八年级三角形边角关系练习题
沪科版八年级上册数学第13章 三角形中的边角关系、命题与证明含答案
沪科版八年级上册数学第13章三角形中的边角关系、命题与证明含答案一、单选题(共15题,共计45分)1、如图,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,则∠1+∠2的度数为( )A.120°B.135°C.150°D.180°2、如图,△ABC的面积为1cm2, AP垂直∠B的平分线BP于P,则△PBC的面积为()A. B. C. D.3、如图,在矩形ABCD中,点E是AD上任意一点,则有()A.△ABE的周长+△CDE的周长=△BCE的周长B.△ABE的面积+△CDE 的面积=△BCE的面积C.△ABE∽△DECD.△ABE∽△EBC4、若等腰三角形的顶角为,则它的一个底角度数为A.20°B.50°C.80°D.100°5、平行四边形的两条对角线长分别为8cm和10cm,则其边长的范围是()A.2<x<6B.3<x<9C.1<x<9D.2<x<86、如图,在△ABC中,∠A=50°,∠1=30°,∠2=40°,∠D的度数是()A.110°B.120°C.130°D.140°7、如图,已知△ABC中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90°B.135°C.270°D.315°8、如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于()A.70°B.80°C.90°D.100°9、如果三角形的两边长分别是4和9,那么第三边长可能是( )A.1B.5C.8D.1410、如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=( )A.3:4B.4:3C.16:9D.9:1611、在△ABC中,∠A、∠B、∠C的对边分别是、、,则下列说法中错误的是()A.如果∠C-∠B=∠A,那么△ABC是直角三角形,∠C=90°B.如果,则∠B=60°,∠A=30° C.如果,那么△ABC是直角三角= D.如果,那么△ABC是直角三角形12、如图,四边形ABCD是菱形,AC=8,AD=5,DH⊥AB于点H,则DH的长为( )A.24B.10C.4.8D.613、如图,AB是圆O的直径,CD是圆O的弦,AB、CD的延长线交于点E,已知AB=2DE,∠E=16°,则∠ABC的度数是( )A. B. C. D.14、如图,锐角△ABC中,D、E分别是AB、AC边上的点,△ADC≌△ADC′,△AEB≌△AEB′,且C′D∥EB′∥BC,BE、CD交于点F.若∠BAC=35°,则∠BFC的大小是()A.105°B.110°C.100°D.120°15、下列命题正确的有 ( )个①40°角为内角的两个等腰三角形必相似②若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为750③一组对边平行,另一组对边相等的四边形是平行四边形④一个等腰直角三角形的三边是a、b、c,(a>b=c),那么a2∶b2∶c2=2∶1∶1⑤若△ABC的三边a、b、c满足a2+b2+c2+338=10a+24b+26c,则此△为等腰直角三角形。
人教版苏科版初中数学—直角三角形的边角关系(经典例题 )
班级小组姓名成绩(满分120)一、锐角三角函数(一)正切、正弦、余弦的定义:(共4小题,每题3分,题组共计12分)例1.在Rt△ABC中,∠C=90°,AC=1,BC=2,则tanB的值是()A.55 B.12 C.2 D.13例1.变式1.在Rt△ABC中,∠C=90°,AB=13,BC=12,则sinB的值为()A.512 B.1213 C.513 D.135例1.变式2.如图,在Rt△ABC中,∠C=90°,三边分别为a,b,c,则cosA=()A.ac B.abC.ba D.bc例1.变式3.在Rt△ABC中,∠C=90°,cosB=513,BC=15,则AC=.(二)坡度(坡比)(共4小题,每题3分,题组共计12分)例2.某段公路每在水平方向上前进100米,就升高4米,则路面的坡度为.例2.变式1.如图,某人从山脚下的点A沿着斜坡走了1000米到达山顶B点,已知山顶到山脚的垂直距离为500米,则山坡的坡度为.例2.变式2.已知传送带与水平面所成斜坡的坡度为1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为米.例2.变式3.如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为()A.3B.5C.5D.24米二、30°,45°,60°角的三角函数值(共4小题,每题3分,题组共计12分)例3.在△ABC 2,则∠B 的度数是()A.30°B.45°C.60°D.90°例3.变式1.如图,在Rt△ABC 中,∠C=90°,AB=2BC,则sin B 的值为()A.12B.22C.32D.1例3.变式2.计算:22sin 60cos 453tan 30sin 45tan 30-︒︒+︒︒︒例3.变式3.计算:())2231360-+-︒三、解直角三角形(一)解直角三角形的方法(共4小题,每题3分,题组共计12分)例4.如图,在Rt△ABC 中,斜边AB 的长为m,∠B=40°,则直角边BC 的长是()A.sin 40m ︒B.cos 40m ︒C.tan 40m ︒D.tan 40m ︒例4.变式1.在Rt△ABC 中,∠C=90°,若∠A=45°,a=1,则∠B=,b=,c=.例4.变式2.如图,在△ABC 中,∠C=90°,∠A,∠B,∠C 的对边分别为a,b,c,且b=85,∠BAC的平分线16153.例4.变式3.如图所示,在△ABC中,∠C=90°,sin A=25,D为AC上一点,∠BDC=45°,CD=6,求AB的长.(二)解直角三角形综合(共4小题,每题3分,题组共计12分)例5.如图,在△ABC中,已知AB=32,AC=4,∠A=60°,求ABCS的值.例5.变式1.等腰三角形的底边长为10cm,周长为36cm,那么底角的余弦值是()A.513 B.1213 C.1013 D.512例5.变式2.如图,在△ABC中,∠C=90°,AC=5cm,∠BAC的平分线交BC于D,AD=1033cm,求∠B,AB,BC.例5.变式3.如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜度由45°降为30°,已知原滑滑板AB的长为5米,点D,B,C在同一水平地面上.改善后滑滑板会加长多少米?(结果精确到0.01236≈2.449)四、三角函数的应用(一)仰角和俯角(共4小题,每题3分,题组共计12分)例6.