北京清华附中2018-2019学年八年级下期末考试数学试卷(pdf版,答案)
2019-2020学年北京市海淀区清华附中创新班八年级(下)期末数学试卷
2019-2020学年北京市海淀区清华附中创新班八年级(下)期末数学试卷一、选择题(本题共24分,每小题3分)1.(3分)下列事件中,属于必然事件的是()A.打开电视机,它正在播广告B.买一张电影票,座位号是偶数C.抛掷一枚质地均匀的骰子,6点朝上D.若a是实数,则|a|≥02.(3分)下面四组图形中,必是相似三角形的为()A.两个直角三角形B.两条边对应成比例,一个对应角相等的两个三角形C.有一个角为40°的两个等腰三角形D.有一个角为100°的两个等腰三角形3.(3分)如图,点D,E分别在△ABC的边AB,AC上,且DE∥BC,若AD=2,DB=3,AC=10,则AE等于()A.3B.4C.5D.64.(3分)将抛物线y=(x﹣3)(x﹣5)先绕原点O旋转180°,再向右平移2个单位长度,所得抛物线的解析式为()A.y=﹣x2﹣4x﹣3B.y=﹣x2﹣12x﹣35C.y=x2+12x+35D.y=x2+4x+35.(3分)某班50人一周内在线学习数学的时间如图所示,则以下叙述正确的是()A.全班同学在线学习数学的平均时间为2.5hB.全班同学在线学习数学时间的中位数为2hC.全班同学在线学习数学时间的众数为20hD.全班超过半数学生每周在线学习数学的时间超过3h6.(3分)在居家学习期间,小静坚持每天测量自己的体温,并把5次的体温(单位:℃)分别写在5张完全相同的卡片正面上,这五个数据分别是:36,36.1,35.9,35.5,m.把这5张卡片背面朝上洗匀后,从中随机抽取一张卡片,已知抽到写有“36”的卡片的概率是,则这5张卡片上数据的方差为()A.35.9B.0.22C.0.044D.07.(3分)已知点A(0,4),B(3,4),以原点O为位似中心,把线段AB缩短为原来的,得到线段CD,其中点C与点A对应,点D与点B对应.则点D的横坐标为()A.1B.C.1或﹣1D.或﹣8.(3分)二次函数y=x2+px+q,当0≤x≤1时,设此函数最大值为8,最小值为t,w=s ﹣t,(s为常数)则w的值()A.与p、q的值都有关B.与p无关,但与q有关C.与p、q的值都无关D.与p有关,但与q无关二、填空题(本题共24分,每小题3分)9.(3分)如图,△ABC中∠C=90°,如果CD⊥AB于D,那么AC是AD和的比例中项.10.(3分)如表是某班同学随机投掷一枚硬币的试验结果.抛掷次数n50100150200250300350400450500“正面向上”次数m225268101116147160187214238“正面向上”频率0.440.520.450.510.460.490.460.470.480.48下面有三个推断:①表中没有出现“正面向上”的频率是0.5的情况,所以不能估计“正面向上”的概率是0.5;②这些次试验投掷次数的最大值是500,此时“正面向上”的频率是0.48,所以“正面向上”的概率是0.48;③投掷硬币“正面向上”的概率应该是确定的,但是大量重复试验反映的规律并非在每一次试验中都发生;其中合理的是(填写序号).11.(3分)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,且OA=8,OC=6,点B在第二象限,如果矩形OA′B′C′与矩形OABC 关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的.那么点B′的坐标是.12.(3分)在平面直角坐标系xOy中,函数y1=2x(x<m)的图象与函数y2=x2(x≥m)的图象组成图形G.对于任意实数n,过点P(0,n)且与y轴垂直的直线总与图形G 有公共点,写出一个满足条件的实数m的值.13.(3分)抛物线y=ax2+bx+c(a>0)过点(﹣1,0)和点(0,﹣4),且顶点在第四象限,则a的取值范围是.14.(3分)如图,在Rt△ACB中,∠ABC=90°,D为BC边的中点,BE⊥AD于点E,交AC于F.若AB=4,BC=8,则线段EF的长为.15.(3分)如图,抛物线y=x2+5x+4与x轴交于A、B两点(点A在点B的左边),与y 轴交于点C,连接AC,点P在线段AC上,过点P作x轴的垂线交抛物线于点Q,则线段PQ长的最大值为.16.(3分)如图,在等腰Rt△ABC中,AC=BC=6,∠EDF的顶点D是AB的中点,且∠EDF=45°,现将∠EDF绕点D旋转一周,在旋转过程中,当∠EDF的两边DE、DF分别交直线AC于点G、H,把△DGH沿DH折叠,点G落在点M处,连接AM,若=,则AH的长为.三、解答题(本题共72分,第17-22题每题5分,第23、24每题6分,第25、26每题7分,第27,28题每题8分)17.(5分)两个相似多边形的最长边分别为4cm和6cm,它们的周长之和为40cm,面积之差为15cm2,求较小多边形的周长与面积.18.(5分)如图,D是△ABC的边AB上的一点,BD=2,AB=,BC=3.求证:△BCD ∽△BAC.19.(5分)如图,已知:在正方形ABCD中,M是BC边的中点,连接AM.(1)请用尺规作图,在线段AM上求作一点P,使得△DP A∽△ABM;(不写作法,保留作图痕迹)(2)在(1)的条件下,若AB=2,求DP的长.20.(5分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣2),B(2,﹣1),C(4,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以点O为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1;(3)设点P(a,b)为△ABC内一点,则依上述两次变换后点P在△A2B2C2内的对应点P2的坐标是.21.(5分)已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:x…01234…y…5212n…(1)表中n的值为;(2)当x为何值时,y有最小值,最小值是多少?(3)若A(m,y1),B(m+1,y2)两点都在该函数的图象上,且m>2,试比较y1与y2的大小.22.(5分)为了解某区初二年级数学学科期末质量监控情况,进行了抽样调查,过程如下:收集数据:随机抽取甲乙两所学校的各20名学生的数学成绩进行分析:甲91 89 77 86 71 31 97 93 72 91 81 92 85 8595 88 88 90 44 91乙84 93 66 69 76 87 77 82 85 88 90 88 67 8891 96 68 97 59 88整理、描述数据:按如下数据段整理、描述这两组数据分析数据:两组数据的平均数、中位数、众数、方差如表:经统计,表格中m的值是.得出结论:a若甲学校有500名初二学生,估计这次考试成绩80分以下的人数为.b可以推断出学校初二学生的数学水平较高,理由为:.(至少从两个不同的角度说明推断的合理性)23.(6分)某商场销售某种型号防护面罩,进货价为40元/个.经市场销售发现:售价为50元/个时,每周可以售出100个,若每涨价1元,就会少售出4个.供货厂家规定市场售价不得低于50元/个,且商场每周销售数量不得少于80个.(1)确定商场每周销售这种型号防护面罩所得的利润w(元)与售价x(元/个)之间的函数关系式.(2)当售价x(元/个)定为多少时,商场每周销售这种防护面罩所得的利润w(元)最大?最大利润是多少?24.(6分)在平面直角坐标系xOy内,以端点在x轴上的长度为1的线段为底边(端点横坐标都为整数),画出数个矩形.现已知其中几个矩形的位置如图所示.其相关信息如表:底边位置…﹣3~﹣2﹣2~﹣1﹣1~00~11~22~33~4…矩形的高…1…… 3.5……15…若所有矩形的左上方的顶点都在我们已学的某类函数图象上.(1)求这个函数解析式;(2)对于所有满足条件的矩形,直接写出面积最小的矩形的面积.25.(7分)已知:如图,在平行四边形ABCD中,对角线AC与BD交于点O,点E是DB 延长线上的一点,且EA=EC,分别延长AD、EC交于点F.(1)求证:四边形ABCD为菱形;(2)如果∠AEC=2∠BAC,求证:EC•CF=AF•AD.26.(7分)在平面直角坐标系xOy中,抛物线C1:y=x2+bx+c与x轴交于A,B两点(点A在点B的右侧),与y轴交于点C,C1的顶点为D.点B的坐标为(﹣5,0),将直线y=kx沿y轴向上平移5个单位长度后,恰好经过B、C两点.(I)求k的值和点C的坐标;(2)已知点E是点D关于原点的对称点,若抛物线C2:y=ax2﹣2(a≠0)与线段AE 恰有一个公共点,结合函数的图象,求a的取值范围.27.(8分)如图1所示,矩形ABCD中,点E,F分别为边AB,AD的中点,将△AEF绕点A逆时针旋转α(0°<α≤360°),直线BE,DF相交于点P.(1)若AB=AD,将△AEF绕点A逆时针旋转至如图2所示的位置,则线段BE与DF 的数量关系是;(2)若AD=nAB(n≠1),将△AEF绕点A逆时针旋转,则(1)中的结论是否仍然成立?若成立,请就图3所示的情况加以证明;若不成立,请写出正确结论,并说明理由.(3)若AB=8,BC=10,将△AEF旋转至AE⊥BE时,请直接写出DP的长.28.(8分)在平面直角坐标系xOy中,已知点A(0,3m),P(0,2m),Q(0,m)(m≠0),将点A绕点P顺时针旋转90°,得到点M,将点O绕点Q顺时针旋转90°,得到点N,连接MN,称线段MN为点A的伴随线段.(1)如图1,若m=1,则点M,N的坐标分别为,;(2)已知二次函数的图象经过点B(﹣1,t),C(1,t),D(0,t+1),将此图象在B,C之间的部分与线段BC所组成的封闭图形记作图形G(包含B,C两点).①当t=2时,是否存在m,使得点M在图形G内部(包括边界)?若存在,求出m的值;若不存在,请说明理由;②若存在点A,使得其伴随线段MN上的所有点都在图形G内(包括边界),请直接写出t的取值范围.2019-2020学年北京市海淀区清华附中创新班八年级(下)期末数学试卷一、选择题(本题共24分,每小题3分)1.(3分)下列事件中,属于必然事件的是()A.打开电视机,它正在播广告B.买一张电影票,座位号是偶数C.抛掷一枚质地均匀的骰子,6点朝上D.若a是实数,则|a|≥0【分析】根据事件发生的可能性大小判断.【解答】解:A、打开电视机,它正在播广告,是随机事件;B、买一张电影票,座位号是偶数,是随机事件;C、抛掷一枚质地均匀的骰子,6点朝上,是随机事件;D、若a是实数,则|a|≥0,是必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.(3分)下面四组图形中,必是相似三角形的为()A.两个直角三角形B.两条边对应成比例,一个对应角相等的两个三角形C.有一个角为40°的两个等腰三角形D.有一个角为100°的两个等腰三角形【分析】根据等腰三角形的性质和相似三角形的判定方法得出A、B、C不一定相似,D 一定相似;即可得出结果.【解答】解:两个直角三角形不一定相似;因为只有一个直角相等,∴A不一定相似;两条边对应成比例,一个对应角相等的两个三角形不一定相似;因为这个对应角不一定是夹角;∴B不一定相似;有一个角为40°的两个等腰三角形不一定相似;因为40°的角可能是顶角,也可能是底角,∴C不一定相似;有一个角为100°的两个等腰三角形一定相似;因为100°的角只能是顶角,所以两个等腰三角形的顶角和底角分别相等,∴D一定相似;故选:D.【点评】本题考查了相似三角形的判定方法、等腰三角形的性质;熟练掌握相似三角形的判定方法和等腰三角形的性质是解决问题的关键.3.(3分)如图,点D,E分别在△ABC的边AB,AC上,且DE∥BC,若AD=2,DB=3,AC=10,则AE等于()A.3B.4C.5D.6【分析】根据平行线分线段成比例定理得到=,然后利用比例计算计算AE的长.【解答】解:∵DE∥BC,∴=,即=,解得AE=4.故选:B.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.4.(3分)将抛物线y=(x﹣3)(x﹣5)先绕原点O旋转180°,再向右平移2个单位长度,所得抛物线的解析式为()A.y=﹣x2﹣4x﹣3B.y=﹣x2﹣12x﹣35C.y=x2+12x+35D.y=x2+4x+3【分析】先求出抛物线的解析式,先根据旋转的性质求出旋转后的顶点坐标,然后根据平移的性质求得平移后抛物线的顶点坐标;最后根据平移、旋转只改变图形的位置不改变图形的大小和形状利用顶点式解析式写出即可.【解答】解:y=(x﹣3)(x﹣5)=(x﹣4)2﹣1.此时,该抛物线顶点坐标是(4,﹣1).将该抛物线绕坐标原点O旋转180°后的顶点坐标是(﹣4,1).再向右平移2个单位长度后的顶点坐标是(﹣2,1).所以此时抛物线的解析式为:y=﹣(x+2)2+1=﹣x2﹣4x﹣3.故选:A.【点评】本题考查了二次函数图象与几何变换,平移的规律:左加右减,上加下减,此类题目,利用顶点的变化求解更简便.5.(3分)某班50人一周内在线学习数学的时间如图所示,则以下叙述正确的是()A.全班同学在线学习数学的平均时间为2.5hB.全班同学在线学习数学时间的中位数为2hC.全班同学在线学习数学时间的众数为20hD.全班超过半数学生每周在线学习数学的时间超过3h【分析】根据平均数、众数和中位数的定义分别对每一项进行分析即可得出答案.【解答】解:A、全班同学在线学习数学的平均时间为:(12×1+20×2+10×3+5×4+3×5)=2.34h,故本选项错误;B、把这些数从小到大排列,则中位数是=2h,故本选项正确;C、全班同学在线学习数学时间的众数为2h,故本选项错误;D、本班同学有8名学生每周在线学习数学的时间超过3h,故本选项错误;故选:B.【点评】此题考查了众数、中位数以及平均数.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.(3分)在居家学习期间,小静坚持每天测量自己的体温,并把5次的体温(单位:℃)分别写在5张完全相同的卡片正面上,这五个数据分别是:36,36.1,35.9,35.5,m.把这5张卡片背面朝上洗匀后,从中随机抽取一张卡片,已知抽到写有“36”的卡片的概率是,则这5张卡片上数据的方差为()A.35.9B.0.22C.0.044D.0【分析】先根据抽到写有“36”的卡片的概率是得出数据36的个数,再根据方差的定义计算可得.【解答】解:∵抽到写有“36”的卡片的概率是,∴卡片中36的个数为5×=2,则这组数据为36,36.1,35.9,35.5,36,∵==35.9,∴方差为×[2×(36﹣35.9)2+(36.1﹣35.9)2+(35.9﹣35.9)2+(35.5﹣35.9)2]=0.044,故选:C.【点评】本题主要考查概率公式,解题的关键是掌握方差的定义和随机事件A的概率P (A)=事件A可能出现的结果数÷所有可能出现的结果数.7.(3分)已知点A(0,4),B(3,4),以原点O为位似中心,把线段AB缩短为原来的,得到线段CD,其中点C与点A对应,点D与点B对应.则点D的横坐标为()A.1B.C.1或﹣1D.或﹣【分析】直接利用位似图形的性质:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,进而得出答案.【解答】解:∵点A(0,4),B(3,4),以原点O为位似中心,把线段AB缩短为原来的,得到线段CD,点D与点B对应,∴点D的横坐标为:3×=1或3×(﹣)=﹣1.故选:C.【点评】此题主要考查了位似变换,正确掌握位似图形的性质是解题关键.8.(3分)二次函数y=x2+px+q,当0≤x≤1时,设此函数最大值为8,最小值为t,w=s ﹣t,(s为常数)则w的值()A.与p、q的值都有关B.与p无关,但与q有关C.与p、q的值都无关D.与p有关,但与q无关【分析】先根据二次函数的已知条件,得出二次函数的图象开口向上,再分别进行讨论,即可得出函数y的最大值与最小值即可得到结论.【解答】解:∵二次函数y=x2+px+q=(x+)2+,∴该抛物线的对称轴为x=﹣,且a=1>0,当x=﹣<0,∴当x=1时,二次函数有最大值为:1+p+q=8,即p+q=7,∴当x=0时,二次函数有最小值为:q=t,即t=7﹣p,当x=﹣>1,∴当x=0时,二次函数有最大值为:q=8,∴当x=1时,二次函数有最小值为:1+p+q=t,即t=9+p,当0≤﹣<此时当x=1时,函数有最大值1+p+q=8,当x=﹣时,函数有最小值q﹣=t,即t=7﹣p﹣,<﹣≤1,当x=0时,函数有最大值q=8,当x=﹣时,函数有最小值q﹣=t,即t=8﹣,x=﹣=,当x=0或1时.函数有最大值q=8,当x=﹣时,函数有最小值q﹣=t,即t=8﹣∵w=s﹣t,∴w的值与p有关,但与q无关,故选:D.【点评】本题考查了考查了二次函数的最值问题,在本题中分类讨论思想运用是解题的关键.二、填空题(本题共24分,每小题3分)9.(3分)如图,△ABC中∠C=90°,如果CD⊥AB于D,那么AC是AD和AB的比例中项.【分析】根据射影定理得到AC2=AD•AB,得到答案.【解答】解:∵∠C=90°,CD⊥AB,∴AC2=AD•AB,∴AC是AD和AB的比例中项,故答案为:AB.【点评】本题考查的是射影定理,射影定理:①直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项;②每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.10.(3分)如表是某班同学随机投掷一枚硬币的试验结果.抛掷次数n50100150200250300350400450500“正面向上”次数m225268101116147160187214238“正面向上”频率0.440.520.450.510.460.490.460.470.480.48下面有三个推断:①表中没有出现“正面向上”的频率是0.5的情况,所以不能估计“正面向上”的概率是0.5;②这些次试验投掷次数的最大值是500,此时“正面向上”的频率是0.48,所以“正面向上”的概率是0.48;③投掷硬币“正面向上”的概率应该是确定的,但是大量重复试验反映的规律并非在每一次试验中都发生;其中合理的是③(填写序号).【分析】随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可.【解答】解:①随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故错误;②这些次试验投掷次数的最大值是500,此时“正面向上”的频率是0.48,所以“正面向上”的概率是0.48,错误;③投掷硬币“正面向上”的概率应该是确定的,但是大量重复试验反映的规律并非在每一次试验中都发生,正确;故答案为:③.【点评】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.11.(3分)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,且OA=8,OC=6,点B在第二象限,如果矩形OA′B′C′与矩形OABC 关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的.那么点B′的坐标是(﹣4,3)或(4,﹣3).【分析】根据矩形的性质得到点B的坐标,根据相似多边形的性质得到矩形OA′B′C′与矩形OABC的相似比为1:2,根据位似变换的性质计算,得到答案.【解答】解:∵OA=8,OC=6,点B在第二象限,∴点B的坐标为(﹣8,6),∵矩形OA′B′C′与矩形OABC关于点O位似,∴矩形OA′B′C′∽OABC关于点O位似,∵矩形OA′B′C′的面积等于矩形OABC面积的,∴矩形OA′B′C′与矩形OABC的相似比为1:2,∴点B′的坐标为(﹣8×,6×)或(8×,﹣6×),即(﹣4,3)或(4,﹣3),故答案为:(﹣4,3)或(4,﹣3).【点评】本题考查的是位似变换的概念和性质、矩形的性质,掌握在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k 或﹣k是解题的关键.12.(3分)在平面直角坐标系xOy中,函数y1=2x(x<m)的图象与函数y2=x2(x≥m)的图象组成图形G.对于任意实数n,过点P(0,n)且与y轴垂直的直线总与图形G 有公共点,写出一个满足条件的实数m的值答案不唯一,如:2(0≤m≤2).【分析】求得两个函数的图象的交点,根据图象即可求得.【解答】解:由解得或,∴函数y1=2x的图象与函数y2=x2的图象的交点为(0,0)和(2,4),∵函数y1=2x(x<m)的图象与函数y2=x2(x≥m)的图象组成图形G.由图象可知,对于任意实数n,过点P(0,n)且与y轴垂直的直线总与图形G有公共点,则0≤m≤2,故答案为:答案不唯一,如:2(0≤m≤2),【点评】本题考查了二次函数的图象,一次函数的图象,求得交点坐标是解题的关键.13.(3分)抛物线y=ax2+bx+c(a>0)过点(﹣1,0)和点(0,﹣4),且顶点在第四象限,则a的取值范围是0<a<4.【分析】将点的坐标代入抛物线解析式得到关于a、b的等式和c的值并用a表示出b,再根据顶点坐标和第四象限内点的横坐标是正数,纵坐标是负数列不等式组求解即可.【解答】解:∵抛物线y=ax2+bx+c(a>0)过点(﹣1,0)和点(0,﹣4),∴,所以,a﹣b=4,b=a﹣4,∵顶点在第四象限,∴,即﹣>0①,<0②,解不等式①得,a<4,不等式②整理得,(a+4)2>0,所以,a≠﹣4,所以,a的取值范围是0<a<4.故答案为:0<a<4.【点评】本题考查了二次函数的性质,二次函数图象上点的坐标特征,得到用a表示b 的式子并列出关于a的不等式是解题的关键.14.(3分)如图,在Rt△ACB中,∠ABC=90°,D为BC边的中点,BE⊥AD于点E,交AC于F.若AB=4,BC=8,则线段EF的长为.【分析】根据D为BC的中点和BC=8,可以得到BD的长,然后根据∠ABC=90°,AB=4和BD的长,利用勾股定理可以得到AD的长,再根据等积法可以求得BE的长,从而可以得到AE的长,作DG∥BF,再利用三角形相似,即可求得EF的长.【解答】解:过点D作DG∥BF交AC于点G,如图所示,∵D为BC边的中点,BC=8,∴BD=4,∵在Rt△ACB中,∠ABC=90°,AB=4,∴AD===8,∵BE⊥AD于点E,交AC于F,∴BE==2,∵AB=4,BE=2,∠AEB=90°,∴AE===6,设DG=x,则BF=2x,EF=2x﹣2,∵EF∥DG,∴△AEF∽△ADG,∴,即,解得,x=,∴EF=2x﹣2=2×﹣2=,故答案为:.【点评】本题考查了相似三角形的判定与性质、三角形中位线定理、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.15.(3分)如图,抛物线y=x2+5x+4与x轴交于A、B两点(点A在点B的左边),与y 轴交于点C,连接AC,点P在线段AC上,过点P作x轴的垂线交抛物线于点Q,则线段PQ长的最大值为4.【分析】先解方程x2+5x+4=0得A(﹣4,0),再确定C(0,4),则可利用待定系数法求出直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),Q(t,t2+5t+4),所以PQ =t+4﹣(t2+5t+4),然后利用二次函数的性质解决问题.【解答】解:当y=0时,x2+5x+4=0,解得x1=﹣4,x2=﹣1,则A(﹣4,0),B(﹣1,0),当x=0时,y=x2+5x+4=4,则C(0,4),设直线AC的解析式为y=kx+b,把A(﹣4,0),C(0,4)代入得,解得,∴直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),则Q(t,t2+5t+4),∴PQ=t+4﹣(t2+5t+4)=﹣t2﹣4t=﹣(t+2)2+4,∴当t=﹣2时,PQ有最大值,最大值为4.故答案为4.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.16.(3分)如图,在等腰Rt△ABC中,AC=BC=6,∠EDF的顶点D是AB的中点,且∠EDF=45°,现将∠EDF绕点D旋转一周,在旋转过程中,当∠EDF的两边DE、DF分别交直线AC于点G、H,把△DGH沿DH折叠,点G落在点M处,连接AM,若=,则AH的长为或或3.【分析】分三种情形:①如图1中,当点H在线段AC上,点G在AC的延长线上时,连接CD,作DJ⊥AC于J,设AH=3k,AM=4k.②如图2中,当点H在线段AC上,点G在上时,连接CD,作DJ⊥AC于J,设AH=3k,AM=4k.③如图3中,当点H在线段CA的延长线上,点G在线段AC上时,连接CD,作DJ⊥AC于J,设AH=3k,AM =4k.首先证明AM⊥AC,利用相似三角形的性质以及勾股定理构建方程解决问题即可.【解答】解:①如图1中,当点H在线段AC上,点G在AC的延长线上时,连接CD,作DJ⊥AC于J,设AH=3k,AM=4k.∵CA=CB,∠ACB=90°,AD=DB,∴CD⊥AB,CD=DA=DB,∴∠ACD=∠DCB=45°,∠DCG=135°,∵∠EDF=∠EDM=45°,DG=DM,∴∠ADC=∠MDG,∴∠ADM=∠CDG,∴△ADM≌△CDG(SAS),∴∠DAM=∠DCG=135°,∵∠CAB=45°,∴∠CAM=90°,∴MH=GH===5k,∵∠GDH=∠GAD=45°,∠DGH=∠AGD,∴△DGH∽△AGD,∴=,∴DG2=GH•GA=40k2,∵AC=BC=6,∠ACB=90°,∴AB=AC=12,∴AD=CD=6,∵DJ⊥AC,∴AJ=JC=3,DJ=AJ=IC=3,∴GJ=8K﹣3,在Rt△DJG中,∵DG2=DJ2+GJ2,∴40k2=(8k﹣3)2+(3)2,解得k=或(舍弃),∴AH=3k=.②如图2中,当点H在线段AC上,点G在上时,连接CD,作DJ⊥AC于J,设AH=3k,AM=4k.同法可得:40k2=(8k﹣3)2+(3)2,解得k=(舍弃)或,∴AH=3k=.③如图3中,当点H在线段CA的延长线上,点G在线段AC上时,连接CD,作DJ⊥AC于J,设AH=3k,AM=4k.同法可得:10k2=(3﹣2k)2+(3)2,解得k=或﹣3(舍弃),∴AH=3k=3,综上所述,满足条件的AH的值为或或3.故答案为或或3.【点评】本题考查等腰直角三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考填空题中的压轴题.三、解答题(本题共72分,第17-22题每题5分,第23、24每题6分,第25、26每题7分,第27,28题每题8分)17.(5分)两个相似多边形的最长边分别为4cm和6cm,它们的周长之和为40cm,面积之差为15cm2,求较小多边形的周长与面积.【分析】根据相似多边形的面积比等于相似比、面积比等于相似比的平方列方程,解方程得到答案.【解答】解:设较小多边形的周长为xcm,面积为ycm2,则较大多边形的周长为(40﹣x)cm,面积为(y+15)cm2,∵两个相似多边形的最长边分别为4cm和6cm,∴两个相似多边形的相似比为2:3,∴两个相似多边形的周长比为2:3,面积比为4:9,∴=,=,解得,x=16,y=12,经检验,x=16,y=12都是原方程的解,答:较小多边形的周长为16cm,面积为12cm2.【点评】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比、面积比等于相似比的平方是解题的关键.18.(5分)如图,D是△ABC的边AB上的一点,BD=2,AB=,BC=3.求证:△BCD ∽△BAC.【分析】利用已知线段的长得到==,加上公共角,则根据相似三角形的判定方法可得到结论.【解答】解:∵BD=2,AB=,BC=3.∴=,==,∴=,而∠CBD=∠ABC,∴△BCD∽△BAC.【点评】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似.19.(5分)如图,已知:在正方形ABCD中,M是BC边的中点,连接AM.(1)请用尺规作图,在线段AM上求作一点P,使得△DP A∽△ABM;(不写作法,保留作图痕迹)(2)在(1)的条件下,若AB=2,求DP的长.【分析】(1)过点D作DP⊥AM于P,△APD即为所求.(2)利用相似三角形的性质求解即可.【解答】解:(1)如图,△APD即为所求.(2)∵四边形ABCD是正方形,∴∠B=90°,AB=BC=AD=2,∵BM=MC=1,∴AM===,∵△DP A∽△ABM,∴,∴,∴PD=.【点评】本题考查作图﹣相似变换,正方形的性质,勾股定理的应用以及相似三角形的判定和性质,解题的关键是理解题意,灵活运用所学知识解决问题.20.(5分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣2),B(2,﹣1),C(4,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以点O为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1;(3)设点P(a,b)为△ABC内一点,则依上述两次变换后点P在△A2B2C2内的对应点P2的坐标是(2a,﹣2b).【分析】(1)利用关于x轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)利用关于原点为位似中心的对应点的坐标之间的关系,把点A1、B1、C1的横纵坐标都乘以2得到A2、B2、C2的坐标,然后描点即可;(3)利用(2)中的坐标变换规律求解.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)点P的对应点P2的坐标是(2a,﹣2b).故答案为(2a,﹣2b).【点评】本题考查了作图﹣位似变换:掌握画位似图形的一般步骤为(先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;然后根据位似比,确定能代表所作的位似图形的关键点;最后顺次连接上述各点,得到放大或缩小的图形).21.(5分)已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:x…01234…。
2018-2019北京期八年级下期末试卷分类汇编八下期末数学试卷分类-几何综合【含答案】
2018-2019年初二期末分类—几何证明1、【海淀】在Rt△ABC 中,∠BAC = 90︒,点O 是△ABC 所在平面内一点,连接OA,延长OA 到点E,使得AE=OA,连接OC,过点B 作BD 与OC 平行,并使∠DBC=∠OCB,且BD=OC,连接DE.(1)如图一,当点O 在Rt△ABC 内部时.① 按题意补全图形;②猜想DE 与BC 的数量关系,并证明.图一(2)若A B = AC(如图二),且∠OCB = 30︒, ∠OBC = 15︒,求∠AED的大小.图二备用图备用图26.四边形ABCD是正方形,AC是对角线,E是平面内一点,且CE<BC.过点C作FC⊥CE,且CF=CE.连接AE,AF.M是AF的中点,作射线DM交AE于点N.(1)如图1,若点E,F分别在BC,CD边上.求证:①∠BAE=∠DAF;②DN⊥AE;(2)如图2,若点E在四边形ABCD内,点F在直线BC的上方.求∠EAC与∠ADN的和的度数.图1 图227.在正方形ABCD中,点E是射线AC上一点,点F是正方形ABCD外角平分线CM上一点,且CF=AE,连接BE,EF.(1)如图1,当E是线段AC的中点时,直接写出BE与EF的数量关系;(2)当点E不是线段AC的中点,其它条件不变时,请你在图2中补全图形,判断(1)中的结论是否成立,并证明你的结论;的度数. (直接写出结果即可)(3)当点B,E,F在一条直线上时,求CBE27.已知,点E在正方形ABCD的AB边上(不与点A,B重合),BD是对角线,延长AB 到点F,使BF=AE,过点E作BD的垂线,垂足为M,连接AM,CF.(1)根据题意补全图形,并证明MB=ME;(2)①用等式表示线段AM与CF的数量关系,并证明;②用等式表示线段AM,BM,DM之间的数量关系(直接写出即可).C27.正方形ABCD 中,点P 是直线AC 上的一个动点,连接BP ,将线段BP 绕点B 顺时针旋转90°得到线段BE ,连接CE .(1)如图1,若点P 在线段AC 上, ①直接写出ACE ∠的度数为 °; ②求证:2222PA PC PB +=;(2)如图2,若点P 在CA 的延长线上,1PA =,PB = ①依题意补全图2;②直接写出线段AC 的长度为 .图1 图2CE正方形ABCD 中,点M 是直线BC 上的一个动点(不与点B 、C 重合),作射线DM ,过点B 作BN ⊥DM 于点N ,连接CN 。
2018-2019学年北师大版初二数学下册期末测试卷及答案
