中考数学专题复习课件25

合集下载

中考数学一轮复习考点突破课件:第25讲尺规作图

中考数学一轮复习考点突破课件:第25讲尺规作图

相交于点M,N;②作直线MN,分别交BC,BE于点D,
O;③连接CO,DE.则下列结论错误的是(
A.OB=OC
B.∠BOD=∠COD
C.DE∥AB
D.△BOC≌△BDE
D )
变式运用
4.观察下列作图痕迹,所作线段CD为△ABC的角平分线
的是(
C

A.
B.
C.
D.
5.(2023·永州)如图,在Rt△ABC中,∠C=90°,以B
D.一组对边平行且相等
7.(2023·广元)如图,a∥b,直线l与直线a,b分别交于

B,A两点,分别以点A,B为圆心,大于 AB的长为半径

画弧,两弧相交于点E,F,作直线EF,分别交直线a,
b于点C,D,连接AC.若∠CDA=34°,则∠CAB的度数
为⁠ 56°
⁠.
第7题图
8.(2023·山西)如图,在▱ABCD中,∠D=60°.以点B为
圆心,以BA的长为半径作弧交边BC于点E,连接AE.分

别以点A,E为圆心,以大于 AE的长为半径作弧,两弧


交于点P,作射线BP交AE于点O,交边AD于点F,则

的值为⁠
⁠.
第8题图
【解析】∵四边形ABCD是平行四边形,∴AD∥BC,
∠D=∠ABC=60°.∴∠BAD=180°-60°=120°.∵BA=
误的是(
A
D

B
C
D
3.(2023·凉山州)如图,在等腰三角形ABC中,∠A=

40°,分别以点A、点B为圆心,大于 AB的长为半径画

弧,两弧分别交于点M和点N,连接MN,直线MN与AC

华师版数学中考复习专题课件

华师版数学中考复习专题课件

概率计算
根据不同的事件类型,可以采用 不同的公式或方法来计算概率。
概率的性质
概率具有一些基本性质,如非负 性(P(A) ≥ 0)、规范性(P(必 然事件) = 1)和可加性(对于互 斥事件A和B,P(A∪B) = P(A) +
P(B))。
统计初步知识
统计图表
01
利用各种统计图表,如条形图、折线图、扇形图等,直观展示
解答题的解题技巧
分步解答法
对于一些复杂的问题,可以尝试将问题分解 成若干个小问题,逐步解答。
特殊情况分析法
对于一些抽象或难以直接计算的问题,可以 尝试分析特殊情况来找出答案。
总结法
对于一些涉及多个知识点的问题,可以尝试 将各个知识点综合起来解答。
类比法
对于一些类似的问题,可以尝试通过类比来 找出答案。
题。
填空题的解题技巧
直接填空法
对于一些简单的问题,可以直 接填写答案,无需过多解释。
推理法
对于需要推理的问题,可以逐 步推导答案,确保答案的正确 性。
反证法
对于一些难以直接证明的问题 ,可以尝试反证法来证明答案 的正确性。
数形结合法
对于涉及图形的问题,可以尝 试将问题转化为图形问题,通
过观察图形来找出答案。
数据。
平均数、中位数、众数
02
描述数据集中趋势的统计量。
方差与标准差
03
描述数据离散程度的统计量。
课题学习
实验目的
通过实际操作和观察, 探究抛硬币正面朝上的 概率,加深对概率的理
解。
实验材料
硬币、记录表、笔等。
实验步骤
进行多次抛硬币实验, 记录每次实验的结果, 并计算正面朝上的概率

中考数学专题复习网格问题课件

中考数学专题复习网格问题课件
中考数学专题复习网格问题课件
第一页,共25页。
网格是学生从小就熟悉的图形,在网格中研究格点图 形,具有很强的可操作性,这和新课程的理念相符合,因此 它也成为近几年新课程中考的热点问题.
格点图形问题常见的题型有:
一、考查坐标平面内的点及有序实数对是一一对应的.
二、在网格中运用勾股定理进行计算. 三、分类讨论思想在格点问题中的运用.
第二十二页,共25页。
【例19】在边长为l的正方形网格中,按下列方式得到“L”形图形 第1个“L”形图形的周长是8,第2个“L”形图形的周长是12, 则第n个“L”形图形的周长是_________
图1
图2
[解析] 把图1中“L”形图形的边平移,成为图2中的形状,周长没有 变化,规律尽在不言中.第n个“L”形图形的周长是4(n+1).
A. 1 ; 22
B. 1; C. 4
1; 7
D. 1. 8
图1
图2
[解析] 题目中的图2是对思维的干扰,如果直接提问“图1中小正方形的
面积是大正方形面积的几分之几”,问题就变得简单明了.在图1中可
以体会到,小正方形的面积等于两个斜边为3的等腰直角三角形的面积
之和,计算得小正方形的面积等于
9
因此小正方形的面积是大正方形面积的 1
前后图形的面积相等,有
x 2 5 ,解得 x . 由5 此可知新正方形的
边长等于两个小正方形组成的矩形对角线的长.于是,画出如图2所示的分
割线,拼出如图3所示的新正方形.
图1
图2
图3
图4
图5
请你参考小东同学的做法,解决如下问题:
现有10个边长为1的正方形,排列形式如图4,请把它们分割后拼接成一 个新的正方形.要求:在图4中画出分割线,并在图5的正方形网格图(图 中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.

中考数学复习系列课件

中考数学复习系列课件

中考新突破 ·数学(陕西)
知识要点 · 归纳
根据xy=3判断出x,y是同号,根据x+y=-5判断出x,y均是负数,从而确定 点所在的象限.
【解答】∵xy=3,∴x和y同号.又∵x+y=-5,∴x和y均为负数,∴点(x,y) 在第三象限.
中考新突破 ·数学(陕西)
知识要点 · 归纳
重难点 · 突破
第一部分 教材同步复习
18
练习1 在平面直角坐标系内,AB∥x轴,AB=5,点A的坐标为(1,3),则点B的
2.函数的三种表示方法:解析式法、○27 __列__表__法__、图象法.
中考新突破 ·数学(陕西)
知识要点 · 归纳
重难点 · 突破
第一部分 教材同步复习
9
3.确定函数自变量的取值范围
函数表达 式的形式
整式
自变量的取值范围 全体实数
举例
y=x+1 的自变量的取值范围为○28 __全__体__实__数__
坐标为
(C)
A.(-4,3)
B.(6,3)
C.(-4,3)或(6,3)
D.(1,-2)或(1,8)
中考新突破 ·数学(陕西)
知识要点 · 归纳
重难点 · 突破
第一部分 教材同步复习
19
考点 2 确定函数自变量的取值范围
例2 函数 y= 2-x+x+1 3中,自变量 x 的取值范围是
(B)
A.x≤2
中考新突破 ·数学(陕西)
知识要点 · 归纳
重难点 · 突破
第一部分 教材同步复习
13
知识点三 分析判断函数图象 1.判断实际问题的函数图象 (1)找起点:结合题干中所给自变量及因变量的取值范围,在对应的图象中找对 应点; (2)找特殊点:即交点或转折点,说明图象在此点处将发生变化; (3)判断图象趋势:判断出函数的增减性,图象的倾斜方向等; (4)看是否与坐标轴相交:即此时另外一个量为0.

+2025年苏科版九年级中考数学专题复习课件+++矩形的折叠问题++

+2025年苏科版九年级中考数学专题复习课件+++矩形的折叠问题++

使点D落在BC边的一点F处,已知折
痕AE=55
cm,且tanEFC=
4 3
.
(1)
求证:AFB∽FEC;
(2)
求矩形ABCD的周长。
B
D E
FC
练习5 如图,将矩形纸片ABCD
E
沿一对角线BD折叠一次(折痕 A
与折叠后得到的图形用虚线表
F
示),将得到的所有的全等三角
形(包括实线、虚线在内)用符 号写出来。
例5 已知一三角形纸片ABC,面积为25,BC的长为 10,B和C都为锐角,M为AB上的一动点(M与A、B 不重合),过点M作MN∥BC,交AC于点N,设MN=x.
(1)用x表示△AMN的面积SΔAMN。
(2)ΔAMN沿MN折叠,设点A关于ΔAMN对称的点为A¹, ΔA¹MN与四边形BCMN重叠部分的面积为y.①试求出 y与x的函数关系式,并写出自变量X的取值范围; ②当x为何值时,重叠部分的面积y最大,最大为多 少?
练习7 如图,把一张边长为a的正 A E
方形的纸进行折叠,使B点落在AD 上,问B点落在AD的什么位置时,
M
折起的面积最小,并求出这最小值。
B
解: 如图,设MN为折痕,折起部
分为梯形EGNM,B、E关于MN对
AE
称,所以BE⊥MN,且BO3 =EO,设
8
AE=x,则BE= 。
MO
由Rt△MOB∽
,得:
C
E
你能求出线段BE及折痕EF的
长吗?
3、在平面直角坐标系中,矩形OABC的两边OA、 OC分别落在x轴,y轴上,且OA=4,0C=3。
(1)求对角线OB所在直线的解析式;
y
B C

初三数学中考专题复习 握手问题的探究与应用 课件(共26张PPT)

初三数学中考专题复习  握手问题的探究与应用 课件(共26张PPT)
“握手”问题的探究及应用
【实际问题】
班级迎新晚会上,全班同学两两 握手一次致意,那么他们共握手多少 次?
合作探究:
小组进行握手游戏,合作寻找握手的 内在规律。
请思考:若4位同学两两握手共握手多
少次?5位呢?8位呢?…n位呢?
( 小组展示握手探究过程,小组代表讲解探究过程)
【问题解决】
班级迎新晚会上,n位同学 两两握手一次致意,那么他们共
握手 n(n 1) 次. 2
实 【思考1】 数线段

应 小明在纸上画了一条直线,

小红又拿起了笔,在小明画的直 线上点了8个点,“你知道现在 这条直线上有多少条线段吗?” 同学们,你能帮小明快速回答这 个问题吗?
【思考1】
小明在纸上画了一条直线,小红又拿起了笔, 在小明画的直线上点了8个点,“你知道现在这条 直线上有多少条线段吗?” 同学们,你能帮小明 快速回答这个问题吗?
2
平面内确定直线条数
不在同一条直线上的3个点,过任意两点 一共可以画 3 条直线; 平面内4个点(任意三点不在同一条直线 上),过任意两点一共可以画 6 条直线; 5个点呢? 在同一平面内有n个点(任意三个点都不 在同一条直线上)过这n个点中的任意两 点画直线,一共能画出 n(n 1) 条直线?
下一张
【思考2】
往返于青岛、北京南的D336动车,中途 经过胶州北、潍坊、昌乐、淄博、济南、德 州东、沧州西、天津南、廊坊站点,(只考 虑站点)那么该列火车需要安排多少种不同 的车票?
【解析】把每个站点看成每位同学,共 11个站点就是11位同学;每2个站点 的火车票种类可以看作2位同学握手, 火车票种类便是平面内,由不在同一条直线上
但有公共端点的n条射线所组成的图形中,

人教版数学九年级上册第25章:概率初步复习课件

人教版数学九年级上册第25章:概率初步复习课件

-40%=60%,所以口袋中白色球的个数=10×60%=6,即布袋中白色球
的个数很可能是6.故选C.
章末复习
专题五 利用概率判断游戏的公平性
【要点指点】通过计算概率判断游戏是否公平是概率知识的一 个 重要应用, 解决游戏是否公平的问题, 应先计算游戏参与者获 胜的概率, 若概率相等, 则游戏公平;若概率不相等, 则游戏不公 平.
章末复习
例5 色盲是伴X染色体隐性先天遗传病, 患者中男性远多于女 生, 从 男性体检信息库中随机抽取体检表, 统计结果如下表:
根据表中数据, 估计在男性中, 男性患色盲的概率为___0_.0_7__ (结 果保留小数点后两位).
章末复习
分析 视察表格发现, 随着抽取的体检表的增多, 在男性中, 男性患色 盲的频率逐渐稳定在0.07附近, 所以估计在男性中, 男生患色盲的概 率为 0.07.
章末复习
例3 一个不透明的袋子中装有4个黑球, 2个白球, 这些球除颜色 不同 外其他都相同, 从袋子中随机摸出1个球, 摸到黑球的概率 是( D ).
章末复习
相关题3 如果从包括小军在内的 10名大学生中任选1名作 为 “保护母亲河”的志愿 者, 那么小军被选中的概 率是( C ).
解析 共有 10 种等可能的结果,小军被选中的结果有 1 种,故 P(小军 被选中)=110.
章末复习
解 (1)获奖的学生中男生3名, 女生4名, 男生、女生共7名, 故参加颁奖 大会的学生是男生的概率为 . (2)从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会, 用列表法 列出所有可能的结果如下:
章末复习
∵共有12种等可能的结果, 其中是1名男生、1名女生的结果有6种, ∴从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会, 刚好是 1名男生、1名女生的概率为

