动能 动能定理专题

合集下载

专题:动能定理

专题:动能定理

专题:动能定理(1)明确研究对象; (2)确定研究的物理过程; (3)对研究对象进行受力分析;(4)确定各力所做的功,求出这些力的功的代数和。

✧ 谁的功:某个力F 的功,不是物体的功(人对物体的功=人对物体作用力的功) ✧ 做功吗:F 与V 垂直时,F 不做功 ✧ 什么功:若∑W>0,>0,物体的动能增大;若∑W<0,则<0物体动能减小✧多少功: ①cos w FS θ= ②FS 图象 ③222111=22w m v m v -总 ④w Pt =(5)确定始、末态的动能。

(未知量用符号表示) (6)根据动能定理列出方程(左因右果)(7)求解方程; (8)合理性检验。

只考虑初、末状态,没有守恒条件的限制。

所以,凡涉及力及位移,而不涉及力作用的时间的动力学问题都可优先用动能定理解决。

只能求出速度的大小,不能确定速度的方向; 也不能直接计算时间。

【例1谁的功】某人把质量为m 、静止放在地面上的铅球举高h ,并快速将它以速度v 推出,求人对铅球做的功。

解:人在举球、推球的过程中给球的作用力是变力,设在整个过程中人对球做的功为,由动能定理,有21-02w m gh m v =-人 212w m gh m v ∴=+人【例2选过程】一物体以初速度从倾角为α的斜面底端冲上斜面,到达某一高度后又返回,回到斜面底端的速度为,则斜面与物体间的摩擦系数μ=___________。

解:设物体的质量为m,上升的最大高度为h。

物体在沿斜面上滑的过程中,由动能定理,有物体在从最高点沿斜面下滑的过程中,由动能定理,有物体从上到下的整个过程,由动能定理,有以上三个方程联立其中任意两上即可解得:。

【例3变力做功】小球用绳系住在光滑的水平面上做匀速圆周运动。

当拉力由F增大到8F时,圆运动的半径从r 减小到。

在这一过程中拉力所做的功为多少?解:在球的轨道半径减小的过程中,拉力的切向分力对小球做正功,而切向分力是变力,我们可以设拉力所做的功为,由动能定理,有再由牛顿第二定律,物体分别以半径r 和做匀速圆周运动时,有21vF mr=2282vF mr=可解:【例4变力做功】质量为m的滑块与倾角为θ的斜面间的动摩擦因数为μ,μ<tgθ。

二讲动能动能定理【共51张PPT】

二讲动能动能定理【共51张PPT】

力做功WG=mgh 摩擦力做功Wf=-μmgcosθ·
h s in
物体在水平面上运动时,只有滑动摩擦力做功
Wf′=-μmg(s-
h). ta n
解法一:“隔离”过程,分段研究,设最低点物体速度为v,物体由
A到最低点根据动能定理得:
mgh-μmgcosθ·
h m1v2-0 ① sin 2
物体在水平面上运动,同理有:
(3)因动能定理中的功和动能均与参考系的选取有关,所以动能定理也
与参考系的选取有关,一般以地面为参考系.
三、运用动能定理须注意的问题
应用动能定理解题时,在分析过程时无需深究物体运动过程中状 态变化的细节,只需考虑整体的功及过程始末的动能.若过程包含 了几个运动性质不同的分过程,既可分段考虑,也可整体考虑.但求功 时,有些力不是全过程都作用的,必须根据不同的情况分别对待求出总 功,计算时要把各力的功连同符号(正负)一同代入公式.
答案:ACD
解析:合外力对物体做功W=mv2/2=1×22/2 J=2 J,手对物体做功 W1=mgh+mv2/2=1×10×1 J+2 J=12 J,物体克服重力做功 mgh=10 J.
4.( ·广东高考)一个25 kg的小孩从高度为3.0 m的滑梯顶端由 静止开始滑下,滑到底端时的速度为2.0 m/s.取g=10 m/s2,关 于力对小孩做的功,以下结果正确的是( )
2.子弹以某速度击中静止在光滑水平面上的木块,当子弹进入 木块深度为x时,木块相对水平面移动距离为x ,求木块获得的 动能ΔEk1和子弹损失的动能ΔEk2之比_____2 ___.
答 案 :1 3
解析:本题容易出错在使用动能定理时,乱用参考系,没有统一
确所定以以地E k面1 为F参f 2x考系1,木子块弹的损位失移的为动2x 能,子大弹于的木位块移获为得x的 动2x 能,

动能定理专题

动能定理专题

1、强调动能定理中的力为合力。

一个25kg的小孩从高度为3.0m的滑梯顶端由静止开始滑下,滑到底端时的速度为2.0m/s。

取g=10m/s2,关于力对小孩做的功,以下结果正确的是()A.合外力做功50J B.阻力做功500JC.重力做功500J D.支持力做功50J2、关于机械能守恒。

(05天津卷)一带电油滴在匀强电场E中的运动轨迹如图中虚线所示,电场方向竖直向下。

若不计空气阻力,则此带电油滴从a运动到b的过程中,能量变化情况为()A.动能减小B.电势能增加C.动能和电势能之和减小D.重力势能和电势能之和增加3、动能定理的应用。

(2009年全国卷Ⅱ)以初速度v0竖直向上抛出一质量为m的小物块。

假定物块所受的空气阻力f大小不变。

已知重力加速度为g,则物体上升的最大高度和返回到原抛出点的速率分别为()A、22(1)vfgmg+和v、22(1)vfgmg+和vC、222(1)vfgmg+和v、222(1)vfgmg+和v4、与电场力结合(2009年四川卷)如图所示,粗糙程度均匀的绝缘斜面下方O点处有一正点电荷,带负电的小物体以初速度v1从M点沿斜面上滑,到达N点时速度为零,然后下滑回到M点,此时速度为v2(v2<v1)。

若小物体电荷量保持不变,OM=ON,则()A.小物体上升的最大高度为22 12 4v vg +B.从N到M的过程中,小物体的电势能逐渐减小C.从M到N的过程中,电场力对小物体先做负功后做正功D.从N到M的过程中,小物体受到的摩擦力和电场力均是先增大后减小5、变力做功问题(2011年湖北黄冈模拟)如图所示,一个质量为m的圆环套在一根固定的水平直杆上,环与杆的动摩擦因数为μ,现给环一个向右的初速度v0,如果在运动过程中还受到一个方向始终竖直向上的力F的作用,已知力F的大小为F=kv(k为常数,v为环的运动速度),则环在整个运动过程中克服摩擦力所做的功(假设杆足够长)可能为( )A、221mvB、0C、22320221kgmmv+D、22320221kgmmv-6、与动能定理相关的运动学问题如图所示为汽车在水平路面上启动过程中的速度图象,oa为过原点的倾斜直线,ab段表示以额定功率行驶时的加速阶段,bc段是与ab段相切的水平直线,则下述说法正确的是( )A、0~t1时间内汽车做匀加速运动且功率恒定B、t1~t2时间内汽车牵引力做功为(mv2-mv21)/2C、t1~t2时间内的平均速度为(v1+v2)/2D、在全过程中t1时刻的牵引力及其功率都是最大值,t2~t3时间内牵引力最小7、由动能定理分析连接体问题如图所示,m A=4kg,m B=1kg,A与桌面间的动摩擦因数μ=0.2,B与地面间的距离s=0.8m,A、B 间绳子足够长,A、B原来静止,求:(1)B落到地面时的速度为多大;(2)B落地后,A在桌面上能继续滑行多远才能静止下来。

动能定理专题

动能定理专题

(2)动能定理的研究对象:单个物体或可 看作单一物体的物体系。
(3)动能定理的参考系:位移(S)和速度 (V)一般取地面为参照系。
3、应用动能定理的解题步骤:
(1)选取研究对象。 (2)受力分析和过程分析。 (3)明确各力做功的情况及做功的正负。 (4)明确初末动能。 (5)由动能定理列方程求解(计算时把各已知功的正
Ek/J 50
25
5 10 s/m
6、质量相等的物体分别为地球和月球表面 上以相同的初动能作竖直上抛运动,则他们 在上升的全过程中,(不计空气阻力)ABC A、所受冲量大小相同;B、重力作功相同; C、平均速度大小相同;D、重力加速度大 小相等;
负号代入计算,若是未知功,则用W代入)。
1、如图所示,质量为m的物体在水平方向成θ 角的恒力 F作用下,由静止开始运动,物体与水平地面间的动摩擦 因数为μ ,当物体发生位移为S时,物体的动能是多少? 物体的速度是多少?
F θ
2、质量为m=2kg的物体以50J的初动能在 粗糙的水平面上滑行,起动能变化与位移 的关系如图所示,则物体在水平面上滑行 时间t为: A、5s; B、6s; C、 2S ; D、2s; 2
四、动能定理专题
1、动能定理的表达式为:
1 1 2 2 W合 mvt mv0(合力做功等于物体动能的增量) 2 2 1 1 2 2 或W1 W2 Wn mvt mv0 2 2
(各个力作功的代数和等于物体动能的增量)
2、动能定理的理解: (1)动能是标量,动能一定大于或等于零 (不可能为负值),动能与速度方向无关。