2018-2019学年八年级(下)期末数学试卷1一、选择题(本大题共12小题,共36.0分)1.下列图形中,中心对称图形有A. B. C. D.2.若,则下列不等式不一定成立的是A. B. C. D.3.下列分式中,最简分式是A. B. C. D.4.如图,沿直线边BC所在的直线向右平移得到,下列结论中不一定正确的是A. B.C. D. 四边形四边形5.如图,在中,,,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则的度数为A.B.C.D.6.如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是矩形,则四边形ABCD需要满足的条件是A. B. C. D.7.如图,中,,AD平分,点E为AC的中点,连接DE,若的周长为26,则BC的长为A. 20B. 16C. 10D. 88.如图,已知四边形ABCD是平行四边形,若AF、BE分别是、的平分线,,,则EF的长是A. 1B. 2C. 3D. 49.若关于x的分式方程有增根,则m的值是A. 或B.C.D.10.如图,直线与相交于点P,点P的纵坐标为,则关于x的不等式的解集在数轴上表示正确的是A.B.C.D.11.如图,在菱形ABCD中,对角线AC、BD相交于点O,,,于点E,则AE的长等于A. 5B.C.D.12.如图,▱ABCD中,,F是BC的中点,作,垂足E在线段CD上,连接EF、AF,下列结论:;;;中,一定成立的是A. 只有B. 只有C. 只有D.二、填空题(本大题共8小题,共24.0分)13.分解因式:______.14.如果分式有意义,那么x的取值范围是______.15.若正多边形的一个内角等于,则这个正多边形的边数是______.16.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元若每个篮球80元,每个足球50元,则篮球最多可购买______个17.如图,已知点P是角平分线上的一点,,,M是OP的中点,,如果点C是OB上一个动点,则PC的最小值为______cm.18.如图,已知中,,,将绕点A逆时针反向旋转到的位置,连接,则的长为______.19.若关于x的分式方程无解,则______.20.一组正方形按如图所示的方式放置,其中顶点在y轴上,顶点、、、、、、在x轴上,已知正方形的边长为1,,,则正方形的边长是______.三、计算题(本大题共1小题,共6.0分)21.解不等式组,并将它的解集在数轴上表示出来.四、解答题(本大题共9小题,共72.0分)22.先化简,再求值:,其中.23.如图,已知E、F分别是▱ABCD的边BC、AD上的点,且.求证:四边形AECF是平行四边形.24.北京到济南的距离约为500km,一辆高铁和一辆特快列车都从北京去济南,高铁比特快列车晚出发3小时,最后两车同时到达济南,已知高铁的速度是特快列车速度的倍求高铁和特快列车的速度各是多少?列方程解答25.如图,平面直角坐标系中,已知点,若对于平面内一点C,当是以AB为腰的等腰三角形时,称点C时线段AB的“等长点”.请判断点,点是否是线段AB的“等长点”,并说明理由;若点是线段AB的“等长点”,且,求m和n的值.26.为贯彻党的“绿水青山就是金山银山”的理念,我市计划购买甲、乙两种树苗共7000株用于城市绿化,甲种树苗每株24元,一种树苗每株30元相关资料表明:甲、乙两种树苗的成活率分别为、.若购买这两种树苗共用去180000元,则甲、乙两种树苗各购买多少株?若要使这批树苗的总成活率不低于,则甲种树苗至多购买多少株?在的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.27.如图,在矩形ABCD中,,点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是,连接PQ、AQ、设点P、Q运动的时间为ts.当t为何值时,四边形ABQP是矩形;当t为何值时,四边形AQCP是菱形.28.问题的提出:如果点P是锐角内一动点,如何确定一个位置,使点P到的三顶点的距离之和的值为最小?问题的转化:把绕点A逆时针旋转得到,连接,这样就把确定的最小值的问题转化成确定的最小值的问题了,请你利用图1证明:;问题的解决:当点P到锐角的三顶点的距离之和的值为最小时,求和的度数;问题的延伸:如图2是有一个锐角为的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.29.如图,已知菱形ABCD边长为4,,点E从点A出发沿着AD、DC方向运动,同时点F从点D出发以相同的速度沿着DC、CB的方向运动.如图1,当点E在AD上时,连接BE、BF,试探究BE与BF的数量关系,并证明你的结论;在的前提下,求EF的最小值和此时的面积;当点E运动到DC边上时,如图2,连接BE、DF,交点为点M,连接AM,则大小是否变化?请说明理由.30.如图,中,,,在AB的同侧作正、正和正,求四边形PCDE面积的最大值.答案和解析【答案】1. B2. D3. C4. C5. D6. B7. A8. B9. D10. A11. C12. C13.14.15. 1216. 1617. 418.19. 或6或120.21. 解:解不等式,得:,解不等式,得:,将不等式的解集表示在数轴上如下:所以不等式组的解集为.22. 解:原式,当时,原式.23. 证明:四边形ABCD是平行四边形,,且,,,,四边形AECF是平行四边形.24. 解:设特快列车的速度为x千米时,则高铁的速度为千米时,根据题意得:,解得:,经检验,是原分式方程的解,.答:特快列车的速度为100千米时,高铁的速度为250千米时.25. 解:点,,,,,.点,,,是线段AB的“等长点”,点,,,,,不是线段AB的“等长点”;如图,在中,,,,.分两种情况:当点D在y轴左侧时,,,点是线段AB的“等长点”,,,,;当点D在y轴右侧时,,,,点是线段AB的“等长点”,,.综上所述,,或,.26. 解:设购买甲种树苗x株,则购买乙种树苗株,由题意得解得,则答:甲、乙两种树苗各购买5000、2000株根据题意得解得则甲种树苗至多购买2800株设购买树苗的费用为W根据题意得:随x的增大而减小当时,最小27. 解:由已知可得,,在矩形ABCD中,,,当时,四边形ABQP为矩形,,得故当时,四边形ABQP为矩形.由可知,四边形AQCP为平行四边形当时,四边形AQCP为菱形即时,四边形AQCP为菱形,解得,故当时,四边形AQCP为菱形.28. 解:问题的转化:如图1,由旋转得:,,是等边三角形,,,.问题的解决:满足:时,的值为最小;理由是:如图2,把绕点A逆时针旋转60度得到,连接,由“问题的转化”可知:当B、P、、在同一直线上时,的值为最小,,,,、P、在同一直线上,由旋转得:,,,、、在同一直线上,、P、、在同一直线上,此时的值为最小,故答案为:;问题的延伸:如图3,中,,,,,把绕点B逆时针旋转60度得到,连接,当A、P、、在同一直线上时,的值为最小,由旋转得:,,,,是等边三角形,,,,由勾股定理得:,,则点P到这个三角形各顶点的距离之和的最小值为.29. 解:,证明:、F的速度相同,且同时运动,,又四边形ABCD是菱形,,,,是等边三角形,同理也是等边三角形,,在和中,, ≌ ,;由得: ≌ ,,,,是等边三角形,,如图2,当动点E运动到,即E为AD的中点时,BE的最小,此时EF最小,,,,的最小值是,中,,,,,;如图3,当点E运动到DC边上时,大小不发生变化,在和中,,≌ ,,,,,,,、B、M、D四点共圆,.30. 解:延长EP交BC于点F,,,,,平分,又,,设中,,,则,,和都是等边三角形,,,,,≌ ,,同理可得: ≌ ,,四边形CDEP是平行四边形,四边形CDEP的面积,又,,,即四边形PCDE面积的最大值为1.【解析】1. 解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.根据中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形的概念中心对称图形是要寻找对称中心,旋转180度后两部分重合.2. 解:A、两边都加2,不等号的方向不变,故A成立,B、两边都乘2,不等号的方向不变,故B成立;C、两边都除以,不等号的方向改变,故C不成立;D、当时,成立,当,时,,故D不一定成立,故选:D.根据不等式的性质,可得答案.本题考查了不等式的性质,利用不等式的性质是解题关键.3. 解:A、,不符合题意;B、,不符合题意;C、是最简分式,符合题意;D、,不符合题意;故选:C.最简分式的标准是分子,分母中不含有公因式,不能再约分判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.本题考查了最简分式的定义及求法一个分式的分子与分母没有公因式时,叫最简分式分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题在解题中一定要引起注意.4. 解:沿直线边BC所在的直线向右平移得到,,,,,,,四边形四边形,但不能得出,故选:C.由平移的性质,结合图形,对选项进行一一分析,选择正确答案.本题考查了平移的基本性质:平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.5. 解:等腰中,,,,线段AB的垂直平分线交AB于D,交AC于E,,,.由等腰中,,,即可求得的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得,继而求得的度数,则可求得答案.此题考查了线段垂直平分线的性质以及等腰三角形的性质此题难度不大,注意掌握数形结合思想的应用.6. 解:当时,四边形EFGH是矩形,,,,,即,四边形EFGH是矩形;故选:B.根据“有一内角为直角的平行四边形是矩形”来推断由三角形中位线定理和平行四边形的判定定理易推知四边形EFGH是平行四边形,若或者就可以判定四边形EFGH是矩形.此题考查了中点四边形的性质、矩形的判定以及三角形中位线的性质此题难度适中,注意掌握数形结合思想的应用.7. 解:,AD平分,,,点E为AC的中点,.的周长为26,,.故选:A.根据等腰三角形的性质可得,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案.此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.8. 解:四边形ABCD是平行四边形,,,,,,、BE分别是、的平分线,,,,,,,.故选:B.由四边形ABCD是平行四边形,若AF、BE分别是、的平分线,易得与是等腰三角形,继而求得,则可求得答案.此题考查了平行四边形的性质以及等腰三角形的判定与性质注意证得与是等腰三角形是关键.9. 解:去分母得:,由分式方程有增根,得到,即,把代入整式方程得:,解得:,分式方程去分母转化为整式方程,由分式方程有增根,得到,求出x的值,代入整式方程求出m的值即可.本题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.10. 解:把代入,得,解得.当时,,所以关于x的不等式的解集为,用数轴表示为:.故选:A.先把代入,得出,再观察函数图象得到当时,直线都在直线的上方,即不等式的解集为,然后用数轴表示解集.本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数的值大于或小于的自变量x的取值范围;从函数图象的角度看,就是确定直线在x轴上或下方部分所有的点的横坐标所构成的集合.11. 解:四边形ABCD是菱形,,,,在中,,,故,解得:.故选:C.在中,根据求出OC,再利用面积法可得,由此求出AE即可.此题主要考查了菱形的性质以及勾股定理,正确利用三角形面积求出AE的长是解题关键.12. 解:是BC的中点,,在▱ABCD中,,,,,,,,,,故正确;延长EF,交AB延长线于M,四边形ABCD是平行四边形,,,为BC中点,,在和中,,≌ ,,,,,,,,故正确;,,,故错误;设,则,,,,,,故正确,故选:C.利用平行四边形的性质:平行四边形的对边相等且平行,再由全等三角形的判定得出 ≌ ,利用全等三角形的性质得出对应线段之间关系进而得出答案.此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,解决本题的关键是得出 ≌ .13. 解:,,.故答案为:.先提取公因式y,然后再利用平方差公式进行二次分解.本题考查了提公因式法,公式法分解因式,利用平方差公式进行二次分解因式是解本题的难点,也是关键.14. 解:由题意得,,即,故答案为:.根据分式有意义的条件是分母不为0,列出算式,计算得到答案.本题考查的是分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义分母为零;分式有意义分母不为零;分式值为零分子为零且分母不为零.15. 解:正多边形的一个内角等于,它的外角是:,它的边数是:.故答案为:12.首先根据求出外角度数,再利用外角和定理求出边数.此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.16. 解:设购买篮球x个,则购买足球个,根据题意得:,解得:.为整数,最大值为16.故答案为:16.设购买篮球x个,则购买足球个,根据总价单价购买数量结合购买资金不超过3000元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可.本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.17. 解:是角平分线上的一点,,,,M是OP的中点,,,,点C是OB上一个动点,的最小值为P到OB距离,的最小值,故答案为:4.根据角平分线的定义可得,再根据直角三角形的性质求得,然后根据角平分线的性质和垂线段最短得到答案.本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,熟记性质并作出辅助线构造成直角三角形是解题的关键.18. 解:连接,交于D,如图,中,,,,绕点A逆时针反向旋转到的位置,,,,,垂直平分,为等边三角形,,,.故答案为.连接,交于D,如图,利用等腰直角三角形的性质得,再根据旋转的性质得,,,,则可判断垂直平分,为等边三角形,所以,,然后计算即可.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了等腰直角三角形的性质.19. 解:为原方程的增根,此时有,即,解得.为原方程的增根,此时有,即,解得.方程两边都乘,得,化简得:.当时,整式方程无解.综上所述,当或或时,原方程无解.该分式方程无解的情况有两种:原方程存在增根;原方程约去分母后,整式方程无解.分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.20. 解:正方形的边长为1,,,,,,,则,同理可得:,故正方形的边长是:,则正方形的边长为:,故答案为:.利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.21. 首先解每个不等式,然后把每个解集在数轴上表示出来,确定不等式的解集的公共部分就是不等式组的解集.本题考查了不等式组的解法,把每个不等式的解集在数轴上表示出来向右画;,向左画,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集有几个就要几个在表示解集时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示.22. 首先将括号里面通分,再将分子与分母分解因式进而化简得出答案.此题主要考查了分式的化简求值,正确分解因式是解题关键.23. 根据平行四边形性质得出,且,推出,,根据平行四边形的判定推出即可.本题考查了平行四边形的性质和判定的应用,注意:平行四边形的对边平行且相等,有一组对边平行且相等的四边形是平行四边形.24. 设特快列车的速度为x千米时,则高铁的速度为千米时,根据时间路程速度结合高铁比特快列车少用3小时,即可得出关于x的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.25. 先求出AB的长与B点坐标,再根据线段AB的“等长点”的定义判断即可;分两种情况讨论,利用对称性和垂直的性质即可求出m,n.本题考查了新定义,锐角三角函数,直角三角形的性质,等腰三角形的性质,坐标与图形性质解的关键是理解新定义,解的关键是画出图形,是一道中等难度的中考常考题.26. 列方程求解即可;根据题意,甲乙两种树苗的存货量大于等于树苗总量的列出不等式;用x表示购买树苗的总费用,根据一次函数增减性讨论最小值.本题为一次函数实际应用问题,综合考察一元一次方程、一元一次不等式及一次函数的增减性.27. 当四边形ABQP是矩形时,,据此求得t的值;当四边形AQCP是菱形时,,列方程求得运动的时间t;本题考查了菱形、矩形的判定与性质解决此题注意结合方程的思想解题.28. 问题的转化:根据旋转的性质证明是等边三角形,则,可得结论;问题的解决:运用类比的思想,把绕点A逆时针旋转60度得到,连接,由“问题的转化”可知:当B、P、、在同一直线上时,的值为最小,确定当:时,满足三点共线;问题的延伸:如图3,作辅助线,构建直角,利用勾股定理求的长,即是点P到这个三角形各顶点的距离之和的最小值.本题主要考查三角形的旋转变换的性质、勾股定理、等边三角形的判定与性质等知识点,将待求线段的和通过旋转变换转化为同一直线上的线段来求是解题的关键,学会利用旋转的方法添加辅助线,构造特殊三角形解决问题,属于中考压轴题.29. 先证明和是等边三角形,再证明 ≌ ,可得结论;由 ≌ ,易证得是正三角形,继而可得当动点E运动到当,即E为AD的中点时,BE的最小,根据等边三角形三线合一的性质可得BE和EF的长,并求此时的面积;同理得: ≌ ,则可得,所以,则A、B、M、D四点共圆,可得.此题是四边形的综合题,考查了菱形的性质、等边三角形的判定与性质、四点共圆的判定和性质、垂线段最短以及全等三角形的判定与性质注意证得 ≌ 是解此题的关键.30. 先延长EP交BC于点F,得出,再判定四边形CDEP为平行四边形,根据平行四边形的性质得出:四边形CDEP的面积,最后根据,判断的最大值即可.本题主要考查了等边三角形的性质、平行四边形的判定与性质以及全等三角形的判定与性质,解决问题的关键是作辅助线构造平行四边形的高线.。
2018-2019学年北京市东城区八年级(下)期末数学试卷-含详细解析
10.如果a是一元二次方程2−3−5=0的一个根,那么代数式8−2+3=____.
11.已知一元二次方程2−2+=0有两个相等的实数根,则=______,=______.
12.如图,已知菱形ABCD的一个内角∠=80°,对角线AC、BD相交于点O,点E在AB上,且
①>0;②>0;③当>0时,1>0;④当<−2时,>−+.其中正确的是()
A.①③B.②③C.③④D.①④
7.如图,数轴上点A,B分别对应1,2,过点B作⊥,以点B为圆心,AB长为半径画弧,交
PQ于点C,以点A为圆心,AC长为半径画弧,交数轴于点M,则点M对应的数是()
A.√2
3.有19位同学参加歌咏比赛,所得的分数互不相同,取得分前10位同学进入决赛.某同学知道自己
的分数后,要判断自己能否进入决赛,他只需知道这19位同学的()
A.平均数B.中位数C.众数D.方差
4.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同
学拟定的方案,其中正确的是()
析式为______.
15.如图,每个小正方形的边长为1 中,点D为AB的中点,则线段CD的长为______.
第2页,共19页
=,则∠=______度.
13.如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(,3),若直线=2与线段AB有公共
点,则n的值可以为______.(写出一个即可)
14.如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,且(4,0),(6,2),则直线AC的解
20182019学年北京市东城区八年级(下)期末数学试卷
2018-2019学年北京市海淀区八年级(下)期末数学试卷(解析版)
2018-2019学年北京市海淀区八年级(下)期末数学试卷一、选择题(本题共30分,每小题3分)在下列各题的四个选项中,只有一个是符合题意的1.(3分)下列实数中,是方程x2﹣4=0的根的是()A.1B.2C.3D.42.(3分)如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,则AB的长度为()A.7B.8C.9D.103.(3分)在下列条件中,能判定四边形为平行四边形的是()A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直4.(3分)下列各曲线中,不表示y是x的函数的是()A.B.C.D.5.(3分)数据2,6,4,5,4,3的平均数和众数分别是()A.5和4B.4和4C.4.5和4D.4和56.(3分)一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=15D.(x﹣4)2=17 7.(3分)若点A(﹣3,y1),B(1,y2)都在直线y=x+2上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法比较大小8.(3分)如图,正方形ABCD的边长为,对角线AC,BD交于点O,E是AC延长线上一点,且CE=CO,则BE的长度为()A.B.C.D.29.(3分)对于一次函数y=kx+b(k,b为常数),下表中给出5组自变量及其对应的函数值,其中恰好有1个函数值计算有误,则这个错误的函数值是()X﹣10123Y2581214 A.5B.8C.12D.1410.(3分)博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为众提供知识、教育及欣赏服务.近年来,人们到博物馆学习参观的热情越来越高,2012﹣2018年我国博物馆参观人数统计如下:小明研究了这个统计图,得出四个结论:①2012年到2018年,我国博物馆参观人数持续增②2019年末我国博物馆参观人数估计将达到1082亿人次③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;④2016年到2018年,我国博物馆参观人数平均年增长率超过10%其中正确的是()A.①③B.①②③C.①②④D.①②二、填空题(本题共18分,每小题3分)11.(3分)在▱ABCD中,若∠B=110°,则∠D=°.12.(3分)八年级(1)班甲、乙两个小组的10名学生进行飞镖训练,某次训练成绩如下甲组成绩(环)87889乙组成绩(环)98797由上表可知,甲、乙两组成绩更稳定的是.13.(3分)若关于x的一元二次方程x2+6x+m=0有实数根,且所有实数根均为整数,请写出一个符合条件的常数m的值:m=.14.(3分)如图,某港口P位于南北延伸的海岸线上,东面是大海远洋号,长峰号两艘轮船同时离开港P,各自沿固定方向航行,“远洋”号每小时航行12nmile,“长峰”号每小时航行16nmile,它们离开港口1小时后,分别到达A,B两个位置,且AB=20nmile,已知“远洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是.15.(3分)若一个矩形的长边的平方等于短边与其周长一半的积,则称这样的矩形为“优美矩形”.某公园在绿化时工作人员想利用如图所示的直角墙角(两边足够长)和长为38m的篱笆围成一个“优美矩形”形状的花园ABCD,其中边AB,AD为篱笆且AB大于AD.设AD为xm,依题意可列方程为.16.(3分)在平面直角坐标系xOy中,直线y=kx+3与x,y轴分别交于点A,B,若将该直线向右平移5单位,线段AB扫过区域的边界恰好为菱形,则k的值为.三、解答题(本题共26分,第17题8分,第18,20题各5分,第19,21题各4分)17.(8分)解下列方程:(1)x2+2x﹣3=0(用配方法)(2)2x2+5x﹣1=0(用公式法)18.(5分)在平面直角坐标系xOy中,函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6)(1)求一次函数y=kx+b的解析式;(2)求一次函数y=kx+b的图象与坐标轴围成的三角形的面积.19.(5分)下面是小丁设计的“利用直角三角形和它的斜边中点作矩形的尺规作图过程:已知:如图,在Rt△ABC中,∠ABC=90°,O为AC的中点,求作:四边形ABCD,使得四边形ABCD为矩形.作法:①作射线BO,在线段BO的延长线上取点D,使得DO=BO②连接AD,CD,则四边形ABCD为矩形根据小丁设计的尺规作图过程(1)使用直尺和圆规,在图中补全图形(保留作图痕迹)(2)完成下面的证明证明:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形()∵∠ABC=90°,∴▱ABCD为矩形()20.(4分)方程x 2+2x +k ﹣4=0有实数根 (1)求k 的取值范围;(2)若k 是该方程的一个根,求2k 2+6k ﹣5的值.21.(4分)小东和小明要测量校园里的一块四边形场地ABCD (如图所示)的周长,其中边CD 上有水池及建筑遮挡,没有办法直接测量其长度小东经测量得知AB =AD =5m ,∠A =60°,BC =12m ,∠ABC =150°小明说根据小东所得的数据可以求出CD 的长度.你同意小明的说法吗?若同意,请求出CD 的长度;若不同意,请说明理由.四、解答题(本题共13分,第22题7分,第23题6分)22.(7分)三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动为了让同学们更好的了解二十四节气的知识,本次学习节在沿袭以往经典项目的基础上,增设了十四节气之旅项目,并开展了相关知识竞赛该学校七、八年级各有400名学生参加了这次竞赛,现从七、八年级各随机抽取20名学生的成绩进行抽样调查 七年级:74 97 96 72 98 99 72 73 76 74 74 69 76 89 78 74 99 97 98 99 八年级:76 88 93 89 78 94 89 94 95 50 89 68 65 88 77 87 89 88 92 91 整理数据如下成绩 人数 年级 50≤x ≤5960≤x ≤6970≤x ≤7980≤x ≤8990≤x ≤100七年级 0 1 10 1 a 八年级 12386分析数据如下年级平均数中位数众数方差七年级84.27774138.56八年级84b89129.7根据以上信息,回答下列问题(1)a=b=;(2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性).(3)学校对知识竞赛成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有人.23.(6分)如图,在▱ABCD中,对角线AC,BD交于点O,过点B作BE⊥CD于点E,延长CD到点F,使DF=CE,连接AF.(1)求证:四边形ABEF是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF的长度.五、解答题(本题共13分,第24题6分,第25题7分)24.(6分)如图,在平面直角坐标系xOy中,直线y=kx+7与直线y=x﹣2交于点A(3,m)(1)求k,m的值;(2)已知点P(n,n),过点P作垂直于y轴的直线与直线y=x﹣2交于点M,过点P 作垂直于x轴的直线与直线y=kx+7交于点N(P与N不重合).若PN≤2PM,结合图象,求n的取值范围.25.(7分)在Rt△ABC中,∠BAC=90°,点O是△ABC所在平面内一点,连接OA,延长OA到点E,使得AE=OA,连按OC,过点B作BD与OC平行,并使∠DBC=∠OCB,且BD=OC,连按DE.(1)如图一,当点O在Rt△ABC内部时,①按题意补全图形;②猜想DE与BC的数量关系,并证明.(2)若AB=AC(如图二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.2018-2019学年北京市海淀区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)在下列各题的四个选项中,只有一个是符合题意的1.(3分)下列实数中,是方程x2﹣4=0的根的是()A.1B.2C.3D.4【分析】先把方程化为x2=4,方程两边开平方得到x=±=±2,即可得到方程的两根.【解答】解:移项得x2=4,开方得x=±2,∴x1=2,x2=﹣2.故选:B.【点评】本题考查了解一元二次方程﹣直接开平方法,用直接开方法求一元二次方程的解的类型有:x2=a(a≥0),ax2=b(a,b同号且a≠0),(x+a)2=b(b≥0),a (x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”;2.(3分)如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,则AB的长度为()A.7B.8C.9D.10【分析】根据勾股定理即可得到结论.【解答】解:在Rt△ABC中,∠C=90°,BC=6,AC=8,∴AB===10,故选:D.【点评】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.3.(3分)在下列条件中,能判定四边形为平行四边形的是()A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直【分析】根据平行四边形的判定定理逐个判断即可.【解答】解:A、两组对边分别平行的四边形是平行四边形,故本选项符合题意;B、一组对边平行且另一组对边相等的四边形是等腰梯形,不是平行四边形,故本选项不符合题意;C、两组邻边相等的四边形不一定是平行四边形,故本选项不符合题意;D、对角线互相平分的四边形才是平行四边形,故本选项不符合题意;故选:A.【点评】本题考查了平行四边形的判定定理,能熟记平行四边形的判定定理的内容是解此题的关键,注意:平行四边形的判定定理有:①两组对边分别平行的四边形是平行四边形,②两组对边分别相等的四边形是平行四边形,③两组对角分别平行的四边形是平行四边形,④一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形.4.(3分)下列各曲线中,不表示y是x的函数的是()A.B.C.D.【分析】设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.根据函数的意义即可求出答案.【解答】解:显然A、B、D选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;C选项对于x取值时,y都有2个值与之相对应,则y不是x的函数;故选:C.【点评】本题主要考查了函数的定义,在定义中特别要注意,对于x的每一个值,y都有唯一的值与其对应.5.(3分)数据2,6,4,5,4,3的平均数和众数分别是()A.5和4B.4和4C.4.5和4D.4和5【分析】根据平均数和众数的概念求解.【解答】解:这组数据的平均数是:(2+6+4+5+4+3)=4;∵4出现了2次,出现的次数最多,∴这组数据的众数是4;故选:B.【点评】本题考查了众数和平均数的知识,一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.6.(3分)一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=15D.(x﹣4)2=17【分析】先把常数项移到方程右边,再把方程两边加上16,然后把方程左边写成完全平方形式即可.【解答】解:x2﹣8x=1,x2﹣8x+16=17,(x﹣4)2=17.故选:D.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.7.(3分)若点A(﹣3,y1),B(1,y2)都在直线y=x+2上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法比较大小【分析】先根据直线y=x+2判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.【解答】解:∵直线y=x+2,k=>0,∴y随x的增大而增大,又∵﹣3<1,∴y1<y2.故选:A.【点评】本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y 随x的增大而增大;当k<0,y随x的增大而减小.8.(3分)如图,正方形ABCD的边长为,对角线AC,BD交于点O,E是AC延长线上一点,且CE=CO,则BE的长度为()A.B.C.D.2【分析】利用正方形的性质得到OB=OC=BC=1,OB⊥OC,则OE=2,然后根据勾股定理计算BE的长.【解答】解:∵正方形ABCD的边长为,∴OB=OC=BC=×=1,OB⊥OC,∵CE=OC,∴OE=2,在Rt△OBE中,BE==.故选:C.【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.9.(3分)对于一次函数y=kx+b(k,b为常数),下表中给出5组自变量及其对应的函数值,其中恰好有1个函数值计算有误,则这个错误的函数值是()X﹣10123Y2581214 A.5B.8C.12D.14【分析】经过观察5组自变量和相应的函数值得(﹣1,2),(0,5),(1,8),(3,14)符合解析式y=3x+5,(2,12)不符合,即可判定.【解答】解:∵(﹣1,2),(0,5),(1,8),(3,14)符合解析式y=3x+5,当x=2时,y=11≠12∴这个计算有误的函数值是12,故选:C.【点评】本题考查了一次函数图象上点的坐标特征,图象上点的坐标符合解析式是解决本题的关键.10.(3分)博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为众提供知识、教育及欣赏服务.近年来,人们到博物馆学习参观的热情越来越高,2012﹣2018年我国博物馆参观人数统计如下:小明研究了这个统计图,得出四个结论:①2012年到2018年,我国博物馆参观人数持续增②2019年末我国博物馆参观人数估计将达到1082亿人次③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;④2016年到2018年,我国博物馆参观人数平均年增长率超过10%其中正确的是()A.①③B.①②③C.①②④D.①②【分析】根据条形统计图中的信息对4个结论矩形判断即可.【解答】解:①2012年到2018年,我国博物馆参观人数持续增,正确;②10.08×(1+)=10.45,故2019年末我国博物馆参观人数估计将达到10.45亿人次;故错误;③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;正确;④设平均年增长率为x,则8.50(1+x)2=10.08,解得:x=0.0889,故2016年到2018年,我国博物馆参观人数平均年增长率是8.89%,故错误;故选:A.【点评】此题考查了条形统计图,弄清题中图形中的数据是解本题的关键.二、填空题(本题共18分,每小题3分)11.(3分)在▱ABCD中,若∠B=110°,则∠D=110°.【分析】直接利用平行四边形的对角相等即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴∠B=∠D=110°.故答案为:110.【点评】此题主要考查了平行四边形的性质,正确得出对角相等是解题关键.12.(3分)八年级(1)班甲、乙两个小组的10名学生进行飞镖训练,某次训练成绩如下甲组成绩(环)87889乙组成绩(环)98797由上表可知,甲、乙两组成绩更稳定的是甲.【分析】根据方差计算公式,进行计算,然后比较方差,小的稳定,在计算方差之前还需先计算平均数.【解答】解:甲==8,乙==8,=[(8﹣8)2+(7﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2]=0.4,=[(9﹣8)2+(8﹣8)2+(7﹣8)2+(9﹣8)2+(7﹣8)2]=0.8∵<∴甲组成绩更稳定.故答案为:甲.【点评】考查平均数、方差的计算方法,理解方差是反映一组数据的波动大小的统计量,方差越小,数据越稳定.13.(3分)若关于x的一元二次方程x2+6x+m=0有实数根,且所有实数根均为整数,请写出一个符合条件的常数m的值:m=9.【分析】利用判别式的意义得到△=62﹣4m≥0,解不等式得到m的范围,在此范围内取m=0即可.【解答】解:△=62﹣4m≥0,解得m≤9;当m=0时,方程变形为x2+6x=0,解得x1=0,x2=﹣6,所以m=9满足条件.故答案为9.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.14.(3分)如图,某港口P位于南北延伸的海岸线上,东面是大海远洋号,长峰号两艘轮船同时离开港P,各自沿固定方向航行,“远洋”号每小时航行12nmile,“长峰”号每小时航行16nmile,它们离开港口1小时后,分别到达A,B两个位置,且AB=20nmile,已知“远洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是南偏东30°.【分析】由题意得:P与O重合,得出OA2+OB2=AB2,由勾股定理的逆定理得出△PAB 是直角三角形,∠AOB=90°,求出∠COP=30°,即可得出答案.【解答】解:由题意得:P与O重合,如图所示:OA=12nmile,OB=16nmile,AB=20nmile,∵122+162=202,∴OA2+OB2=AB2,∴△PAB是直角三角形,∴∠AOB=90°,∵∠DOA=60°,∴∠COP=180°﹣90°﹣60°=30°,∴“长峰”号航行的方向是南偏东30°,故答案为:南偏东30°.【点评】此题主要考查了直角三角形的判定、勾股定理的逆定理及方向角的理解及运用.利用勾股定理的逆定理得出△PAB为直角三角形是解题的关键.15.(3分)若一个矩形的长边的平方等于短边与其周长一半的积,则称这样的矩形为“优美矩形”.某公园在绿化时工作人员想利用如图所示的直角墙角(两边足够长)和长为38m的篱笆围成一个“优美矩形”形状的花园ABCD,其中边AB,AD为篱笆且AB大于AD.设AD为xm,依题意可列方程为(38﹣x)2=38x.【分析】设AD为xm,根据“矩形的长边的平方等于短边与其周长一半的积”列出列出方程即可.【解答】解:设AD的长为x米,则AB的长为(38﹣x)m,根据题意得:(38﹣x)2=38x,故答案为:(38﹣x)2=38x.【点评】考查了由实际问题抽象出一元二次方程的知识,解题的关键是表示出另一边的长,难度不大.16.(3分)在平面直角坐标系xOy中,直线y=kx+3与x,y轴分别交于点A,B,若将该直线向右平移5单位,线段AB扫过区域的边界恰好为菱形,则k的值为±.【分析】根据菱形的性质知AB=5,由一次函数图象的性质和两点间的距离公式解答.【解答】解:令y=0,则x=﹣,即A(﹣,0).令x=0,则y=3,即B(0,3).∵将该直线向右平移5单位,线段AB扫过区域的边界恰好为菱形,∴AB=5,则AB2=25.∴(﹣)2+32=25.解得k=±.故答案是:±.【点评】考查了菱形的性质和一次函数图象与几何变换,解题的关键是根据菱形的性质得到AB=5.三、解答题(本题共26分,第17题8分,第18,20题各5分,第19,21题各4分)17.(8分)解下列方程:(1)x2+2x﹣3=0(用配方法)(2)2x2+5x﹣1=0(用公式法)【分析】(1)根据配方法的步骤,可得答案;(2)根据公式法,可得答案.【解答】解:(1)移项,得x2+2x=3配方,得x2+2x+1=3+1即(x+1)2=3开方得x+1=±2,x1=1,x2=﹣3;(2)a=2,b=5,c=﹣1,△=b2﹣4ac=25﹣4×2×(﹣1)=33>0,x==,x1=,x2=.【点评】本题考查了解一元二次方程,配方得出完全平方公式是解题关键.18.(5分)在平面直角坐标系xOy中,函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6)(1)求一次函数y=kx+b的解析式;(2)求一次函数y=kx+b的图象与坐标轴围成的三角形的面积.【分析】(1)根据函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6),即可得出k和b的值,即得出了函数解析式.(2)先求出与x轴及y轴的交点坐标,然后根据三角形面积公式求解即可.【解答】解:(1)∵函数y=kx+b的图象与直线y=2x平行,∴k=2,又∵函数y=2x+b的图象经过点A(1,6),∴6=2+b,解得b=4,∴一次函数的解析式为y=2x+4;(2)在y=2x+4中,令x=0,则y=4;令y=0,则x=﹣2;∴一次函数y=kx+b的图象与坐标轴交于(0,4)和(﹣2,0),∴一次函数y=kx+b的图象与坐标轴围成的三角形的面积为×2×4=4.【点评】本题考查待定系数法求函数解析式及三角形的面积的知识,关键是正确得出函数解析式及坐标与线段长度的转化.19.(5分)下面是小丁设计的“利用直角三角形和它的斜边中点作矩形的尺规作图过程:已知:如图,在Rt△ABC中,∠ABC=90°,O为AC的中点,求作:四边形ABCD,使得四边形ABCD为矩形.作法:①作射线BO,在线段BO的延长线上取点D,使得DO=BO②连接AD,CD,则四边形ABCD为矩形根据小丁设计的尺规作图过程(1)使用直尺和圆规,在图中补全图形(保留作图痕迹)(2)完成下面的证明证明:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形(对角线互相平分的四边形是平行四边形)∵∠ABC=90°,∴▱ABCD为矩形(有一个角是直角的平行四边形是矩形)【分析】(1)根据要求画出图形即可.(2)根据有一个角是直角的平行四边形是矩形即可证明.【解答】解:(1)如图,矩形ABCD即为所求.(2)理由:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形(对角线互相平分的四边形是平行四边形)∵∠ABC=90°,∴▱ABCD为矩形(有一个角是直角的平行四边形是矩形).故答案为:对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形【点评】本题考查作图﹣复杂作图,矩形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.(4分)方程x2+2x+k﹣4=0有实数根(1)求k的取值范围;(2)若k是该方程的一个根,求2k2+6k﹣5的值.【分析】(1)根据判别式的意义得到△=22﹣4(k﹣4)≥0,然后解不等式即可;(2)利用方程解的定义得到k2+3k=4,再变形得到2k2+6k﹣5=2(k2+3k)﹣5,然后利用整体代入的方法计算.