分式的值为零的条件专题解析

合集下载

分式有意义与分式值为零的条件

分式有意义与分式值为零的条件

分式有意义与分式值为零的条件同学们初学分式,应该注意把握分式有意义和分式值为零的条件。

下面就这两方面举例说明。

一、分式有意义的条件 分式BA (A 、B 都是整式,且B 中一定含有字母)有意义的条件是:分母B≠0,与分子A 无关系。

例1.分式5312+-x x 有意义,则x 的值是 。

分析:在这个分式中,3x+5是分母,只需令3x+5≠0即可。

解:因为,3x+5≠0,所以,x≠-35, 因此,当x≠-35时,分式5312+-x x 有意义。

点评:这里所说的值,通常是一个不等式的解集,不是具体的一个数值。

例2.分式4122--x x 有意义,则x 的值是 。

分析:在这个分式中,42-x 是分母,只需令42-x ≠0即可。

解:因为,42-x ≠0,所以,x≠-2且x≠2因此,当x≠-2且x≠2时,分式4122--x x 有意义。

点评:对于一个正数,有两个平方根,所以,在解题时,这两个根必须同时不能取,即注意用好这个关键字“且”,否则,就会出错,当然,同学们也可以这样来表示即x≠±2。

例3.分式4122+-x x 有意义,则x 的值是 。

分析:在这个分式中,42+x 是分母,由于2x ≥0,根据不等式的性质,得:2x +1≥0+1,即2x +1≥1,也就是说不论x 取何值,2x +1都是恒大于0的,因此,x 的取值是任意实数。

解:因为,2x ≥0,所以,2x +1≥1,恒大于0,因此,x 的取值是任意实数时,分式4122+-x x 有意义。

点评:当分母的整式是一个正数与一个非负数的和时,未知数的取值是任意的实数,这一点同学们一定要记清。

二、分式值为零的条件 分式BA (A 、B 都是整式,且B 中一定含有字母)值为0的条件是:分子A=0且分母B≠0。

例4.分式5312+-x x 的值为0,则x 的值是 。

分析:在这个分式中,分子是2x-1,3x+5是分母,因此,分式值为0的条件是: 2x-1=0且3x+5≠0。

《分式值为零的条件》 知识清单

《分式值为零的条件》 知识清单

《分式值为零的条件》知识清单一、分式的定义如果 A、B 表示两个整式,并且 B 中含有字母,那么式子 A/B 就叫做分式。

其中 A 叫做分子,B 叫做分母。

要理解分式,需要注意以下几点:1、分式是两个整式相除的商,其中分母必须含有字母。

2、分母的值不能为零,如果分母的值为零,那么分式就没有意义。

二、分式值为零的条件分式的值为零,需要同时满足两个条件:1、分子的值为零。

2、分母的值不为零。

这两个条件缺一不可。

比如说,对于分式(x 2)/(x + 3) ,要使其值为零,首先分子 x 2 = 0 ,解得 x = 2 。

然后还需要分母 x +3 ≠ 0 ,即x ≠ -3 。

只有同时满足这两个条件,分式的值才为零。

三、具体示例分析为了更好地理解分式值为零的条件,我们来看一些具体的例子。

例 1:分式(x² 1)/(x 1)首先,令分子 x² 1 = 0 ,即(x + 1)(x 1) = 0 ,解得 x = 1 或 x =-1 。

但是,当 x = 1 时,分母 x 1 = 0 ,分式无意义。

所以,只有当 x =-1 时,分式的值为零。

例 2:分式(2x 4)/(x²+ 1)令分子 2x 4 = 0 ,解得 x = 2 。

分母 x²+ 1 恒大于 0 ,因为任何数的平方都大于等于 0 ,再加上 1 肯定大于 0 。

所以,当 x = 2 时,分式的值为零。

四、常见错误在判断分式值是否为零时,容易出现以下错误:1、只考虑分子为零,而忽略了分母不能为零的条件。

例如,对于分式(x + 1)/(x 1) ,如果只看到分子 x + 1 = 0 时x =-1 ,而没有考虑分母x 1 ≠ 0 ,就会得出错误的结论。

2、对分式进行变形时,没有考虑变形后的分式与原分式的等价性。

比如,将分式(x² 4)/(x + 2) 变形为 x 2 ,然后判断 x 2 = 0时 x = 2 ,但忽略了变形时失去了 x =-2 这个使原分式无意义的值。

分式的值专题练习(解析版)

分式的值专题练习(解析版)

分式的值专题练习一、分式的值为零1、如果代数式1xx-的值为0,那么实数x满足()A. x=1B. x≥1C. x≠0D. x≥0答案:A解答:∵代数式1xx-的值为0,∴x-1=0,∴x=1.选A.2、若分式3621xx-+的值为0,则()A. x=-2B. x=2C. x=12D. x=-12答案:B解答:∵分式3621xx-+=0,∴360 210xx-=⎧⎨+≠⎩,解得:x=2.选B.3、使分式293xx-+的值为0,那么x()A. x≠-3B. x=3C. x=±3D. x≠3答案:B解答:∵293xx-+=0,∴29030xx⎧-=⎨+≠⎩,∴x=±3且x≠-3,∴x=3.选B.4、若三角形三边分别为a 、b 、c ,且分式2ab ac bc b a c-+--的值为0,则此三角形一定是( ) A. 不等边三角形 B. 腰与底边不等的等腰三角形C. 等边三角形D. 直角三角形答案:B解答:由题意得ab -ac +bc -b 2=0且a -c ≠0, 整理得(b -c )(a -b )=0且a ≠c , ∴b =c 或a =b 且a ≠c ,∴该三角形是腰与底边不等的等腰三角形. 选B. 5、对分式26x x +-,当x ______时分式有意义,当x ______时分式的值为0. 答案:≠6;=-2解答:分式有意义,分母不等0,分式的值为0,是分子等0,且取值保证分母有意义. 6、当x 为何值时,分式()22255x x --的值为0?答案:x =-5. 解答:若使分式()22255x x --的值为0,需满足25-x 2=0,且(x -5)2≠0,即x =-5.二、分式的值为正数或负数 7、若分式2213x x ++的值为正,则x 的取值范围是( ) A. x >12 B. x >-12C. x ≠0D. x >-12且x ≠0答案:B 解答:∵分式2213x x ++的值为正, 又∵x 2+3>0, ∴2x +1>0,∴x>-12.8、如果代数式22 1x x -+的结果是负数,则实数x的取值范围是()A. x>2B. x<2C. x≠-1D. x<2且x≠-1答案:B解答:代数式22 1x x -+的结果是负数,∵x2+1>0,∴x-2<0,∴x<2.9、当x______时,分式23x-的值为正数.答案:>3解答:要使23x-为正数,且式子有意义,∴x-3>0,x>3.10、当x______时,分式523x-的值为正.答案:>3 2解答:分式的值为正只需要分母2x-3>0,得x>32.11、当x满足______时,分式233xx--的值为1;如果分式121xx-+的值为-1,则x的值是______.当x满足______时,分式48x-的值为正数;当x满足______时,分式48xx--的值为负数.答案:x=2;0;x<8;4<x<8解答:12、使分式213x--的值为负数的x的取值范围是______.答案:x<1 3解答:∵分式值为负,∴分子、分母异号,∴1-3x>0,∴x<13.13、若分式253xx-+的值为非负数,则x的取值范围为______.答案:x≥52或x<-3解答:由分式值为非负数可得:25030xx-≥⎧⎨+⎩>或25030xx-≤⎧⎨+⎩<,解得x≥52或x<-3.三、分式的值为整数14、若分式61a+的值为正整数,则整数a的值有()A. 3个B. 4个C. 6个D. 8个答案:B解答:根据题意得61a+的值为正整数,∴a+1必定是可以被6整除的正整数,∴a+1=1,2,3或6,解得a=0,1,2或5.选B.15、如果m为整数,那么使分式31mm++的值为整数的m的值有()A. 2个B. 3个C. 4个D. 5个答案:C解答:31mm++=121mm+++=1+21m+,m+1=±1,±2,∴m=0,-2,1,-3.16、当分式623x-的值为正整数时,整数x的取值可能有()A. 4个B. 3个C. 2个D. 1个答案:C解答:分式623x-的值为正整数,整数x可取2,3.17、若分式51mm-+的值为正整数,则整数m的值有()A. 3个B. 4个C. 6个D. 8个答案:A解答:51mm-+=5111mm--++=-1+61m+,若分式51mm-+的值为正整数,即-1+61m+的值为正整数,则61m+为大于1的正整数,则m可以取0,1,2.18、若x是整数,则使分式6321xx+-的值为整数的的值的个数为()A. 1B. 2C. 3D. 4答案:D解答:∵6321xx+-=3+621x-,∴2x-1可以被6整除,即2x-1=±1,±3,∴x=0,1,-1,2.19、填空:(1)若分式11xx-+的值为整数,则满足条件的整数x的值是______.(2)若分式411xx++的值为整数,则满足条件的正整数x的值是______.(3)若m取整数,则使分式4123mm-+的值为整数的m的值为______.答案:(1)0,-2,1,-3(2)2(3)-1,,-2,,2,,-5解答:(1)121xx+-+=1-21x+,x+1=±1,±2,x=0,-2,1,-3(2)()4131xx+-+=4-31x+,x+1=±1,±3,x=0,-2,2,-4∴x=2(3)()223723mm+-+=2-723m+,2m+3=±1,±7,m=-1,-2,2,-520、当x为何整数时,分式421x+的值为正整数?答案:x=0.解答:当421x+为正整数时,2x+1=1或2或4,解得x=0或12或32.又∵x为整数,∴x=0.21、a(a为正整数)为何值时,x=53aa+为整数.答案:a=1解答:∵53aa+=n(n为整数),∴a=531 n-,∵a为正整数,∴3n-1=1、5∴n=23(舍去)、2,∴a=1时,x为整数.22、当m为何整数时,下列分式的值为整数?(1)322m m-+.(2)51 22 mm+-.答案:(1)m=-9,-3,-1,5.(2)m=-5,-1,3,7.解答:(1)322mm-+=72m+-2,故m+2=±1,±7,∴m=-9,-3,-1,5.(2)5122mm+-=155621mm-+-()=12(5+61m-),故61m-为奇数,∴m-1=±2,±6,∴m=-5,-1,3,7.23、阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为常分数,如:83=623+=2+23=223.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”,当分子的次数小于分母次数时,我们称之为“真分式”.如2111x xx x--+,这样的分式就是假分式,再如:23211xx x++,这样的分式就是真分式,类似的假分式也可以化为带分式(即:整式与真分式的和的形式)如:11xx-+=()211xx+-+=1-21x+.解决下列问题:(1)分式2x是______分式(填“真”或“假”).(2)将假分式212xx-+化为带分式.(3)如果x为整数,分式211xx-+的值为整数,求所有符合条件的x的值.答案:(1)真(2)x-2+32 x+.(3)符合条件的x值为-2,-4,0,2.解答:(1)2x分子次数小于分母次数,∴是真分式.(2)原式=()()2232x xx+-++=x-2+32 x+.(3)原式=()2131xx+-+=2-31x+,∵x为整数,分式值为整数,得到x+1=-1,-3,1,3,解得x=-2,-4,0,2.经经验,符合条件的x值为-2,-4,0,2.。

分式的值为0的条件试题集锦

分式的值为0的条件试题集锦

1.(2015•潍坊模拟)分式的值为0,则()A.x=﹣1 B.x=1 C.x=±1 D.x=0考点:分式的值为零的条件.分析:分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.解答:解:由题意可得x2﹣1=0且x+1≠0,解得x=1.故选:B.点评:本题考查了分式的值为0的条件.由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.2.(2015•黄石模拟)下列关于分式的判断,正确的是()A.当x=2时,的值为零B.当x≠3时,有意义C.无论x为何值,不可能得整数值D.无论x为何值,的值总为正数考点:分式的值为零的条件;分式的定义;分式有意义的条件.分析:根据分式值为0的条件,以及分式有意义的条件即可求解.解答:解:A、当x=2时,无意义,故A错误;B、当x≠0时,有意义,故B错误;C、当x=2时,得整数值,故C错误;D、分母x2+1大于0,分子大于0,故无论x为何值,的值总为正数,故D正确.故选D.点评:分式的定义:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式,当B=0时,分式无意义.3.(2015•西安模拟)若分式的值为0,则x的值为()A.﹣1 B.3C.﹣1或3 D.﹣3或1考点:分式的值为零的条件.专题:存在型.分析:根据分式的值为0的条件列出关于x的不等式,求出x的值即可.解答:解:∵分式的值为0,∴,解得x=3.故选B.点评:本题考查的是分式的值为0的条件,即分式的分子等于0,分母不等于0.4.(2015•茂名模拟)如果分式的值为零,那么x的值为()A.﹣1或1 B.1C.﹣1 D.1或0考点:分式的值为零的条件.专题:计算题.分析:根据分式的值为零的条件可以求出x的值.解答:解:根据题意,得|x|﹣1=0且x+1≠0,解得,x=1.故选B.点评:本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.(2015•临淄区一模)若分式的值为零,则x的值为()A.0B.1C.﹣1 D.±1考点:分式的值为零的条件.分析:根据分式为0的条件列出关于x的不等式组,求出x的值即可.解答:解:∵分式的值为零,∴,解得x=1.故选B.点评:本题考查的是分式的值为0的条件,熟知分式值为零的条件是分子等于零且分母不等于零是解答此题的关键.A.4B.﹣4 C.±4 D.任意实数考点:分式的值为零的条件.分析:根据分式为0的条件列出关于x的不等式组,求出x的值即可.解答:解:∵分式的值为0,∴,解得x=4.故选A.点评:本题考查的是分式的值为0的条件,熟知分式值为零的条件是分子等于零且分母不等于零是解答此题的关键.7.(2015•澄海区一模)若分式的值为零,则x的值为()A.0B.2C.﹣2 D.±2考点:分式的值为零的条件.分析:根据分式为0的条件是:分子为0、分母不为0计算即可.解答:解:由题意得,x2﹣4=0,x=±2,x﹣2≠0,x≠2,故选:B.点评:本题考查的是分式为0的条件:若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.8.(2015•临沂模拟)若代数式的值为0,则x等于()A.2B.﹣2 C.0D.2,﹣2考点:分式的值为零的条件.分析:根据分式值为零的条件:分子为0,分母不为0,可得答案.解答:解:由代数式的值为0,得.解得x=2,故选:A.点评:本题考查了分式值为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.A.2B.﹣2 C.3D.﹣3考点:分式的值为零的条件.分析:根据分式的分子为零,分母不为零,分式的值为零,可得答案.解答:解:由分式的值为0,得,解得x=2,故选:A.点评:本题考查了分式值为零的条件,分式的分子为零,分母不为零,分式的值为零,注意不要遗漏分母不为零.10.(2014秋•西城区校级期中)若使分式的值为零,则x的值为()A.﹣1 B.1或﹣1 C.1D.1且﹣1考点:分式的值为零的条件.分析:根据分式值为零的条件可得x2﹣1=0,还要保证分式有意义可得x+1≠0,解可得答案.解答:解:由题意得:x2﹣1=0,且x+1≠0,解得:x=1,故选:C.点评:此题主要考查了分式的值为零的条件,关键是掌握同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.11.(2015春•江阴市期中)分式的值为0,则x的值为()A.﹣3 B.3C.0D.±3考点:分式的值为零的条件.分析:根据分式的值为零的条件可以求出x的值.解答:解:根据题意得:x2﹣9=0,且x+3≠0,解得:x=3.故选:B.点评:本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.(2014•毕节市)若分式的值为零,则x的值为()A.0B.1C.﹣1 D.±1考点:分式的值为零的条件.专题:计算题.分析:分式的值是0的条件是:分子为0,分母不为0,由此条件解出x.解答:解:由x2﹣1=0,得x=±1.①当x=1时,x﹣1=0,∴x=1不合题意;②当x=﹣1时,x﹣1=﹣2≠0,∴x=﹣1时分式的值为0.故选:C.点评:分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.13.(2014•凉山州)分式的值为零,则x的值为()A.3B.﹣3 C.±3 D.任意实数考点:分式的值为零的条件.分析:分式的值为零:分子等于零,且分母不等于零.解答:解:依题意,得|x|﹣3=0且x+3≠0,解得,x=3.故选:A.点评:本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.(2014•青羊区校级模拟)若分式的值为0,则x的值为()A.±2 B.2C.﹣2 D.4考点:分式的值为零的条件.专题:计算题.分析:分式的值为零即:分子为0,分母不为0.解答:解:根据题意,得:x2﹣4=0且x﹣2≠0,解得:x=﹣2;故选:C.点评:本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.(2014•孝南区校级模拟)若分式的值为0,则x的值为()A.0B.﹣1 C.1D.2考点:分式的值为零的条件.专题:探究型.分析:根据分式的值为0的条件列出关于x的不等式组,求出x的值即可.解答:解:∵分式的值为0,∴,解得x=﹣1.故选:B.点评:本题考查的是分式的值为0的条件,即分式值为零的条件是分子等于零且分母不等于零,根据此条件列出关于x的不等式组是解答此题的关键.16.(2014•锦江区模拟)若分式的值为0,则x的值为()A.﹣3 B.3或﹣3 C.3D.0考点:分式的值为零的条件.专题:计算题.分析:根据分式的值为零的条件可以求出x的值.解答:解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选C.点评:本题考查了分式值为0的条件,具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.17.(2014•玉林二模)分式的值为0,则()A.x=2 B.x=﹣2 C.x=±2 D.x=0考点:分式的值为零的条件.专题:计算题.分析:根据分式的值为零的条件得到x2﹣4=0且x+2≠0,然后分别解方程与不等式易得x=2.解答:解:∵分式的值为0,∴x2﹣4=0且x+2≠0,解x2﹣4=0得x=±2,而x≠﹣2,∴x=2.故选A.点评:本题考查了分式的值为零的条件:当分式的分子为零并且分母不为零时,分式的值为零.18.(2014•沙坪坝区校级模拟)如果分式的值为0,则x的值为()A.1B.±1 C.D.﹣1考点:分式的值为零的条件.专题:计算题.分析:要使分式的值为0,必须分式分子的值为0并且分母的值不为0.解答:解:由分子x2﹣1=0解得:x=±1.而当x=﹣1时分母3x+3=﹣3+3=0,分式没有意义.当x=1时,分母3x+3=6≠0.所以x=1.故选A.点评:要注意分母的值一定不能为0,分母的值是0时分式没有意义.19.(2014•白云区一模)若分式的值为零,则x的值是()A.0B.±2 C.4D.﹣4考点:分式的值为零的条件.分析:根据分式值为零的条件可得x﹣4=0,且x2﹣4≠0,再解即可.解答:解:由题意得:x﹣4=0,且x2﹣4≠0,解得:x=4,故选:C.点评:此题主要考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.20.(2014•嘉峪关校级模拟)若分式的值为0,则x的值是()A.3B.﹣3 C.0D.±3考点:分式的值为零的条件.分析:分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.解答:解:由题意可得x+3=0且x≠0,解得x=﹣3.故选:B.点评:考查了分式的值为零的条件,由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.。