动能和动能定理资料ppt课件

动能和动能定理资料ppt课件

T 变力
h mg
求变力做功问题
瞬间力动做能功和动问能定题理
运动员踢球的平均作用力为200N,把一个静止 的质量为1kg的球以10m/s的速度踢出,水平面 上运动60m后停下,则运动员对球做的功?如果 运动员踢球时球以10m/s迎面飞来,踢出速度仍 为10m/s,则运动员对球做的功为多少?
vo
v=0
A、 1:2
B、 2:3
C、 2:1
D、 3:2
AmA gLA
0
1 2
mAv02
BmB gLB
0
1 2
mBv02
LA B 3 LB A 2
例与练
动能和动能定理
5、质量为2Kg的物体沿半径为1m的1/4圆 弧从最高点A由静止滑下,滑至最低点B时 速率为4m/s,求物体在滑下过程中克服阻 力所做的功。
(4)根据动能定理列方程求解;
例与练
动能和动能定理
1、同一物体分别从高度相同,倾角不同的 光滑斜面的顶端滑到底端时,相同的物理量 是( )
A.动能
B.速度
C.速率
D.重力所做的功 WG mgh
mgh 1 mv2 0 2
v 2gh
例与练
动能和动能定理
2、质量为m=3kg的物体与水平地面之间的
动能和动能定理
二、动能的表达式
v22 v12 2al
a v22 v12 2l
又F ma m v22 v12
2l
WF
Fl
m v22 v12 2l
l
1 2
mv22
1 2
mv12
二、动能的表达式
动能和动能定理
WF
1 2
mv22
1 2

专题动能定理

专题动能定理
为多大?
(2)物体P第一次离开D点后在空中做竖直上抛运动,不计空气 阻力,则最高点E和D点之间的高度差为多大? (3)物体P从空中又返回到圆轨道和斜面,多次反复,在整个 运动过程中,物体P对C点处轨道的最小压力为多大?
【案例1】 (2010·福建理综)如图所示,物体A放在足够 长的木板B上,木板B静置于水平面.t=0时,电动机通过水平 细绳以恒力F拉木板B,使它做初速度为零、加速度aB=1.0 m/s2的匀加速直线运动.已知A的质量mA和B的质量mB均为2.0 kg, A、B之间的动摩擦因数μ1=0.05,B与水平面之间的动摩擦因 数μ2=0.1,最大静摩擦力与滑动摩擦力大小视为相等,重力 加速度g取10 m/s2.求:
巩固;如图所示,粗糙的斜面AB下端与光滑的圆弧轨道BCD相切 于B,整个装置竖直放置,C是最低点,圆心角∠BOC=37°,D与 圆心O等高,圆弧轨道半径R=0.5m,斜面长L=2m,现有一个质量 m=0.1kg的小物体P从斜面AB上端A点无初速下滑,物体P与斜面 AB之间的动摩擦因数μ=0.25.重力加速度g=10m/s2。求: (1)物体P第一次通过C点时的速度大小和对C点处轨道的压力
(1)地面对斜面的摩擦力大小与方向; (2)地面对斜面的支持力大小; (3)通过计算证明木块在此过程中满足动能定理.
【答案】 (1)3.2 N 方向水平向左 (2)67.6 N (3)动能定理成立.
(1)物体A刚运动时的加速度aA; (2)t=1.0 s时,电动机的输出功率P; (3)若t=1.0 s时,将电动机的输出功率立即调整为P′= 5 W,并在以后的运动过程中始终保持这一功率不变,t=3.8 s 时物体A的速度为1.2 m/s.则在t=1.0 s到t=3.8 s这段时间内 木板B的位移为多少?

高考物理一轮复习专题5.2动能和动能定理(精讲)(含解析)

高考物理一轮复习专题5.2动能和动能定理(精讲)(含解析)

专题5.2 动能和动能定理1.掌握动能和动能定理;2.能运用动能定理解答实际问题。

知识点一 动能(1)定义:物体由于运动而具有的能。

(2)公式:E k =12mv 2,v 为瞬时速度,动能是状态量。

(3)单位:焦耳,1 J =1 N·m=1 kg·m 2/s 2。

(4)标矢性:动能是标量,只有正值。

(5)动能的变化量:ΔE k =E k2-E k1=12mv 22-12mv 21。

知识点二 动能定理(1)内容:合外力对物体所做的功等于物体动能的变化。

(2)表达式:W =ΔE k =12mv 22-12mv 21。

(3)物理意义:合外力对物体做的功是物体动能变化的量度。

(4)适用条件①既适用于直线运动,也适用于曲线运动。

②既适用于恒力做功,也适用于变力做功。

③力可以是各种性质的力,既可以同时作用,也可以不同时作用。

考点一 动能定理的理解及应用【典例1】(2018·全国卷Ⅰ·18)如图,abc 是竖直面内的光滑固定轨道,ab 水平,长度为2R ;bc 是半径为R 的四分之一圆弧,与ab 相切于b 点.一质量为m 的小球,始终受到与重力大小相等的水平外力的作用,自a 点处从静止开始向右运动.重力加速度大小为g .小球从a 点开始运动到其轨迹最高点,机械能的增量为( )A .2mgRB .4mgRC .5mgRD .6mgR【答案】C【解析】小球从a 运动到c ,根据动能定理,得F ·3R -mgR =12mv 21,又F =mg ,故v 1=2gR ,小球离开c 点在竖直方向做竖直上抛运动,水平方向做初速度为零的匀加速直线运动.且水平方向与竖直方向的加速度大小相等,都为g ,故小球从c 点到最高点所用的时间t =v 1g =2R g ,水平位移x =12gt 2=2R ,根据功能关系,小球从a 点到轨迹最高点机械能的增量为力F 做的功,即ΔE =F ·(2R +R +x )=5mgR 。