【解答】解:(1)△=22﹣4(k﹣4)≥0,解得k≤5;(2)把x=k代入方程得k2+2k+k﹣4=0,即k2+3k=4,所以2k2+6k﹣5=2(k2+3k)﹣5=2×4﹣5=3.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.(4分)小东和小明要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边CD上有水池及建筑遮挡,没有办法直接测量其长度小东经测量得知AB=AD=5m,∠A=60°,BC=12m,∠ABC=150°小明说根据小东所得的数据可以求出CD的长度.你同意小明的说法吗?若同意,请求出CD的长度;若不同意,请说明理由.【分析】直接利用等边三角形的判定方法得出△ABD是等边三角形,再利用勾股定理得出答案.【解答】解:同意小明的说法.理由:连接BD,∵AB=AD=5m,∠A=60°,∴△ABD是等边三角形,∴BD=5m,∠ABD=60°,∵∠ABC=150°,∴∠DBC=90°,∵BC=12m,BD=5m,∴DC ==13(m ),答:CD 的长度为13m .【点评】此题主要考查了勾股定理的应用以及等边三角形的判定,正确得出△ABD 是等边三角形是解题关键.四、解答题(本题共13分,第22题7分,第23题6分)22.(7分)三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动为了让同学们更好的了解二十四节气的知识,本次学习节在沿袭以往经典项目的基础上,增设了十四节气之旅项目,并开展了相关知识竞赛该学校七、八年级各有400名学生参加了这次竞赛,现从七、八年级各随机抽取20名学生的成绩进行抽样调查 七年级:74 97 96 72 98 99 72 73 76 74 74 69 76 89 78 74 99 97 98 99 八年级:76 88 93 89 78 94 89 94 95 50 89 68 65 88 77 87 89 88 92 91 整理数据如下成绩 人数 年级 50≤x ≤5960≤x ≤6970≤x ≤7980≤x ≤8990≤x ≤100七年级 0 1 10 1 a 八年级 12386分析数据如下年级 平均数 中位数 众数 方差 七年级 84.2 77 74 138.56 八年级84b89129.7根据以上信息,回答下列问题 (1)a =8 b = 88.5 ;(2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性).(3)学校对知识竞赛成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有180,280人.【分析】(1)从调查的七年级的人数20减去前几组的人数即可,将八年级的20名学生的成绩排序后找到第10、11个数的平均数即是八年级的中位数,(2)从中位数、众数、方差进行分析,调查结论,(3)用各个年级的总人数乘以样本中优秀人数所占的比即可.【解答】解:(1)a=20﹣1﹣10﹣1=8,b=(88+89)÷2=88.5故答案为:8,88.5.(2)八年级成绩较好,八年级成绩的众数、中位数比七年级成绩相应的众数、中位数都要大,说明八年级成绩的集中趋势要高,方差八年级较小,说明八年级的成绩比较稳定.(3)七年级优秀人数为:400×=180人,八年级优秀人数为:400×=280人,故答案为:180,280.【点评】考查频数分布表、众数、中位数、平均数、方差的意义及计算方法,明确各自的意义和计算方法是解决问题的前提.23.(6分)如图,在▱ABCD中,对角线AC,BD交于点O,过点B作BE⊥CD于点E,延长CD到点F,使DF=CE,连接AF.(1)求证:四边形ABEF是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF的长度.【分析】(1)根据平行四边形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据直角三角形斜边中线可得:OF=AC,利用勾股定理计算AC的长,可得结论.【解答】(1)证明:∵在▱ABCD中,∴AD∥BC且AD=BC,∴∠ADF=∠BCE,在△ADF和△BCE中,∵∴△ADF≌△BCE(SAS),∴AF=BE,∠AFD=∠BEC=90°,∴AF∥BE,∴四边形ABEF是矩形;(2)解:由(1)知:四边形ABEF是矩形,∴EF=AB=6,∵DE=2,∴DF=CE=4,∴CF=4+4+2=10,Rt△ADF中,∠ADF=45°,∴AF=DF=4,由勾股定理得:AC===2,∵四边形ABCD是平行四边形,∴OA=OC,∴OF=AC=.【点评】本题考查了矩形的判定和性质,平行四边形的性质,勾股定理,正确的识别图形是解题的关键.五、解答题(本题共13分,第24题6分,第25题7分)24.(6分)如图,在平面直角坐标系xOy中,直线y=kx+7与直线y=x﹣2交于点A(3,m)(1)求k,m的值;(2)已知点P(n,n),过点P作垂直于y轴的直线与直线y=x﹣2交于点M,过点P 作垂直于x轴的直线与直线y=kx+7交于点N(P与N不重合).若PN≤2PM,结合图象,求n的取值范围.【分析】(1)把A点坐标代入y=x﹣2中,求得m的值,再把求得的A点坐标代入y =kx+7中,求得k的值;(2)根据题意,用n的代数式表示出M、N点的坐标,再求得PM、PN的值,根据PN ≤2PM,列出n的不等式,再求得结果.【解答】解:(1)把A(3,m)代入y=x﹣2中,得m=3﹣2=1,∴A(3,1),把A(3,1)代入y=kx+7中,得1=3k+7,解得,k=﹣2;(2)由(1)知,直线y=kx+7为y=﹣2x+7,根据题意,作出草图如下:∵点P(n,n),∴M(n+2,n),N(n,﹣2n+7),∴PM=2,PN=|3n﹣7|,∵PN≤2PM,∴|3n﹣7|≤2×2,∴1≤n≤,∵P与N不重合,∴n≠﹣2n+7,∴n≠,综上,1≤n≤,且n≠【点评】本题是一次函数图象的相交与平行的问题,主要考查了待定系数法求一次函数的解析式,第(2)小题关键是用n的代数式表示PM与PN的长度.25.(7分)在Rt△ABC中,∠BAC=90°,点O是△ABC所在平面内一点,连接OA,延长OA到点E,使得AE=OA,连按OC,过点B作BD与OC平行,并使∠DBC=∠OCB,且BD=OC,连按DE.(1)如图一,当点O在Rt△ABC内部时,①按题意补全图形;②猜想DE与BC的数量关系,并证明.(2)若AB=AC(如图二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.【分析】(1)①根据要求画出图形即可解决问题.②结论:DE=BC.连接OD交BC于F,连接AF.证明AF为Rt△ABC斜边中线,为△ODE的中位线,即可解决问题.(2)分两种情形:如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.证明△BMA≌△BMO(AAS),推出AM=OM,∠BMO=∠BMA=120°,推出∠AMO=120°,即可解决问题.如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.分别求解即可.【解答】解:(1)①补全图形如图所示:②结论:DE=BC.理由:如图一中,连接OD交BC于F,连接AF.∵OC∥BD,∴∠FCO=∠FBD,∵∠CFO=∠BFD,OC=BD,∴△FCO≌△FBD(AAS),∴BF=CF,∵OA=AE,∵DE=2AF,∵∠BAC=90°,BF=CF,∴BC=2AF,∴DE=BC.(2)如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.由(1)可知:AF为Rt△ABC斜边中线,为△ODE的中位线,∵AB=AC,∴AF垂直平分线段BC,∴MB=MC,∵∠OCB=30°,∠OBC=15°,∴∠MBC=∠MCB=30°,∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∠MBO=∠MBA=15°,∵∠BAM=∠BOM=45°,BM=BM,∴△BMA≌△BMO(AAS),∴AM=OM,∠BMO=∠BMA=120°,∴∠AMO=120°,∴∠MAO=∠MOA=30°,∴∠AED=∠MAO=30°.如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.由∠BOM=∠BAM=45°,可知A,B,M,O四点共圆,∴∠MAO=∠MBO=30°﹣15°=15°,∵DE∥AM,∴∠AED=∠MAO=15°,综上所述,满足条件的∠AED的值为15°或30°.【点评】本题属于三角形综合题,考查了全等三角形的判定和性质,直角三角形斜边中线的性质,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
2019-2020学年北京市海淀区清华附中八年级(下)期末数学试卷(含解析)
2019-2020学年北京市海淀区清华附中八年级(下)期末数学试卷一、选择题(本大题共8小题,共24.0分)1.如果|a+2|+|b−3|=0,那么a b的值是()A. 6B. −6C. 8D. −82.△ABC中,AB=AC,顶角是120°,则一个底角等于()A. 120°B. 90°C. 60°D. 30°3.如图,l1//l2//l3,直线AC、DF这与三条平行线分别交于点A、B、C和点D、E、F.已知AB=1,BC=3,DE=2,则EF的长为()A. 4B. 5C. 6D. 84.抛物线y=−x2向右平移1个单位,再向上平移2个单位得到()A. y=−(x−1)2+2B. y=−(x+1)2+2C. y=−(x−1)2−2D. y=−(x+1)2−25.某班抽6名同学参加体能测试,成绩分别是80,90,75,75,80,80.则这组同学的测试成绩的中位数是()A. 75B. 80C. 85D. 906.分别写有数字0,−3,−4,2,5的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到非负数的概率是()A. 15B. 25C. 35D. 457.已知△ABC在平面直角坐标系中,点A、B、C的坐标分别为(0,3)、(3,4)、(2,2),若以点C为位似中心,在平面直角坐标系内画出△A′B′C,使得△A′BC与△ABC位似,且位似比为2:1,则B′点的坐标为()A. (−2,4)或(0,−2)B. (6,0)或(4,6)C. (−2,4)或(6,0)D. (4,6)或(0,−2)8.已知二次函数y=ax 2+bx+c(a≠0)的图象如图所示,给出以下结论:①因为a>0,所以函数有最小值;②该函数图象关于直线对称;③当时,函数y的值大于0;④当时,函数y的值都等于0;⑤已知A(−2,y1),B(−2.5,y2),则y1>y2.其中正确结论的个数是()A. 2B. 3C. 4D. 5二、填空题(本大题共8小题,共24.0分)9. 如图,已知两点A(2,0),B(0,4),且∠1=∠2,则点C的坐标是______ .10. 从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100400800100020005000发芽种子粒数8531865279316044005发芽频率0.8500.7950.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率约为______(精确到0.10).11. 如图,⊙O与矩形ABCD的边AB、CD分别相交于点E、F、G、H,若AE+CH=6,则BG+DF为______.12. 如图,二次函数y=ax2+bx+c的图象经过(−1,0)(3,0)两点,给出的下列6个结论:①ab<0;②方程ax2+bx+c=0的根为x1=−1,x2=3;③4a+2b+c<0;④当x>1时,y随x值的增大而增大;⑤当y>0时,−1<x<3;⑥3a+2c<0.其中不正确的有______.13. 若点P(a,b)在抛物线y=−2x2+2x+1上,则a−b的最小值为______.14. 如图,n个全等三角形排列在一条直线BC上,P n为A n C n的中点,若BP n交A1C1于Q,则C1Q与A1Q的等量关系______.15. 已知二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(−1,y1),(2,y2),则y1______y2.(填“>”“<”或“=”)16. 如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=2cm,点P在边AC上,从点A向点C移动,点Q在边BC上,从点C向点B移动,若点P,Q均以1cm/s的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ的最小值是______.三、计算题(本大题共1小题,共6.0分)17. 为了迎接2008年北京奥运会,大渡口区某中学组织了一次大型长跑比赛.甲、乙两人在比赛时,路程S(米)与时间t(分钟)的关系如图所示,根据图象解答下列问题:(1)这次长跑比赛的全程是______米;先到达终点的人比另一人领先______分钟;(2)乙是学校田径队运动员,十分注意比赛技巧,比赛过程分起跑、途中跑、冲刺跑三阶段进行,经历了两次加速过程.问第4分钟时乙还落后甲多少米?(3)假设乙在第一次加速后,始终保持这个速度继续前进,那么甲、乙两人谁先到达终点?请说明理由;(4)事实上乙追上甲的时间是多少分钟?四、解答题(本大题共11小题,共66.0分)18. 两个相似五边形,一组对应边的长分别为3cm和4.5cm,如果它们的面积之和是78cm2,则这两个五边形面积各是多少cm2?19. 如图①,矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°,将∠MPN绕点P从PB处开始按顺时针方向旋转,PM交边AB(或AD)于点E,PN交边AD(或CD)于点F,当PN旋转至PC处时,∠MPN的旋转随即停止.(1)特殊情形:如图②,发现当PM过点A时,PN也恰巧过点D,此时,△ABP______△PCD(填“≌”或“~”);(2)类比探究:如图③,在旋转过程中,PE的值是否为定值?若是,请求出该定值;若不是,请说明PF理由.20. 我们熟知的七巧板,是由宋代黄伯思设计的“燕几图”(“燕几”就是“宴几”,也就是宴请宾客的案几)演变而来.到了明代,严澄将“燕几图”里的方形案几改为三角形,发明了“蝶翅几”.而到了清代初期,在“燕几图”和“蝶翅几”的基础上,兼有三角形、正方形和平行四边形,能拼出更加生动、多样图案的七巧板就问世了(如图1网格中所示)(1)若正方形网格的边长为1,则图1中七巧板的七块拼板的总面积为______.(2)使用图1中的七巧板可以拼出一个轮廓如图2所示的长方形,请在图2中画出拼图方法(要求:画出各块拼板的轮廓).(3)随着七巧板的发展,出现了一些形式不同的七巧板,如图3所示的是另一种七巧板.利用图3中的七巧板可以拼出一个轮廓如图4所示的图形;大正方形的中间去掉一个小正方形,请在图4中画出拼图的方法(要求:画出各块拼板的轮廓).21. 小金鱼在直角坐标系中的位置如图所示,根据图形解答下面的问题:(1)分别写出小金鱼身上点A,B,C,D,E,F的坐标;(2)小金鱼身上的点的纵坐标都乘以−1,横坐标不变,作出相应图形,它与原图案相比有哪些变化?(3)小金鱼身上的点的横坐标都乘−1,所得图形与原图形相比有哪些变化?22. 已知抛物线y=x2−5x−6上有一点P,其坐标为(m,−10),求m的值.23. 重庆八中建校80周年,在体育、艺术、科技等方面各具特色,其中排球选修课是体育特色项目之一.体育组老师为了了解初一年级学生的训练情况,随机抽取了初一年级部分学生进行1分钟垫球测试,并将这些学生的测试成绩(即1分钟的垫球个数,且这些测试成绩都在60~180范围内)分段后给出相应等级,具体为:测试成绩在60~90范围内的记为D级(不包括90),90~120范围内的记为C级(不包括120),120~150范围内的记为B级(不包括150),150~180范围内的记为A级.现将数据整理绘制成如下两幅不完整的统计图,其中在扇形统计图中A级对应的圆心角为90°,请根据图中的信息解答下列问题:(1)在这次测试中,一共抽取了______名学生,并补全频数分布直方图:在扇形统计图中,D级对应的圆心角的度数为______度.(2)王攀同学在这次测试中1分钟垫球140个.他为了了解自己垫球个数在年级排名的大致情况,他把成绩为B等的全部同学1分钟垫球人数做了统计,其统计结果如表:成绩(个)120125130135140145人数(频数)2831098(垫球个数计数原则:120<垫球个数≤125记为125,125<垫球个数≤130记为130,依此类推)请你估计王攀同学的1分钟垫球个数在年级排名的大致情况.24. 如图,在△ABC中,AD是BC边上的高,BC=12,AD=8,矩形EFGH的边EF与BC重合,点G、H分别在AC、AB上运动.(1)当矩形EFGH面积最大时,求EF:GF的值;(2)把图形以BC所在直线为对称轴作对称图形,点A,H,K,G的对应点分别为A′,H′,K′,G′.①若矩形H H′G′G为正方形时,求三角形AHG的面积;②当AB=AC时,设GF为x(3≤x≤5),三角形AHG的面积记为S1,三角形GG′C的面积记为S2,+2,求y的最大值.若令y=s1s225. 如图,在平面直角坐标系xOy中,A(−8,0),B(0,6),∠ABO的角平分线交△ABO的外接圆⊙M于点D,连接OD,C为x正半轴上一点.(1)求⊙M的半径;(2)若OC=9,求证:∠OBC=∠ODB;2(3)若I为△ABO的内心,求点D到点I的距离.26. 已知二次函数y=(m−1)x2+2mx+(m+3).(1)如果该二次函数的图象与x轴无交点,求m的取值范围;(2)在(1)的前提下如果m取最小的整数,求此二次函数表达式.27. 如图1,折叠矩形纸片ABCD,具体操作:①点E为AD边上一点(不与点A,D重合),把△ABE沿BE所在的直线折叠,A点的对称点为F点;②过点E对折∠DEF,折痕EG所在的直线交DC 于点G,D点的对称点为H点.(1)求证:△ABE∽△DEG.(2)若AB=6,BC=10.①点E在移动的过程中,求DG的最大值;②如图2,若点C恰在直线EF上,连接DH,求线段DH的长.28. 如图,抛物线y=−x2+a过点A(2,0).(1)求a的值;(2)设抛物线与y轴的交点为B,点P为抛物线上一动点,且在第一象限,求四边形BOAP面积的最大值,并求出此时点P的坐标;(3)若k的取值满足直线y=kx(k≠0)始终与抛物线交于不重合的M、N两点,点Q(0,m)在y轴的正半轴上.直线QM与QN是否能关于y轴对称?若能求出满足条件的m的值;若不能请说明理由.【答案与解析】1.答案:D解析:解:根据题意得,a+2=0,b−3=0,解得a=−2,b=3,所以,a b=(−2)3=−8.故选:D.根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.本题考查了代数式求值,非负数的性质.根据非负数的性质:几个非负数的和为0时,这几个非负数都为0求出a、b的值是解题的关键.2.答案:D解析:解:∵△ABC中,AB=AC,顶角是120°,∴∠B=∠C,∠A=120°∵∠A+∠B+∠C=180°,∴∠B=∠C=180°−120°2=30°,故选:D.根据等腰三角形的性质得出∠B=∠C,根据题意得出∠A=120°,根据三角形内角和定理即可求得底角的度数.本题考查了等腰三角形的性质,三角形内角和定理,熟练掌握等边对等角是解题的关键.3.答案:C解析:解:∵l1//l2//l3,∴ABBC =DEEF,∵AB=1,BC=3,DE=2,∴13=2EF,解得,EF=6,故选:C.根据平行线分线段成比例和题目中的条件,可以求得EF的长,从而可以解答本题.本题考查平行线分线段成比例,解答本题的关键是明确题意,找出所求问题需要的条件,利用平行线分线段成比例解答.4.答案:A解析:试题分析:抛物线平移不改变a的值.原抛物线的顶点为(0,0),向右平移1个单位,再向上平移2个单位,那么新抛物线的顶点为(1,2).可设新抛物线的解析式为y=−(x−ℎ)2+k,代入得:y=−(x−1)2+2.故选A.5.答案:B解析:考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.中位数是指将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数).解:将这组数据从小到大的顺序排列为:75,75,80,80,80,90,中位数是(80+80)÷2=80.故选:B.6.答案:C解析:解:∵0,−3,−4,2,5这5个数中,非负数有0,2,5这3个,∴从中随机抽取一张,抽到写有非负数的卡片的概率是3.5故选C.先求出非负数的个数,再根据概率公式计算可得.本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出,本题找到非负数的个数是关键.现m种结果,那么事件A的概率P(A)=mn7.答案:D解析:解:如图所示:△A′B′C和△A″B″C即为所求,则点B′的坐标是:(4,6),点B的坐标是(0,−2).故选:D.利用位似图形的性质得出对应点位置,进而得出答案.此题主要考查了位似变换以及坐标与图形的性质,得出对应点位置是解题关键.8.答案:B解析:解:观察图象即可判断.①开口向上,应有最小值;②根据抛物线与x轴的交点坐标来确定抛物线的对称轴方程;③x=−2时,对应的图象上的点在x轴下方,所以函数值小于0;④图象与x轴交于−3和1,所以当x=−3或x=1时,函数y的值都等于0.⑤已知A(−2,y1),B(−2.5,y2),当x<−1时,y随x的增大而减小,则y1>y2解答:解:由图象知:①函数有最小值;错误;②该函数的图象关于直线x=−1对称;正确;③当x=−2时,函数y的值小于0;错误.;④当x=−3或x=1时,函数y的值都等于0,正确;⑤已知A(−2,y1),B(−2.5,y2),则y1>y2,正确;故选B.9.答案:(0,1)解析:解:∵∠1=∠2,∠BOA=∠AOC∴△AOC∽△BOA∴OCOA =OAOB即OC2=24∴OC=1∴点C的坐标是(0,1).根据已知条件,易证△AOC∽△BOA.运用相似三角形的性质求OC即得解.求点的坐标的问题可以转化为求线段的长度的问题,本题利用了三角形的相似的性质.10.答案:0.80解析:解:观察表格得到这种玉米种子发芽的频率稳定在0.801附近,0.801≈0.80,则这种玉米种子发芽的概率是0.80,故答案为:0.80.观察表格得到这种玉米种子发芽的频率稳定在0.801附近,即可估计出这种玉米种子发芽的概率.此题考查了利用频率估计概率,从表格中的数据确定出这种玉米种子发芽的频率是解本题的关键.11.答案:6解析:解:作OM⊥GH于M,OM交EF于N,如图,∵EF//GH,∴OM⊥EF,∴EN=FN,GM=HM,易得四边形ABMN和四边形MNDC为矩形,∴AN=BM,DN=CM,∴BG+DF=BM−GM+DN−NF=AN−HM+CM−EN=AN−EN+CM−HM=AE+CH=6.故答案为6.作OM⊥GH于M,OM交EF于N,如图,先证明OM⊥EF,利用垂径定理得到EN=FN,GM=HM,利用四边形ABMN和四边形MNDC为矩形得到AN=BM,DN=CM,然后根据等线段代换得到BG+ DF=AE+CH.本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了矩形的性质.12.答案:⑤解析:解:①∵抛物线开口向上,对称轴在y轴右侧,与y轴交于负半轴,>0,c<0,∴a>0,−b2a∴b<0,∴ab<0,说法①正确;②二次函数y=ax2+bx+c的图象经过(−1,0)(3,0)两点,∴方程ax2+bx+c=0的根为x1=−1,x2=3,说法②正确;③∵当x=2时,函数y<0,∴4a+2b+c<0,说法③正确;④∵抛物线与x轴交于(−1,0)、(3,0)两点,∴抛物线的对称轴为直线x=1,∵图象开口向上,∴当x >1时,y 随x 值的增大而增大,说法④正确;⑤∵抛物线与x 轴交于(−1,0)、(3,0)两点,且图象开口向上,∴当y <0时,−1<x <3,说法⑤错误;⑥∵当x =−1时,y =0,∴a −b +c =0,∴抛物线的对称轴为直线x =1=−b 2a ,∴b =−2a ,∴3a +c =0,∵c <0,∴3a +2c <0,说法⑥正确.故答案为⑤.由抛物线的开口方向、对称轴的位置及与y 轴交点的位置,即可判定①;根据函数和一元二次方程的关系即可判断②;根据图象即可判断③;由抛物线与x 轴两交点的坐标可得出抛物线的对称轴为直线x =1,然后根据二次函数的性质即可判断④;根据图象即可判断⑤;根据图象上点的坐标特征得出3a +c =0,再根据c 的符号即可判断⑥.本题考查了二次函数图象与系数的关系、抛物线与x 轴的交点以及二次函数图象上点的坐标特征,观察函数图象,逐一分析是解题的关键. 13.答案:−98解析:解:∵点P(a,b)在抛物线y =−2x 2+2x +1上,∴b =−2a 2+2a +1,∴a −b =a −(−2a 2+2a +1)=2a 2−a −1,∵a −b =2a 2−a −1=2(a −14)2−98, ∴a −b 的最小值为−98,故答案为−98.把点P(a,b)代入y =−2x 2+2x +1求得b =−2a 2+2a +1,进而即可求得a −b =2a 2−a −1,化成顶点式a −b =2a 2−a −1=2(a −14)2−98,根据二次函数的性质即可求得.本题考查了二次函数图象上点的坐标特征,二次函数的最值,熟练掌握二次函数的性质是解题的关键.14.答案:A1Q=(2n−1)C1Q解析:解:由题意:QC1//P n C n,∴QC1P n C n =BC1BC n=12n,∵A1C1=A n C n=2P n C n,∴QA1=(2n−1)QC1,故答案为A1Q=(2n−1)C1Q.由题意:QC1//P n C n,推出QC1P n C n =BC1BC n=12n,由A1C1=A n C n=2P n C n,推出QA1=(2n−1)QC1;本题考查相似三角形的判定和性质、规律形问题等知识,解题的关键是灵活运用平行线分线段成比例定理,属于中考填空题中的压轴题.15.答案:>解析:解:∵二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵该函数经过点(−1,y1),(2,y2),|−1−1|=2,|2−1|=1,∴y1>y2,故答案为:>.根据二次函数y=ax2+bx+c(a>0)图象的对称轴为直线x=1,且经过点(−1,y1),(2,y2)和二次函数的性质可以判断y1和y2的大小关系.本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.16.答案:2√5解析:解:∵AP=CQ=t,∴CP=6−t,∴PQ=√PC2+CQ2=√(6−t)2+t2=√2(t−3)2+18,∵0≤t≤2,∴当t=2时,PQ的值最小,当t=2时,PQ=√2(2−3)2+18=2√5,∴线段PQ的最小值是2√5,故答案是:2√5.根据已知条件得到CP=6−t,根据勾股定理表示PQ的长,由二次函数的性质得到结论.本题考查了二次函数的最值,勾股定理,正确的理解题意是解题的关键.17.答案:解:(1)2000米;0.6分钟;(2)甲的速度为20006=10003,第4分钟时甲行了10003×4=133313,乙落后甲133313−1300=3313(米);(3)途中跑时乙速为(1300−600)÷(4−2)=350,剩下的路程还需时(2000−1300)÷350=2分钟,所以乙第一次加速后,若始终保持这个速度前进,那么甲、乙将同时到达;(4)冲刺时乙速为(2000−1300)÷(5.4−4)=500,由(2)知此冲刺前还落后甲3313米,则要追上甲还需时3313÷(500−10003)=0.2分钟,即第4.2分钟时乙追上甲.解析:(1)根据图象即可得出所求的值;(2)由图可知第四分钟时,乙走了1300米,只要求出甲的路程即可,根据甲到终点时的数据可得出甲的速度,有了时间4分钟就能求出甲的路程了;(3)由题意可知在2到4t时,乙走了(1300−600)米,因此可计算出此时的速度,有知道了剩下的路程为(2000−1300)米,那么剩下的时间就可以求出了.然后和甲的剩下的时间进行比较,看能否同时到达;(4)甲追上乙时两者的路程是相同的,冲刺时乙的路程为(2000−1300)米,时间为(5.4−4)t,那么可求出乙冲刺的速度,然后根据(2)中求出的乙落后的距离,那么可求出追及用的时间再加上前面走的时间就能求出乙在第几分钟追上甲了.一次函数的综合应用题常出现于销售、收费、行程等实际问题当中,借助函数图象表达题目中的信息,读懂图象是关键.注意图中的分段函数的意义.18.答案:解:设较小五边形与较大五边形的面积分别是xcm2,ycm2.则xy=(34.5)2=49,因而x=49y.根据面积之和是78cm2,得到49y+y=78,解得:y=54,则x=49×54=24.即较小五边形与较大五边形的面积分别是24cm2,54cm2.解析:根据相似多边形相似比即对应边的比,面积的比等于相似比的平方,即可解决.本题考查相似多边形的性质.掌握相似多边形面积之比等于相似比的平方是解题的关键.19.答案:∽解析:解:(1)如图②所示,∵∠MPN=90°,∠B=90°,∴∠BAP+∠APB=90°=∠CPD+∠APB,∴∠BAP=∠CPD,又∵∠B=∠C,∴△ABP∽△PCD;故答案为:∽;(2)在旋转过程中,PEPF的值为定值.证明:如图③所示,过点F作FG⊥BC于G,则∠B=∠FGP,∵∠MPN=90°,∠B=90°,∴∠BEP+∠EPB=90°=∠CPF+∠EPB,∴∠BEP=∠CPF,∴△EBP∽△GPF,∴PEPF =PBFG,∵矩形ABGF中,FG=AB=2,而PB=1,∴PBFG =12,∴PEPF =12,即PEPF 的值为定值12.(1)根据有两组角对应相等的两个三角形相似,即可判定△ABP∽△PCD;(2)过点F作FG⊥BC于G,则∠B=∠FGP,先判定△EBP∽△GPF,得出PEPF =PBFG,再根据PBFG=12,即可得出PEPF =12.本题主要考查了相似三角形的判定与性质,矩形的性质的综合应用,解决问题的关键是根据相似三角形的对应边成比例进行推导计算.20.答案:8解析:解:(1)七块拼板的总面积=(2√2)×2√2=8,故答案为8.(2)答案如图所示.(3)答案如图所示.(1)求出大正方形的面积即可.(2)利用矩形的性质结合已知图形得出符合题意的答案.(3)利用正方形的性质结合已知图形得出符合题意的答案.此题主要考查了图形的剪拼,正确掌握矩形、平行四边形、梯形的性质是解题关键.21.答案:解:(1)如图所示:A(0,−4),B(4,−1),C(4,−7),D(10,−3),E(10,−5),F(8,−4);(2)如图所示:多边形A′B′F′C′与△F′D′E′即为所求,与原图案关于x轴对称;(3)如图所示:多边形AMSN和△SHJ即为所求,与原图案关于y轴对称.解析:(1)直接利用已知点位置得出各点坐标即可;(2)直接利用各点坐标的变化在坐标系中找出,进而得出符合题意的答案;(3)直接利用各点坐标的变化在坐标系中找出,进而得出符合题意的答案.此题主要考查了轴对称变换,正确得出各对应点坐标是解题关键.22.答案:解:∵抛物线y=x2−5x−6上有一点P,其坐标为(m,−10),∴m2−5m−6=−10,∴m2−5m+4=0,解得m1=1,m2=4,所以,m的值是1或4.解析:把点P的坐标代入抛物线解析式,解方程即可.本题考查了二次函数图象上点的坐标特征,一元二次方程的解法,将点P坐标代入抛物线解析式得到关于m的方程是解题的关键.23.答案:100 54=100解析:解:(1)在这次测试中,一共抽取了25÷90°360∘名学生,A级的人数为:100−20−40−25=15,补全的频数分布直方图如右图所示,=54°,D级对应的圆心角的度数为:360°×15100故答案为:100,54;(2)由统计图可知,A级有25人,由表格可知,垫球145个的8人,垫球140个9人,25+8=33,33+9=42,∴王攀同学的1分钟垫球个数在年级排名是34名到42名之间.(1)根据A级的人数和在扇形统计图中的度数可以求得本次抽查的学生人数,从而可以计算出D级的人数,进而可以将频数分布直方图补充完整,再根据统计图中的数据可以求得D级对应的圆心角的度数;(2)根据统计图中的数据可以表格中的数据可以估计王攀同学的1分钟垫球个数在年级排名的大致情况.本题考查频数分布直方图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.24.答案:解:(1)设FG的长为x,则AK的长为(8−x),∵四边形EFGH为矩形,∴HG//BC.∴AKAD =GHCB,即:8−x8=GH12.∴GH=32(8−x).矩形EFGH面积=GH⋅GF=32(8−x)x=−32x2+12x=−32(x−4)2+24,∴当x=4时,矩形的面积有最大值.∴GF=4,EF=GH=6.∴EF:GF=3:2.(2)①如图1所示:由轴对称图形的性质可知:FG=FG′,∵四边形H H′G′G为正方形,∴GH=GG′=2GF.设FG=x,则HG=2x.8−x8=2x12由(1)可知:AKAD=GHCB即:8−x8=2x12解得:x=247,∴GF=247,GH=487,AK=327.△AHG的面积=12GH⋅AK=12×487×327=76849.②如图2:设FG的长为x,则AK的长为(8−x),由(1)可知:GH=32(8−x).∴△AHG的面积=12GH⋅AK=32(8−x)2,FC=12(BC−FE)=12(BC−GH)=12[12−32(8−x)]=34x∴△GCG′的面积=12GG′⋅FC=12×2x×32x=34x2.∵y=S1S2+2,∴y=32(8−x)234x2+2=2×(8−x)2x2=2(8x−1)2+2.∵3≤x≤5,∴当x=3时,y有最大值,∴y的最大值=2×(83−1)2+2=689.解析:(1)设FG的长为x,则AK的长为(8−x),然后可列出比例式:AKAD =GHCB,(2)①由轴对称图形的性质可知:FG=FG′,因为四边形H H′G′G为正方形,所以GH=GG′=2GF.设FG=x,则HG=2x.由(1)可知:AKAD =GHCB,从而可求得:GF=247,GH=487,AK=327,然后利用三角形的面积公式求解即可;②设FG的长为x,则AK的长为(8−x),先求得△AHG的面积和△GCG′的面积,从而可得到y=(8x−1)2+2,然后根据x的取值范围是3≤x≤5求得y的最大值即可.本题考查的是相似三角形的性质、矩形、正方形、等腰三角形的性质和二次函数的综合应用,利用相似三角形的性质求得求得相关线段的长度(用含x的式子表示)是解题的关键.25.答案:(1)解:∵∠AOB=90°,∴AB是⊙M的直径,∵A(−8,0),B(0,6),∴OA=8,OB=6,∴AB=√OA2+OB=10,∴⊙M的半径OA=5;(2)证明:∵∠AOB=∠BOC=90°,∴tan∠OBC=OCOB =926=34,tan∠OAB=OBOA=68=34,∴∠OBC=∠OAB,∵∠ODB=∠OAB,∴∠OBC=∠ODB;(3)解:作∠BOE的平分线交BD于I,作IM⊥OB于M,如图所示:则IM//OA,I为△ABO的内心,IM为△ABO的内切圆半径,OM=IM=12(6+8−10)=2,∴BM=4,∴BI=√22+42=2√5,∵IM//OA,∴△BIM∽△BEO,∴IMEO =BMBO,即2EO=46,解得:EO=3,∴AE=OA−EO=5,BE=√EO2+OB2=√32+62=3√5,∴IE=BE−BI=√5,由相交弦定理得:BE×DE=AE×EO,即3√5DE=5×3,解得:DE=√5,∴DI=DE+IE=2√5;即点D到点I的距离为2√5.解析:(1)由圆周角定理得出AB是⊙M的直径,由勾股定理得出AB=√OA2+OB=10,即可得出⊙M的半径OA=5;(2)由三角函数定义得出tan∠OBC=OCOB =34,tan∠OAB=OBOA=34,得出∠OBC=∠OAB,由圆周角定理得出∠ODB=∠OAB,即可得出结论;(3)作∠BOE的平分线交BD于I,作IM⊥OB于M,则IM//OA,IM为△ABO的内切圆半径,OM=IM=1 2(6+8−10)=2,由勾股定理得出BI=√22+42=2√5,由平行线得出△BIM∽△BEO,得出IMEO=BMBO,求出EO=3,得出AE=OA−EO=5,BE=√EO2+OB2=3√5,得出IE=BE−BI=√5,由相交弦定理求出DE=√5,即可得出答案.本题考查了三角形的内切圆与内心、坐标与图形性质、圆周角定理、勾股定理、三角函数、相似三角形的判定与性质等知识;熟练掌握圆周角定理和相似三角形的判定与性质是解题的关键.26.答案:解:(1)∵二次函数y=(m−1)x2+2mx+(m+3)的图象与x轴无交点,∴△=4m2−4(m−1)(m+3)<0且m−1≠0,解得m>32;(2)根据题意得,解得m=2.∴二次函数的表达式是y=x2+4x+5.解析:(1)根据二次函数的图象与x轴无交点,可得△<0且m−1≠0;(2)根据题意和(1)的结果可得m的值,代入即可.本题考查了抛物线与x轴的交点,关键是掌握当△=b2−4ac>0时图象与x轴有两个交点;当△= b2−4ac=0时图象与x轴有一个交点;当△=b2−4ac<0时图象与x轴没有交点.27.答案:解:(1)如图1中,由折叠可知,∠AEB=∠FEB,∠DEG=∠HEG,∵∠AEB+∠FEB+∠DEG+∠HEG=180°,∴∠AEB+∠DEG=90°,∵四边形ABCD是矩形,∴∠A=∠D=∠AEB+∠ABE=90°,∴∠ABE =∠DEG ,∴△ABE∽△DEG .(2)①设AE =x ,∵△ABE∽△DEG , ∴AE DG =AB DE , ∴xDG =xDG =610−x ,∴DG =x(10−x)6=−16(x −5)2+256, ∵−16<0(0<x <10),∴x =5时,DG 有最大值,最大值为256.②如图2中,连接DH .由折叠可知∠AEB =∠FEB ,AE =EF ,AB =BF =6,∠BFE =∠A =90°,∵AD//BC ,∴∠AEB =∠EBC ,∴∠FEB =∠EBC ,∴CE =CB =10,∵点C 在直线EF 上,∴∠BFC =90°,CF =10−EF =10−AE ,∴CF =√BC 2−BF 2=√102−62=8,∴AE =EF =CE −CF =10−8=2,∴DG =x(10−x)6=2×(10−2)6=83,∴EG =√DE 2+DG 2=√82+(83)2=8√103, 由折叠可知,EG 垂直平分线段DH ,∴DH =2×DE⋅DG EG =2×8×838√103=85√10. 解析:(1)根据两角对应相等两三角形相似证明即可.(2)①设AE =x ,证明△ABE∽△DEG ,推出AE DG =AB DE ,可得DG =x(10−x)6利用二次函数的性质求解即可.②如图2中,连接DH.解直角三角形求出AE ,DE ,DG ,EG ,由翻折的性质可知EG 垂直平分线段DH ,利用面积法可得DH =2×DE⋅DGEG .本题属于相似形综合题,考查了矩形的性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建二次函数解决问题.28.答案:解:(1)将点A(2,0)代入抛物线y =−x 2+a ,可得−4+a =0,解得a =4,则抛物线为y =−x 2+4;(2)当x =0时,抛物线y =−0+4=4,则B(0,4),设直线AB 的解析式为y =kx +b ,依题意有{2k +b =0b =4, 解得k =−2,b =4,则直线AB 的解析式为y =−2x +4,设与直线AB 平行的直线解析式为y =−2x +m ,令−x 2+4=−2x +m ,即x 2−2x +(m −4)=0;△=4−4(m −4)=0,解得m =5,联立抛物线y =−x 2+4与直线y =−2x +5,则{y =−x 2+4y =−2x +5, 解得{x =1y =3. 故点P 的坐标为(1,3);(3)存在m 使直线QM 与QN 能关于y 轴对称.如图∵抛物线y=−x2+4的对称轴是y=0,点Q(0,m)在y轴的正半轴上,过M作直线平行于x轴,与抛物线另一交点为G,由抛物线的对称性,又QM和QN两条直线关于y轴对称,故Q,G,N三点共线;设M(c,kc),则G(−c,kc),又Q(0,m),则QG直线的方程为:y=m−kccx+m联立y=kx,求得交点N(−mcm−2kc ,−kmc m−2kc)又N在抛物线上,故有−kmcm−2kc =−(−mcm−2kc)2+4M也在抛物线上,即kc=−c2+4联立并去分母得(mc2−4m)(2c2+m−8)+m2c2=4(2c2+m−8)2令c2−4=t,则原式可化简为:mt(m+2t)+m2(t+4)=4(m+2t)2继续化简得m(2m−16)t=(16−2m)t2即(2m−16)(mt+t2)=0t为任意值,若要上述式子恒成立,则2m−16=0,解得m=8故存在m=8满足条件.解析:(1)将点A(2,0)代入抛物线y=−x2+a,即可得到a的值;(2)根据抛物线的解析式可得B点坐标,再根据待定系数法可得直线AB的解析式,要使四边形BOAP 面积最大,点P在与AB平行且与抛物线只要一个交点的直线上,联立抛物线y=−x2+a与直线的解析式,根据判别式即可求解;(3)根据抛物线的性质,轴对称的定义即可作出判断.考查了二次函数综合题,涉及的知识点有:待定系数法求抛物线的解析式,待定系数法求直线的解析式,根与判别式的关系,互相平行的两条直线的关系,抛物线的性质,解二元二次方程组,综合性较强,有一定的难度.。
