第三章 氨基酸
第3章-氨基酸
三字符
Gly A1a Val Leu 11e
单字符
G A V L I
中文名称
甘氨酸 L-丙氨酸 L-缬氨酸 L-亮氨酸 L-异亮氨酸
第3章 氨基酸
英文名称
L-phenylalanine L-tyrosine L-tryptophan L-serine L-theonine L-cysteine L-methionine L-asparagines L-glutamine L-aspartic acid L-Glutamic acid L-1ysine L-arginine L-histidine L-proline
第3章 氨基酸
(二)氨基酸的解离
HA
酸
A- +
碱
H+
质子
Bronsted-Lowry的酸碱质子理论: 酸是质子(H+)的供体(donor); 碱是质子的受体或接纳体(acceptor); 原始的酸(HA)和生成的碱(A-)被称为共轭酸-碱对。
第3章 氨基酸
二元酸
Ka1
Ka2
阳离子 A+
兼性离子 A0
第3章 氨基酸
鸟氨酸
瓜氨酸
第3章 氨基酸
扩展内容
UGA
UAG: 吡咯赖氨酸
back
第3章 氨基酸
三、氨基酸的酸碱化学
(一)氨基酸的兼性离子(zwitterrion)形式
氨基酸分子是一种两性电解质。 氨基酸在结晶形态或在水溶液中,并不是以游离的 羧基或氨基形式存在,而是离解成两性离子。在两 性离子中,氨基是以质子化(-NH3+)形式存在,羧基 是以离解状态(-COO-)存在。 在不同的pH条件下,两性离子的状态也随之发生变 化。
生物化学第3章 氨基酸
一、氨基酸——蛋白质的构件分子
氨基酸(amino acid) :α-氨基酸是一切蛋白质的组成单位。氨基酸是与羧酸 相邻α-碳原子上连有一个氨基,故称α-氨基酸。 利用酸水解、碱水解、酶解可把蛋白质分子水解释放氨基酸。
不变部分(除脯氨酸) 可变部分 L型 α -氨基酸
氨基酸
芳香族氨基酸 Phe、Tyr、Trp 杂环氨基酸 His、Pro
脂肪族氨基酸:一氨基一羧基(中性氨基酸)
甘氨酸
丙氨酸
缬氨酸
亮氨酸
异亮氨酸
脂肪族氨基酸:一氨基一羧基(中性氨基酸):含有羟基
丝氨酸Ser的-OH在生理条件下不解离,但是个极性基团,能与其 他基团形成氢键,常出现在酶的活性中心; 苏氨酸Thr的-OH是仲醇,具有亲水性;
水中心)
极性氨基酸侧链能与水形成氢键,易溶于水 带电荷和极性氨基酸一般位于蛋白表面 蛋白的活性中心:His,Ser,Cys
2.3氨基酸的分类——不常见蛋白质氨基酸
2.4氨基酸的分类——非蛋白质氨基酸
150 多种,不是蛋白质组成,但是有特定生理功能
(1)大多是L型α氨基酸衍生物
(2)有D型氨基酸 (3)还有β-、γ-、δ-氨基酸
/view/e845c4c8a1c7aa00b52acb47.html
用强酸型阳离子交换树脂分离氨基酸
氨基酸与树脂的亲和力取决于:
气液层析
高效液相层析
蛋白质的水解条件及优缺点
第一章糖课后题 第6题
高碘酸及其盐可以定量的氧 化断裂邻二羟基、α-羟基醛等 的碳碳键,产生相应的羰基 化合物。该反应可以用来区 分糖苷是呋喃还是吡喃型的。 侧翼测定直连多糖的相对分 子量和支链淀粉的非还原末 端残基数,即分支数目。
生物化学第3章 氨基酸分析
180多种天然氨基酸; 20种蛋白质氨基酸
二、氨基酸的分类、性质
各种氨基酸的区别在于侧链R基的不同 20种蛋白质氨基酸按R的极性可分为非极性氨基酸、不带电荷极性氨基酸、 带正电R基氨基酸和带负电R基氨基酸
按R基的结构可分为脂肪族氨基酸、芳香族氨基酸及杂环氨基酸3大类
脂肪族氨基酸:一氨基一羧基(中性氨基酸):含有硫
Cysteine Methionine (Cys,C) (Met,M)
(1) 两个半胱氨酸的巯基氧化生成二硫键,生成胱氨酸,Cys-S-SCys
(2) 蛋氨酸的甲硫基的硫原子有亲核性,容易发生极化,在生物合成
中是重要的甲基供体
脂肪族氨基酸:一氨基二羧基(酸性氨基酸)
水中心)
极性氨基酸侧链能与水形成氢键,易溶于水 带电荷和极性氨基酸一般位于蛋白表面 蛋白的活性中心:His,Ser,Cys
2.3氨基酸的分类——不常见蛋白质氨基酸
2.4氨基酸的分类——非蛋白质氨基酸
150 多种,不是蛋白质组成,但是有特定生理功能
(1)大多是L型α氨基酸衍生物
(2)有D型氨基酸 (3)还有β-、γ-、δ-氨基酸
四、氨基酸的化学反应
ɑ-氨基参与的反应: 亚硝酸、酰化试剂、烃基、 醛基氧化酶 氨基酸的 化学反应
茚三酮、肽键形成!
