分式定义及意义

合集下载

分式概念及意义知识讲解

分式概念及意义知识讲解

分式的意义和性质一、分式的概念1、用A、B表示两个整式,A÷B可以表示成的形式,其中A叫做分式的分子,B叫做分式的分母,如果除式B中含有字母,式子就叫做分式。

这就是分式的概念。

研究分式就从这里展开。

2、既然除式里含有字母的有理代数式叫做分式,那么,在分式里分母所包含的字母,就不一定可以取任意值。

分式的分子A可取任意数值,但分母B不能为零,因为用零做除数没有意义。

一般地说,在一个分式里,分子中的字母可取任意数值,但分母中的字母,只能取不使分母等于零的值。

3.(1)分式:,当B=0时,分式无意义。

(2)分式:,当B≠0时,分式有意义。

(3)分式:,当时,分式的值为零。

(4)分式:,当时,分式的值为1。

(5)分式:,当时,即或时,为正数。

(6)分式:,当时,即或时,为负数。

(7)分式:,当时或时,为非负数。

三、分式的基本性质:1、学习分式的基本性质应该与分数的基本性质类比。

不同点在于同乘以或同除以同一个不等于零的整式,这个整式可以是数也可以是字母,只要是不为零的整式。

2、这个性质可用式子表示为:(M为不等于零的整式)3、学习基本性质应注意几点:(1)分子与分母同乘或同除的整式的值不能为零;(2)易犯错误是只乘(或只除)分母或只乘(或只除)分子;(3)如果分子或分母是多项式时,必须乘以多项式的每一项。

4、分式变号法则的依据是分式的基本性质。

5、分式的分子,分母和分式的符号,改变其中任何两个,分式的值不变,如下列式子:,。

四、约分:1、约分是约去分子、分母中的公因式。

就是用分式中分子和分母的公因式去除分子和分母,使分式化简为最简分式,最简分式又叫既约分式。

2、约分的理论依据是分式的基本性质。

3、约分的方法:(1)如果分式的分子和分母都是几个因式乘积的形式,就约去分子和分母中相同因式的最低次幂,当分子和分母的系数是整数时,还要约去它们的最大公约数。

例1,请说出下列各式中哪些是整式,那些是分式?(1)(2)(3)(4)(5)a2-a(6)。

分式的知识点总结

分式的知识点总结

分式的知识点总结一、分式的基本概念1. 分式的定义:分式是由一个整数(分子)与另一个非零整数(分母)用分数线(也称为分子线)相连所构成的数,通常表示为 a/b(a为分子,b为分母)。

2. 分式的分类:根据分母的情况,分式可以分为真分式、假分式和带分数。

真分式的分子比分母小,假分式的分子比分母大,带分数由整数部分和真分数部分组成。

3. 分式的性质:分式的分子和分母都可以乘以(或除以)同一非零数,而不改变其值;分式的分子和分母互换位置,得到的新分式称为倒数;两个分式相乘,分子相乘,分母相乘;两个分式相除,分子相除,分母相除。

