⑵跃迁--原子从一种定态跃迁到另一种定态,要辐射(或吸收)一定频率的光子(其能量由两定态的能量差决定)(本假设针对线状谱提出) ( ) 辐射(吸收)光子的能量为hf=E初-E末或(hν=E m-E n)氢原子跃迁的光谱线问题[一群氢原子可能辐射的光谱线条数为 ]。

[ (大量)处于n激发态原子跃迁到基态时的所有辐射方式]能级图中相关量意义的说明:(1)自发跃迁:高能级→低能级,释放能量,发出光子。

光子的频率ν=ΔEh=E高-E低h。

(2)受激跃迁:低能级→高能级,吸收能量。

①光照(吸收光子):光子的能量必须恰等于能级差hν=ΔE。

②碰撞、加热等:只要入射粒子能量大于或等于能级差即可,E外≥ΔE。

③大于电离能的光子被吸收,将原子电离。

3.谱线条数的确定方法(1)一个氢原子跃迁发出可能的光谱线条数最多为(n-1)。

(2)一群氢原子跃迁发出可能的光谱线条数的两种求解方法。

①用数学中的组合知识求解:N=C2n=n(n-1)2。

②利用能级图求解:在氢原子能级图中将氢原子跃迁的各种可能情况一一画出,然后相加。

1,2,3,…n为量子数1处能量最低,能量最低的状态叫做基态,其他处(如2,3,…n)状态叫做激发态。

量子数:原子处在定态的能量用E n表示,此时电子以nr的轨道半径绕核运动,n称为量子数。

(注)E1=-13.6eV这个负号是我们人为规定的.设无限远处电子的电势能为零,在有限远的位置电子的电势能都是负值.在最近轨道运转的电子的势能就是负13.6eV⑶能量和轨道量子化----定态不连续,能量和轨道也不连续;(即原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应,原子的定态是不连续的,因此电子的可能轨道分布也是不连续的)(针对原子核式模型提出,是能级假设的补充)(4)跃迁要求从一个电子能级到另一个能级,电子仍然可以受原子核束缚.电离指电子从某一能级到第无穷个能级(该能级能量为0)(虽然能级数是无穷大,但是所需要能量是有限的),这时电子可以认为不受原子核束缚,完全脱离原子.电离可以看做是特殊的跃迁电离是电子完全脱离了原子核束缚,跃迁是电子从低能级迁移到高能级例:1995年科学家“制成”了反氢原子,它是由一个反质子和一个围绕它运动的正电子组成,反质子和质子有相同的质量,带有等量异种电荷。

反氢原子和氢原子有相同的能级分布,氢原子能级如图所示,则下列说法中正确的是()A.反氢原子光谱与氢原子光谱不相同B.基态反氢原子的电离能为13.6 eVC.基态反氢原子能吸收11 eV的光子而发生跃迁D.大量处于n=4能级的反氢原子向低能级跃迁时,从n=2能级跃迁到基态辐射的光子的波长最短解析:选B反氢原子和氢原子有相同的能级分布,故反氢原子光谱与氢原子光谱相同,A错;基态反氢原子的电离能为13.6 eV,只有大于等于13.6 eV的能量的光子才可以使反氢原子电离,B对;基态反氢原子发生跃迁时,只能吸收能量等于两个能级的能量差的光子,C错;在反氢原子谱线中,从n=4能级跃迁到基态辐射的光子的能量最大,频率最大,波长最短,D错。

氢原子的激发态和基态的能量(最小)与核外电子轨道半径间的关系是:【说明】氢原子跃迁① 轨道量子化r n=n2r1(n=1,2.3…)r1=0.53×10-10m能量量子化:E1=-13.6eV②E n ,E p,r,n E k,v吸收光子时增大减小放出光子时减小增大③氢原子跃迁时应明确:一个氢原子直接跃迁向高能级跃迁,吸收光子一般光子某一频率光子一群氢原子各种可能跃迁向低能级跃迁放出光子可见光子一系列频率光子④氢原子吸收光子时——要么全部吸收光子能量,要么不吸收光子1光子能量大于电子跃迁到无穷远处(电离)需要的能量时,该光子可被吸收。

