分式概念
分式的概念课件
将分数转换为小数是通过除法实现的,例如,$frac{2}{3} = 0.overline{6}$;将小数转换为分数是通 过乘以其倒数或将小数表示为两个整数的比值实现的,例如,$0.333... = frac{1}{3}$。
04
分式的应用
物理中的分式
总结词
物理中的分式主要用于描述和解决与速度、 加速度、功率等相关的物理问题。
分式的概念ppt课件
• 分式的定义 • 分式的基本性质 • 分式的简化 • 分式的应用 • 分式的注意事项
01
分式的定义
什么是分式
总结词
分式是数学中一种基本的代数式,表 示两个整式的商。
详细描述
分式由分子和分母两部分组成,分子 是整式,分母也是整式,并且分母不 为零。例如,$frac{x^2}{y}$是一个分 式,其中$x^2$是分子,$y$是分母。
通分
总结词
通分是将两个或多个分式化为同 分母的过程,以便进行加减运算 。
详细描述
通分是将分母不同的分式化为具 有相同分母的分式的过程。例如 ,将分式$frac{2}{3}$和 $frac{3}{5}$通分为 $frac{10}{15}$和$frac{9}{15}$。
分数和小数的转换
总结词
将分数转换为小数或将小数转换为分数是常见的数学操作,有助于理解和应用分式的概念。
详细描述
在物理学中,分式经常被用来表示和解决与 速度、加速度、功率等相关的物理问题。例 如,在计算物体的运动速度和加速度时,我 们通常使用分式来表示物体的位移与时间的 关系。此外,在电路分析中,分式也常被用
来表示电流与电压的关系。
数学中的分式
总结词
数学中的分式主要用于解决代数和几何问题,以及进 行函数分析。
分式概念及意义知识讲解
分式的意义和性质一、分式的概念1、用A、B表示两个整式,A÷B可以表示成的形式,其中A叫做分式的分子,B叫做分式的分母,如果除式B中含有字母,式子就叫做分式。
这就是分式的概念。
研究分式就从这里展开。
2、既然除式里含有字母的有理代数式叫做分式,那么,在分式里分母所包含的字母,就不一定可以取任意值。
分式的分子A可取任意数值,但分母B不能为零,因为用零做除数没有意义。
一般地说,在一个分式里,分子中的字母可取任意数值,但分母中的字母,只能取不使分母等于零的值。
3.(1)分式:,当B=0时,分式无意义。
(2)分式:,当B≠0时,分式有意义。
(3)分式:,当时,分式的值为零。
(4)分式:,当时,分式的值为1。
(5)分式:,当时,即或时,为正数。
(6)分式:,当时,即或时,为负数。
(7)分式:,当时或时,为非负数。
三、分式的基本性质:1、学习分式的基本性质应该与分数的基本性质类比。
不同点在于同乘以或同除以同一个不等于零的整式,这个整式可以是数也可以是字母,只要是不为零的整式。
2、这个性质可用式子表示为:(M为不等于零的整式)3、学习基本性质应注意几点:(1)分子与分母同乘或同除的整式的值不能为零;(2)易犯错误是只乘(或只除)分母或只乘(或只除)分子;(3)如果分子或分母是多项式时,必须乘以多项式的每一项。
4、分式变号法则的依据是分式的基本性质。
5、分式的分子,分母和分式的符号,改变其中任何两个,分式的值不变,如下列式子:,。
四、约分:1、约分是约去分子、分母中的公因式。
就是用分式中分子和分母的公因式去除分子和分母,使分式化简为最简分式,最简分式又叫既约分式。
2、约分的理论依据是分式的基本性质。
3、约分的方法:(1)如果分式的分子和分母都是几个因式乘积的形式,就约去分子和分母中相同因式的最低次幂,当分子和分母的系数是整数时,还要约去它们的最大公约数。
例1,请说出下列各式中哪些是整式,那些是分式?(1)(2)(3)(4)(5)a2-a(6)。
初中七年级数学分式的定义
分式的定义
•分式的定义:
一般地,用A、B表示两个整式,A÷B就可以表示成的形式,如果B中含有字
母,式子就叫做分式。
其中,A叫做分式的分子,B叫做分式的分母。
分式和整式通称为有理式。
注:
(1)分式的分母中必须含有字母;
(2)分母的值不能为零,如果分母的值为零,那么分式无意义。
•分式的概念包括3个方面:
①分式是两个整式相除的商式,其中分子为被除式,分母为除式,分数线起除号的
作用;
②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区
别整式的重要依据;
③在任何情况下,分式的分母的值都不可以为0,否则分式无意义。
这里,分母是
指除式而言。
而不是只就分母中某一个字母来说的。
也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。
分式有意义的条件:
(1)分式有意义条件:分母不为0;
(2)分式无意义条件:分母为0;
(3)分式值为0条件:分子为0且分母不为0;
(4)分式值为正(负)数条件:分子分母同号时,分式值为正;分子分母异号时,分式值为负。
•分式的区别概念:
分式与分数的区别与联系:
a.分式与分数在形式上是一致的,都有一条分数线,相当于除法的“÷”,都有分
子和分母,都可以表示成(B≠0)的形式;
b.分式中含有字母,由于字母可以表示不同的数,所以分式比分数更具有一般性;
分数是分式中字母取特定值后的特殊情况。
整式和分式统称为有理式。
带有根号且根号下含有字母的式子叫做无理式。
无限不循环小数也是无理式
无理式和有理式统称代数式。
分式的概念、性质及运算