这些性质都是分式运算中的基本规律,对于分式的计算和化简有着重要的作用。

二、分式的运算1. 分式的加减法:要进行分式的加减法,首先需要找到它们的公分母,然后分别对分子进行相应的加减操作,最后将结果化简为最简分式。

如果分式的分母不同,可以通过通分的方式将它们转化为相同分母后进行计算。

2. 分式的乘法:分式的乘法是将分式的分子相乘,分母相乘,然后将结果化简为最简分式。

如果有字数相同的多个分式相乘,也可以先将它们的分子和分母分别相乘,最后将所有结果相乘得到最终结果。

3. 分式的除法:分式的除法是将两个分式相除,即将第一个分式乘以第二个分式的倒数,然后化简为最简分式。

三、分式的应用1. 代数中的分式:在代数中,分式可以用来表示多项式中的系数和字母之间的比值关系,例如多项式的根、系数、因式分解等都涉及到分式的计算和化简。

2. 几何中的分式:在几何中,分式可以用来表示两个线段或面积的比值,例如在相似三角形或相似图形中,就可以利用分式来表示相似比例。

3. 概率中的分式:在概率中,分式可以用来表示事件的发生概率,例如事件发生的次数与总次数之间的比值就可以用分式表示。

综上所述,分式是数学中重要的概念之一,它不仅具有基本的定义和运算规律,还在各个数学领域中有着广泛的应用。

熟练掌握分式的相关知识和运算方法,对于学习代数、几何和概率等数学课程都具有重要的意义。

分式的全部知识点总结

分式的全部知识点总结

分式的全部知识点总结在本文中,我们将全面总结分式的相关知识点,包括分式的定义、简化、运算、化简以及分式方程的解法等内容。

一、分式的定义分式是用分数表示的数,它是分子与分母之比。

其形式通常为a/b,其中a为分子,b为分母,分子和分母都是整数。

分式通常表示为a/b,读作a分之b,a称为分子,b称为分母。

分式也可以表示为小数形式,分数形式等,但本质上还是表示两个数之间的比值关系。

二、分式的简化分式的简化是指将分式化为最简形式的过程。

通常情况下,分式的分子和分母可以约分,分子和分母的公因数可以化简,最终得到最简分式。

简化分式的步骤包括:1. 找出分子和分母的公因数;2. 用公因数约分分子和分母;3. 化简得到最简分式。

例如,分式2/4可以简化为1/2,分式6/9可以简化为2/3等。

三、分式的运算分式的运算包括加减乘除四则运算。

分式的加减法通常需要找到它们的公分母,然后进行加减,乘法和除法要分别进行分子和分母的运算,然后化简得到最终结果。

加减法运算步骤如下:1. 找到分式的公分母;2. 将分式按照公分母进行加减;3. 化简得到最终结果。

例如,分式1/3和2/5的加法运算为:1/3 + 2/5 = 5/15 + 6/15 = 11/15。

乘法和除法运算步骤如下:1. 分子相乘,分母相乘;2. 化简得到最终结果。

例如,分式1/2和2/3的乘法运算为:1/2 * 2/3 = 2/6 = 1/3。

四、分式方程的解法分式方程是含有分式的方程,通常需要通过化简分式,转化为一般方程,然后解方程得到结果。

解分式方程的步骤如下:1. 化简分式,得到一般方程;2. 解一般方程得到结果;3. 检验解是否正确。

例如,解分式方程2/x = 3的步骤如下:1. 化简得到2 = 3x;2. 解一般方程得到x = 2/3;3. 检验得到的解是否正确。

以上是关于分式的全部知识点总结,分式是数学中非常重要的概念,掌握分式的相关知识对于数学学习具有重要意义。

分式的意义和性质

分式的意义和性质

---------------------------------------------------------------最新资料推荐------------------------------------------------------分式的意义和性质分式的意义和性质一、分式的概念 1、用 A、 B 表示两个整式, AB 可以表示成的形式,其中 A 叫做分式的分子, B 叫做分式的分母,如果除式 B 中含有字母,式子就叫做分式。

这就是分式的概念。

研究分式就从这里展开。

2、既然除式里含有字母的有理代数式叫做分式,那么,在分式里分母所包含的字母,就不一定可以取任意值。

分式的分子 A 可取任意数值,但分母 B 不能为零,因为用零做除数没有意义。

一般地说,在一个分式里,分子中的字母可取任意数值,但分母中的字母,只能取不使分母等于零的值。

3、(1)分式:,当 B=0 时,分式无意义。

(2)分式:,当 B0 时,分式有意义。

(3)分式:,当时,分式的值为零。

(4)分式:,当时,分式的值为 1。

(5)分式:1 / 10,当时,即或时,为正数。

(6)分式:,当时,即或时,为负数。

(7)分式:,当时或时,为非负数。

二、分式的基本性质:1、学习分式的基本性质应该与分数的基本性质类比。

不同点在于同乘以或同除以同一个不等于零的整式,这个整式可以是数也可以是字母,只要是不为零的整式。

2、这个性质可用式子表示为:(M 为不等于零的整式) 3、学习基本性质应注意几点:(1)分子与分母同乘或同除的整式的值不能为零;(2)易犯错误是只乘(或只除)分母或只乘(或只除)分子;(3)如果分子或分母是多项式时,必须乘以多项式的每一项。

4、分式变号法则的依据是分式的基本性质。

5、分式的分子,分母和分式的符号,改变其中任何两个,分式的值不变,如下列式子:,。

三、约分:1、约分是约去分子、分母中的公因式。

就是用分式中分子和分母的公因式去除分子和分母,使分式化简为最简分式,最简分式又叫既约分式。

分式知识点归纳

分式知识点归纳

《分式》知识点归纳一、分式的定义:一般地,如果A,B表示两个整数,并且B中含有字母,那么式子A/B 叫做分式,A为分子,B为分母。

二、与分式有关的条件①分式有意义:分母不为0(B≠0)②分式无意义:分母为0(B=0)③分式值为0:分子为0且分母不为0④分式值为正或大于0:分子分母同号⑤分式值为负或小于0:分子分母异号⑥分式值为1:分子分母值相等(A=B)⑦分式值为-1:分子分母值互为相反数(A+B=0)三、分式的基本性质(1)分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。

(2)分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

(3)注意:在应用分式的基本性质时,要注意同乘或同除的整式不为O这个限制条件和隐含条件分母不为0。

四、分式的约分1.定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。

2.步骤:把分式分子分母因式分解,然后约去分子与分母的公因。

3.两种情形:①分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。

②分子分母若为多项式,先对分子分母进行因式分解,再约分。

4.最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。

◆约分时。

分子分母公因式的确定方法:1)系数取分子、分母系数的最大公约数作为公因式的系数.2)取各个公因式的最低次幂作为公因式的因式.3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式.五、分式的通分1.定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。

(依据:分式的基本性质!)2.最简公分母:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

◆通分时,最简公分母的确定方法:1.系数取各个分母系数的最小公倍数作为最简公分母的系数. 2.取各个公因式的最高次幂作为最简公分母的因式.3.如果分母是多项式,则应先把每个分母分解因式,然后判断最简公分母.3、“两大类三类型”通分“两大类”指的是:一是分母是单项式;二是分母是多项式“两大类”下的“三类型”:“二、三”型,“二,四”型,“四、六”型1)“二、三”型:指几个分母之间没有关系,最简公分母就是他们的乘积;2)“二,四”型:指其一个分母完全包括另一个分母,最简公分母就是其一的那个分母;3)“四、六”型:指几个分母之间有相同的因式,同时也有独特的因式,最简公分母既要有独特的因式,也应包括相同的因式4.通分的方法:先观察分母是单项式还是多项式,如果是分母单项式,那就继续考虑是什么类型,找出最简公分母,进行通分;如果分母是多项式,那么先把分母能分解的要因式分解,考虑什么类型,继续通分。