中考数学复习考点题型专题讲解25 坐标与新定义问题大题提升训练

中考数学复习考点题型专题讲解25 坐标与新定义问题大题提升训练

中考数学复习考点题型专题讲解中考数学复习考点题型专题讲解(重难点培优30题)专题25 坐标与新定义问题大题提升训练坐标与新定义问题大题提升训练(小题))解答题((共30小题一.解答题1.(2023秋•埇桥区期中)已知当m、n都是实数,且满足2m=6+n,则称点ܣ(݉−1,݊2)为“智慧点”.(1)判断点P(4,10)是否为“智慧点”,并说明理由.(2)若点M(a,1﹣2a)是“智慧点”.请判断点M在第几象限?并说明理由.【分析】(1)根据P点坐标,代入(݉−1,݊2)中,求出m和n的值,然后代入2m,6+n 检验等号是否成立即可;(2)直接利用“智慧点”的定义得出a的值进而得出答案.【解答】解(1)点P不是“智慧点”,由题意得݉−1=4,݊2=10,∴m=5,n=20,∴2m=2×5=10,6+n=6+20=26,∴2m≠6+n,∴点P(4,10)不是“智慧点”;(2)点M在第四象限,理由∵点M(a,1﹣2a)是“智慧点”,∴݉−1=ܽ,݊2=1−2ܽ,∴m=a+1,n=2﹣4a,∵2n=6+n,∴2(a+1)=6+2﹣4a,解得a=1,∴点M(1,﹣1),∴点M在第四象限.2.(2023春•镇巴县期末)已知a,b都是实数,设点P(a,b),若满足3a=2b+5,则称点P为“新奇点”.(1)判断点A(3,2)是否为“新奇点”,并说明理由;(2)若点M(m﹣1,3m+2)是“新奇点”,请判断点M在第几象限,并说明理由.【分析】(1)直接利用“新奇点”的定义得出a,b的值,进而得出答案;(2)直接利用“新奇点”的定义得出m的值,进而得出答案.【解答】解(1)当A(3,2)时,3×3=9,2×2+5=4+5=9,所以3×3=2×2+5,所以A(3,2)是“新奇点”;(2)点M在第三象限,理由如下∵点M(m﹣1,3m+2)是“新奇点”,∴3(m﹣1)=2(3m+2)+5,解得m=﹣4,∴m﹣1=﹣5,3m+2=﹣10,∴点M在第三象限.3.(2023秋•漳州期末)在平面直角坐标系xOy中,给出如下定义点A到x轴、y轴距离的较大值称为点A的“长距”,当点P的“长距”等于点Q的“长距”时,称P,Q两点为“等距点”.(1)求点A(﹣5,2)的“长距”;(2)若C(﹣1,k+3),D(4,4k﹣3)两点为“等距点”,求k的值.【分析】(1)即可“长距”的定义解答即可;(2)由等距点的定义求出不同情况下的k值即可.【解答】解(1)点A(﹣5,2)的“长距”为|﹣5|=5;(2)由题意可知,|k+3|=4或4k﹣3=±(k+3),解得k=1或k=﹣7(不合题意,舍去)或k=2或k=0(不合题意,舍去),∴k=1或k=2.4.(2023秋•渠县校级期中)在平面直角坐标系中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay)(其中a为常数),则称点Q是点P的“a级关联点”、例如,点P(1,4)的“3级关联点”为点Q(3×1+4,1+3×4),即点Q(7,13).在平面直角坐标系中,已知点A(﹣2,6)的“2级关联点”是点B,求点B的坐标;在平面直角坐标系中,已知点M(m,2m﹣1)的“3级关联点”是点N,且点N位于x 轴上,求点N的坐标.【分析】(1)根据关联点的定义,结合点的坐标即可得出结论;(2)根据关联点的定义和点M(m,2m﹣1)的“3级关联点”是点N位于x轴上,即可求出N的坐标.【解答】解(1)∵点A(﹣2,6)的“2级关联点”是点B,故点B的坐标为(2×(﹣2)+6,﹣2+2×6)∴B的坐标(2,10);(2)∵点M(m,2m﹣1)的“3级关联点”为N(3m+2m﹣1,m+3(2m﹣1)),当N位于x轴上时,m+3(2m﹣1)=0,解得m=37,∴3m+2m﹣1=87,∴点N的坐标为(଼଻,0).5.(2023秋•天长市月考)在平面直角坐标系中,对于点P、Q两点给出如下定义若点P 到x,y轴的距离的较大值等于点Q到x,y轴的距离的较大值,则称P、Q两点为“等距点”.如点P(﹣2,5)和点Q(﹣5,﹣1)就是等距点.(1)已知点B的坐标是(﹣4,2),点C的坐标是(m﹣1,m),若点B与点C是“等距点”,求点C的坐标;(2)若点D(3,4+k)与点E(2k﹣5,6)是“等距点”,求k的值.【分析】(1)根据“等距点”的定义解答即可;(2)根据“等距点”的定义分情况讨论即可.【解答】解(1)由题意,可分两种情况①|m﹣1|=|﹣4|,解得m=﹣3或5(不合题意,舍去);②|m|=|﹣4|,解得m=﹣4(不合题意,舍去)或m=4,综上所述,点C的坐标为(﹣4,﹣3)或(3,4);(2)由题意,可分两种情况①当|2k﹣5|≥6时,|4+k|=|2k﹣5|,∴4+k=2k﹣5或4+k=﹣(2k﹣5),解得k=9或k=13(不合题意,舍去);②当|2k﹣5|<6时,|4+k|=6,∴4+k=6或4+k=﹣6,解得k=2或k=﹣10(不合题意,舍去);综上所述,k=2或k=9.6.(2023秋•蚌山区月考)在平面直角坐标系中,对于点A(x,y),若点B的坐标为(ax+y,x+ay),则称点B是点A的“a级开心点”(其中a为常数,且a≠0),例如,点P(1,4)的“2级开心点”为Q(2×1+4,1+2×4),即Q(6,9).(1)若点P的坐标为(﹣1,5),则点P的“3级开心点”的坐标为(2,14) ;(2)若点P的“2级开心点”是点Q(4,8),求点P的坐标;(3)若点P(m﹣1,2m)的“﹣3级开心点”P'位于坐标轴上,求点P'的坐标.【分析】(1)根据关联点的定义,结合点的坐标即可得出结论.(2)根据关联点的定义,结合点的坐标即可得出结论.(3)根据关联点的定义和点P (m ﹣1,2m )的“﹣3级开心点”P ′位于坐标轴上,即可求出P ′的坐标.【解答】解 (1)3×(﹣1)+5=2;﹣1+3×5=14,∴若点P 的坐标为(﹣1,5),则它的“3级开心点”的坐标为(2,14). 故答案为 (2,14);(2)设点P 的坐标为(x ,y )的“2级开心点”是点Q (4,8), ∴൜2ݔ+ݕ=4ݔ+2ݕ=8 解得൜ݔ=0ݕ=4,∴点P 的坐标为(0,4);(3)∵点P (m ﹣1,2m )的“﹣3级开心点”为P ′(﹣3(m ﹣1)+2m ,m ﹣1+(﹣3)×2m ),①P ′位于x 轴上, ∴m ﹣1+(﹣3)×2m =0, 解得 m =−15,∴﹣3(m ﹣1)+2m =165, ∴P ′(ଵ଺ହ,0).②P ′位于y 轴上, ∴﹣3(m ﹣1)+2m =0, 解得 m =3∴m ﹣1+(﹣3)×2m =﹣16, ∴P ′(0,﹣16).综上所述,点P ′的坐标为(ଵ଺ହ,0)或(0,﹣16).7.(2023春•芜湖期中)在平面直角坐标系中,对于点A (x ,y ),若点B 的坐标为(x +ay ,ax+y),则称点B是点A的a级亲密点.例如点A(﹣2,6)的ଵଶ级亲密点为B(−2+12×6,12×(−2)+6),即点B的坐标为(1,5).(1)已知点C(﹣1,5)的3级亲密点是点D,则点D的坐标为(14,2) .(2)已知点M(m﹣1,2m)的﹣3级亲密点M1位于y轴上,求点M1的坐标.(3)若点E在x轴上,点E不与原点重合,点E的a级亲密点为点F,且EF的长度为OE长度的√3倍,求a的值.【分析】(1)根据题意,应用新定义进行计算即可得出答案;(2)根据新定义进行计算可得点M(m﹣1,2m)的﹣3级亲密点是点M1[m﹣1+(﹣3)×2m,﹣1×(m﹣1)+2m],根据y轴上点的坐标特征进行求解即可得出答案;(3)设E(x,0),则点E的a级亲密点为点F(x,ax),根据平面直角坐标系中距离的计算方法可得,OE=|x|,EF=|ax|,则|ax|=√3|x|,计算即可得出答案.【解答】解(1)根据题意可得,点C(﹣1,5)的3级亲密点是点D(﹣1+3×5,﹣1×3+5),即点D的坐标为(14,2);故答案为(14,2);(2)根据题意可得,点M(m﹣1,2m)的﹣3级亲密点是点M1[m﹣1+(﹣3)×2m,﹣3×(m﹣1)+2m],即点M1的坐标为(﹣5m﹣1,﹣m+3),∵M1位于y轴上,∴﹣5m﹣1=0,∴m=−15,∴M1(0,ଵ଺ହ);(3)设E(x,0),则点E的a级亲密点为点F(x,ax),根据题意可得,OE=|x|,EF=|ax|,则|ax |=√3|x |, 即|a |=√3, 解得 a =±√3.8.(2023秋•舒城县校级月考)点P 坐标为(x ,2x ﹣4),点P 到x 轴、y 轴的距离分别为d 1,d 2.(1)当点P 在坐标轴上时,求d 1+d 2的值; (2)当d 1+d 2=3时,求点P 的坐标; (3)点P 不可能在哪个象限内?【分析】(1)分点P 在x 轴和y 轴两种情况讨论即可;(2)将d 1+d 2用含x 的式子表示出来,根据x 的范围化简即可; (3)根据x 和2x ﹣4的范围即可得出答案.【解答】解 (1)若点P 在x 轴上,则x =0,2x ﹣4=﹣4, ∴点P 的坐标为(0,﹣4),此时d 1+d 2=4, 若点P 在y 轴上,则2x ﹣4=0,得x =2, ∴点P 的坐标为(2,0),此时d 1+d 2=2. (2)若x ≤0,则d 1+d 2=﹣x ﹣2x +4=3, 解得x =13(舍), 若0<x <2,则d 1+d 2=x ﹣2x +4=3,解得x =1, ∴P (1,﹣2),若x ≥2,则d 1+d 2=x +2x ﹣4=3, 解得x =73, ∴P (଻ଷ,ଶଷ);(3)∵当x <0时,2x ﹣4<0,∴点P不可能在第二象限.9.(2023春•新余期末)已知当m,n都是实数,且满足2m=8+n时,就称点P(m﹣1,௡ାଶଶ)为“爱心点”.(1)判断点A(5,3),B(4,8)哪个点为“爱心点”,并说明理由;(2)若点M(a,2a﹣1)是“爱心点”,请判断点M在第几象限?并说明理由.【分析】(1)直接利用“爱心点”的定义得出m,n的值,进而得出答案;(2)直接利用“爱心点”的定义得出a的值进而得出答案.【解答】解(1)当A(5,3)时,m﹣1=5,௡ାଶଶ=3,解得m=6,n=4,则2m=12,8+n=12,所以2m=8+n,所以A(5,3)是“爱心点”;当B(4,8)时,m﹣1=4,௡ାଶଶ=8,解得m=5,n=14,显然2m≠8+n,所以B点不是“爱心点”;(2)点M在第三象限,理由如下∵点M(a,2a﹣1)是“爱心点”,∴m﹣1=a,௡ାଶଶ=2a﹣1,∴m=a+1,n=4a﹣4,代入2m=8+n有2a+2=8+4a﹣4,∴a=﹣1 2a﹣1=﹣3,∴M(﹣1,﹣3)故点M在第三象限.10.(2023春•商南县校级期末)在平面直角坐标系xOy中,给出如下定义点A到x轴、y 轴距离中的较大值称为点A的“长距”,当点P的“长距”等于点Q的“长距”时,称P,Q两点为“等距点”.(1)点A(2,3)的“长距”等于3,点B(﹣7,5)的“长距”等于7.(2)若C(﹣1,2k+3),D(6,k﹣2)两点为“等距点”,求k的值.【分析】(1)根据“长距”的定义解答即可;(2)由等距点的定义求出不同情况下的k值即可.【解答】解(1)点A(2,3)的“长距”为|3|=3;点B(﹣7,5)的“长距”为|﹣7|=7;故答案为3,7.(2)由题意可知,|2k+3|=6或2k+3=±(k﹣2),解得k=32或k=﹣4.5(不合题意,舍去)或k=﹣5或k=−13(不合题意,舍去),∴k=32或k=﹣5.11.(2023春•思明区校级期末)在平面直角坐标系xOy中,给出如下定义点A到x轴、y 轴距离的较大值称为点A的“长距”,当点P的“长距”等于点Q的“长距”时,称P,Q两点为“等距点”.(1)点A(﹣5,2)的“长距”为5;(2)点B(﹣2,﹣2m+1)的“长距”为3,求m的值;(3)若C(﹣1,k+3),D(4,4k﹣3)两点为“等距点”,求k的值.【分析】(1)根据“长距”的定义解答即可;(2)根据“长距”的定义解答即可;(3)由等距点的定义求出不同情况下的k值即可.【解答】解(1)点A(﹣5,2)的“长距”为|﹣5|=5;故答案为5.(2)由题意可知|﹣2m+1|=3,解得m =﹣1或2.(3)由题意可知,|k +3|=4或4k ﹣3=±(k +3),解得k =1或k =﹣7(不合题意,舍去)或k =2或k =0(不合题意,舍去), ∴k =1或k =2.12.(2023•南京模拟)在平面直角坐标系xOy 中,对于点P (x ,y ),若点Q 的坐标为(ax +y ,x +ay ),其中a 为常数,则称点Q 是点P 的“a 级关联点”例如,点P (1,4)的“3级关联点”为Q (3×1+4,1+3×4),即Q (7,13).(1)已知点A (2,﹣6)的“ଵଶ级关联点”是点B ,求点B 的坐标; (2)已知点P 的5级关联点为(9,﹣3),求点P 坐标;(3)已知点M (m ﹣1,2m )的“﹣4级关联点”N 位于坐标轴上,求点N 的坐标. 【分析】(1)根据关联点的定义,结合点的坐标即可得出结论;(2)设点P 的坐标为(a ,b ),根据关联点的定义,结合点的坐标列方程组即可得出结论;(3)根据关联点的定义和点M (m ﹣1,2m )的“﹣4级关联点”N 位于坐标轴上,即可求出N 的坐标.【解答】解(1)∵点A (2,﹣6)的“ଵଶ级关联点”是点B ,故点B 的坐标为(ଵଶ×2−6,2−12×6) ∴B 的坐标(﹣5,﹣1);(2)设点P 的坐标为(a ,b ), ∵点P 的5级关联点为(9,﹣3), ∴ቄ5ܽ+ܾ=9ܽ+5ܾ=−3, 解得ቄܽ=2ܾ=−1,∵P (2,﹣1);(3)∵点M (m ﹣1,2m )的“﹣4级关联点”为M ′(﹣4(m ﹣1)+2m ,m ﹣1+(﹣4)×2m ),当N位于y轴上时,﹣4(m﹣1)+2m=0,解得m=2,∴m﹣1+(﹣4)×2m)=﹣15,∴N(0,﹣15);当N位于x轴上时,m﹣1+(﹣4)×2m=0,解得m=−17,∴﹣4(m﹣1)+2m=307,∴N(ଷ଴଻,0);综上所述,点N的坐标为(0,﹣15)或(ଷ଴଻,0).13.(2023春•上杭县期中)在平面直角坐标系xOy中,对于P,Q两点给出如下定义若点P到x轴、y轴的距离之差的绝对值等于点Q到x轴、y轴的距离之差的绝对值,则称P,Q两点互为“等差点”.例如,点P(1,2)与点Q(﹣2,3)到x轴、y轴的距离之差的绝对值都等于1,它们互为“等差点”.(1)已知点A的坐标为(3,﹣6),在点B(﹣4,1).C(﹣3,7).D(2,﹣5)中,与点A互为等差点的是B与D.(2)若点M(﹣2,4)与点N(1,n+1)互为“等差点”,求点N的坐标.【分析】(1)利用“等差点”的定义,找出到x轴、y轴的距离之差(2)利用“等差点”的定义列方程解答即可.【解答】解(1)∵点A(3,﹣6)到x轴、y轴的距离之差的绝对值等于3,点B(﹣4,1)到x轴、y轴的距离之差的绝对值等于3,点C(﹣3,7)到x轴、y轴的距离之差的绝对值等于4,点D(2,﹣5)到x轴、y轴的距离之差的绝对值等于3,∴与点A互为等差点的是B与D;故答案为B与D;(2)∵点M(﹣2,4)与点N(1,n+1)互为“等差点”,∴n +1﹣1=|4|﹣|﹣2|或4解得n =2或n =﹣4,∴点N 的坐标为(1,3)感14.(2023秋•海淀区校级期中b ),P 2(c ,b ),P 3(c 的“完美间距″.