分式的概念和性质要点一、分式的概念一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子A B叫做分式.其中A 叫做分子,B 叫做分母.要点诠释:分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式不能先化简,如2x y x是分式,与xy 有区别,xy 是整式,即只看形式,不能看化简的结果. 要点二、分式有意义,无意义或等于零的条件1.分式有意义的条件:分母不等于零.2.分式无意义的条件:分母等于零.3.分式的值为零的条件:分子等于零且分母不等于零.要点诠释:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零.(2)本章中如果没有特殊说明,所遇到的分式都是有意义的,也就是说分式中分母的值不等于零.(3)必须在分式有意义的前提下,才能讨论分式的值.要点三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A M B B M B B M⨯÷==⨯÷,(其中M 是不等于零的整式). 要点诠释:在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化.例如:,在变形后,字母x 的取值范围变大了. 要点四、分式的变号法则对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变其中任何一个或三个,分式成为原分式的相反数.要点诠释:根据分式的基本性质有b b a a -=-,b b a a-=-.根据有理数除法的符号法则有b b b a a a -==--.分式a b 与a b-互为相反数.分式的符号法则在以后关于分式的运算中起着重要的作用.要点五、分式的约分,最简分式与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.如果一个分式的分子与分母没有相同的因式(1除外),那么这个分式叫做最简分式.要点诠释:(1)约分的实质是将一个分式化成最简分式,即约分后,分式的分子与分母再没有公因式.(2)约分的关键是确定分式的分子与分母的公因式.分子、分母的公因式是分子、分母的系数的最大公约数与相同因式最低次幂的积;当分式的分子、分母中含有多项式时,要先将其分解因式,使之转化为分子与分母是不能再分解的因式积的形式,然后再进行约分. 要点六、分式的通分与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘适当的整式,不改变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分.要点诠释:(1)通分的关键是确定各分式的最简公分母:一般取各分母所有因式的最高次幂的积作为公分母.(2)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数与相同字母的最高次幂的乘积;如果各分母都是多项式,就要先把它们分解因式,然后再找最简公分母.(3)约分和通分恰好是相反的两种变形,约分是对一个分式而言,而通分则是针对多个分式而言.【典型例题】1. 下列各式中,m 取何值时,分式有意义?(1)2m m +;(2)1||2m -;(3)239m m --.2. 若分式6522+--x x x 的值为0,则x 的值为___________________.3. 当x 取何值时,分式226x x -+的值恒为负数?4. 填写下列等式中未知的分子或分母.(1)22?x y x y x y +-=-; (2)()()?()()()b a c b a c a b b c a c --=----.【变式1】将下列各式约分:(1)23412ax x ;(2)243153n n x y x y+-;(3)211a a --;(4)321620m m m m -+-.【变式2】将下列各式通分:(1)4b ac ,22a b c ;(2)22x x +,211x -.(3)232a b 与2a b ab c -;(4)12x +,244x x -,22x -.5. 若2x y =-,求22222367x xy y x xy y----的值.要点七、分式的乘除法1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用字母表示为:a c ac b d bd⋅=,其中a b c d 、、、是整式,0bd ≠. 2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用字母表示为:a c a d adb d bc bc ÷=⋅=,其中a b cd 、、、是整式,0bcd ≠. 要点诠释:(1)分式的乘除法都能统一成乘法,然后约去公因式,化为最简分式或整式.(2)分式与分式相乘,若分子和分母是多项式,则先分解因式,看能否约分,然后再乘.(3)整式与分式相乘,可以直接把整式(整式可以看作分母是1的代数式)和分式的分子相乘作为分子,分母不变.当整式是多项式时,同样要先分解因式,便于约分.(4)分式的乘除法计算结果,要通过约分,化为最简分式或整式.要点八、分式的乘方分式的乘方运算法则:分式的乘方是把分子、分母分别乘方,用字母表示为:nn n a a b b ⎛⎫= ⎪⎝⎭(n 为正整数). 要点诠释:(1)分式乘方时,一定要把分式加上括号.不要把n n n a a b b ⎛⎫= ⎪⎝⎭写成n n a a b b ⎛⎫= ⎪⎝⎭(2)分式乘方时,要首先确定乘方结果的符号,负数的偶次方为正,负数的奇次方为负.(3)在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算乘除,有多项式时应先分解因式,再约分.(4)分式乘方时,应把分子、分母分别看作一个整体.如()222222a ba b a bb b b---⎛⎫=≠⎪⎝⎭.6、计算:(1)422449158a b xx a b;(2)222441214a a aa a a-+--+-.7、计算:(1)222324a b a bc cd-÷;(2)2222242222x y x yx xy y x xy-+÷+++.8、计算:(1)432xy⎛⎫⎪-⎝⎭;(2)323a bc⎛⎫⎪-⎝⎭.9、计算:(1)23422x y yy x x⎛⎫⎛⎫⎛⎫--÷-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)222223()a b aba abb b a⎛⎫-⎛⎫÷+⎪ ⎪-⎝⎭⎝⎭.。
分式概念及意义
分式的意义和性质一、分式的概念1、用A、B表示两个整式,A÷B可以表示成的形式,其中A叫做分式的分子,B叫做分式的分母,如果除式B中含有字母,式子就叫做分式。