北京清华附中八年级数学第二学期期末考试试卷(无答案) 人教新课标版
一、选择题 (共8道小题,每小题4分,共32分) 1、下列方程是关于x 的一元二次方程的是( );A 、02=++c bx ax B 、2112=+xx C 、1222-=+x x x D 、)1(2)1(32+=+x x2、上右图是万花筒的一个图案,图中所有小三角形均是全等三角形,其中把菱形ABCD 以A 为中心旋转多少度后可得图中另一阴影的菱形( ) A .顺时针旋转60° B .顺时针旋转120°C .逆时针旋转60°D .逆时针旋转120°3、关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( )A .6B .7C .8D .94、如图所示,直角三边形三边上的半圆面积从小到大依次记为1S 、2S 、3S ,则1S 、2S 、3S 的关系是( )A .321S S S =+B .232221S S S =+ C .321S S S >+D .321S S S <+5、将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A 、B 的读数分别为86°、30°,则∠ACB 的大小为( )A .15︒B .28︒C .29︒D .34︒6、正方形ABCD 在坐标系中的位置如图所示,将正方形ABCD 绕D 点顺时针方向旋转90后,B 点的坐标为( ) A .(22)-, B .(41), C .(31), D .(40),7、正比例函数y=2kx 与反比例函数y=1k x-在同一坐标系中的图像不可能是( )8、如图,已知直线b x y +=3与2-=ax y 的交点的横坐标为2-,根据图象有下列3个结论:①0>a ;②0>b ; ③2->x 是不等式23->+ax b x 的解集.其中正确的个数是( )A .0B .1C .2D .3二、填空题(共6道小题,每小题4分,共24分)9、已知关于x 的一元二次方程01)12=++-x x m (有实数根,则m 的取值范围是 .10、反比例函数y =2524n n x--的图像在所在象限内y 随x 的增大而增大,则n = .11、在半径为5cm 的圆中,位于圆心同侧的两条平行弦的长度分别为6cm 和8cm ,则这两条弦之间的距离为 12、若正比例函数y =2kx 与反比例函数y =k x(k ≠0)的图象交于点A (m ,1),则k 的值是___________.13、如图,在△ABC 中,∠BAC=1200,以BC 为边向形外作等边三角形△BCD ,把△ABD 绕着点D 按顺时针方向旋转600后得到△ECD ,若AB=3,AC=2,则AD 的长为___________.14、如图,在△ABC 中,∠ACB=90°,AC=BC=10,在△DCE 中,∠DCE=90°,DC=EC=6,点D 在线段AC 上,点E 在线 段BC 的延长线上,将△DCE 绕点C 旋转60°得到△D ′CE ′(点D 的对应点为点D ′,点E 的对应点为点E ′), 连接AD ′、BE ′,过点C 作CN ⊥BE ′,垂足为N ,直线CN 交线段AD ′于点M ,则MN 的长为 。
2018-2019学年八年级下期末数学试卷及答案
2018-2019学年八年级(下)期末考试数学试卷一、填空题(每小题3分,共24分)1.当x时,在实数范围内有意义.2.在▱ABCD中,∠A=70°,则∠C=度.3.正比例函数y=kx(k≠0)的图象经过点A(﹣1,5),则k=.4.如图,分别以Rt△ABC的三边为边长,在三角形外作三个正方形,若正方形P的面积等于89,Q的面积等于25,则正方形R的边长是.5.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件,使四边形AECF是平行四边形(只填一个即可).6.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是.7.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.8.一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为.二、选择题(每小题3分,共24分)9.下列二次根式中,最简二次根式是()A.B.C. D.10.下列计算正确的是()A.2B. C.D.=﹣311.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD是AB边上的中线,则CD的长是()A.20 B.10 C.5 D.12.一次函数y=kx+b的图象如图所示,则k、b的符号()A.k<0,b>0 B.k>0,b>0 C.k<0,b<0 D.k>0,b<013.下列命题中,为真命题的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.有一组对边平行的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形14.为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如下表:3458月用水量(吨)户数2341则关于这若干户家庭的月用水量,下列说法错误的是()A.平均数是4.6吨B.中位数是4.5吨C.众数是4吨D.调查了10户家庭的月用水量15.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度为h(cm),燃烧时间为t(小时),则下列图象能反映h与t的函数关系的是()A. B. C. D.16.如图,菱形ABCD的周长为40cm,对角线AC、BD相交于点O,DE⊥AB,垂足为E,DE:AB=4:5,则下列结论:①DE=8cm;②BE=4cm;③BD=4cm;=80cm,正确的有()④AC=8cm;⑤S菱形ABCDA.①②④⑤B.①②③④C.①③④⑤D.①②③④⑤三、解答题(共72分)17.(12分)计算:(1)2(2)÷﹣2×+(3)﹣(+2)(﹣2)18.(6分)如图所示,沿海城市B的正南方向A处有一台风中心,沿AC的方向以30km/h的速度移动,已知AC所在的方向与正北成30°的夹角,B市距台风中心最短的距离BD为120km,求台风中心从A处到达D处需要多少小时?(,结果精确到0.1)19.(6分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系,现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y关于x的函数关系式(不需要写出函数自变量x的取值范围);(2)用该体温计测体温时,水银柱的长度为6.0cm,求此时体温计的读数.20.(6分)已知:如图,在▱ABCD中,E、F是对角线BD上的两点,BE=DF,求证:AE=CF.21.(6分)某中学为了丰富学生的体育活动,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,学校随机抽取了部分同学调查他们的兴趣爱好,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,n=;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?22.(9分)在昆明市“创文”工作的带动下,某班学生开展了“文明在行动”的志愿者活动,准备购买一些书包送到希望学校,已知A品牌的书包每个40元,B 品牌的书包每个42元,经协商:购买A品牌书包按原价的九折销售;购买B品牌的书包10个以内(包括10个)按原价销售,10个以上超出的部分按原价的八折销售.(1)设购买x个A品牌书包需要y1元,求出y1关于x的函数关系式;(2)购买x个B品牌书包需要y2元,求出y2关于x的函数关系式;(3)若购买书包的数量超过10个,问购买哪种品牌的书包更合算?说明理由.23.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)DF⊥AC,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?24.(9分)如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C (0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).①求n的值及直线AD的解析式;②求△ABD的面积;③点M是直线y=﹣2x+a上的一点(不与点B重合),且点M的横坐标为m,求△ABM的面积S与m之间的关系式.25.(10分)如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,探究PB与PQ所满足的数量关系;小明同学探究此问题的方法是:过P点作PE⊥DC于E点,PF⊥BC于F点,根据正方形的性质和角平分线的性质,得出PE=PF,再证明△PEQ≌△PFB,可得出结论,他的结论应是;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.2018-2019学年八年级(下)期末考试八年级数学参考答案一、填空题(每小题3分,共24分) 1.3≥x 2. 70º3. -54. 85. AF=CE 或DF=BE 或AE ∥CF 或∠AEB=∠FCB 或∠DFC=∠DAE 或∠AEC=∠CFA 或∠EAF=∠FCE 或∠AEB=∠CFD6. 小林7. 98. x >3三、解答题:17.计算:(每小题4分,共12分) (1)483316122+- 解: 原式=3123234+- …………………………3分 =314= …………………………4分(2)810512-327+⨯÷ 解: 原式=22223+- …………………………3分 =3 …………………………4分 (3)()()()2525232-+-+解: 原式= 12623-++ …………………………3分 =624+ …………………………4分18. 解:在Rt △ADB 中,∠ADB=90º∵∠BAD=30º,BD=120km∴ AB=240km …………………………2分 又∵ 222AB BD AD =+∴312012024022=-=AD km …………………………4分∵73.13≈∴从A 处到达D 处需要34303120=9.6≈小时 …………………………5分答:求台风中心从A 处到达D 处大约6.9小时 …………………………6分19. 解:设函数的解析式为:b kx y +=(k ≠0)依题意得:⎩⎨⎧=+=+408354b k b k …………………………2分…………………………3分∴ 3045+=x y …………………………4分 (2)当 x=6.0cm 时,y=7.5+30=37.5 …………………………5分 答:此时体温计的读数为37.5ºC . …………………………6分20.证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD . …………………………1分 ∴∠ABE=∠CDF . …………………………2分 在△ABE 和△CDF 中⎪⎩⎪⎨⎧==∠=DF BE CDF ABE CD AB ∴△ABE ≌△CDF (SAS ). …………………………5分∴AE=CF …………………………6分 (其它做法参照给分)21. 解:(1)n =100;…………………………1分(2)∵喜欢羽毛球的人数=100×20%=20人,…………………………2分∴条形统计图如图;…………………………3分(3)由已知得,1200×20%=240(人). …………………………5分答;该校约有240人喜欢跳绳. …………………………6分22. 解:(1)由题意得:x y 361= ………1分(2)⎩⎨⎧+≤≤=)>10(846.33)100(422x x x x y …………………………4分(分开书写:当0≤x ≤10时,x y 422=,当x >10时;()846.33108.04210422+=-⋅⨯+⨯=x x y ,得满分) (列对一个解析式得一分,取值范围共一分)(3)若x >10则:846.332+=x y①当21y y =时,846.3336+=x x ,解得35=x ;………5分 ②当1y >2y 时,846.3336+x x >,解得35>x ;………6分当21y y <时,846.3336+x x <,解得35<x ,………7分 ∵x >10∴3510<<x ………8分答:若购买35个书包,选A 、B 品牌都一样;若购买35个以上书包,选B 品牌划算;若购买书包个数超过10个但小于35个,选A 品牌划算. ………9分23. 证明:(1)证明:∵A0=C0,B0=D0∴四边形ABCD 是平行四边形 …………………………2分∴∠ABC=∠ADC ∵∠ABC+∠ADC=180°∴∠ABC=∠ADC=90° …………………………3分∴平行四边形ABCD 是矩形 …………………………4分 (2)解:∵∠ADC=90°,∠ADF :∠FDC=3:2∴∠FDC=36° …………………………5分 ∵DF ⊥AC ,∴∠DCO=90°-36°=54°, …………………………6分 ∵四边形ABCD 是矩形,∴OC=OD ,∴∠DCO =∠ODC=54° …………………………7分 ∴∠BDF=∠ODC-∠FDC=18° …………………………8分24. 解:(1)∵直线y=-2x+a 与y 轴交于点C (0,6),∴a=6,…………………………1分 ∴y=-2x+6,…………………………2分(2) ①∵点D (-1,n )在y=-2x+6上,∴n=8,…………………………3分设直线AD 的解析式为y=kx+b(K ≠0)⎩⎨⎧=+-=+83-b k b k 解得:k=4,b=12 …………………………4分∴直线AD 的解析式为y=4x+12;…………………………5分 ②令y=0,则-2x+6=0,解得:x=3,∴B (3,0),…………………………6分∴AB=6,∵点M 在直线y=-2x+6上,设M (m ,-2m+6),∴S= 21×6×62-+m =362-+m …………………………7分 ∴①当m <3时,S=3(-2m+6),即S=-6m+18;…………………………8分 ②当m >3时,S=21×6×[-(-2m+6)],即S=6m-18;…………………………9分25..(1)答:PB=PQ ………………………2分(2)证明:过P 作PE ⊥BC 的延长线于E 点,PF ⊥CQ 于F 点, ………………………3分∵AC 是正方形的对角线∴ PA 平分∠DCB ,∴∠DCA=∠ACB ………………………4分∵ ∠ACB=∠PCE , ∠DCA=∠FCP∴∠PCE=∠FCP∴ PC 平分∠FCE ,又∵PE ⊥BC ,PF ⊥CQ∴ PF=PE , ………………………5分∴∠ECF=∠CEP=∠CFP = 90°=∠QFP∴ 四边形CEPF 是矩形………………………6分 ∴∠EPF=90°∴∠BPE=∠QPF ,………………………7分 在△PEB 和△PFQ 中⎪⎩⎪⎨⎧∠=∠=∠=∠BPEQPF PF PE QFPBEP∴△PEB ≌△PFQ (ASA )………………………9分 ∴PB=PQ .………………………10分 (其它做法参照给分)。
2018-2019北京期八年级第二学期期末数学试卷分类汇编-新定义【含答案】
2018-2019八年级期末分类—新定义 1、【西城】4. 在平面直角坐标系xOy 中,对于点M 和图形W ,若图形W 上存在一点N (点M ,N 可以重合),使得点M 与点N 关于一条经过原点的直线l 对称,则称点M 与图形W 是“中心轴对称”的.对于图形W 1和图形W 2,若图形W 1和图形W 2分别存在点M 和点N (点M ,N 可以重合),使得点M 与点N 关于一条经过原点的直线l 对称,则称图形W 1和图形W 2是“中心轴对称”的.特别地,对于点M 和点N ,若存在一条经过原点的直线l ,使得点M 与点N 关于直线l 对称,则称点M 和点N 是“中心轴对称”的.(1)如图1,在正方形ABCD 中,点A (1,0),点C (2,1),①下列四个点P 1(0,1),P 2(2,2),P 31(,0)2-,P 4 1(,2-中,与 点A 是“中心轴对称”的是 ;② 点E 在射线OB 上,若点E 与正方形ABCD 是“中心轴对称”的,求点E 的横坐标x E的取值范围;(2)四边形GHJK 的四个顶点的坐标分别为G (-2,2),H (2,2),J (2,2)-,K (2,2)--,一次函数y b =+图象与x 轴交于点M ,与y 轴交于点N ,若线段MN 与四边形GHJK是“中心轴对称”的,直接写出b 的取值范围.图1 备用图28. 对于平面直角坐标系xOy 中的点P 和正方形给出如下定义:若正方形的对角线交于点O ,四条边分别和坐标轴平行,我们称该正方形为原点正方形. 当原点正方形上存在点Q ,满足PQ ≤1时,称点P 为原点正方形的友好点. (1)当原点正方形边长为4时,① 在点P 1(0, 0),P 2(-1, 1),P 3(3, 2)中,原点正方形的友好点是_______; ② 点P 在直线y x =的图象上,若点P 为原点正方形的友好点,求点P 横坐标的取值范围; (2)一次函数2y x =-+的图象分别与x 轴,y 轴交于点A ,B ,若线段AB 上存在原点正方形的友好点,直接写出原点正方形边长a 的取值范围.28.在平面直角坐标系xOy 中,若P ,Q 为某个矩形不相邻的两个顶点,且该矩形的边均与某条坐标轴垂直, 则称该矩形为点P ,Q 的“相关矩形”. 图1为点P ,Q 的“相关矩形”的示意图.已知点A 的坐标为(1,2).(1)如图2,点B 的坐标为(,0)b .① 若2b =-,则点A ,B 的“相关矩形”的面积是 ;② 若点A ,B 的“相关矩形”的面积是8,则b 的值为 .(2)如图3,点C 在直线1y =-上,若点A ,C 的“相关矩形”是正方形,求直线AC 的表达式; (3)如图4,等边DEF △的边DE 在x 轴上,顶点F 在y 轴的正半轴上,点D 的坐标为(1,0). 点M 的坐标为(,2)m ,若在DEF △的边上存在一点N ,使得点M ,N 的“相关矩形”为正方形,请直接写出m 的取值范围.图2 图3图428.对于平面直角坐标系xOy中的图形M和点P(点P在M内部或M上),给出如下定义:如果图形M上存在点Q,使得0≤PQ≤2,那么称点P为图形M的和谐点.已知点A(-4,3),B(-4,-3),C(4,-3),D(4,3).(1)在点P1(-2,1),P2(-1,0),P3(3,3)中,矩形ABCD的和谐点是;(2)如果直线1322y x=+上存在矩形ABCD的和谐点P,直接写出点P的横坐标t的取值范围;(3)如果直线12y x b=+上存在矩形ABCD的和谐点E,F,使得线段EF上的所有点(含端点)都是矩形ABCD的和谐点,且25EF>,直接写出b的取值范围.28.对于平面直角坐标系xoy 中的图形W 和点P ,给出如下定义:F 为图形W 上任意一点,将P ,F 两点间的最小值记为m ,最大值记为M (若P ,F 重合,则PF =0),称M 与m 的差为点P 到图形W 的“差距离”,记作d (P ,W ),即d (P ,W )=M -m 。
2019-2020学年北京市清华大学附中上地分校八年级(下)期末数学试卷 (含答案解析)
2019-2020学年北京市清华大学附中上地分校八年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列计算错误的是()A. 3√3−√3=2√3B. x2·x3=x6C. −2+|−2|=0D. (−3)−2=192.根据函数图像的定义,下列几个图像表示y是x的函数的是()A. B.C. D.3.在四边形ABCD中,AB//CD,要使其是平行四边形,可添加的条件不正确的是()A. BC=ADB. AB=CDC. ∠A=∠CD. AD//BC4.某班抽取6名同学参加体能测试,成绩如下(单位:分):80,90,75,75,80,80。
关于这组数据,下列表述错误的是()A. 平均数是80B. 方差是5C. 中位数是80D. 极差是155.下列各组线段能构成直角三角形的一组是()A. 30,40,50B. 7,12,13C. 5,9,12D. 不能确定6.如图,直线y=x+b与直线y=kx+4交于点(23,83),则关于x的不等式x+b>kx+4的解集是()A. x>23B. x≥23C. x<23D. x≤237.点P1(x1,y1)、P2(x2,y2)是一次函数y=−4x+3图象上的两点,且x1<x2,则y1,y2的大小关系是()A. y1>y2B. y1>y2>0C. y1<y2D. y1=y28.如图,在矩形ABCD中,AB=3,BC=2,点E为AD中点,点F为BC边上任一点,过点F分别作EB,EC的垂线,垂足分别为点G,H,则FG+FH为()A. 52B. 5√102C. 3√1010D. 3√1059.下列图象中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的可能是()A. B.C. D.10.如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿B→C→D→A运动至点A停止,如图②是点P运动时,△PAB的面积y(cm2)随点P运动的路程x(cm)变化的关系图象,则图②中H点的横坐标为()A. 12B. 14C. 16D. 8√3二、填空题(本大题共8小题,共24.0分)11.函数y=的自变量x的取值范围是______.√x+312.在Rt△ABC中,∠C=90°,∠A=30°,BC=2,D,E分别是AC,BC的中点,则DE的长等于______.13.如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE.将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则△DEF的面积为______.14.在平面直角坐标系中,把直线y=x向左平移一个单位长度后,得到直线的解析式为________________.15.如图,△ABC中,∠C=90°,AC=4,BC=8,以AB为边向外作正方形ABDE,若此正方形中心为点O,则点C和点O之间的距离为________.16.若直线y=x−b与坐标轴围成面积是8,则b=______.17.已知一组数据1,3,5,7,9,则这组数据的方差是______.18.如图,已知一条直线经过点A(0,2),点B(1,0),将这条直线向左平移与x轴,y轴分别交于点C,点D,若DB=DC,则直线CD的函数解析式为.三、计算题(本大题共1小题,共5.0分)19.(√3−√2)(√3+√2)+√12+√3√3+(16)−1.四、解答题(本大题共7小题,共41.0分)20.在平行四边形ABCD中,E是BC边上一点,F是DE上一点,若∠B=∠AFE,AB=AF.求证:(1)△ADF≌△DEC.(2)BE=EF.21.若x,y为实数,且y=4√2x−1+3√1−2x+1,求√x−√y的值.2xy22.已知直线y=kx+b经过点A(0,3)和B(1,5).(1)求这个函数的表达式;(2)当x=−3时,y的值是多少?23.某校在争创“全国文明城市”活动中,组织全体学生参加了“创文”知识竞赛,为了解各年级成绩情况,学校这样做的:【收集数据】从七、八、九三个年级的竞赛成绩中各随机抽取了10名学生成绩如下表:c=______.【得出结论】请你根据以上信息,推断你认为成绩好的年级,并说明理由(至少从两个角度说明)24.如图,Rt△ABC中,∠C=90°,AC=BC,AB=4cm.动点D沿着A→C→B的方向从A点运动到B点.DE⊥AB,垂足为E.设AE长为xcm,BD长为ycm(当D与A重合时,y=4;当D 与B重合时y=0).小云根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小云的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm00.51 1.52 2.53 3.54y/cm4 3.5 3.2 2.8 2.1 1.40.70(2)在下面的网格中建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当DB=AE时,AE的长度约为______cm.x+m的图象交于P(n,−2).25.如图,函数y=−2x+3与y=−12(1)求出m、n的值;(2)求出△ABP的面积.26.如图1,菱形ABCD中,∠ABC=120°,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F,连接CE.(1)证明:△ADP≌△CDP;(2)判断△CEP的形状,并说明理由;(3)如图2,把菱形ABCD改为正方形ABCD,其他条件不变,直接写出线段AP与线段CE的数量关系.-------- 答案与解析 --------1.答案:B解析:解:A、3√3−√3=2√3,故A正确,B、x2⋅x3=x5,同底数幂相乘,底数不变指数相加,故B错误;C、−2+|−2|=0,−2+2=0,故C正确;D、(−3)−2=1(−3)2=19,故D正确.故选:B.四个选项中分别根据二次根式的加减法求解,同底数幂的乘法法则求解,绝对值的加减法用负整数指数幂的法则求解.本题主要考查了二次根式的加减法,同底数幂的乘法,绝对值的加减法,负整数指数幂,解题的关键是根据它们各自法则认真运算.2.答案:C解析:【分析】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可判断解答.【解答】解:A.对给定的x的值,有两个y值可能与之对应,y不是x的函数.B.对给定的x的值,有两个y值可能与之对应,y不是x的函数.C.对给定的x的值,有唯一确定的y值与之对应,y是x的函数.D.对给定的x的值,可能有两个y值与之对应,y不是x的函数.故选C.3.答案:A解析:【解答】解:∵AB//CD,∴当AB=CD时,由一组对边平行且相等的四边形为平行四边形可知该条件正确;故B正确,当BC//AD时,由两组对边分别平行的四边形为平行四边形可知该条件正确;故D正确;当∠A=∠C时,可求得∠B=∠D,由两组对角分别相等的四边形为平行四边形可知该条件正确;故当BC=AD时,该四边形可能为等腰梯形,故该条件不正确;故A错误,故选:A.【分析】本题主要考查平行四边形的判定,掌握平行四边形的判定方法是解题的关键.根据平行四边形的判定方法,逐项判断即可.4.答案:B解析:【分析】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,[(x1−x¯)2+(x2−x¯)2+⋯+(x n−x¯)2].也考查了平均数、中位数和极差.先计算公式是:s2=1n把数据由小到大排列为75,75,80,80,80,90,然后根据平均数、中位数和极差的定义得到数据的平均数,中位数和极差,再根据方差公式计算数据的方差,然后利用计算结果对各选项进行判断.【解答】=80,解:数据由小到大排列为75,75,80,80,80,90,它的平均数为75+75+80+80+80+906数据的中位数为80,极差为为15,[(75−80)2+(75−80)2+(80−80)2+(80−80)2+(80−80)2+(90−80)2]=数据的方差=1625.故选B.5.答案:A解析:【分析】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:A.∵302+402=502,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确;B.∵72+122≠132,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;C.∵52+92≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;D.错误;6.答案:A解析:解:关于x的不等式x+b>kx+4的解集是x>23.故选:A.写出直线y=x+b在直线y=kx+4上方所对应的自变量的范围即可.本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.7.答案:A解析:【分析】本题考查一次函数的性质,利用一次函数的性质,当k<0时y随x的增大而减小,然后利用已知条件进行判断即可.【解答】解:∵函数y=−4x+3中,由于k=−4<0,∴y随x的增大而减小,∴当x1<x2时,y1>y2.故选A.8.答案:D解析:解:连接EF,如图所示:∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=2,∠A=∠D=90°,∵点E为AD中点,∴AE=DE=1,∴BE=√AE2+AB2=√12+32=√10,在△ABE和△DCE中,{AE=DE ∠A=∠D AB=DC ,∴△ABE≌△DCE(SAS),∴BE=CE=√10,∵△BCE的面积=△BEF的面积+△CEF的面积,∴12BC×AB=12BE×FG+12CE×FH,即BE(FG+FH)=BC×AB,即√10(FG+FH)=2×3,解得:FG+FH=3√105.故选:D.连接EF,由矩形的性质得出AB=CD=3,AD=BC=2,∠A=∠D=90°,由勾股定理求出BE,由SAS证明△ABE≌△DCE,得出BE=CE=√10,再由△BCE的面积=△BEF的面积+△CEF的面积,即可得出结果.本题考查了矩形的性质、全等三角形的判定与性质、勾股定理、三角形面积的计算;熟练掌握矩形的性质,证明三角形全等是解决问题的关键.9.答案:A解析:【分析】主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.根据“两数相乘,同号得正,异号得负”分两种情况讨论mn的符号,然后根据m、n同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【解答】解:①当mn>0,m,n同号,同正时y=mx+n过一,二,三象限,同负时过二,三,四象限;②当mn<0时,m,n异号,则y=mx+n过一,三,四象限或一,二,四象限.故选A.10.答案:B解析:【分析】本题考查的是动点图象问题,涉及到三角形面积计算、函数等知识,此类问题关键是,要弄清楚不同时间段,图象和图形的对应关系,进而求解.图②显示,当BC=4时,y=6√3,即y=12×AB×BCsin60°=12×AB×4×√32=6√3,即可求解.【解答】解:图②显示,当BC=4时,y=6√3,即y=12×AB×BCsin60°=12×AB×4×√32=6√3,解得:AB=6,点H的横坐标为:BC+CD+AD=4+4+6=14,故选B.11.答案:x>−3解析:解:根据题意得,x+3>0,解得x>−3.故答案为:x>−3.根据被开方数大于等于0,分母不等于0列式计算即可得解.本题考查函数自变量的取值范围,涉及的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.12.答案:2解析:解:∵∠C=90°,∠A=30°,∴AB=2BC=4,∵D,E分别是AC,BC的中点,∴DE=12AB=2,故答案为:2.根据直角三角形的性质得到AB=2BC=4,根据三角形中位线定理计算即可.本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.13.答案:23解析:解:设CE=x.∵四边形ABCD是矩形,∴AD=BC=5,CD=AB=3,∠A=∠D=90°.∵将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,∴BF=BC=5,EF=CE=x,DE=CD−CE=3−x.在Rt△ABF中,由勾股定理得:AF2=52−32=16,∴AF=4,DF=5−4=1.在Rt△DEF中,由勾股定理得:EF2=DE2+DF2,即x2=(3−x)2+12,解得:x=53,∴DE=3−53=43,∴△DEF的面积=12DE×DF=12×43×1=23;故答案为:23.设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BF= BC=5,EF=CE=x,DE=CD−CE=3−x.在Rt△ABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在Rt△DEF根据勾股定理列出关于x的方程,即可解决问题.本题考查了折叠的性质、勾股定理、矩形的性质、方程思想等知识,关键是熟练掌握勾股定理,找准对应边.14.答案:y=x+1解析:【分析】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.根据“左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,在平面直角坐标系中,把直线y=x向左平移一个单位长度后,其直线解析式为y=x+1.故答案为y=x+1.15.答案:6√2解析:【分析】本题考查正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,解答时证明三角形全等是关键.过点O作OM垂直于CA的延长线于点M,作ON垂直于CB于点N,易证四边形MCNO是矩形,利用已知条件再证明△AOM≌△BON,所以OM=ON,AM=BN,得到四边形MCNO 是正方形和CN的长,根据勾股定理即可求出OC的长.【解答】解:过点O作OM垂直于CA的延长线于点M,作ON垂直于CB于点N,连接OA、OB,∴∠OMC=∠ONC=90°,∵∠ACB=90°,∴四边形MCNO是矩形,∴∠MON=90°,∵点O为正方形ABDE的中心,∴OA=OB,∠AOB=90°,∴∠MON−∠AON=∠AOB−∠AON,∴∠AOM=∠NOB,在△AOM和△BON中,{∠OMA=∠ONB=90∘∠AOM=∠BONOA=OB,∴△AOM≌△BON(AAS),∴AM=BN,OM=ON,即四边形MCNO是正方形,∵AC=4,BC=8,∴CN=AC+BC2 =6,∴ON=CN=6,由勾股定理得OC=6√2.故答案为6√2.16.答案:±4解析:解:直线y=x−b与x轴的交点为:(b,0),与y轴的交点为:(0,−b),∴12×|−b|×|b|=8,解得:b=±4.