分式讲义

分式讲义

分式一、基本知识1、分式定义:形如BA的式子叫分式,其中A 、B 是整式,且B 中含有字母。

(1)分式无意义:B=0时,分式无意义; B ≠0时,分式有意义。

(2)分式的值为0:A=0,B ≠0时,分式的值等于0。

(3)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。

方法是把分子、分母因式分解,再约去公因式。

(4)最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。

分式运算的最终结果若是分式,一定要化为最简分式。

(5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。

(6)最简公分母:各分式的分母所有因式的最高次幂的积。

(7)有理式:整式和分式统称有理式。

2、分式的基本性质: (1))0(的整式是≠⋅⋅=M M B M A B A ;(2))0(的整式是≠÷÷=M MB M A B A (3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算:(1)加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成同分母的分式再相加减。

(2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。

(3)除:除以一个分式等于乘上它的倒数式。

(4)乘方:分式的乘方就是把分子、分母分别乘方。

二、例题讲析 1、 (2011黑龙江黑河,18,3分)分式方程=--11x x)2)(1(+-x x m 有增根,则m 的值为 ( )A 0和3B 1C 1和-2D 3 【答案】D2、 (2011年铜仁地区,4,4分)小明从家里骑自行车到学校,每小时骑15km ,可早到10分钟,每小时骑12km 就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm ,则据题意列出的方程是( )A.60512601015-=+x x B.60512601015+=-x x C.60512601015-=-x x D.5121015-=+x x .【答案】A3、(2011内蒙古包头,17,3分)化简122144112222-++÷++-⋅-+a a a a a a a ,其结果是 . 【答案】11-a 4. (2011广西梧州,24,10分)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a 元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a 应取何值?【答案】解:(1)设今年甲型号手机每台售价为x 元,由题意得, 80000x+500=60000x . 解得x =1500. 经检验x =1500是方程的解.故今年甲型号手机每台售价为1500元. (2)设购进甲型号手机m 台,由题意得, 17600≤1000m +800(20-m )≤18400, 8≤m ≤12.因为m 只能取整数,所以m 取8、9、10、11、12,共有5种进货方案. (3)方法一: 设总获利W 元,则W =(1500-1000)m +(1400-800-a )(20-m ), W =(a -100)m +12000-20a .所以当a =100时,(2)中所有的方案获利相同. 方法二:由(2)知,当m =8时,有20-m =12.此时获利y 1=(1500-1000)×8+(1400-800-a )×12=4000+(600-a )×12 当m=9时,有20-m=11此时获利y 2=(1500-1000)×9+(1400-800-a )×11=4500+(600-a )×11 由于获利相同,则有y 1= y 2.即4000+(600-a )×12=4500+(600-a )×11,解之得a =100 .所以当a =100时,(2)中所有方案获利相同. 5. (2011贵州黔南,21,10分)为了美化都匀市环境,打造中国优秀旅游城市,现欲将剑江河进行清淤疏通改造,现有两家清淤公司可供选择,这两家公司提供信息如表所示:单位 清淤费用(元/m 3) 清淤处理费(元)甲公司18 5000 乙公司20 0 (1)若剑江河首批需要清除的淤泥面积大约为1.2万平方米,平均厚度约为0.4米,那么请哪个清淤公司进行清淤费用较省,请说明理由。

苏科版初中八年级数学下册期末分式有意义及值为0的条件知识点含答案

苏科版初中八年级数学下册期末分式有意义及值为0的条件知识点含答案

苏科版初中八年级数学下册期末分式有意义及值为0的条件知识点含答案1、分式的定义一般地,如果,表示两个整式,并且中含有字母,那么代数式叫做分式,其中是分式的分子,是分式的分母.对于任意一个分式,分母都不能为零.2、分式有意义、无意义的条件(1)当分母时,分式无意义; (2)当分母时,分式有意义. 注意:①分母不为0,并不是说分母中的字母不能为0,而是表示分母的整式的值不能为0; ②分式是否有意义,只与分式的分母是否为0有关,而与分式的分子的值是否为0无关.3、分式的值(1)分式值为:分子为且分母不为,即; (2)分式值为正:分子分母同号,即或; (3)分式值为负:分子分母异号,即或. 注意:①分式的值为0必须同时满足两个条件:分子的值为0;分母的值不为0.具体运用时,常常忽视分母不为0这一隐含条件而导致出错;②必须在分式有意义的前提下,才能谈分式的值时多少,也就是说,必须在分式有意义的前提下,才能讨论分式的值是否等于0.典例1(2019春•江阴市期末)若分式有意义,则应满足的条件是 A .B .C .D .【解答】解:若分式有意义, 则,A B B A B A B 0B =A B0B ≠A B 00000A B =⎧⎨≠⎩00A B >⎧⎨>⎩00A B <⎧⎨<⎩00A B >⎧⎨<⎩00A B <⎧⎨>⎩2x x -x ()2x ≠2x =2x >0x ≠2x x -20x -≠解得:,故选:.典例2(2019春•玄武区期末)若分式的值为零,则 . 【解答】解:分式的值为零, 且,解得:.故答案为:1.典例3(2019春•鼓楼区期末)若分式的值为0,则的值为 . 【解答】解:若分式的值为0,则且. 开方得,.当时,分母为0,不合题意,舍去.故的值为.故答案为.2x ≠A 2x x x-x =2x x x-20x x ∴-=0x ≠1x =242x x --x 242x x --240x -=20x -≠12x =22x =-2x =x 2-2-。