(即:光子和原于作用而使原子电离)2光子能量小于电子跃迁到无穷远处(电离)需要的能量时,则只有能量等于两个能级差的光子才能被吸收。

(受跃迁条件限:只适用于光于和原于作用使原于在各定态之间跃迁的情况)。

⑤氢原子吸收外来电子能量时——可以部分吸收外来碰撞电子的能量(实物粒子作用而使原子激发)。

因此,能量大于某两个能级差的电子均可被氢原子吸收,从而使氢原子跃迁。

E51=13.06 E41=12.75 E31=12.09 E21=10.2; (有规律可依) E52=2.86 E42=2.55 E32=1.89; E53=0.97 E43=0.66;E54=0.31⑶玻尔理论的局限性。

由于引进了量子理论(轨道量子化和能量量子化),玻尔理论成功地解释了氢光谱的规律。

但由于它保留了过多的经典物理理论(牛顿第二定律、向心力、库仑力等),所以在解释其他原子的光谱上都遇到很大的困难。

氢原子在n能级的动能、势能,总能量的关系是:EP=-2EK,E=EK+EP=-EK。

(类似于卫星模型)由高能级到低能级时,动能增加,势能降低,且势能的降低量是动能增加量的2倍,故总能量(负值)降低。

三原子的衰变1.天然放射现象的发现,使人们认识到原子核也有复杂结构。

核变化从贝克勒耳发现天然放射现象开始衰变(用电磁场研究):2.三种射线的比较方法一:确定衰变次数的方法是依据两个守恒规律,设放射性元素A ZX 经过n 次α衰变和m 次β衰变后,变成稳定的新元素A ′Z ′Y ,则表示该核反应的方程为A Z X →A ′Z ′Y +n 42He +m 0-1e 。

根据质量数守恒和电荷数守恒可列方程 A =A ′+4n Z =Z ′+2n -m由以上两式联立解得n =A -A ′4,m =A -A ′2+Z ′-Z由此可见确定衰变次数可归结为求解一个二元一次方程组。

方法二:因为β衰变对质量数无影响,可先由质量数的改变确定α衰变的次数,然后根据衰变规律确定β衰变的次数。

5.对半衰期的理解放射性元素的原子核有半数发生衰变所需的时间叫半衰期。

是对大量原子核的统计规律。

(1)半衰期公式:N 余=N 原⎝ ⎛⎭⎪⎫12t τ,m 余=m 原⎝ ⎛⎭⎪⎫12tτ。

(2)半衰期的物理意义:半衰期是表示放射性元素衰变快慢的物理量,同一放射性元素的衰变速率一定,不同的放射性元素半衰期不同,有的差别很大。

(3)半衰期的适用条件:半衰期是一个统计规律,是对大量的原子核衰变规律的总结,对于一个特定的原子核,无法确定何时发生衰变。

三种射线在匀强磁场、匀强电场、正交电场和磁场中的偏转情况比较:四种核反应类型(衰变,人工核转变,重核裂变,轻核骤变)⑴衰变:α(He核)衰变: (实质:核内 )α衰变形成外切(同方向旋),β(电子)衰变: (实质:核内的中子转变成了质子和中子)β衰变形成内切(相反方向旋),且大圆为α、β粒子径迹。

+β衰变:(核内)Γ(光子)衰变:原子核处于较高能级,辐射光子后跃迁到低能级。

⑵人工转变:(发现质子的核反应)(卢瑟福)用α粒子轰击氮核,并预言中子的存在(发现中子的核反应)(查德威克)钋产生的α射线轰击铍(人工制造放射性同位素)正电子的发现(约里奥居里和伊丽芙居里夫妇)α粒子轰击铝箔⑶重核的裂变:在一定条件下(超过临界体积),裂变反应会连续不断地进行下去,这就是链式反应。

⑷轻核的聚变:(需要几百万度高温,所以又叫热核反应)所有核反应的反应前后都遵守:质量数守恒、电荷数守恒。

(注意:质量并不守恒。

)(四)核反应方程与核能计算1.核反应的四种类型2.核反应方程式的书写(1)熟记常见基本粒子的符号,是正确书写核反应方程的基础。

如质子(11H)、中子(10n)、α粒子(42He)、β粒子( 0-1e)、正电子(01e)、氘核(21H)、氚核(31H)等。

相关文档
最新文档