动能定理专题练习

动能定理专题练习

专题:动能动能定理考点一:动能【温故自查】1.概念:一个物体能够对外界做功,我们就说物体具有能量.能量可以有不同的形式,物体由于运动而具有的能叫.2.表达式:。

【考点精析】可以从以下几个方面理解动能的概念(1)动能是标量,动能的取值可以为正值或零,但不会为负值.(2)动能是状态量,描述的是物体在某一时刻的运动状态,一定质量的物体在运动状态(瞬时速度)确定时,Ek有惟一确定的值,速度变化时,动能不一定变化,但动能变化时,速度一定变化.(3)动能具有相对性.由于瞬时速度与参考系有关,所以Ek也与参考系有关,在一般情况下,如无特殊说明,则认为取大地为参考系.(4)物体的动能不会发生突变,它的改变需要一个过程,这个过程就是外力对物体做功的过程或物体对外做功的过程.(5)具有动能的物体克服阻力做功,物体的质量越大,运动速度越大,它的动能也就越大,能克服阻力对外做功越多.【注意】动能具有相对性.由于速度v是一个与参照系的选取有关的物理量,因此根据动能的表达式Ek=mv2可知,动能也是一个与参照系的选取有关的物理量.也就是说,同一个运动物体,对于不同的参照系其动能一般是不相等的.所以说,同一个运动物体,对于不同的参照系其动能一般是不相等的,所以说,动能是相对于参照系的相对量.在通常情况下,都是以地面为参照系来计算运动物体的动能的.那么,相对于地球静止的物体是否一定没有动能呢?如果选取地球为参照系,物体的速度为零,当然也就没有动能;如果选取太阳为参照系,则物体在随地球自转而做圆周运动的同时,还绕太阳公转,其动能不为零.因为速度是对地面的瞬时速度,因此动能是描述物体运动状态的物理量.考点二:动能定理【温故自查】概念:动能定理是表述了合外力做功和动能的变化之间的关系,合外力在一个过程中对物体所做的功,等于物体在这个过程中动能的.(1)对单个物体,动能定理可表述为:合外力做的功等于物体动能的变化(这里的合外力指物体受到的所有外力的合力,包括重力).表达式为:或W=ΔEk.(2)对于多过程、多外力的物体系统,动能定理也可以表述为:所有外力对物体做的等于物体动能的变化.实际应用时,后一种表述更好操作.因为它不必求合力,特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照,就可以得到总功.【考点精析】对动能定理的理解(1)动能定理是把过程量(做功)和状态量(动能)联系在一起的物理规律.所以,无论求合外力做的功还是求物体动能的变化,就都有了两个可供选择的途径.(2)对外力对物体做的总功的理解:有的力促进物体运动,而有的力则阻碍物体运动,因此它们做的功就有正、负之分,总功指的是各外力做功的代数和;对于单一物体的单一物理过程,又因为W合=W1+W2+…=F合l.所以总功也可理解为合外力的功.即:如果物体受到多个共点力作用,则:W合=F合l;如果发生在多个物理过程中,不同过程中作用力的个数不相同,则:W合=W1+W2+…+Wx.(3)对该定理标量性的认识:因动能定理中各项均为标量,因此单纯速度方向的改变不影响动能的大小.如用细绳拉着一物体在光滑桌面上以绳头为圆心做匀速圆周运动的过程中,合外力方向指向圆心,与位移方向始终保持垂直,所以合外力做功为零,动能变化亦为零,其并不因速度方向的改变而改变.(4)对状态与过程关系的理解:功是伴随一个物理过程而产生的,是过程量;而动能是状态量.动能定理表示了过程量等于状态量的改变量的关系.【注意】 1.动能定理中所说的外力,既可以是重力、弹力、摩擦力,也可以是任何其他的力,动能定理中的W是指所有作用在物体上的外力的合力的功.2.动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的,但对于外力是变力,物体做曲线运动的情况同样适用.也就是说,动能定理适用于任何力作用下,以任何形式运动的物体为研究对象,具有普遍性.考点三:用动能定理求变力的功【温故自查】在某些问题中,由于F的大小或方向变化,不能直接用求解力的功,可运用动能定理求解,求出物体变化和其它的功,即可由ΔEk=W1+W2+…+Wn求得其中变力的功.【考点精析】用动能定理求解变力功的注意要点:(1)分析物体受力情况,确定哪些力是恒力,哪些力是变力.(2)找出其中恒力的功及变力的功.(3)运用动能定理求解.考点四:动能定理在物体系统中的运用【温故自查】物体间的一对相互作用力的功可以是,也可以是,还可以是.因此几个物体组成的物体系统所受的合外力的功不一定等于系统动能的.【考点精析】用动能定理解决问题时,所选取的研究对象可以是单个物体,也可以是多个物体组成的系统,当选取物体系统作为研究对象时,应注意以下几点:(1)当物体系统内的相互作用是杆、绳间的作用力,或是静摩擦力,或是刚性物体间相互挤压而产生的力,这两个作用与反作用力的功等于零,这时列动能定理方程时可只考虑物体系统所受的合外力的功即可.(2)当物体系统内的相互作用是弹簧、橡皮条的作用力,或是滑动摩擦力,两个作用力与反作用力的功不等于零,这时列动能定理方程时不但要考虑物体系统所受的合外力的功,还要考虑物体间的相互作用力的功.(3)物体系统内各个物体的速度不一定相同,列式时要分别表达不同物体的动能.考点五:动能定理分析复杂过程问题【温故自查】物体在某个运动过程中包含有几个运动性质不同的小过程(如加速、减速的过程),此时可以考虑,也可对考虑,对整个过程列式则可使问题简化.【考点精析】多过程求解问题的策略:(1)分析物体运动,确定物体运动过程中不同阶段的受力情况,分析各个力的功.(2)分析物体各个过程中的初末速度,在不同阶段运用动能定理求解,此为分段法,这种方法解题时需分清物体各阶段的运动情况,列式较多.(3)如果能够得到物体全过程初末动能的变化及全过程中各力的功,用全过程列一个方程即可,此方法较简洁.题型一用动能定理判断能量间的转换关系命题规律根据动能定理判断机械能、动能、势能及其他形式的能之间的相互转化情况.[考例1](2009·上海)小球由地面竖直上抛,上升的最大高度为H,设所受阻力大小恒定,地面为零势能面.在上升至离地高度h处,小球的动能是势能的2倍,在下落至离地高度h处,小球的势能是动能的2倍,则h等于()A.H/9B.2H/9C.3H/9 D.4H/9【变式练习】:如图所示,卷扬机的绳索通过定滑轮用力F拉位于粗糙斜面上的木箱,使之沿斜面加速向上运动.在移动过程中,下列说法正确的是()A.F对木箱做的功等于木箱增加的动能与木箱克服摩擦力所做的功之和B.F对木箱做的功等于木箱克服摩擦力和克服重力所做的功之和C.木箱克服重力做的功等于木箱增加的重力势能D.F对木箱做的功等于木箱增加的机械能与木箱克服摩擦力做的功之和题型二动能定理在多阶段过程中的应用命题规律物体运动过程较多时利用动能定理分析计算物体受力、位移、速度或某力做功等[考例2]某兴趣小组对一辆自制小遥控车的性能进行研究.他们让这辆小车在水平的直轨道上由静止开始运动,并将小车运动的全过程记录下来,通过处理转化为v-t图象,如图所示(除2s~10s时间段内的图象为曲线外,其余时间段图象均为直线).已知小车运动的过程中,2s~14s时间段内小车的功率保持不变,在14s末停止遥控而让小车自由滑行.小车的质量为2kg,可认为在整个过程中小车所受到的阻力大小不变.求:(1)小车所受到的阻力大小;(2)小车匀速行驶阶段的功率;(3)小车在加速运动过程中位移的大小.【变式训练】:(2009·安徽)过山车是游乐场中常见的设施.下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B、C、D分别是三个圆形轨道的最低点,B、C间距与C、D间距相等,半径R1=2.0m、R2=1.4m.一个质量为m=1.0kg的小球(视为质点),从轨道的左侧A点以v0=12.0m/s的初速度沿轨道向右运动,A、B间距L1=6.0m.小球与水平轨道间的动摩擦因数μ=0.2,圆形轨道是光滑的.假设水平轨道足够长,圆形轨道间不相互重叠.重力加速度取g=10m/s2,计算结果保留小数点后一位数字.试求:(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小;(2)如果小球恰能通过第二圆形轨道,B、C间距L应是多少;(3)在满足(2)的条件下,如果要使小球不能脱离轨道,在第三个圆形轨道的设计中,半径R3应满足的条件;小球最终停留点与起点A的距离.题型三用动能定理求变力做功命题规律物体在变力的作用下运动,求物体在运动过程中的瞬时速度或力对物体所做的功.[考例3](2009·北京海淀区模拟)如图甲所示,一质量为m=1kg的物块静止在粗糙水平面上的A点,从t=0时刻开始,物块在受按如图乙所示规律变化的水平力F作用下向右运动,第3s末物块运动到B点时速度刚好为0,第5s末物块刚好回到A点,已知物块与粗糙水平面之间的动摩擦因数μ=0.2,(g取10m/s2)求:(1)AB间的距离;(2)水平力F在5s时间内对物块所做的功.【变式训练】:一铅球运动员奋力一推,将8kg的铅球推出10m远.铅球落地后将地面击出一坑,有经验的专家根据坑的深度形状认为铅球落地时的速度大致是12m/s.若铅球出手时的高度是2m,求推球过程中运动员对球做的功大约是多少焦耳?题型四动能定理与图像结合的问题命题规律考查识别图象,从而找出解题的信息及数据,达到解题的目的.[考例4](2009·江苏金坛模拟)如图甲所示,一条轻质弹簧左端固定在竖直墙面上,右端放一个可视为质点的小物块,小物块的质量为m=1.0kg,当弹簧处于原长时,小物块静止于O点,现对小物块施加一个外力F,使它缓慢移动,将弹簧压缩至A点,压缩量为x=0.1m,在这一过程中,所用外力F与压缩量的关系如图乙所示.然后撤去F释放小物块,让小物块沿桌面运动,已知O点至桌边B点的距离为L=2x水平桌面的高为h=5.0m,计算时,可用滑动摩擦力近似等于最大静摩擦力.(g取10m/s2)求:(1)在压缩弹簧过程中,弹簧存贮的最大弹性势能;(2)小物块到达桌边B点时速度的大小;(3)小物块落地点与桌边B的水平距离.【变式训练】如图(1)所示,静置于光滑水平面上坐标原点处的小物块,在水平拉力F作用下,沿x轴方向运动,拉力F随物块所在位置坐标x的变化关系如图(2)所示,图线为半圆.则小物块运动到x0处时的动能为()。