故答案为:±4.求出直线与两坐标轴的交点坐标,再根据三角形的面积公式计算出b的值即可.本题考查了一次函数图象上点的坐标特征,待定系数法求函数的解析式,正确利用点的坐标表示三角形的面积是关键.17.答案:8解析:解:∵1、3、5、7、9的平均数是(1+3+5+7+9)÷5=5,∴方差=15[(1−5)2+(3−5)2+(5−5)2+(7−5)2+(9−5)2]=8;故答案为:8.先计算出平均数,再根据方差公式计算即可.本题考查方差的定义与意义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x −,则方差S 2=1n [(x 1−x −)2+(x 2−x −)2+⋯+(x n −x −)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 18.答案:y =−2x −2解析:【分析】此题考查一次函数图像上点的坐标特征和图形的平移.解答此题的关键是首先设出直线AB 的解析式为y =kx +b ,然后代入点A 、点B 的坐标求出k 和b 的值,也即求出直线AB 的解析式;最后根据题意证明△AOB≌△DOC ,进而证得OA =OD ,即能求出点D 的坐标为(0,−2),即可求出平移以后的直线CD 的函数解析式为:y =−2x −2.【解答】设直线AB 的解析式为y =kx +b ,把A(0,2)、点B(1,0)代入,得 {b =2,k +b =0,解得{k =−2,b =2,故直线AB 的解析式为y =−2x +2;将这直线向左平移与x 轴负半轴,y 轴负半轴分别交于点C 、点D ,使DB =DC ,∴ DO 垂直平分BC ,∴ OC =OB ,∵ 直线CD 由直线AB 平移而成,∴ CD =AB ,∵AB//CD ,∴∠ DCO =∠ABO ,∴△AOB≌△DOC ,∴OA =OD ,∴ 点D 的坐标为(0,−2),∵平移后的图形与原图形平行,∴平移以后的函数解析式为:y=−2x−2.故答案为y=−2x−2.19.答案:解:原式=3−2+4+1+6=12解析:本题考查的是实数的运算,熟知实数混合运算的法则是解答此题的关键.先把二次根式进行化简,再根据负整数指数幂和实数混合运算的法则进行计算即可.20.答案:解:(1)证明:∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,AB//CD,∴∠ADF=∠DEC,∠B+∠C=180°,∵∠AFE+∠AFD=180°,∠B=∠AFE,∴∠AFD=∠C,∵AB=AF,∴AF=DC,在△ADF和△DEC中{∠ADF=∠DEC∠AFD=∠CAF=DC,∴△ADF≌△DEC(AAS);(2)证明:∵△ADF≌△DEC,∴AD=DE,DF=EC,又∵AD=BC,∴BC=DE,∴BC−EC=DE−DF,即BE=EF.解析:【分析】此题主要考查了平行四边形的性质和全等三角形的判定与性质,关键是熟练掌握平行四边形的对边平行且相等.(1)根据平行四边形的性质可得DC=AB,AD=BC,AB//CD,然后再证明AF=DC,∠ADF=∠DEC,∠AFD=∠C,利用AAS可判定△ADF≌△DEC;(2)根据全等三角形的性质得出AD=DE,DF=EC,再证出BC=DE,即可得出结论.21.答案:解:∵x,y是实数,且y=4√2x−1+3√1−2x+1,∴2x−1≥0且1−2x≥0,解得:x=12,∴y=1,√x−√y 2xy =√12−12×12×1=√22−1.解析:本题考查了二次根式有意义的条件,二次根式的化简求值的应用,解此题的关键是求出x,y 的值,题目比较好,难度适中.先根据二次根式有意义的条件求出x和y的值,再把数值代入求出即可.22.答案:解:(1)根据题意得:{b=3k+b=5,∴{k=2b=3,∴y=2x+3;(2)当x=−3时,y=2x+3=2×(−3)+3=−3.解析:此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.(1)将A与B坐标代入直线解析式求出k与b的值,代入即可;(2)把x=−3代入解析式计算即可求出y的值.23.答案:71 80 75解析:解:(1)a=110(60+70+60+100+80+70+80+60+40+90)=71,∵在八年级学生成绩中,80分出现的次数最多,∴b=80,c=70+802=75,故答案依次为:71,80,75.(2)八年级成绩较好,从平均分看,处于七八年级之间,从中位数看,中位数为80优秀说明至少一半同学都在80分以上,优秀率高,从众数看,众数为80说明80分的同学最普遍最多.一组数据中出现次数最多的数据叫做众数.平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.此题考查众数、中位数、平均数的意义,正确理解众数、中位数、平均数的意义是解题的关键.24.答案:(1)2.9;(2)根据已知数据描点连线得:(3)2.3解析:解:(1)根据题意量取数据为2.9故答案为:2.9(2)见答案(3)当DB=AE时,y与x满足y=x,在(2)图中,画y=x图象,测量交点横坐标为2.3.故答案为:2.3(1)按题意,认真测量即可;(2)利用数据描点、连线;(3)当DB=AE时,y=x,画图形测量交点横坐标即可.本题以考查画函数图象为背景,应用了数形结合思想和转化的数学思想.25.答案:解:(1)∵y=−2x+3过P(n,−2).∴−2=−2n+3,解得:n=52,∴P(52,−2),∵y=−12x+m的图象过P(52,−2).∴−2=−12×52+m,解得:m=−34;(2)∵当y=−2x+3中,x=0时,y=3,∴A(0,3),∵y=−12x−34中,x=0时,y=−34,∴B(0,−34),∴AB=154,∴△ABP的面积:12×AB×52=12×154×52=7516.解析:此题主要考查了一次函数图象上点的坐标特点,一次函数的性质,三角形的面积,待定系数法求一次函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.(1)根据凡是函数图象经过的点必能满足解析式把P点坐标代入y=−2x+3可得n的值,进而可得P 点坐标,再把P点坐标代入y=−12x+m可得m的值;(2)首先求出A、B两点坐标,进而可得△ABP的面积.26.答案:解:(1)在菱形ABCD中,AD=CD,∠ADP=∠CDP,在△ABP和△CBP中,{AD=CD∠ADP=∠CDP DP=DP,∴△ADP≌△CDP(SAS),(2)由(1)得:△ADP≌△CDP∴PA=PC,∠DAP=∠DCP,∵PA=PE,∴PC=PE,∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD,∴∠CPF=∠CDF∵∠ABC=∠ADC=120°,∴∠CPF=∠EDF=180°−∠ADC=60°,∴△CPE是等边三角形,(3)CE=√2AP,证明如下:如前同理可证:PC=PE,∠EPC=∠CDE,∵在正方形ABCD中,∠ADC=90°,∴∠EPC=∠CDE=90°,∴△CPE是等腰直角三角形三角形,∴CE=√2PC=√2AP解析:(1)由菱形性质可得AD=CD,∠ADP=∠CDP,即可证明△ABP≌△CBP(SAS).(2)由△ABP≌△CBP可得PA=PC,∠BAP=∠BCP,再证明∠CPF=∠EDF=180°−∠ADC=60°,即可证明△EPC是等边三角形,(3)同理可证△CPE是等腰直角三角形三角形,即可得CE=√2PC=√2AP;本题是四边形综合题,考查了正方形、菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.。
2019-2020学年北京市清华大学附中上地分校八年级(下)期末数学试卷 (解析版)
2019-2020学年北京市清华大学附中上地分校八年级(下)期末数学试卷一.选择题(共10小题)1.下列计算正确的是()A.B.C.=﹣2D.2.下列各曲线中不能表示y是x的函数是()A.B.C.D.3.如图,在四边形ABCD中,已知AB=CD,添加一个条件,可使四边形ABCD是平行四边形,下列错误的是()A.AB∥CD B.BC=AD C.BC∥AD D.∠A+∠D=180°4.某校以“我和我的祖国”为主题的演讲比赛中,共有10位评委分别给出某选手的原始评分,在评定该选手成绩时,则从10个原始评分中去掉1个最高分和1个最低分,得到8个有效评分.8个有效评分与10个原始评分相比,不变的是()A.平均数B.极差C.中位数D.方差5.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.2,3,4C.5,12,13D.1,,3 6.如图,一次函数y=kx+b的图象经过点(4,﹣3),则关于x的不等式kx+b<﹣3的解集为()A.x<3B.x>3C.x<4D.x>47.已知关于x的一次函数y=(k2+3)x﹣2的图象经过点A(2,m)、B(﹣3,n),则m,n的大小关系为()A.m≥n B.m≤n C.m>n D.m<n8.如图,在矩形ABCD中,AB=4,BC=8,过对角线交点O作EF⊥AC交AD于点E,交BC于点F,四边形OCDE的周长为()A.B.C.D.9.在平面直角坐标系中,函数y=2kx(k≠0)的图象如图所示,则函数y=﹣2kx+2k的图象大致是()A.B.C.D.10.如图1,在菱形ABCD中,动点P从点B出发,沿折线B→C→D→B运动,设点P经过的路程为x,△ABP的面积为y.把y看作x的函数,函数的图象如图2所示,则图2中的a等于()A.25B.20C.12D.二.填空题(共8小题)11.函数y=中,自变量的取值范围是.12.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=4,则EF的长度为.13.如图,矩形ABCD中,AB=6,BC=8,E是BC边上一点,将△ABE沿AE翻折,点B 恰好落在对角线AC上的点F处,则BE的长为.14.如图,直线y=﹣2x﹣2与x轴交于点A,与轴交于点B,把直线AB沿x轴的正半轴向右平移2个单位长度后得到直线CD,则直线CD的函数解析式是.15.如图,点O是正方形ABCD的中心,过点O的直线与AD、BC交于点M、点N,DE ⊥MN,交AB于点E,若AM=1,DM=3,则DE的长为.16.若直线y=ax+3与两坐标轴所围成的三角形的面积是6个单位,则a的值是.17.小天想要计算一组数据92,90,94,86,99,85的方差S02在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为S12,请你计算一下S12=(结果保留两位小数),S12S02(填“>”,“=”或“<”).18.如图,直线y=x+3与x轴交于点A,与y轴交于点D,将线段AD沿x轴向右平移4个单位长度得到线段BC,若直线y=kx﹣4与四边形ABCD有两个交点,则k的取值范围是.三.解答题19.计算:.20.如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且∠AEB=∠CFD.求证:DE=BF.21.化简求值已知y=,求的值.22.已知直线y=kx+b经过点A(﹣1,2)和点B(3,﹣2)(1)求该直线的表达式.(2)连接OA,OB,求△AOB的面积.23.某学校七、八年级各有学生300人,为了普及冬奥知识,学校在七、八年级举行了一次冬奥知识竞赛,为了解这两个年级学生的冬奥知识竞赛成绩(百分制),分别从两个年级各随机抽取了20名学生的成绩,进行整理、描述和分析.下面给出了部分信息.a.七、八年级成绩分布如下:成绩x年级0≤x≤910≤x≤1920≤x≤2930≤x≤3940≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100七0000437420八1100046521(说明:成绩在50分以下为不合格,在50~69分为合格,70分及以上为优秀)b.七年级成绩在60~69一组的是:61,62,63,65,66,68,69c.七、八年级成绩的平均数中位数优秀率合格率如下:年级平均数中位数优秀率合格率七64.7m30%80%八63.367n90%根据以上信息,回答下列问题:(1)写出表中m,n的值;(2)小军的成绩在此次抽样之中,与他所在年级的抽样相比,小军的成绩高于平均数,却排在了后十名,则小军是年级的学生(填“七”或“八”);(3)可以推断出年级的竞赛成绩更好,理由是(至少从两个不同的角度说明).24.如图,AB∥CD,AB=5cm,AC=4cm,线段AC上有一动点E,连接BE,ED,∠BED=∠A=60°,设A,E两点间的距离为xcm,C,D两点间的距离为ycm,小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.(1)列表:如表的已知数据是根据A,E两点间的距离x进行取点、画图、测量,分别得到了x与y的几组对应值:x/cm00.51 1.52 2.3 2.5 2.8 3.2 3.5 3.6 3.8 3.9 y/km00.390.75 1.07 1.33 1.45 1.53 1.42 1.17 1.030.630.35请你补全表格;(保留两位小数)(2)描点、连线:在平面直角坐标系xOy中,描出表中各组数值所对应的点(x,y),并画出函数y关于x的图象;(3)请根据函数图象说出函数的一条性质.25.如图,函数y=﹣x+m的图象与x轴、y轴分别交于点A,B,与函数y=x的图象交于点M,点M的横坐标为3.(1)求点A的坐标;(2)在x轴上有一动点P(a,0).过点P作x轴的垂线,分别交函数y=﹣x+m和y=x的图象于点C、D,若DC=3CP,求a的值.26.四边形ABCD是正方形,AC是对角线,点E是AC上一点(不与AC中点重合),过点A作AE的垂线,在垂线上取一点F,使AF=AE,并且点E和点F在直线AB的同侧,连结FD并延长至点G,使FD=GD,连结GE.(1)如图1所示①根据题意,补全图形:②求∠CEG的度数,判断线段GE和CE的数量关系并给出证明.(2)若点E是正方形内任意一点,如图2所示,判断(1)中的结论还成立吗?如果成立,给出证明;如果不成立,说明理由.2019-2020学年北京市清华大学附中上地分校八年级(下)期末数学试卷参考答案与试题解析一.选择题(共10小题)1.下列计算正确的是()A.B.C.=﹣2D.【分析】根据二次根式的性质化简运算即可.【解答】解:A.=3,此选项正确;B.3与不是同类二次根式,不能合并,此选项错误;C.=,此选项错误;D.5=4,此选项错误;故选:A.2.下列各曲线中不能表示y是x的函数是()A.B.C.D.【分析】根据函数是一一对应的关系,给自变量一个值,有且只有一个函数值与其对应,就是函数,如果不是,则不是函数.【解答】解:A、B、D选项中,对于一定范围内自变量x的任何值,y都有唯一的值与之相对应,所以y是x的函数;C选项中,对于一定范围内x取值时,y可能有2个值与之相对应,所以y不是x的函数;故选:C.3.如图,在四边形ABCD中,已知AB=CD,添加一个条件,可使四边形ABCD是平行四边形,下列错误的是()A.AB∥CD B.BC=AD C.BC∥AD D.∠A+∠D=180°【分析】根据平行四边形的判定定理分别对各个选项进行判断即可.【解答】解:A、∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,此选项不符合题意;B、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,此选项不符合题意;C、∵AB=CD,BC∥AD,∴不能判定四边形ABCD是平行四边形,此选项符合题意;D、∵∠A+∠D=180°,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形,此选项不符合题意;故选:C.4.某校以“我和我的祖国”为主题的演讲比赛中,共有10位评委分别给出某选手的原始评分,在评定该选手成绩时,则从10个原始评分中去掉1个最高分和1个最低分,得到8个有效评分.8个有效评分与10个原始评分相比,不变的是()A.平均数B.极差C.中位数D.方差【分析】根据平均数、极差、中位数、方差的意义即可求解.【解答】解:根据题意,从10个原始评分中去掉1个最高分和1个最低分,得到8个有效评分.8个有效评分与10个原始评分相比,不变的是中位数.故选:C.5.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.2,3,4C.5,12,13D.1,,3【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:A、42+52≠62,故不是直角三角形;B、22+32≠42,故不是直角三角形;C、52+122=132,故是直角三角形;D、12+()2≠32,故不是直角三角形;故选:C.6.如图,一次函数y=kx+b的图象经过点(4,﹣3),则关于x的不等式kx+b<﹣3的解集为()A.x<3B.x>3C.x<4D.x>4【分析】由一次函数y=kx+b的图象经过(4,﹣3),以及y随x的增大而减小,可得关于x的不等式kx+b<﹣3的解集.【解答】解:∵一次函数y=kx+b的图象经过(4,﹣3),∴x=4时,kx+b=﹣3,又y随x的增大而减小,∴关于x的不等式kx+b<﹣3的解集是x>4.故选:D.7.已知关于x的一次函数y=(k2+3)x﹣2的图象经过点A(2,m)、B(﹣3,n),则m,n的大小关系为()A.m≥n B.m≤n C.m>n D.m<n【分析】利用偶次方的非负性可得出k2+3>0,利用一次函数的性质可得出y随x的增大而增大,再结合2>﹣3即可得出m>n.【解答】解:∵k2≥0,∴k2+3>0,∴y随x的增大而增大.又∵2>﹣3,∴m>n.故选:C.8.如图,在矩形ABCD中,AB=4,BC=8,过对角线交点O作EF⊥AC交AD于点E,交BC于点F,四边形OCDE的周长为()A.B.C.D.【分析】连接CE,根据矩形的性质求出AD=BC=8,CD=AB=4,根据线段垂直平分线的性质得出AE=CE(或根据全等三角形的性质求出),根据勾股定理求出AC,求出OC,求出OE,再求出答案即可.【解答】解:连接CE,∵四边形ABCD是矩形,AB=4,BC=8,∴AD=BC=8,CD=AB=4,∠ADC=90°,AO=OC,∵EF⊥AC,∴AE=CE,设AE=CE=x,在Rt△CDE中,由勾股定理得:DE2+CD2=CE2,即(8﹣x)2+42=x2,解得:x=5,即AE=CE=5,DE=8﹣5=3,在Rt△ADC中,由勾股定理得:AC===4,∴OC=2,由勾股定理得:OE===,∴四边形OCDE的周长为OC+CD+DE+OE=2+4+3+=7+3,故选:A.9.在平面直角坐标系中,函数y=2kx(k≠0)的图象如图所示,则函数y=﹣2kx+2k的图象大致是()A.B.C.D.【分析】根据正比例函数图象可得2k<0,然后再判断出﹣2k>0,然后可得一次函数图象经过的象限,从而可得答案.【解答】解:根据图象可得:2k<0,∴﹣2k>0,∴函数y=﹣2kx+2k的图象是经过第一、三、四象限的直线,故选:D.10.如图1,在菱形ABCD中,动点P从点B出发,沿折线B→C→D→B运动,设点P经过的路程为x,△ABP的面积为y.把y看作x的函数,函数的图象如图2所示,则图2中的a等于()A.25B.20C.12D.【分析】x=5时,BC=5;x=10时,BC+CD=10,则CD=5;x=15时,CB+CD+BD =15,则BD=8,进而求解.【解答】解:如图2,x=5时,BC=5,x=10时,BC+CD=10,则CD=5,x=15时,CB+CD+BD=15,则BD=8,如下图,过点C作CH⊥BD交于H,在Rt△CDH中,∵CD=BC,CH⊥BD,∴DH=BD=4,而CD=5,故CH=3,当x=5时,点P与点C重合,即BP=5,a=S△ABP=S△ABC=BD×CH=×8×3=12,故选:C.二.填空题(共8小题)11.函数y=中,自变量的取值范围是x≥1且x≠3.【分析】利用二次根式有意义的条件和分母不为0得到,然后求出两不等式的公共部分即可.【解答】解:根据题意得,解得x≥1且x≠3.故答案为x≥1且x≠3.12.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=4,则EF的长度为2.【分析】根据含30°的直角三角形的性质求出CD,根据直角三角形的性质求出CD,根据三角形中位线定理计算,得到答案.【解答】解:∵∠ACB=90°,∠A=30°,∴AB=2BC=8,∵∠ACB=90°,D为AB的中点,∴CD=AB=4,∵E,F分别为AC,AD的中点,∴EF为△ACD的中位线,∴EF=CD=2,故答案为:2.13.如图,矩形ABCD中,AB=6,BC=8,E是BC边上一点,将△ABE沿AE翻折,点B 恰好落在对角线AC上的点F处,则BE的长为3.【分析】由勾股定理可求AC=10,由折叠的性质可得AB=AF=6,BE=EF,∠B=∠AFE=90°,由勾股定理可求BE的长.【解答】解:∵AB=6,BC=8,∠B=90°∴AC==10∵将△ABE沿AE翻折,点B恰好落在对角线AC上的点F处∴AB=AF=6,BE=EF,∠B=∠AFE=90°∴FC=AC﹣AF=4,在Rt△EFC中,CE2=FC2+EF2,∴(8﹣BE)2=16+BE2,∴BE=3故答案为:314.如图,直线y=﹣2x﹣2与x轴交于点A,与轴交于点B,把直线AB沿x轴的正半轴向右平移2个单位长度后得到直线CD,则直线CD的函数解析式是y=﹣2x+2.【分析】利用“左加右减”的规律解答.【解答】解:把直线AB:y=﹣2x﹣2沿x轴的正半轴向右平移2个单位长度后得到直线CD,则直线CD的函数解析式是:y=﹣2(x﹣2)﹣2=﹣2x+2,即y=﹣2x+2.故答案是:y=﹣2x+2.15.如图,点O是正方形ABCD的中心,过点O的直线与AD、BC交于点M、点N,DE ⊥MN,交AB于点E,若AM=1,DM=3,则DE的长为2.【分析】如图,连接AC,过点A作AF∥MN,交BC于F,由正方形的性质可得AO=CO,AB=AD=BC=4,∠ABC=∠BAD=90°,AD∥BC,由“ASA”可证△AMO≌△CNO,可得AM=CN=1,通过证明四边形AMNF是平行四边形,可得AM=FN=1,由“ASA”可证△ADE≌△BAF,可得AE=BF=2,由勾股定理可求解.【解答】解:如图,连接AC,过点A作AF∥MN,交BC于F,∵AM=1,DM=3,∴AD=4,∵点O是正方形ABCD的中心,∴AO=CO,AB=AD=BC=4,∠ABC=∠BAD=90°,AD∥BC,∴∠MAO=∠NCO,又∵∠AOM=∠CON,AO=CO,∴△AMO≌△CNO(ASA),∴AM=CN=1,∵AD∥BC,AF∥MN,∴四边形AMNF是平行四边形,∴AM=FN=1,∴BF=2,∵DE⊥MN,AF∥MN,∴DE⊥AF,∴∠AED+∠EAF=90°,又∵∠EAF+∠AFB=90°,∴∠AED=∠AFB,又∵∠EAD=∠ABF=90°,AD=AB,∴△ADE≌△BAF(ASA),∴AE=BF=2,∴DE===2,故答案为2.16.若直线y=ax+3与两坐标轴所围成的三角形的面积是6个单位,则a的值是±.【分析】先根据坐标轴上点的坐标特征确定直线y=ax+3与两坐标轴的交点坐标,再根据三角形面积公式得到×3×|﹣|=6,然后解方程即可确定a的值.【解答】解:令x=0,则y=3;令y=0,则ax+3=0,解得x=﹣,所以直线y=ax+3与两坐标轴的交点坐标为(0,3)、(﹣,0)根据题意得×3×|﹣|=6,解得a=±.故答案为±.17.小天想要计算一组数据92,90,94,86,99,85的方差S02在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为S12,请你计算一下S12=22.67(结果保留两位小数),S12=S02(填“>”,“=”或“<”).【分析】先求出根据方差计算公式这组新数据2,0,4,﹣4,9,﹣5的平均数,再根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【解答】解:新数据2,0,4,﹣4,9,﹣5的平均数为:(2+0+4﹣4+9﹣5)÷6=1,则S12=[(2﹣1)2+(0﹣1)2+(4﹣1)2+(﹣4﹣1)2+(9﹣1)2+(﹣5﹣1)2]≈22.67;∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,方差不变,则S12=S02.故答案为:=.18.如图,直线y=x+3与x轴交于点A,与y轴交于点D,将线段AD沿x轴向右平移4个单位长度得到线段BC,若直线y=kx﹣4与四边形ABCD有两个交点,则k的取值范围是k≥2或k≤﹣2.【分析】求得A(﹣2,0)、B(2,0)分别代入y=kx﹣4中,求得k的值,结合函数图象,即可求得k的取值范围.【解答】解:直线y=x+3与x轴交于点A,与y轴交于点D,令x=0,则y=3,令y=0,则x=﹣2,∴D(0,3),A(﹣2,0),将直线AD向右平移4个单位长度,点A平移后的对应点为点B为(2,0);把A(﹣2,0)代入y=kx﹣4中得﹣2k﹣4=0,∴k=﹣2,把B(2,0)代入y=kx﹣4中得2k﹣4=0,∴k=2,∴k≥2或k≤﹣2,故答案为k≥2或k≤﹣2.三.解答题19.计算:.【考点】6F:负整数指数幂;76:分母有理化.【专题】11:计算题;511:实数;66:运算能力.【分析】分别根据二次根式的性质,负整数指数幂的定义以及根据平方差公式进行分母有理化进行计算即可.【解答】解:原式====.20.如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且∠AEB=∠CFD.求证:DE=BF.【考点】KD:全等三角形的判定与性质;L5:平行四边形的性质.【专题】553:图形的全等;555:多边形与平行四边形;67:推理能力.【分析】根据平行四边形的判定和性质定理以及全等三角形的判定和性质定理即可得到结论.【解答】证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,AD=BC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS);∴AE=CF,∵AD=BC,∴AD﹣AE=BC﹣CF,即DE=BF.21.化简求值已知y=,求的值.【考点】72:二次根式有意义的条件;7A:二次根式的化简求值.【专题】514:二次根式;66:运算能力.【分析】先利用二次根式有意义的条件确定x=,y=,再利用完全平方公式把展开合并,然后把x、y的值代入计算即可.【解答】解:根据题意得1﹣4x≥0且4x﹣1≥0,∴x=,∴y=,∴原式=2x+2+y﹣(2x﹣2+y)=4=4=4×=2.22.已知直线y=kx+b经过点A(﹣1,2)和点B(3,﹣2)(1)求该直线的表达式.(2)连接OA,OB,求△AOB的面积.【考点】F8:一次函数图象上点的坐标特征;FA:待定系数法求一次函数解析式.【专题】533:一次函数及其应用;69:应用意识.【分析】(1)把点A(﹣1,2)和点B(3,﹣2)代入一次函数的解析式,列出方程组,解方程组便可求出其解析式;(2)求得直线与y轴交点C的坐标,然后根据S△AOB=S△AOC+S△BOC求解即可.【解答】解:(1)根据题意,得,解得.故该直线的解析式为y=﹣x+1;(2)如图,在直线y=﹣x+1中,令x=0,则y=1,∴C(0,1),∴S△AOB=S△AOC+S△BOC=×1×1+×1×3=2.23.某学校七、八年级各有学生300人,为了普及冬奥知识,学校在七、八年级举行了一次冬奥知识竞赛,为了解这两个年级学生的冬奥知识竞赛成绩(百分制),分别从两个年级各随机抽取了20名学生的成绩,进行整理、描述和分析.下面给出了部分信息.a.七、八年级成绩分布如下:成绩x年级0≤x≤910≤x≤1920≤x≤2930≤x≤3940≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100七0000437420八1100046521(说明:成绩在50分以下为不合格,在50~69分为合格,70分及以上为优秀)b.七年级成绩在60~69一组的是:61,62,63,65,66,68,69c.七、八年级成绩的平均数中位数优秀率合格率如下:年级平均数中位数优秀率合格率七64.7m30%80%八63.367n90%根据以上信息,回答下列问题:(1)写出表中m,n的值;(2)小军的成绩在此次抽样之中,与他所在年级的抽样相比,小军的成绩高于平均数,却排在了后十名,则小军是八年级的学生(填“七”或“八”);(3)可以推断出八年级的竞赛成绩更好,理由是从中位数、及格率、优秀率上看,八年级均较高,因此成绩总体较好(至少从两个不同的角度说明).【考点】V7:频数(率)分布表;W1:算术平均数;W4:中位数;W7:方差.【专题】541:数据的收集与整理;542:统计的应用.【分析】(1)七年级的中位数,把七年级学生的成绩排序后找第10、11位的数据的平均数即为中位数,通过所给的表格数据和在60~69一组的成绩,可以得出第10、11位的数据,进而求出中位数,通过表格中可以计算出八年级优秀人数,再求出优秀率即可.【解答】解:(1)m=(63+65)÷2=64,n=(5+2+1)÷20=40%,答:m=64,n=40%.(2)因为平均数会受到极端值的影响,八年级有两个学生的成绩较差,使平均分较低,小军虽然高于平均成绩,仍可能排在后面,可以估计他是八年级学生,故答案为:八(3)八年级学生成绩较好,从中位数、及格率、优秀率上看,八年级均较高,因此成绩总体较好.24.如图,AB∥CD,AB=5cm,AC=4cm,线段AC上有一动点E,连接BE,ED,∠BED=∠A=60°,设A,E两点间的距离为xcm,C,D两点间的距离为ycm,小明根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.(1)列表:如表的已知数据是根据A,E两点间的距离x进行取点、画图、测量,分别得到了x与y的几组对应值:x/cm00.51 1.52 2.3 2.5 2.8 3.2 3.5 3.6 3.8 3.9 y/km00.390.75 1.07 1.33 1.45 1.53 1.42 1.17 1.030.630.35请你补全表格;(保留两位小数)(2)描点、连线:在平面直角坐标系xOy中,描出表中各组数值所对应的点(x,y),并画出函数y关于x的图象;(3)请根据函数图象说出函数的一条性质.【考点】E7:动点问题的函数图象.【专题】532:函数及其图像;66:运算能力;69:应用意识.【分析】(1)通过取点、画图、测量可得;(2)依据表格中的数据描点、连线即可得;(3)观察图象即可求解.【解答】解:(1)通过画图得:当x=2.5时,y≈1.50cm,故答案为:1.50(答案唯一);(2)画出该函数的图象如下:(3)随着自变量x的不断增大,函数y的变化趋势是:当0≤x≤2.8时,y随x的增大而增大,当2.8<x≤3.9时,y随x的增大而减小(其中2.8是概略数值,答案不唯一);25.如图,函数y=﹣x+m的图象与x轴、y轴分别交于点A,B,与函数y=x的图象交于点M,点M的横坐标为3.(1)求点A的坐标;(2)在x轴上有一动点P(a,0).过点P作x轴的垂线,分别交函数y=﹣x+m和y =x的图象于点C、D,若DC=3CP,求a的值.【考点】FF:两条直线相交或平行问题.【专题】533:一次函数及其应用;66:运算能力.【分析】(1)函数y=x的图象交于点M,点M的横坐标为3,则点M(3,3),将点M 的坐标代入函数y=﹣x+m并解得:b=4,即可求解;(2)由P(a,0),则点C、D的坐标分别为:(a,﹣a+4)、(a,a);DC=3CP,即|﹣a+4﹣a|=3(﹣a+4),即可求解.【解答】解:(1)函数y=x的图象交于点M,点M的横坐标为3,则点M(3,3),将点M的坐标代入函数y=﹣x+m并解得:m=4,∴y=﹣+4,令y=0,求得x=12故点A的坐标为:(12,0);(2)P(a,0),则点C、D的坐标分别为:(a,﹣a+4)、(a,a);∴DC=3CP,∴|﹣a+4﹣a|=3(﹣a+4),解得:a=或a=﹣24.26.四边形ABCD是正方形,AC是对角线,点E是AC上一点(不与AC中点重合),过点A作AE的垂线,在垂线上取一点F,使AF=AE,并且点E和点F在直线AB的同侧,连结FD并延长至点G,使FD=GD,连结GE.(1)如图1所示①根据题意,补全图形:②求∠CEG的度数,判断线段GE和CE的数量关系并给出证明.(2)若点E是正方形内任意一点,如图2所示,判断(1)中的结论还成立吗?如果成立,给出证明;如果不成立,说明理由.【考点】LO:四边形综合题.【专题】152:几何综合题;69:应用意识.【分析】(1)①根据要求画出图形即可.②想办法证明△EGC是等腰直角三角形即可.(2)如图2中,结论成立.连接BE,CG.证明△CDG≌△CBE(SAS),推出CG=CE,∠DCG=∠BCE,推出∠GCE=∠DCB=90°,推出△GCE是等腰直角三角形,可得结论.【解答】解:(1)①图象如图所示:②结论:EG=EC,连接EF,DE,CG.∵四边形ABCD是正方形,∴∠DAC=45°,∵∠EAF=90°,AE=AF,∴∠DAF=45°,∴∠DAE=∠DAF,∵DA=DA,AF=AE,∴△DAF≌△DAE(SAS),∴DF=DE,∵DF=DG,∴DE=DF=DG,∴∠FEG=90°,∵∠AEF=∠AFE=45°,∴∠CEG=45°,∵∠AEF=∠ACD=45°,∴EF∥CD,∵EF⊥EG,∴EG⊥CD,∵DG=DE,∴DG垂直平分线段EG,∴CG=CE,∴∠CEG=∠CGE=45°,∴∠ECG=90°,∴EC=EC.(2)如图2中,结论成立.理由:连接BE,CG.∵∠F AE=∠DAB=90°,∴∠F AD=∠EAB,∵F A=EA,DA=BA,∴△F AD≌△EAB(SAS),∴DF=BE,∠FDA=∠ABE,∵DG=DF,∴DG=BE,∵∠ADC=∠ABC=90°,∴∠FDA+∠CDG=90°,∠ABE+∠CBE=90°,∴∠CDG=∠CBE,∵DC=BC,∴△CDG≌△CBE(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCE=∠DCB=90°,∴△GCE是等腰直角三角形,∴GE=EC.。
[精品]2018-2019学年度八年级(下)期末数学试卷及解析(十二)-打印版-
