第2章解析函数

合集下载

第二章解析函数

第二章解析函数

第二章解析函数•复变函数的导数•解析函数的概念•初等解析函数复函数的求导法则由于复变函数中导数的定义与一元实变函数中导数的定义在形式上完全一致, 并且复变函数中的极限运算法则也和实变函数中一样, 因而实变函数中的求导法则都可以不加更改地推广到复变函数中来, 且证明方法也是相同的.例2证明()2f z x yi =+在复面内处处连续,但处处不可导.证明对复平面内任意点z , 有()()f z z f z +Δ−2.x yi =Δ+Δ()2()2x x y y i x yi =+Δ++Δ−−故0lim[()()]0.z f z z f z Δ→+Δ−=这说明()2f z x yi =+在复面内处处连续.000()()() (), f z z f z f z z z z ρ′+Δ−=Δ+ΔΔ,)()(lim 000z f z z f z =Δ+→Δ所以lim ()0,z z ρΔ→Δ=再由即()f z 在0z 处连续.反之, 由例2知, 处处不可导,()2f z x yi =+但处处连续。

例5问题:对函数f (z ) = u (x ,y ) + iv (x ,y ),如何判别其解析(可导)性?换句话说:()(),f z u v 的解析可导与的偏导数之间有什么关系?解析函数的性质:(1)两个解析函数的和、差、积、商仍为解析函数;(2)两个解析函数的复合函数仍为解析函数;(3)一个解析函数不可能仅在一个点或一条曲线上解析;所有解析点的集合必为开集。

证明必要性. 若存在,设0()f z ′0()f z a ib ′=+(a , b 是实常数). 因此000()()()f z z f z f z z z α′+Δ−=Δ+Δ12()()()()a ib x i y i x i y αα=+Δ+Δ++Δ+Δ12()a xb y x y αα=Δ−Δ+Δ−Δ21(,i b x a y x y αα+Δ+Δ+Δ+Δ其中12Re , Im .αααα==且当时,0z Δ→120, 0.αα→→0000(,)(,),u u x x y y u x y Δ=+Δ+Δ−0000(,)(,),v v x x y y v x y Δ=+Δ+Δ−则于是有00()().f z z f z u i v +Δ−=Δ+Δ12()u i v a x b y x y ααΔ+Δ=Δ−Δ+Δ−Δ21().i b x a y x y αα+Δ+Δ+Δ+Δ由两个复数相等的条件可得设21.v b x a y x y ααΔ=Δ+Δ+Δ+Δ12,u a x b y x y ααΔ=Δ−Δ+Δ−Δ于是,1(,),(,)..a u x y v x y C R =−−当时,满足条件,().f z z 从而在平面上处处可微,处处解析1(,),(,)0..a u x y v x y y C R ≠−=−当时,仅在直线上满足条件,().f z z 故在平面上处处不解析()00.f z y y =≠从而仅在上可微,在上不可微作业3第89页,第二章习题(一):2;4(1)(3);5(2)(4);7;8(2)(4);9; 11(1)(3)。

第二章 解析函数

第二章 解析函数

在z0解析,若f (z)在区域D内每一点解析,则称f (z)在D
内解析,则称f (z)是D内的一个解析函数(全纯函数或 正则函数)。 如f (z)在 z0不解析, 则称z0为f (z)的奇点。
§1 解析函数的概念
f (z)在 z0解析
函数f (z)在z0的邻域内可导
f (z)在 z0解析 函数f (z)在z0可导 二元函数的微分 [例 ] 的解析性
§3 初等函数 3 乘幂ab与幂函数 [例 ] 求 、 和 的值。
幂函数:
形如:zb=ebLnz(z≠0,b为ቤተ መጻሕፍቲ ባይዱ意复常数)
的函数成为幂函数。
§3 初等函数 4 三角函数和双曲函数
性质:
§3 初等函数 4 三角函数和双曲函数 性质:
§3 初等函数 4 三角函数和双曲函数
[例] 计算sin(3+4i) ,cosi,sin6i
|sinz|1和|cosz|1在复数范围内不再成立。 [例] 求方程cosz=0的解。
§3 初等函数 4 三角函数和双曲函数
[例] 求方程sinz+cosz=0的解。
其它复变数三角函数:
§3 初等函数 4 三角函数和双曲函数 双曲函数
性质:
§3 初等函数 4 反三角函数和反双曲函数 设z=cosw,则称w为z的反余弦函数,记作: w=Arccosz
ii) f’(z) =f(z); iii) 当Im(z)=0时, f(z) =ex, 其中x=Re(z)。
§3 初等函数 1 指数函数
为整数)
加法定理
§3 初等函数 2 对数函数
主值
[例] 求Ln1, Ln(-2) 以及它们相应的主值。
§3 初等函数 1 指数函数 总结:

第二章解析函数

第二章解析函数
z x iy 处可微且满足C-R条件
u x
v y
u
v
y x
(C-R条件)
运算法则
1 在区域D内解析的两个函数 f (z)与g(z)的和、差、
积、商(除去分母为零的点外)在D内解析;
2 设函数 h g z在 z 平面上的区域D内解析,函数
f h在 h平面上的区域G内解析,如果对D内
z0
z
lim
z0
nz
n 1
n
n 1
2!
z n 2 z
nzn1
所以
f z nzn1
例2 证明 f (z) Re z 在全平面处处不可导。
证明 因为对任意一点 z0
f z f z0 Re z Re z0 Re z z0
z z0
z z0
z z0
分别考虑直线 Re z Re z0 及直线 Im z Im z0 在前一直线上,上式恒等于0;在后一直线
故也称 f z在z0处可微。
df z0 f z0 z 为f z在z0处的微分
如果 f z 在区域D内处处可导(可微), 则称 f z在D内可导(可微)。
例1 求函数 f (z) z(n n为正整数)的导数。 解 因为
f z z f z
lim
z0
z
z zn zn
lim
u ax by 1
v bx ay 2
其中1 Re z z, 2 Im z z
是关于| z | 的高阶无穷小。 根据二元实函数的微分定义,u( x, y)和v( x, y)在点 z 可微,且有
u a= v , u b= v
x y y
x
即C—R条件成立。
“充分性”由u x, y , v(x, y)在点(x, y)处可微,有

第二章解析函数演示文稿

第二章解析函数演示文稿

第一节 导数
充分条件 设 f(z)=u(x,y)+iv(x,y),若u(x,y)和v(x,y)在(x,y)处
满足
1. u , u , v , v 在(x, y)点处存在且连续; x y x y
2. 在(x, y)点处满足Cauchy Riemann条件
那么f(z)在z=x+iy处可导。
逆命题不成立
第二章解析函数演示文稿
优选第二章解析函数
第一节 导数
导数的定义
设 =f(z)是定义在区域B上的单值函数,若在B内某
点z0,极限
lim lim f (z) f (z0 )
z z0
zz0
z z0
存在,则称函数f(z)在z0点处可导,并称该极限值为 函数f(z)在z0点处的导数或微商,记为
f
(z0 ),
df (z) dz
z z0

df (z0 ) dz
第一节 导数
说明
如果函数 =f(z)在区域B内的每一点可导,则称f(z) 在区域B内可导
两个例子:1. 求dzn/dz=nzn-1 2. 求证 =z*在z平面上处处连续,但处 处不可导
可导必连续
第一节 导数
求导法则
d dz
1
2
d1
dz
d2
dz
性质1:设函数 f(z)=u(x,y)+iv(x,y)在B内解析,则 u(x,y)=C1,v(x,y)=C2是B内的两组正交曲线
举例
f (z) z2
f (z) ez
红:实部 兰:虚部
第二节 解析函数
性质2:若函数 f(z)=u(x,y)+iv(x,y)是区域B内的解析 函数,则u(x,y)和v(x,y)均为B内的调和函数

复变函数第二章 解析函数

复变函数第二章 解析函数

第 一 节 解 析 函 数 的 概 念
( 5)
f ( z ) ′ g ( z ) f ′ ( z ) − f ( z ) g ′ ( z ) , g (z) ≠ 0 = 2 g ( z) g ( z)
( 6)
{
f g ( z )
}