这就是分式的概念。
研究分式就从这里展开。
2、既然除式里含有字母的有理代数式叫做分式,那么,在分式里分母所包含的字母,就不一定可以取任意值。
分式的分子A可取任意数值,但分母B不能为零,因为用零做除数没有意义。
一般地说,在一个分式里,分子中的字母可取任意数值,但分母中的字母,只能取不使分母等于零的值。
3.〔1〕分式:,当B=0时,分式无意义。
〔2〕分式:,当B≠0时,分式有意义。
〔3〕分式:,当时,分式的值为零。
〔4〕分式:,当时,分式的值为1。
〔5〕分式:,当时,即或时,为正数。
〔6〕分式:,当时,即或时,为负数。
〔7〕分式:,当时或时,为非负数。
三、分式的根本性质:1、学习分式的根本性质应该与分数的根本性质类比。
不同点在于同乘以或同除以同一个不等于零的整式,这个整式可以是数也可以是字母,只要是不为零的整式。
2、这个性质可用式子表示为:〔M为不等于零的整式〕3、学习根本性质应注意几点:〔1〕分子与分母同乘或同除的整式的值不能为零;〔2〕易犯错误是只乘〔或只除〕分母或只乘〔或只除〕分子;〔3〕如果分子或分母是多项式时,必须乘以多项式的每一项。
4、分式变号法那么的依据是分式的根本性质。
5、分式的分子,分母和分式的符号,改变其中任何两个,分式的值不变,如以下式子:,。
四、约分:1、约分是约去分子、分母中的公因式。
就是用分式中分子和分母的公因式去除分子和分母,使分式化简为最简分式,最简分式又叫既约分式。
2、约分的理论依据是分式的根本性质。
3、约分的方法:〔1〕如果分式的分子和分母都是几个因式乘积的形式,就约去分子和分母中一样因式的最低次幂,当分子和分母的系数是整数时,还要约去它们的最大公约数。
例1,请说出以下各式中哪些是整式,那些是分式?〔1〕〔2〕〔3〕〔4〕〔5〕a2-a〔6〕。
分式的定义是什么 数学中分式的定义是什么
分式的定义是什么数学中分式的定义是什么分式(fēn shì)是指有除法运算,而且除数中含有未知数的有理式。
如果A、B 表示两个整式,并且B中含有字母(B≠0),那么式子A / B 就叫做分式,其中A叫做分子,B叫做分母。
分式是不同于整式的另一类式子。
数学中分式的定义是什么?以下是本文库为大家整理的关于分式的定义,欢迎大家前来阅读!分式的概念定义形如,A、B是整式,B中含有字母且B不等于0的式子叫做分式(fraction)。
其中A叫做分式的分子,B叫做分式的分母。
如是分式,还有也是分式。
要使分式有意义,则y不等于0.注意掌握分式的概念应注意:判断一个式子是否是分式,不要看式子是否是A/ B的形式,关键要满足:(1)分式的分母中必须含有字母。
(2)分母的值不能为零。
若分母的值为零,则分式无意义。
由于字母可以表示不同的数,所以分式比分数更具有一般性。
整式和分式统称为有理式。
带有根号且根号下含有字母的式子叫做无理式无理式和有理式统称代数式有意义的条件(1)分式有意义条件:分母不为0(2)分式无意义条件:分母为0;(3)分式值为0条件:分子为0且分母不为0;(4)分式值为正(负)数条件:同号得正,异号得负。
分式性质介绍1.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
用式子表示为:,(A,B,C为整式,且B、C≠0)。
2.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。
约分的关键是确定分式中分子与分母的公因式。
3.分式的约分步骤:(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去。
(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。
注:公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。
4.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式。
关于分式的概念
关于分式的概念分数是数学中的一种数的表示方式,也叫做分式。
它由一个分子和一个分母组成,分子在上,分母在下,两者之间用一条横线分隔。
例如,1/2就是一个分数,其中1是分子,2是分母。
分数可以表示有理数,即可写成两个整数的比例。
它可以更加准确地表示介于两个整数之间的数。
分数也可以表示一种关于整除和除法的运算关系,可以解决一些实际问题。
在分数中,分子表示被平均分的份数,分母表示整体被分的份数。
分数可以表示多种情况,例如,一杯水喝了一半可以表示为1/2,一块蛋糕吃了四分之一可以表示为1/4。
分数可以表达小于1、等于1、大于1的值。
分数有一些基本的性质,例如:1. 分数可以相互比较大小,比较分母大小,如果分母相同,则比较分子大小。
2. 分数可以化简,即将分子和分母同时除以一个公因数,使得它们没有公因数。
3. 可以将分数改写成百分数或小数形式,将分子除以分母即可。
在运算中,分数可以进行加减乘除的四则运算。
例如,两个分数的加法可以通过找到它们的最小公倍数,然后将分子相加,分母保持不变。
两个分数的乘法可以直接将分子相乘,分母相乘。
除法可以通过将除数变为倒数,然后进行乘法运算。
对于分数的除法,可以先将两个分数的乘法运算,分母作为被除数,分子作为除数。
分数的运算也可以与整数进行运算,例如,一个分数加上一个整数可以将整数转化为分数的形式,然后进行加法运算。
分数可以与分数、整数一起进行运算。
在实际问题中,分数也有广泛的应用。
例如,如果一个班级有40个学生,其中有3/5的学生是女生,那么女生人数可以表示为40乘以3/5。
分数也可以表示百分比,例如,80%可以表示为80/100。
总之,分数是数学中一种重要的数的表示方式,可以用于解决实际问题、进行运算等。
掌握分数的概念和运算规则,对于数学学习和实际应用有很大的帮助。
分式的概念讲解
分式的概念讲解分式是数学中一个重要的概念,它是有理数的一种特殊表达形式。
分式由分子和分母组成,分子是一个整数或一个多项式,分母是一个非零的整数或一个多项式。