分式 因式分解

分式 因式分解

分式与因式分解在数学领域中,分式和因式分解是两个基础但极其重要的概念。

它们不仅在代数中占据核心地位,而且对于解决各种数学问题具有关键作用。

本文将详细探讨分式的定义、性质以及因式分解的方法和应用。

一、分式的概述分式,顾名思义,是指一个数学表达式被另一个数学表达式除所得的商。

具体来说,分式由分子和分母两部分组成,形如$\frac{a}{b}$,其中$a$是分子,$b$是分母。

需要注意的是,分母不能为0,否则分式无意义。

分式具有多种性质,如基本性质、运算性质等。

基本性质包括分式的值不变性,即分式的分子和分母同时乘以或除以同一个非零数,分式的值不变。

运算性质则涉及分式的加减乘除运算,这些运算都需遵循一定的法则和步骤。

二、因式分解的概念与方法因式分解是将一个多项式表示为几个整式的乘积的形式。

这种方法在解决代数方程、不等式以及函数问题等方面具有广泛应用。

因式分解的核心在于找到多项式中的公因式或利用公式进行分解。

常见的因式分解方法包括提取公因式法、公式法(如平方差公式、完全平方公式等)以及分组分解法等。

这些方法各有特点,适用于不同类型的多项式。

在实际应用中,我们需要根据具体情况选择合适的因式分解方法。

三、分式与因式分解的联系分式和因式分解在代数中紧密相连。

一方面,因式分解可以简化分式,使其更易于计算和理解。

例如,通过因式分解,我们可以将复杂的分式化简为几个简单分式的和或差,从而便于进行后续的运算和分析。

另一方面,分式运算中也经常需要用到因式分解的技巧。

例如,在求解分式方程时,我们通常需要对方程两边进行因式分解,以便消除分母或降低方程的次数。

此外,在分式的加减运算中,通过因式分解可以找到通分母,从而简化运算过程。

四、分式与因式分解的应用分式和因式分解在数学领域具有广泛的应用。

在代数中,它们是解决方程、不等式和函数问题的重要工具。

在几何中,分式和因式分解也被用来描述和解决与形状、面积和体积相关的问题。

此外,在实际生活中,分式和因式分解也发挥着重要作用。

分式的概念与运算知识点总结

分式的概念与运算知识点总结

分式的概念与运算知识点总结分式是数学中常见的一种表示方法,用于表示两个数之间的比例关系或部分关系。

本文将对分式的概念和运算相关的知识点进行总结,以帮助读者更好地理解和运用分式。

一、分式的基本概念1. 分式的定义:分式是由分子和分母组成的表达式,其中分母不能为零。

2. 分式的读法:分子通常读作“分子”,分母读作“分母”。

例如,"3/4 "读作“三分之四”。

3. 分式的意义:分式表示部分与整体的比例关系,可用于表示分数、比率、百分比等概念。

二、分式的基本形式1. 真分式:分子小于分母的分式,如:3/4。

2. 假分式:分子大于等于分母的分式,如:5/4。

3. 整式:分子恒为零的分式,如:0/6。

4. 真分数:分子绝对值小于分母的分式,如:|-2/5|。

5. 假分数:分子绝对值大于等于分母的分式,如:|7/2|。

三、分式的基本运算1. 分式的相等:若两个分式的分子、分母完全相同,则它们相等。

例如,1/2 = 2/4。

2. 分式的加减运算:将两个分式的分母取相同的公倍数,然后将分子相加或相减。

例如,1/3 + 1/4 = 7/12。

3. 分式的乘除运算:将两个分式的分子相乘,分母相除。

例如,2/3 × 4/5 = 8/15。

4. 分式的倒数:将分式的分子与分母互换位置得到的新分式称为原分式的倒数。

例如,倒数为3/4的分式为4/3。

5. 分式的化简:将分式的分子和分母约分,使它们没有公因数。

例如,8/12可以化简为2/3。

四、分式的应用1. 分式在比例问题中的应用:通过设置分式的比例关系来求解问题。

例如,已知一辆车以每小时60公里的速度行驶,求2小时行驶的距离。

2. 分式在百分数问题中的应用:将百分数转化为分式,进行运算。

例如,计算75%的数值为多少。

3. 分式在平均数问题中的应用:通过设置分式的平均数关系来求解问题。

例如,已知某次数学考试的平均分为80分,其中A同学的得分为90分,求B同学的得分。

分式知识点

分式知识点

分式知识点一、分式定义形如AB,A、B是整式,B中含有未知数且B不等于0的式子叫做分式。

其中A叫做分式的分子,B叫做分式的分母。

二、分式的基本性质(1)分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

(2)分式中的符号法则:分子、分母、分式本身同时改变两处的符号,分式的值不变。

三、最简分式一个分式的分子与分母没有公因式时,叫最简分式。

和分数不能化简一样,叫最简分数。

四、最简公分母(1)最简公分母的定义通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

(2)一般方法①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里。

②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂。

五、分式有、无意义的条件1、分式有意义的条件(1)分式有意义的条件是分母不等于零。

(2)分式无意义的条件是分母等于零。

(3)分式的值为正数的条件是分子、分母同时大于零。

(4)分式的值为负数的条件是分子、分母异号。

2、分式的值为零的条件分式值为零的条件是分子等于零且分母不等于零。

注意:“分母不为零”这个条件不能少3、分式无意义的条件分式有意义的条件是分母等于零六、分式的化简求值先把分式化简后,再把分式中未知数对应的值代入求出分式的值。

在化简的过程中要注意运算顺序和分式的化简。

化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式。

最简分式的定义:一个分式的分子与分母没有公因式时,叫最简分式。

分数不能化简一样,叫最简分数。

七、分式的通分与约分通分(1)通分的定义:把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这样的分式变形叫做分式的通分。

(2)通分的关键是确定最简公分母。

①最简公分母的系数取各分母系数的最小公倍数。

分式必考知识点总结(1)(2)

分式必考知识点总结(1)(2)

