高中必修5数学期末测试卷及答案

合集下载

人教版高二数学必修5期末综合测试题及答案

人教版高二数学必修5期末综合测试题及答案

必修5综合测试题(2010.11)班级 姓名一、选择题1. 数列1,3,6,10,…的一个通项公式是( )A. a n =n 2-(n-1) B . a n =n 2-1 C. a n =2)1(+n n D. a n =2)1(-n n 2. 2b ac =是a,b,c 成等比数列的( )A 、充分非必要条件B 、必要非充分条件C 、充要条件D 、既不充分也非必要条件 3.已知等差数列{a n }的公差d ≠0,若a 5、a 9、a 15成等比数列,那么公比为 ( )A .B .C .D .4. 等差数列{a n }共有2n+1项,其中奇数项之和为4,偶数项之和为3,则n 的值是( )A.3B.5C.7D.9 5.△ABC 中,cos cos A aB b=,则△ABC 一定是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等边三角形6.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于( )A .30°B .30°或150°C .60°D .60°或120°7. 在△ABC 中,∠A =60°,a =6,b =4,满足条件的△ABC( )(A )无解 (B )有解 (C )有两解 (D )不能确定 8.若110a b<<,则下列不等式中,正确的不等式有 ( ) ①a b ab +< ②a b > ③a b < ④2b aa b+>A .1个B .2个C .3个D .4个 9.下列不等式中,对任意x ∈R 都成立的是 ( )A .2111x <+ B .x 2+1>2x C .lg(x 2+1)≥lg2x D .244xx +≤110. 下列不等式的解集是空集的是( )A.x 2-x+1>0B.-2x 2+x+1>0C.2x -x 2>5D.x 2+x>211.不等式组 (5)()0,03x y x y x -++≥⎧⎨≤≤⎩表示的平面区域是( )A 。

