(完整版)多元统计复习题附答案
(完整版)多元统计复习题附答案

复习题原文:答案:4.2 试述判别分析的实质。
4.3 简述距离判别法的基本思想和方法。
4.4 简述贝叶斯判别法的基本思想和方法。
4.5 简述费希尔判别法的基本思想和方法。
4.6 试析距离判别法、贝叶斯判别法和费希尔判别法的异同。
4.2 试述判别分析的实质。
答:判别分析就是希望利用已经测得的变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别的样本点尽可能地区别开来。
设R1,R2,…,Rk是p维空间R p的k个子集,如果它们互不相交,且它们的和集为R p,则称R1,R2⋯R p为R p的一个划分。
判别分析问题实质上就是在某种意义上,以最优的性质对p维空间R p构造一个“划分”,这个“划分”就构成了一个判别规则。
4.3 简述距离判别法的基本思想和方法。
答:距离判别问题分为①两个总体的距离判别问题和②多个总体的判别问题。
其基本思想都是分别计算样本与各个总体的距离(马氏距离),将距离近的判别为一类。
①两个总体的距离判别问题设有协方差矩阵∑相等的两个总体G1和G2,其均值分别是μ1和μ2,对于一个新的样品X,要判断它来自哪个总体。
计算新样品X到两个总体的马氏距离D2(X,G1)和D2(X,G2),则X∈G1,D2(X,G1)≤ D2(X,G2)X ∈G 2 ,D 2(X ,G 1)> D 2(X ,G 2, 具体分析,2212(,)(,)D G D G -X X111122111111111222*********()()()()2(2)2()-----------''=-----''''''=-+--+'''=-+-X μΣX μX μΣX μX ΣX X ΣμμΣμX ΣX X ΣμμΣμX ΣμμμΣμμΣμ11211212112122()()()2()22()2()---''=-++-'+⎛⎫=--- ⎪⎝⎭''=--=--X ΣμμμμΣμμμμX ΣμμX μααX μ 记()()W '=-X αX μ 则判别规则为X ∈G 1 ,W(X)≥0 X ∈G 2 ,W(X)<0②多个总体的判别问题。
多元统计分析期末试题及答案

22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.答案:010312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑、设则=服从。
答案:W 3(10,∑)()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵答案:211342113611146R ⎛⎫-⎪ ⎪ ⎪=-- ⎪ ⎪ ⎪- ⎪⎝⎭4、__________, __________,(),123设X=xx x 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ⎛⎫- ⎪⎛⎫⎛⎫ ⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭________________。
答案:0.872 1 1.743215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。
答案:T 2(15,p )或(15p/(16-p))F (p ,n-p )12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?答案:2312131231112213312121,2,10021021210001102231642100102x x y y x x x x x x y x x y x x x y E y y V y -⎛⎫==+ ⎪⎝⎭-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪== ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭-⎛⎫⎛⎫⎪=- ⎪ ⎪⎝⎭ ⎪⎝⎭、令则01-101-101-11234411002141021061661620162040210616(1,61620)3162040y y N ⎛⎫⎛⎫⎪⎪- ⎪⎪ ⎪⎪-⎝⎭⎝⎭--⎛⎫ ⎪=- ⎪⎪-⎝⎭--⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭1-1故,的联合分布为故不独立。
多元统计复习题及答案

填空题:1、费希尔(Fisher)判别法是1936年提出来的,该方法的主要思想是通过将多维数据投影到某个方向上。
2、因子分析的内容非常丰富,常用的因子分析类型是R型因子分析和Q型因子分析。
3、K均值聚类分析的基本思想是将每一个样品分配给最接近业壶些直的类中。
4、对应分析是将R型因子分析Q型因子分析结合起来进行的统计分析方法。
5、总体方差未知的情况下,采用样本方差代替总体方差的方法进行计算。
6、主成分分析数学模型中的正交变换,在几何上就是作一个坐标旋转7、设X、N2 ( U , N),其中X=(》1,》2),号),则CovQq +》2,*1 - *2)= _0__8、判别分析是判别样品所属类型的一种统计方法,常用的判别方法有距离判别法、Fisher 判另U法、Bayes判另U法、逐步判另U法9 多元正态分布的任何边缘分布为正态分布10、应用多元统计分析方法用于解决多指标问题,聚类分析就是分析如何对样品(或变量)进行量化分类的问题。
通常聚类分析分为Q型聚类和R型聚类。
11、总离差平方和可以分解为回归离差平方和和剩余离差平方和两个部分,各自的自由度为(P )和(n-p-1),其中回归离差平方和在总离差平方和中所占比重越大,则线性回归效果越显著。
12、系统聚类分析方法有最短距离法、最长距离法、中间距离法、重心法、类平均统和可变类平均法。
13、典型相关分析是研究两组变量之间相关关系的一种多元统计方法14、因子分析中因子载荷系数叫,•的统计意义是:(第i个变量与第j个公因子的相关系数)15、相应分析的特点是研究的变量是定性的16、公共因子方差与特殊因子方差之和为o17、设Z 是总体X=(X”…,乂皿)的协方差阵,X 的特征根人。
=1,2,..・田)与对应的单位正交化特征向量% =(%,%2,,则第一主成分的表达式=% ]X| + %2、2 + ・•• + /mX"],方差为2]18、相应分析的主要目的是寻求列联表行因素A和列因素B的基本分析特征和它们的最优联立表示19聚类分析一是分析如何对样品或变量进行量化分类的问题。
多元统计学多元统计分析试题(A卷)(答案)