分式的形式通常为a/b,其中a为分子,b为分母。
分式有以下几个重要的概念和性质:1. 分子和分母:分式的分子和分母分别表示表达式中的被除数和除数。
例如,在分式3/4中,3是分子,4是分母。
2. 分式的值:分式表示一个有理数,可以通过计算分子除以分母的商得到。
例如,分式3/4的值为0.75,因为3除以4等于0.75。
3. 约分:分式可以进行约分,即将分子和分母的公因子约去,使分式的值保持不变。
例如,分式6/8可以约分为3/4,因为6和8都能被2整除。
4. 扩分:分式可以进行扩分,即将分子和分母同时乘以一个数,使分式的值保持不变。
例如,分式2/3可以扩分为4/6,因为2除以3等于4除以6。
5. 逆分数:逆分数是指分子大于分母的分式,可以通过将逆分数的分子和分母对调得到原分式。
例如,逆分数5/3可以对调得到3/5。
6. 真分数与假分数:当分子小于分母时,分式称为真分数;当分子大于或等于分母时,分式称为假分数。
7. 混合数:混合数是真分数和整数的组合,它由一个整数和一个真分数组成,可以通过分数的加法和整数的相加得到。
例如,混合数3 1/2可以表示为整数部分3加上真分数1/2。
8. 分式的运算:分式可以进行加、减、乘、除的运算。
加减分式的运算首先要找到它们的公共分母,然后对分子进行加减运算,分母保持不变;乘除分式的运算可以直接对分子和分母进行相应的乘除运算。
分式在数学中的应用非常广泛,特别是在代数中。
分式能够表达有理数的比例关系,可以用于解决许多实际问题,如物体的比例、速度的比例、百分比等。
分式还可以用于代数式的运算和方程的求解等数学问题。
总之,分式是数学中重要的概念,它能够准确地表达有理数的比例关系,进行各种运算和解决实际问题。
熟练掌握分式的概念和性质,对于数学学习和实际生活都有很大的帮助。
分式(分式的概念、性质及计算)
学好分式三步走:1.分式的概念,分式何时有意义,何时值为零2.分式的基本性质,约分,通分3.分式的加、减、乘、除、乘方运算1.分式的概念,分式何时有意义,何时值为零①分式的定义:一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB 叫做分式,其中A 叫分子,B 叫分母且B ≠0 。
②分式有意义(或分式存在)的条件:分式的分母不等于零即 B ≠0 。
③分式的值为零的条件:分式的值为零是指分式在有意义的前提下分式的分子为零。
即当A =0且B ≠0时,0AB =。
【例1】 ⑴若分式25x -有意义,则x 的取值范围是( )⑵分式211x x --的值为0,则x 的值为( )2.分式的基本性质,约分,通分①分式的基本性质:分式的分子与分母同乘以(或除以)一个不等于0的整式,分式的值不变。
()0A A M A MM B B M B M ÷==÷×≠×②利用分式的基本性质,约去分子和分母的公因式,但不改变分式的值,这样的分式变形叫做分式的约分。
分子分母中没有公因式的分式叫做最简分式。
③通分:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个分式变成分母相同的分式。
为了通分,要先确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母。
【例2】 ⑴化简222a b a ab -+的结果为( )分 式⑵化简2244xy y x x --+的结果为( )3.分式的加、减、乘、除、乘方运算分式的乘法 a c a c b d b d⋅⋅=⋅ 分式的除法 a c a d a d b d b c b c ⋅÷=⋅=⋅分式的乘方 nnn a a b b ⎛⎫= ⎪⎝⎭同分母分式相加减 a b a bc c c ±±=异分母分式相加减 acadbc ad bcb d bd bd bd ±±=±=0指数幂 01(0)a a =≠ 负整数指数幂 1p p a a -= (a ≠0,且p 为正整数)【例3】 化简22226211296x x x x x x x x -++++÷--+-思想方法吐血大总结:1.分式是否有意义、何时值为零以及基本性质都和分数相近。
八年级数学分式概念
密度是物体的质量与其体积的比值,也可以用分式表示。例如,水的密度是1千克每升, 即$frac{1}{1} = 1$千克每升。
压强计算
压强是压力与受力面积的比值,同样可以用分式表示。例如,大气压强为101千帕,即 $frac{101}{1} = 101$千帕。
化学中的应用
01 02
化学反应速率
分式的性质
01
02
03
分式的值不变
当分子和分母同时乘以或 除以同一个非零数时,分 式的值不变。
分式的值域
分式的值域是其定义域的 子集,取决于分母的值。
分式的化简
通过约分和通分,可以将 分式化简为更简单的形式。
分式的约分与通分
约分
将分子和分母的最大公约数约去 ,使分式化简。
通分
将两个或多个分式化为相同的分 母,以便进行加减运算。
同分母分式相加减时,分母不变,分 子直接相加减。
异分母分式相加减
分数和小数的转换
在进行分式加减法时,可以将分数转 换为小数,或者将小数转换为分数, 以方便计算。
异分母分式相加减时,需要先通分, 再按照同分母分式的加减法进行运算。
混合运算
顺序法则
在进行分式的混合运算时,应遵 循先乘除后加减的顺序进行运算。
感谢您的观看
化简方程
通过合并同类项、约分等 手段,化简方程到最简形
式。
去分母
通过乘以公分母,将分数 项去掉,得到一个整式方
程。
验根
将得到的解代入原方程进 行验证,确保解是正确的。
分式方程的应用
实际问题建模
求解方程
验证解的合理性
应用解
将实际问题转化为数学模 型,通常是通过设立未知 数和建立方程来实现。
分式的概念
