重庆中考数学易错题专题训练-二次函数练习题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、二次函数 真题与模拟题分类汇编(难题易错题)

1.某厂家生产一种新型电子产品,制造时每件的成本为40元,通过试销发现,销售量(y 万件)与销售单价(x 元)之间符合一次函数关系,其图象如图所示.

()1求y 与x 的函数关系式;

()2物价部门规定:这种电子产品销售单价不得超过每件80元,那么,当销售单价x 定为每件多少元时,厂家每月获得的利润()w 最大?最大利润是多少?

【答案】(1)2280y x =-+;(2)当销售单价x 定为每件80元时,厂家每月获得的利润()w 最大,最大利润是4800元.

【解析】

【分析】

()1根据函数图象经过点()40,200和点()60,160,利用待定系数法即可求出y 与x 的函数关系式;

()2先根据利润=销售数量(⨯销售单价-成本),由试销期间销售单价不低于成本单价,也不高于每千克80元,结合电子产品的成本价即可得出x 的取值范围,根据二次函数的增减性可得最值.

【详解】

解:()1设y 与x 的函数关系式为()0y kx b k =+≠,

函数图象经过点()40,200和点()60,160,

{4020060160k b k b +=∴+=,解得:{2

280k b =-=, y ∴与x 的函数关系式为2280y x =-+.

()2由题意得:()()224022802360112002(90)5000w x x x x x =--+=-+-=--+. 试销期间销售单价不低于成本单价,也不高于每千克80元,且电子产品的成本为每千克40元,

∴自变量x 的取值范围是4080x ≤≤.

20-<,

∴当90x <时,w 随x 的增大而增大,

80x ∴=时,w 有最大值,

当80x =时,4800w =,

答:当销售单价x 定为每件80元时,厂家每月获得的利润()w 最大,最大利润是4800元.

【点睛】

本题考查了一次函数和二次函数的应用,根据点的坐标利用待定系数法求出函数关系式是解题的关键,并注意最值的求法.

2.如图,关于x 的二次函数y=x 2+bx+c 的图象与x 轴交于点A (1,0)和点B 与y 轴交于点C (0,3),抛物线的对称轴与x 轴交于点D .

(1)求二次函数的表达式;

(2)在y 轴上是否存在一点P ,使△PBC 为等腰三角形?若存在.请求出点P 的坐标; (3)有一个点M 从点A 出发,以每秒1个单位的速度在AB 上向点B 运动,另一个点N 从点D 与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 到达点B 时,点M 、N 同时停止运动,问点M 、N 运动到何处时,△MNB 面积最大,试求出最大面积.

【答案】(1)二次函数的表达式为:y=x 2﹣4x+3;(2)点P 的坐标为:(0,2(0,3﹣2)或(0,-3)或(0,0);(3)当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.

【解析】

【分析】

(1)把A (1,0)和C (0,3)代入y=x 2+bx+c 得方程组,解方程组即可得二次函数的表达式;

(2)先求出点B 的坐标,再根据勾股定理求得BC 的长,当△PBC 为等腰三角形时分三种情况进行讨论:①CP=CB ;②BP=BC ;③PB=PC ;分别根据这三种情况求出点P 的坐标; (3)设AM=t 则DN=2t ,由AB=2,得BM=2﹣t ,S △MNB=12

×(2﹣t )×2t=﹣t 2+2t ,把解析式化为顶点式,根据二次函数的性质即可得△MNB 最大面积;此时点M 在D 点,点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.

【详解】

解:(1)把A (1,0)和C (0,3)代入y=x 2+bx+c ,

103

b c c ++=⎧⎨=⎩ 解得:b=﹣4,c=3,

∴二次函数的表达式为:y=x 2﹣4x+3;

(2)令y=0,则x 2﹣4x+3=0,

解得:x=1或x=3,

∴B (3,0),

∴BC=32, 点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1,

①当CP=CB 时,PC=32,∴OP=OC+PC=3+32或OP=PC ﹣OC=32﹣3

∴P 1(0,3+32),P 2(0,3﹣32);

②当PB=PC 时,OP=OB=3,

∴P 3(0,-3);

③当BP=BC 时,

∵OC=OB=3

∴此时P 与O 重合,

∴P 4(0,0);

综上所述,点P 的坐标为:(0,3+32)或(0,3﹣32)或(﹣3,0)或(0,0);

(3)如图2,设AM=t ,由AB=2,得BM=2﹣t ,则DN=2t ,

∴S △MNB=12

×(2﹣t )×2t=﹣t 2+2t=﹣(t ﹣1)2+1, 当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.

3.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),

如图,直线y=1

4

x与抛物线交于A、B两点,直线l为y=﹣1.

(1)求抛物线的解析式;

(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.

(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.

【答案】(1)抛物线的解析式为y=1

4

x2﹣x+1.(2)点P的坐标为(

28

13

,﹣1).(3)

定点F的坐标为(2,1).

【解析】

分析:(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;

(2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标;

(3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标

特征,即可得出(1-1

2

-

1

2

y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0,由m的任意性可得出关

于x0、y0的方程组,解之即可求出顶点F的坐标.

相关文档
最新文档