分式知识点总结

分式知识点总结

分式知识点总结1.分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。

2.分式有意义、无意义的条件:分式有意义的条件:分式的分母不等于0;分式无意义的条件:分式的分母等于0。

3.分式值为零的条件:当分式的分子等于0且分母不等于0时,分式的值为0。

〔分式的值是在分式有意义的前提下才可以考虑的,所以使分式为0的条件是A=0,且B≠0.〕〔分式的值为0的条件是:分子等于0,分母不等于0,二者缺一不可。

首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0.当分母的值不为0时,就是所要求的字母的值。

〕4.分式的根本性质:分式的分子与分母同乘〔或除以〕一个不等于0的整式,分式的值不变。

用式子表示为〔〕,其中A、B、C是整式注意:〔1〕“C是一个不等于0的整式〞是分式根本性质的一个制约条件;〔2〕应用分式的根本性质时,要深刻理解“同〞的含义,防止犯只乘分子〔或分母〕的错误;〔3〕假设分式的分子或分母是多项式,运用分式的根本性质时,要先用括号把分子或分母括上,再乘或除以同一整式C;〔4〕分式的根本性质是分式进行约分、通分和符号变化的依据。

5.分式的通分:和分数类似,利用分式的根本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。

通分的关键是确定几个式子的最简公分母。

几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。

求最简公分母时应注意以下几点:〔1〕“各分母所有因式的最高次幂〞是指凡出现的字母〔或含字母的式子〕为底数的幂选取指数最大的;〔2〕如果各分母的系数都是整数时,通常取它们系数的最小公倍数作为最简公分母的系数;〔3〕如果分母是多项式,一般应先分解因式。

6.分式的约分:和分数一样,根据分式的根本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。

专题01 分式和分式方程(1)解析版

专题01 分式和分式方程(1)解析版

专题01 分式和分式方程(1)考点1:分式的定义1.下列各式是分式的是()A.B.C.2y D.【答案】A【解析】A、是分式,故本选项符合题意;B、是多项式,故本选项不符合题意;C、是单项式,故本选项不符合题意;D、是单项式,故本选项不符合题意.故选:A.2.下列各式x+y,,,,中,是分式的有()A.2个B.3个C.4个D.5个【答案】A【解析】,是分式,共2个,故选:A.3.下列式子中是分式的是()A.B.C.D.【答案】C【解析】A、它的分母中不含有字母,是整式,故本选项不符合题意;B、它的分母中不含有字母,是整式,故本选项不符合题意;C、它是分式,故本选项符合题意;D、它是分数,故本选项不符合题意;故选:C.4.下列各式中,是分式的是()A.x B.C.D.+1【答案】B【解析】的分母中含有字母,属于分式,x、、+1的分母中不含有字母,属于整式.故选:B.5.下列各式:,,,其中分式有_______.【答案】3个.【解析】,,的分母中含有字母,属于分式.共有3个分式.6.在有理式﹣π,中,分式有_______个.【答案】3.【解析】分式有,,,共3个,7.在代数式中,分式有2个.【答案】2.【解析】,的分母中含有字母,是分式.8.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如==+=1+,==a﹣1+,则和都是“和谐分式”.(1)下列分式中,不属于“和谐分式”的是:_______(填序号);①;②;③;④(2)将“和谐分式化成一个整式与一个分子为常数的分式的和的形为:=.(3)应用:已知方程组有正整数解,求整数m的值.【答案】见解析【解析】(1)①=,故是和谐分式;②=,故不是和谐分式;③=,故是和谐分式;④=,故是和谐分式;故答案为①③④;(2)===,故答案为;(3)解方程组得,∵方程组有正整数解,∴m=﹣1或﹣7.考点2:分式有意义的条件1.若分式有意义,则x的取值范围是()A.x≤3B.x<3C.x<3且x≠0D.x≠3【答案】D【解析】由题意得:3﹣x≠0,解得:x≠3,故选:D.2.代数式中的x取值范围是()A.x B.x C.x D.x【答案】C【解析】由题意得,2x﹣1≠0,解得,x≠,故选:C.3.若分式有意义,则a的取值范围是()A.a≠2B.a=2C.a≠﹣2D.a=﹣2【答案】C【解析】由题意得:a+2≠0,解得:a≠﹣2,故选:C.4.要使分式有意义,x的取值是()A.x≠2B.x≠﹣2C.x≠±2D.x≠±2且x≠﹣1【答案】B【解析】由题意可知:x+2≠0∴x≠﹣2故选:B.5.若分式有意义,则x的取值范围是_______.【答案】x≠3.【解析】要使分式有意义,必须x﹣3≠0,解得:x≠3,6.若分式在实数范围内有意义,则x满足的条件是_______.【答案】x≠2.【解析】由题意得:x﹣2≠0,解得:x≠2,7.若分式在实数范围内有意义,则实数x的取值范围是_______.【答案】x≠5.【解析】由题意得,x﹣5≠0,解得,x≠5,8.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.【答案】见解析【解析】∵式子无意义,∴3y﹣1=0,解得y=,原式=y2﹣x2+x2=y2=()2=.考点3:分式的值为零的条件1.若分式的值为0,则x的值是()A.±2B.﹣2C.0D.2【答案】D【解析】∵分式的值为0,∴x2﹣4=0,2x+4≠0,解得,x=2,故选:D.2.若分式的值为0,则x的值是()A.0B.1C.2D.﹣1【答案】B【解析】分式的值为0,则x﹣1=0,且2x≠0,解得:x=1.故选:B.3.若分式的值为0,则x的值为()A.0B.﹣2C.4D.4或﹣2【答案】C【解析】由分式的值为零的条件得x﹣4=0且x+2≠0,解得:x=4,故选:C.4.分式的值为0,则x的值为()A.﹣1或2B.2C.﹣1D.﹣2【答案】B【解析】依题意,得x2﹣x﹣2=(x﹣2)(x+1)=0且|x|﹣1≠0.解得x=2或x=﹣1且x≠±1.所以x=2符合题意.故选:B.5.分式的值等于0,则x=_______.【答案】﹣2.【解析】根据题意,得x2﹣4=(x+2)(x﹣2)=0且x﹣2≠0.所以x+2=0.所以x=﹣2.6.当x=﹣3时,分式的值为零.当x≠时,分式有意义.【答案】﹣3;.【解析】分式的值为零,则,解得x=﹣3;分式有意义,则1﹣2x≠0,解得x≠.7.分式的值为0时,x=2.【答案】2.【解析】∵分式的值为0,∴2x2﹣8=0,x+2≠0,解得,x=2,8.若a,b为实数,且=0,求3a﹣b的值.【答案】见解析【解析】∵=0,∴,解得,∴3a﹣b=6﹣4=2.故3a﹣b的值是2.考点4:分式的值1.若分式的值为正数,则x的取值范围是()A.x>B.x<C.x≥D.x取任意实数【答案】A【解析】∵分式的值为正数,∴x2+5>0,2x﹣1>0,解得:x>.故选:A.2.已知的值等于0,则x的大小为()A.1B.2C.±2D.﹣2【答案】D【解析】∵的值等于0,∴x2﹣4=0且(x﹣2)(x﹣1)≠0,解得:x=﹣2.故选:D.3.若分式的值为整数,则整数m可能值的个数为()A.2B.4C.6D.8【答案】C【解析】分式的值为整数,∴m﹣1=±1,±2,±4,解得:m=2,0,3,﹣1,5,﹣3,则整数m可取的值的个数是6个.故选:C.4.已知a=2016,则代数式的值为()A.2016B.2015C.D.【答案】C【解析】==,当a=2016时,原式=,故选:C.5.若分式的值是负整数,则整数m的值是_______.【答案】3.【解析】原式==﹣1+,由题意可知:m﹣4=﹣1,∴m=3,6.若分式的值为正数,x的取值范围是_______.【答案】x>.【解析】∵分式的值为正数,∴,解得x>.7.已知x,y,z都不为0,且,则式子的值为_______.【答案】.【解析】①﹣②,得2x﹣4z=0,∴x=2z.把x=2z代入①,得8z﹣3y﹣3z=0.解得y=z.把x=2z,y=z代入式子==.8.若x为整数,且的值也为整数,则所有符合条件的x的值之和.【答案】见解析【解析】==,∵x为整数,且的值也为整数,∴x﹣2的值为﹣4,﹣2,﹣1,1,2或4.∴x的值为:﹣2,0,1,3,4或6,经检验,当x=﹣2时,原式分母为0,不符合题意,故舍去.∴0+1+3+4+6=14.∴所有符合条件的x的值之和为14.考点5:分式的基本性质1.如果把分式中的x和y都扩大3倍,那么分式的值()A.不变B.缩小3倍C.扩大3倍D.扩大9倍【答案】C【解析】==3×,即如果把分式中的x和y都扩大3倍,那么分式的值扩大3倍,故选:C.2.下列化简正确的是()A.B.C.D.【答案】A【解析】A.==,故本选项符合题意;B.≠,故本选项不符合题意;C.=﹣,故本选项不符合题意;D.==﹣,故本选项不符合题意;故选:A.3.若把分式中的x,y都缩小2倍,则分式的值()A.扩大2倍B.不变C.缩小2倍D.缩小4倍【答案】B【解析】根据题意,得x和y的值都缩小2倍,即==,显然分式的值不变.故选:B.4.若把分式中的x和y都扩大3倍,那么分式的值()A.扩大3倍B.扩大9倍C.不变D.缩小3倍【答案】C【解析】把分式中的x和y都扩大3倍,则分式变为,而=,所以把分式中的x和y都扩大3倍,分式的值不变.故选:C.5.若分式的值为5,则x、y扩大2倍后,这个分式的值为_______.【答案】5.【解析】根据题意,得新的分式为==5.6.把分式的x和y都扩大3倍,分式的值_______.【答案】扩大3倍.【解析】==,即分式的值扩大3倍,7.若把分式中的x和y都扩大两倍,则分式的值_______.【答案】不变.【解析】分式中的x,y都扩大两倍,那么分式的值不变,即=,8.填空:==(a≠0,b≠0).【答案】见解析【解析】==(a≠0,b≠0).故答案为:a,ab2.考点6:约分1.分式可化简为()A.x﹣y B.C.x+y D.【答案】C【解析】原式==x+y.故选:C.2.计算的结果为()A.﹣a2B.﹣a C.a D.a2【答案】B【解析】原式=﹣=﹣a,故选:B.3.下列约分正确的是()A.B.C.D.【答案】D【解析】A、=x4,故原题计算错误;B、=1,故原题计算错误;C、=,故原题计算错误;D、=,故原题计算正确;故选:D.4.已知a,b两数在数轴上的位置如图所示,则化简的结果是()A.a﹣b﹣1B.a+b﹣1C.﹣a+b+1D.﹣a﹣b+1【答案】C【解析】原式=||=||=|a﹣b﹣1|,由数轴可得,a﹣b<0,原式=﹣(a﹣b﹣1)=﹣a+b+1.故选:C.5.小丽在化简分式=时,*部分不小心滴上了墨水,请你推测,*部分的代数式应该是x2﹣2x+1.【答案】x2﹣2x+1.【解析】∵==,∴*部分为:(x﹣1)2=x2﹣2x+1,6.化简:=_______.【答案】.【解析】=.7.化简:=_______.【答案】【解析】原式==.8.约分:(1);(2).【答案】见解析【解析】(1)原式==;(2)原式==.。

中考数学专题练习直接开平方法解一元二次方程(含解析)

中考数学专题练习直接开平方法解一元二次方程(含解析)

2019中考数学专题练习-直接开平方法解一元二次方程(含解析)一、单选题1.若分式的值为0,则x的值是()A.1或-1B.1C. -1D.0【答案】B【考点】分式的值为零的条件,解一元二次方程-直接开平方法【解析】【分析】根据分子为0,同时分母不等于0时,分式值是零,即可得到结果.由题意得,解得,则x=1,故选B.【点评】解答本题的关键是熟练掌握分式值是零的条件:分子为0,同时分母不等于0.2.若25x2=16,则x的值为()A. B. C. D.【答案】A【考点】直接开平方法解一元二次方程【解析】【解答】解:25x2=16,x2= ,x=± ,故答案为:A【分析】观察次方程缺一次项,可以用直接开平方法求解或利用因式分解法求解。

3.方程的根是()A. B. C. D.【答案】A【考点】解一元二次方程-直接开平方法【解析】【解答】用开平方法可得【分析】将原方程变形为=4,用直接开平方法解得x=2,即= 2 ,= − 2.4.一元二次方程x2=2的解是()A.x=2或x=﹣2B.x=2C.x=4或x=﹣4D.x=或x=﹣【答案】D【考点】解一元二次方程-直接开平方法【解析】【解答】解:∵x2=2,∵x=±.故选:D.【分析】直接开平方解方程得出答案.5.方程x2=9的解是()A.x1=x2=3B.x1=x2=9C.x1=3,x2=﹣3D.x1=9,x2=﹣9【答案】C【考点】解一元二次方程-直接开平方法【解析】【解答】解:x2=9,两边开平方,得x1=3,x2=﹣3.故选C.【分析】利用直接开平方法求解即可.6.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x-6=-4B.x-6=4C.x+6=4D.x+6=-4【答案】D【考点】解一元二次方程-直接开平方法【解析】【分析】方程两边直接开平方可达到降次的目的,进而可直接得到答案.【解答】(x+6)2=16,两边直接开平方得:x+6=±4,则:x+6=4,x+6=-4,故选:D.7.方程x2=9的解是()A.x=9B.x=±9C.x=3D.x=±3【答案】D【考点】直接开平方法解一元二次方程【解析】【解答】解:∵x2=9,∵x=±3,故选:D.【分析】直接开平方法即可得.8.若是反比例函数,则b的值为()A.1B.-1C.D.任意实数【答案】A【考点】直接开平方法解一元二次方程,反比例函数的定义【解析】【解答】,解得.故答案为:A.【分析】根据反比例函数的定义知,自变量次数为-1,b2-2=-1,得b=1,,又因为比例系数k≠0,得b+1≠0,得b≠-1,综合分析可得b=1。

配套K12中考数学 专题04 分式及其运算试题(含解析)

配套K12中考数学 专题04 分式及其运算试题(含解析)