= f ′ ( w ) g ′ ( z ) , 其中w = g ( z )
dw 可见:可导 ⇔ 可微, f ′ ( z0 ) = 且 dz
z = z0
如果f ( z ) 在区域D内每一点可微,
则称f ( z ) 在D内可微.
记作 dw = f ′ ( z ) dz
第 一 节 解 析 函 数 的 概 念
二、解析函数 定义 1o 如果f ( z ) 在z0 及z0的某邻域内处处可导,
设w = f ( z ) 定义于区域D, z0 ∈ D , z0 + ∆ z ∈ D
f ( z0 + ∆ z ) − f ( z0 ) 如果 lim 存在 ∆ z →0 ∆z 则 称 f ( z ) 在 z0点 可 导 , 而 极 限 值 为 f ( z ) 在 z0点 dw 的导数,记作 f ′ ( z0 ) 或 dz z = z0
∴ ∆ u = a ∆ x − b ∆ y + o1 ∆ v = b∆ x + a ∆ y + o2
反之,不成立。
( 2)
( 3)
f ( z ) 在区域D内解析
⇔ f ( z ) 在 区 域 D内 可 导 。
f ( z ) 在 z0 解析 ⇔
f ( z ) 在 z0的某邻域 N δ ( z0 )内解析。
第 一 节 解 析 函 数 的 概 念

第2章、解析函数

第2章、解析函数

第2章、解析函数第⼆章解析函数本章介绍复变函数中⼀个重要的概念:解析函数,并给出⼀个重要的判定⽅法:柯西黎曼条件。

最后分别介绍⼀些重要的单值初等解析函数及多值初等函数的分⽀解析。

第⼀节解析函数的概念与柯西-黎曼条件1、复变函数的导数:设()w f z =是在区域D 内确定的单值函数,并且,0z D ∈。

如果极限()000()lim z z f z f z z z →-- 存在,为复数a ,则称)(z f 在0z 处可导或可微,极限a 称为)(z f 在0z 处的导数,记作0()f z ',或0z z dw dz =。

2、解析函数:定义:如果)(z f 在0z 及0z 的某个邻域内处处可导,则称)(z f 在0z 处解析;如果)(z f 在区域D 内处处解析,则我们称)(z f 在D 内解析,也称)(z f 是D 的解析函数。

解析函数的导(函)数⼀般记为)('z f 或z z f d )(d 。

注1、此定义也⽤εδ-语⾔给出。

注2、可导必连续注3、解析必可导性,在⼀个点的可导不⼀定解析,可导性是⼀个局部概念,⽽解析性是⼀个整体概念;解析函数的四则运算:()f z 和()g x 在区域D 内解析,那么)()(z g z f ±,)()(z g z f ,)(/)(z g z f (分母不为零)也在区域D 内解析,并且有下⾯的导数的四则运算法则:(()())()()f z g x f z g z '''±=±[()()])()()()()f zg x f z g z f z g z ''=+2()()()()()()(()0)()()f z f z g z f z g z g z g z g z ''-'=≠复合求导法则:设)(z f =ζ在z 平⾯上的区域D 内解析,)(ζF w =在ζ平⾯上的区域1D 内解析,⽽且当D z ∈时,1)(D z f ∈=ζ,那么复合函数)]([z f F w =在D 内解析,并且有z z f F z z f F d )(d d )(d d )]([d ζζ=求导的例⼦:(1)如果()f x a =(常数),那么;()0df z dz= (2)z 的任何多项式 n n z a z a a z P +++=...)(10在整个复平⾯解析,并且有 121...2)('-+++=n n z na z a a z P(4)、在复平⾯上,任何有理函数,除去使分母为零的点外是解析的,它的导数的求法与z 是实变量时相同。