《多元统计分析》试卷1、若),2,1(),,(~)(n N X p =∑αμα 且相互独立,则样本均值向量X 服从的分布为2、变量的类型按尺度划分有_间隔尺度_、_有序尺度_、名义尺度_。
3、判别分析是判别样品 所属类型 的一种统计方法,常用的判别方法有__距离判别法_、Fisher 判别法、Bayes 判别法、逐步判别法。
4、Q 型聚类是指对_样品_进行聚类,R 型聚类是指对_指标(变量)_进行聚类。
5、设样品),2,1(,),,('21n i X X X X ip i i i ==,总体),(~∑μp N X ,对样品进行分类常用的距离有:明氏距离,马氏距离2()ijd M =)()(1j i j i x x x x -∑'--,兰氏距离()ij d L =6、因子分析中因子载荷系数ij a 的统计意义是_第i 个变量与第j 个公因子的相关系数。
7、一元回归的数学模型是:εββ++=x y 10,多元回归的数学模型是:εββββ++++=p p x x x y 22110。
8、对应分析是将 R 型因子分析和Q 型因子分析结合起来进行的统计分析方法。
9、典型相关分析是研究两组变量之间相关关系的一种多元统计方法。
一、填空题(每空2分,共40分)1、设三维随机向量),(~3∑μN X ,其中⎪⎪⎪⎭⎫ ⎝⎛=∑200031014,问1X 与2X 是否独立?),(21'X X 和3X 是否独立?为什么?解: 因为1),cov(21=X X ,所以1X 与2X 不独立。
把协差矩阵写成分块矩阵⎪⎪⎭⎫⎝⎛∑∑∑∑=∑22211211,),(21'X X 的协差矩阵为11∑因为12321),),cov((∑='X X X ,而012=∑,所以),(21'X X 和3X 是不相关的,而正态分布不相关与相互独立是等价的,所以),(21'X X 和3X 是独立的。
多元统计复习题-附答案

复习题原文:答案:4.2试述判别分析的实质。
4.3 简述距离判别法的基本思想和方法。
4.4简述贝叶斯判别法的基本思想和方法。
4.5 简述费希尔判别法的基本思想和方法。
4.6 试析距离判别法、贝叶斯判别法和费希尔判别法的异同。
4.2试述判别分析的实质。
答:判别分析就是希望利用已经测得的变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别的样本点尽可能地区别开来。
设R1,R2,…,Rk是p维空间R p的k个子集,如果它们互不相交,且它们的和集为R p,则称R1,R2⋯R p为R p的一个划分。
判别分析问题实质上就是在某种意义上,以最优的性质对p维空间R p 构造一个“划分”,这个“划分”就构成了一个判别规则。
4.3 简述距离判别法的基本思想和方法。
答:距离判别问题分为①两个总体的距离判别问题和②多个总体的判别问题。
其基本思想都是分别计算样本与各个总体的距离(马氏距离),将距离近的判别为一类。
①两个总体的距离判别问题设有协方差矩阵∑相等的两个总体G 1和G 2,其均值分别是μ1和μ 2,对于一个新的样品X ,要判断它来自哪个总体。
计算新样品X到两个总体的马氏距离D 2(X,G1)和D 2(X ,G2),则X ∈G 1 ,D 2(X,G 1)≤ D 2(X ,G 2)X ∈G 2 ,D 2(X ,G 1)> D 2(X ,G 2, 具体分析,2212(,)(,)D G D G -X X111122111111111222*********()()()()2(2)2()-----------''=-----''''''=-+--+'''=-+-X μΣX μX μΣX μX ΣX X ΣμμΣμX ΣX X ΣμμΣμX ΣμμμΣμμΣμ11211212112122()()()2()22()2()---''=-++-'+⎛⎫=--- ⎪⎝⎭''=--=--X ΣμμμμΣμμμμX ΣμμX μααX μ 记()()W '=-X αX μ 则判别规则为X ∈G 1 ,W(X)≥0 X ∈G 2 ,W(X)<0②多个总体的判别问题。
多元统计分析期末试题及答案

22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑、设则=服从。
()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。
215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。
12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?(),123设X=xx x 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ⎛⎫- ⎪⎛⎫⎛⎫⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。
多元统计期末考试题及答案