如图,某飞机于空中A处探测到地面目标B,此时从飞机上看目标B的俯角α=30°,飞行高度AC=1200米,则飞机到目标B的距离AB为()A.1200米B.2400米C.4003米D.12003米例6.变式1.如图,测量队为了测量某地区山顶P的海拔高度,选M点作为观测点,从M点测量山顶P的仰角为30°,在比例尺为1∶50000的该地区等高线地形图上,量得这两点的图上距离为6厘米,则山顶P的海拔高度为()A.1732米B.1982米C.3000米D.3250米例6.变式2.如图,在高出海平面100米的悬崖顶A处,观测海平面上一艘小船B,并测得它的俯角为45°,则船与观测者之间的水平距离BC=米.例6.变式3.如图,某同学在楼房的A处测得荷塘的一端B处的俯角为30°,荷塘另一端D处与C,B在同一条直线上,已知AC=32米,CD=16米,问荷塘宽BD为多少米?(取3 1.73,结果保留整数)(二)方向角(共4小题,每题3分,题组共计12分)例7.如图,上午9时,一条船从A处出发以20海里/时的速度向正北方向航行,11时到达B处,从A,B望灯塔C,测得∠NAC=36°,∠NBC=72°,那么从B处到灯塔C的距离是()A.20海里B.36海里C.72海里D.40海里例7.变式1.如图所示,一只船向东航行,上午9时到达一座灯塔P的西南方向60海里的N处,上午11时到达这座灯塔的正南的M处,则这只船航行的速度为海里/时.例7.变式2.如图,小明想用所学的知识来测量湖心岛上的迎宾槐与岸上的凉亭间的距离,他先在湖岸上的凉亭A处测得湖心岛上的迎宾槐C处位于北偏东65°方向,然后,他从凉亭A处沿湖岸向正东方向走了100米到B处,测得湖心岛上的迎宾槐C处位于北偏东45°方向(点A,B,C在同一水平面上).请你利用小明测得的相关数据,求湖心岛上的迎宾槐C处与湖岸上的凉亭A处之间的距离(结果精确到1米).(参考数据:sin25°≈0.4226,cos25°≈0.9063,tan25°≈0.4663,sin 65°≈0.9063,cos65°≈0.4226,tan65°≈ 2.1445)例7.变式3.如图,一渔船上的渔民在A处看见灯塔M在北偏东60°方向,这艘渔船以28海里/时的速度向正东航行,半小时后到达B处,在B处看见灯塔M在北偏东15°方向,此时灯塔M与渔船的距离是()A.72海里B.142海里C.7海里D.14海里(三)运用三角函数的解决实际问题(共4小题,每题3分,题组共计12分)例8.在倾斜角为32°的山坡上种树,要求相邻两棵树间的水平距离为3米,那么相邻两棵树间的斜坡距离为()A.3sin32︒米B.3cos32︒米C.3tan32︒米D.3 cos32︒米例8.变式1.如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B,C之间的距离为()A.20海里B.103海里C.202海里D.30海里例8.变式2.如图,水渠边有一棵大木瓜树,树干DO(不计粗细)上有两个木瓜A,B(不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O处于同一水平面的C处测得木瓜A的仰角为45°,木瓜B的仰角为30°.求C处到树干DO的距离CO(结果精确到132≈1.41).例8.变式3.如图,一艘货轮在A处发现其北偏东45°方向有一海盗船,立即向位于正东方向B处的海警舰发出求救信号,并向海警舰靠拢,海警舰立即沿正西方向对货轮实施救援,此时距货轮200海里,并测得海盗船位于海警舰北偏西60°方向的C处.(1)求海盗船所在C处距货轮航线AB的距离;(2)若货轮以45海里/时的速度向A处沿正东方向海警舰靠拢,海盗船以50海里/时的速度由C处沿正南方向对货轮进行拦截,问海警舰的速度应为多少时才能抢在海盗船之前去救货轮?(结果保留根号)五、利用三角函数测高(一)测量底部可以到达的物体的高度(共4小题,每题3分,题组共计12分)例9.如图,在离铁塔150m的A处,用测倾器测得塔顶的仰角为30°,已知测倾器高AD=1.52m,则塔高BE≈.(精确到2≈3≈ 1.732).例9.变式1.如图,已知楼AB高30m,从楼顶A处测得旗杆C的俯角为60°,又从离地面5m一窗口E处测旗杆顶C的仰角为45°,则旗杆CD的高是m.例9.变式2.某兴趣小组用仪器测量湛江海湾大桥主塔的高度.如图,在距主塔AE60米的D处,用仪器测得主塔顶部A的仰角为68°,已知测量仪器的高CD=1.3米,求主塔AE的高度(结果精确到0.1米,参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈ 2.48).例9.变式3.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为()A.(63+米B.12米+米 D.10米C.(423(二)测量底部不可以到达的物体的高度(共4小题,每题3分,题组共计12分)例10.如图,已知两测角α,β和两测点距离BC,则高AD 等于()A.tan tan tan tan BC αββα⋅⋅- B.11tan tan BC αβ⎛⎫- ⎪⎝⎭C.tan tan BC αβ- D.()tan tan BC αβ-例10.变式1.如图,河对岸有一座小山AB,在C 处测得山顶A 的仰角是30°,向小山前进16米到D 处,测得A 的仰角是45°,求小山AB 的高.例10.变式2.如图,两建筑物的水平距离为a,从A 点测得D 点的俯角为α,测得C 点的俯角为β,则较低建筑物CD 的高度为()A.aB.tan a αC.()sin cos a αα- D.()tan tan a βα-例10.变式3.如图所示,中原福塔(河南广播电视塔)是世界第一高钢塔.小明所在的课外活动小组在距地面268米高的室外观光层的点D 处,测得地面上点B 的俯角α为45°,点D 到AO 的距离DG 为10米;从地面上的点B 沿BO 方向走50米到达点C 处,测得塔尖A 的仰角β为60°.请你根据以上数据计算塔高AO,并求出计算结果与实际塔高388米之间的误差.(参考数据:3≈ 1.732,2≈1.414,结果精确到0.1米)。
边角关系测试题及答案
边角关系测试题及答案一、选择题1. 在三角形ABC中,如果∠A = 50°,∠B = 70°,那么∠C的度数是多少?A. 40°B. 50°C. 60°D. 70°2. 如果一个三角形的内角和为180°,那么在三角形ABC中,如果∠A = 90°,∠B = 45°,∠C的度数是多少?A. 45°B. 90°C. 135°D. 180°3. 在一个直角三角形中,如果一个锐角是30°,那么另一个锐角的度数是多少?A. 30°B. 45°C. 60°D. 90°二、填空题4. 如果三角形的一个角是直角,那么这个三角形的另外两个角的和是______。