考点卡片1.分式的定义(1)分式的概念:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式.(2)因为0不能做除数,所以分式的分母不能为0.(3)分式是两个整式相除的商,分子就是被除式,分母就是除式,而分数线可以理解为除号,还兼有括号的作用.(4)分式的分母必须含有字母,而分子可以含字母,也可以不含字母,亦即从形式上看是AB的形式,从本质上看分母必须含有字母,同时,分母不等于零,且只看初始状态,不要化简.(5)分式是一种表达形式,如x+1x+2是分式,如果形式都不是AB的形式,那就不能算是分式了,如:(x+1)÷(x+2),它只表示一种除法运算,而不能称之为分式,但如果用负指数次幂表示的某些代数式如(a+b)﹣2,y﹣1,则为分式,因为y﹣1=1y仅是一种数学上的规定,而非一种运算形式.2.分式有意义的条件(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.(3)分式的值为正数的条件是分子、分母同号.(4)分式的值为负数的条件是分子、分母异号.3.分式的值为零的条件分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.4.分式的值分式求值历来是各级考试中出现频率较高的题型,而条件分式求值是较难的一种题型,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.5.约分(1)约分的定义:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.(2)确定公因式要分为系数、字母、字母的指数来分别确定.①分式约分的结果可能是最简分式,也可能是整式.②当分子与分母含有负号时,一般把负号提到分式本身的前面.③约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.(3)规律方法总结:由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.6.分式的乘除法(1)分式的乘法法则:分式乘分式,用分子的积作积的分子,分母的积作积的分母.(2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.(3)分式的乘方法则:把分子、分母分别乘方.(4)分式的乘、除、乘方混合运算.运算顺序应先把各个分式进行乘方运算,再进行分式的乘除运算,即“先乘方,再乘除”.(5)规律方法总结:①分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分.②整式和分式进行运算时,可以把整式看成分母为1的分式.③做分式乘除混合运算时,要注意运算顺序,乘除法是同级运算,要严格按照由左到右的顺序进行运算,切不可打乱这个运算顺序.7.分式的加减法(1)同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减.(2)异分母分式加减法法则:把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.:说明:①分式的通分必须注意整个分子和整个分母,分母是多项式时,必须先分解因式,分子是多项式时,要把分母所乘的相同式子与这个多项式相乘,而不能只同其中某一项相乘.②通分是和约分是相反的一种变换.约分是把分子和分母的所有公因式约去,将分式化为较简单的形式;通分是分别把每一个分式的分子分母同乘以相同的因式,使几个较简单的分式变成分母相同的较复杂的形式.约分是对一个分式而言的;通分则是对两个或两个以上的分式来说的.8.分式的化简求值先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.【规律方法】分式化简求值时需注意的问题1.化简求值,一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤,代入求值的模式一般为“当…时,原式=…”.2.代入求值时,有直接代入法,整体代入法等常用方法.解题时可根据题目的具体条件选择合适的方法.当未知数的值没有明确给出时,所选取的未知数的值必须使原式中的各分式都有意义,且除数不能为0.9.零指数幂零指数幂:a0=1(a≠0)由a m÷a m=1,a m÷a m=a m﹣m=a0可推出a0=1(a≠0)注意:00≠1.10.解一元一次方程(1)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.(2)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(3)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式体现化归思想.将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a 为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负.11.分式方程的解求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.12.解分式方程(1)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.(2)解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应如下检验:①将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解.②将整式方程的解代入最简公分母,如果最简公分母的值为0,则整式方程的解不是原分式方程的解.所以解分式方程时,一定要检验.13.分式方程的增根(1)增根的定义:在分式方程变形时,有可能产生不适合原方程的根,即代入分式方程后分母的值为0或是转化后的整式方程的根恰好是原方程未知数的允许值之外的值的根,叫做原方程的增根.(2)增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取哪些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.(3)检验增根的方法:把由分式方程化成的整式方程的解代入最简公分母,看最简公分母是否为0,如果为0,则是增根;如果不是0,则是原分式方程的根.14.分式方程的应用1、列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.2、要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作时间等等.列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.15.一元一次不等式的应用(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.(2)列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.(3)列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.。