多元统计期末考试题及答案一、选择题(每题2分,共20分)1. 在多元线性回归中,如果一个变量的系数为0,这意味着什么?A. 该变量对因变量没有影响B. 该变量与因变量完全相关C. 该变量与因变量无关D. 该变量是多余的2. 主成分分析(PCA)的主要目的是什么?A. 减少数据的维度B. 增加数据的维度C. 找到数据的均值D. 找到数据的中位数3. 以下哪个不是聚类分析的优点?A. 可以揭示数据的内在结构B. 可以用于分类C. 可以减少数据的维度D. 可以找到数据的异常值4. 在因子分析中,如果一个因子的方差贡献率很低,这通常意味着什么?A. 该因子对数据的解释能力很强B. 该因子对数据的解释能力很弱C. 该因子是多余的D. 该因子是重要的5. 以下哪个是多元统计分析中常用的距离度量?A. 欧氏距离B. 曼哈顿距离C. 切比雪夫距离D. 所有以上选项二、简答题(每题10分,共30分)6. 解释什么是多元线性回归,并简述其在实际问题中的应用。
7. 描述主成分分析(PCA)的基本原理,并举例说明其在数据分析中的作用。
8. 简述聚类分析的过程,并讨论其在商业数据分析中的应用。
三、计算题(每题25分,共50分)9. 假设有以下数据集,包含两个变量X和Y,以及它们的观测值:| 观测 | X | Y |||||| 1 | 2 | 3 || 2 | 3 | 4 || 3 | 4 | 5 || 4 | 5 | 6 |请计算X和Y的协方差,并解释其意义。
10. 给定以下数据集,进行聚类分析,并解释聚类结果:| 观测 | 变量1 | 变量2 |||-|-|| 1 | 1.5 | 2.5 || 2 | 2.0 | 3.0 || 3 | 3.5 | 4.5 || 4 | 4.0 | 5.0 |多元统计期末考试题答案一、选择题1. A2. A3. C4. B5. D二、简答题6. 多元线性回归是一种统计方法,用于分析两个或两个以上的自变量(解释变量)与一个因变量之间的关系。
多元统计学多元统计分析试题(A卷)(答案)【精选文档】

《多元统计分析》试卷1、若 且相互独立,则样本均值向量服从的分布为。
2、变量的类型按尺度划分有_间隔尺度_、_有序尺度_、名义尺度_。
3、判别分析是判别样品 所属类型 的一种统计方法,常用的判别方法有__距离判别法_、Fisher 判别法、Bayes 判别法、逐步判别法。
4、型聚类是指对_样品_进行聚类,型聚类是指对_指标(变量)_进行聚类。
5、设样品,总体,对样品进行分类常用的距离有:明氏距离,马氏距离,兰氏距离。
6、因子分析中因子载荷系数的统计意义是_第i 个变量与第j 个公因子的相关系数。
7、一元回归的数学模型是:,多元回归的数学模型是:。
8、对应分析是将 R 型因子分析和Q 型因子分析结合起来进行的统计分析方法。
9、典型相关分析是研究两组变量之间相关关系的一种多元统计方法。
1、设三维随机向量,其中,问与是否独立?和是否独立?为什么?解: 因为,所以与不独立。
把协差矩阵写成分块矩阵,的协差矩阵为因为,而,所以和是不相关的,而正态分布不相关与相互独立是等价的,所以和是独立的.2、设抽了五个样品,每个样品只测了一个指标,它们分别是1 ,2 ,4。
5 ,6 ,8。
若样本间采用明氏距离,试用最长距离法对其进行分类,要求给出聚类图. 解:样品与样品之间的明氏距离为:样品最短距离是1,故把合并为一类,计算类与类之间距离(最长距离法)得距离阵 类与类的最短距离是1。
5,故把合并为一类,计算类与类之间距离(最长距离法)得距离阵类与类的最短距离是3。
5,故把合并为一类,计算类与类之间距离(最长距离法)得距离阵分类与聚类图(略)(请你们自己做)3、设变量的相关阵为的特征值和单位化特征向量分别为一、填空题(每空2分,共40分)二、计算题(每小题10分,共40分)(1) 取公共因子个数为2,求因子载荷阵。
(2) 计算变量共同度及公共因子的方差贡献,并说明其统计意义。
解:因子载荷阵变量共同度: ===公共因子的方差贡献:统计意义(省略)(学生自己做)4、设三元总体的协方差阵为,从出发,求总体主成分,并求前两个主成分的累积贡献率。
多元统计期末复习题

多元数据分析练习题第二章多元正态的参数估计一. 判断题(1)若∑∑=),,(~),,,(21μp T p N X X X X 是对角矩阵,则p X X X ,,,21 相互独立。
( )(2)多元正态分布的任何边缘分布为正态分布,反之也成立。
( )(3)对任意的随机向量T p X X X X ),,,(21 =来说,其协方差矩阵∑是对称矩阵,并且总是半正定的。
( )(4)对标准化的随机向量来说,它的协方差矩阵与原来变量的相关系数阵相同。
( ) (5)若),,(~),,,(21∑=μp T p N X X X X S X ,分别为样本均值和样本协差阵,则S nX 1,分别为∑,μ的无偏估计。
( ) 二.计算题1. 假设随机向量TX X X X ),,(321=的协方差矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=∑9232443416,试求相关系数矩阵R 。
⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=131413112141211R 2. 假设随机向量Tx x x ),(21=的协方差矩阵为⎥⎦⎤⎢⎣⎡=∑20119,令212211,2x x y x x y -=+=,试求T y y y ),(21=的协方差矩阵。
⎥⎦⎤⎢⎣⎡--=∑2733603.假设⎥⎦⎤⎢⎣⎡---=∑5.005.05.015.0),,(~3A N X μ,其中T)1,2,1(-=μ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=∑411121112,试求Ax y =的分布。
)2224,02(2⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-N 三.证明题1.设)()2()1(,,,n X X X 是来自),(∑μp N 的随机样本,X 为样本均值。
试证明:μ=)(X E ,∑=nX D 1)(。
2.设)()2()1(,,,n X X X 是来自),(∑μp N 的随机样本,S n 11-为样本协差阵。
试证明:∑=-)11(S n E 。
3.证明:若p 维正态随机向量),,,(21'=p X X X X 的协差阵为对角矩阵,则X 的各分量是相互独立的随机变量。
多元统计分析期末试题及标准答案