专题04 分式及其运算☞解读考点【2015年题组】1.(2015常州)要使分式23-x 有意义,则x 的取值范围是( ) A .2x > B .2x < C .2x ≠- D .2x ≠ 【答案】D . 【解析】试题分析:要使分式23-x 有意义,须有20x -≠,即2x ≠,故选D . 考点:分式有意义的条件.2.(2015济南)化简2933m m m ---的结果是( ) A .3m + B .3m - C .33m m -+ D .33m m +- 【答案】A .考点:分式的加减法.3.(2015百色)化简222624x x x x x --+-的结果为( ) A .214x - B .212x x + C .12x - D .62x x --【答案】C . 【解析】 试题分析:原式=262(2)(2)x x x x --++-=2(2)(6)(2)(2)x x x x ---+-=2(2)(2)x x x ++-=12x -.故选C . 考点:分式的加减法.4.(2015甘南州)在盒子里放有三张分别写有整式a +1,a +2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( ) A .13 B .23 C .16 D .34【答案】B . 【解析】试题分析:分母含有字母的式子是分式,整式a +1,a +2,2中,抽到a +1,a +2做分母时组成的都是分式,共有3×2=6种情况,其中a +1,a +2为分母的情况有4种,所以能组成分式的概率=46=23.故选B . 考点:1.概率公式;2.分式的定义;3.综合题. 5.(2015龙岩)已知点P (a ,b )是反比例函数1y x =图象上异于点(﹣1,﹣1)的一个动点,则1111a b+++=( )A .2B .1C .32D .12【答案】B .考点:1.反比例函数图象上点的坐标特征;2.分式的化简求值;3.条件求值.6.(2015山西省)化简22222a ab b ba b a b++---的结果是( ) A .a ab - B .b a b - C .a a b + D .ba b+ 【答案】A . 【解析】试题分析:原式=2()()()a b b a b a b a b +-+--=a b b a b a b +---=a b b a b +--=aa b-,故选A . 考点:分式的加减法.7.(2015泰安)化简:341()(1)32a a a a -+---的结果等于( ) A .2a - B .2a + C .23a a -- D .32a a --【答案】B . 【解析】试题分析:原式=(3)342132a a a a a a -+---⋅--=24332a a a a --⋅--=(2)(2)332a a a a a +--⋅--=2a +.故选B . 考点:分式的混合运算.8.(2015莱芜)甲乙两人同时从A 地出发到B 地,如果甲的速度v 保持不变,而乙先用12v 的速度到达中点,再用2v 的速度到达B 地,则下列结论中正确的是( ) A .甲乙同时到达B 地 B .甲先到达B 地C .乙先到达B 地D .谁先到达B 地与速度v 有关 【答案】B .考点:1.列代数式(分式);2.行程问题. 9.(2015内江)已知实数a ,b 满足:211a a +=,211b b+=,则2015a b -|= . 【答案】1. 【解析】试题分析:∵2110a a +=>,2110b b+=>,∴0a >,0b >,∴()10ab a b ++>,∵211a a +=,211b b +=,两式相减可得2211a b a b -=-,()()b aa b a b ab-+-=,[()1]()0ab a b a b ++-=,∴0a b -=,即a b =,∴2015a b-=02015=1.故答案为:1.考点:1.因式分解的应用;2.零指数幂;3.条件求值;4.综合题;5.压轴题. 10.(2015黄冈)计算)1(22b a aba b +-÷-的结果是________. 【答案】1a b-. 【解析】 试题分析:原式=()()b a b a a b a b a b +-÷+-+=()()b a b a b a b b +⋅+-=1a b -.故答案为:1a b-.考点:分式的混合运算.11.(2015安徽省)已知实数a 、b 、c 满足a +b =ab =c ,有下列结论:①若c ≠0,则111a b+=;②若a =3,则b +c =9;③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8. 其中正确的是 (把所有正确结论的序号都选上). 【答案】①③④.考点:1.分式的混合运算;2.解一元一次方程. 12.(2015梅州)若1212)12)(12(1++-=+-n bn a n n ,对任意自然数n 都成立,则=a ,=b ;计算:=⨯++⨯+⨯+⨯=21191751531311 m . 【答案】12;12-;1021. 【解析】 试题分析:1(21)(21)n n -+=2121a bn n +-+=(21)(21)(21)(21)a n b n n n ++-+-=(22)(21)(21)a b n a b n n ++-+-,可得(22)1a b n a b ++-=,即:01a b a b +=⎧⎨-=⎩,解得:a =12,b =12-; m =111111(1...)23351921-+-++-=11(1)221-=1021,故答案为:12;12-;1021.考点:1.分式的加减法;2.综合题. 13.(2015河北省)若02≠=b a ,则aba b a --222的值为 .【答案】32. 【解析】试题分析:∵2a b =,∴原式=2222442b b b b --=32,故答案为:32. 考点:分式的化简求值.14.(2015绥化)若代数式25626x x x -+-的值等于0,则x =_________.【答案】2. 【解析】试题分析:由分式的值为零的条件得2560x x -+=,2x ﹣6≠0,由2560x x -+=,得x =2或x =3,由2x ﹣6≠0,得x ≠3,∴x =2,故答案为:2. 考点:分式的值为零的条件.15.(2015崇左)化简:2221(1)2a a a a +--÷. 【答案】12-a .考点:分式的混合运算.16.(2015桂林)先化简,再求值:2269392x x x x -+-÷-,其中3x =.【答案】23x +. 【解析】试题分析:分解因式后,利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.试题解析:原式=2(3)2(3)(3)3x x x x -⨯+--=23x +,当3x =时,原式.考点:分式的化简求值. 17.(2015南京)计算:22221()aa b a ab a b-÷--+.【答案】21a . 【解析】试题分析:首先将括号里面通分运算,进而利用分式的性质化简求出即可.试题解析:原式=21[]()()()a b a b a b a a b a +-⨯+--=2[]()()()()a a b a ba ab a b a a b a b a++-⨯+-+-=2()()()a a b a b a a b a b a -++⨯+-=21a.考点:分式的混合运算.18.(2015苏州)先化简,再求值:2121122x x x x ++⎛⎫-÷⎪++⎝⎭,其中1x =.【答案】11x +.考点:分式的化简求值.19.(2015盐城)先化简,再求值:)()(131112+÷-+a aa ,其中a =4. 【答案】31aa -,4. 【解析】试题分析:根据分式混合运算的法则把原式进行化简,再求出x 的值代入进行计算即可.试题解析:原式=2113(1)(1)(1)a a a a a -++⋅+-=23(1)(1)(1)a a a a a +⋅+-=31aa -;当a =4时,原式=3441⨯-=4. 考点:分式的化简求值. 20.(2015成都)化简:211()242a a a a a -+÷+-+.【答案】12a a --. 【解析】试题分析:括号内先通分,同时把除法转化为乘法,再用分式乘法法则计算机即可.试题解析:原式=()()()22221212214412212a a a a a a a a a a a a a -⎛⎫-++-+⨯=⨯= ⎪---+---⎝⎭. 考点:分式的加减法.21.(2015资阳)先化简,再求值:2112()111x x x x +-÷-+-,其中x 满足260x -=. 【答案】22x +,25.考点:1.分式的混合运算;2.分式的化简求值. 22.(2015达州)化简2221432a a a a a a+⋅----,并求值,其中a 与2、3构成△ABC 的三边,且a 为整数. 【答案】13a -,1. 【解析】试题分析:原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到结果,把a 的值代入计算即可求出值. 试题解析:原式=21(2)(2)(3)2a a a a a a a +⋅++---=11(2)(3)2a a a +---=13(2)(3)a a a +---=2(2)(3)a a a ---=13a -,∵a 与2、3构成△ABC 的三边,且a 为整数,∴1<a <5,即a =2,3,4,当a =2或a =3时,原式没有意义,则a =4时,原式=1. 考点:1.分式的化简求值;2.三角形三边关系.23.(2015广元)先化简:222222()1211x x x x xx x x x+--÷--++,然后解答下列问题:(1)当3x=时,求原代数式的值;(2)原代数式的值能等于1-吗?为什么?【答案】(1)2;(2)不能.考点:分式的化简求值.24.(2015凉山州)先化简:222122(1)1211x x x xx x x x++-+÷+--+-,然后从22x-≤≤的范围内选取一个合适的整数作为x的值代入求值.【答案】241xx-+;当x=2时,原式=0,当x=-2时,原式=8.【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时根据除法法则变形,约分得到最简结果,将x=0代入计算即可求出值.试题解析:原式=211(1)2(1)1(1)(1)(1)x x x xx x x x x++---⋅+-++-=22(1)21(1)1x xx x x x-⋅--++=2(1)211xx x--++=241xx-+,∵满足22x-≤≤的整数有±2,±1,0,而x=±1,0时,原式无意义,∴x=±2,当x=2时,原式=22421⨯-=+,当x=-2时,原式=2(2)4821⨯--=-+.考点:分式的化简求值.25.(2015广州)已知A =222111x x xx x ++---.(1)化简A ;(2)当x 满足不等式组1030x x -≥⎧⎨-<⎩,且x 为整数时,求A 的值.【答案】(1)11x -;(2)1.考点:1.分式的化简求值;2.一元一次不等式组的整数解.26.(2015白银)有三张卡片(形状、大小、颜色、质地都相等),正面分别下上整式21x +,22x --,3.将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A ,再从剩下的卡片中任意抽取一张,记卡片上的整式为B ,于是得到代数式AB. (1)请用画树状图或列表的方法,写出代数式AB所有可能的结果; (2)求代数式AB恰好是分式的概率. 【答案】(1)答案见试题解析;(2)23.【解析】试题分析:(1)画出树状图,由树状图即可求得所有等可能的结果;(2)由(1)中的树状图,可求得抽取的两张卡片结果能组成分式的情况,利用概率公式求解即可求得答案.试题解析:(1)画树状图:(2)代数式A B 所有可能的结果共有6种,其中代数式A B是分式的有4种,所以P (是分式)=46=23.考点:1.列表法与树状图法;2.分式的定义.【2014年题组】1.(2014年无锡中考) 分式22x-可变形为( ) A . 22x + B .22x -+ C . 2x 2- D .2x 2--【答案】D .考点:分式的基本性质. 2.(2014年杭州中考)若241()w 1a 42a+⋅=--,则w =( ) A .a 2(a 2)+≠- B . a 2(a 2)-+≠ C . a 2(a 2)-≠ D . a 2(a 2)--≠-【答案】D . 【解析】 试题分析:∵()()()()()2414a 22a 1a 42a a 2a 2a 2a 2a 2a 2a 2+-+=-==---+--++-+, ∴w =a 2(a 2)--≠-.故选D . 考点:分式的化简.3.(2014年温州中考)要使分式x 1x 2+-有意义,则x 的取值应满足( ) A . x 2≠ B . x 1≠- C . x 2= D . x 1=-【答案】A . 【解析】试题分析:根据分式分母不为0的条件,要使x 1x 2+-在实数范围内有意义,必须x 20x 2-≠⇒≠.故选A . 考点:分式有意义的条件.4.(2014年牡丹江中考)若x :y =1:3,2y =3z ,则的值是( )A .﹣5B . ﹣C .D . 5【答案】A . 【解析】试题分析:∵x :y =1:3,∴设x =k ,y =3k ,∵2y =3z ,∴z =2k ,∴532322-=-+=-+kk kk y z y x .故选A . 考点:比例的性质. 5.(2014年凉山中考)分式x 3x 3-+的值为零,则x 的值为( )A . 3B . ﹣3C . ±3D . 任意实数【答案】A .考点:分式的值为零的条件. 6.(2014年常德中考)计算:2111aa a -=-- 【答案】211a -. 【解析】 试题分析:原式=1(1)(1)(1)(1)a aa a a a +-+-+-=1(1)(1)a a +-=211a -.考点:分式的加减法. 7.(2014年河池中考)计算:m 1m 1m 1-=-- . 【答案】1.【解析】试题分析:根据分式加减法运算法则直接计算:m 1m 11m 1m 1m 1--==---. 考点:分式加减法.8.(2014年镇江中考)化简:1x 1x x 23x 6-⎛⎫+÷⎪--⎝⎭. 【答案】3x 3-.考点:分式的混合运算.9.(2014年苏州中考)先化简,再求值:22x 11x 1x 1⎛⎫÷+ ⎪--⎝⎭,其中x 1=.【解析】试题分析:先将括号里面的通分后,将除法转换成乘法,约分化简. 然后代x 的值,进行二次根式化简. 试题解析:原式=x x 11x x x x 11()(x 1)(x 1)x 1x 1(x 1)(x 1)x 1(x 1)(x 1)x x 1--÷+=÷=⋅=-+---+--++.当x 1=时,原式====.考点:1.分式的化简求值;2. 二次根式化简.10.(2014年抚顺中考)先化简,再求值:(1-11x +)÷221x x x ++,其中x =)0+(12)-1•tan 60°.【答案】. 【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用零指数幂、负指数幂法则以及特殊角的三角函数值求出x 的值,代入计算即可求出值.试题解析:原式=2211(1)(1)111x x x x x x x x x+-++==+++,∵x =)0+(12)-1•tan 60°∴当.考点:1.分式的化简求值;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值. ☞考点归纳归纳 1:分式的有关概念 基础知识归纳:分式有意义的条件是分母不为零;分式无意义的条件是分母等于零;分式值为零的条件是分子为零且分母不为零. 注意问题归纳:1.分式有意义的条件是分母不为0,无意义的条件是分母为0.2.分式值为0要满足两个条件,分子为0,分母不为0. 【例1】使分式21x -有意义,则x 的取值范围是( ) A .x ≠1 B .x =1 C .x ≤1 D .x ≥1 【答案】A .【解析】根据题意得:x -1≠0,解得:x ≠1.故选A . 考点:分式的有关概念. 【例2】分式x 3x 3-+的值为零,则x 的值为( )A . 3B . ﹣3C . ±3D . 任意实数【答案】A .考点:分式的有关概念. 归纳 2:分式的性质 基础知识归纳:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示为)0()0(≠÷÷=≠⋅⋅=C C B C A B A C CB C A B A注意问题归纳:1.分式的基本性质是分式变形的理论依据,所有分式变形都不得与此相违背,否则分式的值改变;2.将分式化简,即约分,要先找出分子、分母的公因式,如果分子、分母是多项式,要先将它们分别分解因式,然后再约分,约分应彻底;3.巧用分式的性质,可以解决某些较复杂的计算题,可应用逆向思维,把要求的算式和已知条件由两头向中间凑的方式来求代数式的值. 【例3】化简2244xy yx x --+的结果是( )A .2x x + B .2x x - C .2y x + D .2y x - 【答案】D .考点:分式的性质.【例4】已知x +y =xy ,求代数式11x y+-(1-x )(1-y )的值. 【答案】0. 【解析】∵x +y =xy ,∴11x y +-(1-x )(1-y )=x y xy +-(1-x -y +xy )=x y xy+-1+x +y -xy =1-1+0=0. 考点:分式的性质.归纳 3:分式的加减运算 基础知识归纳:加减法法则:① 同分母的分式相加减:分母不变,分子相加减 ② 异分母的分式相加减:先通分,变为同分母的分式,然后再加减 . 注意问题归纳:1.分式加减运算的运算法则:同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,变为同分母的分式,然后再加减.1.异分母分式通分的依据是分式的基本性质,通分时应确定几个分式的最简公分母.求最简公分母的方法是:①将各个分母分解因式;②找各分母系数的最小公倍数;③找出各分母中不同的因式,相同因式中取次数最高的,满足②③的因式之积即为各分式的最简公分母. 【例5】计算:1aa 11a+--的结果是 . 【答案】1-.【解析】1a 1a 1a 1a 11a a 1a 1a 1-+=-==------. 考点:分式的加减法. 【例6】化简21639x x ++-的结果是 【答案】13x -.考点:分式的加减法.归纳 4:分式的乘除运算 基础知识归纳:1.乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.乘方法则:分式的乘方,把分子、分母分别乘方.2.除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.注意问题归纳:分式乘除法的运算与因式分解密切相关,分式乘除法的本质是化成乘法后,约去分式的分子分母中的公因式,因此往往要对分子或分母进行因式分解(在分解因式时注意不要出现符号错误),然后找出其中的公因式,并把公因式约去.【例7】计算:222x 1x x.x 1x 2x 1--⋅+-+ 【答案】x . 【解析】原式()()()()2x 1x 1x x 1x x 1x 1+--=⋅=+-.考点:分式的乘除法.归纳5:分式的混合运算基础知识归纳:在分式的混合运算中,应先算乘方,再将除法化为乘法,进行约分化简,最后进行加减运算.若有括号,先算括号里面的.灵活运用运算律,运算结果必须是最简分式或整式. 注意问题归纳:注意运算顺序,计算准确. 【例8】化简:222x 2x 6x 3x 1x 1x 2x 1++-÷+--+【答案】2x 1+.考点:分式的混合运算.☞1年模拟1.(2015+x 应满足( ) A .12≤x ≤3 B .x ≤3且x ≠12 C .12<x <3 D .12<x ≤3 【答案】D . 【解析】试题分析:由题意得,32100x x --≥⎧⎨⎩①>②,解不等式①得,x ≤3,解不等式②的,x >12,所以,12<x ≤3.故选D .考点:1.二次根式有意义的条件;2.分式有意义的条件. 2.(2015届山东省威海市乳山市中考一模)计算(-12)-1=( ) A .-12 B .12C .-2D .2 【答案】C . 【解析】试题解析:11()22--=.故选C . 考点:负整数指数幂.3.(2015届山东省潍坊市昌乐县中考一模)分式211x x -+的值为0,则( )A .x =-1B .x =1C .x =±1D .x =0 【答案】B .考点:分式的值为零的条件.4.(2015届广东省深圳市龙华新区中考二模)化简111xx x+--的结果是( ) A .-1 B .1 C .1+x D .1-x 【答案】A . 【解析】 试题分析:原式=11111111x x x x x x x ---==-=-----.故选A . 考点:分式的加减法.5.(2015届江苏省南京市建邺区中考一模)计算a 3•(1a)2的结果是( ) A .a B .a 5C .a 6D .a 8【答案】A . 【解析】试题分析:原式=a 3•21a =a ,故选A . 考点:分式的乘除法.6.(2015届河北省中考模拟二)已知a 2,b 2,则(22a bab b ab a ---)÷22a b ab +的值为( )A .1B .14C .2D .10【答案】B .考点:分式的化简求值.7.(2015届北京市平谷区中考二模)分式2aa -有意义的条件是 . 【答案】a ≠2. 【解析】试题分析:根据分式有意义的条件可知分母a -2≠0,所以a ≠2.考点:分式有意义的条件.8.(2015x+1)0都有意义,则x的取值范围为.【答案】x>-1且x≠1.【解析】试题分析:根据题意得:101010 xxx+⎧≥-≠+≠⎪⎨⎪⎩解得:x>-1且x≠1.故答案为:x>-1且x≠1.考点:1.二次根式有意义的条件;2.分式有意义的条件;3.零指数幂.9.(2015届广东省佛山市初中毕业班综合测试)若分式||11xx--的值为零,则x的值为.【答案】x=-1.【解析】试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1.故答案为:x=-1.考点:分式的值为零的条件.10.(2015届江苏省南京市建邺区中考一模)在函数y=11x-中,自变量x的取值范围是.【答案】x≠1.【解析】试题分析:根据题意得1-x≠0,解得x≠1.故答案为:x≠1.考点:1.函数自变量的取值范围;2.分式有意义的条件.11.(2015届北京市门头沟区中考二模)已知1m,求222442111m m mm m m-+-+÷+--的值.【答案】.考点:分式的化简求值.12.(2015届四川省成都市外国语学校中考直升模拟)计算题(1)先化简,再求值:22222()2a ab a b a b a ab b b+---÷++,其中a =sin 45°,b =cos 30°; (2)若关于x 的方程311x a x x--=-无解,求a 的值. 【答案】(1)5;(2) a =1. 【解析】试题分析:(1)原式第二项利用除法法则变形,约分后利用同分母分式的减法法则计算,约分得到最简结果,把a 与b 的值代入计算即可求出值;(2)分式方程去分母转化为整式方程,由分式方程无解求出x 的值,代入计算即可求出a 的值. 试题解析:(1)原式=2()()a a b a b ++-(a -b )•()()b a b a b +-=a b a ba b a b a b--=+++,当a =si n45°=2,b =cos30°=2时,原式(55==--=; (2)去分母得:x 2-ax -3x +3=x 2-x ,解得:x =32a +,由分式方程无解,得到x (x -1)=0,即x =0或x =1,若x =0,a 无解;若x =1,解得:a =1.考点:1.分式的化简求值;2.分式方程的解;3.特殊角的三角函数值. 13.(2015届安徽省安庆市中考二模)先化简,再求值:(﹣)÷,其中x =.【答案】3+x x,1﹣3.考点:分式的化简求值.14.(2015届山东省威海市乳山市中考一模)化简代数式22112x x x x x--÷+,并判断当x 满足不等式组⎧⎨⎩x +2<12(x -1)>6时该代数式的符号. 【答案】负号.【解析】试题分析:做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分化简为12x x ++;再分别求出一元一次不等式组中两个不等式的解,从而得到一元一次不等式组的解集,依此分别确定x +1<0,x +2>0,从而求解.试题解析:原式=(1)(1)(2)1x x x x x x +-⨯+-=12x x ++; 不等式组⎧⎨⎩x +2<1①2(x -1)>6②,解不等式①,得x <-1.解不等式②,得x >-2,∴不等式组⎧⎨⎩x +2<12(x -1)>6的解集是-2<x <-1,∴当-2<x <-1时,x +1<0,x +2>0,∴12x x ++<0,即该代数式的符号为负号. 考点:1.分式的化简求值;2.解一元一次不等式组.15.(2015届山东省日照市中考模拟)先化简,再求值:2211()()x y x y x y x y x y+----+,其中2x =+2y =【答案】-4.考点:分式的化简求值.16.(2015届湖北省黄石市6月中考模拟)先化简再求值22213211143a a aa a a a+-+-⨯+-++,已知a2+2a﹣7=0.【答案】2221a a++,14.考点:分式的化简求值.。

专题1-2 认识分式(拓展提高)(解析版)

专题1-2 认识分式(拓展提高)(解析版)