2018-2019学年度八年级(下)期末数学试卷(十二)班级 姓名 一、选择题(本题共12个小题,每小题2分,共24分)1.的值等于( )A.4B.±4C.±2D.22.下列各组数中,以它们为边长的线段不能构成直角三角形的是( ) A.3,4,5 B.7,24,25 C.1,,D.2,3,43.某班为筹备毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查,最终确定买什么水果,则最值得关注的调查数据是( )A.中位数B.平均数C.众数D.方差4.下列二次根式中,最简二次根式是( ) A.B.C.D.5.如果代数式有意义,那么x 的取值范围是( )A.x ≥0B.x ≠1C.x >0D.x ≥0且x ≠16.如图,四边形ABCD 的对角线交于O,下列哪组条件不能判断ABCD 是平行四边形( ) A.OA=OC,OB=OD B.AB=CD,AO=COC.AD ∥BC,AD=BCD.∠BAD=∠BCD,AB ∥CD7.下列计算正确的是( )A.﹣=B.3+=4C.÷=6 D.×(﹣)=38.如图,数轴上的点A 所表示的数为x,则x 的值为( )A.B.+1 C.﹣1 D.1﹣9.一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数,中位数分别为( ) A.3.5,3B.3,4C.3,3.5D.4,310.如图,在菱形ABCD 中,BE ⊥AD 于E,BF ⊥CD 于F,且AE=DE,则∠EBF 的度数是( ) A.75° B.60° C.50° D.45°11.对于一次函数y=﹣2x +4,下列结论错误的是( ) A.若两点A(x 1,y 1),B(x 2,y 2)在该函数图象上,且x 1<x 2,则y 1>y 2 B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=﹣2x 的图象D.函数的图象与x 轴的交点坐标是(0,4)12.甲、乙两车从A 城出发前往B 城,在整个行驶过程中,汽车离开A 城的距离y(km)与行驶时间t(h)的函数图象如图所示,下列说法正确的有( )①甲车的速度为50km/h ②乙车用了3h 到达B 城③甲车出发4h 时,乙车追上甲车 ④乙车出发后经过1h 或3h 两车相距50km. A.1个 B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,共18分)13.某校对甲、乙两名跳高运动员的近期跳高成绩进行统计分析,结果如下:甲=1.69m,乙=1.69m,s =0.0006,s =0.0315,则这两名运动员中的 的成绩更稳定.14.对于正比例函数y=mx |m |﹣1,若y 的值随x 的值增大而减小,则m 的值为 . 15. 小明在七年级第二学期的数学成绩如表,如果按如图显示的权重要求,那么小明该 学期的总评得分为 .16.菱形ABCD 的边AB 为5,对角线AC 为8,则菱形ABCD 的面积为 .17.如图,函数y=ax ﹣1的图象过点(1,2),则不等式ax ﹣1>2的解集是 .18.如图,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA=10,OC=8,在OC 边上取一点D,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,则D 点的坐标是 .三、解答题(本大题共7小题,共58分) 19.(1)计算:﹣(﹣2)+(﹣1)0﹣()﹣1 +(2)比较与0.5的大小.20.已知x=2﹣,y=2+,求代数式的值:(1)x 2+2xy +y 2; (2)x 2﹣y 2.第6题图第8题图第10题图第16题图第17题图第18题图21.在一次课外实践活动中,同学们要知道校园内A,B 两处的距离,但无法直接测得.已知校园内A 、B 、C 三点形成的三角形如图所示,现测得AC=6m,BC=14m,∠CAB=120°,请计算A,B 两处之间的距离.22.某厂生产A,B 两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.A,B 产品单价变化统计表并求得了A 产品三次单价的平均数和方差:=5.9,s A 2= [(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=(1) 在折线图中画出B 产品的 单价变化的情况;(2)求B 产品三次单价的方差;(3)该厂决定第四次调价,A 产品的单价仍为6.5元/件,B 产品的单价比3元/件上调m%(m >0),但调价 后不能超过4元/件,并且使得A 产品这四次单价的 中位数是B 产品四次单价中位数的2倍少1,求m 的值.23.如图,函数y=﹣2x +3与y=﹣x +m 的图象交于P(n,﹣2). (1)求出m 、n 的值; (2)求出△ABP 的面积.24. 已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E,使CE=CG,连接BG 并延长交DE 于F. (1)求证:△BCG ≌△DCE ;(2)将△DCE 绕点D 顺时针旋转90°得到△DAE′,判断四边形E′BGD 是什么特殊四边形,并说明理由.25.某超市经销A 、B 两种商品,A 种商品每件进价20元,售价30元;B 种商品每件进价35元,售价48元. (1)该超市准备用800元去购进A 、B 两种商品若干件,怎样购进才能使超市经销这两种商品所获利润最大?(其中B 种商品不少于7件)(2)在“五•一”期间,该商场对A 、B 两种商品进行优惠促销活动:促销活动期间小颖去该超市购买A 种商品,小华去该超市购买B 种商品,分别付款210元与268.8元.促销活动期间小明决定一次去购买小颖和小华购买的同样多的商品,他需付款多少元?2018-2019学年度八年级(下)期末数学试卷(十二)参考答案与试题解析一、选择题(本题共12个小题,每小题2分,共24分) 1.的值等于( ) A.4 B.±4 C.±2 D.2 【考点】22:算术平方根.【分析】直接利用算术平方根的定义求出即可. 【解答】解:=2.故选:D.2.下列各组数中,以它们为边长的线段不能构成直角三角形的是( ) A.3,4,5 B.7,24,25C.1,,D.2,3,4【考点】KS :勾股定理的逆定理.【分析】根据勾股定理的逆定理对各选项进行逐一判断即可.【解答】解:A 、∵32+42=25=52,∴能够成直角三角形,故本选项不符合题意; B 、∵72+242=625=252,∴能够成直角三角形,故本选项不符合题意; C 、∵12+()2=3=2,∴能够成直角三角形,故本选项不符合题意;D 、∵22+32=13≠(4)2,∴不能够成直角三角形,故本选项符合题意.故选D.3.某班为筹备毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查,最终确定买什么水果,则最值得关注的调查数据是( ) A.中位数B.平均数C.众数D.方差【考点】WA :统计量的选择.【分析】班长最值得关注的应该是哪种水果爱吃的人数最多,即众数.【解答】解:由于众数是数据中出现次数最多的数,故班长最值得关注的应该是统计调查数据的众数.故选C.4.下列二次根式中,最简二次根式是( ) A.B. C. D.【考点】74:最简二次根式.【分析】A 选项的被开方数中,含有能开得尽方的因式a 2;B 、C 选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.D 选项的被开方数是个平方差公式,它的每一个因式的指数都是1,所以D 选项符合最简二次根式的要求.【解答】解:因为:A 、=|a |;B 、=;C 、=;所以,这三个选项都可化简,不是最简二次根式. 故本题选D.5.如果代数式有意义,那么x 的取值范围是( )A.x ≥0B.x ≠1C.x >0D.x ≥0且x ≠1【考点】62:分式有意义的条件;72:二次根式有意义的条件. 【分析】代数式有意义的条件为:x ﹣1≠0,x ≥0.即可求得x 的范围.【解答】解:根据题意得:x ≥0且x ﹣1≠0. 解得:x ≥0且x ≠1.故选:D.6.如图,四边形ABCD 的对角线交于点O,下列哪组条件不能判断四边形ABCD 是平行四边形( )A.OA=OC,OB=OD B .AB=CD,AO=CO C.AD ∥BC,AD=BCD.∠BAD=∠BCD,AB ∥CD【考点】L6:平行四边形的判定.【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,对每个选项进行筛选可得答案.【解答】解:A 、根据对角线互相平分,可得四边形是平行四边形,可以证明四边形ABCD 是平行四边形,故本选项错误;B 、AB=CD,AO=CO 不能证明四边形ABCD 是平行四边形,故本选项正确;C 、根据一组对边平行且相等的四边形是平行四边形可以证明四边形ABCD 是平行四边形,故本选项错误;D 、根据AB ∥CD 可得:∠ABC +∠BCD=180°,∠BAD +∠ADC=180°,又由∠BAD=∠BCD 可得:∠ABC=∠ADC,根据两组对角对应相等的四边形是平行四边形可以判定,故本选项错误; 故选:B.7.下列计算正确的是( ) A.﹣=B.3+=4C.÷=6 D.×(﹣)=3【考点】79:二次根式的混合运算.【分析】对每一个选项先把各二次根式化为最简二次根式,再进行计算. 【解答】解:A.﹣不能计算,故A 选项错误; B.3+=4,故B 选项正确; C.÷=3÷=,故C 选项错误;D.×(﹣)=﹣3,故D 选项错误;故选B.8.如图,数轴上的点A 所表示的数为x,则x 的值为( )A. B. +1 C.﹣1 D.1﹣【考点】29:实数与数轴.【分析】由题意,利用勾股定理求出点A 到﹣1的距离,即可确定出点A 表示的数x. 【解答】解:根据题意得:x=﹣1=﹣1,故选C9.一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数,中位数分别为( )A.3.5,3B.3,4C.3,3.5D.4,3【考点】W4:中位数;W1:算术平均数.【分析】根据题意可知x=2,然后根据平均数、中位数的定义求解即可. 【解答】解:∵这组数据的众数是2, ∴x=2,将数据从小到大排列为:2,2,2,4,4,7, 则平均数=(2+2+2+4+4+7)÷6=3.5, 中位数为:3.故选:A.10.如图,在菱形ABCD 中,BE ⊥AD 于E,BF ⊥CD 于F,且AE=DE,则∠EBF 的度数是( )A.75°B.60°C.50°D.45°【考点】L8:菱形的性质.【分析】连结BD,如图,先利用线段垂直平分线的性质得到BA=BD,再根据菱形的性质得AB=AD,AB ∥CD,则可判断△ABD 为等边三角形得到∠A=60°,再计算出∠ADC=120°,然后利用四边形内角和可计算出∠EBF 的度数. 【解答】解:连结BD,如图, ∵BE ⊥AD,AE=DE, ∴BA=BD,∵四边形ABCD 为菱形, ∴AB=AD,AB ∥CD, ∴AB=AD=BD,∴△ABD 为等边三角形, ∴∠A=60°, ∵AB ∥CD, ∴∠ADC=120°, ∵BF ⊥CD,∴∠EBF=360°﹣120°﹣90°﹣90°=60°. 故选B.11.对于一次函数y=﹣2x+4,下列结论错误的是()A.若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,则y1>y2B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=﹣2x的图象D.函数的图象与x轴的交点坐标是(0,4)【考点】F5:一次函数的性质.【分析】根据一次函数的性质对各选项进行判断.【解答】解:A、若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,则y1>y2,所以A选项的说法正确;B、函数的图象经过第一、二、四象限,不经过第三象限,所以B选项的说法正确;C、函数的图象向下平移4个单位长度得y=﹣2x的图象,所以C选项的说法正确;D、函数的图象与y轴的交点坐标是(0,4),所以D选项的说法错误.故选D.12.甲、乙两车从A城出发前往B城,在整个行驶过程中,汽车离开A城的距离y(km)与行驶时间t(h)的函数图象如图所示,下列说法正确的有()①甲车的速度为50km/h ②乙车用了3h到达B城③甲车出发4h时,乙车追上甲车④乙车出发后经过1h或3h两车相距50km.A.1个B.2个C.3个D.4个【考点】FH:一次函数的应用.【分析】根据路程、时间和速度之间的关系判断出①正确;根据函数图象上的数据得出乙车到达B城用的时间,判断出②正确;根据甲的速度和走的时间得出甲车出发4h时走的总路程,再根据乙的总路程和所走的总时间求出乙的速度,再乘以2小时,求出甲车出发4h时,乙走的总路程,从而判断出③正确;再根据速度×时间=总路程,即可判断出乙车出发后经过1h或3h,两车相距的距离,从而判断出④正确.【解答】解:①甲车的速度为=50km/h,故本选项正确;②乙车到达B城用的时间为:5﹣2=3h,故本选项正确;③甲车出发4h,所走路程是:50×4=200(km),甲车出发4h时,乙走的路程是:×2=200(km),则乙车追上甲车,故本选项正确;④当乙车出发1h时,两车相距:50×3﹣100=50(km),当乙车出发3h时,两车相距:100×3﹣50×5=50(km),故本选项正确;故选D.二、填空题(本大题共6小题,每小题3分,共18分)13.某校对甲、乙两名跳高运动员的近期跳高成绩进行统计分析,结果如下:甲=1.69m,乙=1.69m,s=0.0006,s=0.0315,则这两名运动员中的甲的成绩更稳定.【考点】W7:方差.【分析】根据方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.【解答】解:∵S2甲=0.0006,S2乙=0.0315,∴S2甲<S2乙,∴这两名运动员中甲的成绩更稳定.故答案为:甲.14.对于正比例函数y=mx|m|﹣1,若y的值随x的值增大而减小,则m的值为﹣2.【考点】F6:正比例函数的性质.【分析】根据正比例函数的意义,可得答案.【解答】解:∵y的值随x的值增大而减小,∴m<0,∵正比例函数y=mx|m|﹣1,∴|m|﹣1=1,∴m=﹣2,故答案为:﹣215.小明在七年级第二学期的数学成绩如表,如果按如图显示的权重要求,那么小明该学期的总评得分为 87 .【考点】W2:加权平均数.【分析】根据平时,期中以及期末的成绩乘以各自的百分比,结果相加即可得到总得分. 【解答】解:根据题意得:90×10%+90×30%+85×60%=9+27+51=87(分), 则小明该学期的总评得分为87,故答案为:87.16.菱形ABCD 的边AB 为5,对角线AC 为8,则菱形ABCD 的面积为 24 .【考点】L8:菱形的性质.【分析】连接BD,交AC 于O,根据菱形的两条对角线互相垂直且平分可得AO=CO=AC=4,BO=DO,CA ⊥BD,然后利用勾股定理计算出BO 的长,进而可得BD 长,再利用菱形的面积公式进行计算即可.【解答】解:连接BD,交AC 于O, ∵四边形ABCD 是菱形,∴AO=CO=AC=4,BO=DO,CA ⊥BD,∵AB=5, ∴BO==3,∴BD=6,∴菱形ABCD 的面积为:6×8=24,故答案为:24.17.如图,函数y=ax ﹣1的图象过点(1,2),则不等式ax ﹣1>2的解集是 x >1 .【考点】FD :一次函数与一元一次不等式.【分析】根据已知图象过点(1,2),根据图象的性质即可得出y=ax ﹣1>2的x 的范围是x >1,即可得出答案.【解答】解:方法一∵把(1,2)代入y=ax ﹣1得:2=a ﹣1, 解得:a=3, ∴y=3x ﹣1>2,解得:x >1,方法二:根据图象可知:y=ax ﹣1>2的x 的范围是x >1, 即不等式ax ﹣1>2的解集是x >1,故答案为:x>1.18.如图,OABC 是一张放在平面直角坐标系中的矩形纸片,O为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA=10,OC=8,在OC 边上取一点D,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,则D 点的坐标是 (0,5) .【考点】PB :翻折变换(折叠问题);D5:坐标与图形性质;LB :矩形的性质.【分析】先由矩形的性质得到AB=OC=8,BC=OA=10,再根据折叠的性质得AE=AO=10,DE=DO,在Rt△ABE中,利用勾股定理可计算出BE=6,则CE=BC﹣BE=4,设OD=x,则DE=x,DC=8﹣x,在Rt △CDE中根据勾股定理有x2=(8﹣x)2+42,解方程求出x,即可确定D点坐标.【解答】解:∵四边形ABCD为矩形,∴AB=OC=8,BC=OA=10,∵纸片沿AD翻折,使点O落在BC边上的点E处,∴AE=AO=10,DE=DO,在Rt△ABE中,AB=8,AE=10,∴BE==6,∴CE=BC﹣BE=4,设OD=x,则DE=x,DC=8﹣x,在Rt△CDE中,∵DE2=CD2+CE2,∴x2=(8﹣x)2+42,∴x=5,∴D点坐标为(0,5).故答案为(0,5).三、解答题(本大题共7小题,共58分)19.(1)计算:﹣(﹣2)+(﹣1)0﹣()﹣1+(2)比较与0.5的大小.【考点】2C:实数的运算;2A:实数大小比较;6E:零指数幂;6F:负整数指数幂.【分析】(1)首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.(2)应用放缩法,比较与0.5的大小即可.【解答】解:(1)﹣(﹣2)+(﹣1)0﹣()﹣1+=3+2+1﹣3+3=6(2)∵>==0.5,∴>0.5.20.已知x=2﹣,y=2+,求代数式的值:(1)x2+2xy+y2;(2)x2﹣y2.【考点】76:分母有理化.【分析】(1)直接利用完全平方公式分解因式进而代入计算得出答案;(2)直接利用平方差公式分解因式进而代入计算得出答案.【解答】解:(1)x2+2xy+y2=(x+y)2=[(2﹣)+(2+)]2=42=16;(2)x2﹣y2=(x+y)(x﹣y)=(2﹣+2+)(2﹣﹣2﹣)=4×(﹣2)=﹣8.21.在一次课外实践活动中,同学们要知道校园内A,B两处的距离,但无法直接测得.已知校园内A、B、C三点形成的三角形如图所示,现测得AC=6m,BC=14m,∠CAB=120°,请计算A,B两处之间的距离.【考点】KU:勾股定理的应用.【分析】过C作CH⊥AB于H构造直角三角形,在两个直角三角形中分别求得BH、AH,相减即可求得AB的长.【解答】解:过C作CH⊥AB于H,∵∠CAB=120°,∴∠CAH=60°,∵AC=6,∴AH=3,HC=,在Rt△BCH中,∵BC=14,HC=,∴BH=∴AB=BH﹣AH=13﹣3=10即A,B两处之间的距离为10米.22.某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.A,B产品单价变化统计表=5.9,s A2= [(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=(1)在折线图中画出B产品的单价变化的情况;(2)求B产品三次单价的方差;(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),但调价后不能超过4元/件,并且使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.【考点】VD:折线统计图;W2:加权平均数;W4:中位数;W7:方差.【分析】(1)根据题目提供数据补充折线统计图即可;(2)分别计算平均数及方差即可;(3)首先确定这四次单价的中位数,然后确定第四次调价的范围,根据“A产品这四次单价的中位数是B产品四次单价中位数的2倍少1”列式求m即可.【解答】解:(1)如图2所示:(2)=(3.5+4+3)=3.5,S==,∵B产品的方差小,∴B产品的单价波动小;(3)第四次调价后,对于A产品,这四次单价的中位数为=;对于B产品,∵m>0,∴第四次单价大于3,∵第四次单价小于4,∴×2﹣1=,∴m=25.23.如图,函数y=﹣2x+3与y=﹣x+m的图象交于P(n,﹣2).(1)求出m、n的值;(2)求出△ABP的面积.【考点】FF:两条直线相交或平行问题.【分析】(1)先把P(n,﹣2)代入y=﹣2x+3即可得到n的值,从而得到P点坐标为(,﹣2),然后把P点坐标代入y=﹣x+m可计算出m的值;(2)解方程确定A,B点坐标,然后根据三角形面积公式求解.【解答】解:(1)∵y=﹣2x+3与y=﹣x+m的图象交于P(n,﹣2).∴﹣2=﹣2n+3,∴n=,∴P(,﹣2),∴﹣2=﹣×+m,∴m=﹣;(2)∵在y=﹣2x+3中,令x=0,得y=3,∴A(0,3),∵在y=﹣x﹣中,令x=0,得y=﹣,∴B(0,﹣),∴AB=,∴△ABP的面积=×=.24.已知:如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′,判断四边形E′BGD是什么特殊四边形,并说明理由.【考点】L6:平行四边形的判定;KD:全等三角形的判定与性质;LE:正方形的性质.【分析】(1)由正方形ABCD,得BC=CD,∠BCD=∠DCE=90°,又CG=CE,所以△BCG≌△DCE(SAS).(2)由(1)得BG=DE,又由旋转的性质知AE′=CE=CG,所以BE′=DG,从而证得四边形E′BGD为平行四边形.【解答】(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°.∵∠BCD+∠DCE=180°,∴∠BCD=∠DCE=90°.又∵CG=CE,∴△BCG≌△DCE.(2)解:四边形E′BGD是平行四边形.理由如下:∵△DCE绕D顺时针旋转90°得到△DAE′,∴CE=AE′.∵CE=CG,∴CG=AE′.∵四边形ABCD是正方形,∴BE′∥DG,AB=CD.∴AB﹣AE′=CD﹣CG.即BE′=DG.∴四边形E′BGD是平行四边形.25.某超市经销A、B两种商品,A种商品每件进价20元,售价30元;B种商品每件进价35元,售价48元.(1)该超市准备用800元去购进A、B两种商品若干件,怎样购进才能使超市经销这两种商品所获利润最大?(其中B种商品不少于7件)(2)在“五•一”期间,该商场对A、B两种商品进行如下优惠促销活动:B种商品,分别付款210元与268.8元.促销活动期间小明决定一次去购买小颖和小华购买的同样多的商品,他需付款多少元?【考点】FH:一次函数的应用.【分析】利润=(售价﹣进价)×件数,总价=A进价×A件数+B进价×B件数,可得到一个一次函数,再由一次函数的性质,可得出y和w的值.所购件数=总价÷售价.小华的付款不是48的整数倍,则说明,他享受了优惠,应该是打八折.【解答】解:(1)设购进A、B两种商品分别为x件、y件,所获利润w元则:,解之得,∵w是y的一次函数,随y的增大而减少,又∵y是大于等于7的整数,且x也为整数,∴当y=8时,w最大,此时x=26所以购进A商品26件,购进B商品8件才能使超市经销这两种商品所获利润最大;(2)∵300×0.8=240,210<240,∴小颖去该超市购买A种商品:210÷30=7(件)又268.8不是48的整数倍∴小华去该超市购买B种商品:268.8÷0.8÷48=7(件)小明一次去购买小颖和小华购买的同样多的商品:7×30+7×48=546>400小明付款为:546×0.7=382.2(元)答:小明付款382.2元.。
2018-2019年八年级下期末数学试卷及答案
第二学期初二年级期末考试数 学 试 卷考 生 须 知1.本试卷共8页,共三道大题,27道小题,满分100分。
考试时间100分钟。
2.在试卷和答题纸上准确填写学校名称、班级、姓名和考号。
3.试题答案一律填涂或书写在答题纸上,在试卷上作答无效。
4.在答题纸上,选择题、画图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,请将试卷和答题纸一并交回。
一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个....是符合题意的. 1.3的相反数是A .3B .-3C .±3D .132.京剧是中国的“国粹”,京剧脸谱是一种具有汉族文化特色的特殊化妆方法.由于每个历史人物或某一种类型的人物都有一种大概的谱式,就像唱歌、奏乐都要按照乐谱一样,所以称为“脸谱”.右面的图案(1)是京剧《华容道》中关羽的脸谱图案.在下面左侧的四个图案中,可以通过平移图案(1)得到的是A .B .C .D . 图案(1) 3.一个三角形的两边长分别是3和7,则第三边长可能是A .2B .3C .9D .10 4.下列调查中,调查方式选择不合理...的是 A .调查我国中小学生观看电影《厉害了,我的国》情况,采用抽样调查的方式 B .调查全市居民对“老年餐车进社区”活动的满意程度,采用抽样调查的方式 C .调查“神州十一号”运载火箭发射前零部件质量状况,采用全面调查(普查)的方式 D .调查市场上一批LED 节能灯的使用寿命,采用全面调查(普查)的方式 5.下列各式中,运算正确的是A .2242a a a +=B .32a a a =-C .623a a a =÷D .236()a a =6.点A ,B ,C ,D 在数轴上的位置如图所示,则实数72-对应的点可能是D AB CA .点AB .点BC .点CD .点D7.为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产——“抖空竹”引入阳光特色大课间.下面左图是某同学“抖空竹”时的一个瞬间,小聪把它抽象成右图的数学问题:已知AB ∥CD ,∠EAB =80°,∠ECD =110°,则∠E 的度数是 A .30° B .40° C .60° D .70°8.某小区居民利用“健步行APP ”开展健步走活动,为了解居民的健步走情况,小文同学调查了部分居民某天行走的步数(单位:千步),并将样本数据整理绘制成如下不完整的频数分布直方图和扇形统计图.有下面四个推断:①小文此次一共调查了200位小区居民;②行走步数为8~12千步的人数超过调查总人数的一半; ③行走步数为4~8千步的人数为50人;④行走步数为12~16千步的扇形圆心角是72°. 根据统计图提供的信息,上述推断合理的是A .①②③B .①②④C .①③④D .②③④ 二、填空题(本题共16分,每小题2分) 9.4的算术平方根是 .10.若a b <,则3a 3b ;1a +- 1b +-. (用“>”,“<”,或“=”填空)11.x 的3倍与4的差是负数,用不等式表示为 .12.一个正多边形的每一个外角都是60°,则这个多边形的边数是 . 13.若点P (x -3,2)位于第二象限,则x 的取值范围是 . 14.如下图,AB ∥CD ,请写出图中一对相等的角: ;E ABC D35%20%16~20千步25%12~16千步4~8千步0~4千步8~12千步28126040200频数/人708012321ABCD E要使∠A =∠B 成立,需再添加的一个条件为: .15.根据《中华人民共和国2017年国民经济和社会发展统计公报》,我国2013-2017年农村贫困人口统计如上图所示.根据统计图中提供的信息,预估2018年年末全国农村贫困人口约为 万人,你的预估理由是 . 16.在一次数学活动课上,老师让同学们借助一副三角板画平行线AB ,CD .下面是小楠、小曼两位同学的作法:老师说:“小楠、小曼的作法都正确.”请回答:小楠的作图依据是 ;小曼的作图依据是 .三、解答题(本题共60分.17题~23题,每题各5分;24~26题,每题各6分;27题7分) 17.计算:+--1.18.解不等式组:23152(1)153x x x +⎧<⎪⎨⎪--≤+⎩,,并把它的解集在数轴上表示出来.人数/15题图14题图19.已知x =13y =,求代数式22(32)(2)3xy xy xy x -++÷的值.20.按照下列要求画图并作答:如图,已知△ABC . (1)画出BC 边上的高线AD ;(2)画∠ADC 的对顶角∠EDF ,使点E 在AD 的延长线上,DE =AD ,点F 在CD 的延长线上,DF =CD ,连接EF ,AF ;(3)猜想线段AF 与EF 的大小关系是: ; 直线AC 与EF 的位置关系是: .21.如图,AB ∥CD ,DE ⊥AC ,垂足为E ,∠A =105°,求∠D 的度数.22.小诚响应“低碳环保,绿色出行”的号召,一直坚持跑步与步行相结合的上学方式.已知小诚家距离学校2200米,他步行的平均速度为80米/分,跑步的平均速度为200米/分.若他要在不超过20分钟的时间内从家到达学校,至少需要跑步多少分钟?23.天坛是明清两代皇帝每年祭天和祈祷五谷丰收的地方,以其严谨的建筑布局、奇特的建筑构造和瑰丽的建筑装饰著称于世,被列为世界文化遗产.小惠同学到天坛公园参加学校组织的综合实践活动,她分别以正东,正北方向为x 轴,y 轴的正方向建立了平面直角坐标系描述各景点的位置.小惠:“百花园在原点的西北方向;表示回音壁的点的坐标为(0,-2).” 请依据小惠同学的描述回答下列问题:(1)请在图中画出小惠同学建立的平面直角坐标系; (2)表示无梁殿的点的坐标为 ; 表示双环万寿亭的点的坐标为 ;(3)将表示祈年殿的点向右平移2个单位长度,再向下平移0.5个单位长度,得到表示七星石的点,那么表示七星石的点的坐标是 .E DCBA AB C北24.为了解饮料自动售货机的销售情况,有关部门从北京市所有的饮料自动售货机中随机抽取20台进行了抽样调查,记录下某一天各自的销售情况(单位:元),并对销售金额进行分组,整理成如下统计表:28,8,18,63,15,30,70,42,36,47,25,58,64,58,55,41,58,65,72,30销售金额x0≤x<20 20≤x<40 40≤x<60 60≤x<80划记频数 3 5(1)(2)用频数分布直方图将20台自动售货机的销售情况表示出来,并在图中标明相应数据;(3)根据绘制的频数分布直方图,你能获取哪些信息?(至少写出两条不同类型信息)25.阅读下列材料并解答问题:数学中有很多恒等式可以用图形的面积来得到.例如,图1中阴影部分的面积可表示为22a b -;若将阴影部分剪下来,重新拼成一个矩形(如图2),它的长,宽分别是a b +,a b -,由图1,图2中阴影部分的面积相等,可得恒等式22()()a b a b a b +-=-.恒等式222()2a b a ab b +=++,画出你的拼图并标出相关数据;(3)利用前面推出的恒等式22()()a b a b a b +-=-和222()2a b a ab b +=++计算:①+-; ②+2x 2().26.△ABC 中,AD 是∠BAC 的平分线,AE ⊥BC ,垂足为E ,作CF AD ∥,交直线AE 于点F .设∠B =α,∠ACB =β.ABDC图1图2图3A BDC EFFE CDB A 图1图2(1)若∠B=30°,∠ACB=70°,依题意补全图1,并直接写出∠AFC的度数;(2)如图2,若∠ACB是钝角,求∠AFC的度数(用含α,β的式子表示);(3)如图3,若∠B>∠ACB,直接写出∠AFC的度数(用含α,β的式子表示).27.在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a 为常数,则称点Q是点P的“a级关联点”.例如,点P(1,4)的“3级关联点”为Q(3×1+4,1+3×4),即Q(7,13).(1)已知点A(-2,6)的“12级关联点”是点A1,点B的“2级关联点”是B1(3,3),求点A1和点B的坐标;(2)已知点M(m-1,2m)的“-3级关联点”M′位于y轴上,求M′的坐标;(3)已知点C(-1,3),D(4,3),点N(x,y)和它的“n级关联点”N′都位于线段CD上,请直接写出n的取值范围.备用图初二数学试卷参考答案及评分标准说明: 与参考答案不同,但解答正确相应给分. 一、选择题(本题共24分,每小题3分)9. 2 10. <; > 11. 34x -<12. 6 13. x <314.答案不唯一:∠2=∠A ,或∠3=∠B ;∠2=∠B ,或∠3=∠A,或∠2=∠3,或CD 是∠ACE 的平分线…… 15.预估理由需包含统计图提供的信息,且支撑预估的数据.参考答案①:2000,按每年平均减少人数近似相等进行估算;参考答案②:1700,按 2016-2018 年贫困人口数呈直线下降进行估算. 16.同位角相等,两直线平行(或垂直于同一直线的两条直线平行);内错角相等,两直线平行.三、解答题(本题共60分.17题~23题,每题各5分;24~26题,每题各6分;27题7分) 17.解:原式=3+(2)---1 ……………………3分-6. ……………………5分18.解:解不等式①,得x <1, ……………………2分解不等式②,得x ≥-2, ……………………3分 ∴不等式组的解集是21x ≤<-.……………………4分 解集在数轴上表示如图:……………………5分19.解:原式=23243y x -++ ……………………3分=2431x y ++. ……………………4分当x =13y =时, 原式=214313⨯+⨯+=22.……………………5分20.解:(1)画高线AD ; ……………………1分(2)画图; ……………………3分 (3)猜想线段AF 与EF 的大小关系是:AF =EF ;AB C D EF直线AC与EF的位置关系是:AC∥EF.……………………5分21.解:∵AB∥CD,(已知)∴∠A+∠C=180°.(两直线平行,同旁内角互补)……………………1分∵∠A=105°,(已知)∴∠C=180°-105°=75°.(等量代换)……………………2分又∵DE⊥AC,(已知)∴∠DEC=90°,(垂直定义)……………………3分∴∠C+∠D=90°.(直角三角形的两个锐角互余)……………………4分∴∠D=90°-75°=15°.(等量代换)……………………5分22.解:设他需要跑步x分钟,由题意可得……………………1分200x+80(20-x)≥2200,……………………3分解得,x≥5.……………………4分答:小诚至少需要跑步5分钟.……………………5分23.解:(1)画出平面直角坐标系如下图;……………………2分y北O x(2)表示无梁殿的点的坐标为点(-4,0);表示双环万寿亭的点的坐标为(-4,4);……………………4分(3)表示七星石的点的坐标是(2,3.5).……………………5分24.(1) 补全表格如下:销售金额x0≤x<20 20≤x<40 40≤x<60 60≤x<80划记频数 3 5 7 5(2)画频数分布直方图如图:……………………4分 (3) 销售额在40≤x <60的饮料自动售货机最多,有7台; 销售额在0≤x <20的饮料自动售货机最少,只有3台; 销售额在20≤x <40和40≤x <80的饮料自动售货机的数量相同 ……销售额最高的为72元 ……………………6分 25.解:(1) 答案不唯一:22()(2)23a b a b a ab b ++++=,或222()2a b a ab b +++=, 2()a a b a ab ++=,2()b a b ab b ++=, 22()22a a b a ab ++=…………………………2分(2) 拼图如右图;……………………4分 (3) ①+-=22- =3-2 =1. ……………………5分②+2x 2()=+4+4x x 2. ……………………6分26.解:(1) 依题意补全图1; ……………………1分∠AFC =20°; ……………………2分(2) ∵△ABC 中,∠BAC +∠B ∴∠BAC =180°-(∠B +∠ACB )=180°-(α+β).∵AD 是∠BAC 的平分线, ∴∠BAD =21∠BAC =90°-21(α+β), ……………………3分 A BDCEF11∴∠ADE =∠B +∠BAD =α+90°-21(α+β)=90°-21(β-α). ∵AE ⊥BC ,∴∠DAE +∠ADE =90°,∴∠DAE =90°-∠ADE =21(β-α). ……………………4分 ∵CF ∥AD ,∴∠DAE +∠AFC =180°,∴∠AFC =180°-21(β-α). ……………………5分 (3) ∠AFC =21(α-β). ……………………6分 27.(1) ∵点A (-2,6)的“12级关联点”是点A 1, ∴A 1(-2×12+6,-2+12×6),即A 1(5,1). ……………………1分 设点B (x ,y ),∵点B 的“2级关联点”是B 1(3,3),∴2323x y x y +⎧⎨+⎩=,=,……………………2分 解得11.x y ⎧⎨⎩=,= ∴B (1,1). ……………………3分(2) ∵点M (m -1,2m )的“-3级关联点”为M ′(-3(m -1)+2m ,m -1+(-3)×2m ),M ′位于y 轴上,∴-3(m -1)+2m =0, ……………………4分 解得,m =3, ……………………5分 ∴m -1+(-3)×2m =-16,∴M ′(0,-16). ……………………6分(3) 1433n ≤≤-. ……………………7分。
2024届北京市清华附中数学八年级第二学期期末调研试题含解析