ɑ-羧基参与的反应: 成盐、成酯、成酰氯、脱 羧、叠氮
侧链R基参与的反应: 取决于R侧链的官能团
ɑ-氨基参与的反应:
与亚硝酸反应:
通过测定N2的量而计算氨基酸的量,可衡量蛋白质的水解程度 与酰化试剂反应: X=Cl, OH, -OCOR; 可多肽合成中保护氨基;丹磺酰氯可以与肽的N-端氨基 酸反应,生成丹磺酰-肽,水解得到有强烈荧光的丹磺酰-氨基酸,用电泳法 或层析法分析即可得知N-端是何种氨基酸,被广泛用于蛋白质N端测定。 烃基化反应:
第三章氨基酸 1.氨基酸的侧链对多肽或蛋白质的结构和生物学功能
第三章氨基酸1.氨基酸的侧链对多肽或蛋白质的结构和生物学功能非常重要。
用三字母和单字母缩写形式列出其侧链为如下要求的氨基酸:(a)含有一个羟基;(b)含有一个氨基;(c)含有一个具有芳香族性质的基团;,(d)含有分支的脂肪族烃链;(e)含有硫;(f)含有一个在pH 7~10范围内可作为亲核体的基团或原子,指出该亲核基团或原子。
2.就异亮氨酸的结构式回答下列问题:(a)它有多少个手性中心?(b)它有多少个光学异构体?(c)绘出异亮氨酸所有光学异构体。
’3.根据各个氨基酸相应的pKα值(见书)画出以下各氨基酸在pH 3.0,pH 7.0,pH 13.0时的主要离子结构:(a)Gly;(b)Glu;(c)Asp;(d)Arg;(e)His;(f)Pro。
4.计算第3题中各氨基酸的等电点(pI)。
5.一种氨基酸的可解离基团可以带电或中性状态存在,这取决于它的pK值和溶液的pH。
(a)组氨酸有3种可解离基团,写出相应于每个pK值的3种解离状态的平衡方程式。
每种解离状态下的组氨酸分子的净电荷是多少?(b)在pH 1,4,8和12时,组氨酸的净电荷分别是多少?将每一pH下的组氨酸置于电场中,它们将向阴极还是阳极迁移?6.某种溶液中含有三种三肽:Tyr-Arg-Ser,Glu-Met-Phe和Asp-Pro-Lys,α-COOH 基团的pKα为3.8;α-NH3基团的pKα为8.5。
在哪种pH(2.0,6.0或13.0)下,通过电泳分离这三种多肽的效果最好?7.利用阳离子交换层析分离下列每一对氨基酸,哪一种氨基酸首先被pH7缓冲液从离子交换柱上洗脱出来。
(a)Asp和Lys;(b)Arg和Met;(c)Glu和Val;(d)Gly和Leu;(e)Ser和Ala。
8.含有685个氨基酸残基的单一一条多肽链的蛋白质的近似相对分子质量是多少?9.氨基酸的定量分析表明牛血清白蛋白含有o.58%的色氨酸(色氨酸的相对分子质量为204)。
第三章氨基酸
第三章氨基酸第3章氨基酸四大类生物分子中蛋白质是生物功能的主要载体,而氨基酸(amino acid)是蛋白质的构件分子。
自然界中存成千上万在的种蛋白质,在结构和功能上的惊人的多样性归根结底是由20种常见氨基酸的内在性质造成的。
这些性质包括①聚合能力,②特有的酸碱性质,③侧链的结构及其化学功能的多样性,④手性。
本章主要讲述这些性质,它们是讨论蛋白质和酶的结构、功能以及许多其他有关问题的基础。
一、氨基酸—蛋白质的构件分子(一)蛋白质的水解一百多年前就开始了关于蛋白质的化学研究。
在早期的研究中,水解作用提供了关于蛋白质组成和结构的极其价值的资料。
蛋白质可以被酸、碱或蛋白酶催化水解。
在水解过程中,逐渐降解成相对分子质量越来越小的肽段(peptide fragment),直到最后成为氨基酸的混合物。
根据蛋白质的水解程度,可分为完全水解和部分水解两种情况。
完全水解或称彻底水解,得到的水解产物是各种氨基酸的混合物。
部分水解即不完全水解,得到的产物是各种大小不等的肽段和氨基酸。
下面简略地介绍酸、碱和酶3种水解方法及其优缺点:⑴酸水解常用H2SO4或HCl进行水解。
一般6mol/L HCl,4mol/L H2SO4;回流煮沸20h左右可使蛋白质完全水解。
酸水解的优点是不引起消旋作用(racemization),得到的是L-氨基酸。
缺点是色氨酸完全被沸酸所破坏,羟基氨基酸(丝氨酸及苏氨酸)有一小部分被分解,同时天冬氨酸和谷氨酰胺的酰胺基被水解下来。
⑵碱水解一般与5mol/L NaOH共煮10~20h,即可使蛋白质完全水解。
水解过程中多数氨基酸遭到不同程度的破坏,并且产生消旋现象,所得产物是D-和L-氨基酸的混合物,称消旋物(见本章氨基酸的光学活性部分)。
此外,碱水解所需时间较长。
因此酶法主要用于部分水解。