第二章 解析函数

第二章 解析函数
③ 设函数f (z),g (z) 均可导,则
[f (z)±g (z)] =f (z)±g(z),
[f (z)g(z)] = f (z)g(z) + f (z)g(z)
f (z) f ' ( z ) g( z ) f ( z ) g' ( z ) [ ]' , ( g( z ) 0) 2 g( z ) g (z) 由以上讨论
在(x,y)处满足
u u v v 1. , , , 在( x, y )点处存在且连续; x y x y 2. 在( x, y )点处满足Cauchy Riemann 条件
那么f(z)在z=x+iy处可导。
• 2.2.2 函数解析的充要条件 • 定理1 设函数 f ( z) u( x, y) iv( x, y) 在区域 D 内有定义,则 f ( z )在 D 内解析的充分必要条 件为 u, v 在 D 内任一点 z x iy处 (1)可微; (2)满足
ex1
试用C-R条件判定下列函数在何处可导,在何处解析:
w z
2
解 设z=x+iy w=x2+y2 u= x2+y2 , v=0 则
u 2x x
u 2y y
v 0 x
v 0 y
仅在点z = 0处满足C-R条件,故
w z 仅在0点可导,但处处不解析 。
2
例2: 设函数f(z)=x2+axy+by2+i(cx2+dxy+y2),问 常数a,b,c,d取何值时,f(z)在复平面内处 处解析。
例1 求函数 f ( z ) z 的导数(n 为正整数).
n
解 因为
k k ( z z )n Cn z (z )nk k 0

解析函数

解析函数

x
y
欲使 u v , u v , x y y x
2x ay dx 2 y, 2cx dy ax 2by,
所求 a 2, b 1, c 1, d 2.
例8 如果 f (z) 在区域 D 内处处为零 , 则 f (z) 在
区域 D 内为一常数.
证 Q f (z) u i v v i u 0, x x y y
两个互为反函数的单值函数, 且(w) 0
2、解析函数的概念及其运算
定义2.2 如果函数 f (z) 在 z0 及 z0 的邻域内处处 可导, 那末称 f (z) 在 z0 解析. 如果函数 f (z)在 区域 D内每一点解析, 则称 f (z)在 区域 D内解析. 或称 f (z)是 区域 D内的一 个解析函数 ( 全纯函数或正则函数 ) .
x iy
x iy
1 i y
1
i
x y
1 ik 1 ik
x
由于 k 的任意性,
z 1 ki 不趋于一个确定的值. z 1 ki
lim h(z0 z) h(z0 )不存在.
z0
z
因此 h(z) z 2 仅在 z 0 处可导, 而在其他点都 不可导,根据定义, 它在复平面内处处不解析.
(1) 如果能用求导公式与求导法则证实复变函 数 f (z) 的导数在区域 D内处处存在, 则可根据 解析函数的定义断定 f (z) 在 D内是解析的.
(2) 如果复变函数 f (z) u iv 中 u,v 在 D内 的各一阶偏导数都存在、连续(因而 u, v( x, y) 可微)并满足 C R 方程, 那么根据解析函数 的充要条件可以断定 f (z) 在 D内解析.
(3) f (z) 常数;
(4) f (z)解析;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章 解析函数2.1 单项选择题2-1 函数)(z f w =在0z 点可导是可微的( )。

(A )必要但非充分条件 (B )充分但非必要条件(C )充分必要条件 (D )既非充分条件,也非必要条件 2-2 复变函数)(z f w =在0z 点可导是连续的( )。

(A )必要但非充分条件 (B )充分但非必要条件(C )充分必要条件 (D )既非充分条件,也非必要条件2-3 设),,(),()(y x iv y x u z f +=则在),(00y x 点,v u ,均可微是)(z f 在000iy x z +=点可微的( )。

(A )必要但非充分条件 (B )充分但非必要条件(C )充分必要条件 (D )既非必要条件,也非充分条件 2-4 )(z f 在000iy x z +=点可导的充分必要条件是( )。

(A ) 在),(00y x 点v u ,可导,且满足C-R 条件,既xvy u y v xu ∂∂-=∂∂∂∂=∂∂,在),(00y x 成立(B ) )点的一个邻域内可导在(00,)(y x z f(C )条件可微,且满足)点在(R C v u y x -,,00(D ) 条件满足具有连续的偏导数,且)点在(R C v u y x -,,002-5 设那么()。