2024届北京市清华附中数学八年级第二学期期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.一个多边形的内角和是外角和的4倍,则这个多边形的边数是()A.8 B.9 C.10 D.112.如图,这个图案是3世纪我国汉代的赵爽在注释《周髀算经》时给出的,人们称它为“赵爽弦图”.赵爽根据此图指出:四个全等的直角三角形(朱实)可以围成一个大正方形,中空的部分是一个小正方形(黄实),赵爽利用弦图证明的定理是()A.勾股定理B.费马定理C.祖眇暅D.韦达定理3.在平面直角坐标系中,若点与点关于原点对称,则点在( )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,某人从点A出发,前进8m后向右转60°,再前进8m后又向右转60°,按照这样的方式一直走下去,当他第一次回到出发点A时,共走了()A.24m B.32m C.40m D.48m5.下列命题是真命题的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直且相等的四边形是正方形 D.对角线互相垂直的四边形是菱形6.二次根式中,x的取值范围在数轴上表示正确的是()A.B.C.D.7.如果不等式组5xx m<⎧⎨≥⎩有解,那么m的取值范围是()A.m>5 B.m<5 C.m≥5D.m≤5 8.点P是△ABC内一点,且P到△ABC的三边距离相等,则P是△ABC哪三条线的交点()A.边的垂直平分线B.角平分线C.高线D.中位线9.下列式子是分式的是()A.32xB.20x y+C.x2y D.1π10.去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是( )A.最低温度是32℃B.众数是35℃C.中位数是34℃D.平均数是33℃二、填空题(每小题3分,共24分)11.如图,正比例函数y=ax的图象与反比例函数y=的图象相交于点A,B,若点A的坐标为(-2,3),则点B的坐标为_________.12.如图,将一张矩形纸片ABCD沿EF折叠后,点C落在AB边上的点G处,点D落在点H处.若∠1=62°,则图中∠BEG的度数为_____.13.如图,ABCD 的顶点在矩形的边上,点与点不重合,若的面积为4,则图中阴影部分两个三角形的面积和为_________.14.直线y kx b =+与直线21y x =+平行,且经过()1,4,则直线的解析式为:__________.15.如果一个平行四边形一个内角的平分线分它的一边为1∶2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,这个平行四边形的周长为_________.161+a 42a -是同类二次根式,那么a=________.17.正比例函数()110y k x k =≠图象与反比例函数()220k y k x =≠图象的一个交点的横坐标为12,则12k k =______. 18.八年级(1)班四个绿化小组植树的棵数如下:8,8,10, x .已知这组数据的众数和 平均数相等,那么这组数据的方差是_____.三、解答题(共66分)19.(10分)以四边形ABCD 的边AB 、BC 、CD 、DA 为斜边分别向外侧作等腰直角三角形,直角顶点分别为E 、F 、G 、H ,顺次连接这四个点,得四边形EFGH .(1)如图1,当四边形ABCD 为正方形时,我们发现四边形EFGH 是正方形;如图2,当四边形ABCD 为矩形时,请判断:四边形EFGH 的形状(不要求证明);(2)如图3,当四边形ABCD 为一般平行四边形时,设∠ADC=α(0°<α<90°),①试用含α的代数式表示∠HAE ;②求证:HE=HG ;③四边形EFGH 是什么四边形?并说明理由.20.(6分)某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩统计表分数(分)人数(人)70 78090 1100 8(1)在图①中,“80分”所在扇形的圆心角度数为;(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算知S甲2=135,S乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.21.(6分)已知,如图,∠C=90°,∠B=30°,AD是△ABC的角平分线.(1)求证:BD=2CD;(2)若CD=2,求△ABD的面积.22.(8分)如图,在6×6的方格图中,每个小方格的边长都是为1,请在给定的网格中按下列要求画出图形.(1)画出以A 点出发,另一端点在格点(即小正方形的顶点)上,且长度为13 的一条线段. (2)画出一个以题(1)中所画线段为腰的等腰三角形.23.(8分)如图,在平行四边形ABCD 中,点E 、F 分别是BC 、AD 的中点.(1)求证:;(2)当四边形AECF 为菱形且时,求出该菱形的面积.24.(8分)(1)计算:2221(7)81(3)132-+--⨯ (2)已知31,31x y =+=- ,求22x y - 的值25.(10分)如图,点C 在线段AB 上,过点C 作CD ⊥AB ,点E ,F 分别是AD ,CD 的中点,连结EF 并延长EF 至点G ,使得FG =CB ,连结CE ,GB ,过点B 作BH ∥CE 交线段EG 于点H .(1)求证:四边形FCBG 是矩形.(1)己知AB =10,.①当四边形ECBH 是菱形时,求EG 的长.②连结CH ,DH ,记△DEH 的面积为S 1, △CBH 的面积为S 1.若EG =1FH ,求S 1+S 1的值.26.(10分)某学校数学兴趣小组在探究一次函数性质时得到下面正确结论:对于两个一次函数y =k 1x +b 1和y =k 2x +b 2,若两个一次函数的图象平行,则k 1=k 2且b 1≠b 2;若两个一次函数的图象垂直,则k 1•k 2=﹣1.请你直接利用以上知识解答下面问题:如图,在平面直角坐标系中,已知点A(0,8),B(6,0),P(6,4).(1)把直线AB向右平移使它经过点P,如果平移后的直线交y轴于点A′,交x轴于点B′,求直线A′B′的解析式;(2)过点P作直线PD⊥AB,垂足为点D,按要求画出直线PD并求出点D的坐标;参考答案一、选择题(每小题3分,共30分)1、C【解题分析】利用多边形的内角和公式及外角和定理列方程即可解决问题.【题目详解】设这个多边形的边数是n,则有(n-2)×180°=360°×4,所有n=1.故选C.【题目点拨】熟悉多边形的内角和公式:n边形的内角和是(n-2)×180°;多边形的外角和是360度.2、A【解题分析】根据图形,用面积法即可判断.【题目详解】如图,设大正方形的边长为c ,四个全等的直角三角形的两个直角边分别为a,b故小正方形的边长为(b-a )∴大正方形的面积为c 2=4×()212ab b a +- 化简得222c a b =+【题目点拨】此题主要考查勾股定理的性质,解题的关键是根据图像利用面积法求解.3、C【解题分析】直接利用关于关于原点对称点的性质得出m ,n 的值,进而得出答案.【题目详解】解:∵点M (m ,n )与点Q (−2,3)关于原点对称,∴m =2,n =−3,则点P (m +n ,n )为(−1,−3),在第三象限.故选:C .【题目点拨】此题主要考查了关于原点对称的点的性质,正确得出m ,n 的值是解题关键.4、D【解题分析】从A 点出发,前进8m 后向右转60°,再前进8m 后又向右转60°,…,这样一直走下去,他第一次回到出发点A 时,所走路径为正多边形,根据正多边形的外角和为360°,判断多边形的边数,再求路程.【题目详解】解:依题意可知,某人所走路径为正多边形,设这个正多边形的边数为n ,则60n =360,解得n =6,故他第一次回到出发点A 时,共走了:8×6=48(m ).故选:D .【题目点拨】本题考查了多边形的外角和,正多边形的判定与性质.关键是根据每一个外角判断多边形的边数.5、A【解题分析】据平行四边形的判定方法对A进行判断;根据矩形的判定方法对B进行判断;根据正方形的判定方法对C进行判断;根据菱形的判定方法对D进行判断.【题目详解】A、对角线互相平分的四边形是平行四边形,所以A选项正确;B、对角线相等的平行四边形是矩形,所以B选项错误;C、对角线相等且互相垂直平分的四边形是正方形,所以C选项错误;D、对角线互相垂直的平行四边形是菱形,所以D选项错误.故选A.【题目点拨】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.6、D【解题分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【题目详解】解:根据题意得3+x≥0,解得:x≥﹣3,故x的取值范围在数轴上表示正确的是.故选:D.【题目点拨】本题考查了二次根式的性质,二次根式中的被开方数必须是非负数,否则二次根式无意义.7、B【解题分析】解:∵不等式组5xx m<⎧⎨≥⎩有解,∴m≤x<1,∴m<1.故选B.点睛:本题主要考查了不等式组有解的条件,在解题时要会根据条件列出不等式.8、B【解题分析】根据到角的两边的距离相等的点在角的平分线上解答.【题目详解】∵P到△ABC的三边距离相等,∴点P在△ABC的三条角平分线上,∴P是△ABC三条角平分线的交点,故选:B.【题目点拨】本题考查的是角平分线的性质,掌握到角的两边的距离相等的点在角的平分线上是解题的关键.9、B【解题分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【题目详解】解:32x,x2y,1π均为整式,20x y+是分式,故选:B 【题目点拨】本题主要考查分式的定义,注意π不是字母,是常数,所以1π不是分式,是整式.10、D【解题分析】分析:将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.详解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,所以最低气温为31℃,众数为33℃,中位数为33℃,平均数是313233334357++⨯++=33℃.故选D.点睛:本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据.二、填空题(每小题3分,共24分)11、(2,﹣3)【解题分析】试题分析:反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.解:根据题意,知点A与B关于原点对称,∵点A的坐标是(﹣2,3),∴B点的坐标为(2,﹣3).故答案是:(2,﹣3).点评:本题考查了反比例函数图象的中心对称性,关于原点对称的两点的横、纵坐标分别互为相反数.12、56°【解题分析】根据矩形的性质可得AD//BC,继而可得∠FEC=∠1=62°,由折叠的性质可得∠GEF=∠FEC=62°,再根据平角的定义进行求解即可得.【题目详解】∵四边形ABCD是矩形,∴AD//BC,∴∠FEC=∠1=62°,∵将一张矩形纸片ABCD沿EF折叠后,点C落在AB边上的点G 处,∴∠GEF=∠FEC=62°,∴∠BEG=180°-∠GEF-∠FEC=56°,故答案为56°.【题目点拨】本题考查了矩形的性质、折叠的性质,熟练掌握矩形的性质、折叠的性质是解题的关键.13、1【解题分析】根据平行四边形的性质求出AD=BC,DC=AB,证△ADC≌△CBA,推出△ABC的面积是1,求出AC×AE=8,即可求出阴影部分的面积.【题目详解】∵四边形ABCD是平行四边形,∴AD=BC,DC=AB,∵在△ADC和△CBA中,∴△ADC ≌△CBA ,∵△ACD 的面积为1,∴△ABC 的面积是1, 即AC×AE=1, AC×AE=8,∴阴影部分的面积是8﹣1=1,故答案为1.【题目点拨】本题考查了矩形性质,平行四边形性质,全等三角形的性质和判定的应用,主要考查学生运用面积公式进行计算的能力,题型较好,难度适中.14、22y x =+【解题分析】由直线y kx b =+与直线21y x =+平行,可知k=1,然后把()1,4代入2y x b =+中即可求解.【题目详解】∵直线y kx b =+与直线21y x =+平行,∴k=1,把()1,4代入2y x b =+,得1+b=4,∴b=1,∴22y x =+.故答案为:22y x =+.【题目点拨】本题考查了两条直线的平行问题:若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.例如:若直线y 1=k 1x +b 1与直线y 1=k 1x +b 1平行,那么k 1=k 1.也考查了一次函数图像上点的坐标满足一次函数解析式.15、8或1【解题分析】解:如图所示:①当AE=1,DE=2时,∵四边形ABCD 是平行四边形,∴BC=AD=3,AB=CD ,AD ∥BC ,∴∠AEB=∠CBE ,∵BE 平分∠ABC ,∴∠ABE=∠CBE ,∴∠ABE=∠AEB ,∴AB=AE=1,∴平行四边形ABCD 的周长=2(AB+AD )=8;②当AE=2,DE=1时,同理得:AB=AE=2,∴平行四边形ABCD 的周长=2(AB+AD )=1;故答案为8或1.16、1【解题分析】根据同类二次根式可知,两个二次根式内的式子相等,从而得出a 的值.【题目详解】 1+a 42a -∴1+a=4a-2解得:a=1故答案为:1.【题目点拨】本题考查同类二次根式的应用,解题关键是得出1+a=4a-2.17、4【解题分析】把x=12代入各函数求出对应的y 值,即可求解. 【题目详解】 x=12代入()110y k x k =≠得12k y = x=12代入()220k y k x=≠得212k y = ∴12k k =4 【题目点拨】此题主要考查反比例函数的性质,解题的关键是根据题意代入函数关系式进行求解.18、1.【解题分析】根据题意先确定x 的值,再根据方差公式进行计算即可.【题目详解】解:当x =10时,有两个众数,而平均数只有一个,不合题意舍去.当众数为8时,根据题意得881084x +++=, 解得x =6, 则这组数据的方差是:22221[(88)(88)(108)(68)]24-+-+-+-=.故答案为1.【题目点拨】本题考查了数据的收集和处理,主要考查了众数、平均数和方差的知识,解题时需要理解题意,分类讨论.三、解答题(共66分)19、 (1) 四边形EFGH 的形状是正方形;(2)①∠HAE=90°+a;②见解析;③四边形EFGH 是正方形,理由见解析 【解题分析】(1)根据等腰直角三角形的性质得到∠E=∠F=∠G=∠H=90°,求出四边形是矩形,根据勾股定理求出AH=HD=2AD ,DG=GC=2CD ,CF=BF=2BC ,AE=BE=2AB ,推出EF=FG=GH=EH ,根据正方形的判定推出四边形EFGH 是正方形即可;(2)①根据平行四边形的性质得出,∠BAD=180°-α,根据△HAD 和△EAB 是等腰直角三角形,得到∠HAD=∠EAB=45°,求出∠HAE 即可;②根据△AEB 和△DGC 是等腰直角三角形,得出AE=2AB ,DG=2CD ,平行四边形的性质得出AB=CD ,求出∠HDG=90°+a=∠HAE ,根据SAS 证△HAE ≌△HDG ,根据全等三角形的性质即可得出HE=HG ; ③与②证明过程类似求出GH=GF ,FG=FE ,推出GH=GF=EF=HE ,得出菱形EFGH ,证△HAE ≌△HDG ,求出∠AHD=90°,∠EHG=90°,即可推出结论.【题目详解】(1)解:四边形EFGH 的形状是正方形.(2)解:①∠HAE=90°+α,在平行四边形ABCD 中AB ∥CD ,∴∠BAD=180°-∠ADC=180°-α, ∵△HAD 和△EAB 是等腰直角三角形,∴∠HAD=∠EAB=45°,∴∠HAE=360°-∠HAD-∠EAB-∠BAD=360°-45°-45°-(180°-a )=90°+α, 答:用含α的代数式表示∠HAE 是90°+α.②证明:∵△AEB 和△DGC 是等腰直角三角形,∴AE=2AB ,DG=2CD , 在平行四边形ABCD 中,AB=CD ,∴AE=DG ,∵△AHD 和△DGC 是等腰直角三角形,∴∠HDA=∠CDG=45°, ∴∠HDG=∠HDA+∠ADC+∠CDG=90°+α=∠HAE ,∵△AHD 是等腰直角三角形,∴HA=HD ,∴△HAE ≌△HDG ,∴HE=HG .③答:四边形EFGH 是正方形,理由是:由②同理可得:GH=GF ,FG=FE ,∵HE=HG ,∴GH=GF=EF=HE ,∴四边形EFGH 是菱形,∵△HAE ≌△HDG ,∴∠DHG=∠AHE ,∵∠AHD=∠AHG+∠DHG=90°, ∴∠EHG=∠AHG+∠AHE=90°, ∴四边形EFGH 是正方形.【题目点拨】考查对正方形的判定,等腰直角三角形的性质,菱形的判定和性质,全等三角形的性质和判定,平行线的性质等知识点的理解和掌握,综合运用性质进行推理是解此题的关键.20、(1)54°;(2)见解析;(3)85;(4)甲班20同名同学的成绩比较整齐.【解题分析】试题分析:(1)根据统计图可知甲班70分的有6人,从而可求得总人数,然后可求得成绩为80分的同学所占的百分比,最后根据圆心角的度数=360°×百分比即可求得答案;(2)用总人数减去成绩为70分、80分、90分的人数即可求得成绩为100分的人数,从而可补全统计图;(3)先求得乙班成绩为80分的人数,然后利用加权平均数公式计算平均数;(4)根据方差的意义即可做出评价.解:(1)6÷30%=20,3÷20=15%,360°×15%=54°;(2)20﹣6﹣3﹣6=5,统计图补充如下:(3)20﹣1﹣7﹣8=4,=85;(4)∵S甲2<S乙2,∴甲班20同名同学的成绩比较整齐.21、(1)见解析;(2)63【解题分析】(1)过D作DE⊥AB于E,依据角平分线的性质,即可得到DE=CD,再根据含30°角的直角三角形的性质,即可得出结论;(2)依据AD=BD=2CD=4,即可得到Rt△ACD中,2223AC AD CD=-=,再根据△ABD的面积=12BD AC ⨯⨯进行计算即可.【题目详解】解:(1)如图,过D作DE⊥AB于E,∵∠C=90°,AD是△ABC的角平分线,∴DE=CD,又∵∠B=30°,∴Rt△BDE中,DE=12 BD,∴BD=2DE=2CD;(2)∵∠C=90°,∠B=30°,AD是△ABC的角平分线,∴∠BAD=∠B=30°,∴AD=BD=2CD=4,∴Rt△ACD中,AC=2223AD CD=-,∴△ABD的面积为1142343 22⨯⨯=⨯⨯=BD AC.【题目点拨】本题主要考查了直角三角形的性质以及勾股定理的运用,利用角平分线的的性质是解决问题的关键.22、(1)作图见解析;(2)作图见解析.【解题分析】(1)直接利用勾股定理结合网格得出答案;(2)利用等腰三角形的定义得出符合题意的一个答案.【题目详解】(1)如图所示:AB即为所求;(2)如图所示:△ABC即为所求.【题目点拨】此题主要考查了应用设计与作图,正确应用网格是解题关键.23、 (1)详见解析;(2)【解题分析】(1)根据平行四边形的性质和全等三角形的判定解答即可;(2)根据菱形的性质和菱形的面积解答即可.【题目详解】(1)证明:∵平行四边形ABCD ∴,,∵点E 、F 分别为BC 、AD 中点 ∴, ∴∴, ∴ (2)∵四边形AECF 是菱形∴CE=AEBE=CE=AE=4∵AB=4∴AB=BE=AE=4,过点A 作AH ⊥BC 于H AH=2S 菱形AECF =CE×AH=4×2=8.【题目点拨】考查了菱形的性质,全等三角形的判定与性质,根据平行四边形的性质和全等三角形的判定解答是解题的关键.24、(1)0;(2)43【解题分析】(1)根据二次根式的性质、二次根式的混合运算法则计算;(2)根据平方差公式计算.【题目详解】(1)解:原式7931=-+-=0(2)解:3131x y =+=23-=2x y x y ∴+=22=()()43∴-+-=x y x y x y【题目点拨】本题考查二次根式的化简求值,掌握二次根式的性质、二次根式的混合运算法则、平方差公式是解题关键.25、(1)证明见解析(1)①②2或【解题分析】(1)由EF是中位线,得EF平行AB,即FG平行CB,已知FG=CB,由一组对边平行且相等得四边形FCBG是平行四边形,又因为CD垂直AB,则四边形FCBG是矩形.(1)①因为EF平行AC,根据平行列比例式,设EF为3x, 由中位线性质,直角三角形的中线的性质,四边形ECBH 是菱形等条件,通过线段的长度转化,最终把AC和BC用含x的关系式表示,由AB=8,列方程,求出x, 把EG也用含x的代数式表示,代入x值,即可求出EG的长.②由EF是△ACD的中位线,得DF=CF,根据同底等高三角形面积相等,得△DEH和△CEH的面积相等,因为四边形CEHB是平行四边形,所以△CEH的面积和△BCH的面积相等,得到关系式:S1+S1=1S1,由EF+FH=FH+HG,得EF=HG,结合已知EG=1FH,得FH=1FG,设EF等于a, 把有关线段用含a的代数式表示,分两种情况,即点H在FG上和点H在EF上,根据AB=10列关系式,求出a的值,再把S1用含a的代数式表示,代入a值即可.【题目详解】(1)∵EF即是△ADC的中位线,∴EF∥AC,即FG∥CB.∵FG=CB,∴四边形FCBG是平行四边形.∵CD⊥AB,即∠FCB=90°,∴四边形FCBG是矩形.(1)解:①∵EF是△ADC的中位线,∴EF=AC,DF=CD,∴∴可设EF=3x,则DF=CF=4x,AC=6x.∵∠EFC=90°,∴CE=5x.∵四边形ECBH是菱形,∴BC=EC=5x,∴AB=AC+CB=6x+5x=10,∴x=∴EG=EF+FG=EF+BC=3x+5x=8x=;②∵EH∥BC,BH∥CE,∴四边形ECBH是平行四边形,∴EH=BC,又∵DF=CF,∴S△DEH=S△CEH,∵四边形ECBH是平行四边形,∴S△CEH=S△BCH∴S1+S1=1S1.∵EH=BC=FG,∴EF=HG.当点H在线段FG上时,如图,设EF=HG=a,∵EG=1FH,∴EG=1FH=4a,AC=1EF=1a,∴BC=FG=3a.∴AB=AC+BC=1a+3a=10,∴a=1.∵FC=AC=a,∴S1+S1=1S1=1××3a×a=4a1=2.当点H在线段EF上时,如图.设EH=FG=a,则HF=1a.同理可得AC=6a,BC=a,FC=4a,∴AB=6a+a=10,∴a=∴S1+S1=1S1=1××a×4a=4a1= .综上所述,S1+S1的值是2或.【题目点拨】本题考查了四边形的综合,涉及的知识点有平行四边形的判定和性质,矩形的判定,菱形的性质,三角形中位线的性质,灵活利用(特殊)平行四边形的性质求线段长及三角形的面积是解题的关键.26、(1),(2)【解题分析】(1)已知A、B两点的坐标,可用待定系数法求出直线AB的解析式,根据若两个一次函数的图象平行,则且,设出直线A′B′的解析式,代入P(6,4),即可求得解析式;(2)根据直线AB的解析式设出设直线PD解析式为代入P(6,4),即可求得解析式,然后联立解方程即可求得D的坐标.【题目详解】解:(1)设直线AB的解析式为y=kx+b根据题意,得:解之,得∴直线AB的解析式为∵AB∥A′B′,∴直线A′B′的解析式为,∵过经过点P(6,4),∴4=×6+b′,解得b′=2,∴直线A′B′的解析式为y=-x+2.(2)过点P作直线PD⊥AB,垂足为点D,画出图象如图:∵直线PD⊥AB,∴设直线PD解析式为y=x+n,∵过点P(6,4),∴4=×6+n,解得n=-,∴直线PD解析式为y=x,解得,∴D(,).【题目点拨】本题考查了两条直线的平行或相交问题,一次函数的性质,掌握对于两个一次函数y=k1x+b1和y=k2x+b2,若两个一次函数的图象平行,则k1=k2且b1≠b2;若两个一次函数的图象垂直,则k1•k2=-1是解题的关键.。
2023-2024学年北京市海淀区清华附中八年级(下)期末数学试卷(含答案)
2023-2024学年北京市海淀区清华附中八年级(下)期末数学试卷一、选择题:本题共8小题,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知一次函数y=(3−m)x+3,如果函数值y随x增大而减小,那么m的取值范围是( )A. m>3B. m<3C. m≥3D. m≤32.如图,在平面直角坐标系xOy中,菱形OABC,O为坐标原点,点C在x轴上,A的坐标为(−3,4),则顶点B的坐标是( )A. (−5,4)B. (−6,3)C. (−8,4)D. (2,4)3.若关于x的一元二次方程kx2−6x+9=0有实数根,则k的取值范围是( )A. k<1B. k≤1C. k<1且k≠0D. k≤1且k≠04.某校篮球社团共有30名球员,如表是该社团成员的年龄分布统计表:年龄(单位:岁)13141516频数(单位:名)812x10−x对于不同的x,下列关于年龄的统计量不会发生改变的是( )A. 平均数、中位数B. 众数,中位数C. 众数、方差D. 平均数、方差5.函数y=ax2−2x+1和y=ax+a(a是常数,且a≠0)在同一直角坐标系中的图象可能是( )A. B.C. D.6.关于x的一元二次方程x2−x=1的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定7.如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度ℎ(单位:m)与飞行时间t(单位:s)之间具有函数关系ℎ=20t−5t2.下列叙述正确的是( )A. 小球的飞行高度不能达到15mB. 小球的飞行高度可以达到25mC. 小球从飞出到落地要用时4sD. 小球飞出1s时的飞行高度为10m8.如表是魔方比赛中甲、乙、丙、丁四位选手的复原时间统计表,同一行表示同一位选手四次复原的时间(单位:秒),则下列说法正确的是( )甲20.229.330.738.3乙37.638.439.139.3丙20.320.428.236.1丁22.927.833.534.3A. 乙选手的最短复原时间小于甲选手的最短复原时间B. 丙选手复原时间的平均数大于丁选手复原时间的平均数C. 甲选手复原时间的中位数小于丁选手复原时间的中位数D. 乙选手复原时间的方差大于丁选手复原时间的方差二、填空题:本题共8小题,共24分。
2018-2019学年北京市海淀区八年级(下)期末数学试卷(解析版)
2018-2019学年北京市海淀区八年级(下)期末数学试卷一、选择题(本题共30分,每小题3分)在下列各题的四个选项中,只有一个是符合题意的1.(3分)下列实数中,是方程x2﹣4=0的根的是()A.1B.2C.3D.42.(3分)如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,则AB的长度为()A.7B.8C.9D.103.(3分)在下列条件中,能判定四边形为平行四边形的是()A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直4.(3分)下列各曲线中,不表示y是x的函数的是()A.B.C.D.5.(3分)数据2,6,4,5,4,3的平均数和众数分别是()A.5和4B.4和4C.4.5和4D.4和56.(3分)一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=15D.(x﹣4)2=17 7.(3分)若点A(﹣3,y1),B(1,y2)都在直线y=x+2上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法比较大小8.(3分)如图,正方形ABCD的边长为,对角线AC,BD交于点O,E是AC延长线上一点,且CE=CO,则BE的长度为()A.B.C.D.29.(3分)对于一次函数y=kx+b(k,b为常数),下表中给出5组自变量及其对应的函数值,其中恰好有1个函数值计算有误,则这个错误的函数值是()X﹣10123Y2581214 A.5B.8C.12D.1410.(3分)博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为众提供知识、教育及欣赏服务.近年来,人们到博物馆学习参观的热情越来越高,2012﹣2018年我国博物馆参观人数统计如下:小明研究了这个统计图,得出四个结论:①2012年到2018年,我国博物馆参观人数持续增②2019年末我国博物馆参观人数估计将达到1082亿人次③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;④2016年到2018年,我国博物馆参观人数平均年增长率超过10%其中正确的是()A.①③B.①②③C.①②④D.①②二、填空题(本题共18分,每小题3分)11.(3分)在▱ABCD中,若∠B=110°,则∠D=°.12.(3分)八年级(1)班甲、乙两个小组的10名学生进行飞镖训练,某次训练成绩如下甲组成绩(环)87889乙组成绩(环)98797由上表可知,甲、乙两组成绩更稳定的是.13.(3分)若关于x的一元二次方程x2+6x+m=0有实数根,且所有实数根均为整数,请写出一个符合条件的常数m的值:m=.14.(3分)如图,某港口P位于南北延伸的海岸线上,东面是大海远洋号,长峰号两艘轮船同时离开港P,各自沿固定方向航行,“远洋”号每小时航行12nmile,“长峰”号每小时航行16nmile,它们离开港口1小时后,分别到达A,B两个位置,且AB=20nmile,已知“远洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是.15.(3分)若一个矩形的长边的平方等于短边与其周长一半的积,则称这样的矩形为“优美矩形”.某公园在绿化时工作人员想利用如图所示的直角墙角(两边足够长)和长为38m的篱笆围成一个“优美矩形”形状的花园ABCD,其中边AB,AD为篱笆且AB大于AD.设AD为xm,依题意可列方程为.16.(3分)在平面直角坐标系xOy中,直线y=kx+3与x,y轴分别交于点A,B,若将该直线向右平移5单位,线段AB扫过区域的边界恰好为菱形,则k的值为.三、解答题(本题共26分,第17题8分,第18,20题各5分,第19,21题各4分)17.(8分)解下列方程:(1)x2+2x﹣3=0(用配方法)(2)2x2+5x﹣1=0(用公式法)18.(5分)在平面直角坐标系xOy中,函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6)(1)求一次函数y=kx+b的解析式;(2)求一次函数y=kx+b的图象与坐标轴围成的三角形的面积.19.(5分)下面是小丁设计的“利用直角三角形和它的斜边中点作矩形的尺规作图过程:已知:如图,在Rt△ABC中,∠ABC=90°,O为AC的中点,求作:四边形ABCD,使得四边形ABCD为矩形.作法:①作射线BO,在线段BO的延长线上取点D,使得DO=BO②连接AD,CD,则四边形ABCD为矩形根据小丁设计的尺规作图过程(1)使用直尺和圆规,在图中补全图形(保留作图痕迹)(2)完成下面的证明证明:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形()∵∠ABC=90°,∴▱ABCD为矩形()20.(4分)方程x 2+2x +k ﹣4=0有实数根 (1)求k 的取值范围;(2)若k 是该方程的一个根,求2k 2+6k ﹣5的值.21.(4分)小东和小明要测量校园里的一块四边形场地ABCD (如图所示)的周长,其中边CD 上有水池及建筑遮挡,没有办法直接测量其长度小东经测量得知AB =AD =5m ,∠A =60°,BC =12m ,∠ABC =150°小明说根据小东所得的数据可以求出CD 的长度.你同意小明的说法吗?若同意,请求出CD 的长度;若不同意,请说明理由.四、解答题(本题共13分,第22题7分,第23题6分)22.(7分)三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动为了让同学们更好的了解二十四节气的知识,本次学习节在沿袭以往经典项目的基础上,增设了十四节气之旅项目,并开展了相关知识竞赛该学校七、八年级各有400名学生参加了这次竞赛,现从七、八年级各随机抽取20名学生的成绩进行抽样调查 七年级:74 97 96 72 98 99 72 73 76 74 74 69 76 89 78 74 99 97 98 99 八年级:76 88 93 89 78 94 89 94 95 50 89 68 65 88 77 87 89 88 92 91 整理数据如下成绩 人数 年级 50≤x ≤5960≤x ≤6970≤x ≤7980≤x ≤8990≤x ≤100七年级 0 1 10 1 a 八年级 12386分析数据如下年级平均数中位数众数方差七年级84.27774138.56八年级84b89129.7根据以上信息,回答下列问题(1)a=b=;(2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性).(3)学校对知识竞赛成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有人.23.(6分)如图,在▱ABCD中,对角线AC,BD交于点O,过点B作BE⊥CD于点E,延长CD到点F,使DF=CE,连接AF.(1)求证:四边形ABEF是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF的长度.五、解答题(本题共13分,第24题6分,第25题7分)24.(6分)如图,在平面直角坐标系xOy中,直线y=kx+7与直线y=x﹣2交于点A(3,m)(1)求k,m的值;(2)已知点P(n,n),过点P作垂直于y轴的直线与直线y=x﹣2交于点M,过点P 作垂直于x轴的直线与直线y=kx+7交于点N(P与N不重合).若PN≤2PM,结合图象,求n的取值范围.25.(7分)在Rt△ABC中,∠BAC=90°,点O是△ABC所在平面内一点,连接OA,延长OA到点E,使得AE=OA,连按OC,过点B作BD与OC平行,并使∠DBC=∠OCB,且BD=OC,连按DE.(1)如图一,当点O在Rt△ABC内部时,①按题意补全图形;②猜想DE与BC的数量关系,并证明.(2)若AB=AC(如图二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.2018-2019学年北京市海淀区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)在下列各题的四个选项中,只有一个是符合题意的1.(3分)下列实数中,是方程x2﹣4=0的根的是()A.1B.2C.3D.4【分析】先把方程化为x2=4,方程两边开平方得到x=±=±2,即可得到方程的两根.【解答】解:移项得x2=4,开方得x=±2,∴x1=2,x2=﹣2.故选:B.【点评】本题考查了解一元二次方程﹣直接开平方法,用直接开方法求一元二次方程的解的类型有:x2=a(a≥0),ax2=b(a,b同号且a≠0),(x+a)2=b(b≥0),a (x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”;2.(3分)如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,则AB的长度为()A.7B.8C.9D.10【分析】根据勾股定理即可得到结论.【解答】解:在Rt△ABC中,∠C=90°,BC=6,AC=8,∴AB===10,故选:D.【点评】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.3.(3分)在下列条件中,能判定四边形为平行四边形的是()A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直【分析】根据平行四边形的判定定理逐个判断即可.【解答】解:A、两组对边分别平行的四边形是平行四边形,故本选项符合题意;B、一组对边平行且另一组对边相等的四边形是等腰梯形,不是平行四边形,故本选项不符合题意;C、两组邻边相等的四边形不一定是平行四边形,故本选项不符合题意;D、对角线互相平分的四边形才是平行四边形,故本选项不符合题意;故选:A.【点评】本题考查了平行四边形的判定定理,能熟记平行四边形的判定定理的内容是解此题的关键,注意:平行四边形的判定定理有:①两组对边分别平行的四边形是平行四边形,②两组对边分别相等的四边形是平行四边形,③两组对角分别平行的四边形是平行四边形,④一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形.4.(3分)下列各曲线中,不表示y是x的函数的是()A.B.C.D.【分析】设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.根据函数的意义即可求出答案.【解答】解:显然A、B、D选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;C选项对于x取值时,y都有2个值与之相对应,则y不是x的函数;故选:C.【点评】本题主要考查了函数的定义,在定义中特别要注意,对于x的每一个值,y都有唯一的值与其对应.5.(3分)数据2,6,4,5,4,3的平均数和众数分别是()A.5和4B.4和4C.4.5和4D.4和5【分析】根据平均数和众数的概念求解.【解答】解:这组数据的平均数是:(2+6+4+5+4+3)=4;∵4出现了2次,出现的次数最多,∴这组数据的众数是4;故选:B.【点评】本题考查了众数和平均数的知识,一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.6.(3分)一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=15D.(x﹣4)2=17【分析】先把常数项移到方程右边,再把方程两边加上16,然后把方程左边写成完全平方形式即可.【解答】解:x2﹣8x=1,x2﹣8x+16=17,(x﹣4)2=17.故选:D.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.7.(3分)若点A(﹣3,y1),B(1,y2)都在直线y=x+2上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法比较大小【分析】先根据直线y=x+2判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.【解答】解:∵直线y=x+2,k=>0,∴y随x的增大而增大,又∵﹣3<1,∴y1<y2.故选:A.【点评】本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y 随x的增大而增大;当k<0,y随x的增大而减小.8.(3分)如图,正方形ABCD的边长为,对角线AC,BD交于点O,E是AC延长线上一点,且CE=CO,则BE的长度为()A.B.C.D.2【分析】利用正方形的性质得到OB=OC=BC=1,OB⊥OC,则OE=2,然后根据勾股定理计算BE的长.【解答】解:∵正方形ABCD的边长为,∴OB=OC=BC=×=1,OB⊥OC,∵CE=OC,∴OE=2,在Rt△OBE中,BE==.故选:C.【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.9.(3分)对于一次函数y=kx+b(k,b为常数),下表中给出5组自变量及其对应的函数值,其中恰好有1个函数值计算有误,则这个错误的函数值是()X﹣10123Y2581214 A.5B.8C.12D.14【分析】经过观察5组自变量和相应的函数值得(﹣1,2),(0,5),(1,8),(3,14)符合解析式y=3x+5,(2,12)不符合,即可判定.【解答】解:∵(﹣1,2),(0,5),(1,8),(3,14)符合解析式y=3x+5,当x=2时,y=11≠12∴这个计算有误的函数值是12,故选:C.【点评】本题考查了一次函数图象上点的坐标特征,图象上点的坐标符合解析式是解决本题的关键.10.(3分)博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为众提供知识、教育及欣赏服务.近年来,人们到博物馆学习参观的热情越来越高,2012﹣2018年我国博物馆参观人数统计如下:小明研究了这个统计图,得出四个结论:①2012年到2018年,我国博物馆参观人数持续增②2019年末我国博物馆参观人数估计将达到1082亿人次③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;④2016年到2018年,我国博物馆参观人数平均年增长率超过10%其中正确的是()A.①③B.①②③C.①②④D.①②【分析】根据条形统计图中的信息对4个结论矩形判断即可.【解答】解:①2012年到2018年,我国博物馆参观人数持续增,正确;②10.08×(1+)=10.45,故2019年末我国博物馆参观人数估计将达到10.45亿人次;故错误;③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;正确;④设平均年增长率为x,则8.50(1+x)2=10.08,解得:x=0.0889,故2016年到2018年,我国博物馆参观人数平均年增长率是8.89%,故错误;故选:A.【点评】此题考查了条形统计图,弄清题中图形中的数据是解本题的关键.二、填空题(本题共18分,每小题3分)11.(3分)在▱ABCD中,若∠B=110°,则∠D=110°.【分析】直接利用平行四边形的对角相等即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴∠B=∠D=110°.故答案为:110.【点评】此题主要考查了平行四边形的性质,正确得出对角相等是解题关键.12.(3分)八年级(1)班甲、乙两个小组的10名学生进行飞镖训练,某次训练成绩如下甲组成绩(环)87889乙组成绩(环)98797由上表可知,甲、乙两组成绩更稳定的是甲.【分析】根据方差计算公式,进行计算,然后比较方差,小的稳定,在计算方差之前还需先计算平均数.【解答】解:甲==8,乙==8,=[(8﹣8)2+(7﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2]=0.4,=[(9﹣8)2+(8﹣8)2+(7﹣8)2+(9﹣8)2+(7﹣8)2]=0.8∵<∴甲组成绩更稳定.故答案为:甲.【点评】考查平均数、方差的计算方法,理解方差是反映一组数据的波动大小的统计量,方差越小,数据越稳定.13.