例如 如图是1.(1)点Q 1(4,1),Q 2(2)已知点O (0,0①若点O ,A ,B 的“完美间②点O ,A ,B 的“完美间距③已知点C (0,4),D (m ,0),P (m ,n )的“【分析】(1)分别计算出(2)①分别计算出OA 以“最佳间距”为OA 即可求解y 的值;②由①可得,“最佳间距”﹣|﹣2|=﹣n ﹣1﹣1, )或(1,﹣3).本号资料全部来源于微 信公众号级期中)给出如下定义 在平面直角坐标系xOy 中,,d ),这三个点中任意两点间的距离的最小值称为点如图,点P 1(﹣1,2),P 2(1,2),P 3(1,3)(5,1),Q 3(5,5)的“完美间距”是 1 ),A (4,0),B (4,y ).完美间距”是2,则y 的值为 ±2 ; 美间距”的最大值为 4 ;(﹣4,0),点P (m ,n )为线段CD 上一动点,“完美间距”取最大值时,求此时点P 的坐标.算出Q 1Q 2,Q 2Q 3,Q 1Q 3的长度,比较得出最小值即可,AB 的长度,由于斜边大于直角边,故OB >或者AB 的长度,由于“最佳间距”为1,而”为OA 或AB 的长度,当OA ≤AB 时,“最佳间距公众号 数学第 六,已知点P 1(a ,称为点P 1,P 2,P 3)的“完美间距”; ,当O (0,0),E .值即可; OA ,OB >AB ,所OA =4,故OB =2,佳间距”为OA =4,当OA >AB 时,“最佳间距③同①,当点O (0,0先求出直线CD 的解析式≥PE 和OE <PE 时,求出各的最大值,进一步求解出【解答】解 (1)如图,∵Q 1(4,1),Q 2(5,∴Q 1Q 2=1,Q 2Q 3=4,在Rt △Q 1Q 2Q 3中,Q 1Q ∵1<4<√17, “最佳距离”为1; 故答案为 1; (2)①如图∵O (0,0),A (4,0∴OA =4,AB =|y |,间距”为AB <4,比较两个“最大间距”,即可解决),E (m ,0),P (m ,n )的“最佳间距”为OE 析式,用m 表示出线段OE 和线段PE 的长度,分两类求出各自条件下的“最佳间距”,比较m 的范围,解出P 点坐标.,在给出图形中标出点Q 1,Q 2,Q 3,1),Q 3(5,5),3=√17,),B (4,y ),解决;或者PE 的长度,分两类讨论,当OE 确定“最佳间距”在直角△ABO 中,OB >又∵点O ,A ,B 的“最佳间且4>2, ∴|y |=2, ∴y =±2, 故答案为 ±2;②由①可得,OB >OA ∴“最佳间距”的值为∵OA =4,AB =|y |,当AB ≥OA 时,“最佳间距当AB <OA 时,“最佳间距∴点O ,A ,B 的“最佳间距故答案为 4;③设直线CD 为y =kx +4,﹣4k +4=0, ∴k =1,∴直线CD 的解析式为 ∵E (m ,0),P (m ,n ,∴PE ∥y 轴,∴OE =﹣m ,PE =n =m Ⅰ、当﹣m ≥m +4时,即OA ,OB >AB , 最佳间距”是2, ,OB >AB ,OA 或者是AB 的长, 间距”为4, 间距”为|y |<4, 佳间距”的最大值为4, ,代入点D 得,如图,y =x +4,),且P 是线段CD 上的一个动点, +4,即OE ≥PE 时,m ≤﹣2,“最佳间距”为m +4,此时此时m +4≤2,Ⅱ、当﹣m <m +4时,即∴点O (0,0),E (m ∴m =﹣2, ∴n =m +4=2, ∴P (﹣2,2).15.(2023春•泗水县期末)对于y )的横坐标与纵坐标的绝对例如,点P (﹣1,2)的折(1)已知点A (﹣3,4(2)若点M 在x 轴的上方标.【分析】(1)根据题意可以(2)根据题意可知y >【解答】解 (1)[A ]=|所以点A ,点B 的折线距离(2)∵点M 在x 轴的上方∴x =±1时,y =1或x ∴点M 的坐标为(﹣116.(2023春•思明区校级期中即OE <PE 时,﹣2<m <0,“最佳间距“为﹣m ,,0),P (m ,n )的“最佳间距”取到最大值时,对于平面直角坐标系中的点P (x ,y )给出如下定义的绝对值之和叫做点P (x ,y )的折线距离,记作[P ]的折线距离为[P ]=|﹣1|+|2|=3.),B (√2,﹣2√2),求点A ,点B 的折线距离.的上方,点M 的横坐标为整数,且满足[M ]=2,直接写意可以求得折线距离[A ],[B ];0,然后根据[M ]=2,即可求得点M 的坐标. −3|+|4|=7,[B ]=|√2|+|﹣2√2|=3√2; 线距离分别为7、3√2;的上方,其横坐标均为整数,且[M ]=2, =0时,y =2,,1),(1,1),(0,2).级期中)在平面直角坐标系中,对于点P (x ,y ),若点,此时﹣m <2, ,m =﹣2, 下定义 把点P (x ,,即[P ]=|x |+|y |,.直接写出点M 的坐若点Q 的坐标为(ax +y ,x +ay ),其中a 为常数,则称点Q 是点P 的“a 级关联点”,例如,点P (1,4)的3级关联点”为Q (3×1+4,1+3×4)即Q (7,13),若点B 的“2级关联点”是B (3,3).(1)求点B 的坐标;(2)已知点M (m ﹣1,2m )的“﹣3级关联点”N 位于y 轴上,求N 的坐标. 【分析】(1)由点B 的“2级关联点”是B '(3,3)得出൜2ݔ+ݕ=3ݔ+2ݕ=3,解之求得x 、y 的值即可得;(2)由点M (m ﹣1,2m )的“﹣3级关联点”N 的坐标为(﹣m +3,﹣5m ﹣1),且点M ′在y 轴上知﹣m +3=0,据此求得m 的值,再进一步求解可得. 【解答】解 ∵点B 的“2级关联点”是B '(3,3), ∴൜2ݔ+ݕ=3ݔ+2ݕ=3, 解得 ൜ݔ=1ݕ=1,则点B 的坐标为(1,1);(2)∵点M (m ﹣1,2m )的“﹣3级关联点”N 的坐标为(﹣m +3,﹣5m ﹣1),且点N 在y 轴上, ∴﹣m +3=0, 解得m =3, 则﹣5m ﹣1=﹣16, ∴点N 坐标为(0,﹣16).17.(2023春•罗山县期末)阅读理解,解答下列问题在平面直角坐标系中,对于点A (x ,y )若点B 的坐标为(kx +y ,x ﹣ky ),则称点B 为A 的“k 级牵挂点”,如点A (2,5)的“2级牵挂点”为B (2×2+5,2﹣2×5),即B (9,5).(1)已知点P (﹣5,1)的“﹣3级牵挂点”为P 1,求点P 1的坐标,并写出点P 1到x 轴的距离;(2)已知点Q 的“4级牵挂点”为Q 1(5,﹣3),求Q 点的坐标及所在象限. 【分析】(1)根据“k 级牵挂点”的定义判定结论;(2)设Q (x ,y ),根据点Q 的“4级牵挂点”为Q 1(5,﹣3)可得关于x 、y 的二元一次方程组,解方程组求出x 、y 的值即可.【解答】解 (1)∵点P (﹣5,1)的“﹣3级牵挂点”为P 1, ∴﹣5×(﹣3)+1=16,﹣5﹣(﹣3)×1=﹣2, 即P 1(16,﹣2), 点P 1到x 轴的距离为2;(2)∵点Q 的“4级牵挂点”为Q 1(5,﹣3), 设Q (x ,y ). 则有൜4ݔ+ݕ=5ݔ−4ݕ=−3,解得൜ݔ=1ݕ=1,∴Q (1,1),点Q 在第一象限.18.(2023秋•东城区校级期中)对有序数对(m ,n )定义“f 运算” f (m ,n )=(ଵଶm +a ,ଵଶn +b ),其中a ,b 为常数,f 运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A (x ,y )规定“F 变换”;点A (x ,y )在F 的变换下的对应点即为坐标是f (x ,y )的点A '.(1)当a =0,b =0时,f (﹣2,4)= (﹣1,2) .(2)若点P (2,﹣2)在F 变换下的对应点是它本身,求ab 的值. 【分析】(1)根据新定义运算法则解得;(2)根据新定义运算法则得到关于a 、b 的方程,通过解方程求得它们的值即可. 【解答】解 (1)依题意得 f (﹣2,4)=(ଵଶ×(﹣2)+0,ଵଶ×4﹣0)=(﹣1,2). 故答案是 (﹣1,2);(2)依题意得 f (2所以ଵଶ×2+a =2,ଵଶ×(﹣所以a =1,b =﹣1. ∴ab =﹣1.19.(2023春•海门市期末)﹣x 1=y 2﹣y 1≠0,则称点因为2﹣(﹣1)=6﹣3(1)若点A 的坐标是(点A 的“对角点”为点(2)若点A 的坐标是(﹣(3)若点A 的坐标是(求m ,n 的取值范围.【分析】(1)、(2)读懂新定(3)根据新定义和直角坐标【解答】解 (1)根据新定故答案为 B 2(﹣1,﹣7(2)①当点B 在x 轴上时,﹣2)=(ଵଶ×2+a ,ଵଶ×(﹣2)﹣b )=(2,﹣2).(﹣2)+b =﹣2, )在平面直角坐标系xOy 中,点A (x 1,y 1),B 称点A 与点B 互为“对角点”,例如 点A (﹣1,3,≠0,所以点A 与点B 互为“对角点”.4,﹣2),则在点B 1(2,0),B 2(﹣1,﹣7),B 2(﹣1,﹣7),B 3(0,﹣6) ;(﹣2,4)的“对角点”B 在坐标轴上,求点B 的坐(3,﹣1)与点B (m ,n )互为“对角点”,且点懂新定义,根据新定义解题即可;角坐标系中第四象限x 、y 的取值范围确定m 、n 的取据新定义可以得B 2、B 3与A 点互为“对角点”; ),B 3(0,﹣6); 上时,). (x 2,y 2),若x 2),点B (2,6),B 3(0,﹣6)中,的坐标; 且点B 在第四象限,的取值范围即可.设B (t ,0),由题意得t ﹣(﹣2)=0﹣4, 解得t =﹣6, ∴B (﹣6,0). ②当点B 在y 轴上时, 设B (0,b ),由题意得0﹣(﹣2)=b ﹣4, 解得b =6, ∴B (0,6).综上所述 A 的“对角点”点B 的坐标为(﹣6,0)或(0,6). (3)由题意得m ﹣3=n ﹣(﹣1), ∴m =n +4. ∵点B 在第四象限, ∴ቊ݉>0݊<0, ∴ቊ݊+4>0݊<0,解得﹣4<n <0, 此时0<n +4<4, ∴0<m <4.由定义可知 m ≠3,n ≠﹣1,∴0<m <4且m ≠3,﹣4<n <0且n ≠﹣1. 故答案为 0<m <4且m ≠3,﹣4<n <0且n ≠﹣1.20.(2023•朝阳区校级开学)我们规定 在平面直角坐标系xOy 中,任意不重合的两点M (x 1,y 1),N (x 2,y 2)之间的“折线距离”为d (M ,N )=|x 1﹣x 2|+|y 1﹣y 2|.例如图1中,点M (﹣2,3)与点N (1,﹣1)之间的“折线距离”为d (M ,N )=|﹣2﹣1|+|3﹣(﹣1)|=3+4=7.根据上述知识,解决下面问(1)已知点P (3,﹣4,与点P 之间的“折线距离(2)如图2,已知点P 的值;(3)如图2,已知点P 写出t 的取值范围.【分析】(1)分别求出(2)通过d (P ,Q )=(3)d (P ,Q )=|3﹣t 【解答】解 (1)由题意得d (P ,B )=|3﹣(﹣1d (P ,C )=|3﹣(﹣2d (P ,D )=|3﹣0|+|﹣4故答案为 A ,B ,D .(2)d (P ,Q )=|3﹣t 解得t =﹣1或t =7.(3)d (P ,Q )=|3﹣t 化简得d (P ,Q )=|3当﹣5≤t ≤3时,|3﹣t下面问题),在点A (5,2),B (﹣1,0),C (﹣2,1距离”为8的点是A ,B ,D ;(3,﹣4),若点Q 的坐标为(t ,2),且d (P (3,﹣4),若点Q 的坐标为(t ,t +1),且d (PA ,B ,C ,D 与点P 之间的“折线距离”求解.|3﹣t |+|﹣4﹣(t +1)|=8求解.|+|﹣4﹣(t +1)|=8,分类讨论t 的取值范围去绝对题意得d (P ,A )=|3﹣5|+|﹣4﹣2|=8, )|+|﹣4﹣0|=8, )|+|﹣4﹣1|=10, ﹣1|=8,|+|﹣4﹣2|=10, |+|﹣4﹣(t +1)|, ﹣t |+|5+t |,|+|5+t |=3﹣t +5+t =8,满足题意.),D (0,1)中,,Q )=10,求t ,Q )=8,直接. 去绝对值符号求解.当t <﹣5时,|3﹣t |+|5+t 当t >3时,|3﹣t |+|5+t |∴﹣5≤t ≤3.21.(2023春•丰台区期末)y 2),定义k |x 1﹣x 2|+(1M (1,3),N (﹣2,4)2).(1)若点B (0,4),求点(2)若点B 在x 轴上,且点(3)若点B (a ,b ),且点【分析】(1)根据“k 阶距(2)设出点B 的坐标,点B 的坐标,注意x轴上的|=3﹣t ﹣5﹣t =﹣2﹣2t ,不满足题意. =t ﹣3+5+t =2+2t ,不满足题意. )在平面直角坐标系xOy 中,对于任意两点M (﹣k )|y 1﹣y 2|为点M 和点N 的“k 阶距离”,其中0)的ଵହ阶距离”为ଵହ|1െሺെ2ሻ|൅ସହ|3െ4|ൌ଻ହ.求点A 和点B 的“ଵସ阶距离”;且点A 和点B 的“ଵଷ阶距离”为4,求点B 的坐标且点A 和点B 的“ଵଶ阶距离”为1,直接写出a +阶距离”的定义计算点A 与点B 之间的“ଵସ阶距离,再根据“ଵଷ阶距离”的定义列出方程,求出字母的轴上的点的纵坐标为0.x 1,y 1),N (x 2,≤k ≤1.例如 点.已知点A (﹣1,的坐标;b 的取值范围. 距离”.字母的值,从而确定(3)根据“ଵଶ阶距离”的定义列出关于字母a 和b 的式子,当a 和b 在不同的取值范围内将含有a 和b 的式子中的绝对值去掉,从而求得a +b 的取值范围.【解答】解 (1)由题知,点A (﹣1,2)和点B (0,4)的“ଵସ阶距离”为ଵସ|−1−0|+(1−14)|2﹣4|=14+64=74.(2)∵点B 在x 轴上,∴设点B 的横坐标为m ,则点B 的坐标为(m ,0), ∵点A (﹣1,2)和点B (m ,0)的“ଵଷ阶距离”为4, ∴ଵଷ|−1−݉|+(1−ଵଷ)|2−0|=4,ଵଷ|−1−݉|=଼ଷ,|﹣1﹣m |=8,∴﹣1﹣m =8或﹣1﹣m =﹣8, ∴m =﹣9或7,∴点B 的坐标为(﹣9,0)或(7,0).(3)∵点A (﹣1,2)和点B (a ,b )的“ଵଶ阶距离”为1, ∴.ଵଶ|−1−ܽ|+(1−ଵଶ)|2−ܾ|=1,|﹣1﹣a |+|2﹣b |=2,①当a ≤﹣1,且b ≤2时,得|﹣1﹣a |+|2﹣b |=﹣1﹣a +2﹣b ,由此得出a +b =﹣1, ②当a ≤﹣1,且b >2时,得|﹣1﹣a |+|2﹣b |=﹣1﹣a +b ﹣2,由此得出b =5+a ,则a +b =2a +5, ∵b >2, 即5+a >2, ∴a >﹣3∵a≤﹣1,∴﹣3<a≤﹣1∴﹣1<2a+5≤3,即﹣1<a+b≤3,③当a>﹣1,且b<2时,得|﹣1﹣a|+|2﹣b|=1+a+2﹣b,由此得出a=b﹣1,则a+b=2b﹣1,∵a>﹣1,即b﹣1>﹣1,∴b>0,∵b<2,∴0<b<2,∴﹣1<2b﹣1<3,即﹣1<a+b<3,④当a>﹣1,且b≥2时,得|﹣1﹣a|+|2﹣b|=1+a+b﹣2,由此得出a+b=3,综上所得,﹣1≤a+b≤3.22.(2023春•福州期末)对于平面直角坐标系xOy中的任意一点P(x,y),给出如下定义;a=2x﹣y,b=x+y,将点M(a,b)与N(b,a)称为点P的一对“关联点”.例如P(2,3)的一对“关联点”是点(1,5)与(5,1).