5. 在一个三角形中,如果两个内角的度数之和为90°,那么这个三角形被称为______三角形。
三、简答题6. 解释什么是补角,并给出一个补角的例子。
7. 解释什么是邻补角,并给出一个邻补角的例子。
四、计算题8. 在一个三角形中,已知∠A = 120°,求∠B和∠C的度数。
9. 如果一个三角形的三个内角的度数之和为180°,且已知∠A = 60°,∠B = 50°,求∠C的度数。
五、解答题10. 证明在一个三角形中,任意两个内角的和小于180°。
答案:一、选择题1. C2. A3. C二、填空题4. 90°5. 直角三、简答题6. 补角是指两个角的度数之和等于90°,例如,如果一个角是60°,那么它的补角是30°。
7. 邻补角是指两个角共享一条边,且它们的另一条边互为反向延长线,例如,在一个直角三角形中,两个锐角互为邻补角。
四、计算题8. ∠B = ∠C = (180° - 120°) / 2 =30°9. ∠C = 180° - 60° - 50° = 70°五、解答题10. 证明:设三角形ABC中,∠A和∠B为任意两个内角。
八年级三角形边角关系 经典例题
1、 如图,BE 是∠ABD 的平分线,CF 是∠ACD 的平分线,BE 、CF 相交于点G,∠BDC=140°, ∠BGC=110°。
求∠A 的度数.2、如图,已知P 是△ABC 内一点,连结AP,PB,PC求证:(1)PA+PB+PC >21(AB+AC+BC) (2)PA+PB+PC < AB+AC+BC3、如图1,△ABC 中,点P 是∠ABC 与∠ACB 平分线的交点. (1)求∠P 与∠A 有怎样的大小关系?(2)如图2,点P 是∠CBD 与∠BCE 平分线的交点,求∠P 与∠A 的关系. (3)如图3,点P 是∠ABC 与∠ACF 平分线的交点,求∠P 与∠A 的关系.EG ABDCF十一章经典例题4、如图1,在△ABC中,AD⊥BC,AE是角平分线,(1)求∠DAE与∠B、∠C之间的关系;(2)如图2,AE是∠BAC的角平分线,FD 垂直于BC于D,求∠DFE与∠B、∠C之间的关系. (3)如图3,当点F在AE延长线上时,FD仍垂直于BC于D,继续探讨∠DFE与∠B、∠C 的关系图1 图2F图35、如图△ABC 中, ∠BAD=∠CBE=∠ACF, ∠ABC=50°,∠ACB=62°,求∠DFE 的大小.6、△ABC 中,AD 、BE 、CF 是角平分线,交点是点G,GH ⊥BC 求证:∠BGD=∠CGH.7、如图,∠xOy =90°,点A 、B 分别在坐标轴Ox 、Oy 上移动,BF 是∠ABP 的平分线,BF 的反向延长线与∠OAB 的平分线交于点C,求证∠ACB 的度数是定值.8、在平面直角坐标系中,点O 为坐标原点,点A 在第一象限, 点B 是x 正半轴上一点。
过点O 做OD ∥AB ,∠BAO 的平分线与 ∠MOD 的平分线相交于点Q ,EDCBAFGABCD EFHANy求AQO AON∠∠的值9、直角坐标系中,OP平分∠XOY,B为Y轴正半轴上一点,D为第四象限内一点,BD交x轴于C,过D作DE∥OP交x轴于点E,CA平分∠BCE交OP于A,∠BDE的平分线交OP于G,交直线AC于M,如图求证2OGD OEDOAC∠-∠∠为定值DBQxO。
沪科版八年级上册数学第十三章三角形边角关系习题【含答案】
沪科版八年级上册数学第十三章三角形边角关系习题(每小题5分共25分)1.下列长度的三条线段能组成三角形的是A.1,2,3B.1,,3C.3,4,8D.4,5,62.如图1,在△ABC中,∠B、∠C的平分线BE、CD相交于点F,∠ABC=420,∠A=60°,则∠BFC=( )A.1180B.1190C.120°D.121°3.如图2,在△ABC中,点O是∠ABC与∠ACB平分线的交点,若∠BAC=80°,则∠BOC=( )A.1300B.1000C.500D.65°4.如果三角形的两边长为2和9,且周长为奇数,那么满足条件的三角形共有A.1个B.2个C.3个D.4个5.下列四个图形中,线段BE是△ABC的高的是图1图2如图32、想一想,填一填(每小题5分,共20分)6.如图,在图①中,互不重叠的三角形共有4个,在图②中,互不重叠的三角形共有7个,在图③中,互不重叠的三角形共有10则在第n个图形中,互不重叠的三角形共有个(用含n的代数式表示)7.已知a,b,c为△ABC的三边,化简:a+b-c1-|b-a-c|=______.8.已知a,b,c为△ABC的三边,满足a+b-71+(c-5)2=0,则三角形的周长为_______.9.如图3,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=_______度。
试一试,答一答(每小题11分,共55分,综合探究不计入总分10、如图,△ABC中、∠ABC、∠ACB的平分线相交于点I.你能归纳出∠BIC和∠A的关系吗?11、已知a,b,c是三角形的三边,且满足a2+b2+c2-ab-bc-ca=0,判断三角形的形状。
12、如图,△ABC中,AD、CE是△ABC的两条高,BC=5cm,AD=3cm,CE=4cm,你能求出AB的长吗?13、已知等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm两部分,求这个三角形的腰长14.某工程队准备开挖一条隧道,为了缩短工期,必须在山的两侧同时开挖,为了确保两侧开挖的隧道在同一条直线上,测量人员在如图4的同一高度定出了两个开挖点P和Q,然后在左边定出开挖的方向线AP,为了准确定出右边开挖的方向线BQ,测量人员取一个可以同时看到点A,P,Q的点O,测得∠A=280,∠AOC=100°,那么∠QBO应等于多少度才能确保BQ与AP在同一条直线上?15、如图,等边△ABC和三角形内一点P,设点P到△ABC三边AB、AC、BC的距离分别为h1,h2,h3,△ABC的高为h.试说明:h1+h2+h3=h。
直角三角形的边角关系练习题
直角三角形的边角关系练习题1、已知,AD 为等腰三角形ABC 底边上的高,且tanB=34,AC 上有一点E,满足AE:EC=2:3,那么tan ∠ADE 等于( ) A 53 B 32 C 21 D 312、直线4-=kx y 与y 轴相交所成的锐角的正切值为21,则K 的值为3、如图,拦水坝的横断而为梯形ABCD ,坝顶宽BC=6米,高3.2米,了提高水能力,需将水坝加高2米,并且保持顶宽度不变,迎水坡CD 坡度不变,但是背水坡坡度由原来i=1:2变成i′=1:2.5(有关数据在图上已注明),求加高后底HD 长多少?3、如图,小明将一张矩形纸片ABCD 沿CD 折叠,B 点恰好落在AD 边上,设此为F ,若AB :BC=4:5,则cos ∠DCF 的值为 。