(3分)若关于x的一元二次方程x2+6x+m=0有实数根,且所有实数根均为整数,请写出一个符合条件的常数m的值:m=9.【分析】利用判别式的意义得到△=62﹣4m≥0,解不等式得到m的范围,在此范围内取m=0即可.【解答】解:△=62﹣4m≥0,解得m≤9;当m=0时,方程变形为x2+6x=0,解得x1=0,x2=﹣6,所以m=9满足条件.故答案为9.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.14.(3分)如图,某港口P位于南北延伸的海岸线上,东面是大海远洋号,长峰号两艘轮船同时离开港P,各自沿固定方向航行,“远洋”号每小时航行12nmile,“长峰”号每小时航行16nmile,它们离开港口1小时后,分别到达A,B两个位置,且AB=20nmile,已知“远洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是南偏东30°.【分析】由题意得:P与O重合,得出OA2+OB2=AB2,由勾股定理的逆定理得出△PAB 是直角三角形,∠AOB=90°,求出∠COP=30°,即可得出答案.【解答】解:由题意得:P与O重合,如图所示:OA=12nmile,OB=16nmile,AB=20nmile,∵122+162=202,∴OA2+OB2=AB2,∴△PAB是直角三角形,∴∠AOB=90°,∵∠DOA=60°,∴∠COP=180°﹣90°﹣60°=30°,∴“长峰”号航行的方向是南偏东30°,故答案为:南偏东30°.【点评】此题主要考查了直角三角形的判定、勾股定理的逆定理及方向角的理解及运用.利用勾股定理的逆定理得出△PAB为直角三角形是解题的关键.15.(3分)若一个矩形的长边的平方等于短边与其周长一半的积,则称这样的矩形为“优美矩形”.某公园在绿化时工作人员想利用如图所示的直角墙角(两边足够长)和长为38m的篱笆围成一个“优美矩形”形状的花园ABCD,其中边AB,AD为篱笆且AB大于AD.设AD为xm,依题意可列方程为(38﹣x)2=38x.【分析】设AD为xm,根据“矩形的长边的平方等于短边与其周长一半的积”列出列出方程即可.【解答】解:设AD的长为x米,则AB的长为(38﹣x)m,根据题意得:(38﹣x)2=38x,故答案为:(38﹣x)2=38x.【点评】考查了由实际问题抽象出一元二次方程的知识,解题的关键是表示出另一边的长,难度不大.16.(3分)在平面直角坐标系xOy中,直线y=kx+3与x,y轴分别交于点A,B,若将该直线向右平移5单位,线段AB扫过区域的边界恰好为菱形,则k的值为±.【分析】根据菱形的性质知AB=5,由一次函数图象的性质和两点间的距离公式解答.【解答】解:令y=0,则x=﹣,即A(﹣,0).令x=0,则y=3,即B(0,3).∵将该直线向右平移5单位,线段AB扫过区域的边界恰好为菱形,∴AB=5,则AB2=25.∴(﹣)2+32=25.解得k=±.故答案是:±.【点评】考查了菱形的性质和一次函数图象与几何变换,解题的关键是根据菱形的性质得到AB=5.三、解答题(本题共26分,第17题8分,第18,20题各5分,第19,21题各4分)17.(8分)解下列方程:(1)x2+2x﹣3=0(用配方法)(2)2x2+5x﹣1=0(用公式法)【分析】(1)根据配方法的步骤,可得答案;(2)根据公式法,可得答案.【解答】解:(1)移项,得x2+2x=3配方,得x2+2x+1=3+1即(x+1)2=3开方得x+1=±2,x1=1,x2=﹣3;(2)a=2,b=5,c=﹣1,△=b2﹣4ac=25﹣4×2×(﹣1)=33>0,x==,x1=,x2=.【点评】本题考查了解一元二次方程,配方得出完全平方公式是解题关键.18.(5分)在平面直角坐标系xOy中,函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6)(1)求一次函数y=kx+b的解析式;(2)求一次函数y=kx+b的图象与坐标轴围成的三角形的面积.【分析】(1)根据函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6),即可得出k和b的值,即得出了函数解析式.(2)先求出与x轴及y轴的交点坐标,然后根据三角形面积公式求解即可.【解答】解:(1)∵函数y=kx+b的图象与直线y=2x平行,∴k=2,又∵函数y=2x+b的图象经过点A(1,6),∴6=2+b,解得b=4,∴一次函数的解析式为y=2x+4;(2)在y=2x+4中,令x=0,则y=4;令y=0,则x=﹣2;∴一次函数y=kx+b的图象与坐标轴交于(0,4)和(﹣2,0),∴一次函数y=kx+b的图象与坐标轴围成的三角形的面积为×2×4=4.【点评】本题考查待定系数法求函数解析式及三角形的面积的知识,关键是正确得出函数解析式及坐标与线段长度的转化.19.(5分)下面是小丁设计的“利用直角三角形和它的斜边中点作矩形的尺规作图过程:已知:如图,在Rt△ABC中,∠ABC=90°,O为AC的中点,求作:四边形ABCD,使得四边形ABCD为矩形.作法:①作射线BO,在线段BO的延长线上取点D,使得DO=BO②连接AD,CD,则四边形ABCD为矩形根据小丁设计的尺规作图过程(1)使用直尺和圆规,在图中补全图形(保留作图痕迹)(2)完成下面的证明证明:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形(对角线互相平分的四边形是平行四边形)∵∠ABC=90°,∴▱ABCD为矩形(有一个角是直角的平行四边形是矩形)【分析】(1)根据要求画出图形即可.(2)根据有一个角是直角的平行四边形是矩形即可证明.【解答】解:(1)如图,矩形ABCD即为所求.(2)理由:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形(对角线互相平分的四边形是平行四边形)∵∠ABC=90°,∴▱ABCD为矩形(有一个角是直角的平行四边形是矩形).故答案为:对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形【点评】本题考查作图﹣复杂作图,矩形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.(4分)方程x2+2x+k﹣4=0有实数根(1)求k的取值范围;(2)若k是该方程的一个根,求2k2+6k﹣5的值.【分析】(1)根据判别式的意义得到△=22﹣4(k﹣4)≥0,然后解不等式即可;(2)利用方程解的定义得到k2+3k=4,再变形得到2k2+6k﹣5=2(k2+3k)﹣5,然后利用整体代入的方法计算.【解答】解:(1)△=22﹣4(k﹣4)≥0,解得k≤5;(2)把x=k代入方程得k2+2k+k﹣4=0,即k2+3k=4,所以2k2+6k﹣5=2(k2+3k)﹣5=2×4﹣5=3.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.(4分)小东和小明要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边CD上有水池及建筑遮挡,没有办法直接测量其长度小东经测量得知AB=AD=5m,∠A=60°,BC=12m,∠ABC=150°小明说根据小东所得的数据可以求出CD的长度.你同意小明的说法吗?若同意,请求出CD的长度;若不同意,请说明理由.【分析】直接利用等边三角形的判定方法得出△ABD是等边三角形,再利用勾股定理得出答案.【解答】解:同意小明的说法.理由:连接BD,∵AB=AD=5m,∠A=60°,∴△ABD是等边三角形,∴BD=5m,∠ABD=60°,∵∠ABC=150°,∴∠DBC=90°,∵BC=12m,BD=5m,∴DC ==13(m ),答:CD 的长度为13m .【点评】此题主要考查了勾股定理的应用以及等边三角形的判定,正确得出△ABD 是等边三角形是解题关键.四、解答题(本题共13分,第22题7分,第23题6分)22.(7分)三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动为了让同学们更好的了解二十四节气的知识,本次学习节在沿袭以往经典项目的基础上,增设了十四节气之旅项目,并开展了相关知识竞赛该学校七、八年级各有400名学生参加了这次竞赛,现从七、八年级各随机抽取20名学生的成绩进行抽样调查 七年级:74 97 96 72 98 99 72 73 76 74 74 69 76 89 78 74 99 97 98 99 八年级:76 88 93 89 78 94 89 94 95 50 89 68 65 88 77 87 89 88 92 91 整理数据如下成绩 人数 年级 50≤x ≤5960≤x ≤6970≤x ≤7980≤x ≤8990≤x ≤100七年级 0 1 10 1 a 八年级 12386分析数据如下年级 平均数 中位数 众数 方差 七年级 84.2 77 74 138.56 八年级84b89129.7根据以上信息,回答下列问题 (1)a =8 b = 88.5 ;(2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性).(3)学校对知识竞赛成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有180,280人.【分析】(1)从调查的七年级的人数20减去前几组的人数即可,将八年级的20名学生的成绩排序后找到第10、11个数的平均数即是八年级的中位数,(2)从中位数、众数、方差进行分析,调查结论,(3)用各个年级的总人数乘以样本中优秀人数所占的比即可.【解答】解:(1)a=20﹣1﹣10﹣1=8,b=(88+89)÷2=88.5故答案为:8,88.5.(2)八年级成绩较好,八年级成绩的众数、中位数比七年级成绩相应的众数、中位数都要大,说明八年级成绩的集中趋势要高,方差八年级较小,说明八年级的成绩比较稳定.(3)七年级优秀人数为:400×=180人,八年级优秀人数为:400×=280人,故答案为:180,280.【点评】考查频数分布表、众数、中位数、平均数、方差的意义及计算方法,明确各自的意义和计算方法是解决问题的前提.23.(6分)如图,在▱ABCD中,对角线AC,BD交于点O,过点B作BE⊥CD于点E,延长CD到点F,使DF=CE,连接AF.(1)求证:四边形ABEF是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF的长度.【分析】(1)根据平行四边形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据直角三角形斜边中线可得:OF=AC,利用勾股定理计算AC的长,可得结论.【解答】(1)证明:∵在▱ABCD中,∴AD∥BC且AD=BC,∴∠ADF=∠BCE,在△ADF和△BCE中,∵∴△ADF≌△BCE(SAS),∴AF=BE,∠AFD=∠BEC=90°,∴AF∥BE,∴四边形ABEF是矩形;(2)解:由(1)知:四边形ABEF是矩形,∴EF=AB=6,∵DE=2,∴DF=CE=4,∴CF=4+4+2=10,Rt△ADF中,∠ADF=45°,∴AF=DF=4,由勾股定理得:AC===2,∵四边形ABCD是平行四边形,∴OA=OC,∴OF=AC=.【点评】本题考查了矩形的判定和性质,平行四边形的性质,勾股定理,正确的识别图形是解题的关键.五、解答题(本题共13分,第24题6分,第25题7分)24.(6分)如图,在平面直角坐标系xOy中,直线y=kx+7与直线y=x﹣2交于点A(3,m)(1)求k,m的值;(2)已知点P(n,n),过点P作垂直于y轴的直线与直线y=x﹣2交于点M,过点P 作垂直于x轴的直线与直线y=kx+7交于点N(P与N不重合).若PN≤2PM,结合图象,求n的取值范围.【分析】(1)把A点坐标代入y=x﹣2中,求得m的值,再把求得的A点坐标代入y =kx+7中,求得k的值;(2)根据题意,用n的代数式表示出M、N点的坐标,再求得PM、PN的值,根据PN ≤2PM,列出n的不等式,再求得结果.【解答】解:(1)把A(3,m)代入y=x﹣2中,得m=3﹣2=1,∴A(3,1),把A(3,1)代入y=kx+7中,得1=3k+7,解得,k=﹣2;(2)由(1)知,直线y=kx+7为y=﹣2x+7,根据题意,作出草图如下:∵点P(n,n),∴M(n+2,n),N(n,﹣2n+7),∴PM=2,PN=|3n﹣7|,∵PN≤2PM,∴|3n﹣7|≤2×2,∴1≤n≤,∵P与N不重合,∴n≠﹣2n+7,∴n≠,综上,1≤n≤,且n≠【点评】本题是一次函数图象的相交与平行的问题,主要考查了待定系数法求一次函数的解析式,第(2)小题关键是用n的代数式表示PM与PN的长度.25.(7分)在Rt△ABC中,∠BAC=90°,点O是△ABC所在平面内一点,连接OA,延长OA到点E,使得AE=OA,连按OC,过点B作BD与OC平行,并使∠DBC=∠OCB,且BD=OC,连按DE.(1)如图一,当点O在Rt△ABC内部时,①按题意补全图形;②猜想DE与BC的数量关系,并证明.(2)若AB=AC(如图二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.【分析】(1)①根据要求画出图形即可解决问题.②结论:DE=BC.连接OD交BC于F,连接AF.证明AF为Rt△ABC斜边中线,为△ODE的中位线,即可解决问题.(2)分两种情形:如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.证明△BMA≌△BMO(AAS),推出AM=OM,∠BMO=∠BMA=120°,推出∠AMO=120°,即可解决问题.如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.分别求解即可.【解答】解:(1)①补全图形如图所示:②结论:DE=BC.理由:如图一中,连接OD交BC于F,连接AF.∵OC∥BD,∴∠FCO=∠FBD,∵∠CFO=∠BFD,OC=BD,∴△FCO≌△FBD(AAS),∴BF=CF,∵OA=AE,∵DE=2AF,∵∠BAC=90°,BF=CF,∴BC=2AF,∴DE=BC.(2)如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.由(1)可知:AF为Rt△ABC斜边中线,为△ODE的中位线,∵AB=AC,∴AF垂直平分线段BC,∴MB=MC,∵∠OCB=30°,∠OBC=15°,∴∠MBC=∠MCB=30°,∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∠MBO=∠MBA=15°,∵∠BAM=∠BOM=45°,BM=BM,∴△BMA≌△BMO(AAS),∴AM=OM,∠BMO=∠BMA=120°,∴∠AMO=120°,∴∠MAO=∠MOA=30°,∴∠AED=∠MAO=30°.如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.由∠BOM=∠BAM=45°,可知A,B,M,O四点共圆,∴∠MAO=∠MBO=30°﹣15°=15°,∵DE∥AM,∴∠AED=∠MAO=15°,综上所述,满足条件的∠AED的值为15°或30°.【点评】本题属于三角形综合题,考查了全等三角形的判定和性质,直角三角形斜边中线的性质,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
2018-2019学年八年级下期末数学试卷含答案解析
2018-2019学年八年级(下)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.2.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等 D.对角线互相平分3.下列四组线段中,可以组成直角三角形的是()A.4,5,6 B.3,4,5 C.5,6,7 D.1,,34.小明和小李两位同学这学期数学六次测试的平均成绩恰好都是85分,方差分别为S小明2=1.5,S小李2=2,则成绩最稳定的是()A.小明B.小李C.小明和小李 D.无法确定5.正方形的一条对角线长为6,则正方形的面积是()A.9 B.36 C.18 D.36.在函数y=中,自变量x的取值范围是()A.x≥1 B.x≤1 C.x≤1且x≠5 D.x≥1且x≠57.一次函数y=3x+5的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.不能判断四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CD C.AB=CD,AD∥BC D.AB ∥CD,AD∥BC9.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则AC的长为()A.2 B.4 C.6 D.810.菱形两条对角线长为6和8,菱形的边长为a,面积为S,则下列正确的是()A.a=5,S=24 B.a=5,S=48 C.a=6,S=24 D.a=8,S=4811.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.28 B.20 C.14 D.1812.小明为备战体育中考,每天早晨坚持锻炼,他花20分钟慢跑到离家900米的江边,在江边休息10分钟后,再用15分钟快跑回家,下列图中表示小明离家的距离y(米)与时间x(分)的函数图象是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.当x时,有意义.14.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是.15.如图,在▱ABCD中,已知AD=6cm,AB=4cm,AE平分∠BAD交BC边于点E,则EC=cm.16.直线y=﹣3x+5向下平移6个单位得到直线.17.已知一个直角三角形的两条直角边分别为6和8,则它斜边上的中线的长为.18.一次函数y=(m﹣8)x+5中,y随x的增大而减小,则m的取值范围是.三、解答题(共6小题,满分46分)19.计算:﹣|﹣2|﹣(2﹣π)0+(﹣1)2017.20.如图,在▱ABCD中,E、F分别为BC、AD边上的一点,BE=DF.求证:AE=CF.21.某校举办的“读好书、讲礼仪”活动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书,下面是八年级(1)班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)八(1)班全体同学所捐图书的中位数和众数分别是多少?22.已知:如图,O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,DE、CE交于点E.(1)猜想:四边形CEDO是什么特殊的四边形?(2)试证明你的猜想.23.某长途汽车站规定,乘客可以免费携带一定质量的行李,若超过该质量则需购买行李票,且行李票y(元)与行李质量x(千克)间的一次函数关系式为y=kx ﹣5(k≠0),现知贝贝带了60千克的行李,交了行李费5元.(1)若京京带了84千克的行李,则该交行李费多少元?(2)旅客最多可免费携带多少千克的行李?24.甲乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系,折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.【考点】74:最简二次根式.【分析】根据最简二次根式的概念即可求出答案.【解答】解:(A)原式=2,故A不是最简二次根式;(B)原式=4,故B不是最简二次根式;(C)原式=,故C不是最简二次根式;故选(D)2.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等 D.对角线互相平分【考点】LB:矩形的性质;L5:平行四边形的性质.【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:C.3.下列四组线段中,可以组成直角三角形的是()A.4,5,6 B.3,4,5 C.5,6,7 D.1,,3【考点】KS:勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、42+52≠62,不能构成直角三角形,故不符合题意;B、32+42=52,能构成直角三角形,故符合题意;C、52+62≠72,不能构成直角三角形,故不符合题意;D、12+()2≠32,不能构成直角三角形,故不符合题意.故选B.4.小明和小李两位同学这学期数学六次测试的平均成绩恰好都是85分,方差分别为S小明2=1.5,S小李2=2,则成绩最稳定的是()A.小明B.小李C.小明和小李 D.无法确定【考点】W7:方差;W1:算术平均数.【分析】方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,据此判断即可.【解答】解:∵1.5<2,∴S小明2<S小李2,∴成绩最稳定的是小明.故选:A.5.正方形的一条对角线长为6,则正方形的面积是()A.9 B.36 C.18 D.3【考点】LE:正方形的性质.【分析】根据正方形的面积=对角线的乘积的一半.【解答】解:因为正方形的对角线互相垂直且相等,所以正方形的面积=对角线的乘积的一半=×6×6=18,故选C.6.在函数y=中,自变量x的取值范围是()A.x≥1 B.x≤1 C.x≤1且x≠5 D.x≥1且x≠5【考点】E4:函数自变量的取值范围.【分析】根据被开方数是非负数且分母不能为零,可得答案.【解答】解:由题意,得x﹣1≥0且x﹣5≠0,解得x≥1且x≠5,故选:D.7.一次函数y=3x+5的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【考点】F5:一次函数的性质.【分析】利用一次函数的性质求解.【解答】解:∵k=3>0,b=5>0,∴一次函数y=3x+5的图象经过第一、二、三象限.故选D.8.不能判断四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CD C.AB=CD,AD∥BC D.AB ∥CD,AD∥BC【考点】L6:平行四边形的判定.【分析】A、B、D,都能判定是平行四边形,只有C不能,因为等腰梯形也满足这样的条件,但不是平行四边形.【解答】解:根据平行四边形的判定:A、B、D可判定为平行四边形,而C不具备平行四边形的条件,故选:C.9.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则AC的长为()A.2 B.4 C.6 D.8【考点】LB:矩形的性质.【分析】只要证明△AOB是等边三角形即可解决问题.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=2,∴AC=2OA=4,故选B.10.菱形两条对角线长为6和8,菱形的边长为a,面积为S,则下列正确的是()A.a=5,S=24 B.a=5,S=48 C.a=6,S=24 D.a=8,S=48【考点】L8:菱形的性质.【分析】画出几何图形,利用菱形的面积等于对角线乘积的一半即可得到此菱形的面积,根据菱形的性质得AC⊥BD,AO=OC=4,OB=OD=3,然后根据勾股定理计算AB即可.【解答】解:如图,菱形ABCD的对角线AC=8,BD=6,菱形的面积=•AC•BD=×8×6=24,∵四边形ABCD为菱形,∴AC⊥BD,AO=OC=4,OB=OD=3,在Rt△AOB中,AB===5,即菱形的边长为5.∴a=5,S=24,故选A.11.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.28 B.20 C.14 D.18【考点】KP:直角三角形斜边上的中线;KH:等腰三角形的性质.【分析】根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据直角三角形斜边上的中线等于斜边的一半可得DE=CE=AC,然后根据三角形的周长公式列式计算即可得解.【解答】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故选C.12.小明为备战体育中考,每天早晨坚持锻炼,他花20分钟慢跑到离家900米的江边,在江边休息10分钟后,再用15分钟快跑回家,下列图中表示小明离家的距离y(米)与时间x(分)的函数图象是()A.B.C.D.【考点】E6:函数的图象.【分析】在江边休息10分钟后,应是一段平行与x轴的线段,B是10分钟,而A是20分钟,依此即可作出判断.【解答】解:根据题意,从20分钟到30分钟在江边休息,离家距离没有变化,是一条平行于x轴的线段.故选B.二、填空题(共6小题,每小题3分,满分18分)13.当x≥2时,有意义.【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件可得3x﹣6≥0,再解不等式即可.【解答】解:由题意得:3x﹣6≥0,解得:x≥2,故答案为:≥2.14.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是2.【考点】W7:方差;W1:算术平均数.【分析】先由平均数的公式计算出x的值,再根据方差的公式计算.一般地设n个数据,x1,x2,…x n的平均数为,=(x1+x2+…+x n),则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【解答】解:x=5×3﹣1﹣3﹣2﹣5=4,s2= [(1﹣3)2+(3﹣3)2+(2﹣3)2+(5﹣3)2+(4﹣3)2]=2.故答案为2.15.如图,在▱ABCD中,已知AD=6cm,AB=4cm,AE平分∠BAD交BC边于点E,则EC=2cm.【考点】L5:平行四边形的性质.【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,根据AD、AB的值,求出EC的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=4cm,∵BC=AD=6cm,∴EC=BC﹣BE=2cm,故答案为:2.16.直线y=﹣3x+5向下平移6个单位得到直线y=﹣3x﹣1.【考点】F9:一次函数图象与几何变换.【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,y=﹣3x+5向下平移6个单位,所得直线解析式是:y=﹣3x+5﹣6,即y=﹣3x﹣1.故答案为:y=﹣3x﹣1.17.已知一个直角三角形的两条直角边分别为6和8,则它斜边上的中线的长为5.【考点】KQ:勾股定理;KP:直角三角形斜边上的中线.【分析】根据勾股定理求得斜边的长,从而不难求得斜边上和中线的长.【解答】解:∵直角三角形两条直角边分别是6、8,∴斜边长为10,∴斜边上的中线长为5.18.一次函数y=(m﹣8)x+5中,y随x的增大而减小,则m的取值范围是m <8.【考点】F5:一次函数的性质.【分析】先根据一次函数的增减性判断出(m﹣8)的符号,再求出m的取值范围即可.【解答】解:∵一次函数y=(m﹣8)x+5中,若y的值随x值的增大而减小,∴m﹣8<0,∴m<8.故答案为:m<8.三、解答题(共6小题,满分46分)19.计算:﹣|﹣2|﹣(2﹣π)0+(﹣1)2017.【考点】2C:实数的运算;6E:零指数幂.【分析】首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:﹣|﹣2|﹣(2﹣π)0+(﹣1)2017=3﹣2﹣×1﹣1=﹣﹣1=﹣120.如图,在▱ABCD中,E、F分别为BC、AD边上的一点,BE=DF.求证:AE=CF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】根据平行四边形的性质得出AB=CD,∠B=∠D,根据SAS证出△ABE ≌△CDF即可推出答案.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,∵BE=DF,∴△ABE≌△CDF,∴AE=CF.21.某校举办的“读好书、讲礼仪”活动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书,下面是八年级(1)班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)八(1)班全体同学所捐图书的中位数和众数分别是多少?【考点】VC:条形统计图;VB:扇形统计图;W4:中位数;W5:众数.【分析】(1)用2册的人数除以其所占百分比可得;(2)总人数减去其余各项目人数可得答案;(3)根据中位数和众数定义求解可得.【解答】解:(1)15÷30%=50,答:该班有学生50人;(2)捐4册的人数为50﹣(10+15+7+5)=13,补全图形如下:(3)八(1)班全体同学所捐图书的中位数=3(本),众数为2本.22.已知:如图,O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,DE、CE交于点E.(1)猜想:四边形CEDO是什么特殊的四边形?(2)试证明你的猜想.【考点】L8:菱形的性质;JA:平行线的性质.【分析】(1)猜想:四边形CEDO是矩形;(2)根据平行四边形的判定推出四边形是平行四边形,根据菱形性质求出∠DOC=90°,根据矩形的判定推出即可;【解答】(1)解:猜想:四边形CEDO是矩形.(2)证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠DOC=90°,∴四边形OCED是矩形.23.某长途汽车站规定,乘客可以免费携带一定质量的行李,若超过该质量则需购买行李票,且行李票y(元)与行李质量x(千克)间的一次函数关系式为y=kx ﹣5(k≠0),现知贝贝带了60千克的行李,交了行李费5元.(1)若京京带了84千克的行李,则该交行李费多少元?(2)旅客最多可免费携带多少千克的行李?【考点】FH:一次函数的应用.【分析】把x=60,y=5代入里待定系数法求解即可得到解析式,再把x=84代入求解即可;令y=0,即可求得旅客最多可免费携带30千克行李.【解答】解:(1)将x=60,y=5代入了y=kx﹣5中,解得,∴一次函数的表达式为,将x=84代入中,解得y=9,∴京京该交行李费9元;(2)令y=0,即,解得,解得x=30,∴旅客最多可免费携带30千克行李.答:京京该交行李费9元,旅客最多可免费携带30千克行李.24.甲乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系,折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.【考点】FH:一次函数的应用.【分析】(1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时,再根据图象得出货车出发后4.5小时轿车到达乙地,由此求出轿车到达乙地时,货车行驶的路程为270千米,而甲、乙两地相距300千米,则此时货车距乙地的路程为:300﹣270=30千米;(2)设CD段的函数解析式为y=kx+b,将C(2.5,80),D(4.5,300)两点的坐标代入,运用待定系数法即可求解.=60(千米/时).【解答】解:(1)根据图象信息:货车的速度V货=∵轿车到达乙地的时间为货车出发后4.5小时,∴轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米),此时,货车距乙地的路程为:300﹣270=30(千米).答:轿车到达乙地后,货车距乙地30千米;(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,∴,解得,∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
匀速运动一周,即点 P 自 A→F→B→A 停止,点 Q 自 C→D→E→C 停止.在运
动过程中,
①已知点 P 的速度为每秒 5cm,点 Q 的速度为每秒 4cm,运动时间为 t 秒,当
A、C、P、Q 四点为顶点的四边形是平行四边形时,则 t=
时针旋转 90°后得到△AO′B′,则点 B′的坐标为
.
15.如图,正方形 ABCD 中,点 E 在 DC 边上,DE=2,EC=1,把线段 AE 绕点 A
旋转,使点 E 落在直.线.BC 上的 F 点,则 F、C 两点间的距离为
.
第 13 题图
第 14 题图
2 / 17
第 15 题图
16.如图,在直角坐标系中,正方形 A1B1C1O、
17.解方程: x2 4x 5 0
ห้องสมุดไป่ตู้
18.计算: 1 8 6 1 ( 12 1)0
2 1
2
19.已知:a = 3 1,求 a2 2a 2013 的值.
3 / 17
20.求证:a 取任何实数时,关于 x 的方程 ax2 1 3a x 2a 1 0 总有实数根.
.
12.若关于 x 的方程 x2 kx 9 0 有两个相等的实数根,则 k __________.
13.如图,△OAB 绕点 O 逆时针旋转 80°得到△OCD,若∠A=110°,∠D=40°,则
∠α的度数是
。
14.如图,直线 y 4 x 4 与 x 轴、y 轴分别交于 A、B 两点,把△AOB 绕点 A 顺 3
.
6 / 17
25.已知,矩形 ABCD 中,AB=4cm,BC=8cm,AC 的垂直平分 EF 线分别交 AD、
BC 于点 E、F,垂足为 O.
(1)如图 1,连接 AF、CE,求证:四边形 AFCE 为菱形;
(2)如图 2,动点 P、Q 分别从 A、C 两点同时出发,沿△AFB 和△CDE 各边
A2B2C2C1、A3B3C3C2、…、AnBnCnCn-1 的顶点
A1、A2、A3、…、An 均在直线 y=kx+b 上,
顶点 C1、C2、C3、…、Cn 在 x 轴上,若点 B1
的坐标为(1,1),点 B2 的坐标为(3,2),
那么点 A4 的坐标为
,点 An 的坐标
为
.
三、解答题:(17~20,23 题每题 5 分,21,22 每题 6 分,24 题 7 分,25 题 8 分, 共 52 分,如.无.特.别.说.明.,.解.答.题.中.的.填.空.均.直.接.写.答.案.)
21.如图,平行四边形 ABCD 的对角线 AC、BD 交于点 O,AC⊥AB,AB=2, 且 AC︰BD=2︰3.(1) 求 AC 的长; (2) 求△AOD 的面积.
22.如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园 ABCD(围墙 MN 最长可利用 25m),现在已备足可以砌 50m 长的墙的材料, 恰好用完,试求 AB 的长,使矩形花园的面积为 300m2.
4 / 17
23.5 个同样大小的正方形纸片摆放成“十”字型,按图 1 所示的方法分割后可拼 接成一个新的正方形.按照此种做法解决下列问题: (1)5 个同样大小的矩形纸片摆放成图 2 形式,请将其分割并拼接成一个平行 四边形.要求:在图 2 中画出并指明拼接成的平行四边形(画出一.个.符合条件 的平行四边形即可); (2)如图 3,在面积为 1 的平行四边形 ABCD 中,点 E、F、G、H 分别是边 AB、BC、CD、DA 的中点,分别连结 AF、BG、CH、DE 得到一个新的平行 四边形 MNPQ.则平行四边形 MNPQ 的面积为__________(在图 3 中画.图.说 明).
C. 3x2 2x 5 3x2 D. (x 1)(x 2) 1
6.顺次连接对角线互相垂直的四边形四边中点所得的四边形是( ) A.梯形 B.矩形 C.菱形 D.正方形
7.关于 x 的方程 x2 4x a 0 有两实数根,则实数 a 的取值范围是( )
A. a 4
5 / 17
24.如图,四边形 ABCD 是正方形,△ABE 是等边三角形,M 为对角线 BD(不含 B 点)上任意一点,将 BM 绕点 B 逆时针旋转 60°得到 BN,连接 EN、AM、CM. (1)证明:△ABM≌△EBN (2)当 M 点在何处时,AM+BM+CM 的值最小,并说明理由;
(3)当 AM+BM+CM 的最小值为 3 1时,则正方形的边长为
;
③S 四边形 AEDF=AD·EF;④ AD≥EF; ⑤ AD 与 EF 可能互相平分,其中正确结论的个
数是 ( )
A.1 个
B.2 个
C.3 个
二、填空题:(每题 3 分,共 24 分)
9. x 3 中 x 的取值范围是
.
10.化简: 50 =
.
D.4 个
11.关于 x 的方程 x2 2mx m 0 的一个根为 1,则 m 的值为
3.一个矩形的两条对角线的夹角为 60°,且对角线的长度为 8cm,则较短边的长度
为( )
A.8cm B. 6cm C.4cm
D. 2cm
4.下列图形中是中心对称图形,但不.是.轴对称图形的是( )
A.
B.
C.
D.
5.下列方程中是关于 x 的一元二次方程的是( )
A. x2
1 x2
0
B. ax2 bx c 0
清华附中2018-2019学年初二下学期期末检测
数学试卷
(试卷满分100分,考试时间120分钟) (清华附中初18级) 2019.7
一、选择题:(每题3分,共24分) 1.与 12 是同类二次根式的是( )
A. 4
B. 8
C. 18
2.下面计算正确的是( )
D. 27
A. 3 3 3 3 B. 27 3 3 C. 2 3 5 D. 22 2
B. a 4
C. a 4
D. a 4
1 / 17
8.Rt△ABC 中,AB=AC,点 D 为 BC 中点.∠MDN=90°,∠MDN 绕点 D 旋转, DM、DN 分别与边 AB、AC 交于 E、F 两点,下列结论 :
① BE CF
2 BC ;② 2
S AEF
1 4
S ABC