(1)点Q(4,3)的一对“关联点”是点(5,7) 与(7,5) .(2)点A(x,8)的一对“关联点”重合,求x的值.(3)点B一个“关联点”的坐标是(﹣1,7),求点B的坐标.【分析】(1)根据“关联点”定义求解;(2)根据“关联点”的定义列方程求解;(3)根据“关联点”的定义列方程组求解,注意分类讨论,不要漏解.【解答】解(1)∵2×4﹣3=5,4+3=7,∴点Q(4,3)的一对“关联点”是点(5,7)与(7,5).故答案为(5,7)与(7,5).(2)由题意得 2x ﹣8=x +8, 解得 x =16. (3)设B (x ,y ),∴൜2ݔ−ݕ=−1ݔ+ݕ=7或൜2ݔ−ݕ=7ݔ+ݕ=−1, ∴൜ݔ=2ݕ=5或൜ݔ=2ݕ=−3, ∴B (2,5)或B (2,﹣3).23.(2023春•雨花区校级期中)对于平面直角坐标系中任一点(a ,b ),规定三种变换如下①f (a ,b )=(﹣a ,b ).如 f (7,3)=(﹣7,3); ②g (a ,b )=(b ,a ).如 g (7,3)=(3,7); ③h (a ,b )=(﹣a ,﹣b ).如 h (7,3)=(﹣7,﹣3); 例如 f (g (2,﹣3))=f (﹣3,2)=(3,2) 规定坐标的部分规则与运算如下①若a =b ,且c =d ,则(a ,c )=(b ,d ),反之若(a ,c )=(b ,d ),则a =b ,且c =d .②(a ,c )+(b ,d )=(a +b ,c +d );(a ,c )﹣(b ,d )=(a ﹣b ,c ﹣d ).例如 f (g (2,﹣3))+h (g (2,﹣3))=f (﹣3,2)+h (﹣3,2)=(3,2)+(3,﹣2)=(6,0). 请回答下列问题(1)化简 f (h (6,﹣3))= (6,3) (填写坐标);(2)化简 h (f (﹣1,﹣2))﹣g (h (﹣1,﹣2))= (﹣3,1) (填写坐标); (3)若f (g (2x ,﹣kx ))﹣h (f (1+y ,﹣2))=h (g (ky ﹣1,﹣1))+f (h (y ,x ))且k 为绝对值不超过5的整数,点P (x ,y )在第三象限,求满足条件的k 的所有可能取值.【分析】(1)根据新定义进行化简即可. (2)根据新定义进行化简即可.(3)根据坐标的变换规则和运算规则,对式子进行化简,得到等式,根据点的坐标特点,列出不等式求解即可.【解答】解 (1)f (h (6,﹣3))=f (﹣6,3)=(6,3), 故答案为 (6,3);(2)h (f (﹣1,﹣2))﹣g (h (﹣1,﹣2))=h (1,﹣2)﹣g (1,2)=(﹣1,2)﹣(2,1)=(﹣3,1), 故答案为 (﹣3,1);(3)f (g (2x ,﹣kx ))﹣h (f (1+y ,﹣2))=f (﹣kx ,2x )﹣h (﹣1﹣y ,﹣2)=(kx ,2x )﹣(1+y ,2)=(kx ﹣1﹣y ,2x ﹣2),h (g (ky ﹣1,﹣1))+f (h (y ,x ))=h (﹣1,ky ﹣1)+f (﹣y ,﹣x )=(1,1﹣ky )+(y ,﹣x )=(y +1,1﹣ky ﹣x ),∵f (g (2x ,﹣kx ))﹣h (f (1+y ,﹣2))=h (g (ky ﹣1,﹣1))+f (h (y ,x )), ∴(kx ﹣1﹣y ,2x ﹣2)=(y +1,1﹣ky ﹣x ), ∴൜݇ݔ−1−ݕ=ݕ+12ݔ−2=1−݇ݕ−ݔ, ∴൜݇ݔ−2ݕ=23ݔ+݇ݕ=3, ∴൞ݔ=2݇+6݇2+6ݕ=3݇−6݇2+6, ∵点P (x ,y )在第三象限, ∴ቊ2݇+6<03݇−6<0,∴k <﹣3,∵k 为绝对值不超过5的整数, ∴k 的所有可能取值为﹣4、﹣5.24.(2023春•嵩县期末)对于平面直角坐标系中的点P (x ,y )给出如下定义 把点P (x ,y )的横坐标与纵坐标的绝对值之和叫做点P (x ,y )的折线距离,记作[P ],即[P ]=|x |+|y |,例如,点P (﹣1,2)的折(1)已知点A (﹣3,4(2)若点M 在x 轴的上方标.【分析】(1)根据题意可以(2)根据题意可知y >【解答】解 (1)[A ]=|(2)∵点M 在x 轴的上方∴x =±1时,y =1或x ∴点M 的坐标为(﹣125.(2023春•濠江区期末)我们称点P 为“梦之点”(1)判断点A (3,2)是否(2)若点M (m ﹣1,3【分析】(1)直接利用“(2)直接利用“梦之点”【解答】解 (1)当A 解得a =1,b =1,的折线距离为[P ]=|﹣1|+|2|=3.),B (√2,െ3√2),求点A ,点B 的折线距离.的上方,点M 的横坐标为整数,且满足[M ]=2,直接写意可以求得折线距离[A ],[B ];0,然后根据[M ]=2,即可求得点M 的坐标. −3|+|4|=7,[B ]=|√2|+|−3√2|=4√2; 的上方,其横,纵坐标均为整数,且[M ]=2, =0时,y =2,,1),(1,1),(0,2).)已知a ,b 都是实数,设点P (a +2,௕ାଷଶ),且满”.是否为“梦之点”,并说明理由.m +2)是“梦之点”,请判断点M 在第几象限,并说“梦之点”的定义得出a ,b 的值,进而得出答案”的定义得出m 的值进而得出答案. (3,2)时,a +2=3,௕ାଷଶ=2,.直接写出点M 的坐且满足3a =2+b ,并说明理由. 答案;则3a=3,2+b=3,所以3a=2+b,所以A(3,2),是“梦之点”;(2)点M在第三象限,理由如下∵点M(m﹣1,3m+2)是“梦之点”,∴a+2=m﹣1,௕ାଷଶ=3݉+2,∴a=m﹣3,b=6m+1,∴代入3a=2+b有3(m﹣3)=2+(6m+1),解得m=﹣4,∴m﹣1=﹣5,3m+2=﹣10,∴点M在第三象限.26.(2023秋•兴化市校级期末)在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2),若x2﹣x1=y2﹣y1≠0,则称点A与点B互为“对角点”,例如点A(﹣1,3),点B(2,6),因为2﹣(﹣1)=6﹣3≠0,所以点A与点B互为“对角点”.(1)若点A的坐标是(4,﹣2),则在点B1(2,0),B2(﹣1,﹣7),B3(0,﹣6)中,点A的“对角点”为点B2(﹣1,﹣7),B3(0,﹣6); ;(2)若点A的坐标是(5,﹣3)的“对角点”B在坐标轴上,求点B的坐标;(3)若点A的坐标是(−√3,2√3)与点B(2m,﹣n)互为“对角点”,且m、n互为相反数,求B点的坐标.【分析】(1)、(2)读懂新定(3)根据新定义和直角坐标【解答】解 (1)根据新定故答案为 B 2(﹣1,﹣7(2)①当点B 在x 轴上时设B (t ,0),由题意得解得t =﹣8, ∴B (8,0). ②当点B 在y 轴上时,设B (0,b ),由题意得0﹣5=b ﹣(﹣解得b =﹣8, ∴B (0,﹣8).综上所述 A 的“对角点”(3)由题意得2m +√3=∴2m =﹣n ﹣3√3. ∵m 、n 互为相反数, ∴m +n =0,懂新定义,根据新定义解题即可;角坐标系中第四象限x 、y 的取值范围确定m 、n 的取据新定义可以得B 2、B 3与A 点互为“对角点”; ),B 3(0,﹣6); 上时,t ﹣5=0﹣(﹣3), (﹣3), ”点B 的坐标为(8,0)或(0,﹣8). =−n ﹣2√3,的取值范围即可.解得m +n +m =﹣3√3,∴m =﹣3√3,n =3√3∴2m =﹣6√3, ∴B (﹣6√3,﹣3√3).27.(2023秋•朝阳区校级期末得到射线OY ,如果点示点P 在平面内的位置,那么点M 在平面内的位置记(1)如图3,若点N 在平面内(2)已知点A 在平面内的位①若点B 在平面内的位置记②若点B 在平面内的位置记③若点B 在平面内的位置记【分析】(1)根据新定义直(2)①先根据新定义画图画图,证明△AOB 是等边三△AOB 1是直角三角形,从而【解答】解 (1)点N 在平故答案为 6,30; (2)①如图,.期末)如图①,将射线OX 按逆时针方向旋转β角(P 为射线OY 上的一点,且OP =m ,那么我们规定用,并记为P (m ,β).例如,图2中,如果OM =5,位置记为M (5,110°),根据图形,解答下列问题平面内的位置记为N (6,30°),则ON = 6 ,∠面内的位置记为A (4,30°),位置记为B (3,210°),则A 、B 两点间的距离为位置记为B (m ,90°),且AB =4,则m 的值为 位置记为B (3,α),且AB =5,则a 的值为 定义直接得到答案;画图,证明A ,O ,B 三点共线,从而可得答案;等边三角形,从而可得答案;③先根据新定义画图从而可得答案.在平面内的位置记为N (6,30°),则ON =6,0°≤β<360°),规定用(m ,β)表∠XOM =110°,问题XON = 30 °. 离为 7 . 4 .120°或300° .;②先根据新定义画图,证明△AOB ,,∠XON =30°.∵A(4,30°),B(3,210°),∴OA=4,∠AOX=30°,OB=3,∠BOX=360°﹣210°=150°,∴∠AOX+∠BOX=180°,∴A,O,B三点共线,∴AB=4+3=7;故答案为7;②如图,∵A(4,30°),B(m,90°),∴OA=4,∠AOX=30°,OB=m,∠BOX=90°,∴∠AOB=90°﹣30°=60°,∵AB=4,∴AB=OA,∴△AOB是等边三角形,∴OB=m=4;故答案为4;③如图,∵A (4,30°),B (3,α),∴OA =4,∠AOX =30°,OB =3=OB 1,∠BOX =α或∠B 1OX =360°﹣α, ∵AB =5,∴OB 2+OA 2=25=AB 2, ∴∠AOB =90°=∠AOB 1,∴α=90°+30°=120°或α=120°+180°=300°. 故答案为 120°或300°.28.(2023秋•大兴区期中)在平面直角坐标系xOy 中,点A ,B ,P 不在同一直线上,对于点P 和线段AB 给出如下定义 过点P 向线段AB 所在直线作垂线,若垂足Q 在线段AB 上,则称点P 为线段AB 的内垂点,当垂足Q 满足|AQ ﹣BQ |最小时,称点P 为线段AB 的最佳内垂点.已知点S (﹣3,1),T (1,1).(1)在点P 1(2,4),P 2(﹣4,0),P 3(﹣2,ଵଶ),P 4(1,3)中,线段ST 的内垂点为 P 3,P 4;(2)若点M 是线段ST 的最佳内垂点,则点M 的坐标可以是 (﹣1,4),(﹣1,2) (写出两个满足条件的点M 即可); (3)已知点C (m ﹣2,3),D (m ,3),若线段CD 上的每一个点都是线段ST 的内垂点,直接写出m 的取值范围;(4)已知点E (n +2,0),F (n +4,﹣1),若线段EF 上存在线段ST 的最佳内垂点,直接写出n 的取值范围.【分析】(1)利用图象法画(2)满足条件的点在线段(3)构建不等式组解决问题(4)构建不等式组解决问题【解答】解 (1)如图故答案为 P 3,P 4;(2)如图,点M (﹣1故答案为 (﹣1,4)(3)由题意,ቄ݉−2൒݉൑1解得﹣1≤m ≤1.象法画出图形解决问题即可; 线段ST 的中垂线上; 决问题即可; 决问题即可.1中,观察图象可知,线段ST 的内垂点为P 3,,4),M ′(﹣1,2)是线段ST 的最佳内垂点,,(﹣1,2)(答案不唯一); −3ቄ݉൒−3݉−2൑1,P 4. ,故答案为 ﹣1≤m ≤1.(4)如图2中,观察图象可解得﹣5≤n ≤﹣3.29.(2023春•嘉鱼县期末)以BC 为边在x 轴的上方作(1)点A 的坐标为 (2)将正方形ABCD OMN 重叠的区域(不①当m =3时,区域内整点②若区域W 内恰好有3个整【分析】(1)先求出方形(2)①画出正方形A 'B '②在△OMN 中共有6个整数图象可知,m 满足ቄ݊+4൒െ1݊൅2൑െ1,)如图,在平面直角坐标系xOy 中,点B (1,0,上方作正方形ABCD ,点M (﹣5,0),N (0,5(1,4) ;点D 的坐标为 (5,4) ;向左平移m 个单位,得到正方形A 'B 'C 'D ',记含边界)为W内整点(横,纵坐标都是整数)的个数为 3 ;个整点,请直接写出m 的取值范围.正方形的边长为BC =4,再求点的坐标即可; C 'D ',结合图形求解即可;个整数点,在平移正方形ABCD ,找到恰好有3个整),点C (5,0),). 正方形A 'B 'C 'D '与△ 个整数解的情况即可.【解答】解 (1)∵点∴BC =4,∵四边形ABCD 是正方形∴A (1,4),D (5,4故答案为 (1,4),(5(2)①如图 共有3个,故答案为 3;②在△OMN 中共有6个整数2,2),(﹣3,1),∵区域W 内恰好有3个整点∴2<m ≤3或6≤m <730.(2023春•李沧区期末)补法来求它们的面积.下面如图1,2所示,分别过三角间的距离d 叫做水平宽;BD 的长叫做这个三角形的l 4,l 3,l 4之间的距离h叫做B (1,0),点C (5,0), 方形, ), ,4); , 个整数点,分别是(﹣1,1),(﹣1,2),(﹣1,3(个整点, .)对于某些三角形或四边形,我们可以直接用面积下面我们再研究一种求某些三角形或四边形面的新过三角形或四边形的顶点A ,C 作水平线的铅;如图1所示,过点B 作水平线的铅垂线交形的铅垂高;如图2所示,分别过四边形的顶点B 叫做四边形的铅垂高.),(﹣2,1),(﹣用面积公式或者用割积的新方法 垂线l 1,l 2,l 1,l 2之AC 于点D ,称线段,D 作水平线l 3,【结论提炼】容易证明“三角形的面积等于水平宽与铅垂高乘积的一半”,即“S=12dh”【结论应用】为了便于计算水平宽和铅垂高,我们不妨借助平面直角坐标系.已知如图3,点A(﹣5,2),B(5,0),C(0,5),则△ABC的水平宽为10,铅垂高为4,所以△ABC面积的大小为20.【再探新知】三角形的面积可以用“水平宽与铅垂高乘积的一半”来求,那四边形的面积是不是也可以这样求呢?带着这个问题,我们进行如下探索(1)在图4所示的平面直角坐标系中,取A(﹣4,2),B(1,5),C(4,1),D(﹣2,﹣4)四个点,得到四边形ABCD.运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小是36;用其它的方法进行计算得到其面积的大小是37.5,由此发现用“S=12dh”这一方法对求图4中四边形的面积不合适.(填“适合”或“不适合”)(2)在图5所示的平面直角坐标系中,取A(﹣5,2),B(1,5),C(4,2),D(﹣2,﹣3)四个点,得到了四边形ABCD.运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小是36,用其它的方法进行计算得到面积的大小是36,由此发现用“S=12dh”这一方法对求图5中四边形的面积合适.(“适合”或“不适合”)(3)在图6所示的平面直角坐标系中,取A(﹣4,2),B(1,5),C(5,1),D(1,﹣5)四个点,得到了四边形ABCD.通过计算发现用“S=12dh”这一方法对求图6中四边形的面积合适.(填“适合”或“不适合”)【归纳总结】我们经历上面的探索过程,通过猜想、归纳,验证,便可得到当四边形满足某些条件时,可以用“S=12dh”来求面积.那么,可以用“S=12dh”来求面积的四边。