专题1.2 认识分式(拓展提高)一、单选题1.已知分式2331x x -+的值为0,则( )A .x =1B .x =﹣1C .x >1D .x >﹣1【答案】A【分析】根据分式值为零的条件可得:3x 2﹣3=0,且x +1≠0,再解即可. 【详解】解:由题可得,3x 2﹣3=0,且x +1≠0, 解得x =±1,x ≠﹣1, ∴x =1, 故选:A .【点睛】本题考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少. 2.要把分式2xyx y+的值扩大为原来的3倍,下面哪种方法是可行的( ) A .x 、y 的值都加上3B .x 、y 的值都扩大为原来的3倍C .x 的值不变、y 的值扩大为原来的3倍D .x 的值扩大为原来的3倍、y 的值不变【答案】B【分析】根据分式的性质,逐一判断各个选项,即可得到答案. 【详解】解:A. x 、y 的值都加上3,分式2xyx y+的值不会扩大为原来的3倍 ,不符合题意; B. x 、y 的值都扩大为原来的3倍,分式2xyx y+的值扩大为原来的3倍,符合题意; C. x 的值不变、y 的值扩大为原来的3倍,分式2xyx y+的值不会扩大为原来的3倍 ,不符合题意; D. x 的值扩大为原来的3倍、y 的值不变,分式2xyx y+的值不会扩大为原来的3倍 ,不符合题意. 故选B .【点睛】本题主要考查分式的基本性质,能够正确利用分式的性质变形是解题的关键. 3.已知11a x =+(0x ≠且1x ≠),2111a a =-,3211a a =-,……,111n n a a -=-,则2021a 等于( )A .1x -+B .1x +C .1x x + D .1x-【答案】D【分析】根据题中所给已知等式先求出前4个数,发现每3个数一个循环,进而可得则a 2021等于a 2的值.【详解】解:由于a 1=x +1(x ≠0或x ≠-1),所以21111a x x==---, 34111,1,?·····111111x xa a x x x x x +=====+++-+, 因为2021÷3=673······2, 所以a 2021=21a x=-.故选:D .【点睛】本题考查了规律型:数字的变化类,解决本题的关键是观察数字的变化寻找规律. 4.已知两个不等于0的实数a 、b 满足0a b +=,则b aa b+等于( )A .2-B .1-C .1D .2【答案】A【分析】先化简式子,再利用配方法变形即可得出结果. 【详解】解:∵22=b a b a a b ab++,∴()2222==a b abb a b a a b ab ab+-++, ∵两个不等于0的实数a 、b 满足0a b +=,∴()22-2===-2a b ab b a ab a b ab ab +-+, 故选:A .【点睛】本题考查分式的化简、配完全平方、灵活应用配方法是解题的关键. 5.下列分式中,属于最简分式的个数是( )①42x ,②221x x +,③211x x --,④11x x --,⑤22y x x y -+,⑥2222x y x y xy ++.A .1个B .2个C .3个D .4个【答案】B【分析】根据最简分式的定义判断即可.【详解】解:①422x x =,③21111x x x -=-+,④111x x -=--,⑤22y x y x x y-=-+,可约分,不是最简分式; ②221x x +,⑥2222x y x y xy ++分子分母没有公因式,是最简分式,一共有二个; 故选:B .【点睛】本题考查了最简分式,解题关键是明确最简分式的定义,准确判断分子分母是否含有公因式.6.已知分式2x bx a-+(a,b为常数)满足下列表格中的信息:其中选项错误的是()A.a=1 B.b=2 C.c=43D.d=3【答案】C【分析】将表格数据依次代入已知分式中,进行计算即可判断.【详解】解:A.根据表格数据可知:当x=-1时,分式无意义,即x+a=0,所以-1+a=0,解得a=1.所以A选项不符合题意;B.当x=1时,分式的值为0,即211b-=+,解得b=2,所以B选项不符合题意;C.当x=c时,分式的值为-1,即2211cc-=-+,解得c=13,所以C选项符合题意;D.当x=d时,分式的值为1,即2211dd-=+,解得d=3,所以D选项不符合题意.故选:C.【点睛】本题考查了分式的值、分式有意义的条件,解决本题的关键是掌握分式相关知识.二、填空题7.已知25ab=,则b ab a-+=___.【答案】3 8【分析】由25ab=可得25a b=,设25a b==k,则a=2k,b=5k,然后代入b ab a-+求解即可.【详解】解:∵25 ab=∴25a b = 设25a b==k ,则a=2k ,b=5k ∴523538k k k k -=+.故填38.【点睛】本题主要考查了代数式求值,正确的对已知条件进行变形成为解答本题的关键.8.下列各式:15(1﹣x ),43x π-,222x y -,1x +x ,23x x ,其中是分式的有_____个.【答案】2【分析】看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:15(1﹣x ),43x π-,222x y -,分母中都不含字母,因此它们是整式,而不是分式.1x +x ,23x x,分母中含有字母,因此是分式. 分式有两个, 故答案为:2.【点睛】本题主要考查分式的定义,注意π不是字母,是常数,所以43xπ-,不是分式,是整式. 9.已知x ,y ,z 满足yz x =1,xz y =2,与xyz=3,则分式222xyz x y z ++的值为 ___. 【答案】611【分析】原分式的倒数为222x y z xyz xyz xyz++,根据分式的性质可化为x y z yz xz xy ++,把已知条件可化为11123x y z yz xz xy ===,,,代入即可得出x y z yz xz xy ++的值,再求出x y zyz xz xy ++值的倒数即可得出答案.【详解】解:原式的倒数为222222x y z x y z x y z xyz xyz xyz xyz yz xz xy++=++=++, ∵123yz xz xyx y z ===,,, ∴11123x y z yz xz xy ===,,, ∴11111236x y z yz xz xy ++=++=, ∴222611xyz x y z =++,故答案为:611. 【点睛】本题主要考查了分式的求值,熟练应用分式的性质进行合理变形是解决本题的关键.10.若分式222x x x ---的值为零,则x 的值为_______.【答案】1-【分析】根据分式的值为零的条件是分子为零而分母不为零,然后进行计算即可. 【详解】解:∵分式222x x x ---的值为零,∴220x x --=且20x -≠, 解方程得,11x =-,22x =;解不等式得,2x ≠, ∴1x =- 故答案为:1-.【点睛】本题考查了分式的值为零的条件和分式没有意义的条件,属于基础知识的考查,比较简单. 11.观察分析下列方程:①23x x +=;②65x x +=;③127x x+=.请利用它们所蕴含的规律,求关于x 的方程2254n nx n x ++=+-(n 为正整数)的根,你的答案是_____.【答案】x =n +4或x =n +5【分析】根据方程变形后,归纳总结得到一般性规律,求出所求方程的解即可. 【详解】解:123x x⨯+=,解得:2x =或1x =; 235x x⨯+=,解得:2x =或3x =; 347x x⨯+=,解得:3x =或4x =; 得到规律mnx m n x+=+,的解为:x m =或x n =; 所求方程整理得:()14214n n x n x +-+=+-,根据规律得:4x n -=或4+1x n -=, 解得:x =n +4或x =n +5 故答案为:x =n +4或x =n +5【点睛】此题考查了分式方程的解,弄清楚题中的规律是解本题的关键. 12.已知x 为整数,且2116224x x x x ++++--为整数,则所有符合条件的x 值的和为_____. 【答案】8【分析】先将原分式进行通分变形,约分化简,然后求得符合题意的解即可.【详解】解:2116224x x x x ++++-- ()()1162222x x x x x +=+++-+- ()()()()()()()()226222222x x x x x x x x x -++=+++-+-+-()()22622x x x x x -++++=+-()()3622x x x +=+-()()()3222x x x +=+-32x =-, ∵x ,32x -为整数 ∴23x -=,或23x -=-或21x -=-或21x -= ∴5x =或1x =-或1x =或3x = ∴()51318+-++=∴所有符合条件的x 值的和为:8. 故答案为:8.【点睛】本题主要考查分式的化简与分式的整数值,解此题的关键在于熟练掌握分式相关知识点. 13.已知实数m 、n 均不为0且22227m mn nm n mn--=-+,则11m n -=______.【答案】163【分析】将原分式化简得163n m mn -=,再两边同时除以mn 即可得结果. 【详解】由22227m mn nm n mn --=-+得24414m mn n m n mn --=-+所以163n m mn -=,则11163m n -= 故答案为:163【点睛】本题考查了分式的化简求值,观察式子得到已知与未知的式子之间的关系是解题的关键. 14.已知a 、b 、c 、d 、e 、f 都为正数,12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d =,4 abcdfe=,8 abcdef=,则222222a b c d e f +++++=________. 【答案】1198【分析】根据等式性质及分式性质进行计算即可求得结果.【详解】解:由12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d =,4 abcdfe=,8 abcde f =,可将每个等式的左右两边相乘得:()51abcdef abcdef=,∴1abcdef =, 2112bcdef a a a a ⋅==⋅,∴22a =,同理可得:24b =,28c =,212d =,214e =,218f =, ∴2222221198a b c d e f +++++=; 故答案为1198. 【点睛】本题主要考查等式性质及分式性质,熟练掌握等式性质及分式性质是解题的关键.三、解答题 15.通分: (1)x ab与ybc ; (2)2c bd 与234ac b; (3)(2)xa x 与(2)yb x ; (4)22()xyxy 与22xx y -. 【答案】(1)x cx ababc ,=y ay bc abc;(2)2284c bc bd b d ,223344acacdb b d;(3)(2)(2)x bxa x ab x ,(2)(2)yay b x ab x ;(4)2222222()()()xy x y xy x y x y x y ,2222()()x x xyx y x y x y【分析】(1)先确定x ab与ybc 的最简公分母是abc ,然后进行通分,即可解答本题. (2)先确定2c bd 与234acb的最简公分母是24b d ,然后进行通分,即可解答本题.(1)先确定(2)x a x 与(2)yb x 的最简公分母是(2)ab x ,然后进行通分,即可解答本题. (1)先确定22()xy xy 与22x x y-的最简公分母是2()()x y x y +-,然后进行通分,即可解答本题. 【详解】解:(1)x ab与y bc xab与ybc 的最简公分母是abc , ∴x cxababc ,=y ay bc abc. (2)2c bd 与234ac b2cbd 与234acb的最简公分母是24b d , ∴2284c bc bd b d ,223344acacdbb d. (3)(2)xa x 与(2)yb x(2)xa x 与(2)yb x 的最简公分母是(2)ab x , ∴(2)(2)x bx a xab x ,(2)(2)yayb x ab x . (4)22()xyxy 与22xx y -22()xy x y 与22x x y-的最简公分母是2()()x y x y +-, ∴2222222()22()()()()()xy xy x y x y xy x y x y x y x y x y ,22222()()()()()x x x y x xy x y x y x y x y x y .【点睛】本题考查通分,解题的关键是找出它们的最简公分母. 16.已知2113x x =+,求241x x +的值. 【答案】17【分析】由2113x x =+可得0x ≠,再取倒数可得:213x x+=,即13x x +=,再求解原代数式的倒数242221112,x x x x x x +⎛⎫=+=+- ⎪⎝⎭从而可得答案. 【详解】解:由2113x x =+知0x ≠, 所以213x x+=,即13x x +=.所以2422221112327x x x x x x +⎛⎫=+=+-=-= ⎪⎝⎭.故241x x +的值为17.【点睛】本题考查的是利用倒数法求解分式的值,掌握222112x x x x ⎛⎫+=+- ⎪⎝⎭是解题的关键.17.先化简,再求值:2221121x x x x x x ⎛⎫ ⎪-÷⎭+⎝-++,然后从22x -<≤的范围内选取一个合适的整数作为x 的值代入求值. 【答案】1xx -,2 【分析】先运用分式的混合运算法则化简,然后再选择合适的x 代入求值即可.【详解】解:原式()()()222111x x x x x x x x +-+-=÷++ ()2111x x x x x -=÷++ ()2111x x x x x +=⨯+- 1xx =-. ∵22x -<≤且x 为整数, ∴1x =-,0,1,2, 要使分式有意义, ∴1x ≠-、0、1, ∴2x =, ∴原式2221==-. 【点睛】本题主要考查了分式的化简求值、分式有意义的条件,根据分式有意义的条件确定x 的值成为解答本题的关键.18.是否存在x 的值,使得当4a =时,分式22a xa x 的值为0? 【答案】不存在x 的值,得当4a =时,分式22a xa x 的值为0 【分析】根据分式有意义与分式值为零的条件即可得出结论【详解】解:∵4a =时,40a x x ,4x =,2222440a x ,分式无意义,∴不存在x 的值,得当4a =时,分式22a xa x 的值为0. 【点睛】本题考查分式的值为零的条件,掌握分式的值为零的前提条件是分式有意义是解题关键.19.给定下面一列分式:3x y ,−52x y ,73x y ,−94x y ,…,(其中x ≠0)(1)把任意一个分式除以前面一个分式,你发现了什么规律? (2)根据你发现的规律,试写出给定的那列分式中的第2013个分式. 【答案】(1)任意一个分式除以前面那个分式等于2x y -;(2)40272013x y.【分析】(1)利用分式的化简即可发现规律; (2)根据所发现的规律,求需要求的分式.【详解】解:(1)53773225942322;;;;x x x x x x yy x x y y y y y x y y ⎛⎫÷== ⎪⎛⎫-⎝⎭÷=---÷-⎪- ⎝⎭,规律是任意一个分式除以前面那个分式等于2x y-;(2)根据规律:后面一个分式除以前面那个分式等于2x y-,第一个分式是3x y ,所以第2013个分式应该是:20123240272013x x x y y y⎛⎫⨯-= ⎪⎝⎭. 【点睛】本题考查了分式的化简,解题的关键是:利用分式化简的法则计算找规律,然后运用规律求指定项的分式.20.观察下列式子,并探索它们的规律: 112122111111x x x x x x x x +-+-==+=+-----; 2322522552().11111x x x x x x x x -+-+-==+=+-+++++ (1)根据以上式子填空: ①3531x x +=++ . ②ax ba x c+=++ .(2)当x 取哪些正整数时,分式4321x x +-的值为整数? 【答案】(1)①21x +;②b ac x c-+ ;(2)1或3 【分析】(1)观察可发现,原式子将分式化为“整式+分式”的形式,分别利用得出的规律化简即可; (2)利用所得规律化简原分式,再探究当x 取什么值时,4321x x +-的值为整数.即可得到答案. 【详解】解:(1)①3533+23322+3+11111x x x x x x x x +++===+++++. 故答案为21x +. ②+++ax b ax b ax b a x c x ac ac ac c x c ac b ac x c cx +++---===++++++ 故答案为b ac x c -+. (2)4342234255=22121212121x x x x x x x x +-++-=+=+----- 当x 为正整数,且21x -为5的约数时,4321x x +-的值为整数, 即21=1x -或21=5x -时,4321x x +-的值为整数. ∴1=1x ,2=3x .即当x 为1或3时,4321x x +-的值为整数. 【点睛】本题考查规律型:分式的变化规律,分式的加减运算法则的逆用,解答本题的关键是根据所给式子找出规律,并利用规律解答.。

中考数学专题练习直接开平方法解一元二次方程(含解析)

中考数学专题练习直接开平方法解一元二次方程(含解析)

2019中考数学专题练习-直接开平方法解一元二次方程(含解析)一、单选题1.若分式的值为0,则x的值是()A.1或-1B.1C. -1D.0【答案】B【考点】分式的值为零的条件,解一元二次方程-直接开平方法【解析】【分析】根据分子为0,同时分母不等于0时,分式值是零,即可得到结果.由题意得,解得,则x=1,故选B.【点评】解答本题的关键是熟练掌握分式值是零的条件:分子为0,同时分母不等于0.2.若25x2=16,则x的值为()A. B. C. D.【答案】A【考点】直接开平方法解一元二次方程【解析】【解答】解:25x2=16,x2= ,x=± ,故答案为:A【分析】观察次方程缺一次项,可以用直接开平方法求解或利用因式分解法求解。

3.方程的根是()A. B. C. D.【答案】A【考点】解一元二次方程-直接开平方法【解析】【解答】用开平方法可得【分析】将原方程变形为=4,用直接开平方法解得x=2,即= 2 ,= − 2.4.一元二次方程x2=2的解是()A.x=2或x=﹣2B.x=2C.x=4或x=﹣4D.x=或x=﹣【答案】D【考点】解一元二次方程-直接开平方法【解析】【解答】解:∵x2=2,∵x=±.故选:D.【分析】直接开平方解方程得出答案.5.方程x2=9的解是()A.x1=x2=3B.x1=x2=9C.x1=3,x2=﹣3D.x1=9,x2=﹣9【答案】C【考点】解一元二次方程-直接开平方法【解析】【解答】解:x2=9,两边开平方,得x1=3,x2=﹣3.故选C.【分析】利用直接开平方法求解即可.6.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x-6=-4B.x-6=4C.x+6=4D.x+6=-4【答案】D【考点】解一元二次方程-直接开平方法【解析】【分析】方程两边直接开平方可达到降次的目的,进而可直接得到答案.【解答】(x+6)2=16,两边直接开平方得:x+6=±4,则:x+6=4,x+6=-4,故选:D.7.方程x2=9的解是()A.x=9B.x=±9C.x=3D.x=±3【答案】D【考点】直接开平方法解一元二次方程【解析】【解答】解:∵x2=9,∵x=±3,故选:D.【分析】直接开平方法即可得.8.若是反比例函数,则b的值为()A.1B.-1C.D.任意实数【答案】A【考点】直接开平方法解一元二次方程,反比例函数的定义【解析】【解答】,解得.故答案为:A.【分析】根据反比例函数的定义知,自变量次数为-1,b2-2=-1,得b=1,,又因为比例系数k≠0,得b+1≠0,得b≠-1,综合分析可得b=1。

分式重难点专练(解析版)

分式重难点专练(解析版)

