陶瓷粉体

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米陶瓷
纳米陶瓷: 指显微结构中的物相(包括晶粒尺 寸、晶界宽度、第二相分布、气孔与尺 寸缺陷等)都在纳米量级的水平上的陶 瓷材料。
现有陶瓷材料的晶粒尺寸一般是在微 米级的水平。当其晶粒尺寸变小到纳米级 的范围时,晶粒的表面积和晶界的体积会 以相应的倍数增加,晶粒的表面能亦随之 剧增。 由于颗粒的线度减少而引起表面效应 和体积效应,使得材料的物理、化学性质 发生一系列变化,而且甚至出现许多特殊 的物理与化学性质。
纳米材料的制备: 纳米粉体的合成 素坯的成型 产品的烧结
粉体合成按合成条件分类: 1、气相法:气相法是直接利用气体,或 者通过各种手段将物质转变为气体,使之 在气体状态下发生物理变化或者化学反应, 最后在冷却过程中凝聚长大形成纳米粒子 的方法。 优点:制得的纳米陶瓷粉体的纯度较 高,团聚较少,烧结性能较好 缺点:产量低,设备昂贵
2、应用于提高陶瓷材料的超塑性 只有陶瓷粉体的粒度小到一定程度 才能在陶瓷材料中产生超塑性行为,其 原因是晶粒的纳米化有助于晶粒间产生 相对滑移,使材料具有塑性行为。
3、应用于制备电子(功能)陶瓷 纳米陶瓷粉体之所以广泛地用于 制备电子陶瓷,原因在于陶瓷粉体晶粒 的纳米化会造成晶界数量的大大增加, 当陶瓷中的晶粒尺寸减小一个数量级, 则晶粒的表面积及晶界的体积亦以相 应的倍数增加
3、固相法:指纳米粉体是由固相原 料制得,按其加工的工艺特点可分 为机械粉碎法和固相反应法两 类。 优点:所用设备较简单,方便操作 缺点:纯度较形状、
体积和强度的坯体的过程,素坯的相对 密 度和显微结构的均匀性对陶瓷在烧结过 程 中的致密化有极大的影响
纳米陶瓷的性能:
1、高强度: 纳米陶瓷材料在压制、烧结后,其强度比 普通陶瓷材料高出4-5倍,如在 100度下,纳米 TiO2陶瓷的显微硬度为13000KN/mm2,而普通 TiO2陶瓷的显微硬度低于2000KN/mm2。日本 的新原皓一制备了纳米陶瓷复合材料,并测定 了其相关的力学性能,研究表明纳米陶瓷复合 材料在韧性和强度上都比原来基体单相材料均 有较大程度的改善,对 Al2O3/SiC 系统来说, 纳米复合材料的强陶度比单相氧化铝的强度提 高了3-4倍。
素坯的成型方法:
传统方法:干压成型、离心注浆法、挤压 法、注射法 新型方法:凝胶注膜法、直接凝固注模成 型
烧结: 烧结 陶瓷材料致密化、晶体长大、晶界形成的 过程 纳米陶瓷烧结过程的关键: 如何在控制晶粒长大很少的前提下实现致 密化 烧结方法:(传统)无压烧结、热压烧结 仍广泛使用。(新)微波烧结、等离子体 烧结、高压烧结、爆炸烧结
4、烧结特性 纳米陶瓷材料的烧结温度比传统陶瓷材料 约低600℃,烧结过程也大大缩短。12nm的 TiO2粉体,不加任何烧结助剂,可以在低于 常规烧结温度 400-600℃下进行烧结,同时 陶瓷的致密化速率也迅速提高。通过对加 3%Y2O3的ZrO2纳米陶瓷粉体的致密化和晶 粒生长这 2个高温动力学过程研究表明,由 于晶粒尺寸小,分布窄,晶界与气孔的分离 区减小,烧结温度的降低使得烧结过程中不 易出现晶粒的异常生长。控制烧结的条件, 可获得晶粒分布均匀的纳米陶瓷块体。
4、应用于制备陶瓷工具刀 纳米技术的出现以及纳米粉体的工 业化生产,使得制备金属陶瓷刀成为现实。 在金属陶瓷中主要加入纳米氮化钛 以后可以细化晶粒,晶粒细小有利于提高 材料的强度、硬度,同时断裂韧性也得到 提高
5、应用于制备生物陶瓷 1)接近于生物惰性的陶瓷,如氧化铝 (Al2O3) 2)表面活性生物陶瓷,如致密羟基磷灰石 (10CaO-3P2O5H2O)。 3)可吸收生物陶瓷,如磷酸三钙(CaOP2O5) (TCP)
2、液相法 :液相法则是选择一种或多 种合适的可溶性金属盐类,按所制备的 材料组成计量配制成溶液,使各元素呈 郭或分子态,再选择一种合适的沉淀剂 或用蒸发、升华、水解等操作,使金属 离子均匀沉淀或结晶出来,最后将沉淀 或结晶脱水或者加热分解而得到纳米陶 瓷粉体 优点:设备较简单,粉体较纯,团聚少, 易工业化生产
6、应用于制备功能性陶瓷纤维 (1) 防紫外线纤维。 (2) 远红外线保温纤维。 (3) 抗菌防臭纤维
纳米陶瓷的应用: 1、应用于提高陶瓷材料的机械强度
结构陶瓷是以强度、刚度、韧性、耐 磨性、硬度、疲劳强度等力学性能为特 征的材料。 用纳米陶瓷粉体制备的陶瓷材料能有 效减少材料表面的缺陷,获得形态均一和 平滑的表面,能增强界面活性,提高材料单 晶的强度,还能有效降低应力集中,减少磨 损,特别是可以有效提高陶瓷材料的韧性。
2、韧性 传统的陶瓷由于其粒径较大,在外表 现出很强的脆性,但是纳米陶瓷由于其 晶粒尺寸小至纳米级,在受力时可产生 变形而表现出一定的韧性。如室温下的 纳米TiO2陶瓷表现出很高的韧性,压缩 至原长度的 1/4仍不破碎。1988年Lzaki 等人首先用纳米碳化硅补强氮化硅陶瓷 使氮化硅陶瓷力学性能显著改善。
3、超塑性 超塑性是指在拉伸试验中,在一定的 应变速率下,材料产生较大的拉伸形变。 如 Nieh 等人在四方二氧化锆中加入 Y2O3 的陶瓷材料中观察到超塑性达800%.上海 硅酸盐研究所研究发现,纳米 3Y-TZP陶 瓷(100nm左右)在经室温循环拉伸试验后, 其样品的断口区域发生了局部超塑性形变, 形变量高达380%,并从断口侧面观察到 了大量通常出现在金属断口的滑移线,这 些都确认了纳米陶瓷材料存在着拉伸超塑 性。
相关文档
最新文档