《中考数学专题讲座》课件

《中考数学专题讲座》课件

PART 02
代数部分
代数基础知识梳理
代数基础知识
包括代数式、方程、不等 式、函数等基本概念和性 质。
代数式化简
掌握代数式的化简方法, 如合并同类项、提取公因 式等。
方程与不等式解法
理解方程与不等式的解法 ,包括一元一次方程、一 元二次方程、分式方程、 一元一次不等式等。
代数解题方法与技巧
代数恒等变换
中考数学复习计划与时间安排
制定复习计划
根据中考数学的考试大纲和考试时间,制定详细的复习计划,合理 分配时间,把握重点和难点。
注重基础知识
在复习过程中,要注重基础知识的学习和掌握,不要忽视课本上的 例题和练习题,因为这些是最基本的题目,能够帮你理解概念和方 法。
练习历年真题
多做中考数学真题,熟悉考试形式和题型,有助于提高应试能力和自 信心。
考试内容
包括数与式、方程与不等 式、函数、几何、概率与 统计等部分。
考试形式
闭卷、笔试,时间为120 分钟。
中考数学考试形式与试卷结构
试卷结构
满分120分,包括选择题、填空题 和解答题三种题型。
分值分布
选择题40分,填空题30分,解答 题50分。
考试时间分配
选择题每题2分,共20题,用时30 分钟;填空题每题3分,共10题, 用时15分钟;解答题每题8分,共5 题,用时65分钟。
中考数学答题技巧与注意事项
仔细审题
在答题前,要认真审题,理解题意, 避免因误解题目而失分。
表达清晰
在答题时,要思路清晰,表达准确, 注意解题步骤和细节。
检查答案
在答完题后,要仔细检查答案,确保 没有遗漏或错误。
注意时间分配
在考试过程中,要合理分配时间,不 要在某一道题目上花费太多时间而影 响其他题目的完成。

(初中)九年级数学《二元一次方程》中考专题阶段复习讲解教学课件

(初中)九年级数学《二元一次方程》中考专题阶段复习讲解教学课件

【解析】设入住A类旅游饭店的会议x次,入住B类旅游饭店的
会议y次.
根据题意,得
x y 18, 2x y 28,
解得
x y
10, 8.
答:此旅行社入住A类旅游饭店的会议10次,入住B类旅游饭店
的会议8次.
(初中)数学中考专题阶段复习讲解教学课件
谢谢
9 5
.
,
mx ny 7, nx my 1,
则 m 3n 13 3 9 8,所以3 m 3n 3 8 2.
55
答案:2
3.(中考)已知关于x,y的方程组
mx ny 7, 2mx 3ny
4的解为xy
1, 2,
求m,n的值.
【解析】把
x y
1, 2
代入
mx ny 7, 2mx 3ny
人数多22人”所得的方程是x-y=22;调查的吸烟的人数是
x 不,吸烟的人数是
2.5%
根y据共,调查了10 000人,列方
0.5%
程得 x y 10 000,
2.5% 0.5%
x y 22,
所以可列方程组
x 2.5%
y 0.5%
10
000.
2.(中考)学校举行“大家唱大家跳”文艺汇演,设置了歌唱
①-②,得2y=2,y=1,所以原方程组的解为xy
2, 1.
答案:xy
2, 1
2.(中考)解方程组:
2x y 3,① x y 0.②
【解析】①+②,得3x=3,x=1.
把x=1代入②,得y=1.原方程组的解为xy
1, 1.
3.(中考)解方程组
x 3y 12,① 2x 3y 6.②
与舞蹈两类节目,全校师生一共表演了30个节目,其中歌唱类