5、山脚下有一棵树AB ,小华从点B 沿山坡向上走50米到达点D ,用高为1.5米的测角仪CD 测得树顶的仰角为10°,已知山坡的坡角为15°,求树AB 的高.(精确到0.1米)(已知sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin15°≈0.26,cos15°≈0.97,tan15°≈0.27.)6.如图,一游人由山脚A沿坡角为30°的山坡AB行走600m,到达一个景点B,再由B沿山坡BC行走200m到达山顶C,若在山顶C处观测到景点B的俯角为45°,则山高CD为()A,3003+1002 B 300+1003 C 300+1002 D 4008、我们知道当人的视线与物体表面互相垂直时的视觉效果最佳.如图是小明站在距离墙壁1.60米处观察装饰画时的示意图,此时小明的眼睛与装饰画底部A 处于同一水平线上,视线恰好落在装饰画中心位置E处,且与AD垂直.已知装饰画的高度AD为0.66米,求:(1)装饰画与墙壁的夹角∠CAD的度数(精确到1°);(2)装饰画顶部到墙壁的距离DC(精确到0.01米).的长方体台阶来铺,需要铺几级台阶?11、旗杆、树和竹杆都垂直于地面且一字排列,在路灯下树和竹杆的影子的方位和长短如图所示.请根据图上的信息标出灯泡的位置(用点P 表示),再作出旗杆的影子(用线段字母表示).(不写作法,保留作图痕迹)A 213-B 63C 6132-D 813+14.如图,四边形ABCD 是矩形,点E 在线段CB 的延长线上,连接DE 交AB 于点F ,∠AED=2∠CED ,点G 是DF 的中点,若BE=1,AG=4,则AB 的长为15、在等边三角形ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADC =60°,BD=4,CE=34 2,则△ABC 的面积( )16、在正方形网格中,sin ∠ABC=18、如图,正方形ABCD 中,E 是BC 边上一点,以E 为圆心,EC 为半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则sin EAB 的值为( )A 、43 B 、34 C 、45D 、3519、如图,A 、B 、C 、三点在正方形网格线的交点处.若将△ACB 绕着点A 逆时针旋转到如图位置,得到△AC ′B ′,使A 、C 、B ′三点共线。
直角三角形边角关系10套题
三角形边角关系11.已知Α为锐角,3cos 5A =,则tan Α= .2.在周长12的Rt A B C ∆中, sin B =0.5,则b= ,c= .3.在Rt A B C ∆中,05090,10,33A B C C a S ∆∠===, 则b= ,c= .4.已知在Rt A B C ∆中,090,,,sin C AC b AB c A ∠====那么 ,sin B = .5.在A B C ∆中,090,65,615C a b ∠===,则c= ,B ∠= .6.在Rt ∆MNP 中,若NP 是斜边,MN=15,NP=17,那么tanN + cotP= .7. √2×sin45°+√3×cos30°-3/2= .8.已知某大坝横截面为梯形,坝顶宽10米,坝高160米,且大坝迎水面坡度i 1=1:3,背水面坡度i 2=2:3,求大坝截面积.三角形边角关系21.在Rt A B C ∆中,0090,10,55C AC B ∠==∠=,则AB 上的高CD 的长可表示为 .2.在A B C ∆中,若cosB=0,b=21,c:a=5:3则BC 边上的中线AD 的长为 .3. 点Α在O 点北偏西035方位上,点B 在O 点北偏东055的方位上且O Α长80m,OB 长60m,那么ΑB 间的距离是 .4. 在Rt A B C ∆中,斜边上的高CD 把ΑB 分成ΑD 和BD,若ΑD:BD=34,则sin B = .5.在A B C ∆中,0490,sin ,8,5C B A B B C A C ∠==+==则 .6.在梯形ΑBCD 中,ΑD//BC,ΑB=CD,ΑD=4,BC=6,1cos ,4B S =梯则= .7. 已知tan α=3.则1/(sin²α+sinαcosα+cos²α) 的值为?8.从高24米的甲楼顶部Α处测得乙楼顶部B 的仰角α=300,测得乙楼底部C 的俯角β=600,求乙楼的高.三角形边角关系31.如图9-8,在A B C ∆中,D 是ΑB 的中点, DC ⊥ΑC,B C D ∠的正切值是13,则A ∠的正弦值是 .2.在A B C ∆中,1,2,12tgA tgC AC ===,那么BC 的值是 .3.在A B C ∆中,090,2,4,cos ABC C AC S A ∆∠===则= .4.如图9-9,在电视塔ΑD 的正东方向有两个地面观测点B 、C,在B 、C,两点测得塔顶Α的仰角分别为αβ,B 、C 两地相距α米,则ΑD 的高为 .5.飞机在离地面1200m 上空测得地面目标的俯角为060,那么此时飞机距目标 m.6.已知在A B C ∆中,ΑB=ΑC=10,BC=12,那么c o s B = ,tgC = ,sin A = .7. 3/5cosβ-4/5sinβ=5/13,求sinβ?8.在Rt ΔΑBC 中,∠ΑCB=900,sinB=35,D 是BC 边上的一点,DE ⊥ΑB ,垂足为E ,CD=DE ,ΑC+CD=9,求(1)BC 的长;(2)CE 的长.三角形边角关系41.A B C ∆中,05120,21,,3A B C c B b S a ∆∠===且则= .2.如图9-10,在四边形ΑBCD 中,ΑD=CD,ΑB=7,tg Α=2,090B D ∠=∠=,那么BC 的长为 .3.在ΔΑBC 中,∠C=900,CD ⊥ΑB ,垂足为D ,则比值B CC D B D A CA B A C B C B C、、、中等sin Α的个数有( ).(Α)4个 (B )3个 (C )2个 (D )1个4.如图9-11,在ΔΑBC 中,∠Α=300,E 为ΑC 上一点,且ΑE :EC=3:1,EF ⊥ΑB ,F 为垂足,连结FC ,则cot ∠CFB 的值等于( ).(Α)36(B )32(C )433 (D )1345.在ΑBC 中,∠Α=750,∠C=450,ΑB=2,则ΑC 的长等于( ).(Α)22 (B )23 (C )6 (D )2636.在Rt ΔΑBC 中,∠C=900,CD ⊥ΑB 于D ,若14B D A D=,则tan ∠BCD 的值是( ).(Α)14(B )13(C )12(D )27.在ΔΑBC 中,已知∠B=2倍等于其他两角的和,最长边与最短边的和是8,积是15,求这个三角形的面积及∠B 所对边的长.三角形边角关系51.在ΔΑBC 中,∠B=600,ΑB=6,BC=8,则ΑBC 的面积是( ). (Α)123 (B )12 (C )243 (D )1222.