专题01分式重难点专练(解析版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列分式中不是最简分式的是( )A .293a a ++B .222x y xy y x-+-C .2242x x x -+-D .3333ab a ab b ++【答案】C 【分析】根据最简分式的定义逐一判断即可.【详解】解:A. 293a a ++分子分母没有公因式,不能约分,所以它是最简分式,故A 选项不符合题意;B. 222x y xy y x-+-是最简分式,故B 选项不符合题意;C. 2242x x x -+-=()()()2x)x 221x x -++-(=21x x --,故C 选项符合题意;D. 3333ab a ab b++是最简分式, 故D 选项不符合题意.故应选C.【点睛】本题考查了最简分式的概念及分式的化简,掌握相关知识是解题的关键.2.若分式21aa -的值总是正数,则a 的取值范围是( )A .0a >B .12a >C .102a <<D .0a <或12a >【答案】D 【分析】分两种情况分析:当0a >时210a ->;或当0a p 时,210a -p ,再分别解不等式可得.【详解】若分式21aa -的值总是正数:当0a >时,210a ->,解得12a >;当0a p 时,210a -p ,解得12a <,此时a 的取值范围是0a p ;所以a 的取值范围是0a <或12a >.故选:D .【点睛】考核知识点:分式值的正负.理解分式取值的条件是解的关键点:分式分子和分母的值同号,分式的值为正数.3.下列代数式222222615,,,,321xy y x x y x xx x y x y x x p--+--+++中,最简分式的个数有( )A .1个B .2个C .3个D .4个【答案】A 【分析】根据最简分式的定义对每项进行判断即可.【详解】623xyy x-=-,不是最简分式;22y x x y x y-=---,不是最简分式;22x y x y++,是最简分式;2211211x x x x x --=+++,不是最简分式;5xp,不是分式;∴最简分式的个数有1个故答案为:A .【点睛】本题考查了最简分式的问题,掌握最简分式的定义是解题的关键.4.下列各式中是最简分式的是( )A .55x x--B .2211x x -+C .22222a ab b a b -+-D .128x y【答案】B 【分析】根据最简分式的定义,只要判断出分子分母是否有公因式即可.【详解】A 、该分式的分子分母中含有公因式(x ﹣5),不是最简分式,故本选项不符合题意;B 、该分式符合最简分式的定义,故本选项符合题意;C 、该分式的分子分母中含有公因式(a ﹣b ),不是最简分式,故本选项不符合题意;D 、该分式的分子分母中含有公因数4,不是最简分式,故本选项不符合题意.故选:B .【点睛】此题考查了最简分式的定义:一个分式的分子与分母没有公因式时,叫最简分式.5.下列变形从左到右一定正确的是().A .22a ab b -=-B .a ac b bc =C .ax a bx b=D .22a ab b =【答案】C 【分析】根据分式的基本性质依次计算各项后即可解答.【详解】选项A ,根据分式的基本性质,分式的分子和分母都乘以或除以同一个不是0的整式,分式的值不变,分式的分子和分母都减去2不一定成立,选项A 错误;选项B ,当c≠0时,等式才成立,即()0a ac c b bc=¹,选项B 错误;选项C ,axbx 隐含着x≠0,由等式的右边分式的分子和分母都除以x ,根据分式的基本性质得出ax abx b=,选项C 正确;选项D ,当a=2,b=-3时,左边≠右边,选项D 错误.故选C .【点睛】本题考查了分式的基本性质的应用,主要检查学生能否正确运用性质进行变形,熟练运用分式的基本性质是解决问题的关键.6.下列分式是最简分式的是()A.22x xyx-;B.222a ab ba b-+-;C.2211xx+-;D.211xx+-【答案】C【分析】直接利用最简分式的定义进而判断得出答案.【详解】A、22x xyx-=()22x x y x yx--=,不是最简分式,不合题意;B、222a ab ba b-+-=2()a ba ba b-=--,不是最简分式,不合题意;C、2211xx+-无法化简,是最简分式,符合题意;D、21 1x x +-=11(1)(1)1xx x x+=+--,不是最简分式,不合题意.故选:C【点睛】此题主要考查了最简分式,正确把握最简分式的定义是解题关键.7.下列式子正确的是()A.22b ba a=B.0a ba b+=+C.1a ba b-+=--D.0.10.330.22a b a ba b a b--=++【答案】C【分析】根据分式的基本性质,即可解答.【详解】A.分子乘以b,分母乘以a,所以22b ba a¹,故A错误;B.a ba b+=+1,故B错误;C.()a ba ba b a b---+==---1,故C正确;D.0.10.330.2210a b a ba b a b--=++,故D错误.故选C.【点睛】本题考查了分式的基本性质,解决本题的关键是熟记分式的基本性质.8.若分式293xx--的值为0,则x的值是( )A.﹣3B.3C.±3D.0【答案】A【分析】根据分式的值为零的条件可以求出x的值.【详解】解:根据题意,得x2﹣9=0且x﹣3≠0,解得,x=﹣3;故选:A.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.9.分式26 9x-有意义的条件是( )A.x≠3B.x≠9C.x≠±3D.x≠﹣3【答案】C【分析】根据分式有意义的条件是分母不等于零列出关于x的不等式,解之可得.【详解】解:当x2﹣9≠0时,分式有意义,由x2﹣9≠0得:x2≠9,则x≠±3,故选:C.【点睛】本题主要考查了分式有意义的条件,解题的关键是掌握分式有意义的条件是分母不等于零.10.在代数式2p,15x+,221xx--,33x-中,分式有()A.1个B.2个C.3个D.4个【答案】B【分析】根据分式的定义逐个判断即可得.【详解】常数2p是单项式,15x+是多项式,221x x --和33x -都是分式,综上,分式有2个,故选:B .【点睛】本题考查了分式的定义,掌握理解分式的定义是解题关键.11.下列变形不正确的是( )A .1122x x x x +-=---B .b a a bc c--+=-C .a b a bm m-+-=-D .22112323x x x x--=---【答案】A 【分析】答题首先清楚分式的基本性质,然后对各选项进行判断.【详解】解:A 、1122x xx x +--=---,故A 不正确;B 、b a a bc c --+=-,故B 正确;C 、a b a bm m-+-=-,故C 正确;D 、22112323x x x x--=---,故D 正确.故答案为:A .【点睛】本题主要考查了分式的基本性质,掌握分式的基本性质是解题的关键.12.下列各式中,正确的是()A .22a ab b =B .11a ab b+=+C .2233a b a ab b=D .232131a ab b ++=--【答案】C 【分析】利用分式的基本性质变形化简得出答案.【详解】A .22a ab b=,从左边到右边是分子和分母同时平方,不一定相等,故错误;B .11a ab b+=+,从左边到右边分子和分母同时减1,不一定相等,故错误;C .2233a b a ab b=,从左边到右边分子和分母同时除以ab ,分式的值不变,故正确;D .232131a ab b ++=--,从左边到右边分子和分母的部分同时乘以3,不一定相等,故错误.故选:C .【点睛】本题考查分式的性质.熟记分式的性质是解题关键,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.13.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子1(0)x x x+>的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x ,则另一边长是1x ,矩形的周长是12x x æö+ç÷èø;当矩形成为正方形时,就有1(0)x x x =>,解得1x =,这时矩形的周长124x x æö+=ç÷èø最小,因此1(0)x x x +>的最小值是2.模仿张华的推导,你求得式子24(0)x x x+>的最小值是( ).A .2B .4C .6D .8【答案】B 【解析】在面积是4的矩形中,设矩形的一边长为x ,则另一边是4x,矩形的周长是2(x +4x ),当矩形成为正方形时,就有x =4x ,解得x =2,这时矩形的周长2(x +4x)=8最小,因此x +4x 的最小值是4,而24x x += x +4x ,所以24(0)x x x+>的最小值是4.故选B.点睛:本题关键在于理解已知结论的推导过程.14.如果m 为整数,那么使分式31m m ++的值为整数的m 的值有( )A .2个B .3个C .4个D .5个【答案】C 【分析】分式32111m m m +=+++,讨论21m +就可以了,即1m +是2的约数即可完成.【详解】∵32111m m m +=+++若原分式的值为整数,那么12,1,12m +=--,由12m +=-得,3m =-;由11+=-m 得,2m =-;由11m +=得,0m =;由12m +=得,1m =;∴3,2,0,1m =--,共4个故选C 【点睛】本题主要考查分式的值,熟练掌握相关知识点并全面讨论是解题关键.15.已知:2222233+=´,2333388+=´,244441515+=´,255552424+=´,……,若21010b b a a+=´(a 、b 为正整数)符合前面式子的规律,则a+b 的值是( ).A .109B .218C .326D .436【答案】A 【分析】通过观察已知式子可得分子与第一个加数相同,分母等于分子的平方减1,即可求解.【详解】解:由2222233+=´,2333388+=´,244441515+=´,255552424+=´,……,可知分子与第一个加数相同,分母等于分子的平方减1,∴在21010b ba a+=´中,b =10,a =102-1=99,∴a +b =109,故选:A .【点睛】本题考查数字的变化规律;能够通过所给例子,找到式子的规律是解题的关键.16.若x 是整数,则使分式8221x x +-的值为整数的x 值有( )个.A .2B .3C .4D .5【答案】C 【分析】先将假分式8221x x +-分离可得出6421x +-,根据题意只需21x -是6的整数约数即可.【详解】解:824(21)664212121x x x x x +-+==+---由题意可知,21x -是6的整数约数,∴211,2,3,6,1,2,3,6x -=----解得: 37151,,2,,0,,1,2222x =---,其中x 的值为整数有:0,1,1,2x =-共4个.故选:C .【点睛】本题考查的知识点是分式的值是整数的条件,分离假分式是解此题的关键,通过分离假分式得到6421x +-,从而使问题简单.二、填空题17.如果24422x a bx x x =--+-,那么+a b 的值是______.【答案】0【分析】先将分式方程每一部分的分母通分,然后观察方程的左边和右边,使方程两边的分子部分相同即可解决.【详解】解:224422444x ax a bx bx x x -+=----224()2()44x a b x a b x x --+=--所以4a b -=,0a b +=故答案是:0【点睛】本题考查了分式通分,将方程两边变为同分母,然后比较分子得出结论是解决本题的关键.18.若分式2228x x x ---的值为零,则x 的值为______________.【答案】2【分析】根据分式的值为零的条件可以求出x 的值.【详解】解:由分式的值为零的条件得2-x =0,x 2-2x-8≠0,∴x=±2且x≠4且x≠-2,∴x=2时,分式的值为0,故答案为2.【点睛】本题考查了分式值为0的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.19.若113x y +=,则分式323x xy yx xy y-+++的值为_________.【答案】74【分析】根据分式基本性质,分子和分母同时除以xy 可得.【详解】()()333322323323111111x xy y xy x xy y y x y x x xy y x xy y xy y x y x-++--+¸-+===++++¸++++若113x y +=则32392744x xy y x xy y -+-==++故答案为:74【点睛】考核知识点:分式基本性质运用.熟练运用分式基本性质是关键.20.当x =_________时,分式242x x--的值为0.【答案】2-【分析】分式有意义的条件是分母不为0;分式的值是0的条件是分母≠0且分子=0.【详解】若分式的值为0,则2-x≠0且24x -=0,即x=-2.故答案为:-2.【点睛】本题考查的是分式有意义的条件:当分母不为0时,分式有意义,并考查了分式值是0的条件.21.如果分式32x x x x--值为零,那么x =_________.【答案】1-【分析】根据分式的值为零,可得30-=x x 且20x x -¹,求解即可.【详解】∵320x x x x-=-∴30-=x x 且20x x -¹∴()()()321110x x x x x x x -=-=+-=且()210x x x x -=-¹∴123011x x x ==-=,,且01x x ¹¹,∴1x =-故答案为:1-.【点睛】本题考查了分式方程的问题,掌握解分式方程的方法是解题的关键.22.分式1753xy x y+中的,x y 同时扩大为原来的3倍,则分式的值扩大为原来的_____________倍.【答案】3【分析】将,x y 同时扩大为原来的3倍得到17353xy x y æö´ç÷+èø,与1753xy x y +进行比较即可.【详解】分式1753xy x y+中的,x y 同时扩大为原来的3倍,可得17335333x yx y´´´+´17353xyx y´=+17353xy x y æö=´ç÷+èø故答案为:3.【点睛】本题考查了分式的运算,掌握分式的运算法则是解题的关键.23.已知213x x =+,则1x x-=__________.【答案】3【分析】将213x x =+两边同时除以x ,即可得出答案.【详解】解:∵213x x=+∴两边同时除以x .,得:13=+x x ∴1-=3x x故答案为:3【点睛】本题考查了代数式求值,利用分式的性质,两边同时除以x ,将式子进行变形是解题的关键.24.下列各式中,最简分式有_____个.①11x -;②422y x +;③3x p ;④10+452a a +;⑤9+73+5p p ;⑥241025y y y ++.【答案】1.【分析】根据最简分式的定义,只要判断出分子分母是否有公因式即可.【详解】①11x-符合最简分式的定义,符合题意.②422y x+ 的分子、分母中含有公因数2,不是最简分式,不符合题意;③3x p ⑤9+73+5p p不是分式,不符合题意;④10+452a a + 的分子、分母中含有公因式(5+2a ),不是最简分式,不符合题意;⑥241025y y y ++的分子、分母中含有公因式(2y+5),不是最简分式,不符合题意;故答案为:1.【点睛】此题考查了最简分式的定义:一个分式的分子与分母没有公因式时,叫最简分式.25.当x_____________时,分式21x x x+-的值为0;【答案】=-1【解析】由题意得:x+1=0,且x 2-x≠0,解得:x=-1,故答案为=-1.26.当x=__________时,分式22121x x x --+的值为零.【答案】-1【分析】根据分式的解为0的条件,即可得到答案.【详解】解:∵分式22121x x x --+的值为零,∴2210210x x x ì-=í-+¹î,解得:11x x =±ìí¹î,∴1x =-;故答案为:1-.【点睛】本题主要考查分式的值为0的条件,由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.27.当x =______时,分式293x x--的值为0.【答案】-3【分析】根据分式的值为零的条件可以求出x 的值.【详解】由分式的值为零的条件得290x -=,30x -¹,由290x -=,得29x =,∴3x =或3x =-,由30x -¹,得3x ¹.综上,得3x =-.故答案是:3-.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.28.如果分式126xx--的值为零,那么x=________ .【答案】1【分析】根据分式的值为零可得10x-=,解方程即可得.【详解】由题意得:10x-=,解得1x=,Q分式的分母不能为零,260x\-¹,解得3x¹,1x\=符合题意,故答案为:1.【点睛】本题考查了分式的值为零,正确求出分式的值和掌握分式有意义的条件是解题关键.29.要使分式2xx1+有意义,那么x应满足的条件是________ .【答案】1x¹-【分析】根据分式有意义的条件是分母不等于零可得答案.【详解】由题意得:10x+¹,解得:1x¹-,故答案为:1x¹-.【点睛】本题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.30.已知215aa+=,那么2421aa a=++________.【答案】1 24【分析】将215aa+=变形为21a+=5a,根据完全平方公式将原式的分母变形后代入21a+=5a,即可得到答案.【详解】∵215a a+=,∴21a +=5a ,∴2421a a a =++()()2222222221242451a a a a a a a a ===-+-故答案为:124.【点睛】此题考查分式的化简求值,完全平方公式,根据已知等式变形为21a +=5a ,将所求代数式的分母变形为22(1)aa +-形式,再代入计算是解题的关键.31.化简:22x x x-=_____.【答案】12x -【分析】直接利用分式的性质化简得出答案.【详解】解:22xx x -=(2)x x x -=12x -.故答案为:12x -.【点睛】此题主要考查了分式的化简,熟练掌握运算法则是解答此题的关键.32.已知:x 满足方程11200620061x x =--,则代数式2004200620052007x x -+的值是_____.【答案】20052007-【解析】因为11200620061xx =--,则200420062005200520062006001120072007x x x x x x x --=Þ=Þ=Þ=---+ .故答案:20052007-.33.下列结论:①不论a 为何值时21a a +都有意义;②1a =-时,分式211a a +-的值为0;③若211x x +-的值为负,则x 的取值范围是1x <;④若112x x x x ++¸+有意义,则x 的取值范围是x≠﹣2且x≠0.其中正确的是________【答案】①③【解析】【分析】根据分式有意义的条件对各式进行逐一分析即可.【详解】①正确.∵a 不论为何值不论a 2+2>0,∴不论a 为何值21a a +都有意义;②错误.∵当a =﹣1时,a 2﹣1=1﹣1=0,此时分式无意义,∴此结论错误;③正确.∵若211x x +-的值为负,即x ﹣1<0,即x <1,∴此结论正确;④错误,根据分式成立的意义及除数不能为0的条件可知,若112x x x x++¸+有意义,则x 的取值范围是即20010x x x x ìï+¹ï¹íï+ï¹î,x ≠﹣2,x ≠0且x ≠﹣1,故此结论错误.故答案为:①③.【点睛】本题考查的是分式有意义的条件,解答此题要注意④中除数不能为0,否则会造成误解.34.已知210ab a -+-=,则111(1)(1)(2016)(2016)ab a b a b +++=++++L _______.【答案】20172018【解析】【分析】先根据绝对值的非负性求出a 和b 的值,代入代数式中根据分数的性质对原式进行变形即可求出答案.【详解】∵210ab a -+-=,所以20-=ab ,10a -=∴a =1,b =2,∴原式=111.....122320172018+++´´´ =111111.....22320172018-+-++- =112018- =20172018【点睛】本题考查非负数的性质,绝对值.本题解题关键有两个,①任意数的绝对值都大于或等于0,而两个非负数(或式)的和要等于0,那么这两个数(或式)都要为0;②注意分数的等量变形111(1)1=-++a a a a .35.端午节前后,人们除了吃粽子、插艾叶以外,还会佩减香囊以避邪驱瘟.“行知”精品店也推出了“求真”香囊、“乐群”香囊、“创造”香囊三种产品,所有香囊的外包装都由回收材料制成, 不计成本.其中“求真”香囊的里料是20克艾叶,“乐群”香囊的里料是10克艾叶和20克薄荷,“创造”香囊的里料是20克艾叶和 20 克薄荷.端午节当天,店长发现“乐群”香囊的销量是“求真”香囊的2倍,且“求真”香囊与“乐群”香囊的利润和是“创造”香囊利润的32倍,当天的总利润率是50% .第二天店内促销,“求真”香囊、“乐群”香囊的售价均不变,“创造”香囊的售价打八折,当三种产品的销量分别与前一天相同时,总利润率为___________.【答案】38%【分析】设1g 艾叶成本价为a 元,利润率为x ,1g 薄荷成本价为b 元,利润率为y ,端午节当天“求真”香囊的销量为m 件,则“乐群”香囊的销量为2m 件,“创造”香囊的销量为n 件,先根据利润倍数关系可求出43n m =,再根据端午节当天的总利润率可得2a b ax by ++=,然后根据新的售价和销量列出总利润率的计算式子,化简求值即可得.【详解】设1g 艾叶成本价为a 元,利润率为x ,1g 薄荷成本价为b 元,利润率为y ,端午节当天“求真”香囊的销量为m 件,则“乐群”香囊的销量为2m 件,“创造”香囊的销量为n 件,Q “求真”香囊与“乐群”香囊的利润和是“创造”香囊利润的32倍,3202(1020)(2020)2axm m ax by n ax by \++=+,整理得:43n m =,Q 端午节当天的总利润率是50%,3)(2020)250%202(1020)(2(1020)n ax by am m a b n a b +++\+=++,即54(2020)2350%4202(1020)(2020)3m ax by am m a b m a b ´+=++++,整理得:2a b ax by ++=,Q 第二天店内促销,“求真”香囊、“乐群”香囊的售价均不变,“创造”香囊的售价打八折,且三种产品的销量分别与前一天相同,\第二天总利润率为[][]420(1)210(1)20(1)20(1)20(1)80%314202(1020)(2020)3ma x m a x b y m a x b y ma m a b m a b +++++++++×-++++,[]4620(1)20(1)15110(2020)3m a x b y m a b +++=-+,23()125()a b ax by a b +++=-+,23()2125()a b a b a b +++=-+,69()150()a b a b +=-+,1950=,38%=,故答案为:38%.【点睛】本题考查了分式求值,依据题意,正确设立未知数得出已知等式和所求分式是解题关键.36.若240x y z -+=,4320x y z +-=.则222xy yz zx x y z++++的值为______【答案】16-【分析】先由题意2x−y+4z=0 ,4x+3y−2z=0,得出用含x 的式子分别表示y ,z ,然后带入要求的式中,化简便可求出.【详解】2x-y+4z= 0①,4x+3y- 2z= 0②,将②×2得: 8x+ 6y-4z=0③.①+③得: 10x+ 5y= 0,∴y= -2x ,将y= - 2x 代入①中得:2x- (-2x)+4z=0∴z=-x将y= -2x ,z=-x ,代入上式222xy yz zxx y z ++++=()()()()()()222·22··2x x x x x xx x x -+--+-+-+-=222222224x x x x x x -+-++=226x x -=16-故答案为:16-【点睛】本题考查了分式的化简求值,解题的关键是根据题目,得出用含x 的式子表示y ,z.本题较难,要学会灵活化简.三、解答题37.计算:32222((y y x x-×-.(结果用正整数指数幂的形式表示)【答案】24y 【分析】根据幂的乘方法则是底数不变,指数相乘,负指数次可以把底数变为原来的倒数.负指数变为正的,最后将式子化成最简.【详解】解:原式6222(2y x x y -=×62244y x x y =×24y =.【点睛】本题考查了幂的乘方和负指数幂的预算,解决本题的关键是熟练掌握幂的乘方运算和负指数幂的运算法则.38.(1)3455318x yx y(2)()()2328x y x y --(3)2918933x x x -+- (4)22b a a b --(5)22222222a b c bca b c ab--++-+(6)()()2235221215x y x y x y x y --【答案】(1)216x y ;(2)144x y -;(3)33x -;(4)1a b -+;(5)a b ca b c-+++;(6)2454455x yx y xy -+【分析】(1)根据分式的除法运算法则计算即可;(2)将分式的分子、分母约去相同的因式即可;(3)将分式的分子、分母分别因式分解后约去相同的因式即可;(4)将分式的分母因式分解后约去相同的因式即可;(5)将分式的分子、分母分别应用分组分解法因式分解后约去相同的因式即可;(6)将分式的分母因式分解后约去相同的因式即可.【详解】(1)3455318x y x y 21=6x y;(2)()()2328x y x y --1=4)x y -(144x y=-;(3)2918933x x x -+-29(21)=3(1)x x x -+-23(1)(1)x x -=-3(1)x =-33x =-;(4)22b a a b --()=()()a b a b a b ---+1a b=-+(5)22222222a b c bc a b c ab--++-+222222(2)=2a b bc c a ab b c --+++-2222()()a b c a b c --=+-()()()()a b c a b c a b c a b c -++-=+-++a b ca b c-+=++;(6)()()2235221215x y x y x y x y --()()244=5()x y xy x y x y --+44()5()x y xy x y -=+2454455x yx y xy -=+.【点睛】本题主要考查了分式加减乘除混合运算,解题的关键是对分式的分子与分母分别因式分解,然后约去公因式,分式的约分是分式运算的基础,应重点掌握.39.对于正数x ,规定:()1xf x x =+.例如:11(1)112f ==+,22(2)213f ==+,111212312f æö==ç÷èø+.(1)填空:()3f =________;13f æö=ç÷èø_______;1(4)4æö+=ç÷èøf f _________;(2)猜想:1()æö+=ç÷èøf x f x _________,并证明你的结论;(3)求值:111(1)(2)(2019)(2020)202020192æöæöæö+++×××++++×××++ç÷ç÷ç÷èøèøèøf f f f f f f .【答案】(1)34,14,1;(2)1()1f x f x æö+=ç÷èø,证明见解析;(3)120192.【分析】(1)根据给出的规定计算即可;(2)根据给出的规定证明;(3)运用加法的交换律结合律,再根据规定的运算可求得结果.【详解】解:(1)()3f =33+1 =34,13f æö=ç÷èø131+13=14,,1(4)4æö+=ç÷èøf f 34+14=1,(2)1()1f x f x æö+=ç÷èø,理由为:11111111æö==×=ç÷++èø+x xf x x x x x()1xf x x =+,则111()1111+æö+=+==ç÷+++èøx x f x f x x x x .(3)原式111(2020)(2019)(2)(1)202020192éùéùéùæöæöæö=++++×××+++ç÷ç÷ç÷êúêúêúèøèøèøëûëûëûf f f f f f f 1201912=´+120192=.【点睛】本题考查的是分式的加减,根据题意找出规律是解答此题的关键.40.先化简:221111x x x æö+¸ç÷--èø,再选一个你喜欢的数代入并求值.【答案】11x +,13.【解析】【分析】根据分式的混合运算,先算括号里面的,再算除法,然后取一个分式有意义的数值代入求解即可.【详解】解:原式()()22222111111111x x x x x x x x x x -+--=´=´=-+++,0x Q ¹,1,1-,2x \=时,原式11213==+.【点睛】此题主要考查了分式的化简求值,把分式通分、约分进行化简是关键,代入求值时,代入的数值必须让分式有意义,容易出错.41. 已知22ab a b ab ++=32,求2a -3b 的值.【答案】0【详解】试题分析:根据分式的基本性质,约去分子分母的公因式,得到a 、b 的关系,然后代入求值即可.试题解析:原式=a b =32,∴2a =3b ,∴2a -3b =0.42. 若2a =3b =4c ≠0,求a b c+的值.【答案】54【详解】试题分析:根据比例的基本性质,设出参数,直接代入可求解.试题解析:设a =2k ,b =3k ,c =4k ,k ≠0,∴a b c+=234k k k +=54.43.为进一步落实《中华人民共和国民办教育促进法》,某市教育局拿出了b 元资金建立民办教育发展基金会,其中一部分作为奖金发给了n 所民办学校.奖金分配方案如下:首先将n 所民办学校按去年完成教育、教学工作业绩(假设工作业绩均不相同)从高到低,由1到n 排序,第1所民办学校得奖金bn元,然后再将余额除以n 发给第2所民办学校,按此方法将奖金逐一发给了n 所民办学校.(1)请用n 、b 分别表示第2所、第3所民办学校得到的奖金;(2)设第k 所民办学校所得到的奖金为k a 元(1k n ££),试用k 、n 和b 表示k a (不必证明);(3)比较k a 和1k a +的大小(k=1,2 ,……,1n -),并解释此结果关于奖金分配原则的实际意义.【答案】(1)211()(1)bb a b n n n n =-´=- ,23111()(1(1)b b a b n n n n n=-´-=-;(2)11(1k k b a nn-=- ;(3)1k k a a +> .奖金分配的实际意义:名次越靠后,奖金越少.【解析】【试题分析】(1)根据第1所民办学校得奖金bn元,然后再将余额除以n 发给第2所民办学校,得:22311111((1),()(1)(1).b b b ba b a b n n n n n n n n n=-´=-=-´-=-(2)根据(1)中的两个式子,11(1k k ba n n-=- ;(3)11(1k k b a n n -=-,+11(1)k k ba n n=-,则1111+121111111(1(1)(11(1)(1)(1)0k k k k k k k b b b b ba a n n n n n n n n n n n n----éù-=---=---=-××=-×>êúëû,则+1k k a a >.奖金分配的实际意义:名次越靠后,奖金越少.【试题解析】(1)根据题意得:22311111((1),()(1)(1.bb b ba b a b nn n n n n n n n=-´=-=-´-=- (2)根据(1)中的两个式子,11(1k k ba n n-=- (3)11(1k k b a n n -=-,+11(1)k k ba n n=-,则1111+121111111(1(1)(11(1)(1)(1)0k k k k k k k b b b b ba a n n n n n n n n n n n n----éù-=---=---=-××=-×>êúëû,则+1k k a a >.奖金分配的实际意义:名次越靠后,奖金越少.【方法点睛】本题目是一道分式的实际应用问题,第一个问题有难度,依据奖金的分配规则,写出23a a 、 的表达式;第二问在第一问的基础上,找出规律,直接写出k a 的表达式即可;第三问用作差法比较两个分式的大小,若差为正数,则被减数大于减数;若差为0,则被减数等于减数;若差为负数,则被减数小于减数.44.已知分式2 218 x3 x-+(1)当x取什么值时,分式有意义?(2)当x取什么值时,分式为零?(3)当x取什么值时,分式的值为负数?【答案】(1)x≠-3;(2)x=3;(3)x<3且x≠-3【解析】【分析】(1)根据分式有意义的条件即可求出答案.(2)根据分式值为零的条件是:分子等于零且分母不等于零。