动能定理专题含答案详解

动能定理专题含答案详解

动能定理1.如图1所示,质量为m 的物体静止于倾角为α的斜面体上,现对斜面体施加一水平向左的推力F ,使物体随斜面体一起沿水平面向左匀速移动x ,则在此匀速运动过程中斜面体对物体所做的功为 ( )A .FxB .mgx cos αsin αC .mgx sin αD .02.如图2所示,固定斜面倾角为θ,整个斜面分为AB 、BC 两段,AB =2BC .小物块P (可视为质点)与AB 、BC 两段斜面间的动摩擦因数分别为μ1、μ2.已知P 由静止开始从A 点释放,恰好能滑动到C 点而停下,那么θ、μ1、μ2间应满足的关系是 ( )A .tan θ=μ1+2μ23B .tan θ=2μ1+μ23C .tan θ=2μ1-μ2D .tan θ=2μ2-μ13.人用手托着质量为m 的物体,从静止开始沿水平方向运动,前进距离x 后,速度为v (物体与手始终相对静止),物体与人手掌之间的动摩擦因数为μ,则人对物体做的功为( )A .mgxB .0C .μmgx D.12m v 24.构建和谐型、节约型社会深得民心,节能器材遍布于生活的方方面面.自动充电式电动车就是很好的一例.电动车的前轮装有发电机,发电机与蓄电池连接.当骑车者用力蹬车或电动自行车自动滑行时,自行车就可以连通发电机向蓄电池充电,将其他形式的能转化成电能储存起来.现有某人骑车以500 J 的初动能在粗糙的水平路面上滑行,第一次关闭自动充电装置,让车自由滑行,其动能随位移变化关系如图3中图线①所示;第二次启动自动充电装置,其动能随位移变化关系如图线②所示,则第二次向蓄电池所充的电能是 ( ) A .200 J B .250 J C .300 J D .500 J5.以初速度v 0竖直向上抛出一质量为m 的小物块.假定物块所受的空气阻力F f 大小不变.已知重力加速度为g ,则物块上升的最大高度和返回到原抛出点的速率分别为 ( )A.v 022g (1+F fmg)和v 0mg -F fmg +F f图3B.v 022g (1+F fmg )和v 0mgmg +F fC.v 022g (1+2F fmg )和v 0mg -F fmg +F fD.v 022g (1+2F fmg)和v 0mgmg +F f6.如图4所示,板长为l ,板的B 端静放有质量为m 的小物体P ,物体与板间的动摩擦因数为μ,开始时板水平,若缓慢转过一个小角度α的过程中,物体保持与板相对静止,则这个过程中 ( ) A .摩擦力对P 做功为μmg cos α·l (1-cos α) B .摩擦力对P 做功为mg sin α·l (1-cos α) C .支持力对P 做功为mgl sin α D .板对P 做功为mgl sin α7.如图5所示,质量相等的物体A 和物体B 与地面的动摩擦因数相等,在力F 的作用下,一起沿水平地面向右移动x ,则 ( ) A .摩擦力对A 、B 做功不相等 B .A 、B 动能的增量相同C .F 对A 做的功与F 对B 做的功相等D .合外力对A 做的功与合外力对B 做的功不相等8.两根光滑直杆(粗细可忽略不计)水平平行放置,一质量为m 、半径为r 的均匀细圆环套在两根直杆上,两杆之间的距离为3r ,图6甲所示为立体图,图6乙所示为侧视图.现将两杆沿水平方向缓慢靠近直至两杆接触为止,在此过程中 ( )图6A .每根细杆对圆环的弹力均增加B .每根细杆对圆环的最大弹力均为mgC .每根细杆对圆环的弹力均不做功D .每根细杆对圆环所做的功均为-14mgr9.如图7所示,质量为M 、长度为L 的木板静止在光滑的水平面上,质量为m 的小物体(可视为质点)放在木板上最左端,现用一水平恒力F 作用在小物体上,使物图图体从静止开始做匀加速直线运动.已知物体和木板之间的摩擦力为F f .当物体滑到木板的最右端时,木板运动的距离为x ,则在此过程中 ( ) A .物体到达木板最右端时具有的动能为(F -F f )(L +x ) B .物体到达木板最右端时,木板具有的动能为F f x C .物体克服摩擦力所做的功为F f L D .物体和木板增加的机械能为Fx8.质量为 5×105kg 的机车,以恒定的功率沿平直轨道行驶,在3minl 内行驶了1450m ,其速度从10m/s 增加到最大速度15m/s .若阻力保持不变,求机车的功率和所受阻力的数值.10. (11分)如图8所示,竖直固定放置的斜面DE 与一光滑的圆弧轨道ABC 相连,C 为切点,圆弧轨道的半径为R ,斜面的倾角为θ.现有一质量为m 的滑块从D 点无初速下滑,滑块可在斜面和圆弧轨道之间做往复运动,已知圆弧轨道的圆心O 与A 、D 在同一水平面上,滑块与斜面间的动摩擦因数为μ,求:(1)滑块第一次至左侧AC 弧上时距A 点的最小高度差h . (2)滑块在斜面上能通过的最大路程s .11.(12分)右端连有光滑弧形槽的水平桌面AB 长L =1.5 m ,如图9所示.将一个质量为m =0.5 kg 的木块在F =1.5 N 的水平拉力作用下,从桌面上的图A端由静止开始向右运动,木块到达B端时撤去拉力F,木块与水平桌面间的动摩擦因数μ=0.2,取g=10 m/s2.求:图9(1)木块沿弧形槽上升的最大高度;(2)木块沿弧形槽滑回B端后,在水平桌面上滑动的最大距离.12.(14分)质量m=1 kg的物体,在水平拉力F(拉力方向与物体初速度方向相同) 的作用下,沿粗糙水平面运动,经过位移4 m时,拉力F停止作用,运动到位移是8 m时物体停止,运动过程中E k-x的图线如图10所示.求:(g取10 m/s2)(1)物体的初速度多大?(2)物体和平面间的动摩擦因数为多大?(3)拉力F的大小.【参考答案与详细解析】一、单项选择题1. D2. B3.D4.A5.A 二、多项选择题6. CD7. AB 8. BD 9. AB 三、计算题10. 解析:(1)由动能定理得: mgh -μmg cos θ·R /tan θ=0 得h =μR cos 2θ/sin θ=μR cos θcot θ(2)滑块最终至C 点的速度为0时对应在斜面上的总路程最大,由动能定理得 mgR cos θ-μmg cos θ·s =0 得:s =R μ.答案:(1)μR cos θcot θ (2)Rμ11.解析:(1)由动能定理得: FL -F f L -mgh =0其中F f =μF N =μmg =0.2×0.5×10 N =1.0 N 所以h =FL -F f L mg =1.5×(1.5-1.0)0.5×10 m =0.15 m(2)由动能定理得: mgh -F f x =0所以x =mgh F f =0.5×10×0.151.0 m =0.75 m答案:(1)0.15 m (2)0.75 m12.解析:(1)从图线可知初动能为2 J , E k0=12m v 2=2 J ,v =2 m/s.(2)在位移4 m 处物体的动能为10 J ,在位移8 m 处物体的动能为零,这段过程中物体克服摩擦力做功. 设摩擦力为F f ,则 -F f x 2=0-10 J =-10 J F f =-10-4 N =2.5 N因F f =μmg 故μ=F f mg =2.510=0.25.(3)物体从开始到移动4 m 这段过程中,受拉力F 和摩擦力F f 的作用,合力为F -F f , 根据动能定理有 (F -F f )·x 1=ΔE k故得F =ΔE k x 1+F f =(10-24+2.5) N =4.5 N.答案:(1)2 m/s (2)0.25 (3)4.5 N。