如图9-12,在矩形ΑBCD 中,BC=2,ΑE ⊥BD ,垂足为E ,∠B ΑE=300,则ΔECD 的面积是( ).(Α)23 (B )3 (C )32(D )333.如图9-13,∠ΑOP=∠BOP=150,PC ∥ΑO ,PD ⊥O Α,若PC=4,则PD 等于( ). (Α)4 (B )3 (C )2 (D )14.在ΔΑBC 中,∠Α=300,tgB=13,BC=10,那么ΑB 的长为( ).【2】(Α)3 (B )3 (C )33-(D )33+5.如图9-14,在ΑBC 中,点D 在ΑC 上,DE ⊥BC ,垂足为E ,若ΑD=2CD ,ΑB=4DE ,则sinB=( ). (Α)12(B )73(C )377(D )346.如图9-15,x=( ).(Α)sin cos a b a β- (B )cos cos a b a β- (C )cos sin b b aβ- (D )sin sin a b aβ-7.如图9-28,∠ΑCB=900,ΑB=13,ΑC=12,∠BCM=∠B ΑC ,求sin ∠B ΑC 和点B 到直线MC 的距离.三角形边角关系61.如图1所示的Rt△ABC中,cosA=___; 2.在Rt△ABC中,∠C=90°,BC=4,sinA=23,则AB=___;3.已知α为锐角,下列结论:○1sinα+cosα=1;○2如果α>45°,那么sinα>cosα;○3如果cosα>12,那么α<60°;○4()2sin 11sin αα-=-.正确的有( )A.1个;B.2个;C.3个;D.4个. 4.△ABC中,∠C=90°,如果sinA=35,那么tanB的值等于( )5.如图2,在高度为10米的平台CD上测得一高层建筑物AB的顶端A的仰角为60°,底端B的俯角为30°,则高层建筑物的高AB=____米;6.如图3,小明想测量电线杆AB的高度,发现电线杆的影子恰好在落在土坡的坡面CD和地面BC上,量得CD=4米,BC=10米,CD与地面成 30°角,且此时测得1米杆的影长为2米,则电线杆的高度约为___米(结果保留两位有效数字).7.如图7,∠POQ=90°,边长为2cm的正方形ABCD的顶点B在OP上,C在OQ上,且∠OBC=30°,分别求点A,D到OP的距离.B C A135图1D B CA图230°AE BD C F 图3P E B F OAD G CQ图7三角形边角关系71.已知△ABC中,∠C=90°,sinA=35,则BC∶AC等于()A.3∶4;B.4∶3;C.3∶5;D.4∶5.2.∠A为锐角,且sinA=35,那么()A.0°<∠A<30°;B.30°<∠A<45°;C.45°<∠A<60°;D.60°<∠A<90°;3.计算:2cos45︒+tan60°cos30°=___;4.如果一个角的补角是这个角余角的4倍,则这个角的正弦值是___;5.在△ABC中,∠C=90°,若3AC=3BC,则∠A的度数是___,cosB的值是___;6.在△ABC中,∠C=90°,若tanA=12,则sinA=___;7.若tan9°·tanα=1,则锐角α=___度;8.在△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C所对的边,则33sin sina Bb A+=___;9.如图6,在△ABC中,AD是BC边上的高,tanB=cos∠DAC.(1)求证:AC=BD;(2)若sinC=1213,BC=12,求AD的长.BDCA图6三角形边角关系81.在Rt△ABC中,各边长都扩大2倍,则锐角A的正弦和余弦值()A.都不变;B.都扩大2倍;C,都缩小2倍;D.不能确定.2.在Rt△ABC中,∠C=90°,AB=c,BC=a,且a,c满足2234a ac c-+=0,则sinA=();A.1;B.13;C.1或13;D.1或3.3.三角函数sin23°,cos15°,cos41°的大小关系是()CA.cos41°>sin23°>cos15°;B.cos15°>sin23°>cos41°;C.cos15°>cos41°>sin23°;D.cos41°>cos15°>sin23°.4.在△ABC中,∠A,∠B均为锐角,且|tanB-3|+()22sin3A-=0,则△ABC是()A,等腰三角形;B.等边三角形;C.直角三角形;D.等腰直角三角形.5.河堤的横断面如图4所示,堤高BC是5米,迎水斜坡AB的长是10米,那么斜坡AB的坡度i是()A.1∶2;B.1∶3;C.1∶1.5;D.1∶3.6.若α为锐角,且sinα是方程22x+3x-2=0的一个根,则cosα=()A.12;B.32;C.22;D.12或327.如图5,在△ABC中,∠C=90°,点D在BC上,BD=4,AD=BC,cos∠ADC=35,求:(1)DC的长;(2)A CB C的值.BDCA图5BCA图4三角形边角关系91、等腰三角形的一腰长为cm 6,底边长为cm 36,则其底角为( ) A 030 B 060 C 090 D 01202、某水库大坝的横断面是梯形,坝内斜坡的坡度3:1=i ,坝外斜坡的坡度1:1=i ,则两个坡角的和为 ( )A 090 B 060 C75D 01053、如图,在矩形ABCD 中,DE⊥AC 于E ,设∠ADE=α,且53cos =α, AB= 4, 则AD 的长为( ).(A )3 (B )316 (C )320 (D )5164、在课外活动上,老师让同学们做一个对角线互相垂直的等腰梯形形状的风筝,其面积为4502cm ,则对角线所用的竹条至少需( ). (A )cm 230 (B )30cm (C )60cm (D )cm 260 5、如果α是锐角,且135cos sin 22=︒+α,那么=αº.6、如图,在坡度为1:2的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是 米.7.如图9,登山队员在山脚A点测得山顶B点的仰角为∠CAB=45°,当沿倾斜角为30°的斜坡前进100m到达D点以后,又在D点测得山顶B点的仰角为60°,求山的高度BC.(精确到1米)A E CB FD图9A BCD E三角形边角关系101、如图,P 是∠α的边OA 上一点, 且P 点坐标为(3,4),则αsin = ,αcos =______.2、支离旗杆20米处的地方用测角仪测得旗杆顶的仰角为α,如果测角仪高为1.5米.那么旗杆的有为 米(用含α的三角比表示).3、在Rt ABC ∆中∠A<∠B,CM 是斜边AB 上的中线,将ACM ∆沿直线CM 折叠,点A 落在点D 处,如果CD 恰好与AB 垂直,那么∠A 等于 度.4、如图,某公路路基横断面为等腰梯形.按工程设计要求路面宽度为 10米,坡角为︒55,路基高度为5.8米,求路基下底宽5.如图11,客轮沿折线A-B-C从A出发经B再到C匀速航行,货轮从AC的中点D出发沿某一方向匀速直线航行,将一批物品送达客轮.两船同时起航,并同时到达折线A-B-C上的某点E处.已知AB=BC=200海里,∠ABC=90°,客轮速度是货轮速度的2倍.(1)选择:两船相遇之处E点( )(A)在线段AB上;(B)在线段BC上;(C)可以在线段AB上,也可以在线段BC上; (2)求货轮从出发到两船相遇共航行了多少海里?(结果保留根号)6、如图,客轮沿折线A―B―C 从A 出发经B 再到C 匀速直线航行,将一批物品送达客轮.两船同时起航,并同时到达折线A―B―C 上的某点E 处.已知AB = BC =200海里,∠ABC =︒90,客轮速度是货轮速度的2倍.(1)选择:两船相遇之处E 点( )A .在线段AB 上 B .在线段BC 上C .可以在线段AB 上,也可以在线段BC 上(2)求货轮从出发到两船相遇共航行了多少海里?(结果保留根号)C F EBA D.图11αPoy x34︒555.8m10mABC D.。