常用的蛋白酶有胰蛋白酶(trypsin)、胰凝乳蛋白酶或称糜蛋白酶(chymotrypsin)以及胃蛋白酶(pepsin)等,它们主要用于蛋白质一级结构分析以获得蛋白质的部分水解产物。
专业课生物化学第三章 氨基酸
此反应可被巯基试剂逆转
6、半胱氨酸侧链上的巯基:
反应性能很高,在微碱性条件下,巯基发生解离形 成硫醇阴离子(-CH2-S-),能与卤化烷例如碘乙酸,碘 乙酰胺,甲基碘等迅速反应,生成相应的稳定烷基衍 生物。
半胱氨酸的巯基能打开乙撑亚胺,即氨丙啶的环.
第3章:氨基酸
第一节:氨基酸的结构与分类
第二节:氨基酸的酸碱化学
第三节:氨基酸的化学性质
第四节:氨基酸的光学活性和光谱性质
第一节(一):氨基酸的结构
一、氨基酸—— 组成蛋白质的基本单位
1、酸水解: 盐酸或硫酸回流煮沸20小时。 不引起消旋作用,得到L-氨基酸。色氨酸完全被破坏;羟基氨 基酸、天冬酰胺、谷胺酰胺部分被破坏。 2、碱水解:氢氧化钠共煮10—20小时。 产物是D型和L型氨基酸的混合物。产生消旋现象。多数氨基酸 遭到破坏。色氨酸稳定。 3、酶水解: 胰蛋白酶、糜蛋白酶、胃蛋白酶水解。 不产生消旋作用,也不破坏氨基酸。水解不彻底。
反应中1分子的半胱氨酸引起1分子的硫硝基苯甲酸的 释放。它在pH8.0时,在412nm波长处有强烈的光吸收, 因此可利用比色法定量测定-SH基。
二硫键的形成和打开 1、二硫键的形成
在痕量的金属离子如Cu2+,Fe2+,C02+和Mn2+ 存在下,巯基在空气中氧化显著提高。这些离子 可能是反应所需的催化剂。
3. 碱性氨基酸(+)
1、非极性R基(中性-非极性氨基酸)
共8种氨基酸,4种带脂肪烃侧链的氨基酸;2种含芳香环 氨基酸;1种含巯基氨基酸和1种甘氨酸。它们在水中的溶 解度比极性氨基酸小。
2、不带电荷的极性R基(中性-极性氨基酸)
生物化学第3章氨基酸
5.两个巯基氧化成二硫键
(蛋白质形成二、三级结构时)
6.蛋白质中二硫键的氧化和还原
反应一
胱氨酸 Cystine
反应二
(蛋白质结构研究)
7.蛋白质中二硫键的被DTT还原
二硫苏糖醇 DTT
(蛋白质结构研究)
五、氨基酸的光学活性 和光谱性质
氨 基 酸 的 相 对 构 型
苏氨酸的4种光学异构体
部分氨基酸的比旋光度
R基pKa 3.86(βCOOH) 4.25(γCOOH) 12.48(胍基) 10.53(εNH3+) 6.00(咪唑基)
8.33(SH) 10.07(OH)
pI 2.97 3.22 10.76 9.74 7.59 5.02 5.66
反应的结果减弱 了氨基的碱性
甘氨酸的氨基与甲醛的反应
由于加甲 醛与氨基酸的 氨基反应,减 弱了氨基的碱 性,使得滴定 终点向中性pH 偏移,由pH12 左右降低到 pH9 左 右 , 正 好是酚酞指示 剂的变色区域。
义为:光通过1cm光径时1Mol / L溶质对该波长光的吸 收值。
六、氨基酸混合物的分析分离
蛋白质的水解
(1)酸水解:用6 mol/L HCl或4 mol/L H2SO4回流20h左右可 使蛋白质完全水解。酸水解不引起消旋作用,得到的是L-氨基 酸。但色氨酸被完全破坏,丝氨酸和苏氨酸有一小部分被分解, 同时天冬酰胺和谷氨酰胺的酰胺基被水解下来。
不带电荷的极 性R基氨基酸
甘氨酸 丝氨酸 苏氨酸 半胱氨酸 酪氨酸 天冬酰胺 谷氨酰胺
带正电荷的R 基氨基酸
赖氨酸 精氨酸 组氨酸
带负电荷的R 基氨基酸
天冬氨酸 谷氨酸
不常见蛋白质氨基酸Ⅰ
不常见蛋白质氨基酸Ⅱ
第3章 氨基酸
γγ-氨基酸
α-氨基酸结构通式
H R C NH2 非解离形式
H N C O OH 羟羟羟Pro
H COOH R C NH3
+
COO
两性离子形式
• 大多数AA在中性pH时呈兼 大多数AA在中性pH时呈兼 AA在中性pH时呈 状态: 性离子状态 性离子状态:
COO-
NH3+
• 除甘氨酸外,19种AA都具有 除甘氨酸外,19种AA都具有 旋光性。 旋光性。 • 除胱氨酸和酪氨酸外,其余 除胱氨酸和酪氨酸外, AA都能溶于水 都能溶于水。 AA都能溶于水。
几种特殊氨基酸
Gly:无手性碳原子。 :无手性碳原子。 Pro:为环状亚氨基酸。 :为环状亚氨基酸。 Cys:可形成二硫键。 :可形成二硫键。
CH 2 NH 2 + CH 2 CH 2 CHCOO -
二 硫键
COOH COOH CH CH2 S S CH2 2H NH2 NH2 CH COOH
2 CH CH2 SH