,2)(2ix xy z f -=(A )处处可微)(z f ( B )处处不可导)(z f(C )仅在原点可导)(z f (D )轴上可导仅在x z f )(2-6则若,)( xy,y)(x, v ,0x ,00 x ),(2222220iv u z f y y y x xy y x u o +===⎪⎩⎪⎨⎧=+≠++=函数)(z f ( )。

(A )仅在原点可导 (B )处处不可导(C )除原点处处可导 (D )处处可微 2-7 若 ). )((,)(z f z z f 则=)仅在虚轴上可导()处处解析()仅在原点可导(处处不可导D C B )(A2-8若f(z)=(by ax y x +++22)+)23(y x cxy i ++处处解析,则(),,(=c b a ) (A) (3,2,2) (B) (-2,-3,2) (C) (2,-2,2)(D) (-2,3,2)2-9 u(x,y)与v(x,y)在(00,y x )点可且满足C-R 条件是)(z f 在000iy x z +=点可导的( )(A )充分条件(B )必要但非充分条件(C )充分但非必要条件(D )既非必要也非充分条件2-10 u, v 在),(00y x 点具有连续的偏导数,且满足C-R 条件是)(z f 在000iy x z +=点可导的( )(A )充要条件 (B )必要但非充分条件(C )充分但非必要条件 (D )既非必要也非充分条件2-11 函数)Im()Re()(z z z f ⋅=在原点( )(A )可导且连续 (B )连续但不可导(C )可导但不连续(D )既不连续也不可导2-12 若y ix xy z f 22)(+=则)(z f ( )(A )仅在直线x y =上可导 (B )仅在直线x y -=上可导(C )仅在)0,0(点解析 (D )仅在点可导)0,0(2-13 若)(,)(22z f iy x z f 则+=( ) (A )在全平面上解析(B )仅在直线上可导y x =(C) 仅在直线上可导y x -= (D )仅在)点可导,(00 2-14 设)()3(3)(2223z f y y x i xyx z f 则-+-=()(A )处处解析 (B )仅在实轴上可导 (C) 仅在直线上可导32=y (D )仅在直线上可导或320==y y2-15 若的导数问题是则关于发)(),3(3)(3223z f y y x i xy x z f -+-=((A )0)0()(='f z f 仅在原点可导且(B )xy i y x z f z f 633)()(22+-='处处解析,且(C )xy i y x z f z f 633)()(22--='处处解析,且(D )xy i x y z f z f 633)()(22+-='处处解析,且2-16 方程,1-=z e 则此方程解为() (A )空集(B ))12(-=k z π(k 为整数)(C )I K Z π)12(-= (D )πI Z = 2-17 若21z z e e =,则( )(A) =2z (B)π 1z =2z +2k π (C) 1z =2z +ik π (D) 1z =2z -2ik π 2-18关于复数的对数函数,下面公式正确的是()(A )Ln (1z 2z )=Ln 1z + Ln 2z (B) Ln (1z 2z )=Ln 1z + Ln 2z (C) Ln =2z 2Ln z (D) Ln =2z 2Ln z 2-19Ln(-1)和它的主值分别是()(A ) Ln(-1)=(k+1/2)πi,(k 为整数)主值Ln(-1)=0 (B ) Ln(-1)=(2k-1)πi, 主值Ln(-1)=πi (C ) Ln(-1)=(2k-1)πi, 主值Ln(-1)=-πi (D ) Ln(-1)=Ln1+iArg(-1), 主值Ln(-1)=πi 2-20 下面等式正确的是()(A) Ln(i)=(2k π-2π)i,Ln I=2πi(B) Ln(i)=(2k π+2π)i,Ln I=-2πi(C) Ln(i)=(2k π-2π)i,Ln I=2πi (D) Ln(i)=(2k π+2π)i,Ln I=2πi2-21 下面等式正确的是()(A) Ln(-2)=Ln2+i (2k-1) πi,Ln(-2)=Ln2 (B) Ln(-2)=Ln2+i (2k+1) πi,Ln(-2)=Ln2 (C) Ln(-2)=Ln2+i (2k-1) πi,Ln(-2)=Ln2+i π (D) Ln(-2)=Ln2+i (2k-1) πi,Ln(-2)=Ln2-i π 2-22设k 为整数,则方程sin z=0的根是() (A ) z=k πi (B ) z=2k π (C ) z=k π (D ) z=2k π2-23 若k 为整数,则cos z =0的根是()(A) 2k π+2π(B) k π+2π(C) k π+i2π(D) 2k π+i2π2-24 若k 为整数,则的根是0=shz ( )(A) πk 2 (B) πk (C) πik 2 (D) πik 2-25 若k 为整数,则的根是0=chz ( )(A )i k π2 (B )i k π (C )i k π)12(- (D )π)12(-k 2-26 设=++)2(,12i w z 则( ) (A )822πie (B )822πie± (C )8452πie(D )8452πie±2-27 设421-=z ω,并规定21)0(i -=ω,则ω(0)=( )。