物理动能与动能定理题20套(带答案)及解析

物理动能与动能定理题20套(带答案)及解析

物理动能与动能定理题20套(带答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,两物块A 、B 并排静置于高h=0.80m 的光滑水平桌面上,物块的质量均为M=0.60kg .一颗质量m=0.10kg 的子弹C 以v 0=100m/s 的水平速度从左面射入A ,子弹射穿A 后接着射入B 并留在B 中,此时A 、B 都没有离开桌面.已知物块A 的长度为0.27m ,A 离开桌面后,落地点到桌边的水平距离s=2.0m .设子弹在物块A 、B 中穿行时受到的阻力大小相等,g 取10m/s 2.(平抛过程中物块看成质点)求:(1)物块A 和物块B 离开桌面时速度的大小分别是多少; (2)子弹在物块B 中打入的深度;(3)若使子弹在物块B 中穿行时物块B 未离开桌面,则物块B 到桌边的最小初始距离.【答案】(1)5m/s ;10m/s ;(2)23.510B m L -=⨯(3)22.510m -⨯【解析】 【分析】 【详解】试题分析:(1)子弹射穿物块A 后,A 以速度v A 沿桌面水平向右匀速运动,离开桌面后做平抛运 动: 212h gt =解得:t=0.40s A 离开桌边的速度A sv t=,解得:v A =5.0m/s 设子弹射入物块B 后,子弹与B 的共同速度为v B ,子弹与两物块作用过程系统动量守恒:0()A B mv Mv M m v =++B 离开桌边的速度v B =10m/s(2)设子弹离开A 时的速度为1v ,子弹与物块A 作用过程系统动量守恒:012A mv mv Mv =+v 1=40m/s子弹在物块B 中穿行的过程中,由能量守恒2221111()222B A B fL Mv mv M m v =+-+① 子弹在物块A 中穿行的过程中,由能量守恒22201111()222A A fL mv mv M M v =--+②由①②解得23.510B L -=⨯m(3)子弹在物块A 中穿行过程中,物块A 在水平桌面上的位移为s 1,由动能定理:211()02A fs M M v =+-③子弹在物块B 中穿行过程中,物块B 在水平桌面上的位移为s 2,由动能定理2221122B A fs Mv Mv =-④ 由②③④解得物块B 到桌边的最小距离为:min 12s s s =+,解得:2min 2.510s m -=⨯考点:平抛运动;动量守恒定律;能量守恒定律.2.某小型设备工厂采用如图所示的传送带传送工件。

动能定理专题复习(考点+题型+专题练习)

动能定理专题复习(考点+题型+专题练习)

21222121mv mv W -=21222121E mv mv W k -=∆=动能和动能定理第1步:讲基础一、动能:1、定义:物体由于运动而具有的能量叫动能.2、表达式:221mv E k =3、物理意义:动能是描述物体运动状态的物理量,是标量。

4、 单位:焦耳( J ) 二、动能定理: >1、内容:合力对物体所做的总功等于物体动能的变化。

2、表达式:第2步:学技巧一、对动能定理的进一步理解 力在一个过程中对物体所做的功,等于物体在这个过程中动能的变化,即 。

1、式中的W ,是力对物体所做的总功,可理解为各个外力所做功的代数和,也可以理解为合力所做的功。

2、式中的k E ∆,是物体动能的变化,是指做功过程的末动能减去初动能。

3、动能定理的研究对象一般是单一物体,或者是可以看成单一物体的物体系。

4、动能定理表达式是一个标量式,不能在某个方向上应用动能定理。

&二、常用应用动能定理的几种情况1、动能定理适用于恒力、变力、直线、曲线运动。

2、动能定理是标量式,不涉及方向问题。

在不涉及加速度和时间的问题时,可优先考虑动能定理。

3、对于求解多个过程的问题可全程考虑,从而避开考虑每个运动过程的具体细节。

具有过程简明、方法巧妙、运算量小等优点。

(注意动能损失:例3和例4比较)4、变力做功问题。

在某些问题中,由于力F 大小的变化或方向的改变,不能直接由αcos Fl W =来求变力F 所做的功,此时可由其做功的效果——动能的变化来求变力F 所做的功。

三、经典例题 例1、(课本例题)一架喷气式飞机,质量m=5×103 kg ,起飞过程中从静止开始滑跑的路程为s =×102m时,达到起飞速度v=60m/s ,在此过程中飞机受到的平均阻力是飞机重量的倍(k=,求飞机受到的牵引力. 分析: 研究对象:飞机研究过程:从静止→起飞(V=60m/s )适用公式:动能定理:2022121mv mv W -=合表达式:=-S f F )(221mv得到牵引力:Nkmg S mv F 42108.12⨯=+=例2、将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。

专题8-3 动能和动能定理(讲)(解析版)

专题8-3 动能和动能定理(讲)(解析版)

专题8.3 动能和动能定理(讲)一、讲目标一、知识与技能1.理解动能的概念。

2.熟练计算物体的动能。

3.会用动能定理解决力学问题,掌握用动能定理解题的一般步骤。

二、过程与方法1.运用演绎推导方式推导动能定理的表达式,体会科学探究的方法。

2.理论联系实际,学习运用动能定理分析解决问题的方法。

三、情感、态度与价值观1.通过演绎推理的过程,培养对科学研究的兴趣。

2.通过对动能和动能定理的演绎推理,使学生从中领略到物理等自然学科中所蕴含的严谨的逻辑关系,反映了自然界的真实美。

二、讲重难点理解动能的概念,会用动能的定义式进行计算。

探究功与物体速度变化的关系,知道动能定理的适用范围。

会推导动能定理的表达式。

三、讲图片思维导图四、讲考点和题型【考点一】动能的表达式1.定义:物体由于运动而具有的能量. 2.表达式:E k =12mv 2.3.单位:与功的单位相同,国际单位为焦耳.1 J =1 kg·m 2·s -2. 4.物理量特点(1)具有瞬时性,是状态量.(2)具有相对性,选取不同的参考系,同一物体的动能一般不同,通常是指物体相对于地面的动能.(3)是标量,没有方向,E k ≥0. 5.对动能的理解(1)动能是标量,没有负值,与物体的速度方向无关.(2)动能是状态量,具有瞬时性,与物体的运动状态(或某一时刻的速度)相对应. (3)动能具有相对性,选取不同的参考系,物体的速度不同,动能也不同,一般以地面为参考系.6.动能变化量ΔE k物体动能的变化量是末动能与初动能之差,即ΔE k =12mv 22-12mv 21,若ΔE k >0,则表示物体的动能增加,若ΔE k <0,则表示物体的动能减少.【例1】如图所示,冬奥冠军苏翊鸣在一次训练中脚踩滑雪板从平台BC 的C 点沿水平方向飞出,落在倾斜雪道上的D 点。

已知倾斜的雪道与水平面的夹角θ=37°,苏翊鸣从C 点飞出时他和装备的动能为400J 。

高中物理精品试题: 动能定理常见考法

高中物理精品试题: 动能定理常见考法

专题4 动能定理常见考法一、动能定理的理解1.甲乙两个物体质量相等,若他们的速度之比为1:3,则它们的动能之比为( ) A .1:3 B .3:1 C .1:9 D .9:12.下列说法正确的是( )A .合外力做功是物体动能变化的原因B .如果物体所受合外力不为零,那么合外力的功也一定不为零C .物体的动能不变就是物体的速度不变D .物体在合外力作用下做变速运动,动能一定变化3.下列关于动能定理的说法正确的是( )A .合外力对物体做多少正功,动能就增加多少B .合外力对物体做多少负功,动能就增加多少C .合外力对物体做正功,动能也可能保持不变D .不管合外力对物体做多少正功,动能均保持不变二、动能定理解决多过程问题4.如图所示,将一物体分别沿着AB 、ACB 两条斜面轨道从静止开始运动到B 端。

已知物体与两条斜面轨道的动摩擦因数相同,不计在轨道处的能量损失。

则物体两次运动( ) A .位移不同B .到达B 端的速度相同C .到达B 端的动能相同D .克服摩擦力做的功不同52R5.如图所示,质量为m 的滑块从高h 处的a 点,沿斜面轨道ab 滑入水平轨道bc 。

在经过b 点时无能量损失,滑块与每个轨道的动摩擦因数都相同。

滑块在a 、c 两点的速度大小均为v ,ab 与bc 长度相等,空气阻力不计,则从a 到c 的运动过程中( )A .滑块从a 到b 的时间与b 到c 的时间不相等B .滑块从b 到c 运动的过程阻力做的功为2mgh -C .滑块经b 点时的速度等于22gh v +D .滑块经b 点时的速度大于2gh v +6.某跳台滑雪赛道简化为如图所示模型,AB 为直道,BCD 为半径为R 的圆弧道,两滑道在B 点平滑连接,圆弧道与水平地面相切于C 点,CD 段圆弧所对的圆心角为θ=60°,不计一切摩擦,一个小球从直道上离地面高为H 处由静止释放,小球从D 点飞出后上升到的最高点离地面的高度为( )A .3148H R + B .3144H R +C .1128H R +D .1124H R + 7.半径分别为R 和2R 的两个半圆,分别组成如图甲、乙所示的两个圆弧轨道,一小球从某一高度下落,分别从甲、乙所示开口向上的半圆轨道的右侧边缘进入轨道,都沿着轨道内侧运动并恰好能从开口向下的半圆轨道的最高点通过,则下列说法正确的是 ( )A .小球开始下落的高度甲图比乙图小B .小球开始下落的高度甲图和乙图一样大C .小球对轨道最低点压力甲图大于乙图D .小球对轨道最低点压力甲图和乙图一样大8.如图所示,一倾角为45︒的斜面和半圆竖直轨道分别与水平面平滑连接于P 、B 两点,PB 的距离为R ,半圆轨道的圆心为O ,半径为R ,C 为其最高点。