O H 2N CH CH CH 3 T hreonine (T he, T) C OH OH
H 2N CH CH 2 OH Serine (Ser, S)
OH
O H 2N CH CH 2 C OH
O C OH
苏氨酸 丝氨酸 α-氨基 羟基丁酸 α-氨基 氨基-β-羟基丁酸 氨基 氨基-β-羟基丙酸 氨基 羟基丙酸
鸟氨酸
瓜氨酸
五、氨基酸的酸碱性质
(一)氨基酸的两性离子形式
H R C NH2 非解离形式 COOH R H C NH3
+
晶体或水溶液 中的主要存 在形式
COO
两性离子形式
(二)氨基酸的两性解离和等电点
第3章-氨基酸的简介PPT课件
丝氨酸 Serine
O
H 2N CH C OH
CH 2
OH
S
( α-氨基-β-羟基丙酸 )
.
17
一、脂肪族氨基酸(含羟基或硫)
丝氨酸 Serine 苏氨酸 Threonine
O
H 2N CH C OH CH OH
CH 3
T
( α-氨基-β-羟基丁酸 )
.
18
-
COO
-
COO
-
COO
-
COO
H3N+ C H H C NH 3+ H3N+ C H H C NH 3+
.
24
注意:
丝氨酸和苏氨酸侧链含有β-羟基,具有伯醇和 仲醇的离子化特性。
丝氨酸的羟甲基可以参与很多酶的活性部位反 应。
苏氨酸具有两个手性碳原子,通常出现在蛋白 质中的是L-苏氨酸。
半胱氨酸在蛋白质中经常以其氧化型的胱氨酸 存在。胱氨酸是由两个半胱氨酸通过它们侧链 上的-SH氧化成共价的二硫桥连接形成的。
.
14
一、脂肪族氨基酸(中性)
甘氨酸 Glycine 丙氨酸 Alanine 缬氨酸 Valine 亮氨酸 Leucine 异亮氨酸 Ileucine
O
H 2 N CH C OH
CH CH 3
CH 2
CH 3
I
(α-氨基-β-甲基戊酸 )
.
15
注意:
甘氨酸是唯一不含手性碳原子的氨基酸,因此 不具旋光性。
将α-COO-画在顶端,垂直画一个氨基酸,然 后与立体化学参考化合物甘油醛相比较, α氨基位于α-碳左边的为L-异构体,位于右边的 为D-异构体。
绝大多数氨基酸是L-型氨基酸,近年来,D-型 氨基酸在哺乳动物生命活动中的意义引起了越 来越多的关注。
第3章 氨基酸
• His is the sole amino acid that the pKa of the R group is near 7
• 二、不常见氨基酸: 存在于某些蛋白质, 由常见氨基酸修饰而 来。 • 4-hydro-Pro, 5-hydroLys, 酪氨酸碘化衍生 物三碘甲腺原氨酸等 • p128
还可与苯异硫氰酸酯在弱碱性条件 下生成苯氨基硫甲酰(PTC) 衍生物,进一步在硝基甲烷中 与三氟乙酸反应生成PTH衍生物 无色,层析分离,鉴定N末端 氨基酸,Edman反应p137
• 4. Schiff反应p138
• • • •
5.脱氨基反应:酶促反应,形成alpha酮酸 二、羧基反应 1、成酯: 2、成酰氯:
使得pH降低几个单位,接近7 而对使用HCl滴定没有影响 故甲醛滴定是与氨基反应 加酚酞变红。
• 第四节:氨基酸参与的化学反应 • 一、alpha氨基参与的反应 • 1. 与亚硝酸:生成氮气和羟基羧酸
van Slyke氨基酸 定量测定基础
• 2. 与酰化试剂反应p136
• 重要,保护氨基,esp丹磺酰氯p136 • 3. 烃基化反应:与DNFB24-二硝基氟苯反应生成 DNP-氨基酸,鉴定N末端氨基酸:
• Amino acids are weak polyprotic acids: The dissociation of amino acids is affected by pH. At low pH, both the amino and carboxyl groups are protonated, thus the molecule has a net positive charge. With the pH increase, the carboxyl group is first to dissociate, yielding the neutral zwitterionic molecules. The further increase in pH causes both groups dissociation, yielding a net negatively charged molecule.