A. i 43-B.i 43C.43D.43-2-28 k 为整数,i i =( ). A. )22(ππk i e +- B )21(k e+-π C )21(k i e+-π D )41(2k e+-π2-29 k 为整数,i)1(-=( ). A π)12(--k eB )2(ππ+-k eC ππ--i k e2 D 22ππ+-k i e2-30 下面说明:1. 函数)(z f =ω在点z 0解析,即)(z f 在点z 0可导。

2. )(z f 在点z 0可导即)(z f 在z 0可微。

3. )(z f 在某区域内可导即)(z f 在此区域内解析,那么( )。

A 1.2.3.都正确B 只有2.正确C 只有2.3.正确D 只有3.正确 2-31 设k 是整数,则函数Lnz 在ie z =点的值为( )。

A i k )12(+π B i k π2 C i k )12(-π D i k π)12(+2-32 i )1(-的主值是()。

A 2πe B 2π-eC πeD π-e2-33 在区域内解析,则对于命题 1 若f(z)恒取f(z)是常数2 若)(z f 在G 内解析,则f(z)是常数3 )(z f 在G 内是常数,则f(z)是常数4 f (z)=0 则f(z)是常数 正确的有()A 4个B 3个C 2个D 1个 2-34 函数z z z f =)(( ).A 在全平面解析B 仅在原点解析C 在原点可导但不解析D 处处不可导2_35 若)(z f 在区域D 内解析,且arg )(z f 在G 内是常数,则( )。

A 这样的 函数不存在B f(z)=u(x,y)+),(y x u i θ,u 是任意二阶可导函数,θ是常实数C f(z)是不取0值的常数D , ),(),()(x y iu y x u z f +=,u(x,y)是任一具有二阶导数的实数 2-36 设34)(-='z z f ,且i i f 3)1(-=+,则=)(z f ( ). A i z z --322B i z z 3322-- C i z z 43322+-+ D i z z 43322-+- 2-37 函数z z f =)(的解析区域是( )。

A 全复平面B 除原点外的复平面C 除实轴外的全平面D 除原点和负实轴外的全平面2-38 设),(),()(y x iv y x u z f +=是平面流速场),(),(y x i y x v θρ+=的复势函数,则( )。

A )(z f v '=B )(z v f '=C )(z v f '=D )(z f v '= 2-39 设)(z f 为平面静电场的复势函数,E 为该电场的场强,则( )。

A )(z f i E '=B )(z f E '=C )(z f i E '-=D )(z fE '-=2.2 非客观题 2.2.1解析函数的概念及条件2-40 用导数的定义证明下列公式: (1) 1)(-='n n nz z (n 是正整数) (2) 21)1(zz -=' (0≠z )2-41 用定义证明:若在可导,则在点连续,反之不一定成立。

2-42 证明:函数),(),()(y x iv y x u z f +=可导(在iy x z +=点)的必要条件是u,v的一阶导数存在,且满足C-R 条件:.,y ux v y v xu ∂∂-=∂∂∂∂=∂∂ 2-43 证明()iv u z f +=,在iy x z +=点可导的充要条件是u ,v 在()y x ,点可微,且满足C-R 条件。

相关文档
最新文档