分式的概念学科: 任课老师:学生姓名: 上课时间: 课次:一、知识点:1、分式的概念:两个整式A ,B 相除,即A B ÷时,可以表示为B A 的形式.形如BA(A ,B 表示的都是整式,B 中含有字母且B ≠0)的代数式,叫做分式(其中 A 叫做分式的分子,B 叫做分式的分母).注意:⑴分母中必须含有字母;⑵分母的值不能为0;⑶分式必须写成两式相除的形式,中间以分数线隔开.2、分式有意义的条件:两个整式相除,除数不能为0,故分式有意义的条件是分母不为0,当分母为0时,分式无意义.3、分式的值为零:分式的值为零时,必须满足分式的分子为零,且分式的分母不能为零,注意是“同时”.4、分式的值为正、负的条件:分式的值为正数的条件:分子分母同号(分子,分母同正或同负)分式的值为负数的条件:分子分母异号(分子为正,分母为负或分子为负,分母为正)二、内容讲解: 考点一:考查分式的定义例1、列代数式表示下列数量关系,并指出哪些是正是?哪些是分式? (1)甲每小时做x 个零件,则他8小时做零件个,做80个零件需小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是千米/时,轮船的逆流速度是千米/时. (3)x 与y 的差与4的商是.例2、判断下列各式哪些是整式,哪些是分式?(1)94x +, (2)x 7 ,(3)209y +,(4) 54-m , (5) 238y y -,(6)91-x (7)3πx-是分式的有 . 总结:动动手:1、下列代数式中:y x yx y x y x ba b a y x x -++-+--1,,,21,22π,是分式的有: .2、代数式22221131321223x x x a b a b ab m n xy x x y +--++++,,,,,,,中分式有( ) A.1个 B. 2个 C 3个 D. 4个考点二:分式有意义的条件例3:求下列分式有意义的条件.⑴1x ⑵33x + ⑶2a b a b +-- ⑷21nm + ⑸22x y x y ++⑹2128x x -- ⑺293x x -+例4:x 为何值时,分式1111x ++有意义?例5:⑴ 若分式216(3)(4)x x x --+有意义,则x ;⑵ 若分式216(3)(4)x x x --+无意义,则x ;总结:动动手: 1、若33aa-有意义,则33a a -( ).A. 无意义B. 有意义C. 值为0D. 以上答案都不对2、x 为何值时,分式29113x x-++有意义?3、当x 取何值时,下列分式有意义? (1)42xx -+ (2)x x 235-+ (3)2522+-x x4、要使分式23xx -有意义,则须满足的条件为 .x考点三:分式值为零的条件例6:当x 为何值时,下列分式的值为0?⑴213x x -+⑵223(1)(2)x x x x --++⑶2656x x x ---⑷221634x x x -+-⑸288xx + ⑹2225(5)x x --⑺(8)(1)1x x x -+-例7:若分式23455x xx x ++-+值为零,,则x 的取值是.若分式233x x x--的值为0,则x 的取值是.总结:动动手:1、当x 为何值时,下列分式的值为0?⑴1x x + ⑵211x x -+ ⑶33x x -- ⑷237x x ++ ⑸2231x x x +-- ⑹2242x x x -+2、如果分式2321x x x -+-的值是零,那么x 的取值是.若分式()()321x x x +-+的值不为零,求x的取值范围是.3、x 为何值时,分式29113x x-++分式值为零?考点四:考查分式的值为正、负的条件例8:当x 取何值时,分式 2312-+x x(1)当时,分式有意义; (2)当时,分式无意义; (3)当时,分式的值为0; (4)当时,分式的值为1; (5)当时,分式的值为-1; (6)当时,分式的值大于0; (7)当时,分式的值小于0;总结:动动手:1、当x 取何值时,分式125x x +-(1)有意义;(2)值为0;(3)值为正数;(4)值为负数;(5)值为非负数;三、课后作业: (基础)一、填空题1.用A 、B 表示两个整式,A ÷B 就可以表示成______的形式,如果除式B 中______,该分式的分式.2.把下列各式写成分式的形式:(1)5()x y ÷-为_____. (2)(32)(3)x y x y +÷-为_____.3.甲每小时做x 个零件,做90个零件所用的时间,可用式子表示成______小时. 4.n 公顷麦田共收小麦m 吨,平均每公顷的产量可用式子表示成______吨.5.轮船在静水中每小时走a 千米,水流速度是b 千米/时,轮船在逆流中航行s 千米所需要的时间可用式子表示成______小时.6.当x =______时,分式13-x x 没有意义.7.当x =______时,分式112--x x 的值为0.7.分式yx,当字母x y 、满足______时,值为1;当字母x y 、满足______时值为-1. 二、选择题 8.使得分式1+a a有意义的a 的取值范围是( ) A .0a ≠B .1a ≠C .1a ≠-D .10a +>9.下列判断错误..的是( ) A .当32=/x 时,分式231-+x x 有意义 B .当a ≠b 时,分式22b a ab -有意义 C .当21-=x 时,分式x x 412+值为0 D .当x ≠y 时,分式x y y x --22有意义10.使分式5+x x值为0的x 值是( )A .0B .5C .-5D .x ≠-5 11.当x <0时,xx ||的值为( ) A .1 B .-1 C .±1 D .不确定 12.x 为任何实数时,下列分式中一定有意义的是( )A .xx 12+B .112--x x C .11+-x x D .112+-x x 三、解答题13、当x 为何值时,下列分式的值为零:(1)4|1|5+--x x (2)562522+--x x x (3) 2)3)(2(---x x x14.解下列不等式(1)012||≤+-x x (2)03252>+++x x x 15、若,试判断是否有意义。
分式的知识点