分式的定义和有意义的条件

分式的定义和有意义的条件

分式的定义和有意义的条件一、分式的定义和有意义的条件1、分式的概念一般地,如果$A$,$B$表示两个整式,并且$B$中含有字母,那么式子$\frac{A}{B}$叫做分式。

分式$\frac{A}{B}$中,$A$叫做分子,$B$叫做分母。

2、分式有意义的条件分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0。

即当$B≠0$时,分式$\frac{A}{B}$才有意义。

3、分式的值为0的条件当分式的分子等于0,且分母不等于0时,分式的值为0,即当$A=0$,且$B≠0$时,分式$\frac{A}{B}=0$。

4、分式的基本性质(1)分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

即$\frac{A}{B}=\frac{A·C}{B·C}$,$\frac{A}{B}=\frac{A÷C}{B÷C}$$(C≠0)$,其中$A$,$B$,$C$是整式。

(2)约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。

(3)约分法则:把一个分式约分,如果分子和分母都是几个因式乘积的形式,约去分子和分母中相同因式的最低次幂;分子与分母的系数约去它们的最大公约数,如果分式的分子、分母是多项式,先分解因式,然后约分。

(4)最简分式:分子与分母没有公因式的分式叫做最简分式。

(5)通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

(6)通分法则:把两个或者几个分式通分,① 先求各个分式的最简公分母(即各分母系数的最小公倍数、相同因式的最高次幂与所有不同因式的积)。

② 再利用分式的基本性质,用最简公分母除以原来各分母所得的商分别去乘原来分式的分子、分母,使每个分式变为与原分式的值相等,而且以最简公分母为分母的分式。

③ 若分母是多项式,则先分解因式,再通分。

(7)最简公分母:各分式分母的所有因式的最高次幂的积,叫做最简公分母。

人教版八年级数学上册第十五章 分式知识点总结和题型归纳

人教版八年级数学上册第十五章 分式知识点总结和题型归纳

人教版八年级数学上册第十五章分式知识点总结和题型归纳分式知识点总结和题型归纳第一部分分式的运算一)分式的定义及有关题型考查分式的定义:一般地,如果A,B表示两个整数,并且B中含有字母,那么式子A/B为分式。

例1:下列代数式中是分式的有:(x- y)/(2x+ y),π/(2x- y),(x+ y)/(a+ b)。

考查分式有意义的条件:分式有意义:分母不为0 (B≠0)分式无意义:分母为0 (B=0)例1:当x有何值时,下列分式有意义:1) (x-4)/(13x2-6x)2) 2/x3) 2/(x-4)4) (x+4|x|-3x+2)/(x-1)5) x/(x2-2x-3)考查分式的值为的条件:分式值为:分子为A且分母不为0 (A/B) 例1:当x取何值时,下列分式的值为0.1) (x-1)/(x+3)2) |x|-23) (x2-2x-3)/(x-5)(x+6)例2:当x为何值时,下列分式的值为零:1) 5-|x-1|/(x+4)2) (25-x2)/(x-6)(x+5)考查分式的值为正、负的条件:分式值为正或大于0:分子分母同号 (A/B>0) 分式值为负或小于0:分子分母异号 (A/B<0) 例1:(1) 当x为何值时,分式4/(8-x)为正;2) 当x为何值时,分式5-x/(5+x)为负;3) 当x为何值时,分式(x-2)/(x+3)为非负数.例2:解不等式|x|-2≤(x+1)/(x+5)考查分式的值为1,-1的条件:分式值为1:分子分母值相等 (A/B=1)分式值为-1:分子分母值互为相反数 (A+B=0)例1:若分式|x-2|/(x+2)的值为1,-1,则x的取值分别为3和-1.思维拓展练题:1、若a>b>0,a2+b2-6ab=0,则(a+b)/(a-b)=9/5.2、一组按规律排列的分式:-b/2.5/b。