中考数学一轮复习:第25课时矩形课件

中考数学一轮复习:第25课时矩形课件
2
No
返回目录
第25课时 矩形
③当DP=DC时,如解图①,过点D作DQ⊥AC于点Q,则PQ=CQ.
∵S△ADC=
1 2
AD·DC=
1 2
AC·DQ,
∴DQ= AD·DC=24 , AC 5
∴CQ= DC2-DQ2=18 , ∴PC=2CQ= 36 , 5
5 ∴AP=AC-PC= 14,
第2题解图①
返回目录
【提分要点】判定四边形是矩形,可以先判定这个四边形是平行四边形,然 后找角或者对角线的关系,若角度容易求,则可找其一角为90°,便可判定 是矩形;若对角线容易求,则证明其对角线相等即可判定其为矩形.
No
第25课时 矩形
回归教材 1. 证明:有三个角是直角的四边形是矩形. 已知:如图,在四边形ABCD中,∠A=∠B=∠C=90°. 求证:四边形ABCD是矩形. 【自主作答】 证明:∵∠A=∠B=∠C=90°, ∴AD∥BC,AB∥CD, ∴四边形ABCD是平行四边形. ∵∠A=90°, ∴四边形ABCD是矩形.
①若∠BCE=4∠DCE,则∠COE=___3_6_゚___ ; ②过点B作CE的平行线BF,过点C作BE的平行线CF,两平行线相交于点F,则
四边形BFCE是_矩___形__,判定根据为__有__一__个__角__是__直__角__的__平__行__四__边__形__是__矩__形____ ;
例题图②
2 又∵OC2+CE2=
1
BD2+
2 1
BD2=
1
BD2,
4
4
2
∴OC2+CE2=OE2,
∴∠OCE=90°.
∵OD=OC,
∴∠OCD=∠ODC=60°,
∴∠DCE=∠OCE-∠OCD=30°.

2020届中考数学总复习课件:核心素养专题九 数学文化 (共25张PPT)

2020届中考数学总复习课件:核心素养专题九 数学文化 (共25张PPT)
9x=11y, ___(__1_0_y_+__x_)__-__(__8_x_+__y_)__=__1_3_______.
8.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九
日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)利用我们学习过的知识可以计算出 63
野鸭与大雁经过_1_6__天相遇.
V≈316L2h,它实际上是将圆锥体积公式中的圆周率 π 近似取为 3,那么,近似公式 V≈725
L2h 相当于将圆锥体积公式中的 π 近似取为( B )
22
25
A. 7
B. 8
C.15507
D.311535
【解析】 316×3=725π,∴π=285.
3.[2019·长沙]《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今
有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思
ห้องสมุดไป่ตู้
是:用一根绳子去量一根木头的长、绳子还剩余 4.5 尺;将绳子对折再量木头,则木头
还剩余 1 尺,问木头长多少尺?可设木头长为 x 尺,绳子长为 y 尺,则所列方程组正确
的是( A )
y=x+4.5, A.0.5y=x-1
解:设共有 x 人, 根据题意得x3+2=x-2 9, 去分母得 2x+12=3x-27, 解得 x=39,∴39-2 9=15. 答:共有 39 人,15 辆车.
12.(8 分)[2020·中考预测]我国元代数学家朱世杰所撰写的《算学启蒙》中有这样一道 题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追 及之.” 译文:良马平均每天能跑 240 里,驽马平均每天能跑 150 里.现驽马出发 12 天后良马 从同一地点出发沿同一路线追它,问良马多少天能够追上驽马?

中考数学复习专题知识讲座PPT省名师优质课赛课获奖课件市赛课一等奖课件

中考数学复习专题知识讲座PPT省名师优质课赛课获奖课件市赛课一等奖课件

二、解题策略与解法精讲
• 选择题解题旳基本原则是:充分利用选择题旳特点,小题 小做,小题巧做,切忌小题大做.
• 解选择题旳基本思想是既要看到各类常规题旳解题思想, 但更应看到选择题旳特殊性,数学选择题旳四个选择支中 有且仅有一种是正确旳,又不要求写出解题过程. 因而, 在解答时应该突出一种“选”字,尽量降低书写解题过程, 要充分利用题干和选择支两方面提供旳信息,根据题目旳 详细特点,灵活、巧妙、迅速地选择解法,以便迅速智取, 这是解选择题旳基本策略. 详细求解时,一是从题干出发 考虑,探求成果;二是题干和选择支联合考虑或从选择支 出发探求是否满足题干条件. 实际上,后者在解答选择题 时更常用、更有效.
• 例3 下列四个点中,在反百分比函数y=− 旳图象上旳是( )
• A.(3,-2) B.(3,2) C.(2,3) D.(-2,-3)
• 思绪分析:根据反百分比函数中k=xy旳特点进行解答即可.
• 解:A、∵3×(-2)=-6,∴此点在反百分比函数旳图象上,故本选项正确; B、∵3×2=6≠-6,∴此点不在反百分比函数旳图象上,故本选项错误; C、∵2×3=6≠-6,∴此点不在反百分比函数旳图象上,故本选项错误; D、∵(-2)×(-3)=6≠-6,∴此点不在反百分比函数旳图象上,故本选项错 误. 故选A.
• 思绪分析:反百分比函数旳图象是中心对称图形, • 则与经过原点旳直线旳两个交点一定有关原点对称. • 解:因为直线y=mx过原点,双曲线 旳两个分支有关原点对称,
所以其交点坐标有关原点对称,一种交点坐标为(3,4),另一种交 点旳坐标为(-3,-4). 故选:C. • 点评:此题考察了函数交点旳对称性,经过数形结合和中心对称旳定 义很轻易处理.
• 一. 一次函数、反百分比函数和二次函数图象旳分析问题

【2014中考复习方案】(人教版)中考数学复习权威课件 :25 矩形、菱形、正方形(30张ppt,含13年试题)

【2014中考复习方案】(人教版)中考数学复习权威课件 :25 矩形、菱形、正方形(30张ppt,含13年试题)
(2)如图②,在正方形ABCD中,M、N、P、Q分别是边 AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等? 并说明理由.
图25-7
考点聚焦 归类探究 回归教材
第25课时┃ 矩形、菱形、正方形
解:(1)证明:设AF与BE交于点G,
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=∠D=90°, ∴Rt△ADF中,∠FAD+∠AFD=90°.
考点聚焦 归类探究 回归教材
第25课时┃ 矩形、菱形、正方形
归 类 探 究
探究一 矩形的性质及判定的应用
命题角度: 1. 矩形的性质; 2. 矩形的判定. 例1 [2013· 白银 ]如图25-1,在△ABC中,D是BC边
上的一点,E是AD的中点,过A点作BC的平行线交CE 的延长线于点F,且AF=BD,连接BF.
考点2
菱形
菱形
有一组________相等的平行四边形是菱形 邻边 菱形是轴对称图形,两条对角线所在的直线是
定义
对称性 菱形的 性质 定理
它的对称轴
菱形是中心对称图形,它的对称中心是两条对 角线的交点 (1)菱形的四条边________; 相等 垂直 (2)菱形的两条对角线互相________平分,并且 一组对角 每条对角线平分___________
∵D为BC中点,∴DB∶BC=1∶2,
∴BE∶AB=1∶2,∴E为AB中点,即BE=AE. ∵CF=AE,∴CF=BE,∴CF=FB=BE=CE,
∴四边形BECF是菱形.
(2)如图,∵四边形BECF为正方形, ∴∠BEC=90°.又AE=CE,∴∠A=45°.
考点聚焦
归类探究
回归教材
第25课时┃ 矩形、菱形、正方形

中考数学专题《二次函数》复习课件(共54张PPT)

中考数学专题《二次函数》复习课件(共54张PPT)

当x b 时, y最小值为 4ac b2
2a
4a
y=ax2+bx+c(a<0)
b 2a
,
4ac 4a
b2
直线x b
2a
由a,b和c的符号确定
a<0,开口向下
在对称轴的左侧,y随着x的增大而增大. 在对 称轴的右侧, y随着x的增大而减小.
当x b 时, y最大值为 4ac b2
2a
例1: 已知二次函数 y 1 x2 x 3
2
2
(1)求抛物线开口方向,对称轴和顶点M的坐标。
(2)设抛物线与y轴交于C点,与x轴交于A、B两
点,求C,A,B的坐标。
(3)x为何值时,y随的增大而减少,x为何值时,
y有最大(小)值,这个最大(小)值是多少?
(4)x为何值时,y<0?x为何值时,y>0?
写出满足此条件的抛物线的解析式.
解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同
a=1或-1 又顶点在直线x=1上,且顶点到x轴的距离为5,
二次函数复习
二次函数知识点:
• 1、二次函数的定义 • 2、二次函数的图像及性质 • 3、求解析式的三种方法 • 4、a,b,c及相关符号的确定 • 5、抛物线的平移 • 6、二次函数与一元二次方程的关系 • 7、二次函数的应用题 • 8、二次函数的综合运用
1、二次函数的定义
• 定义: y=ax² + bx + c ( a 、 b 、 c 是常数, a ≠ 0)
a= ___. -2
2、二次函数的图像及性质
y
y
0
x
0
x
抛物线 顶点坐标 对称轴

中考数学复习专题25:尺规作图(含中考真题解析)

中考数学复习专题25:尺规作图(含中考真题解析)