八年级数学上册 第13章 三角形中的边角关系、命题与证明 单元测试卷(沪科版 24秋)
八年级数学上册第13章三角形中的边角关系、命题与证明单元测试卷(沪科版24秋)一、选择题(本大题共10小题,每小题4分,满分40分)1.【2024·合肥瑶海区期中】以下列各组线段的长为边长,能组成三角形的是()A.1,2,3B.3,4,5C.3,5,10D.4,4,8 2.【母题:教材P73练习T3】在下列各图中,正确画出△ABC边AC上的高的是()3.【2024·合肥四十八中月考】若一个三角形的三个内角度数的比为2∶3∶4,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4.【2024·六安裕安中学校级期中】将一副三角尺按如图所示的方式叠放,则∠1的度数为()A.45°B.60°C.75°D.15°5.如图,BE,CF都是△ABC的角平分线,且∠BDC=130°,则∠A=() A.50°B.60°C.70°D.80°6.【2024·芜湖期中】如图,在△ABC中,点D为边BC上的一点,点E为AD 的中点,且S△ABC=4cm2,则S△BEC=()A.2cm2B.1cm2C.0.5cm2D.0.25cm27.如图,在△ABC中,CE和AD分别是AB,BC边上的高,若AD=12,CE=16,则ABBC的值为()A.35B.34C.43D.588.下列命题中,真命题有()①如果a=b,b=c,那么a=c;②直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离;③如果a·b=0,那么a=b=0;④如果a=b,那么a3=b3.A.1个B.2个C.3个D.4个9.【2024·宣城宣州区期中】如图,将一张三角形纸片ABC折叠,使点A落在A′处,折痕为DE,若∠A=α,∠CEA′=β,∠BDA′=γ,那么下列式子中正确的是()A.γ=180°-α-βB.γ=α+2βC.γ=2α+βD.γ=α+β10.如图,在△ABC中,BD平分∠ABC交AC于点D,CF平分∠ACB的补角∠ACE,交BA的延长线于点F,交BD的延长线于点M.下列结论:①∠BMC=∠MBC+∠F;②∠ABD+∠BAD=∠D CM+∠DMC;③2∠BMC=∠BAC;④2(∠BDC+∠F)=3∠BAC.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(本大题共4小题,每小题5分,满分20分)11.命题“对顶角相等”的逆命题是______________________.12.如图,在△ABC中,AD为BC边上的中线,△ABD的周长比△ACD的周长大4.若AB =10,则AC =________.13.《周礼·考工记》中记载有:“……半矩谓之宣(xuān),一宣有半谓之欘(zhú)……”.意思是:“……直角的一半的角叫做宣,一宣半的角叫做欘……”,即1宣=12矩,1欘=112宣(其中,1矩=90°).问题:图①为中国古代一种强弩图,图②为这种强弩图的部分组件的示意图,若∠A =1矩,∠B =1欘,则∠C =________度.14.【2024·滁州天长市期中】如图,AC ,BD 相交于点O ,BP ,CP 分别平分∠ABD ,∠ACD ,且交于点P .(1)若∠A =70°,∠D =60°,则∠P =________°;(2)若∠A ∠D ∠P =24x ,则x =________.三、(本大题共2小题,每小题8分,满分16分)15.写出下列命题的逆命题,并判断真假.(1)三角形三个内角的和等于180°;(2)两直线平行,同旁内角互补.16.【2024·滁州育才中学月考】如图,DE ∥BC ,∠1=∠3,CD ⊥AB ,求证:FG ⊥AB .四、(本大题共2小题,每小题8分,满分16分)17.【2023·合肥大地中学月考】有人说:“如果△ABC的三边长a,b,c满足a2-b2=ac-bc,那么△ABC一定是等腰三角形.”你同意这个说法吗?请给出你的理由.18.如图,△ABC中,AD,AE分别是△ABC的高和角平分线,BF是∠ABC的平分线,BF与AE交于点O,若∠ABC=40°,∠C=60°,求∠DAE,∠BOE 的度数.五、(本大题共2小题,每小题10分,满分20分)19.如图,在△ABC中(AB>AC),AD是△ABC的中线,AE是△ACD的中线.(1)若DE=2,求BC的长;(2)若△ABC的周长为35,BC=11,且△ABD与△ACD的周长差为3,求AC的长.20.已知在△ABC中,AB=20,BC=8,AC=2m-2.(1)求m的取值范围;(2)若△ABC是等腰三角形,求m的值及△ABC的周长.六、(本题满分12分)21.如图,在△ABC中,∠ABC与外角∠ACD的平分线相交于点O.(1)当∠ABC=60°,∠ACD=130°时,求∠BOC的度数;(2)求证:∠O=12∠A.七、(本题满分12分)22.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准直角三角形”.(1)如图①,在Rt△ABC中,∠ACB=90°,BD是△ABC的角平分线.求证:△ABD是“准直角三角形”;(2)下列说法:①在△ABC中,若∠A=100°,∠B=70°,∠C=10°,则△ABC是“准直角三角形”;②若△ABC是“准直角三角形”,∠C>90°,∠A=60°,则∠B=20°;③“准直角三角形”一定是钝角三角形.其中正确的是________;(填序号)(3)如图②,B,C为直线l上两点,点A在直线l外,且∠ABC=50°.若P是直线l上一点,且△ABP是“准直角三角形”,请直接写出∠APB的度数.八、(本题满分14分)23.问题情境:如图,在同一平面内,点B和点C分别位于一块直角三角板PMN 的两条直角边PM,PN上,点A与点P在直线BC的同侧,若点P在△ABC 内部,试问∠ABP,∠ACP与∠A的大小是否满足某种确定的数量关系?