多元统计分析期末试题及答案作者: 日期:的样本均值和样本离差矩阵,则T 21、设 X(Xi,X2,X 』〜2(,),其中试判断人2X3与X"3是否独立?Xi15[4(X)]A 1[4( X)〕〜°16 4 2(1,0, 2),4 4 1 ,2 1 410,),i1 丄,10,则 W = (Xi)(Xi)i 1则它的相矢矩阵R八设X= Xi X2X3,的相尖系数矩阵通过因子分析分解为公因子匚对X 的贡献gj5、设Xi,i 1丄,16是来自多元正态总体Np( ,), X 和A 分别为正态总体 Np(,)N2(),其中 X(Xi,X 2), (1,2),则 Cov( Xi \2, xiX2)=服从3、设随机向量XX1 X2 X3,且协方差矩阵44 3 49 232 162、设 Xi - Na(R 11 0 32n 130.9340 417 0.8350 0 894 0.4470.934 00.417 0 8940.835 0 4470.1280 0270.103X1的共性方差hl.......... 方差2、对某地区农村的6名2周岁男婴的身高、胸围、上半臂围进行测量,得相尖数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值。
(90,58,16), 现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。
82.0 4.310714.62108.9464其中X60.2 ,(5 s)1( 115.6924)114.6210 3.17237. 376014.58.946437.376035.5936 ( 0.01,F0.01 (3, 2) 99.2, F0.01 (3,3)29.5, F0.01 (3, 4)16.7)3、设已知有两正态总体G与G,且I而其先验概率分别为q q2 0.5,误判的代价C(2|1) e4,C(112) e;3试用Bayes判别法确定样本X 属于哪一个总体?14、设X (Xi,X2,X3,X4)丁 ~ N4(0,),协方差阵I 畀1(1)试从工出发求X的第一总体主成分;(2)试问当取多大时才能使第一主成分的贡献率达95%以上5、设X (Xi ,X2)T3Y(Y,X2)丁为标准化向量,令Z1、设随机向量X的均值向量、协方差矩阵分别为试证:E(XX) ,且其协方差阵V(Z)100000 1112010.950 212200.9510000100求其第一对典型相尖变量和它们的典型相尖系数?2、设随机向量X~N P(J,又设丫=A P X+bn,试证:丫~ N r(A b,A A)。
应用多元统计分析试题及答案

一、填空题:1、多元统计分析是运用数理统计方法来研究解决多指标问题的理论和方法.2、回归参数显著性检验是检验解释变量对被解释变量的影响是否著.3、聚类分析就是分析如何对样品(或变量)进行量化分类的问题。
通常聚类分析分为 Q型聚类和 R型聚类。
4、相应分析的主要目的是寻求列联表行因素A 和列因素B 的基本分析特征和它们的最优联立表示。
5、因子分析把每个原始变量分解为两部分因素:一部分为公共因子,另一部分为特殊因子。
6、若()(,), Px N αμα∑=1,2,3….n且相互独立,则样本均值向量x服从的分布为_x~N(μ,Σ/n)_。
二、简答1、简述典型变量与典型相关系数的概念,并说明典型相关分析的基本思想。
在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。
选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此下去直到两组之间的相关性被提取完毕为止。
被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。
2、简述相应分析的基本思想。
相应分析,是指对两个定性变量的多种水平进行分析。
设有两组因素A和B,其中因素A包含r个水平,因素B包含c个水平。
对这两组因素作随机抽样调查,得到一个rc的二维列联表,记为。
要寻求列联表列因素A和行因素B的基本分析特征和最优列联表示。
相应分析即是通过列联表的转换,使得因素 A 和因素B具有对等性,从而用相同的因子轴同时描述两个因素各个水平的情况。
把两个因素的各个水平的状况同时反映到具有相同坐标轴的因子平面上,从而得到因素A、B的联系。
3、简述费希尔判别法的基本思想。
从k个总体中抽取具有p个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数系数:确定的原则是使得总体之间区别最大,而使每个总体内部的离差最小。
将新样品的p 个指标值代入线性判别函数式中求出 值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。
多元统计期末试题及答案