【浙教版】高中数学必修五期末试题含答案

【浙教版】高中数学必修五期末试题含答案

一、选择题1.若关于x 的不等式2220x x c -+<的解集为(),a b ,则14a b+的最小值为( ) A .9B .9-C .92D .92-2.若正数a ,b 满足111a b +=,则41611a b +--的最小值为( ) A .16B .25C .36D .493.已知变量,x y 满足约束条件5021010x y x y x +-≤⎧⎪-+≤⎨⎪-≥⎩,则目标函数=21z x y =+-的最大值为( ) A .6B .7C .8D .94.下列函数中,最小值为4的是( ) A .4y x x=+B .()4sin 0πsin y x x x=+<< C .e 4exxy -=+D.y =5.ABC 的内角,,A B C 的对边分别为,,a b c ,分别根据下列条件解三角形,其中有两解的是( )A .2,4,120a b A ===︒B .3,2,45a b A ===︒ C. 6,60b c C ===︒ D .4,3,30b c C ===︒6.在三棱锥A BCD -中,已知所有棱长均为2,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )AB .16C .13 D7.设ABC 的内角A ,B ,C 的对边分别是a ,b ,c .已知2cos 0b a C -=,()sin 3sin A A C =+,则2bca=( ) ABC .23D8.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c.已知3a =,b ∈,且223cos cos a b B b A =+,则cos A 的取值范围为( )A .[12,34] B .(12,34) C .[1324,34] D .(1324,34) 9.已知数列{}n a 中,13n n a S +=,则下列关于{}n a 的说法正确的是( ) A .一定为等差数列 B .一定为等比数列C .可能为等差数列,但不会为等比数列D .可能为等比数列,但不会为等差数列10.在等差数列{a n }中,1233,a a a ++=282930165a a a ++=,则此数列前30项和等于( ) A .810B .840C .870D .90011.数列{}n a 的前n 项和为()21n S n n =-(*n ∈N ),若173a a ka +=,则实数k 等于( ) A .2B .3C .269D .25912.已知数列{}n a 的前n 项和为n S ,且21n n S a =-,则66S a =( ) A .6332B .3116C .12364D .127128二、填空题13.若0x >,0y >,若()()144x y --=则x y +的最小值为_________.14.已知x ,y 满足条件1030,1x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩则32z x y =-+的最小值为___________.15.已知,x y 满足约束条件22022x y x y y +-≥⎧⎪+≤⎨⎪≤⎩,则目标函数z x y =-的最大值为_____.16.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.若要测量如图所示的蓝洞的口径A 、B 两点间的距离,现在珊瑚群岛上取两点C 、D ,测得45m CD =,135ADB ∠=,15BDC DCA ∠=∠=,120ACB ∠=,则A 、B 两点的距离为______m .17.在ABC 中,已知25,cos 4A B π==,若25BC =,D 为AB 的中点,则CD 的长为________.18.如图,在ABC 中,角C 的平分线交AB 于D 且CD AD =.若3AC =,2BC =,则AB =________19.已知递增等比数列{}n a 的前n 项和为n S ,22a =,37S =,数列(){}2log 1+n S 的前n 项和为n T ,则122020111T T T +++=________.20.已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,21nn n b a -=+,且1222n n n S T n ++=+-,则2n T =____. 三、解答题21.(1)若0x >,0y >,1x y +=,求证:114x y+≥. (2)已知实数0a >,0b >,且1ab =,若不等式()a bx y m xy+⋅+>(),对任意的正实数,x y 恒成立,求实数m 的取值范围. 22.已知0a >,0b >且3a b +=.(Ⅰ)求311()a b +的最大值及此时a ,b 的值; (Ⅱ)求2231a b a b +++的最小值及此时a ,b 的值.23.在ABC 中,已知边长是5,7,8BC AC AB ===. (1)求角B ;(2)求ABC 的面积; (3)求ABC 外接圆面积.24.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且()sin sin sin sin a A B b B c C -+=.(1)求角C ;(2)若3c =,6a b +=,求ABC 的面积.25.已知等差数列{}n a 满足()()()()*122312(1)n n a a a a a a n n n N +++++⋅⋅⋅++=+∈. (1)求数列{}n a 的通项公式; (2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .26.