知识点075 分式的值为零的条件-填空题

知识点075  分式的值为零的条件-填空题

填空题一.填空题(共41小题)1.(2011•天津)若分式的值为0,则x的值等于_________.2.(2011•内江)如果分式的值为0,则x的值应为_________.3.(2011•郴州)当x=_________时,分式的值为0.4.(2011•北京)若分式的值为0,则x的值等于_________.5.(2010•枣庄)若的值为零,则x的值是_________.6.(2010•广元)若分式的值为0,则p=_________.7.(2009•营口)分式的值为0,则x的值是_________.8.(2009•天津)若分式的值为0,则x的值等于_________.9.(2009•巴中)当x=_________时,代数式的值为0.10.(2009•安顺)已知分式的值为0,那么x的值为_________.11.(2007•天津)若分式的值为零,则x的值等于_________.12.(2007•郴州)如果分式:的值为0,那么m=_________.14.(2006•永州)当x=_________时,分式的值为0.15.(2006•孝感)若代数式的值为零,则x的取值应为_________.16.(2006•绍兴)当x=_________时,分式的值为0.17.(2006•南昌)若分式的值为零,则x的值为_________.18.(2006•济南)若分式的值为零,则x的值为_________.19.(2006•海南)当x=_________时,分式的值为零.20.(2005•镇江)若代数式的值是零,则x=_________;若代数式(x﹣2)(x+1)的值是零,则x= _________.21.(2005•新疆)若分式的值为0,则x的值为_________.22.(2005•龙岩)当x=_________时,分式的值为0.23.(2005•杭州)当m=_________时,分式的值为零.24.(2004•郑州)当x=_________时,分式的值为零.25.(2004•镇江)若代数式的值等于零,则x=_________;当x=3时,代数式的值等于_________.26.(2004•西宁)若分式的值为零,则X=_________.27.(2004•郴州)若分式的值为零,则x的值是_________.28.(2003•茂名)若代数式的值等于零,则x=_________.29.(2003•娄底)若分式的值为0,则x=_________.30.(2003•哈尔滨)若分式=0,则x=_________.31.(2002•咸宁)如果分式的值为零,那么x=_________.32.(2002•青海)当分式的值为零时,x的值为_________.33.(2002•昆明)若分式的值为0,则x=_________.34.(2002•河南)如果分式的值为0,则x=_________.35.(2002•海南)如果分式的值为零,那么x=_________.36.(2001•上海)如果分式的值为零,那么x=_________.37.(2000•江西)当x=_________时,分式的值为零.38.(2000•河南)当x=_________时,分式的值为零.39.(1999•南昌)当x=_________时,分式的值为零.40.(1999•贵阳)已知分式的值为0,则x=_________.41.(1998•丽水)若分式的值为零,则=_________.答案与评分标准一.填空题(共41小题)1.(2011•天津)若分式的值为0,则x的值等于1.考点:分式的值为零的条件。

2023中考数学一轮复习资料(全国通用):分式的运算(练透)(教师版)

2023中考数学一轮复习资料(全国通用):分式的运算(练透)(教师版)
15.(2020·齐齐哈尔市第二十八中学九年级月考)已知x2﹣3x﹣2=0,那么代数式 的值为___________.
【答案】2
【分析】
本题考查了分式的化简,多项式的因式分解.化简代数式是解决本题的关键.
【分析】
先化简代数式,再整体代入求值.
【详解】
解:
=
=
=x2﹣3x
因为x2﹣3x﹣2=0,所以x2﹣3x=2
A. B.
C. D.
【答案】C
【详解】
试题分析:设骑车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意得, .故选C.
考点:由实际问题抽象出分式方程.
5.(2022·北京九年级专题练习)化简 的结果为()
A. B. C. D.
【答案】B
【分析】
根据同分母的分式减法法则进行化简即可得到结果.
【答案】
【分析】
根据单价=总价÷数量结合少拿一株椽后剩下的椽的运费恰好等于一株椽的价钱,即可得出关于x的分式方程,此题得解.
【详解】
解:依题意,得: ,
故答案为: .
13.(2022·北京平谷·九年级一模)化简: _______________.
【答案】
【分析】
利用分式的通分原则计算即可
【详解】
解:
=
= ,
故答案为: .
14.(2020·贵州贵阳市·)关于x的分式方程 有增根,则m的值为__________.
【答案】4.
【解析】
去分母得:7x+5(x-1)=2m-1,
因为分式方程有增根,所以x-1=0,所以x=1,
把x=1代入7x+5(x-1)=2m-1,得:7=2m-1,
解得:m=4,

专题04 分式与分式方程-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)

专题04 分式与分式方程-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)