公因式 如32262464=÷÷=(公因式是2) b a b b b ab b ab 33322=÷÷=(公因式是b )y x y x y x y x y x y x y x y x +-=++-+=+-))(())(()(222最小公倍数=两数的乘积/最大公约(因)数, 解题时要避免和最大公约(因)数问题混淆例子6,9的最小公倍数是6×9÷3=18;4,6的最小公倍数是4×6÷2=12;3,4的最小公倍数是3×4=12 如23,32 通分得693233=⨯⨯,642322=⨯⨯(最小公分母是2×3=6)最小公分母,即分母的最小公倍数 a 3,b 2通分得ab b b a b 33=⨯⨯,aba ab a 22=⨯⨯(最小公分母是a ×b=ab ) d b a 23,mbc 2通分得dm b am md b m a 2233=⨯⨯,dm b cbd bd mb bd c 222=⨯⨯(d mb mb d b 32=⨯,不是最小公分母,d mb 2才是) 22y x x -,2)(y x y -, 注意))((22y x y x y x +-=- ,))(()(2y x y x y x --=-由此可得两式的最小分母是 ))()((y x y x y x +--,即通分得))()(())()(()(2y x y x y x xy x y x y x y x y x x +---=+--- ))()(())()(()(2y x y x y x y xy y x y x y x y x y +--+=+--+ 四、分式的运算1)分式的乘除用到的知识是约分,分式的加减用到的知识是通分 2)分式的加减要通分令分母相同,分子再进行相加减,得出结果后,看能否约分,假如能约分,则需约分,假如不能约分,则不需约分。
分式概念及性质
分式概念及性质分式的概念:当两个整数不能整除时,出现了分数;类似的当两个整式不能整除时,就出现了分式.一般地,如果A,B表示两个整式,并且B中含有字母,那么式子AB叫做分式.整式与分式统称为有理式.在理解分式的概念时,注意以下三点:⑴分式的分母中必然含有字母;⑵分式的分母的值不为0;⑶分式必然是写成两式相除的形式,中间以分数线隔开.分式有意义的条件:两个整式相除,除数不能为0,故分式有意义的条件是分母不为0,当分母为0时,分式无意义.如:分式1x,当0x≠时,分式有意义;当0x=时,分式无意义.分式的值为零:分式的值为零时,必须满足分式的分子为零,且分式的分母不能为零,注意是“同时”.分式的基本性质:分式的基本性质:分式的分子与分母同时乘(或除以)一个不等于0的整式,分式的值不变.上述性质用公式可表示为:a amb bm=,a a mb b m÷=÷(0m≠).注意:①在运用分式的基本性质时,基于的前提是0m≠;②强调“同时”,分子分母都要乘以或者除以同一个“非零”的数字或者整式;③分式的基本性质是约分和通分的理论依据.一、分式的基本概念【例1】在下列代数式中,哪些是分式?哪些是整式?1t,(2)3xx+,2211x xx-+-,24xx+,52a,2m,21321xx x+--,3πx-,323a aa+例题精讲知识点睛【例2】 代数式22221131321223xx x a b a b ab m n xy x x y +--++++,,,,,,,中分式有( )A.1个B.1个C.1个D.1个二、分式有意义的条件【例3】 求下列分式有意义的条件:⑴1x⑵33x + ⑶2a b a b+-- ⑷21n m + ⑸22x y x y++ ⑹2128x x -- ⑺293x x -+【例4】 要使分式23x x -有意义,则x 须满足的条件为 .【例5】 ⑴x 为何值时,分式1111x++有意义?⑵要使分式241312a a a-++没有意义,求a 的值.【例6】 x 为何值时,分式1122x++有意义?【例7】 x 为何值时,分式1122x x+-+有意义?【例8】 若分式25011250x x -++有意义,则x ;若分式25011250x x-++无意义,则x ;【例9】 若33a a-有意义,则33a a-( ).A. 无意义B. 有意义C. 值为0D. 以上答案都不对【例10】 x 为何值时,分式29113x x-++有意义?【例11】 ⑴ 若分式216(3)(4)x x x --+有意义,则x ; ⑵ 若分式216(3)(4)x x x --+无意义,则x ;三、分式值为零的条件【例12】 当x 为何值时,下列分式的值为0?⑴1x x+ ⑵211x x -+ ⑶33x x -- ⑷237x x ++ ⑸2231x x x +-- ⑹2242x x x-+【巩固】当x 为何值时,下列分式的值为0?⑴213x x -+ ⑵223(1)(2)x x x x --++ ⑶2656x x x --- ⑷221634x x x -+-⑸288x x +⑹2225(5)x x --⑺(8)(1)1x x x -+-【例13】 若分式41x x +-的值为0,则x 的值为 .【巩固】若22x x a-+的值为0,则x = .【巩固】若分式242x x --的值为0,则x 的值为 .【巩固】若分式221x x x +-的值为0,则x 的值为 .【例14】 如果分式2321x x x -+-的值是零,那么x 的取值是 .【巩固】若分式()()321x x x +-+的值不为零,求x 的取值范围.【例15】 x 为何值时,分式29113x x-++分式值为零?【巩固】x 为何值时,分式23455x x x x ++-+值为零?【巩固】若分式233x x x--的值为0,则x = .【巩固】 若分式250011250x x-=++,则x .四、分式的基本性质【例16】 填空:(1)()2ab ba=(2)()32xx xy x y=++(3)()2x y x xyxy++=(4)()222x y x yx xy y+=--+【例17】 若x ,y 的值扩大为原来的3倍,下列分式的值如何变化?⑴x y x y+- ⑵xy x y- ⑶22x y x y-+【巩固】把下列分式中的字母x 和y 都扩大为原来的5倍,分式的值有什么变化?(1)2x y x y++ (2)22923x x y+【例18】 不改变分式的值,把下列各式的分子与分母的各项系数都化为整数.⑴1.030.023.20.5x y x y+-⑵32431532x yx y-+【巩固】不改变分式的值,把下列各式分子与分母的各项系数都化为整数。
分式概念及意义