从①()*123(1)2n n n b b b b n +++++=∈N ,②{}n b 为等差数列且215227b b b =+=,,这两个条件中选择一个条件补充到问题中,并完成解答.问题:已知数列{}{},n n a b 满足2n bn a =,且___________. (1)证明:数列{}n a 为等比数列;(2)若m c 表示数列{}n b 在区间()0,m a 内的项数,求数列{}m c 前m 项的和m T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由韦达定理可得出2a b +=,2ab c =,分析出a 、b 均为正数,将代数式()12a b +与14a b +相乘,展开后利用基本不等式可求得14a b+的最小值. 【详解】 由于代数式14a b+有意义,则0ab ≠, 因为关于x 的不等式2220x x c -+<的解集为(),a b ,则a 、b 为方程2220x x c -+=的两根,由韦达定理可得22a b ab c +=⎧⎨=>⎩,所以,a 、b 均为正数, 所以,()141141419552222a b a b a b a b b a ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝. 当且仅当242,,33b a a b ===时,等号成立,因此,14a b +的最小值为92. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.A解析:A 【分析】 由111a b +=得:(1,1)1a b a b a =>>-,代入41611a b +--化简,利用基本不等式可求函数最小值. 【详解】 由111a b +=得:(1,1)1a b a b a =>>-,代入41611a b +--得到:416416416(1)16111111a a ab a a a +=+=+-≥=------ 当且仅当:4=16(1)1a a --即32a =时取等号.故选:A 【点睛】本题考查了均值不等式在求最值问题中的应用,考查了学生转化与划归,数学运算的能力,属于中档题.3.C解析:C 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案. 【详解】由约束条件5021010x yx yx+-≤⎧⎪-+≤⎨⎪-≥⎩作出可行域如图,联立150xx y=⎧⎨+-=⎩,解得A(1,4),化目标函数z=x+2y﹣1为y1 222x z=-++,由图可知,当直线y1222x z=-++过A时,z有最大值为8.故选C.【点睛】本题考查简单的线性规划,考查了目标函数的几何意义,考查数形结合的解题思想方法,是中档题.4.C解析:C【分析】逐个分析每个选项,结合基本不等式和函数性质即可判断.【详解】A项,4y xx=+没有最值,故A项错误;B项,令sint x=,则01t<≤,4y tt=+,由于函数在(]0,1上是减函数,所以min()(1)5f x f==,故B项错误;C项,44e4e e2e4e ex x x xx xy-=+=+≥⋅=,当且仅当4eexx=,即e2x=时,等号成立,所以函数e4ex xy-=+的最小值为4,故C项正确;D项,221221y xx=+≥+2211xx+=+即212x +=时,等号成立,所以函数2211y x x =+++的最小值为22,故D项错误. 故选:C . 【点睛】本题考查基本不等式的应用,属于基础题.5.D解析:D 【分析】运用正弦定理公式,可以求出另一边的对角正弦值,最后还要根据三角形的特点:“大角对大边”进行合理排除. 【详解】A. 2,4,120a b A ===︒,由,a b <A B ⇒<所以不存在这样的三角形.B. 3,2,45a b A ===︒,由2sin sin sin 3a b B A B =⇒=且,a b >所以只有一个角B C. 6,43,60b c C ===︒中,同理也只有一个三角形. D. 4,3,30b c C ===︒中2sin sin sin 3c b B C B =⇒=此时b c >,所以出现两个角符合题意,即存在两个三角形. 所以选择D 【点睛】在直接用正弦定理求另外一角中,求出sin θ后,记得一定要去判断是否会出现两个角. 6.A解析:A 【分析】取AD 的中点F ,连接CF 、EF ,于是得到异面直线CE 与BD 所成的角为CEF ∠,然后计算出CEF ∆的三条边长,并利用余弦定理计算出CEF ∠,即可得出答案. 【详解】如下图所示,取AD 的中点F ,连接CF 、EF ,由于E 、F 分别为AB 、AD 的中点,则//EF BD ,且112EF BD ==,所以,异面直线CE 与BD 所成的角为CEF ∠或其补角,三棱锥A BCD -是边长为2的正四面体,则ABC ∆、ACD ∆均是边长为2的等边三角形,E 为AB 的中点,则CE AB ⊥,且CE =CF =在CEF ∆中,由余弦定理得222cos 26CE EF CF CEF CE EF +-∠===⋅, 因此,异面直线CE 与BD所成角的余弦值为6,故选A . 【点睛】本题考查异面直线所成角的计算,利用平移法求异面直线所成角的基本步骤如下: (1)一作:平移直线,找出异面直线所成的角; (2)二证:对异面直线所成的角进行说明;(3)三计算:选择合适的三角形,并计算出三角形的边长,利用余弦定理计算所求的角.7.D解析:D 【分析】根据正弦定理把角化边,可得3a b =,进一步得到2cos 3C =,然后根据余弦定理,可得c =,最后可得结果.