专题25 尺规作图☞解读考点知识点名师点晴尺规作图尺规作图概念了解什么是尺规作图五种基本作图1.画一条线段等于已知线段会用尺规作图法完成五种基本作图,了解五种基本作图的理由,会使用精练、准确的作图语言叙述画图过程.2.画一个角等于已知角3.画线段的垂直平分线4.过已知点画已知直线的垂线5.画角平分线会利用基本作图画较简单的图形.1.画三角形会利用基本作图画三角形较简单的图形.2.画圆会利用基本作图画圆.☞2年中考【2015年题组】1.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C.D.【答案】D.第1 页共32 页考点:作图—复杂作图.考点:作图—复杂作图.2.如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于12AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是(下列结论错误的是( )A.AD=BD B.BD=CD C.∠A=∠BED D.∠ECD=∠EDC 【答案】D.【解析】【解析】试题分析:∵MN为AB的垂直平分线,∴AD=BD,∠BDE=90°;∵∠ACB=90°,∴CD=BD;∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED;∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.故选D.考点:1.作图—基本作图;2.线段垂直平分线的性质;3.直角三角形斜边上的中线..直角三角形斜边上的中线. 3.如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为(的度数,结果为( )A.80°B.90°C.100°D.105°【答案】B.【解析】【解析】试题分析:如图,试题分析:如图,AB是以点C为圆心,BC长为半径的圆的直径,因为直径对的圆周角是90°,所以∠AMB=90°,所以测量∠AMB的度数,结果为90°.故选B.考点:1.等腰三角形的性质;2.作图—基本作图.基本作图.4.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:,按如下步骤作图:第一步,分别以点A、D为圆心,以大于12AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.的长是( )若BD=6,AF=4,CD=3,则BE的长是(A.2 B.4 C.6 D.8 【答案】D.基本作图.考点:1.平行线分线段成比例;2.菱形的判定与性质;3.作图—基本作图.5.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆分别作出了下列四个图形.其中作法错误的是( )规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是(A.B.C.D.【答案】A.考点:作图—基本作图.考点:作图—基本作图.6.数学课上,老师让学生尺规作图画Rt △ABC ,使其斜边AB=c ,一条直角边BC=a .小明的作法如图所示,你认为这种作法中判断∠ACB 是直角的依据是(是直角的依据是( )A .勾股定理.勾股定理B .直径所对的圆心角是直角.直径所对的圆心角是直角C .勾股定理的逆定理.勾股定理的逆定理D .90°的圆周角所对的弦是直径的圆周角所对的弦是直径 【答案】B . 【解析】【解析】试题分析:由作图痕迹可以看出O 为AB 的中点,以O 为圆心,AB 为半径作圆,然后以B 为圆心BC=a 为半径花弧与圆O 交于一点C ,故∠ACB 是直径所对的圆周角,所以这种作法中判断∠ACB 是直角的依据是:直径所对的圆心角是直角.故选B . 考点:1.作图—复杂作图;2.勾股定理的逆定理;3.圆周 角定理.角定理.7.如图,将线段AB 放在边长为1的小正方形网格,点A 点B 均落在格点上,请用无刻度直尺在线段AB 上画出点P ,使AP=3172,并保留作图痕迹.(备注:本题只是找点不是证明,∴只需连接一对角线就行)证明,∴只需连接一对角线就行)【答案】作图见试题解析.【答案】作图见试题解析.考点:作图—应用与设计作图.考点:作图—应用与设计作图.8.)阅读下面材料:在数学课上,老师提出如下问题:)阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是 .请回答:小芸的作图依据是【答案】到线段两个端点距离相等的点在线段的垂直平分线上;两点确定一条直线..作图题.考点:1.作图—基本作图;2.作图题.9.已知⊙O为△ABC的外接圆,圆心O在AB上.上.(1)在图1中,用尺规作图作∠BAC的平分线AD交⊙O于D(保留作图痕迹,不写作法与证明);(2)如图2,设∠BAC 的平分线AD 交BC 于E ,⊙O 半径为5,AC=4,连接OD 交BC 于F .①求证:OD ⊥BC ; ②求EF 的长.的长.【答案】(1)作图见试题解析;(2)①证明见试题解析;②3217.【解析】【解析】 试题分析:(1)按照作角平分线的方法作出即可;)按照作角平分线的方法作出即可;(2)①由AD 是∠BAC 的平分线,得到CD BD =,再由垂径定理推论可得到结论;,再由垂径定理推论可得到结论;②由勾股定理求得CF 的长,然后根据平行线分线段成比例定理求得34EFFD CEAC==,即可求得37EF CF =,继而求得EF 的长.的长.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.勾股定理;4.圆周.压轴题.角定理;5.作图—复杂作图;6.压轴题.10.如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)【答案】答案见试题解析.【答案】答案见试题解析.【解析】【解析】试题分析:①以A为圆心,以3为半径作弧,交AD、AB两点,连接即可;②连接AC,在AC上,以A为端点,截取1.5个单位,过这个点作AC的垂线,交AD、AB两点,连接即可;③以A为端点在AB上截取试题解析:满足条件的所有图形如图所示:试题解析:满足条件的所有图形如图所示:考点:1.作图—应用与设计作图;2.等腰三角形的判定;3.勾股定理;4.正方形的性质;5.综合题;6.压轴题..压轴题.11.图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD ,已知OA=5,若扇形OAD (∠AOD <180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于的侧面,则这个圆锥底面圆的半径等于 .【答案】(1)作图见试题解析;(2)158.【解析】【解析】 试题分析:(1)作AE 的垂直平分线交⊙O 于C ,G ,作∠AOG ,∠EOG 的角平分线,分别交⊙O 于H ,F ,反向延长,反向延长 FO ,HO ,分别交⊙O 于D ,B 顺次连接A ,B ,C ,D ,E ,F ,G ,H ,八边形ABCDEFGH 即为所求;即为所求; (2)由八边形ABCDEFGH 是正八边形,求得∠AOD 的度数,得到AD 的长,设这个圆锥底面圆的半径为R ,根据圆的周长的公式即可求得结论.,根据圆的周长的公式即可求得结论. 试题解析:(1)如图所示,八边形ABCDEFGH 即为所求;即为所求;(2)∵八边形ABCDEFGH 是正八边形,∴∠AOD=3608×3=135°,∵OA=5,∴AD 的长=1355180p ´=154p ,设这个圆锥底面圆的半径为R ,∴2πR=154p,∴R=158,即这个圆锥底面圆的半径为158.故答案为:158.考点:1.正多边形和圆;2.圆锥的计算;3.作图—复杂作图.复杂作图.12.手工课上,老师要求同学们将边长为4cm 的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)等腰直角三角形面积(注:不同的分法,面积可以相等)【答案】答案见试题解析.【答案】答案见试题解析.(2)正方形ABCD中,E、F分别是AB、BC的中点,O是AC、BD的交点,连接OE、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可;分割后得到的最小等腰直角三角形面积即可;(3)正方形ABCD中,F、H分别是BC、DA的中点,O是AC、BD的交点,连接HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可;得到的最小等腰直角三角形面积即可;(4)正方形ABCD中,E、F分别是AB、BC的中点,O是AC的中点,I是AO的中点,连接OE、OB、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.面积公式,求出分割后得到的最小等腰直角三角形面积即可.试题解析:根据分析,可得:试题解析:根据分析,可得:..操作型.考点:1.作图—应用与设计作图;2.操作型.13.如图,一条公路的转弯处是一段圆弧(AB).(要求保留作图痕迹,不写作法)(1)用直尺和圆规作出AB所在圆的圆心O;(要求保留作图痕迹,不写作法)所在圆的半径.(2)若AB的中点C到弦AB的距离为20m,AB=80m,求AB所在圆的半径.【答案】(1)作图见试题解析;(2)50m.试题解析:(1)如图1,点O为所求;为所求;(2)连接OA,OC,OC交AB于D,如图2,∵C为AB的中点,∴OC⊥AB,∴AD=BD=12AB=40,设⊙O的半径为r,则OA=r,OD=OD﹣CD=r﹣20,在Rt△OAD中,∵222OA OD BD=+,∴222(20)40r r=-+,解得r=50,即AB所在圆的半径是50m.考点:1.作图—复杂作图;2.勾股定理;3.垂径定理的应用;4.作图题..作图题.14.如图,一块余料ABCD,AD∥BC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于12GH的长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.(1)求证:AB=AE;(2)若∠A=100°,求∠EBC的度数.的度数.【答案】(1)证明见试题解析;(2)40°.°.考点:1.作图—基本作图;2.等腰三角形的判定与性质..等腰三角形的判定与性质.15.如图,射线P A切⊙O于点A,连接PO.(1)在PO的上方作射线PC,使∠OPC=∠OP A(用尺规在原图中作,保留痕迹,不写作法),并证明PC是⊙O的切线;的切线;(2)在(1)的条件下,若PC切⊙O于点B,AB=AP=4,求AB的长.的长.【答案】(1)作图见试题解析,证明见试题解析;(2)839p.【解析】【解析】试题分析:(1)按照作一个角等于已知角的作图方法作图即可,连接OA,作OB⊥PC,由角平分线的性质证明OA=OB即可证明PC是⊙O的切线;的切线;(2)先证明△P AB是等边三角形,则∠APB=60°,进而∠POA=60°,在Rt△AOP中求出OA,用弧长公式计算即可.,用弧长公式计算即可.试题解析:(1)作图如右图,作图如右图,连接连接OA,过O作OB⊥PC,∵P A切⊙O于点A,∴OA⊥P A,又∵∠OPC=∠OP A ,OB ⊥PC ,∴OA=OB ,即d=r ,∴PC 是⊙O 的切线;的切线;(2)∵P A 、PC 是⊙O 的切线,∴PA=PB ,又∵AB=AP=4,∴△P AB 是等边三角形,∴∠APB=60°,∴∠AOB=120°,∠POA=60°,在Rt △AOP 中,tan60°tan60°==4OA ,∴OA=433,∴431203180AB l p ´´==839p .考点:1.切线的判定与性质;2.弧长的计算;3.作图—基本作图.基本作图.16.如图,AC 是⊙O 的直径,点B 在⊙O 上,∠ACB=30°.(1)利用尺规作∠ABC 的平分线BD ,交AC 于点E ,交⊙O 于点D ,连接CD (保留作图痕迹,不写作法);(2)在(1)所作的图形中,求△ABE 与△CDE 的面积之比.的面积之比.【答案】(1)作图见试题解析;(2)12.试题解析:(1)如图所示;)如图所示;考点:1.作图—复杂作图;2.圆周角定理..圆周角定理.17.)图①,图②,图③都是4×4×44的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:图:为一边画一个等腰三角形;(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;为一边画一个正方形;(2)在图②中,以格点为顶点,AB为一边画一个正方形;(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.)作图见试题解析.【答案】(1)作图见试题解析;(2)作图见试题解析;(3)作图见试题解析.【解析】【解析】的等腰三角形即可; 试题分析:(1)根据勾股定理,结合网格结构,作出两边分别为5的等腰三角形即可;的正方形;(2)根据勾股定理逆定理,结合网格结构,作出边长为5的正方形;(3)根据勾股定理逆定理,结合网格结构,作出最长的线段作为正方形的边长即可.个:试题解析:(1)如图①,符合条件的C点有5个:;的面积最大.(3)如图③,边长为10的正方形ABCD的面积最大..考点:作图—应用与设计作图.考点:作图—应用与设计作图.18.)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均,每个小正方形的顶点叫做格点.为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).【答案】(1)答案见试题解析;(2)答案见试题解析.)答案见试题解析.所示;试题解析:(1)如图1所示;(2)如图2、3所示;所示;考点:作图—应用与设计作图.考点:作图—应用与设计作图. 19.)如图,已知Rt △ACB 中,∠C =90°,∠BAC =45°. (1)(4分)用尺规作图,在CA 的延长线上截取AD =AB ,并连接BD (不写作法,保留作图痕迹); (2)(4分)求∠BDC 的度数;的度数; (3)(4分)定义:在直角三角形中,一个锐角A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即的对边的邻边A A A ÐÐ=cot ,根据定义,利用图形求cot22.5°的值.的值.【答案】(1)答案见试题解析;(2)22.5°;(3)21+.试题解析:(1)如图,)如图,(2)∵AD=AB ,∴∠ADB=∠ABD ,而∠BAC=∠ADB+∠ABD ,∴∠ADB=12∠BAC=12×45°45°=22.5°=22.5°,即∠BDC 的度数为22.5°;(3)设AC=x ,∵∠C=90°,∠BAC=45°,∴△ACB 为等腰直角三角形,∴BC=AC=x ,AB=2AC=2x ,∴AD=AB=2x ,∴CD=2x x +=(21)x +,在Rt △BCD 中,cot∠BDC=DC BC =(21)xx+=21+,即cot22.5°cot22.5°==21+. 考点:1.作图—复杂作图;2.解直角三角形;3.新定义;4.综合题..综合题.20.)如图,△ABC 是直角三角形,∠ACB=90°.(1)尺规作图:作⊙C ,使它与AB 相切于点D ,与AC 相交于点E ,保留作图痕迹,不写作法,请标明字母;作法,请标明字母;(2)在你按(1)中要求所作的图中,若BC=3,∠A=30°,求DE 的长.的长.【答案】(1)作图见试题解析;(2)32p .试题解析:(1)如图,)如图,⊙C 为所求;为所求;(2)∵⊙C 切AB 于D ,∴CD ⊥AB ,∴∠ADC=90°,∴∠DCE=90°﹣∠A=90°﹣30°30°=60°=60°,∴∠BCD=90°﹣∠ACD=30°,在Rt △BCD 中,∵cos ∠BCD=CD BC ,∴CD=3cos30°CD=3cos30°==332,∴DE 的长=33602180p ×=32p. 考点:1.作图—复杂作图;2.切线的性质;3.弧长的计算;4.作图题..作图题.21.如图,在△ABC 中,AB=AC ,∠DAC 是△ABC 的一个外角.的一个外角. 实验与操作:实验与操作:根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法) (1)作∠DAC 的平分线AM ;(2)作线段AC 的垂直平分线,与AM 交于点F ,与BC 边交于点E ,连接AE ,CF . 猜想并判断四边形AECF 的形状并加以证明.的形状并加以证明.【答案】(1)作图见试题解析;(2)作图见试题解析,四边形AECF 的形状为菱形.的形状为菱形. 【解析】【解析】考点:1.作图—复杂作图;2.角平分线的性质;3.线段垂直平分线的性质;4.作图题;5.探究型;6.菱形的判定..菱形的判定.22.在边长为1的小正方形组成的方格纸中,的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点若多边形的各顶点都在方格纸的格点若多边形的各顶点都在方格纸的格点(横竖格(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为a ,边界上的格点数为b ,则格点多边形的面积可表示为1-+=nb ma S ,其中m ,n 为常数.为常数. (1)在下面的方格中各画出一个面积为6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形;、菱形;(2)利用(1)中的格点多边形确定m ,n 的值.的值.【答案】(1)答案见试题解析;(2)112m n =ìïí=ïî.(2)∵格点多边形内的格点数为a ,边界上的格点数为b ,则格点多边形的面积可表示为:1-+=nb ma S ,其中m , n 为常数,为常数,∴三角形:3816S m n =+-=,平行四边形:3816S m n =+-=,菱形:5416S m n =+-=,则38165416m n m n +-=ìí+-=î,解得:112m n =ìïí=ïî. 考点:作图—应用与设计作图.考点:作图—应用与设计作图.23.“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a ,b ,c ,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.的整数个单位长度. (1)用记号(a ,b ,c )(a≤b≤c )表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a <b <c 的三角形(用给定的单位长度,不写作法,保留作图痕迹).【答案】(1)共9种:(2,2,2),(2,2,3),(2,3,3),(2,3,4),(2,4,4),(3,3,3),(3,3,4),(3,4,4),(4,4,4);(2)答案见试题解析.)答案见试题解析. 【解析】【解析】 试题分析:(1)应用列举法,根据三角形三边关系列举出所有满足条件的三角形;)应用列举法,根据三角形三边关系列举出所有满足条件的三角形;(2)首先判断满足条件的三角形只有一个:a=2,b=3,c=4,再作图:①作射线AB ,且取AB=4;②以点A 为圆心,3为半径画弧;以点B 为圆心,2为半径画弧,两弧交于点C ; ③连接AC 、BC .则△ABC 即为满足条件的三角形.即为满足条件的三角形.考点:1.作图—应用与设计作图;2.三角形三边关系..三角形三边关系.24.各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形..各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形.如何计算如何计算它的面积?奥地利数学家皮克(G•Pick ,1859~1942年)证明了格点多边形的面积公式121-+=b a S ,其中a 表示多边形内部的格点数,b 表示多边形边界上的格点数,S 表示多边形的面积.如图,4=a ,6=b ,616214=-´+=S .(1)请在图中画一个格点正方形,使它的内部只含有4个格点,并写出它的面积.个格点,并写出它的面积.(2)请在图乙中画一个格点三角形,使它的面积为27,且每条边上除顶点外无其它格点.(注:图甲、图乙在答题纸上)(注:图甲、图乙在答题纸上)【答案】. 【解析】【解析】 试题分析:(1)根据皮克公式画图计算即可;)根据皮克公式画图计算即可;(2)根据题意可知a=3,b=3,画出满足题意的图形即可.,画出满足题意的图形即可. 试题解析:(1)方法不唯一,如图①或图②所示:)方法不唯一,如图①或图②所示:(2)方法不唯一,如图③或图④所示:)方法不唯一,如图③或图④所示:考点:作图—应用与设计作图.考点:作图—应用与设计作图. 25.【问题提出】【问题提出】用n 根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?,能搭成多少种不同的等腰三角形? 【问题探究】【问题探究】不妨假设能搭成m 种不同的等腰三角形,为探究m 与n 之间的关系,我们可以先从特殊入手,通过试验、观察、类比、最后归纳、猜测得出结论.手,通过试验、观察、类比、最后归纳、猜测得出结论. 【探究一】【探究一】(1)用3根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形? 此时,显然能搭成一种等腰三角形.此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1.(2)用4根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形? 只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形.根木棒这一种情况,不能搭成三角形. 所以,当n=4时,m=0.(3)用5根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形? 若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形.根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形.根木棒,则能搭成一种等腰三角形. 所以,当n=5时,m=1.(4)用6根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形? 若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形.根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形.根木棒,则能搭成一种等腰三角形.所以,当n=6时,m=1. 综上所述,可得:表①综上所述,可得:表①n 3 4 5 6 m 1 0 1 1 【探究二】【探究二】(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的三角形?根相同的木棒搭一个三角形,能搭成多少种不同的三角形? (仿照上述探究方法,写出解答过程,并将结果填在表②中)(仿照上述探究方法,写出解答过程,并将结果填在表②中)(2)用8根、9根、10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形? (只需把结果填在表②中)(只需把结果填在表②中) 表②表②n 7 8 9 10 m 你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…【问题解决】:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n是正整数,把结果填在表③中)分别等于4k﹣1,4k,4k+1,4k+2,其中k是正整数,把结果填在表③中)表③表③n 4k﹣1 4k 4k+1 4k+2 m 【问题应用】:(写能搭成多少种不同的等腰三角形?(写用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?根相同的木棒搭一个三角形(木棒无剩余)(只填结果)出解答过程),其中面积最大的等腰三角形每腰用了,其中面积最大的等腰三角形每腰用了 根木棒.(只填结果)【答案】【探究二】:2;1;2;2;【问题解决】:k;k﹣1;k;k;【问题应用】:672.根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?试题解析:(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,能搭成二种等腰三角形,即分成2根木棒、2根木棒和3根木棒,则能搭成一种等腰三角形三角形根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?用10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?根木棒,则能搭成一种等腰三角形分成3根木棒、3根木棒和4根木棒,则能搭成一种等腰三角形根木棒,则能搭成一种等腰三角形分成4根木棒、4根木棒和2根木棒,则能搭成一种等腰三角形所以,当n=10时,m=2.故答案为:2;1;2;2.问题解决:由规律可知,答案为:k;k﹣1;k;k.问题应用:2016÷2016÷4=5044=504,504﹣1=503,当三角形是等边三角形时,面积最大,2016÷2016÷3=6723=672,∴用2016根相同的木棒搭一个三角形,能搭成503种不同的等腰三角形,其中面积最大的等腰三角形每腰用672根木棒.根木棒.考点:1.作图—应用与设计作图;2.三角形三边关系;3.等腰三角形的判定与性质;4.探究型;5.综合题;6.压轴题..压轴题.【2014年题组】年题组】1.)用直尺和圆规作一个角等于已知角,如图,能得出∠A ′O ′B ′=∠AOB 的依据是( )A .SASB .SSSC .ASAD .AAS 【答案】B .考点:作图—基本作图;全等三角形的判定与性质.考点:作图—基本作图;全等三角形的判定与性质.2.模)如图,AD 为⊙O 的直径,作⊙O 的内接正三角形ABC ,甲、乙两人的作法分别如下:下:甲:①作OD 的垂直平分线,交⊙O 于B ,C 两点.两点. ②连接AB ,AC .△ABC 即为所求作的三角形.即为所求作的三角形.乙:①以D为圆心,OD的长为半径作圆弧,交⊙O于B,C两点.两点.即为所求作的三角形.②连接AB,BC,CA.△ABC即为所求作的三角形.对于甲、乙两人的作法,可判断( )对于甲、乙两人的作法,可判断(A.甲、乙均正确.甲、乙均错误.甲、乙均正确 B.甲、乙均错误C.甲正确,乙错误.甲错误,乙正确.甲正确,乙错误 D.甲错误,乙正确【答案】A.【解析】【解析】试题分析:根据甲的思路,作出图形如下:试题分析:根据甲的思路,作出图形如下:连接OB,BD,∵OD=BD,OD=OB,∴OD=BD=OB,∴△BOD为等边三角形,∴∠OBD=∠BOD=60°,又BC垂直平分OD,∴OM=DM,∴BM为∠OBD的平分线,∴∠OBM=∠DBM=30°,又OA=OB,且∠BOD为△AOB的外角,∴∠BAO=∠ABO=30°,∴∠ABC=∠ABO+∠OBM=60°,同理∠ACB=60°,∴∠BAC=60°,∴∠ABC=∠ACB=∠BAC,∴△ABC 为等边三角形,故乙作法正确,故选A 考点:垂径定理;等边三角形的判定与性质;含30度角的直角三角形.度角的直角三角形.3.)如图,BC与CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O(保留作图痕迹,不写作法,注意最后用墨水笔加黑),并直接写出旋转角度是,并直接写出旋转角度是 .【答案】90°.°.【解析】【解析】试题分析:如图所示:旋转角度是90°.°.考点:作图-旋转变换.旋转变换.4.)如图,在△ABC中,按以下步骤作图:中,按以下步骤作图:①分别以B,C为圆心,以大于12BC的长为半径作弧,两弧相交于M,N两点;两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为的度数为 【答案】105°.°.考点:作图—基本作图;线段垂直平分线的性质.考点:作图—基本作图;线段垂直平分线的性质.5.)如图,在Rt△ABC中,∠B=90°,分别以A、C为圆心,大于12AC长为半径画弧,。