多元统计期末试题及答案一、选择题1. 在多元统计中,什么是协方差矩阵?A. 描述两个变量之间的线性关系的矩阵B. 描述两个变量之间的非线性关系的矩阵C. 描述多个变量之间的线性关系的矩阵D. 描述多个变量之间的非线性关系的矩阵答案:C2. 多元方差分析适用于以下哪种情况?A. 只有一个自变量和一个因变量B. 有一个自变量和多个因变量C. 有多个自变量和一个因变量D. 有多个自变量和多个因变量答案:C3. 多元线性回归分析中的残差是指什么?A. 因变量的观测值与估计值之间的差异B. 自变量的观测值与估计值之间的差异C. 因变量的观测值与真实值之间的差异D. 自变量的观测值与真实值之间的差异答案:A4. 主成分分析的目标是什么?A. 减少变量的数量B. 识别主要影响因素C. 降低模型复杂度D. 提高预测准确率答案:A5. 判别分析的目标是什么?A. 最小化类内方差B. 最大化类间方差C. 最小化类间方差D. 最大化类内方差答案:B二、填空题1. 多元正态分布的概率密度函数用符号____表示。
答案:f(x)2. 多元统计分析中的数据通常以矩阵的形式表示,其中每行代表____,每列代表____。
答案:样本,变量三、计算题假设有一组学生数据,包括他们的数学成绩(变量X1)、英语成绩(变量X2)和科学成绩(变量X3)。
1. 计算变量X1和X2之间的协方差。
答案:可使用协方差公式计算:Cov(X1,X2) = Σ[(X1-μ1)(X2-μ2)] / (n-1)其中,Σ表示求和符号,μ1和μ2分别为X1和X2的均值,n为样本数量。
2. 假设已经进行了主成分分析,计算数据的前两个主成分和对应的方差解释比例。
答案:主成分分析会得到一组主成分,可以通过对应的特征值来计算方差解释比例。
假设前两个特征值为λ1和λ2,总特征值和为Σλi。
则前两个主成分的方差解释比例为:(λ1 + λ2) / Σλi四、简答题1. 解释多元统计分析中的共线性问题。
(完整)多元统计分析期末试题及答案,推荐文档.docx

1 、设 X ~ N2 ( ,), 其中 X( x1 , x 2 ),( 1 ,212 ),,1则 Cov( x1x 2 , x1x 2 )=____.102、设X i ~N 3 (,), i 1, L,10,则 W =( X i)( X i)i 1服从_________。
4433、设随机向量X x1x2x3, 且协方差矩阵 4 9 2 ,3 2 16则它的相关矩阵R___________________4、设 X= x1x2x3,的相关系数矩阵通过因子分析分解为112330.93400.1280.4171R100.4170.9340.83530.8940.8940.027 0.83500.4472010.4470.10332__________,__________,X1的共性方差 h1X1的方差11公因子 f 1对 X的贡献 g12________________。
5、设 X i , i 1,L ,16 是来自多元正态总体N p (, ), X 和 A分别为正态总体N p ( ,)的样本均值和样本离差矩阵 , 则T 215[4( X)] A 1[4( X)] ~ ___________。
1642、设( x1 , x2 , x3) ~ N3(, ),其中(1,0, 2) ,44 1 ,1X214试判断 x12 x3与x2x3是否独立?x12、对某地区农村的 6 名 2 周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下 , 根据以往资料 , 该地区城市 2周岁男婴的这三个指标的均值0(90,58,16), 现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。
82.0 4.310714.62108.9464其中 X60.2 ,(5 S ) 1( 115.6924)114.6210 3.17237. 376014.58.946437.376035.5936 (0.01,F 0.01 (3, 2)99.2, F 0.01 (3,3)29.5,F0.01 (3, 4)16.7)、设已知有两正态总体G与 G,且12,24,1211,3126219而其先验概率分别为q1q20.5,误判的代价C (2 1)4;e ,C(1 2)e试用判别法确定样本X 3属于哪一个总体?Bayes514、设X( X1 , X2 , X3 , X4 )T,协方差阵1~ N (0, ),0111(1)试从Σ出发求 X 的第一总体主成分;(2)试问当取多大时才能使第一主成分的贡献率达95%以上。
多元统计复习题答案

多元统计复习题答案一、单项选择题1. 多元统计分析中,用于描述多个变量之间关系的统计方法是()。
A. 相关分析B. 聚类分析C. 因子分析D. 主成分分析答案:C2. 以下哪个不是多元统计分析中常用的降维方法?()A. 主成分分析B. 因子分析C. 聚类分析D. 典型相关分析答案:C3. 在多元统计分析中,用于识别数据集中的异常值或离群点的统计方法是()。
A. 马氏距离B. 箱线图C. 相关系数D. 卡方检验答案:B二、多项选择题1. 多元统计分析中,以下哪些方法可以用来进行变量选择?()A. 逐步回归B. 岭回归C. 偏最小二乘回归D. 主成分分析答案:A|B|C2. 多元统计分析中,以下哪些方法可以用来进行数据的分类?()A. 判别分析B. 聚类分析C. 因子分析D. 典型相关分析答案:A|B三、判断题1. 多元统计分析中的因子分析可以用于变量的降维。
(对)2. 多元统计分析中的主成分分析和因子分析是完全相同的方法。
(错)3. 多元统计分析中的聚类分析可以用于识别数据集中的异常值。
(错)四、简答题1. 简述多元统计分析中主成分分析(PCA)的主要步骤。
答:主成分分析的主要步骤包括:数据标准化、计算协方差矩阵、求解特征值和特征向量、选择主成分、构造主成分得分。
2. 描述多元统计分析中判别分析的应用场景。
答:判别分析在多元统计分析中主要应用于根据已有的分类变量来预测新样本的分类,例如在医学诊断、市场细分、信用评分等领域。
五、计算题1. 给定一组数据,计算其主成分得分。
答:首先需要对数据进行标准化处理,然后计算协方差矩阵,接着求解特征值和特征向量,最后根据特征值的大小选择前几个主成分,并计算对应的得分。
2. 利用判别分析对一组数据进行分类,并给出分类结果。
答:首先需要确定分类的依据,然后计算各类别的判别函数,接着对新样本进行判别分析,最后根据判别得分将样本分类到相应的类别中。
多元统计分析期末试题与答案解析