《生物化学》第三版课后习题答案详解上册
第三章氨基酸提要α-氨基酸是蛋白质的构件分子,当用酸、碱或蛋白酶水解蛋白质时可获得它们。
蛋白质中的氨基酸都是L型的。
但碱水解得到的氨基酸是D型和L型的消旋混合物。
参与蛋白质组成的基本氨基酸只有20种。
此外还有若干种氨基酸在某些蛋白质中存在,但它们都是在蛋白质生物合成后由相应是基本氨基酸(残基)经化学修饰而成。
除参与蛋白质组成的氨基酸外,还有很多种其他氨基酸存在与各种组织和细胞中,有的是β-、γ-或δ-氨基酸,有些是D型氨基酸。
氨基酸是两性电解质。
当pH接近1时,氨基酸的可解离基团全部质子化,当pH在13左右时,则全部去质子化。
在这中间的某一pH(因不同氨基酸而异),氨基酸以等电的兼性离子(H3N+CHRCOO-)状态存在。
某一氨基酸处于净电荷为零的兼性离子状态时的介质pH称为该氨基酸的等电点,用pI表示。
所有的α-氨基酸都能与茚三酮发生颜色反应。
α-NH2与2,4-二硝基氟苯(DNFB)作用产生相应的DNP-氨基酸(Sanger反应);α-NH2与苯乙硫氰酸酯(PITC)作用形成相应氨基酸的苯胺基硫甲酰衍生物(Edman 反应)。
胱氨酸中的二硫键可用氧化剂(如过甲酸)或还原剂(如巯基乙醇)断裂。
半胱氨酸的SH基在空气中氧化则成二硫键。
这几个反应在氨基酸荷蛋白质化学中占有重要地位。
除甘氨酸外α-氨基酸的α-碳是一个手性碳原子,因此α-氨基酸具有光学活性。
比旋是α-氨基酸的物理常数之一,它是鉴别各种氨基酸的一种根据。
参与蛋白质组成的氨基酸中色氨酸、酪氨酸和苯丙氨酸在紫外区有光吸收,这是紫外吸收法定量蛋白质的依据。
核磁共振(NMR)波谱技术在氨基酸和蛋白质的化学表征方面起重要作用。
氨基酸分析分离方法主要是基于氨基酸的酸碱性质和极性大小。
常用方法有离子交换柱层析、高效液相层析(HPLC)等。
习题1.写出下列氨基酸的单字母和三字母的缩写符号:精氨酸、天冬氨酸、谷氨酰氨、谷氨酸、苯丙氨酸、色氨酸和酪氨酸。
[见表3-1]表3-1 氨基酸的简写符号名称三字母符号单字母符号名称三字母符号单字母符号丙氨酸(alanine) Ala A 亮氨酸(leucine) Leu L精氨酸(arginine) Arg R 赖氨酸(lysine) Lys K天冬酰氨(asparagines) Asn N 甲硫氨酸(蛋氨酸)(methionine) Met M天冬氨酸(aspartic acid) Asp D 苯丙氨酸(phenylalanine) Phe FAsn和/或Asp Asx B半胱氨酸(cysteine) Cys C 脯氨酸(praline) Pro P 谷氨酰氨(glutamine) Gln Q 丝氨酸(serine) Ser S谷氨酸(glutamic acid) Glu E 苏氨酸(threonine) Thr TGln和/或Glu Gls Z甘氨酸(glycine) Gly G 色氨酸(tryptophan) Trp W组氨酸(histidine) His H 酪氨酸(tyrosine) Tyr Y 异亮氨酸(isoleucine) Ile I 缬氨酸(valine) Val V 2、计算赖氨酸的εα-NH3+20%被解离时的溶液PH。
生物化学 第三章 氨基酸(共92张PPT)
色氨酸
Trytophan
氨基酸的结构
芳香族氨基酸
H 2N
O
CH
C
OH
CH 2 CH 2 CH 2 NH
C
NH
NH 2
氨基酸的结构
精氨酸 Arginine
碱性氨基酸
O H 2 N CH C OH
CH 2 CH 2 CH 2 CH 2 NH 2
氨基酸的结构
精氨酸 Arginine
赖氨酸 Lysine
光性。而且发现主要是L型的(也有D型的,但很少)。
-氨基酸的分子构型
1、氨基酸的分类
各种氨基酸的区别在于侧链R基的不同。
20种蛋白质氨基酸按R的极性可分为非极性氨基酸 、极性性氨基酸、酸性氨基酸和碱性氨基酸;按R基的结 构可分为脂肪族氨基酸、芳香族氨基酸及杂环氨基酸3大 类。
氨基酸的三字母简写符号必背熟,单字母符号 要求认识。
芳香族氨基酸: Phe Trp Tyr
1、氨基酸的分类
组成蛋白质的氨基酸按其α-碳原子上侧链R的结构