-8/b。

11/b。

则第n 个分式为(3n-1)/b。

分式知识点总结

分式知识点总结

分式知识点总结分式是数学中的一个重要概念,它在实际应用中十分常见。

本文将对分式的定义、基本性质以及常见的操作进行总结和讲解。

一、分式的定义分式由分子和分母组成,通常形式为a/b,其中a和b为整数,b不等于0。

分子表示了被分割的数量,分母表示了每份的份数。

二、分式的基本性质1. 分式的值是一个有理数,可以是正数、负数或零。

2. 分式的值可以是一个整数、真分数或带分数。

3. 分式可以化简,即将分子和分母同时除以一个公因数,得到一个等价的分式。

4. 分式可以相互比较大小,分子相乘,分母相乘,得到的积的大小关系不变。

三、分式的运算1. 分式的加法和减法:- 分式加法:将两个分式的分母找到一个公倍数,分别乘以这个公倍数后得到新的分数,然后将它们的分子相加,分母保持不变。

- 分式减法:与分式加法类似,将两个分式的分母找到一个公倍数,分别乘以这个公倍数后得到新的分数,然后将它们的分子相减,分母保持不变。

2. 分式的乘法和除法:- 分式乘法:将两个分式的分子相乘,分母相乘,得到的分子作为新分数的分子,得到的分母作为新分数的分母。

- 分式除法:将第一个分式的分子与第二个分式的分母相乘,作为新分数的分子;将第一个分式的分母与第二个分式的分子相乘,作为新分数的分母。

3. 分式的化简:- 将分式的分子和分母同时除以一个公因数,直到分子和分母没有公因数为止,得到一个等价的分式。

四、分式的应用场景1. 比例和比例分配问题:比例可以用分式来表示,通过求解分式可以解决比例分配问题。

2. 股票涨跌问题:利用分式可以计算股票的涨跌幅度。

3. 质量问题:分式可以用来表示物体的质量与体积之间的关系,解决质量问题。

通过以上对分式的定义、基本性质以及常见的操作进行总结和讲解,相信读者对分式的概念及其应用有了更深入的理解。

在实际问题中,对分式的灵活运用可以帮助我们更好地解决各种计算和应用问题。

分式概念及意义

分式概念及意义

分式概念及意义分式的意义和性质一、分式的概念1、用A、B表示两个整式,A÷B可以表示成的形式,其中A叫做分式的分子,B叫做分式的分母,如果除式B中含有字母,式子就叫做分式。

这就是分式的概念。

研究分式就从这里展开。

2、既然除式里含有字母的有理代数式叫做分式,那么,在分式里分母所包含的字母,就不一定可以取任意值。

分式的分子A可取任意数值,但分母B不能为零,因为用零做除数没有意义。

一般地说,在一个分式里,分子中的字母可取任意数值,但分母中的字母,只能取不使分母等于零的值。

3.(1)分式:,当B=0时,分式无意义。

(2)分式:,当B≠0时,分式有意义。

(3)分式:,当时,分式的值为零。

(4)分式:,当时,分式的值为1。

(5)分式:,当时,即或时,为正数。

(6)分式:,当时,即或时,为负数。

(7)分式:,当时或时,为非负数。

三、分式的基本性质:1、学习分式的基本性质应该与分数的基本性质类比。

不同点在于同乘以或同除以同一个不等于零的整式,这个整式可以是数也可以是字母,只要是不为零的整式。

2、这个性质可用式子表示为:(M为不等于零的整式)3、学习基本性质应注意几点:(1)分子与分母同乘或同除的整式的值不能为零;(2)易犯错误是只乘(或只除)分母或只乘(或只除)分子;(3)如果分子或分母是多项式时,必须乘以多项式的每一项。