动能定理 专题

动能定理 专题

专题(二) 动能定理⒈质点在恒力作用下,从静止开始做直线运动,则质点的动能( ) A.与它通过的位移成正比 B.与它通过位移的平方成正比 C.与它运动的时间成正比 D.与它运动时间的平方成正比2 质量不等但有相同动能的两物体,在摩擦系数相同的水平地面上滑行直到停止,则 A. 质量大的物体滑行距离大 B. 质量小的物体滑行距离大C. 它们滑行的距离一样大D. 它们克服摩擦力所做的功一样多3力F 对物体做2某人用手将1kg 物体由静止向上提起1m ,这时物体的速度为2m/s (g 取102m s /),则下列说法正确的是( ) A. 手对物体做功12J B. 合外力做功2JC. 合外力做功12JD. 物体克服重力做功10J4. 甲乙两物体质量的比M 1:M 2=3:1,速度的比V 1:V 2=1:3,在相同的阻力作用下逐渐停下,则它们的位移比S 1:S 2是( )A. 1:1B. 1:3C. 3:1D. 4:15 一子弹以速度v 飞行恰好射穿一块铜板,若子弹的速度是原来的3倍,那么可射穿上述铜板的数目为( ) A. 3块 B. 6块 C. 9块 D. 12块⒍一辆汽车以6m/S 的速度沿水平路面行驶时,急刹车后能滑行⒊6m ,如果改为8m/S 的速度行驶,同样情况下急刹车后能滑行的距离为( )A ⒍4mB ⒌6mC ⒎2mD ⒑8m7.如图8-14所示,一块长木板B 放在光滑的水平面上,在B 上放一物体A ,现以恒定的外力拉B ,由于A 、B 间摩擦力的作用,A 将在B 上滑动,以地面为参照物,A 、B 都向前移动一段距离,在此过程中( )A .外力F 做的功等于A 和B 动能的增量B .B 对A 的摩擦力所做的功,等于A 的动能的增量C .A 对B 的摩擦力所做的功,等于B 对A 的摩擦力所做的功D .外力F 对B 做的功等于B 的动能的增量与B 克服摩擦力所的功之和 8.质量为m 的物体A 由静止开始下滑至B 而停止,A 、B 离水平地面的高度分别为h 及2h,如图5-17所示。

动能定理专题

动能定理专题

动能定理专题一、动能1.定义:物体由于运动而具有的能量。

2.公式:3.单位:焦耳,简称焦,符号J4.特点:(1)标量,且为非负数(2)只与速度大小有关,与速度方向无关(3)状态量。

说Ek必须指明是哪个状态时的动能。

(4)相对性。

高中阶段一般选地面为参考系。

二、合外力做功与动能变化的关系1.物理模型:光滑水平面上有一质量为m的物体,初速度为v0,受到一与运动方向相同的恒力作用,经过一段时间速度增加到v t,试求这个过程中合力的功。

2.推导:3.结论:三.动能定理:1、内容:合外力所做的功等于物体动能的改变量。

另一种说法:合外力所做的总功等于物体动能的改变量。

2、公式:4.强调:W总指的是合外力做的总功,既可表述为各个力所做功的代数和,又可表述为合外力做的功。

5.说明:(1)标量关系式,故无分量式,公式中v指的是合速度。

(2)适用对象:单一物体或可视为单一物体的物体系。

(3)对惯性系成立。

(一般选地面为参考系,即各量都是对地的)6.优越性:(1)比牛顿定律和运动学更简单。

(举例水平面上的物体)例题1:一个物体静止在不光滑的水平面上,已知m=1kg,u=0.1,现用水平外力F=2N,拉其运动5m后立即撤去水平外力F,求其还能滑m(g取)(用牛顿定律和动能定理分别求解)(2)对曲线运动也适用。

举例:平抛运动求合速度。

(用运动学牛顿定律和动能定理分别求解)(3)可以求解变力做功。

在某些问题中,由于力F的大小、方向的变化,不能直接用W=F xcos α求出变力做功的值,但可由动能定理求解.四、动能定理应用的基本步骤应用动能定理涉及一个过程,两个状态.所谓一个过程是指做功过程,应明确该过程各外力所做的总功;两个状态是指初末两个状态的动能.动能定理应用的基本步骤是:①选取研究对象,明确并分析运动过程.②分析受力及各力做功的情况,受哪些力?每个力是否做功?在哪段位移过程中做功?正功?负功?做多少功?求出代数和.③明确过程始末状态的动能E k1及E K2④列方程W=E K2一E k1,必要时注意分析题目的潜在条件,补充方程进行求解.五、整过程运用动能定理(一)水平面问题1、一物体质量为2kg,以4m/s的速度在光滑水平面上向左滑行。

动能定理专题

动能定理专题

动能定理专题1、一质量为1kg的物体被人用手由静止向上提高1m,这时物体的速度是2m/s,求:(1)物体克服重力做功.(2)合外力对物体做功.(3)手对物体做功.2、一个人站在距地面高h = 15m处,将一个质量为m = 100g的石块以v0 = 10m/s的速度斜向上抛出.(1)若不计空气阻力,求石块落地时的速度v.(2)若石块落地时速度的大小为v t = 19m/s,求石块克服空气阻力做的功W.3、在距离地面高为H处,将质量为m的小钢球以初速度v0竖直下抛,落地后,小钢球陷入泥土中的深度为h求:(1)求钢球落地时的速度大小v.(2)泥土对小钢球的阻力是恒力还是变力?(3)求泥土阻力对小钢球所做的功.(4)求泥土对小钢球的平均阻力大小.4、如图所示,光滑1/4圆弧半径为0.8m,有一质量为1.0kg的物体自A点从静止开始下滑到B 点,然后沿水平面前进4m,到达C点停止. 求:(1)在物体沿水平运动中摩擦力做的功.(2)物体与水平面间的动摩擦因数.5、质量为m的物体从高为h的斜面上由静止开始下滑,经过一段水平距离后停止,测得始点与终点的水平距离为s,物体跟斜面和水平面间的动摩擦因数相同,求证:hsμ=.vtvAA6.固定的轨道ABC如图所示,其中水平轨道AB与半径为R/4的光滑圆弧轨道BC相连接,AB与圆弧相切于B点。

质量为m的小物块静止在水一平轨道上的P点,它与水平轨道间的动摩擦因数为μ=0.25,PB=2R。

用大小等于2mg的水平恒力推动小物块,当小物块运动到B点时,立即撤去推力(小物块可视为质点)(1)求小物块沿圆弧轨道上升后,可能达到的最大高度H;(2)如果水平轨道AB足够长,试确定小物块最终停在何处?7.如图所示,位于竖直平面内的光滑轨道,由一段斜的直轨道与之相切的圆形轨道连接而成,圆形轨道的半径为R。

一质量为m的小物块(视为质点)从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动。

(g为重力加速度)(1)要使物块能恰好通过圆轨道最高点,求物块初始位置相对于圆形轨道底部的高度h多大;(2)要求物块能通过圆轨道最高点,且在最高点与轨道间的压力不能超过5mg。