分式概念及意义分式的意义和性质一、分式的概念1、用A、B表示两个整式,A÷B可以表示成的形式,其中A叫做分式的分子,B叫做分式的分母,如果除式B中含有字母,式子就叫做分式。
这就是分式的概念。
研究分式就从这里展开。
2、既然除式里含有字母的有理代数式叫做分式,那么,在分式里分母所包含的字母,就不一定可以取任意值。
分式的分子A可取任意数值,但分母B不能为零,因为用零做除数没有意义。
一般地说,在一个分式里,分子中的字母可取任意数值,但分母中的字母,只能取不使分母等于零的值。
3.(1)分式:,当B=0时,分式无意义。
(2)分式:,当B≠0时,分式有意义。
(3)分式:,当时,分式的值为零。
(4)分式:,当时,分式的值为1。
(5)分式:,当时,即或时,为正数。
(6)分式:,当时,即或时,为负数。
(7)分式:,当时或时,为非负数。
三、分式的基本性质:1、学习分式的基本性质应该与分数的基本性质类比。
不同点在于同乘以或同除以同一个不等于零的整式,这个整式可以是数也可以是字母,只要是不为零的整式。
2、这个性质可用式子表示为:(M为不等于零的整式)3、学习基本性质应注意几点:(1)分子与分母同乘或同除的整式的值不能为零;(2)易犯错误是只乘(或只除)分母或只乘(或只除)分子;(3)如果分子或分母是多项式时,必须乘以多项式的每一项。
4、分式变号法则的依据是分式的基本性质。
5、分式的分子,分母和分式的符号,改变其中任何两个,分式的值不变,如下列式子:,。
四、约分:1、约分是约去分子、分母中的公因式。
就是用分式中分子和分母的公因式去除分子和分母,使分式化简为最简分式,最简分式又叫既约分式。
2、约分的理论依据是分式的基本性质。
3、约分的方法:(1)如果分式的分子和分母都是几个因式乘积的形式,就约去分子和分母中相同因式的最低次幂,当分子和分母的系数是整数时,还要约去它们的最大公约数。
例1,请说出下列各式中哪些是整式,那些是分式?(1)(2)(3)(4)(5)a2-a(6)。
数学课分式与整式
数学课分式与整式在数学课上,学生们常常会接触到分式与整式。
分式与整式是数学中的两个重要概念,它们在代数运算中有着不可或缺的作用。
本文将从基本概念、性质、简化与运算等方面进行探讨。
一、基本概念分式是指由两个整数(或多项式)构成的比值,其中分子与分母用水平线分开,通常表示为a/b的形式。
其中,a称为分子,b称为分母。
分子和分母都可以是整数或多项式,但分母不能为零。
整式是指仅包含常数项、变量项与它们的系数之积,并且指数为非负整数的代数式。
整式可以是一个数、一元一次、二次等多项式,它们可以是实数、复数或者其他数域中的数。
二、性质1. 分式的值域与定义域:对于一个分式a/b来说,分式的定义域是除了分母为零以外的所有实数,即b≠0;而分式的值域则包含了所有实数。
2. 整式的次数:整式的次数等于它所含变量中的最高次数。
例如,对于多项式3x^2 + 2x + 1来说,它是一个二次整式。
3. 分式的约分与通分:对于一个分式a/b来说,如果分子和分母有一个公约数d,则可以将分子与分母都除以d,得到a/d和b/d的分式。
而通分则是指将两个分母不相同的分式化为具有相同分母的分式。
4. 整式的展开与因式分解:整式的展开是指将一个整式表示为各个项的和,而因式分解则是指将一个整式表示为若干个因式的乘积。
三、简化与运算1. 分式的简化:对于一个分式a/b来说,可以通过求出分子与分母的最大公约数,然后将分子与分母同时除以最大公约数,从而得到分式的最简形式。
2. 分式的加减法:当两个分式的分母相同时,可以直接将分子进行加减操作,并保持分母不变。
当两个分式的分母不同时,需要将它们化为相同分母的分式后再进行运算。
3. 分式的乘法:将两个分式的分子与分母分别相乘,得到的积即为两个分式的乘积。
4. 分式的除法:将除数的分子与被除数的分母相乘,除以除数的分母与被除数的分子的乘积。
综上所述,分式与整式在数学中扮演着重要的角色。
理解和掌握分式与整式的基本概念、性质以及简化与运算方法,有助于提高数学运算的准确性和效率。
分式概念知识点总结
分式概念知识点总结一、分式的概念分式是指一个整体被分成若干个相等的部分,其中每个部分被称为分子,整体被称为分母。
分式通常以 a/b 的形式表示,其中 a 和 b 都为整数,b 不为0。
分数的分母表示被分成的份数,分子表示取了多少份。
例如,2/3 表示整体被分成了3份,取了其中的2份。
二、分式的基本形式1. 真分式:分数的分子小于分母,即 |a| < b。
2. 假分式:分数的分子大于或等于分母,即|a| ≥ b。
3. 显分式:分式中的分子和分母都是已知的数。
4. 隐分式:未知数出现在分子或分母中。
三、分式的性质1. 两个分式相乘:a/b * c/d = ac/bd2. 两个分式相除:a/b ÷ c/d = ad/bc3. 两个分式相加:a/b + c/d = (ad + bc)/bd4. 两个分式相减:a/b - c/d = (ad - bc)/bd四、分式的化简1. 将分子和分母约分到最简形式。
2. 若分数中含有开平方,可将分子或分母的平方根提出来。
3. 若分数中含有负号,可将负号移到分子或分母。
五、分式的运算1. 分式的四则运算:包括加、减、乘、除。
2. 分式的化简:将分数化成最简形式。
3. 分式的混合运算:结合整数和分数进行运算。
六、分式方程1. 单分式方程:方程中只有一个分式。
2. 复分式方程:方程中含有多个分式。
七、分式的应用1. 比例问题:利用分式来描述两个量的比值,解决比例问题。
2. 百分比问题:将百分数化成分式,进行计算和比较。
3. 复利问题:利用复利的计算公式,将利率和时间表示成分式,求解复利问题。
八、分式的图形表示1. 分式在直角坐标系中的图形表示:分数可以表示成长度或面积的比值,可以在直角坐标系中用直线或曲线表示。
2. 分式在统计图中的表示:在统计图中,分数可以表示成比例的形式,用图形表示出来。
九、分式的应用领域1. 数学:在代数、几何、概率等方面,分式的概念和运算都有广泛的应用,是数学中重要的基础知识。
01分式的概念和性质