(1)特殊探究:若∠A=55°,则∠ABC+∠ACB=________°,∠PBC+∠PCB=________°,∠ABP+∠ACP=________°.(2)类比探索:试猜想∠ABP+∠ACP与∠A的关系,并说明理由.(3)类比延伸:改变点A的位置,使点P在△ABC外,其它条件都不变,判断(2)中的结论是否仍然成立?若成立,请说明理由;若不成立,请直接写出∠ABP,∠ACP与∠A满足的数量关系式.答案一、1.B2.D3.A4.C5.D6.A7.B8.B9.C点方法:在解决折叠问题时,要分清楚折叠前后重合的角,即相等角,进而找到角之间的等量关系.10.D二、11.相等的两个角是对顶角12.613.22.514.(1)65(2)3【点拨】(1)由对顶角相等可得∠DOC=∠AOB.设∠DOC=∠AOB=a,在△DOC中,∠DCO=180°-∠D-∠DOC=120°-a.∵CP平分∠ACD,∴∠PCA=12∠DCO=60°-12.在△AOB中,∠ABO=180°-∠A-∠AOB=110°-a.∵BP平分∠ABD,∴∠PBA=12∠ABO=55°-12a.∵∠AFP是△PCF的外角,∴∠AFP=∠P+∠PCF=∠P+60°-1 2 a.∵∠AFP是△ABF的外角,∴∠AFP=∠A+∠ABF=125°-1 2 a.∴∠P+60°-12a=125°-12a.∴∠P=65°.(2)设∠A=2k,∠D=4k,∠P=xk,∠DOC=∠AOB=b.∵∠DCO=180°-∠D-∠DOC,∴∠PCF=12∠DCO=12(180°-4k-b).∵∠ABO=180°-∠A-∠AOB,∴∠PBA=12∠ABO=12(180°-2k-b).∵∠AFP=∠P+∠PCF=∠A+∠ABF,∴xk+12(180°-4k-b)=2k+12(180°-2k-b),解得x=3.三、15.【解】(1)内角和等于180°的多边形是三角形;真命题.(2)同旁内角互补,两直线平行;真命题.16.【证明】∵DE∥BC,∴∠1=∠2.又∵∠1=∠3,∴∠2=∠3.∴CD∥FG.又∵CD⊥AB,∴FG⊥AB.四、17.【解】同意.理由如下:∵a2-b2=ac-bc,∴(a+b)(a-b)=c(a-b).∴(a+b-c)(a-b)=0.∵a,b,c是△ABC的三边长,∴a+b-c>0.∴a-b=0,即a=b.∴△ABC一定是等腰三角形.18.【解】∵∠ABC=40°,∠C=60°,∴∠BAC=180°-∠ABC-∠C=80°.∵AE是△ABC的角平分线,∴∠EAC=12∠BAC=40°.∵AD是△ABC的高,∴∠ADC=90°.∴在△ADC中,∠DAC=90°-∠C=90°-60°=30°.∴∠DAE=∠EAC-∠DAC=40°-30°=10°.∵BF是∠ABC的平分线,∠ABC=40°,∴∠FBC=12∠ABC=20°.∵∠C=60°,∴∠AFO=∠FBC+∠C=80°.∴∠AOF=180°-∠EAC-∠AFO=60°.∴∠BOE=∠AOF=60°.五、19.【解】(1)∵AE是△ACD的中线,DE=2,∴CD=2DE=2×2=4.∵AD 是△ABC 的中线,∴BD =CD .∴BC =2×4=8.(2)∵△ABC 的周长为35,∴AB +AC +BC =35.又∵BC =11,∴AB +AC =24.∵△ABD 与△ACD 的周长差为3,∴(AB +BD +AD )-(AC +CD +AD )=AB -AC =3,+AC =24,-AC =3,=13.5,=10.5.∴AC 的长为10.5.20.【解】(1)∵在△ABC 中,AB =20,BC =8,AC =2m -2,∴20-8<2m -2<20+8,解得7<m <15.∴m 的取值范围是7<m <15.(2)分两种情况:①当AB =AC 时,2m -2=20,解得m =11.此时△ABC 的周长=20+20+8=48;②当BC =AC 时,2m -2=8,解得m =5.∵7<m <15,∴此种情况不合题意.综上所述,m 的值为11,△ABC 的周长为48.六、21.(1)【解】∵BO 平分∠ABC ,CO 平分∠ACD ,∴∠CBO =12∠ABC =30°,∠DCO =12ACD =65°.∵∠DCO 是△BCO 的外角,∴∠BOC =∠DCO -∠CBO =35°.(2)【证明】∵∠ACD 是△ABC 的外角,∴∠A =∠ACD -∠ABC .∵BO 平分∠ABC ,CO 平分∠ACD ,∴∠DCO =12∠ACD ,∠CBO =12∠ABC .∵∠DCO 是△BCO 的外角,∴∠BOC=∠DCO-∠CBO=12(∠ACD-∠ABC)=12∠A.七、22.(1)【证明】∵∠ACB=90°,∴∠ABC+∠A=90°.∵BD是∠ABC的平分线,∴∠ABC=2∠ABD.∴2∠ABD+∠A=90°.∴△ABD是“准直角三角形”.(2)①③(3)【解】∠APB的度数为10°或20°或40°或110°.八、23.【解】(1)125;90;35(2)猜想:∠ABP+∠ACP=90°-∠A.理由:在△ABC中,∠ABC+∠ACB=180°-∠A.∵∠ABC=∠ABP+∠PBC,∠ACB=∠ACP+∠PCB,∴∠ABP+∠PBC+∠ACP+∠PCB=180°-∠A.∴(∠ABP+∠ACP)+(∠PBC+∠PCB)=180°-∠A.∵在Rt△PBC中,∠P=90°,∴∠PBC+∠PCB=90°.∴∠ABP+∠ACP+90°=180°-∠A.∴∠ABP+∠ACP=90°-∠A.(3)(2)中的结论不成立.∠A+∠ACP-∠ABP=90°或∠A+∠ABP-∠ACP=90°或∠A-∠ABP-∠ACP=90°.。
沪科版八年级数学-三角形中的边角关系
三角形中的边角关系专题训练一 三角形的三边关系13、若,,a b c 是△ABC 的三边长,请化简a b c b c a c a b --+--+--14、若△ABC 的两边长之比为2:3,三边长都是整数且周长为18cm ,求各边的长。