动能定理专题

动能定理专题

动能定理专题一、动能1.定义:物体由于运动而具有的能.2.公式:E k =12mv 2. 3.单位:焦耳,1 J =1 N ·m =1 kg ·m/s 2.4.矢标性:动能是标量,只有正值.二、动能定理1.内容:在一个过程中合外力对物体所做的功,等于物体在这个过程中动能的变化.2.表达式:W =12mv 22-12mv 21.3.物理意义:合外力的功是物体动能变化的量度.4.适用条件(1)动能定理既适用于直线运动,也适用于曲线运动.(2)既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以不同时作用.例1.下列关于动能的说法,正确的是( )A .运动物体所具有的能就是动能B .物体做匀变速运动,某一时刻速度为v 1,则物体在全过程中的动能都是12mv 21C .做匀速圆周运动的物体其速度改变而动能不变D .物体在外力F 作用下做加速运动,当力F 逐渐减小时,其动能也逐渐减小解析:运动的物体除具有动能以外,还具有其他形式的能,A 选项错误.动能是状态量,当速度v 的大小变化时,动能就发生变化,B 选项错误;由于匀速圆周运动中,物体的速度大小不变,因此物体的动能不变,C 选项正确;在物体做加速度逐渐减小的加速运动时,物体的动能仍在变大,D 选项错误;故答案应该选C .答案:C例2.物体做匀速圆周运动时( )A .速度变化,动能不变B .速度变化,动能变化C .速度不变,动能变化D .速度不变,动能不变解析:速度是矢量,动能是标量,物体做匀速圆周运动时速度的方向随时变化,但大小不变,故速度在变,动能不变,选项A 正确.答案:A例3.人骑自行车下坡,坡长l =500 m ,坡高h =8 m ,人和车总质量为100 kg ,下坡时初速度为4 m/s ,人不踏车的情况下,到达坡底时车速为10 m/s ,g 取10 m/s 2,则下坡过程中阻力所做的功为( )A .-4 000 JB .-3 800 JC .-5 000 JD .-4 200 J答案:B例4.人通过滑轮将质量为m 的物体沿粗糙的斜面由静止开始匀加速地由底端拉上斜面,物体上升的高度为h ,到达斜面顶端时的速度为v ,如图所示.则在此过程中( )A .人对物体做的功为mghB .人对物体做的功小于mghC .物体所受的重力做功为-mghD .物体所受的合外力做功为12mv 2 解析:由于重力和滑动摩擦力都做负功,可以判断人对物体做的功大于mgh ,A 、B 错;物体上升高度为h ,克服重力做功为mgh ,即重力做功为-mgh ,C 对;物体沿粗糙的斜面由静止开始做匀加速运动,上升高度h 的过程中,人的拉力F 、物体重力mg 和滑动摩擦力F f 的合力做功等于动能的变化,即W F +W G +W Ff =12mv 2,D 对. 答案:CD例5.如图所示,质量为m 的小球,从离地面H 高处由静止释放,落到地面后继续陷入泥中h 深度而停止,设小球受到空气阻力为F 阻,则下列说法正确的是( )A .小球落地时动能等于mgHB.小球陷入泥中的过程中克服泥土阻力所做的功小于刚落到地面时的动能C.整个过程中小球克服阻力做的功等于mg(H+h)D.小球在泥土中受到的平均阻力为mg(1+H/h)解析:小球下落高度为H的过程中需要克服空气阻力做功,故其落地时的动能为(mg-F阻)H,选项A错误;设小球刚落地时的动能为E k,小球在泥土中运动的过程中克服阻力做功为W1,由动能定理得mgh-W1=0-E k,解得W1=mgh+E k,故选项B错误;若设全过程中小球克服阻力做功为W2,则mg(H +h)-W2=0,解得W2=mg(H+h),故选项C正确;若设小球在泥土中运动时,受到的平均阻力为F阻,则全程由动能定理得mg(H+h)-F阻H-F阻h=0,解得F阻=mg(H+h)-F阻Hh,故选项D错误.答案:C考点一:对动能定理的理解1.动能定理公式中“=”的意义等号表明合力做功与物体动能变化的三个关系(1)数量关系:即合外力所做的功与物体动能的变化具有等量代换关系.可以通过计算物体动能的变化,求合力的功,进而求得某一力的功.(2)单位相同:国际单位都是焦耳.(3)因果关系:合外力的功是引起物体动能变化的原因.2.动能定理的特点例1:如图所示,一块长木板B放在光滑的水平面上,在B上放一物体A,现以恒定的外力拉B,由于A、B间摩擦力的作用,A将在B上滑动,以地面为参考系,A、B都向前移动一段距离.在此过程中( )A.外力F做的功等于A和B动能的增量B.B对A的摩擦力所做的功,等于A的动能增量C.A对B的摩擦力所做的功,等于B对A的摩擦力所做的功D.外力F对B做的功等于B的动能的增量与B克服摩擦力所做的功之和解析:A物体所受的合外力等于B对A的摩擦力,对A物体运用动能定理,则有B对A的摩擦力所做的功等于A的动能的增量,即B对.A对B的摩擦力与B 对A 的摩擦力是一对作用力与反作用力,大小相等,方向相反,但是由于A 在B 上滑动,A 、B 对地的位移不等,故二者做功不等,C 错.对B 应用动能定理,W F -W Ff =ΔE kB ,即W F =ΔE kB +W Ff 就是外力F 对B 做的功,等于B 的动能增量与B 克服摩擦力所做的功之和,D 对.由前述讨论知B 克服摩擦力所做的功与A 的动能增量(等于B 对A 的摩擦力所做的功)不等,故A 错.答案:BD训练1:如图所示,卷扬机的绳索通过定滑轮用力F 拉位于粗糙斜面上的木箱,使之沿斜面加速向上移动.在移动过程中,下列说法正确的是( )A .F 对木箱做的功等于木箱增加的动能与木箱克服摩擦力所做的功之和B .F 对木箱做的功等于木箱克服摩擦力和克服重力所做的功之和C .木箱克服重力所做的功等于木箱增加的重力势能D .F 对木箱做的功等于木箱增加的机械能与木箱克服摩擦力做的功之和 解析:木箱在上升过程中,由动能定理可知:W F -mgh -W Ff =ΔE k ,故有WF =mgh +W Ff +ΔE k ,由此可知A 、B 错误,D 正确;木箱上升过程中,重力做负功,重力势能增加,木箱克服重力做的功等于木箱增加的重力势能,C 正确.答案:CD考点二:动能定理的应用例2: (16分)一滑块(可视为质点)经水平轨道AB 进入竖直平面内的四分之一圆弧形轨道BC .已知滑块的质量m =0.50 kg ,滑块经过A 点时的速度v A =5.0 m/s ,AB 长x =4.5 m ,滑块与水平轨道间的动摩擦因数μ=0.10,圆弧形轨道的半径R =0.50 m ,滑块离开C 点后竖直上升的最大高度h =0.10 m .取g =10 m/s 2.求:(1)滑块第一次经过B 点时速度的大小;(2)滑块刚刚滑上圆弧形轨道时,对轨道上B 点压力的大小;(3)滑块在从B 运动到C 的过程中克服摩擦力所做的功.解析:(1)滑块由A 到B 的过程中,应用动能定理得:-F f ·x =12mv 2B -12mv 2A (3分) 又F f =μmg (1分)解得:v B =4.0 m/s. (2分)(2)在B 点,滑块开始做圆周运动,由牛顿第二定律可知F N -mg =m v 2B R(2分) 解得轨道对滑块的支持力F N =21 N(1分)根据牛顿第三定律可知,滑块对轨道上B 点压力的大小也为21 N . (2分)(3)滑块从B 经过C 上升到最高点的过程中,由动能定理得-mg (R +h )-W Ff ′=0-12mv 2B (3分) 解得滑块克服摩擦力做功 W Ff ′=1.0 J .(2分)答案: (1)4.0 m/s (2)21 N (3)1.0 J题后反思:优先考虑应用动能定理的问题(1)不涉及加速度、时间的问题.(2)有多个物理过程且不需要研究整个过程中的中间状态的问题.(3)变力做功的问题.训练2:如图所示,装置ABCDE 固定在水平地面上,AB 段为倾角θ=53°的斜面,BC 段为半径R =2 m 的圆弧轨道,两者相切于B 点,A 点离地面的高度为H =4 m .一质量为m =1 kg 的小球从A 点由静止释放后沿着斜面AB 下滑,当进入圆弧轨道BC 时,由于BC 段是用特殊材料制成的,导致小球在BC 段运动的速率保持不变.最后,小球从最低点C 水平抛出,落地速率为v =7 m/s.已知小球与斜面AB 之间的动摩擦因数μ=0.5,重力加速度g 取10 m/s 2,sin 53°=0.8,cos 53°=0.6,不计空气阻力,求:(1)小球从B 点运动到C 点克服阻力所做的功.(2)B 点到水平地面的高度.解析:(1)设小球从B 到C 克服阻力做功为W BC .由动能定理,得mgR (1-cos θ)-W BC =0.代入数据,解得W BC =8 J.(2)设小球在AB 段克服阻力做功为W AB ,B 点到地面高度为h ,则W AB =μmg AB cos θ,而AB =H -hsin θ.对于小球从A 点落地的整个过程,由动能定得,得mgH -W AB -W BC =12mv 2, 联立,解得h =2 m.答案: (1)8 J (2)2 m考点三:动能定理与图象结合的问题动能定理与图象结合问题的分析方法(1)首先看清楚所给图象的种类(如v -t 图象还是F -x 图象、E k -x 图象等)(2)挖掘图象的隐含条件——求出所需要的物理量,如由v -t 图象所包围的“面积”求位移,由F -x 图象所包围的“面积”求功等.(3)再分析还有哪些力做功,根据动能定理列方程,可求出相应的物理量. 例3:如图甲所示,一条轻质弹簧左端固定在竖直墙面上,右端放一个可视为质点的小物块,小物块的质量为m =1.0 kg ,当弹簧处于原长时,小物块静止于O 点.现对小物块施加一个外力F ,使它缓慢移动,将弹簧压缩至A 点时,压缩量为x =0.1 m ,在这一过程中,所用外力F 与压缩量的关系如图乙所示.然后撤去F 释放小物块,让小物块沿桌面运动,已知O 点至桌面B 点的距离为L =2x ,水平桌面的高度为h =5.0 m ,计算时,可认为滑动摩擦力近似等于最大静摩擦力(g 取10 m/s 2).求:(1)在压缩弹簧过程中,弹簧存贮的最大弹性势能;(2)小物块到达桌边B 点时速度的大小;(3)小物块落地点与桌边B 点的水平距离.解析:(1)取向左为正方向,从F -x 图中可以看出,小物块与桌面间的滑动摩擦力大小为F f =1.0 N ,方向为负方向在压缩过程中,摩擦力做功为W Ff =-F f ·x =-0.1 J由图线与x 轴所围面积可得外力做功为W F =1.0+47.02×0.1 J =2.4 J. 所以弹簧存贮的最大弹性势能为E p =WF +W Ff =2.3 J.(2)从A 点开始到B 点的过程中,由于L =2x ,摩擦力做功为W Ff ′=-F f ·3x =-0.3 J对小物块用动能定理有E p +W Ff ′=12mv 2B解得v B =2 m/s.(3)小物块从B 点开始做平抛运动h =12gt 2 下落时间t =1 s水平距离s =v B t =2 m.答案: (1)2.3 J (2)2 m/s (3)2 m例4:质量m =1 kg 的物体,在与物体初速度方向相同的水平拉力的作用下,沿水平面运动过程中动能—位移的图象如图所示.在位移为4 m 时撤去F ,物块仅在摩擦力的作用下运动.求:(g 取10 m/s 2)(1)物体的初速度多大?(2)物体和平面间的动摩擦因数多大?(3)拉力F 的大小.解析:(1)从图线可知初动能为2 J ,E k0=12mv 2=2 J , v =2 m/s.(2)在位移4 m 处物体的动能为10 J ,在位移8 m 处物体的动能为零,这段过程中物体克服摩擦力做功设摩擦力为F f ,则-F f x 2=0-10 JF f=104N=2.5 N因F f=μmg故μ=F fmg=2.510=0.25.(3)物体从开始到移动4 m这段过程中,受拉力F和摩擦力F f的作用,合力为F-F f,根据动能定理有(F-F f)·x1=ΔE k故得F=ΔE kx1+F f=(2+2.5) N=4.5 N.答案:(1)2 m/s (2)0.25 (3)4.5 NWelcome To Download !!!欢迎您的下载,资料仅供参考!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动能 动能定理专题
1. (多选)下列关于运动的某个物体所受的合外力、合外力做功和动能变化的关系,正确的是 ( )
A. 如果物体所受的合外力为零,那么,合外力对物体做的功一定为零
B. 如果合外力对物体所做的功为零,则合外力一定为零
C. 如果合外力对物体所做的功不为零,则物体动能一定发生变化
D. 如果合外力对物体所做的功为零,则物体动能一定发生变化
2. (多选)一质量为1 kg 的质点静止于光滑水平面上,从t =0时起,第1 s 内受到2 N 的水平外力作用,第2 s 内受到同方向的1 N 的外力作用。