22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑L 、设则=服从。
()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。
215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--L 、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。
(),123设X=x xx 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R⎛⎫- ⎪⎛⎫⎛⎫⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎪⎝⎭12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。
(完整版)多元统计分析课后练习答案

第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。
在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
其中最典型的就是0-1标准化和Z 标准化。
2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。
在二维和三维空间中的欧氏距离的就是两点之间的距离。
缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。
每个坐标对欧氏距离的贡献是同等的。
当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。
当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。
它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。
没有考虑到总体变异对距离远近的影响。
马氏距离表示数据的协方差距离。
为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。
由标准化数据和中心化数据计算出的二点之间的马氏距离相同。
马氏距离还可以排除变量之间的相关性的干扰。
缺点:夸大了变化微小的变量的作用。
受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。
3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。
如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。
(完整版)多元统计分析试题及答案

(完整版)多元统计分析试题及答案试题:1. 试解释多元统计分析的含义及其与单变量和双变量统计分析的区别。
2. 简述卡方检验方法及适用场景。
3. 请解释回归分析中的回归系数及其p值的含义及作用,简单说明如何进行回归模型的选择和评估。
4. 试解释主成分分析的原理及目的,如何进行主成分分析及如何解释因子载荷矩阵。
5. 请列举和简要解释聚类分析和判别分析的适用场景,并说明两种方法的区别。
答案:1. 多元统计分析是一种将多个变量进行综合分析的方法。
与单变量和双变量统计分析不同的是,多元统计分析可以处理多个自变量和因变量的组合关系,从而探究它们之间的综合关系。
该方法通常适用于探究多种变量在某个问题中的关系、探究影响某一结果变量的因素、探究各个变量相互作用的影响等。
2. 卡方检验是根据样本数据与期望值的差异来判断观察值与理论预期是否相符,以此来验证假设是否成立的方法。
它通常用于对某个现象进行分类的相关度检验。
适用场景包括:样本的数量大于等于40,且至少有一个期望值小于5;变量为分类变量,且分类类别数不超过10个。
卡方检验的原理是将观察值和期望值进行比较,并计算卡方值,然后根据卡方值与自由度的乘积查找p值,从而得出结论。
3. 回归系数是回归方程中自变量与因变量之间的关系,在线性回归中,回归系数表示每一个自变量单位变化与因变量单位变化的关系。
p值是评估回归系数是否具有显著性的指标。
回归模型的选择有两种方法:一种是逐步回归分析,根据不同的准则进行多个回归模型的比较,选择最优的模型;另一种是正则化回归,通过加入惩罚项来保证回归模型具有良好的泛化性能。
回归模型的评估有多种方法,包括:残差分析、R方值、方差齐性检验、变量的共线性检验等。
4. 主成分分析是一种将多维数据降维处理的方法,它的目的是通过数据的变换,将多个变量转化为一些综合指标,这些指标是原始变量的线性组合。
主成分分析的步骤包括:数据标准化、计算协方差矩阵或相关系数矩阵、计算特征值和特征向量、选取主成分。
多元统计复习题附答案(可编辑修改word版)