分式章分式的概念和性质北京四中龚剑钧知识要点:一、分式的概念一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.说明:(1)分式的形式和分数类似,但它们是有区别的.分数是整式,不是分式,分式是两个整式相除的商式.分式的分母中含有字母;分数的分子、分母中都不含字母.(2)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况. (3)分母中的“字母”是表示不同数的“字母”,但π表示圆周率,是一个常数,不是字母,如是整式而不能当作分式.(4)分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式不能先化简,如是分式,与xy有区别,xy是整式,即只看形式,不能看化简的结果.二、分式有意义,无意义或等于零的条件1.分式有意义的条件:分母不等于零.2.分式无意义的条件:分母等于零.3.分式的值为零的条件:分子等于零且分母不等于零.三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:(其中M是不等于零的整式).四、分式的变号法则对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变其中任何一个或三个,分式成为原分式的相反数.根据分式的基本性质有根据有理数除法的符号法则有分式与互为相反数.分式的符号法则在以后关于分式的运算中起着重要的作用.五、分式的约分,最简分式与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.如果一个分式的分子与分母没有相同的因式(1除外),那么这个分式叫做最简分式.六、分式的通分与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘适当的整式,不改变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分.例题分析:1、指出下列各式中的整式与分式:4.、不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数.5.下列分式变形正确的是()6. (1)约分:(2)通分:。
分式的基本概念定义
分式的基本概念定义
嘿,朋友们!今天咱们来聊聊分式这个有趣的玩意儿。
啥是分式呀?简单来说,分式就像是一个分数,但又有点不一样。
比如说,3÷5 就是一个分数,而像a÷b(这里 b 可不能是 0 哦),这就是一个分式啦!分式里有分子和分母,分子就是上面的部分,分母就是下面的部分。
分式在我们生活中可常见啦!想象一下,你和小伙伴们分糖果,一共 a 颗糖果,要分给 b 个人,那每个人能分到多少糖果呢?这就可以用分式
a÷b 来表示呀!是不是一下子就觉得分式很有用啦?
分式也有它自己的特点呢。
它的分母不能为 0,这就好像你不能把东西分给 0 个人一样,没意义呀!而且分式可以进行各种运算,就像分数一样。
加、减、乘、除,都不在话下。
咱们来举个例子感受一下分式的运算吧。
比如有两个分式,一个是
1/2,另一个是 1/3,它们相加,不就是先通分,变成 3/6 和 2/6,然后相加得到 5/6 嘛。
是不是挺有意思的?
分式还和方程有密切的关系呢!有时候我们会遇到一些问题,用分式来表示关系,然后通过解方程来找到答案。
比如说,一个工程,甲单独做要 x 天完成,乙单独做要 y 天完成,那他们一起做要多少天完成呢?这就可以用分式来建立方程求解呀!
分式就像是数学世界里的一个小精灵,它灵活多变,用处多多。
它能帮我们解决很多实际问题,让我们更好地理解这个世界。
所以呀,可别小看分式哦!它虽然小小的,但是能量大大的!分式真的是太神奇啦,大家一定要好好认识它、了解它呀!
总之,分式是数学中非常重要的一部分,它既有有趣的一面,又有实用的一面。
我们要好好掌握它,让它为我们服务!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
且含有字母整式
例1 当(1)x不取存什在么;值(时2),等分于式0?2xx23 的值 说一说:分式的值在什么情况下不存 在?在什么情况下等于0?
分母等于0但分子不等于0,分式的值不存在
分子等于0但分母不等于0 ,分式的值等于0
例1 当(1)x不取存什在么;值(时2),等分于式0?32xx23 的值
回答:
1.一个整数m除以一个非0整数n,所得的 商分数
1.1 分式
动脑筋 填空:
1.(1)某长方形画的面积为Sm²,长为8m,
则它的宽为
m;
(2)某长方形画的面积为Sm²,长为xm,则
它的宽为
m;
2.如果两块面积分别为x公顷,y公顷的稻
田,分别产稻谷akg,bkg,那么这两块稻
3.填表:
x 3 2x
1 3
2 7
1 5
0
1
-2 -1
田平均每公顷产稻谷
kg.
说一说: 代数式 , ,
有什么特点?
你能给这些式子取一个名称吗?
什么样的式子叫作分式?
一个整式 f 除以一个非0整式g(g中含有字母)
所得的商记作 f ,把代数式 f 叫作分式。
g
g
其中f是分式的分子,g是分式的分母,
g ≠0.
说一说
分式的分子、分母分别是什么式子? 分式的分子是任何一个整式
解:
(1)当分母2x-3=
分子的值为 3 2
0 ,即x=
2 ≠ 0,
2 时,
因此当
x 3 时, 分式 x 2 的值不存在.
2
(2)当x-2=0,即x= 2
2x 3
时,分式
x 2 的值
2x 3
等于
x5
例2 求下列条件下分式
的值:
x6
(1)x=3; (2)x=-0.4.
解把:想(1未)一当知想x数=:3的时怎值,样代xx求入分56分式式的进值行?计算 92
(2)当x=-0.4时,
x x
5 6
0.4 5 0.4 6
5.4 27 . 5.6 28
练习 1.填空:
(1)某村有m个人,耕地面积约为50公顷,
则该村的人均耕地面积约为
公顷.
(2)某工厂接到加工m个零件的订单,原计
划每天加工a个,由于技术改革,实际每天
多加工b个,则
天可以完成任务.
2.当x取什么值时,分式 x 3 的值 (1)不存在;(2)等于0? 4 x 5