专题04.分式与分式方程一、单选题1.(2021·河北中考真题)由1122c c +⎛⎫- ⎪+⎝⎭值的正负可以比较12c A c +=+与12的大小,下列正确的是( )A .当2c =-时,12A =B .当0c 时,12A ≠C .当2c <-时,12A > D .当0c <时,12A <【答案】C 【分析】先计算1122c c +⎛⎫- ⎪+⎝⎭的值,再根c 的正负判断1122c c +⎛⎫- ⎪+⎝⎭的正负,再判断A 与12的大小即可.【详解】解:11=224+2c cc c +-+,当2c =-时,20c +=,A 无意义,故A 选项错误,不符合题意; 当0c 时,04+2c c=,12A =,故B 选项错误,不符合题意; 当2c <-时,04+2c c>,12A >,故C 选项正确,符合题意; 当20c -<<时,04+2c c <,12A <;当2c <-时,04+2c c>,12A >,故D 选项错误,不符合题意; 故选:C .【点睛】本题考查了分式的运算和比较大小,解题关键是熟练运用分式运算法则进行计算,根据结果进行准确判断.2.(2021·湖南中考真题)为响应习近平总书记“坚决打赢关键核心技术攻坚战”的号召,某科研团队最近攻克了7nm 的光刻机难题,其中1nm 0.000000001m =,则7nm 用科学记数法表示为( ) A .80.710m ⨯ B .8710m -⨯C .80.710m -⨯D .9710m -⨯【答案】D【分析】由题意易得nm 0.000000007m 7=,然后根据科学记数法可直接进行求解. 【详解】解:由题意得:nm 0.000000007m 7=, ∴7nm 用科学记数法表示为9710m -⨯;故选D .【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键.3.(2021·四川眉山市·中考真题)化简221111a a a ⎛⎫+÷ ⎪--⎝⎭的结果是( ) A .1a + B .1a a+ C .1a a- D .21a a + 【答案】B【分析】小括号先通分合并,再将除法变乘法并因式分解即可约分化简. 【详解】解:原式()()()()221111111=11a a a a a aa a a a a a+-+--++⨯=⨯=--故答案是:B . 【点睛】本题考察分式的运算和化简、因式分解,属于基础题,难度不大.解题关键是掌握分式的运算法则.4.(2021·天津中考真题)计算33a ba b a b---的结果是( ) A .3 B .33a b +C .1D .6aa b- 【答案】A【分析】先根据分式的减法运算法则计算,再提取公因式3,最后约分化简即可. 【详解】原式33a b a b -=-,3()a b a b-=-3=.故选A . 【点睛】本题考查分式的减法.掌握分式的减法运算法则是解答本题你的关键. 5.(2021·山东临沂市·中考真题)计算11()()a b b a-÷-的结果是( )A .ab-B .a bC .b a-D .b a【答案】A【分析】根据分式的混合运算顺序和运算法则计算可得.【详解】解:11a b b a ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=11ab ab b b a a ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=11ab a b ab -⨯-=a b-故选A . 【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 6.(2021·江西中考真题)计算11a a a+-的结果为( ) A .1 B .1- C .2a a+D .2a a- 【答案】A【分析】直接利用同分母分式的减法法则计算即可. 【详解】解:11111a a aa a a a++--===.故选:A . 【点睛】本题考查了同分母分式的减法,熟练掌握运算法则是解题的关键.7.(2021·江苏扬州市·中考真题)不论x 取何值,下列代数式的值不可能为0的是( ) A .1x + B .21x -C .11x + D .()21x +【答案】C【分析】分别找到各式为0时的x 值,即可判断.【详解】解:A 、当x =-1时,x +1=0,故不合题意;B 、当x =±1时,x 2-1=0,故不合题意; C 、分子是1,而1≠0,则11x +≠0,故符合题意;D 、当x =-1时,()210x +=,故不合题意;故选C . 【点睛】本题考查了分式的值为零的条件,代数式的值.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可. 8.(2021·湖北恩施土家族苗族自治州·中考真题)分式方程3111x x x +=--的解是( ) A .1x = B .2x =-C .34x =D .2x =【答案】D【分析】先去分母,然后再进行求解方程即可. 【详解】解:3111x x x +=-- 去分母:13x x +-=,∴2x =, 经检验:2x =是原方程的解;故选D .【点睛】本题主要考查分式方程的解法,熟练掌握分式方程的解法是解题的关键. 9.(2021·湖南怀化市·中考真题)定义12a b a b ⊗=+,则方程342x ⊗=⊗的解为( ) A .15x =B .25x =C .35x =D .45x =【答案】B【分析】根据新定义,变形方程求解即可 【详解】∵12a b a b ⊗=+,∴342x ⊗=⊗变形为1123242x ⨯+=⨯+,解得25x = ,经检验25x =是原方程的根,故选B 【点睛】本题考查了新定义问题,根据新定义把方程转化一般的分式方程,并求解是解题的关键10.(2021·山东临沂市·中考真题)某工厂生产A 、B 两种型号的扫地机器人.B 型机器人比A 型机器人每小时的清扫面积多50%;清扫2100m 所用的时间A 型机器人比B 型机器人多用40分钟. 两种型号扫地机器人每小时分别清扫多少面积?若设A 型扫地机器人每小时清扫2m x ,根据题意可列方程为( ) A .10010020.53x x =+ B .10021000.53x x += C .10021003 1.5x x += D .10010021.53x x =+ 【答案】D【分析】根据清扫100m 2所用的时间A 型机器人比B 型机器人多用40分钟列出方程即可.【详解】解:设A 型扫地机器人每小时清扫x m 2,由题意可得:10010021.53x x =+,故选D . 【点睛】本题考查了分式方程的实际应用,解题的关键是读懂题意,找到等量关系. 11.(2021·四川成都市·中考真题)分式方程21133x x x-+=--的解为( ) A .2x = B .2x =-C .1x =D .1x =-【答案】A【分析】直接通分运算后,再去分母,将分式方程化为整式方程求解. 【详解】解:21133x x x -+=--,21133x x x --=--,2113x x --=-,213x x --=-,解得:2x =, 检验:当2x =时,32310x -=-=-≠,2x ∴=是分式方程的解,故选:A .【点睛】本题考查了解分式方程,解题的关键是:去分母化为整式方程求解,最后需要对解进行检验.12.(2021·重庆中考真题)若关于x 的一元一次不等式组()322225x x a x ⎧-≥+⎨-<-⎩的解集为6x ≥,且关于y 的分式方程238211y a y y y+-+=--的解是正整数,则所有满足条件的整数a 的值之和是( ) A .5 B .8C .12D .15【答案】B【分析】先计算不等式组的解集,根据“同大取大”原则,得到562a+<解得7a <,再解分式方程得到5=2a y +,根据分式方程的解是正整数,得到5a >-,且5a +是2的倍数,据此解得所有符合条件的整数a 的值,最后求和. 【详解】解:()322225x x a x ⎧-≥+⎨-<-⎩①②解不等式①得,6x ≥,解不等式②得,5+2ax >不等式组的解集为:6x ≥562a+∴<7a ∴< 解分式方程238211y a y y y +-+=--得238211y a y y y +--=--2(38)2(1)y a y y ∴+--=-整理得5=2a y +, 10,y -≠ 则51,2a +≠ 3,a ∴≠- 分式方程的解是正整数,502a +∴>5a ∴>-,且5a +是2的倍数,57a ∴-<<,且5a +是2的倍数,∴整数a 的值为-1, 1, 3, 5, 11358∴-+++=故选:B .【点睛】本题考查解含参数的一元一次不等式、解分式方程等知识,是重要考点,难度一般,掌握相关知识是解题关键.13.(2021·重庆中考真题)关于x 的分式方程331122ax x x x--+=--的解为正数,且使关于y 的一元一次不等式组32122y y y a-⎧≤-⎪⎨⎪+>⎩有解,则所有满足条件的整数a 的值之和是( )A .5-B .4-C .3-D .2-【答案】B【分析】先将分式方程化为整式方程,得到它的解为64x a =+,由它的解为正数,同时结合该分式方程有解即分母不为0,得到40a +>且43a +≠,再由该一元一次不等式组有解,又可以得到20a -<,综合以上结论即可求出a 的取值范围,即可得到其整数解,从而解决问题.【详解】解:331122ax x x x--+=--,两边同时乘以(2x -),3213ax x x -+-=-,()46a x +=, 由于该分式方程的解为正数,∴64x a =+,其中4043a a +>+≠,;∴4a >-,且1a ≠-;∵关于y 的元一次不等式组32122y y y a -⎧≤-⎪⎨⎪+>⎩①②有解,由①得:0y ≤;由②得:2y a >-;∴20a -<,∴2a <综上可得:42a -<<,且1a ≠-;∴满足条件的所有整数a 为:32,0,1--,;∴它们的和为4-;故选B . 【点睛】本题涉及到含字母参数的分式方程和含字母参数的一元一次不等式组等内容,考查了解分式方程和解一元一次不等式组等相关知识,要求学生能根据题干中的条件得到字母参数a 的限制不等式,求出a 的取值范围进而求解,本题对学生的分析能力有一定要求,属于较难的计算问题.14.(2020·辽宁朝阳市·中考真题)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买键球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x 名学生,依据题意列方程得( ) A .807250405x x ⨯=⨯+ B .807240505x x ⨯=⨯+ C .728040505x x ⨯=⨯- D .728050405x x⨯=⨯- 【答案】B【分析】根据“按零售价购买40个毽球与按批发价购买50个毽球付款相同”建立等量关系,分别找到零售价与批发价即可列出方程.【详解】设班级共有x 名学生,依据题意列方程得,807240505x x ⨯=⨯+故选:B . 【点睛】本题主要考查列分式方程,读懂题意找到等量关系是解题的关键.15.(2020·四川绵阳市·中考真题)甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为( ) A .1.2小时 B .1.6小时C .1.8小时D .2小时【答案】C【分析】设乙驾车时长为x 小时,则甲驾车时长为(3﹣x )小时,根据两人对话可知:甲的速度为180xkm/h ,乙的速度为803x-km/h ,根据“各匀速行驶一半路程”列出方程求解即可. 【详解】解:设乙驾车时长为x 小时,则甲驾车时长为(3﹣x )小时, 根据两人对话可知:甲的速度为180xkm/h ,乙的速度为803x -km/h ,根据题意得:()1803803x xxx-=-,解得:x 1=1.8或x 2=9, 经检验:x 1=1.8或x 2=9是原方程的解,x 2=9不合题意,舍去,故答案为:C .【点睛】本题考查了分式方程的应用,解决本题的关键是正确理解题意,熟练掌握速度时间和路程之间的关系,找到题意中的等量关系.16.(2020·黑龙江鹤岗市·中考真题)已知关于x 的分式方程433x kx x-=--的解为非正数,则k 的取值范围是( ) A .12k ≤- B .12k -≥C .12k >-D .12k <-【答案】A【分析】表示出分式方程的解,由解为非正数得出关于k 的不等式,解出k 的范围即可.【详解】解:方程433x kx x-=--两边同时乘以(3)x -得:4(3)x x k --=-, ∴412x x k -+=-,∴312x k -=--,∴43kx =+,∵解为非正数,∴403k+≤,∴12k ≤-,故选:A .【点睛】本题考查了分式方程的解及解一元一次不等式,熟练掌握分式方程的解法和一元一次不等式的解法是解题的关键.17.(2020·湖北荆门市·中考真题)已知关于x 的分式方程2322(2)(3)x kx x x +=+--+的解满足41x -<<-,且k 为整数,则符合条件的所有k 值的乘积为( ) A .正数 B .负数C .零D .无法确定【答案】A【分析】先解出关于x 的分式方程得到x=63k-,代入41x -<<-求出k 的取值,即可得到k 的值,故可求解.【详解】关于x 的分式方程2322(2)(3)x k x x x +=+--+得x=217k -, ∵41x -<<-∴21471k --<<-解得-7<k <14 ∴整数k 为-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13, 又∵分式方程中x≠2且x≠-3∴k≠35且k≠0∴所有符合条件的k 中,含负整数6个,正整数13个,∴k 值的乘积为正数,故选A . 【点睛】此题主要考查分式方程与不等式综合,解题的关键是熟知分式方程的求解方法.18.(2020·四川广元市·中考真题)按照如图所示的流程,若输出的=6M -,则输入的m 为( )A .3B .1C .0D .-1【答案】C【分析】根据题目中的程序,利用分类讨论的方法可以分别求得m 的值,从而可以解答本题. 【详解】解:当m 2-2m≥0时,661m =--,解得m=0, 经检验,m=0是原方程的解,并且满足m 2-2m≥0,当m 2-2m <0时,m -3=-6,解得m=-3,不满足m 2-2m <0,舍去.故输入的m 为0.故选:C . 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.19.(2020·四川成都市·中考真题)已知2x =是分式方程311k x x x -+=-的解,那么实数k 的值为( ) A .3 B .4C .5D .6【答案】B【分析】将2x =代入原方程,即可求出k 值. 【详解】解:将2x =代入方程311k x x x -+=-中,得231221k +=--解得:4k = .故选:B . 【点睛】本题考查了方程解的概念.使方程左右两边相等的未知数的值就是方程的解.“有根必代”是这类题的解题通法.20.(2020·四川遂宁市·中考真题)关于x 的分式方程2mx -﹣32x-=1有增根,则m 的值( ) A .m =2 B .m =1C .m =3D .m =﹣3【答案】D【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m 的值即可. 【详解】解:去分母得:m +3=x ﹣2,由分式方程有增根,得到x ﹣2=0,即x =2, 把x =2代入整式方程得:m +3=0,解得:m =﹣3,故选:D .【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值. 21.(2020·浙江金华市·中考真题)分式52x x +-的值是零,则x 的值为( ) A .5 B .5- C .2-D .2【答案】B【分析】利用分式值为零的条件可得50x +=,且20x -≠,再解即可. 【详解】解:由题意得:50x +=,且20x -≠,解得:5x =-,故选:B .【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.22.(2020·湖北孝感市·中考真题)已知1x =,1y =,那么代数式()32x xy x x y --的值是( )A .2BC .4D .【答案】D【分析】先按照分式四则混合运算法则化简原式,然后将x 、y 的值代入计算即可.【详解】解:()32x xy x x y --=()()()x x y x y x x y +--11D . 【点睛】本题考查了分式的化简求值,根据分式四则混合运算法则化简分式是解答本题的关键. 23.(2020·河北中考真题)若ab ,则下列分式化简正确的是( )A .22a ab b+=+B .22a a b b -=-C .22a a b b=D .1212aa b b = 【答案】D【分析】根据a≠b ,可以判断各个选项中的式子是否正确,从而可以解答本题. 【详解】∵a≠b ,∴22a a b b +≠+,选项A 错误;22a ab b-≠-,选项B 错误; 22a a b b ≠,选项C 错误;1212a ab b =,选项D 正确;故选:D . 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法. 24.(2020·贵州贵阳市·中考真题)当1x =时,下列分式没有意义的是( )A .1x x+B .1x x -C .1x x-D .1x x + 【答案】B【分析】由分式有意义的条件分母不能为零判断即可. 【详解】1xx -,当x=1时,分母为零,分式无意义.故选B. 【点睛】本题考查分式有意义的条件,关键在于牢记有意义条件. 25.(2019·河北中考真题)如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④【答案】B【分析】将所给分式的分母配方化简,再利用分式加减法化简,据x 为正整数,从所给图中可得正确答案.【详解】解∵2222(2)1(2)1441(2)1x x x x x x x ++-=-=+++++1111xx x -=++.又∵x 为正整数,∴121x x ≤+<1,故表示22(2)1441x x x x +-+++的值的点落在②.故选B . 【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.26.(2019·湖南娄底市·中考真题)2018年8月31日,华为正式发布了全新一代自研手机SoC 麒麟980,这款号称六项全球第一的芯片,随着华为Mate 20系列、荣耀Magic 2相继搭载上市,它的强劲性能、出色能效比、卓越智慧、顶尖通信能力,以及为手机用户带来的更强大、更丰富、更智慧的使用体用,再次被市场和消费者所认可.麒麟980是全球首颗()97110nm nm m -=手机芯片.7nm 用科学记数法表示为( ) A .8710m -⨯ B .9710m -⨯C .80.710m -⨯D .10710m -⨯【答案】B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】7nm 用科学记数法表示为9710m -⨯.故选B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.27.(2019·湖北孝感市·中考真题)已知二元一次方程组1249x y x y +=⎧⎨+=⎩,则22222x xy y x y -+-的值是( ) A .5- B .5C .6-D .6【答案】C【分析】解方程组求出x 、y 的值,对所求式子进行化简,然后把x 、y 的值代入进行计算即可. 【详解】1249x y x y +=⎧⎨+=⎩①②,2②-①×得,27y =,解得72y =,把72y =代入①得,712x +=,解得52x =-, ∴222222()()()x xy y x y x y x y x y -+-=-+-572261x y x y ---===-+,故选C. 【点睛】本题考查了解二元一次方程组,分式化简求值,正确掌握相关的解题方法是关键. 28.(2019·北京中考真题)如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3B .-1C .1D .3【答案】D【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值. 【详解】解:原式=()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭2()()()()m n m n m n m n m m n m m n ⎡⎤+-=+⋅+-⎢⎥--⎣⎦ 3()()3()()mm n m n m n m m n =⋅+-=+-1m n +=∴原式=3,故选D.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.29.(2019·四川中考真题)一辆货车送上山,并按原路下山.上山速度为a 千米/时,下山速度为b 千米/时.则货车上、下山的平均速度为( )千米/时. A .1()2a b + B .aba b+ C .2a bab+ D .2aba b+ 【答案】D【分析】平均速度=总路程÷总时间,设单程的路程为s ,表示出上山下山的总时间,把相关数值代入化简即可.【详解】解:设上山的路程为x 千米,则上山的时间x a 小时,下山的时间为xb小时, 则上、下山的平均速度22xabxxa b ab=++千米/时.故选D .【点睛】本题考查了列代数式以及分式的化简,得到平均速度的等量关系是解决本题的关键,得到总时间的代数式是解决本题的突破点.30.(2019·湖南益阳市·中考真题)解分式方程232112x x x+=--时,去分母化为一元一次方程,正确的是( ) A .x+2=3 B .x ﹣2=3 C .x ﹣2=3(2x ﹣1) D .x+2=3(2x ﹣1)【答案】C【分析】最简公分母是2x ﹣1,方程两边都乘以(2x ﹣1),即可把分式方程便可转化成一元一次方程. 【详解】方程两边都乘以(2x ﹣1),得x ﹣2=3(2x ﹣1),故选C .【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.31.(2019·广东中考真题)定义一种新运算:1an n n bn xdx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若m252mx dx --=-⎰,则m =( )A .-2B .25-C .2D .25【答案】B【分析】根据新定义运算得到一个分式方程,求解即可.【详解】根据题意得,5211m11(5)25m x dx m m m m---⎰-=-=-=-,则25m =-,经检验,25m =-是方程的解,故选B. 【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键. 二、填空题32.(2021·四川资阳市·中考真题)若210x x +-=,则33x x-=_________. 【答案】3【分析】先由210x x +-=可得21x x -=,再运用分式的减法计算33x x-,然后变形将21x x -=代入即可解答.【详解】解:∵210x x +-=∴21x x -=∴()2231333333x x x x x x x x---====.故填:3. 【点睛】本题主要考查了代数式的求值、分式的减法等知识点,灵活对等式进行变形成为解答本题的关键.33.(2021·四川南充市·中考真题)若3n m n m +=-,则2222m n n m+=_________ 【答案】174【分析】先根据3n m n m +=-得出m 与n 的关系式,代入2222m n n m+化简即可; 【详解】解:∵3n mn m+=-,∴()3n m n m +=-,∴2n m =, ∴22222222417+=44m n m m n m m m +=故答案为:174 【点睛】本题考查了分式的混合运算,得出2n m =是解决本题的关键.34.(2021·四川达州市·中考真题)若分式方程22411x a x ax x --+-=-+的解为整数,则整数a =___________. 【答案】±1【分析】直接移项后通分合并同类项,化简、用a 来表示x ,再根据解为整数来确定a 的值. 【详解】解:22411x a x a x x --+-=-+,22411x a x ax x --+-=-+ (2)(1)(2)(1)4(1)(1)x a x a x x x x -+---=-+整理得:2x a=若分式方程22411x a x ax x --+-=-+的解为整数, a 为整数,当1a =±时,解得:2x =±,经检验:10,10x x -≠+≠成立;当2a =±时,解得:1x =±,经检验:分母为0没有意义,故舍去; 综上:1a =±,故答案是:±1.【点睛】本题考查了分式方程,解题的关键是:化简分式方程,最终用a 来表示x ,再根据解为整数来确定a 的值,易错点,容易忽略对根的检验.35.(2021·湖南常德市·中考真题)分式方程1121(1)x x x x x ++=--的解为__________. 【答案】3x =【分析】直接利用通分,移项、去分母、求出x 后,再检验即可.【详解】解:1121(1)x x x x x ++=--通分得:212(1)(1)x x x x x x -+=--,移项得:()301x x x -=-, 30x ∴-=,解得:3x =,经检验,3x =时,(1)60x x -=≠,∴3x =是分式方程的解,故答案是:3x =. 【点睛】本题考查了对分式分式方程的求解,解题的关键是:熟悉通分,移项、去分母等运算步骤,易错点,容易忽略对根进行检验.36.(2021·湖南衡阳市·中考真题)“绿水青山就是金山银山”.某地为美化环境,计划种植树木6000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前3天完成任务.则实际每天植树__________棵. 【答案】500【分析】设原计划每天植树x 棵,则实际每天植树()125%x +,根据工作时间=工作总量÷工作效率,结合实际比原计划提前3天完成,准确列出关于x 的分式方程进行求解即可.【详解】解:设原计划每天植树x 棵,则实际每天植树()125%x +,6000600031.25x x-=,400x =,经检验,400x =是原方程的解, ∴实际每天植树400 1.25500⨯=棵,故答案是:500.【点睛】本题考查了分式方程的应用,解题的关键是:找准等量关系,准确列出分式方程. 37.(2021·四川凉山彝族自治州·中考真题)若关于x 的分式方程2311x mx x-=--的解为正数,则m 的取值范围是_________. 【答案】m >-3且m ≠-2【分析】先利用m 表示出x 的值,再由x 为正数求出m 的取值范围即可. 【详解】解:方程两边同时乘以x -1得,()231x x m --=-,解得3x m =+, ∵x 为正数,∴m +3>0,解得m >-3.∵x ≠1,∴m +3≠1,即m ≠-2. ∴m 的取值范围是m >-3且m ≠-2.故答案为:m >-3且m ≠-2.【点睛】本题考查的是分式方程的解,熟知求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解是解答此题的关键. 38.(2020·内蒙古呼和浩特市·中考真题)分式22x x -与282x x-的最简公分母是_______,方程228122-=--x x x x的解是____________. 【答案】()2x x - x=-4【分析】根据最简公分母的定义得出结果,再解分式方程,检验,得解. 【详解】解:∵()222x x x x -=-,∴分式22x x -与282x x -的最简公分母是()2x x -, 方程228122-=--x x x x,去分母得:()2282x x x -=-,去括号得:22282x x x -=-, 移项合并得:2280x x +-=,变形得:()()240x x -+=,解得:x=2或-4,∵当x=2时,()2x x -=0,当x=-4时,()2x x -≠0,∴x=2是增根,∴方程的解为:x=-4. 【点睛】本题考查了最简公分母和解分式方程,解题的关键是掌握分式方程的解法. 39.(2020·山东潍坊市·中考真题)若关于x 的分式方程33122x m x x +-=--有增根,则m 的值为_____. 【答案】3【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m 的值.【详解】去分母得3x -(x -2)=m+3,当增根为x=2时,6=m+3 ∴m=3.故答案为3.【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值. 40.(2020·湖北黄冈市·中考真题)计算:221yx x y x y ⎛⎫÷- ⎪-+⎝⎭的结果是____________. 【答案】1x y- 【分析】先计算括号内分式的减法、将被除式分母因式分解,再将除法转化为乘法,最后约分即可得.【详解】解:221yx x y x y ⎛⎫÷- ⎪-+⎝⎭()()y x y x x y x y x y x y ⎛⎫+=÷- ⎪+-++⎝⎭()()y y x y x y x y=÷+-+()()yx y x y x y y +=⋅+-1x y=-,故答案为:1x y -. 【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 41.(2020·山东滨州市·中考真题)观察下列各式:1234523101526,,,,,357911a a a a a =====, 根据其中的规律可得n a =________(用含n 的式子表示).【答案】()12121n n n ++-+【分析】观察发现,每一项都是一个分数,分母依次为3、5、7,…,那么第n 项的分母是2n+1;分子依次为2,3,10,15,26,…,变化规律为:奇数项的分子是n 2+1,偶数项的分子是n 2-1,即第n 项的分子是n 2+(-1)n+1;依此即可求解.【详解】解:由分析得21(1)21n n n a n ++-=+,故答案为:21(1)21n n n a n ++-=+ 【点睛】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.42.(2020·山东济宁市·中考真题)已知m+n=-3.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是____________. 【答案】1m n -+,13【分析】先计算括号内的,再将除法转化为乘法,最后将m+n=-3代入即可.【详解】解:原式=222m n m n mn m m ⎛⎫+---÷ ⎪⎝⎭=222m n m n mn m m ⎛⎫+---÷ ⎪⎝⎭=()2m n m n m m ⎡⎤++÷-⎢⎥⎢⎥⎣⎦=()2m n m m m n ⎡⎤+⨯-⎢⎥+⎢⎥⎣⎦=1m n -+,∵m+n=-3,代入,原式=13. 【点睛】本题考查了分式的化简求值,解题的关键是掌握分式的运算法则.43.(2019·江西中考真题)斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段A B C --横穿双向行驶车道,其中6AB BC ==米,在绿灯亮时,小明共用11秒通过AC ,其中通过BC 的速度是通过AB 速度的1.2倍,求小明通过AB 时的速度.设小明通过AB 时的速度是x 米/秒,根据题意列方程得:_____________________.【答案】66111.2x x+= 【分析】设小明通过AB 时的速度是x 米/秒,根据题意列出分式方程解答即可. 【详解】解:设小明通过AB 时的速度是x 米/秒,可得:66111.2x x +=,故答案为66111.2x x+=, 【点睛】此题考查由实际问题抽象分式方程,关键是根据题意列出分式方程解答.三、解答题44.(2021·湖北随州市·中考真题)先化简,再求值:2141122x x x -⎛⎫+÷⎪++⎝⎭,其中1x =. 【答案】22x -,-2 【分析】(1)先把括号里通分合并,括号外的式子进行因式分解,再约分,将x=1代入计算即可. 【详解】解:原式()()()21221222x x x x x x ++=⋅=++-- 当1x =时,原式2212==-- 【点睛】本题考查了分式的化简求值,用到的知识是约分、分式的加减,熟练掌握法则是解题的关键.45.(2021·山东菏泽市·中考真题)先化简,再求值:22221244m n n m m n m mn n--+÷--+,其中m ,n 满足32m n =-. 【答案】3nm n+;-6. 【分析】先变除法为乘法,后因式分解,化简计算,后变形32nm =-代入求值即可【详解】∵22221244m n n m m n m mn n--+÷--+=2(2)12()()m n m n m n n m n m --+⨯--+=21m n n m --+=3n m n +, ∵32m n =-,∴32nm =-,∴原式=332nn n -+= -6. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的基本顺序,基本计算方法是解题的关键. 46.(2021·湖北宜昌市·中考真题)先化简,再求值:2211111x x x ÷--+-,从1,2,3这三个数中选择一个你认为适合的x 代入求值. 【答案】11x -,1或12【分析】先根据分式混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算即可. 【详解】解:原式21(1)(1)(1)1x x x x =⋅+--+-11x =-.∵x 2﹣1≠0,∴当2x =时,原式1=.或当3x =时,原式12=.(选择一种情况即可) 【点睛】本题考查了分式的化简求值,要了解使分式有意义的条件,熟练掌握分式的运算法则是解题的关键.47.(2021·四川达州市·中考真题)化简求值:231041244a a a a a --⎛⎫⎛⎫-÷ ⎪ ⎪--+⎝⎭⎝⎭,其中a 与2,3构成三角形的三边,且a 为整数. 【答案】24a -+,-2【分析】先根据分式的混合运算法则进行化简,再根据三角形三边关系确定a 的取值范围,把不合题意的a 的值舍去,最后代入求值即可求解.【详解】解:原式()22231024a a a a a ---+=⋅--()()224224a a a a ---=⋅--24a =-+; ∵2,3,a 为三角形的三边,∴3232a -<<+,∴15a <<,∵a 为整数,∴2a =,3或4,由原分式得20a -≠,40a -≠,∴2a ≠且4a ≠,∴3a =, ∴原式=242342a -+=-⨯+=-.【点睛】本题考查了分式的化简求值,正确进行分式的化简是解题关键,在把a 的值代入求值是要注意所求的a 的值保证原分式有意义.48.(2021·湖南株洲市·中考真题)先化简,再求值:2223142x x x x ⎛⎫⋅-- ⎪-+⎝⎭,其中2x =. 【答案】12x -+,2-【分析】先对分式进行化简,然后根据二次根式的运算进行求值即可.【详解】解:原式=()()223231222222x x x x x x x x x -⋅-=-=-+++-++,把2x =代入得:原式=2=-. 【点睛】本题主要考查分式的化简求值及二次根式的运算,熟练掌握分式的化简求值及二次根式的运算是解题的关键.49.(2021·四川成都市·中考真题)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中3=a . 【答案】13a +【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:2269111a a a a ++⎛⎫+÷ ⎪++⎝⎭212(3)111a a a a a ++⎛⎫=+÷ ⎪+++⎝⎭2311(3)a a a a ++=⋅++13a =+,当3=a时,原式=== 【点睛】本题主要考查了分式的化简求值,二次根式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.50.(2021·四川资阳市·中考真题)先化简,再求值:222211111x x x x x x ⎛⎫++-÷ ⎪---⎝⎭,其中30x -=. 【答案】原式=13. 【分析】利用分式的混合运算法则进行化简,再将3x =代入原式,即可求解.【详解】解:原式=()()()22111111x x x x x x ⎡⎤+--⋅⎢⎥+--⎢⎥⎣⎦=211111x x x x x +-⎛⎫-⋅ ⎪--⎝⎭=211x x x x -⋅-=1x303x x -=∴= 将3x =代入原式,原式=13.【点睛】本题主要考查分式的混合运算.需要掌握分式的混合运算法则、完全平方公式、平方差公式、同分母分式相加减等相关知识.进行分式的混合运算时,要细心. 51.(2021·四川凉山彝族自治州·中考真题)已知112,1x y x y-=-=,求22x y xy -的值. 【答案】-4【分析】根据已知求出xy =-2,再将所求式子变形为()xy x y -,代入计算即可. 【详解】解:∵2x y -=,∴1121y x x y xy xy---===,∴2xy =-, ∴()()22224xy x x y xy y ==---⨯=-.【点睛】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.52.(2021·四川遂宁市·中考真题)先化简,再求值:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数. 【答案】32m m --;12【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用三角形三边的关系,求得m 的值,代入计算即可求出值.【详解】解:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭222(2)99(2)33m m m m m m ⎛⎫--÷+ ⎪---⎝⎭= 2223m m m m ÷--=2232m m m m-⋅-=32m m --=, ∵m 是已知两边分别为2和3的三角形的第三边长,∴3-2<m <3+2,即1<m <5, ∵m 为整数,∴m =2、3、4,又∵m ≠0、2、3∴m =4,∴原式=431422-=-. 【点睛】本题主要考查了分式的化简求值以及三角形三边的关系,解题的关键是掌握分式混合运算顺序和运算法则.53.(2021·江苏连云港市·中考真题)解方程:214111x x x +-=--. 【答案】无解。