原文:复习题答案:4.2 试述判别分析的实质。
4.3 简述距离判别法的基本思想和方法。
4.4 简述贝叶斯判别法的基本思想和方法。
4.5 简述费希尔判别法的基本思想和方法。
4.6 试析距离判别法、贝叶斯判别法和费希尔判别法的异同。
4.2 试述判别分析的实质。
答:判别分析就是希望利用已经测得的变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别的样本点尽可能地区别开来。
设 R1,R2,…,Rk 是 p 维空间 R p 的 k 个子集,如果它们互不相交,且它们的和集为R p ,则称R 1,R 2⋯R p 为R p 的一个划分。
判别分析问题实质上就是在某种意义上,以最优的性质对 p 维空间R p 构造一个“划分”,这个“划分”就构成了一个判别规则。
4.3 简述距离判别法的基本思想和方法。
答:距离判别问题分为①两个总体的距离判别问题和②多个总体的判别问题。
其基本思想都是分别计算样本与各个总体的距离(马氏距离),将距离近的判别为一类。
①两个总体的距离判别问题设有协方差矩阵∑相等的两个总体 G 1 和 G 2,其均值分别是 1 和 2,对于一个新的样品 X ,要判断它来自哪个总体。
计算新样品 X 到两个总体的马氏距离 D 2(X ,G 1)和 D 2(X ,G 2),则 X ∈ G 1 ,D 2(X ,G 1) ≤ D 2(X ,G 2) X ∈ G 2,D 2(X ,G 1)> D 2(X ,G 2,1 12 2 2 1 1 2 1 2 ik具体分析,= (X - μ )'Σ-1(X - μ ) - (X - μ )'Σ-1(X - μ ) D 2 (X , G ) - D 2 (X , G )= X 'Σ-1X - 2X 'Σ-1μ + μ'Σ-1μ - (X 'Σ-1X - 2X 'Σ-1μ + μ' Σ-1μ ) 121 11 2 2 2= 2X 'Σ-1(μ- μ ) + μ'Σ-1μ- μ' Σ-1μ= 2X 'Σ-1(μ - μ ) + (μ + μ )'Σ-1(μ - μ ) 211122⎛ μ + μ '-= -2 X - 1 2 ⎫ Σ 1(μ - μ )2 ⎪1 2⎝ ⎭= -2(X - μ)'α = -2α'(X - μ) 记W (X ) = α'(X - μ) 则判别规则为X ∈ G 1 ,W(X) ≥ 0 X ∈ G 2,W(X)<0②多个总体的判别问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习题原文:答案:4.2 试述判别分析的实质。
4.3 简述距离判别法的基本思想和方法。
4.4 简述贝叶斯判别法的基本思想和方法。
4.5 简述费希尔判别法的基本思想和方法。
4.6 试析距离判别法、贝叶斯判别法和费希尔判别法的异同。
4.2 试述判别分析的实质。
答:判别分析就是希望利用已经测得的变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别的样本点尽可能地区别开来。
设R1,R2,…,Rk是p维空间R p的k个子集,如果它们互不相交,且它们的和集为R p,则称R1,R2⋯R p为R p的一个划分。
判别分析问题实质上就是在某种意义上,以最优的性质对p维空间R p构造一个“划分”,这个“划分”就构成了一个判别规则。
4.3 简述距离判别法的基本思想和方法。
答:距离判别问题分为①两个总体的距离判别问题和②多个总体的判别问题。
其基本思想都是分别计算样本与各个总体的距离(马氏距离),将距离近的判别为一类。
①两个总体的距离判别问题设有协方差矩阵∑相等的两个总体G1和G2,其均值分别是μ1和μ2,对于一个新的样品X,要判断它来自哪个总体。
计算新样品X到两个总体的马氏距离D2(X,G1)和D2(X,G2),则X∈G1,D2(X,G1)≤ D2(X,G2)X ∈G 2 ,D 2(X ,G 1)> D 2(X ,G 2, 具体分析,2212(,)(,)D G D G -X X111122111111111222*********()()()()2(2)2()-----------''=-----''''''=-+--+'''=-+-X μΣX μX μΣX μX ΣX X ΣμμΣμX ΣX X ΣμμΣμX ΣμμμΣμμΣμ11211212112122()()()2()22()2()---''=-++-'+⎛⎫=--- ⎪⎝⎭''=--=--X ΣμμμμΣμμμμX ΣμμX μααX μ 记()()W '=-X αX μ 则判别规则为X ∈G 1 ,W(X)≥0 X ∈G 2 ,W(X)<0②多个总体的判别问题。
设有k 个总体k G G G ,,,21 ,其均值和协方差矩阵分别是和k ΣΣΣ,,,21 ,且ΣΣΣΣ====k 21。
计算样本到每个总体的马氏距离,到哪个总体的距离最小就属于哪个总体。
具体分析,21(,)()()D G ααα-'=--X X μΣX μ111122()C ααααα----'''=-+''=-+X ΣX μΣX μΣμX ΣX I X取ααμΣI 1-=,αααμΣμ121-'-=C ,k ,,2,1 =α。
可以取线性判别函数为()W C ααα'=+X I X , k ,,2,1 =α 相应的判别规则为i G ∈X 若 1()max()i kW C ααα≤≤'=+X I X4.4 简述贝叶斯判别法的基本思想和方法。
基本思想:设k 个总体,其各自的分布密度函数)(,),(),(21x x x k f f f ,假设k 个总体各自出现的概率分别为k q q q ,,,21 ,0≥i q ,11=∑=ki iq。
设将本来属于i G 总体的样品错判到总体j G 时造成的损失为)|(i j C ,。
设k 个总体相应的p 维样本空间为 ),,,(21k R R R R =。
在规则R 下,将属于的样品错判为j G 的概率为x x d f R i j P jR i )(),|(⎰= j i kj i ≠=,,2,1,则这种判别规则下样品错判后所造成的平均损失为∑==kj R i j P i j C R i r 1)],|()|([)|( k i ,,2,1 =则用规则R 来进行判别所造成的总平均损失为∑==ki i R i r q R g 1),()(∑∑===k i kj i R i j P i j C q 11),|()|(k μμμ,,,21 k G G G ,,,21 k j i ,,2,1, =k G G G ,,,21 i G贝叶斯判别法则,就是要选择一种划分,使总平均损失)(R g 达到极小。