4、分式变号法则的依据是分式的基本性质。

5、分式的分子,分母和分式的符号,改变其中任何两个,分式的值不变,如下列式子:,。

四、约分:1、约分是约去分子、分母中的公因式。

就是用分式中分子和分母的公因式去除分子和分母,使分式化简为最简分式,最简分式又叫既约分式。

2、约分的理论依据是分式的基本性质。

3、约分的方法:(1)如果分式的分子和分母都是几个因式乘积的形式,就约去分子和分母中相同因式的最低次幂,当分子和分母的系数是整数时,还要约去它们的最大公约数。

例1,请说出下列各式中哪些是整式,那些是分式?(1)(2)(3)(4)(5)a2-a(6)。

分式基本知识点总结

分式基本知识点总结

分式基本知识点总结分式是数学中的一种表达形式,用于表示两个数的比例关系。

分式的基本知识点包括分式的定义、分母不为零、分式的化简、分式的乘除、分式的加减、分式的负号、分式方程等。

1.分式的定义分式是两个整数或两个代数式之间的比值,用a/b表示,其中a称为分子,b称为分母。

分子和分母都可以是整数、代数式、多项式等。

2.分母不为零分式的分母不能为零,这是因为分母为零的分式在数学上是没有意义的。

如果分母为零,分式将无法计算。

3.分式的化简分式的化简是指将分式中的分子和分母进行约分,使得分式的值保持不变但分子和分母中的因式最简。

化简分式时要找到分子和分母的公因式,然后将其约去,直到无法再约分为止。

4.分式的乘除分式的乘法是指两个分式相乘,结果分子相乘、分母相乘。

分式的除法是指两个分式相除,结果分子乘以第二个分式的倒数,分母乘以第二个分式的分子。

5.分式的加减分式的加法是指两个分式相加,结果分子相加后的和除以分母。

分式的减法是指两个分式相减,结果分子相减后的差除以分母。

6.分式的负号分式前加负号,表示取分式的相反数,即分子变号,分母不变。

分式的相反数与原分式的绝对值相等,但符号相反。

7.分式方程分式方程是包含一个或多个分式的等式。

求解分式方程的步骤是消去分母,整理方程,然后解线性方程。

8.分式的常见性质-相等性:两个分式相等当且仅当它们的分子和分母成比例。

-分式的加减乘除仍为分式。

-分式的倒数等于将分子与分母互换位置得到的分式。

-分式的绝对值是分子和分母的绝对值的比值。

-分式的乘方等于分子和分母分别的乘方。

总结:分式是数学中用来表示两个数的比例关系的一种表达形式。

分式的基本知识点包括分式的定义、分母不为零、分式的化简、分式的乘除、分式的加减、分式的负号、分式方程等。

熟练理解和应用分式的基本知识点,可以帮助我们解决实际问题和进行数学计算。

分式的定义分式有意义的条件分式的基本性质

分式的定义分式有意义的条件分式的基本性质

分式的定义:一般地,用A、B表示两个整式,A÷B就可以表示成的形式,如果B中含有字母,式子就叫做分式。

其中,A叫做分式的分子,B叫做分式的分母。

分式和整式通称为有理式。

注:(1)分式的分母中必须含有字母;(2)分母的值不能为零,如果分母的值为零,那么分式无意义。

分式的定义:一般地,用A、B表示两个整式,A÷B就可以表示成的形式,如果B中含有字母,式子就叫做分式。

其中,A叫做分式的分子,B叫做分式的分母。

分式和整式通称为有理式。

注:(1)分式的分母中必须含有字母;(2)分母的值不能为零,如果分母的值为零,那么分式无意义。

分式的概念包括3个方面:①分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的作用;②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;③在任何情况下,分式的分母的值都不可以为0,否则分式无意义。

这里,分母是指除式而言。

而不是只就分母中某一个字母来说的。

也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。

分式有意义的条件:(1)分式有意义条件:分母不为0;(2)分式无意义条件:分母为0;(3)分式值为0条件:分子为0且分母不为0;(4)分式值为正(负)数条件:分子分母同号时,分式值为正;分子分母异号时,分式值为负。

分式的区别概念:分式与分数的区别与联系:a.分式与分数在形式上是一致的,都有一条分数线,相当于除法的“÷”,都有分子和分母,都可以表示成(B≠0)的形式;b.分式中含有字母,由于字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况。

整式和分式统称为有理式。

带有根号且根号下含有字母的式子叫做无理式。

无限不循环小数也是无理式无理式和有理式统称代数式分式的基本性质是什么分式的基本性质是分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变。

分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10.1 分式定义及意义
一、复习引入:
1、什么是单项式多项式举例说明。

2、根据条件列出代数式
①半径为r 的圆的面积 。

②长方形的宽为am ,长比宽多5m ,求该长方形的面积; 。

③面积为102cm 的长方形花坛,如果原计划长为b cm ,后决定延长3cm ,那么它的宽用代数式表示为 。

④底为(a-2)cm ,面积为s 2cm 的三角形的高为 。

思考:观察所列代数式①②与③④有何区别 。

二、引导思维、自学感知
1、观察③④,试总结分式定义:一般地,用A 、B 表示 ,A ÷B (B ≠0)可以表示为 的形式。

如果B 中含有 ,那么我们把式子 ( )叫分式。

(另一种定义:分母中含有 的代数式叫分式)
例1 下列各式是分式吗如果不是,请说明理由。

⑴23+x x (x ≠ -2) ⑵3
2+x
例2 当x 取什么值时,下列各式有意义

13-x x ⑵3
21+-x x ⑶)1)(2(3+-+x x x
小结:分式有意义的条件:
2、巩固练习(一):
1、下列各式哪些是分式哪些是整式 ⑴b 1 ⑵325+-a a ⑶y x y x --22 ⑷π
x ⑸2n m + ⑹1312-b 2、x 取什么值时,下列分式有意义
⑴123++x x ⑵5332+-x x ⑶2132x
x -- ⑷65922+--x x x
2、例题分析
例1、当x 是什么数时,分式2
312+-x x 的值等于零 例2、若分式11+-x x 的值为零,求x 的值。

例3、当x 取什么值时,分式3
92--x x 值为零
小结:分式的值为零的条件: 。

巩固练习:(二)
1、当x 取什么值时,下列分式值为零 ⑴x
352- ⑵392--x x ⑶2652-+-x x x ⑷622-+-x x x
三、拓展提高:
1、若分式
x 352-值小于零,求x 的取什么值范围。

2、若132+-x x >0成立,求x 的取值范围。

3、当x 为何值时分式
2)1(1-+x x 的值为正数 4、当a 为何值时,2)1(4+a 的值为1
四、课堂小结:
通过本节课你有什么收获
五、课堂检测
1、下列各式44b -,57+a ,14+a ,b a +2,6
-πx 是分式的有( )
A 、1个
B 、2个
C 、3个
D 、4个
2、填空:(1)当x 时,分式124+-x x 值为零 (2)当x 时,分式1
324+-x x 有意义 (3)当x 时,分式
14+x 无意义 (4)当x 时,代数式 1225-+x x 是分式 3、 当x 取什么值时,下列分式值为零 ⑴x x 5213+- ⑵7
32-+x x ⑶112+-x x
※4、若分式x 15253
-的值为负数,求x 的取什么值范围。

※5、当x =3时,13-+x k
x 的值为零,求k 的值。

六、作业:P5 练习1、2、3。

相关文档
最新文档