2缬.氨酸-羧分基V参a为l与ine的反2应0种,20种氨基酸按R的结构和极性的不同有以下
生成烷基咪唑衍生物,并引起酶活性的降低或丧失
两种分类方法。 酪氨酸 tyrosine
Try Y
提问:大 多 数 氨 基 酸 在 中 性(pH=7) 时, 带
[质子供体]
乙酸
+ H
COOH
-
COO
+ H
CO-O
+ K1
H3N CH2
+
H3N CH2
K2
H2N CH2
Gl+y
Gl+-y
生物化学 第三章 氨基酸
+
C H R
-H pK1' +H
+
+
COO H3N
+
-
C H R
-H pK2' +H
+
+
COO R
-
H2N C H
PH 1 净电荷 +1 正离子
7 0 两性离子 等电点PI 等电点
10 -1 负离子
( ) 与 亚 硝 酸 反 应
四. 氨基酸的化学反应
1.α-氨基参与的反应 氨基参与的反应
异亮氨酸 Ileucine 脯氨酸 Proline
甲硫氨酸 Methionine 半胱氨酸 Cysteine
氨基酸的结构
芳香族氨基酸
苯丙氨酸 Phenylalanine
H 2N CH 2 O CH C OH
氨基酸的结构
芳香族氨基酸
苯丙氨酸 Phenylalanine 酪氨酸 Tyrosine
H 2N CH CH
天冬氨酸 Aspartic acid
酸性氨基酸
O H2N CH C CH2 C OH O OH
氨基酸的结构
天冬氨酸 Aspartic acid 谷氨酸 Glutamic acid
H2N
酸性氨基酸
O CH C CH2 CH2 C OH O OH
氨基酸的结构
丝氨酸 Serine
含羟基氨基酸 含羟基氨基酸
一. 氨基酸—蛋白质的构件分子 蛋白质的水解作用提供了关于 蛋白质的水解——蛋白质的水解作用提供了关于
α-氨基酸的一般结构— 氨基酸的一般结构—
20种氨基酸除脯氨酸外,其他均具如下结构通式。 20种氨基酸除脯氨酸外,其他均具如下结构通式。 种氨基酸除脯氨酸外
3氨基酸-生物化学.
5、形成西佛碱
• 氨基酸的a-氨基能与醛类反应生成弱碱,即西佛碱。西佛碱是转氨基 反应的中间物。
6、脱氨
• 氨基酸在氧化剂或酶作用下即脱氨产生酮酸。
7 成酯和成盐反应
• 成酯反应: – 在盐酸(干气)存在下,氨基酸与无水甲醇作用产生氨基 酸甲酯或乙酯。是合成氨基酸酰基衍生物的重要中间体。 • 成盐反应:氨基酸与碱作用生成相应的盐。氨基酸的碱金属 盐能溶于水,而重金属盐则不溶于水。 • 成酯、成盐后,羧基不参加反应,被掩盖,从而使氨基活性 突出,即活化了氨基,这就是氨基酸的酰基化和烃基化反应 在碱性溶液中进行的原因
2、与甲醛反应
• 氨基酸的甲醛滴定是测定氨基酸的一种常用方法。 • 甲醛滴定法: –当氨基酸溶液中存在lmol/L甲醛时,滴定终点由PH12 左右移至9附近,即酚酞指示剂的变色区域 • 测定蛋白质的水解程度: –氨基酸的氨基与甲醛反应生成羟甲基氨基酸和二羟甲基 氨基酸,使反应向放出质子的方向移动,酸性增加,PH 降低,可用氢氧化钠滴定。每放出一个质子,相当于一 个氨基酸
(1)氨基酸的解离曲线
• 以甘氨酸为例
(2)等电点(pI)
• 氨基酸处于正负电荷数相等即净电荷为零的兼性 离子状态时溶液的pH值。 • 等电点时氨基酸的性质 –溶解度最小,可分离不同氨基酸。 –pH=pI,氨基酸在电场中既不向正极也不向负极移动。 –pH>pI,氨基酸带净负电荷; –pH < pI ,氨基酸带净正电荷。
-氨基--甲硫基丁酸
2、不带电荷的极性R基氨基酸
• 这一组中有7种氨基酸。 – 比非极性R基氨基酸易溶于水。 • 甘氨酸 • 丝氨酸、苏氨酸和酪氨酸:羟基 • 天冬酰胺和谷氨酰胺:酰胺基 • 半胱氨酸:巯基(-SH)
第3章 氨基酸
蛋白质的氨基酸组成--氨基酸的分类--R的化学结构
脂肪族氨基酸
甘氨酸 Glycine 丙氨酸 Alanine 缬氨酸 Valine
中性氨基酸
O H2 N CH C CH CH3 CH3 OH
-氨基异戊酸
蛋白质的氨基酸组成--氨基酸的分类--R的化学结构
脂肪族氨基酸
甘氨酸 Glycine 丙氨酸 Alanine 缬氨酸 Valine 亮氨酸 Leucine