基本方法:∑∑===k i kj i R i j P i j C q R g 11),|()|()(x x d f i j C q ki kj R i i j∑∑⎰===11)()|(∑⎰∑===k j R ki i i jd f i j C q 11))()|((x x令1(|)()()k iiji q C j i f h ==∑x x ,则 ∑⎰==kj R j jd h R g 1)()(x x若有另一划分),,,(**2*1*kR R R R =,∑⎰==kj R j jd h R g 1**)()(x x则在两种划分下的总平均损失之差为∑∑⎰==⋂-=-k i kj R R j i ji d h h R g R g 11**)]()([)()(x x x因为在i R 上)()(x x j i h h ≤对一切j 成立,故上式小于或等于零,是贝叶斯判别的解。
从而得到的划分),,,(21k R R R R =为1{|()min ()}i i j j kR h h ≤≤==x x x k i ,,2,1 =4.5 简述费希尔判别法的基本思想和方法。
答:基本思想:从k 个总体中抽取具有p 个指标的样品观测数据,借助方差分析的思想构造一个线性判别函数 1122()p p U u X u X u X '=+++=X u X 系数),,,(21'=p u u u u 可使得总体之间区别最大,而使每个总体内部的离差最小。
将新样品的p 个指标值代入线性判别函数式中求出()U X 值,然后根据判别一定的规则,就可以判别新的样品属于哪个总体。
4.6 试析距离判别法、贝叶斯判别法和费希尔判别法的异同。
答:① 费希尔判别与距离判别对判别变量的分布类型无要求。
二者只是要求有各类母体的两阶矩存在。
而贝叶斯判别必须知道判别变量的分布类型。
因此前两者相对来说较为简单。
② 当k=2时,若Σ1=Σ2=Σ则费希尔判别与距离判别等价。
当判别变量服从正态分布时,二者与贝叶斯判别也等价。
③ 当Σ1≠Σ2时,费希尔判别用Σ1+Σ2作为共同协差阵,实际看成等协差阵,此与距离判别、贝叶斯判别不同。
④ 距离判别可以看为贝叶斯判别的特殊情形。
贝叶斯判别的判别规则是 X ∈G 1 ,W(X)≥lndX ∈G 2 ,W(X)<lnd 距离判别的判别规则是 X ∈G 1 ,W(X)≥0 X ∈G 2 ,W(X)<0二者的区别在于阈值点。
当21q q =,)1|2()2|1(C C =时,1=d ,0ln =d 。
二者完全相同。
4.7 设有两个二元总体G 1和G 2 ,从中分别抽取样本计算得到 X ̅(1)=(51), X ̅(2)=(3−2),S p =(5.8 2.12.17.6) 假设Σ1=Σ2,试用距离判别法建立判别函数和判别规则。
样品X =(6,0)’应属于哪个总体?解:μ̂1=X ̅(1)=(51) ,μ̂2=X ̅(2)=(3−2) , μ̅̂=μ̂1+μ̂22=(4−0.5) W p =α’(x −μ̅)=(x −μ̅)′Σ−1(μ1−μ2)k R R R ,,,21(x −μ̅)′=(6,0)−(4,0.5)=(2,0.5)Σ−1=13967(7.6−2.1−2.1 5.8) (μ1−μ2)=(2,3)′ W p =(2,0.5)13967(7.6−2.1−2.1 5.8)(23)=24.439.67>0 ∴ X ∈G 1即样品X 属于总体G 15.1 判别分析和聚类分析有何区别? 5.2 试述系统聚类的基本思想。
5.3 对样品和变量进行聚类分析时, 所构造的统计量分别是什么?简要说明为什么这样构造5.5试述K 均值法与系统聚类法的异同。
5.1 判别分析和聚类分析有何区别?答:即根据一定的判别准则,判定一个样本归属于哪一类。
具体而言,设有n 个样本,对每个样本测得p 项指标(变量)的数据,已知每个样本属于k 个类别(或总体)中的某一类,通过找出一个最优的划分,使得不同类别的样本尽可能地区别开,并判别该样本属于哪个总体。
聚类分析是分析如何对样品(或变量)进行量化分类的问题。
在聚类之前,我们并不知道总体,而是通过一次次的聚类,使相近的样品(或变量)聚合形成总体。
通俗来讲,判别分析是在已知有多少类及是什么类的情况下进行分类,而聚类分析是在不知道类的情况下进行分类。
5.2 试述系统聚类的基本思想。
答:系统聚类的基本思想是:距离相近的样品(或变量)先聚成类,距离相远的后聚成类,过程一直进行下去,每个样品(或变量)总能聚到合适的类中。
5.3 对样品和变量进行聚类分析时, 所构造的统计量分别是什么?简要说明为什么这样构造?答:对样品进行聚类分析时,用距离来测定样品之间的相似程度。
因为我们把n 个样本看作p 维空间的n 个点。
点之间的距离即可代表样品间的相似度。
常用的距离为 (一)闵可夫斯基距离:1/1()()pq qij ik jk k d q X X ==-∑q 取不同值,分为 (1)绝对距离(1q =)1(1)pij ik jk k d X X ==-∑(2)欧氏距离(2q =)21/21(2)()pij ik jk k d X X ==-∑(3)切比雪夫距离(q =∞)1()max ij ik jkk pd X X ≤≤∞=-1()pik jkX X d L -=(二)马氏距离(三)兰氏距离对变量的相似性,我们更多地要了解变量的变化趋势或变化方向,因此用相关性进行衡量。
将变量看作p 维空间的向量,一般用(一)夹角余弦(二)相关系数5.5试述K 均值法与系统聚类法的异同。
答:相同:K —均值法和系统聚类法一样,都是以距离的远近亲疏为标准进行聚类的。
不同:系统聚类对不同的类数产生一系列的聚类结果,而K —均值法只能产生指定类数的聚类结果。
具体类数的确定,离不开实践经验的积累;有时也可以借助系统聚类法以一部分样品为对象进行聚类,其结果作为K —均值法确定类数的参考。
6.1 试述主成分分析的基本思想。
6.2 主成分分析的作用体现在何处?6.3 简述主成分分析中累积贡献率的具体含义。
6.5 试述根据协差阵进行主成分分析和根据相关阵进行主成分分析的区别。
6.1 试述主成分分析的基本思想。
答:我们处理的问题多是多指标变量问题,由于多个变量之间往往存在着一定程度的相关性,人们希望能通过线性组合的方式从这些指标中尽可能快的提取信息。