分式有意义的条件及基本性质试题-八年级数学上册专题讲练突破

分式有意义的条件及基本性质试题-八年级数学上册专题讲练突破

分式有意义的条件及基本性质1. 分式有意义的条件分式有意义的条件:分式的分母不等于零。

分式的值为零的条件:(1)分子为0;(2)分母不为0。

这两个条件缺一不可。

2. 分式的基本性质分式的分子与分母都乘(或除)以同一个不等于0的整式,分式的值不变。

用式子表示为:C B C A B A ⋅⋅=,CB C A B A ÷÷=,()0≠C ,其中A 、B 、C 都是整式。

注意条件:①C 是一个不等于0的整式,如14121212-+=-x x x ,其中必须满足012≠+x ; ②要深刻理解“都”“同一个”两个关键的含义,避免犯只乘分子(或分母)的错误; ③若分式的分子或分母是多项式,要先用括号把分子或分母括上,再乘(或除)以同一整式C ; ④分式的基本性质是分式进行约分、通分和符号变化的依据。

3. 分式的约分、通分例题1 若分式11-+x x 的值为零,则x 的值为________。

解析:分式的值为零的条件是:(1)分子=0;(2)分母不等于零;两个条件需要同时具备,缺一不可,从而可以解答本题。

答案:解:101-=+x x 则10x -=,即1x =±, 且10x +≠,即1x ≠-, 故x =1。

所以若分式11-+x x 的值为零,则x 的值为1。

点拨:本题考查了分式值为零的条件,从以下三个方面透彻理解分式的概念: (1)分式无意义⇔分母为零; (2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零。

例题2 22411241111--+++---+a a a a a =_____________。

解析:先将前两个分式通分,将所得的结果再与后面的式子通分,依次计算即可。

答案:解:原式=22411241111---+-++a a a a a2224224468224111441181-=---++-=--+=--aa a a aaa a aa点拨:本题考查了通分,解决此题的关键是找到各分母的最简公分母。

知识卡片-分式值为零的条件

知识卡片-分式值为零的条件

分式值为零的条件
能量储备
●分式的值为0的条件:当分式的分子等于0且分母不等于0时,分式的值为0.
●分式的值是在分式有意义的前提下才可考虑的,所以使分式A
B的值为0的条件是
A=0且B≠0,两者缺一不可. 注意:不要出现只考虑分子而忽视分母的现象.
通关宝典
★基础方法点
方法点:求解分式的值为0的条件的题目时,首先求出使分式的分子为0的字母的值,再检验这个字母的值是否使分母的值为0,当它使分母的值不为0时,就是所要求的字母的值.使分母为0的值必须舍去.
例:当x取何值时,分式x+2
2x−3
的值为0?
分析:分式的值为0的条件是分子为0且分母不为0.
解:由{x+2=0,
2x−3≠0,
得x=-2.
∴当x=-2时,分式x+2
2x−3
的值为0.
★★易混易误点
易混易误点:分式值为0时,忽略分母不为0的条件
必须在分式有意义的前提下,才能讨论分式何时值为0,尤其当分子中含有绝对值或平方的形式时,根据分子为0常会得出两个数值,这时就需要检验,保证分母取值不为0.
蓄势待发
考前攻略
考查分式的值为0的条件,在中考中时常出现,解决该类问题要注意必须满足分母不为0,这是易错点,题目难度较小,题型主要是选择题或填空题.
完胜关卡。

分式的值为零的条件 (1)

分式的值为零的条件 (1)

分式的值为零的条件 一、基础知识1.分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.2.解该类型的题易忽略分母不为0这个条件,应特别注意。

3.求分式的值为0的条件的步骤是:第一步:令分子等于0,求出x 的值;第二步:将求出的x 的值代入分母,若分母为零,则此x 的值不合题意,舍去;若分母不为零,合题意。

二、典型例题例1 若分式224514x x x -+-的值为零,求x 的值。

解:分式224514x x x -+-的值为零, 即224514x x x -+-=0, 也就是x 2-4=0,x=±2,当x=2时,分母22514252140x x +-=+⨯-=,不合题意.当x=-2时,分母22514(2)5(2)14200x x +-=-+⨯--=-≠,合题意. 所以当x=-2时,分式224514x x x -+-的值为零. 三、强化练习1.(2012•嘉兴)若分式12x x --的值为0,则( ) A .x=-2 B .x=0C .x=1或x=-2D .x=1 2.(2010•荆州)若分式: 211x x --的值为0,则( ) 3.(2008•宜宾)若分式221x x --的值为0,则x 的值为( ) A .1 B .-1C .±1D .2 4.(2004•重庆)若分式22943x x x --+的值为0,则x 的值为( ) A .3 B .3或-3 C .-3 D .05.(2009•天水)如果分式2||132x x x -++的值等于0,那么x 的值为( ) A .-1 B .1 C .-1或16.(2010•玉溪)若分式22123b b b ---的值为0,则b 的值是( ) A .1 B .-1 C .±1 7.(2012•茂名)若分式293a a -+的值为0,则a 的值是 . 8.(2012•恩施州)当x= 时,函数y=23122x x --的值为零. 9.(2012•百色)若分式6x x-的值为0,则x= . 10.(2011•内江)如果分式23122x x --的值为0,则x 的值应为 . 11.(2010•广元)若分式||33p p--的值为0,则p= . 12.(2009•营口)分式2293x x x-+的值为0,则x 的值是 . 13.(2006•孝感)若代数式(2)(1)||1x x x ---的值为零,则x 的取值应为 . 14.(2005•杭州)当m= 时,分式2(3)(1)32m m m m ---+的值为零. 15.(2010•枣庄)若2||323x x x ---的值为零,求x 的值. 16.若分式22943x x x --+的值为零,求x 的值. 1.D 2.B 3.D 4.C 5.B 6.A 7.3 8.-29.6 10.-3 11.-3 12.3 13.2 14.315.解:由分子|x|-3=0,得x±3,而当x=3时,分母x 2-2x-3=0,此时该分式无意义, 所以当x=-3,故若2||323x x x ---的值为零,则x 的值是-3.16.解:因为分式值为0,所以有x 2-9=0,解得x=±3,当x=3时,x 2-4x+3=0,故x=-3时分式22943xx x--+的值为零.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式的值为零的条件专题解析1.分式的值为0,则()A.x=﹣1 B.x=1 C.x=±1 D.x=0考点:分式的值为零的条件.分析:分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.解答:解:由题意可得x2﹣1=0且x+1≠0,解得x=1.故选:B.点评:本题考查了分式的值为0的条件.由于该类型的题易忽略分母不为0这个条件2.下列关于分式的判断,正确的是()A.当x=2时,的值为零B.当x≠3时,有意义C.无论x为何值,不可能得整数值D.无论x为何值,的值总为正数考点:分式的值为零的条件;分式的定义;分式有意义的条件.分析:根据分式值为0的条件,以及分式有意义的条件即可求解.解答:解:A、当x=2时,无意义,故A错误;B、当x≠0时,有意义,故B错误;C、当x=2时,得整数值,故C错误;D、分母x2+1大于0,分子大于0,故无论x为何值,的值总为正数,故D正确.故选D.点评:分式的定义:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式,当B=0时,分式无意义.3.若分式的值为0,则x的值为()A.﹣1 B.3C.﹣1或3 D.﹣3或1考点:分式的值为零的条件.专题:存在型.分析:根据分式的值为0的条件列出关于x的不等式,求出x的值即可.解答:解:∵分式的值为0,∴,解得x=3.故选B.点评:本题考查的是分式的值为0的条件,即分式的分子等于0,分母不等于0.4.如果分式的值为零,那么x的值为()A.﹣1或1 B.1C.﹣1 D.1或0考点:分式的值为零的条件.专题:计算题.分析:根据分式的值为零的条件可以求出x的值.解答:解:根据题意,得|x|﹣1=0且x+1≠0,解得,x=1.故选B.点评:本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.若分式的值为零,则x的值为()A.0B.1C.﹣1 D.±1考点:分式的值为零的条件.分析:根据分式为0的条件列出关于x的不等式组,求出x的值即可.解答:解:∵分式的值为零,∴,解得x=1.故选B.点评:本题考查的是分式的值为0的条件,熟知分式值为零的条件是分子等于零且分母不等于零是解答此题的关键.6.分式的值为0,则x的值为()A.4B.﹣4 C.±4 D.任意实数考点:分式的值为零的条件.分析:根据分式为0的条件列出关于x的不等式组,求出x的值即可.解答:解:∵分式的值为0,∴,解得x=4.故选A.点评:本题考查的是分式的值为0的条件,熟知分式值为零的条件是分子等于零且分母不等于零是解答此题的关键.7.若分式的值为零,则x的值为()A.0B.2C.﹣2 D.±2考点:分式的值为零的条件.分析:根据分式为0的条件是:分子为0、分母不为0计算即可.解答:解:由题意得,x2﹣4=0,x=±2,x﹣2≠0,x≠2,故选:B.点评:本题考查的是分式为0的条件:若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.8.若代数式的值为0,则x等于()A.2B.﹣2 C.0D.2,﹣2考点:分式的值为零的条件.分析:根据分式值为零的条件:分子为0,分母不为0,可得答案.解答:解:由代数式的值为0,得.解得x=2,故选:A.点评:本题考查了分式值为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.9.已知分式的值为0,则x的值为()A.2B.﹣2 C.3D.﹣3考点:分式的值为零的条件.分析:根据分式的分子为零,分母不为零,分式的值为零,可得答案.解答:解:由分式的值为0,得,解得x=2,故选:A.点评:本题考查了分式值为零的条件,分式的分子为零,分母不为零,分式的值为零,注意不要遗漏分母不为零.10.若使分式的值为零,则x的值为()A.﹣1 B.1或﹣1 C.1D.1且﹣1考点:分式的值为零的条件.分析:根据分式值为零的条件可得x2﹣1=0,还要保证分式有意义可得x+1≠0,解可得答案.解答:解:由题意得:x2﹣1=0,且x+1≠0,解得:x=1,故选:C.点评:此题主要考查了分式的值为零的条件,关键是掌握同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.11.分式的值为0,则x的值为()A.﹣3 B.3C.0D.±3考点:分式的值为零的条件.分析:根据分式的值为零的条件可以求出x的值.解答:解:根据题意得:x2﹣9=0,且x+3≠0,解得:x=3.故选:B.点评:本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.若分式的值为零,则x的值为()A.0B.1C.﹣1 D.±1考点:分式的值为零的条件.专题:计算题.分析:分式的值是0的条件是:分子为0,分母不为0,由此条件解出x.解答:解:由x2﹣1=0,得x=±1.①当x=1时,x﹣1=0,∴x=1不合题意;②当x=﹣1时,x﹣1=﹣2≠0,∴x=﹣1时分式的值为0.故选:C.点评:分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.13.分式的值为零,则x的值为()A.3B.﹣3 C.±3 D.任意实数考点:分式的值为零的条件.分析:分式的值为零:分子等于零,且分母不等于零.解答:解:依题意,得|x|﹣3=0且x+3≠0,解得,x=3.故选:A.点评:本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.若分式的值为0,则x的值为()A.±2 B.2C.﹣2 D.4考点:分式的值为零的条件.专题:计算题.分析:分式的值为零即:分子为0,分母不为0.解答:解:根据题意,得:x2﹣4=0且x﹣2≠0,解得:x=﹣2;故选:C.点评:本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.若分式的值为0,则x的值为()A.0B.﹣1 C.1D.2考点:分式的值为零的条件.专题:探究型.分析:根据分式的值为0的条件列出关于x的不等式组,求出x的值即可.解答:解:∵分式的值为0,∴,解得x=﹣1.故选:B.点评:本题考查的是分式的值为0的条件,即分式值为零的条件是分子等于零且分母不等于零,根据此条件列出关于x的不等式组是解答此题的关键.16.若分式的值为0,则x的值为()A.﹣3 B.3或﹣3 C.3D.0考点:分式的值为零的条件.专题:计算题.分析:根据分式的值为零的条件可以求出x的值.解答:解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选C.点评:本题考查了分式值为0的条件,具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.17.分式的值为0,则()A.x=2 B.x=﹣2 C.x=±2 D.x=0考点:分式的值为零的条件.专题:计算题.分析:根据分式的值为零的条件得到x2﹣4=0且x+2≠0,然后分别解方程与不等式易得x=2.解答:解:∵分式的值为0,∴x2﹣4=0且x+2≠0,解x2﹣4=0得x=±2,而x≠﹣2,∴x=2.故选A.点评:本题考查了分式的值为零的条件:当分式的分子为零并且分母不为零时,分式的值为零.18.如果分式的值为0,则x的值为()A.1B.±1 C.D.﹣1考点:分式的值为零的条件.专题:计算题.分析:要使分式的值为0,必须分式分子的值为0并且分母的值不为0.解答:解:由分子x2﹣1=0解得:x=±1.而当x=﹣1时分母3x+3=﹣3+3=0,分式没有意义.当x=1时,分母3x+3=6≠0.所以x=1.故选A.点评:要注意分母的值一定不能为0,分母的值是0时分式没有意义.19.若分式的值为零,则x的值是()A.0B.±2 C.4D.﹣4考点:分式的值为零的条件.分析:根据分式值为零的条件可得x﹣4=0,且x2﹣4≠0,再解即可.解答:解:由题意得:x﹣4=0,且x2﹣4≠0,解得:x=4,故选:C.点评:此题主要考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.20.若分式的值为0,则x的值是()A.3B.﹣3 C.0D.±3考点:分式的值为零的条件.分析:分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.解答:解:由题意可得x+3=0且x≠0,解得x=﹣3.故选:B.点评:考查了分式的值为零的条件,由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.。

相关文档
最新文档