脂肪族氨基酸
含羟基氨基酸
丝氨酸 Serine
O H2 N CH C CH2 OH OH
-氨基--羟基丙酸
蛋白质的氨基酸组成--氨基酸的分类--R的化学结构
脂肪族氨基酸
含羟基氨基酸
丝氨酸 Serine 苏氨酸 Threonine
H2 N O CH C CH OH CH3 OH
-氨基--羟基丁酸
+
C R
H
+
C R
H
甘氨酸的分部解离:
COOH
+
Ka1
+OHH
+
COO H3N C R
-
Ka2
+OHH +H
+
COO H2N C R H
H3N
C R
+H
+
阳离子(A+)
兼性离子(Ao)
阴离子(A-)
Ka1和Ka2分别代表α-碳上的-COOH和-NH3的解离常数。
A Ka1
〓
0
H+
Ka2
〓
AA0
H+
COOH H3N COO H3N
+ OH + H+ H2N
生物化学-生化知识点_第三章 氨基酸分解代谢 (30章).
第三章氨基酸分解代谢下册P299 30章细胞总是不断地从氨基酸合成蛋白质,又把蛋白质降解为氨基酸,由此可排除不正常蛋白质,排除积累过多的酶和“调节蛋白”,使细胞代谢得以正常进行。
对正常蛋白质细胞也要进行有选择的降解。
蛋白质降解为氨基酸后氨基酸会继续进行分解代谢。
§3.1 氨基酸分解代谢(P303):氨基酸的分解代谢总是先脱去氨基。
脱氨基的方式,不同生物不完全相同。
氧化脱氨基作用普遍存在于动植物中,非氧化脱氨基作用主要见于微生物。
陆生脊椎动物将脱下的氨基合成尿素,脱氨后的氨基酸碳骨架进行氧化分解,形成能进入柠檬酸循环的化合物,最后氧化成CO2和H2 O。
(一)氨基酸的脱氨基作用:绝大多数氨基酸脱氨基出自转氨基作用,氨基酸与α-酮戊二酸在氨基转移酶作用下发生氨基酸脱氨同时生成Glu(也有的转到草酰乙酸上生成Asp)。
(1)氨基转移反应分两步进行:1.氨基酸先将氨基转移到酶分子的辅酶磷酸吡哆醛(PLP)上,自身形成α-酮酸,PLP则形成磷酸吡哆胺(PMP)。
2.PMP的氨基转移到α-酮戊二酸(或草酰乙酸)上,生成Glu(或Asp),PLP恢复。
详细机制可见P305 图30-3。
(2)转氨酶:已发现有50种以上的转氨酶,大多数需要α-酮戊二酸为氨基受体。
1.丙氨酸转氨酶(ALT),又称谷丙转氨酶(G..P.T),主要存在于肝细胞浆中,用于诊断肝病。
2.天冬氨酸转氨酶(AST),又称谷草转氨酶(G..O.T),在心、肝中含量丰富,可用于测定心肌梗死,肝病。
人体转氨酶以ALT和AST活力最高。
(二)氧化脱氨基作用在氧化脱氨基作用中以谷氨酸脱氢酶活性最高,该酶以NAD(P)+为辅酶,使Glu 经氧化作用,脱2H,再水解脱去氨基,生成α-酮戊二酸,如P306 图30-4所示。
谷氨酸脱氢酶由6个相同的亚基构成,分子量为33万,是变构调节酶,被GTP和ATP抑制,被ADP激活。
活性受底物及产物浓度左右。
(三)联合脱氨基作用氨基酸脱氨基重要方式是联合脱氨基作用。
3第三章 氨基酸类药物(生化制药技术)
优点:操作简便,针对性强。
缺点:沉淀剂比较难除去。
• 3.离子交换法 • ~是利用离子交换剂对不同氨基酸吸附能力不 同而分离纯化氨基酸的方法。
• 原理:氨基酸是两性电解质,在一定条件下, 不同氨基酸的带电性质及理解状态不同,对同 一种离子交换剂的吸附力也不同。
三、氨基酸的结晶与干燥
• 结晶
浓度,pH选在pI附件,低温;
• 干燥
常压干燥、减压干燥、喷雾干燥、冷冻干燥等;
四、氨基酸类药物的检测
一般是以甲酸:冰醋酸按比例混合,采用电位滴定 法,高氯酸溶液滴定等。
第二节CH 2OOH NH 2
第三节 丝氨酸
H 2N H2C H2C H2C CH2 H C NH2 COOH
滤液
[除酪氨酸] [浓缩液] 10℃
[除组胺] 活性炭,白陶土 100℃
滤液
[除热原] 活性炭 100℃
[浓缩,干燥] 滤液 90 ℃以下
水解蛋白粉
第十二节 氨基酸输液
• 1.什么是氨基酸输液? • 2.相比水解蛋白,氨基酸输液优点体现在哪里? • 3.氨基酸输液中氨基酸的种类、数量及比例有要 求吗?为什么? • 4.氨基酸输液中通常会使用到能量添加剂、血浆 添加剂,这是些什么物质?