中考数学总复习课件(完整版)

中考数学总复习课件(完整版)

第2讲┃ 归类示例
请解答下列问题:
(1)按以上规律列出第5个等式:a5=__9×_1_1_1___=
___12_×__19_-_1_11_______;
(2)用含n的代数式表示第n个等式:an= (_2n_-__1_)_×_1_(__2_n+__1_)__=_12_×__2_n_1-_1_-__2_n_1+_1___(n为正整数);
第1讲 实数的有关概念 第2讲 实数的运算与实数的大小比较 第3讲 整式及因式分解 第4讲 分式 第5讲 数的开方及二次根式
第1讲┃ 实数的有关概念
第1讲┃ 考点聚焦
考点聚焦
考点1 实数的概念及分类
1.按定义分类:
实数
有理数
整数
分数
正整数 零 负整数
正分数 有限小数或 负分数 无限循环小数
________2.
图1-2
第1讲┃ 回归教材
2.[2011·贵阳] 如图1-3,矩形OABC的边OA长为2,
边 AB 长为1,OA 在数轴上,以原点 O 为圆心,对角线 OB
的长为半径画弧,交正半轴于一点,则这个点表示的实数是
( D) A . 2.5
B . 2√2
C.√3
D.√5
图1-3 [解析] 由勾股定理得 OB= OA2+AB2= 22+12= 5.
而应从最后结果去判断.一般来说,用根号表示
的数不一定就是无理数,如
是有理数,
用三角函数符号表示的数也不一定就是无理数,
如sin30°、tan45°也不是无理数,一个数是不
是无理数关键在于不同形式表示的数的最终结果
是不是无限不循环小数.
第1讲┃ 归类示例
► 类型之二 实数的有关概念
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



O1 O2
老师提示: 相切包括外切和内切.
环形面积
题四.已知:如图,两个同心圆⊙O,大圆的弦 AB与小圆相切于C,两圆半径分别为1cm,2cm.
求AB的长度.
AB 2 3cm.
C
B
A
O

老师提示: 作过切点的半径,应用垂定理和勾股定理 .
环形面积
题五.已知:如图,两个同心圆⊙O,大圆的弦
AB切小圆于点C,过点C的直线与大圆相交于E
、F,且CE=4cm,CF=2cm.
F
求环形的面积S.
C
B
A
O
S 8cm2.

E
老师提示:
作过切点的半径,应用垂定理和勾股定理
.
平行线等分线段定理
题六.已知:如图,DE∥BCEC.
D
E
B
C
老师提示: 这个结论可叙述为“经过三角形一边中点 ,且平行于另一边的直线必平分第三边”.
中考复习系列
圆与圆
挑战自我
▪ 题一.已知关于x的一元二次方程.
x2 R rx 1 d 2 0.
▪ 没有实数根,其中R、r分4别为⊙O1、⊙O2的半 径,d 为此两圆的圆心距。
▪ 请判断⊙O1、⊙O2的位置关系.
老师提示: 借助根的判别式.
外离.
挑战自我
▪ 题二.已知:⊙O1、⊙O2相交于点D、E,半 径分别为5c5m和3 cm,公共弦DE的长是 6cm.
2cm▪ 或求1圆0c心m.距O1O2.
老师提示: 圆心在公共弦的两侧或同侧; 连心线垂直平分公共弦.
相切两圆
题三.已知:⊙O1、⊙O2相切于点A,直线AB分 别交⊙O1、⊙O2于点B、C.
(1)试判断BO1、CO2的位置关系;
(2)请证明你的结论.
(3)求证
BO1∥CO2.
O1

A
B
C

O2
A
C B
O
B


C FN
老师提示: 可利用题五的结论.
直角梯形与圆
题九.已知:如图,AB是⊙O的直
径,直线MN分别与⊙O交于点E,
F,再分别过点A,B,O作直线MN
的垂线,垂足分别是M,C,N.
B
O
A


求证:ME=NF.
ME C FN
直角梯形与圆
题十.不过圆心的直线MN分别与⊙O交于点C、D 两点,AB是⊙O的直径,分别过点A,B作直线MN的垂 线,垂足分别是E、F.
(1)分别在三个圆中画出满足上述条件的具有不 同位置关系的图形;
(2)请你观察(1)中所画的图形,写出一个各图都 具有的两条线段相等的结论(不再标注其它字母, 寻找结论的过程中所连的辅助线不能出现在结论 中,不定推理过程);
请你选择(1)中的一个图形,证明(2)所得的结论
直角梯形与圆
题十一.圆心O到直线MN的距离是d,⊙O半径为R, 当d,R是方程x2-9x+20=0的两根时. (1)判断直线MN与⊙O的位置关系; (2)当d,R是方程x2-4x+m=0的两根时,直线MN与 ⊙O相切,求m的值.
直角梯形与圆
题十三.A是⊙O1和⊙O2的一个交点,点M是O1O2的 中点,过点A的直线BC垂直于MA,分别交⊙O1、⊙O2 于B、C. (1)求证AB=AC; (2)若O1A切⊙O2于点A,弦AB、AC的弦心距分别为 d1、d2 .求证d1+d2=O1O2 (3)在(2)的条件下,若d1d2=1,设⊙O1、⊙O2的半 径分别为R、r.求证R2+r2 =R2r2,.
平行线等分线段定理
题七.已知:如图,梯形ABCD中 ,AD∥BC,AE=EB,EF∥BC.
求证:DF=FC.
A
D
E
F
M
B
N
C
老师提示:
过点A作AN∥DC,分别交EF,BC于点M,N.
这个结论可叙述为“经过梯形一腰中点,
且平行于底边的直线必平分另一腰”.
直角梯形与圆
题八.已知:如图,AB是⊙O的直 径,直线MN切⊙O交于点C,分别 过点A,B作直线MN的垂线,垂足 A 分别是E,F. 求证:AE+BF等于⊙O的直径. M E
直角梯形与圆 A
O
B

C
D
题十二.直角梯形ABDC中,AC∥BD,∠C=900,AB是⊙O的直
径,
(1)若AB=AC+BD时,求证直线CD是⊙O的切线;
(2)当AB>AC+BD或AB<AC+BD时,判断直线CD与⊙O的位置 关系;
(3)将CD平移到与⊙O相交于E,F两点的位置.CD,BD分别 是方程x2-20x+84=0的两个根,且BD-AC=2.问在线段CD上 是否存在点P,使得以A、C、P为顶点的三角形和以B、D、 P为顶点的三角形相似?若存在,这样的点有几个?关求 出CP的值;若不存在,请说明理由.
相关文档
最新文档