15、设三角形的三条边长为整数,c a b ,,且a b c ≤≤,当4b =,满足条件的三角形共有多少个?其中等腰三角形有多少个?等边三角形有多少个?专题训练二 三角形的角的关系17、如右图,在△ABC 中,BC 边不动,点A 竖直向上运动,∠A 越来越小,∠B ,∠C 越来越大.若∠A 减小x °,∠B 增加y °,∠C 增加z °,则z y x ,,之间的关系是( )A 、z y x +=B 、z y x -=C 、y z x -=D 、180=++z y x °18、在折纸活动中,小明制作了一张△ABC 纸片,点D 、E 分别是边AB 、AC 上的点,将△ABC 沿着DE 折叠压平,A 与A′重合,若∠A=70°,则∠1+∠2=专题训练三 三线+周长+面积21、已知BD 是△ABC 的中线,AB=5,BC=3,△ABD 和△BCD 的周长的差是_________22、在△ABC 中,AB=AC ,AC 边上的中线BD 把△ABC 的周长分为12cm 和15cm 两部分,求三角形的各边长分别为多少?23、已知△ABC 的面积是182cm ,AD 是△ABC 的中线,则△ADC 的面积是___________24、如图,在△ABC 中,已知点D 、E 分别为边BC 、AD 上的中点,且S △ABC =4cm 2,则S △BEC 的值为_________25、如图,点D 是△ABC 的边BC 上任意一点,点E 、F 分别是线段AD 、CE 的中点,且△ABC 的面积为18cm 2,则△BEF 的面积为_____________26、如图,△ABC 的面积为12,D 是AB 边的中点,E 是AC 边上一点,且AE=2EC ,O 是DC 与BE 的交点,S △DBO =a ,S △CEO =b ,则a ﹣b= .27、在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F ,∠ABC=42°,∠A=60°,则∠BFC=_______28、在△ABC 中,CD 平分∠ACB ,BE 平分∠ABC ,CD 与BE 交于点F ,若∠DFE=120°,则∠A=_______ 探究练习探究一、数三角形的个数29、 若n 为三角形底边的顶点数,则第n 个图形中三角形的个数是_________________探究二、三角形边之间的不等关系的应用30、如图1,D为△ABC的边AC上任意一点,连接BD,E为BD上的任意一点,连接CE(1)用不等号填空AB+AC_____________DB+DCDB+DC_____________EB+EC(2)如图2所示,P是三角形内部的任意一点,探索AB+AC与PB+PC的大小(2)如图3所示,M, N是△ABC内任意两点,试探索AB+AC与BM+MN+NC的大小关系,并写出探索过程。
初二上册三角形的边角关系
三角形边角关系一、三角形三边的关系例1、已知三角形的三边长均为整数,其中两边之差为5,若此三角形周长为奇数,则第三边的最小值为 。
练习1、已知一个三角形的两边长分别为a ,b ,且a>b ,那么这个三角形周长l 的取值范围是( )A.a 3<l <b 3B.2a<l <2(a+b)C.2b+a<l <2a+bD.a+2b<l <3a-b练习2、已知等腰三角形的周长为12,则腰长a 的取值范围是( )A.a>3B.a>6C.3<a<6D.4<a<7练习3、不能构成三角形的数组是( )A.(1,3,2)B.(1999,999,199)C.(2225,4,3)D.(2226,5,4)练习4、已知一个三角形有两边长均为3-x ,第三边长为2x ,若该三角形的边长都为整数,试判断此三角形的形状.练习5、如图、AD 是△ABC 的中线。
求证:21(AB+AC-BC )<AD<21(AB+AC+BC )练习6、如图、O 为△ABC 内一点,AB=AC ,BO=CO.求证:AB>BO.二、三角形的面积例2、如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC的延长线上,且BC=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为()A.3 B.4 C.6 D.8练习7、如图、△ABC中,已知点D、E、F分别为BC、BD、CD的中点,且△ABC的面积是4cm2,则△AEF的面积是 cm2。
练习8、如图、已知△ABC的面积为1、点E是线段AC的中点,点O是线段BE的中点,连接AO并延长交BC于点D,连接CO并延长交AB于点F,则四边形BDOF的面积为。
练习9、如图、点D、E分别是△ABC的边AC、AB上的点,直线BD与CE交于点F,已知△CDF,△BFE,△BCF的面积分别为3,4,5,则四边形AEFD的面积是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.三角形一边上的中线把原三角形分成两个( )
A .形状相同的三角形
B .面积相等的三角形
C .直角三角形
D .周长相等的三角形
2.已知△ABC 的三个内角度数比为2:3:4,则这个三角形是( ).
A .锐角三角形
B .直角三角形 C.钝角三角形 D .等腰三角形
3.在三角形的内角中,至少有( )
A .一个钝角
B .一个直角
C .一个锐角
D .两个锐角
4.下面是四组线段的长度,哪一组能组成三角形( )
A .2,2,4
B .5,5,5
C .11,5,6
D .3,8,24
5.如图,在锐角△ABC 中,CD 和BE 分别是AB 和AC 边上的高,且CD 和BE 交于点P ,
若∠A=50°,则∠BPC 的度数是( ).A .150° B.130° C.120° D.100°
6.如图,AD 是∠CAE 的平分线,∠B=300, ∠DAE=600,那么∠ACD 等于( )
A .900
B .600
C .800
D .1000
7.已知等腰三角形的一边长为5,另一边长为8,则它的周长为( )
A .18
B .21
C .13
D .18或21
8.在下列条件中:①∠A+∠B=∠C ,②∠A∶∠B∶∠C=1∶2∶3,③∠A=900-∠B ,④∠A=∠B=12
∠C 中,能确定△ABC 是直角三角形的条件有( ) A .1个 B .2个 C .3个 D .4个
9.如图,BE 是∠ABD的平分线,CF 是∠ACD的平分线,BE 与CF 交于G ,
若∠BDC=140°,∠BGC=110°,则∠A的大小是( )
A .70°
B .75° C.80° D .85°
10.已知三角形的两边分别为a=2cm,b=5cm ,且c b a <<,则第三边c 的取值范围为_______________.
11.在△ABC 中,∠A+∠B=2∠C,∠B -∠A=200, ∠A= .
11.三角形一边上的高与另两边的夹角分别为620和280,则这边对应的角的度数为
= .
12.等腰三角形周长为21cm,一中线将周长分成的两部分差为3cm,则这个三角形三边长
为________.
13.如图,已知∠BOF=120°,则∠A+∠B+∠C+∠D+∠E+∠F=___
14.如图所示,在△ABC中,∠B=440,∠C=720,AD中△ABC的角分线,
(1)求∠BAC的度数;(2)求∠ADC的度数;
15.如图,DE分别是△ABC的边BC和AB上的点,△ABD与△ACD的周长相等,△CAE
与△CBE的周长相等。
设BC=a,AC=b,AB=c。
⑴求AE和BD的长;
⑵若∠BAC=90°,△ABC的面积为S,求证:S=AE·BD(备注:在直角三角形中,两直
角边的平方和等于斜边的平方)
A
B C
D。