氨基酸输液的制备
• 一、以L-氨基酸结晶为原料配制; • 二、蛋白质水解法制备氨基酸输液
蛋白质水解法制备氨基酸输液
[水解]盐酸 脏器 [除杂质] 水解物
[除酸]
水解液 真空浓缩 浓缩液
110~120℃
10℃
吸附树脂
[分离提纯]732 滤液 [除酪氨酸] 滤液 阳离子交换树脂 5℃
[脱色]活性炭 pH7.3,5℃
2.微生物发酵法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章氨基酸
一、是非题
1 自然界的多肽物质均由L构型的氨基酸组成,完全没有例外()
2 组氨酸是人体的一种半必需氨基酸()
3 蛋白质中的所有的氨基酸(除甘氨酸外)都是左旋的()
4 因甘氨酸在酸性或碱性水溶液中都能解离,所以可作中性PH缓冲液介质()
5 脯氨酸与茚三酮反应生成紫色产物()
6 高等生物体内常见的L型氨基酸中液包括多巴(dopa)()
7 蛋白质中所有的组成氨基酸都可以用酸水解后用氨基酸分析定量测出()
8 所有的氨基酸中,因碳原子是一个不对称原子,因此都具有旋光性()
答案
1 .错 2. 对 3. 错 4. 错 5. 错 6. 对7. 错8. 错
二、填空题
1 精氨酸的pK1(COOH)值为2.17,pK2值为9.04,pK3值为12.98,其pI(等电点时的pH值)为。
天冬氨酸的pK1(COOH)值为1.88,pK2(COOH)值为3.65,pK3()值为9.60,其pI值为
2 苯丙氨酸是人体的必需氨基酸,这是因为
3 用分光光度计在280nm测定蛋白质有强烈吸收,主要是由于,和等氨基酸侧链基团起作用
4 已知某种氨基酸的pK1和pK2分别是2.34和9.69,它的pI是
5 氨基酸定量分析的经典方法是,氨基酸序列测定中最普遍的方法是法
答案
1 (11.02)(2.77)
2 (体内不能合成)
3(酪氨酸/Tyr)(色氨酸/Trp)(苯丙氨酸/Phe)
4(6.02)
5(茚三酮)(Edman/Val)
三、选择题
1.下列有关氨基酸的叙述,哪个是错误的?
A.酪氨酸和苯丙氨酸都含有苯环
B.酪氨酸和丝氨酸都含羟基
C.亮氨酸和缬氨酸都是分支氨基酸
D.脯氨酸和酪氨酸都是非极性氨基酸
E.组氨酸、色氨酸和脯氨酸都是杂环氨基酸
2.下列哪一类氨基酸完全是非必需氨基酸?
A.碱性氨基酸
B.含硫氨基酸
C.分支氨基酸
D.芳香族氨基酸
E.以上四种答案都不对
3.一个谷氨酸溶液,用5m1 1mo1/LNa0H来滴定,溶液的pH从1.0上升到7.0,下列数值中哪一个接近于该溶液中所含谷氨酸的毫摩尔
数
A.1.5
B.3.0
C.6.0
D.12.0
E.18.0
4.下列氨基酸中哪些具有分支的碳氢侧链?
(1).缬氨酸
(2).组氨酸
(3).异亮氨酸
(4).色氨酸
A.1,2,3
B.1,3
C.2,4
D.4
E.1,2,3,4
答案
1.D
2.E
3.B
4.B。