下列判断正确的是
A. 0~2 s 内外力的平均功率为94 W
B. 第2 s 内外力所做的功为54
J C. 第2 s 末外力的瞬时功率最大 D. 第1 s 内与第2 s 内质点动能增加量的比值为45
3. (多选)一质点开始时做匀速直线运动,从某时刻起受到一恒力作用。

此后,该质点的动能可能( )
A. 一直增大
B. 先逐渐减小至零,再逐渐增大
C. 先逐渐增大至某一最大值,再逐渐减小
D. 先逐渐减小至某一非零的最小值,再逐渐增大
4. [2014·济南高一检测]如图所示,木块m 沿固定的光滑斜面从静止开始下滑,当下降h 高度时,重力的瞬时功率是 ( )
A. mg 2gh
B. mg cos θ2gh
C. mg sin θgh
2
D. mg sin θ2gh 5. [2014·唐山高一检测]物体在合外力作用下做直线运动的v -t 图象如图所示。

下列表述正确的是 ( )
A. 在0~1 s 内,合外力做正功
B. 在0~2 s 内,合外力总是做负功
C. 在1 s ~2 s 内,合外力不做功
D. 在0~3 s 内,合外力总是做正功
6. 一人用力踢质量为1 kg 的皮球,使球由静止以10 m/s
的速度飞出,假定人踢球瞬间对球平均作用力是200 N ,球在
水平方向运动了20 m 停止,那么人对球所做的功为( )
A. 50 J
B. 500 J
C. 4000 J
D. 无法确定
7. (多选)[2014·徐州高一检测]甲、乙两个质量相同的物体,用大小相等的力F 分别拉它们在水平面上从静止开始运动相同的距离s 。

如图所示,甲在光滑面上,乙在粗糙面上,则下列关于力F 对甲、乙两物体做的功和甲、乙两物体获得的动能的说法中正确的是
A. 力F 对甲物体做功多
B. 力F 对甲、乙两个物体做的功一样多
C. 甲物体获得的动能比乙大
D. 甲、乙两个物体获得的动能相同
8. [2014·大纲全国卷]一物块沿倾角
为θ的斜坡向上滑动。

当物块的初速度为v 时,上升的最大高度为H ,如图所示;当物块的初速度为v
2
时,上升的最大高度记为h 。

重力加速度大小为g 。

物块与斜坡间的动摩擦因数和h 分别为( )
A .tan θ和H 2
B .(v 22gH -1)tan θ和H 2
C .tan θ和H 4
D .(v 22gH -1)tan θ和H 4 9.小球由地面竖直上抛,上升的最大高度为H ,设所受阻力大小恒定,地面为零势能面。

在上升至离地高度59
H 处,小球的动能和势能相等,则物体所受阻力的大小是( ) A. 12mg B. 13mg C. 14mg D. 15
mg 10.如图所示,质量为m 的物体静放在水平光滑平台上,系在物体上的绳子跨过光滑的定滑轮由地面以速度v 0向右匀速走动的人拉着,设人从地面上且从平台的边缘开始向右行至绳和水平方向成30°角处,在此过程中人所做的功为( )
A.mv 02/2
B.mv 02
C.2mv 02/3
D.3mv 02/8
10. 如图所示,ab 是水平轨道,bc 是位于竖直平面内的半圆形光滑轨道,半径R =0.225 m ,在b 点与水平面相切,滑块从水平轨道上距离b 点1.2 m 的a 点以初速度v 0=6 m/s 向右运动,经过水平轨道和半圆轨道后从最高点c 飞出,最后刚好落回轨道上的a 点,重力加
速度g 取10 m/s 2,求:
(1)滑块从c 点飞出时速度的大小;
(2)水平轨道与滑块间的动摩擦因数。

11.将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。

(取g=10m/s 2)
12. 如图所示,AB 、BC 、CD 三段轨道交接处均由很小的圆弧平滑连接,其中轨道AB 、CD 段是光滑的,水平轨道BC 的长度L =5 m, 轨道CD 足够长且倾角θ=37°, A 点离轨道BC 的高度H =4.3 m 。

质量为m 的小滑块自A 点由静止释放,已知小滑块与轨道BC 间的动摩
擦因数μ=0.5,重力加速度g 取10 m/s 2, sin37°=0.6,cos37°=0.8。

求:
(1)小滑块第1次到达C 点时的速度大小;
(2)小滑块第1次与第2次通过C 点的时间间隔;
(3)小滑块最终停止位置距B 点的距离。

132. 滑板运动已成为青少年所喜爱的一种体育运动,如图所示,某同学正在进行滑板运动。

图中AB 段路面是水平的,BCD 是一段半径R =20 m 的拱起的圆弧路面,圆弧的最高点C 比AB 段路面高出h =1.25 m 。

已知人与滑板的总质量为M =60 kg 。

该同学自A 点由静
止开始运动,在AB路段他单腿用力蹬地,到达B点前停止蹬地,然后冲上圆弧路段,结果到达C点时恰好对地面压力为零,不计滑板与各路段之间的摩擦力及经过B点时的能量损失(g取10 m/s2)。

求:(1)该同学到达C点时的速度;
(2)该同学在AB段所做的功。

14.有一质量为0.2kg的物块,从长为4m,倾角为30°光滑斜面顶端处由静止开始沿斜面滑下,斜面底端和水平面的接触处为很短的圆弧形,如图所示.物块和水平面间的滑动摩擦因数为0.2求:
(1)物块在水平面能滑行的距离;
(2)物块克服摩擦力所做的功.(g取10m/s2)。

相关文档
最新文档