【详解】 在ABC ∆中,sin sin a b A B=,由()sin 3sin()3sin 3sin A A C B B π=+=-=,所以3a b =①,又2cos 0b a C -=②,由①②可知:2cos 3C =,又2222cos 23a b c C ab +-==③,把①代入③化简可得:c ,则23bc a b ==, 故选:D. 【点睛】本题考查正弦定理、余弦定理的综合应用,难点在于将c 用b 表示,当没有具体数据时,可以联想到使用一个参数表示另外两个参数,属于中档题.8.D解析:D 【分析】本题先求9c b=,再化简22222819cos 218b bc a b A bc +-+-==,接着求出22817545()42b b +∈,,最后求出cos A 的取值范围即可. 【详解】解:由题意有3a =,223cos cos a b B b A =+,由余弦定理得:2222222233232a c b b c a b b c bc+-+-=⋅+⋅⨯⨯,整理得:9bc = , 所以9c b=, 则22222819cos 218b bc ab A bc+-+-==.因为b ∈,所以2(1218)b ∈,,所以22817545()42b b +∈,, 则133cos (,)244A ∈. 故选:D. 【点睛】本题考查余弦定理,利用函数ky x x=+,(0k >)的单调性求范围,是中档题. 9.C解析:C 【分析】根据13n n a S +=得14n n S S +=,分类讨论当10S =和10S ≠两种情况分析得数列{}n a 可能为等差数列,但不会为等比数列. 【详解】解:13n n a S +=,13n n n S S S +∴=-, 14n n S S +∴=,若10S =,则数列{}n a 为等差数列;若10S ≠,则数列{}n S 为首项为1S ,公比为4的等比数列,114n n S S -∴=⋅,此时21134n n n n a S S S -==-⋅﹣(2n ≥),即数列从第二项起,后面的项组成等比数列.综上,数列{}n a 可能为等差数列,但不会为等比数列. 故选:C. 【点睛】本题考查等差数列、等比数列的判断,考查学生分析解决问题的能力,正确分类讨论是关键.10.B解析:B 【解析】数列前30项和可看作每三项一组,共十组的和,显然这十组依次成等差数列,因此和为10(3165)8402+= ,选B. 11.C解析:C 【分析】由已知结合递推公式可求n a ,然后结合等差数列的通项公式即可求解. 【详解】因为()21n S n n =-, 所以111a S ==,当2n ≥时,()()()12112343n n n a S S n n n n n -=-=----=-,111a S ==适合上式,故43n a n =-,因为173a a ka +=, ∴1259k +=, 解可得269k = 故选:C. 【点睛】本题主要考查了由数列前n 项和求数列的通项公式,考查来了运算能力,属于中档题.12.A解析:A 【解析】由题意得,111121,1,n n n a a a a S S -=-==- ,则21nn S =- ,即666332S a = ,故选A. 二、填空题13.【分析】先整理已知条件得则再利用基本不等式求解即可【详解】由得又得则当且仅当即时取等号故答案为:9【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项解析:【分析】先整理已知条件得411y x +=,则()41y x x y x y +⎛⎫+=+ ⎪⎝⎭,再利用基本不等式求解即可. 【详解】由()()144x y --=,得40xy x y --=, 又0x >,0y >, 得411y x+=, 则()44552941x y x y x y x y y x x y x y +⎛⎫+=+=++≥+⨯=⎪⎝⎭, 当且仅当4x yy x=即3,6x y ==时取等号. 故答案为:9. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14.【分析】作出不等式组所表示的可行域平移直线根据直线在轴上的截距最小找到使得目标函数取得最小值时的最优解代入计算即可【详解】作出不等式组所表示的可行域如下图所示:平移直线当直线经过可行域的顶点时直线在 解析:2-【分析】作出不等式组所表示的可行域,平移直线32z x y =-+,根据直线32z x y =-+在y 轴上的截距最小,找到使得目标函数32z x y =-+取得最小值时的最优解,代入计算即可. 【详解】作出不等式组10301x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域如下图所示:平移直线32z x y =-+,当直线32z x y =-+经过可行域的顶点()2,1A 时,直线32z x y =-+在y 轴上的截距最小,此时z 取得最小值,即min 32122z =-⨯+=-. 故答案为:2-. 【点睛】 思路点睛:求线性目标函数的最值问题,一般利用平移直线的方法,根据目标函数所对应的直线在坐标轴上的截距取得最值来判断目标函数在何处取得最优解.15.【分析】画出可行域和目标函数根据目标函数的几何意义得到答案【详解】如图所示:画出可行域和目标函数则则表示直线在轴的截距的相反数根据图像知当直线过点时即时有最大值为故答案为:【点睛】本题考查了线性规划 解析:2【分析】画出可行域和目标函数,根据目标函数的几何意义得到答案. 【详解】如图所示:画出可行域和目标函数,z x y =-,则y x z =-,则z 表示直线在y 轴的截距的相反数,根据图像知当直线过点()2,0时,即2x =,0y =时,z 有最大值为2. 故答案为:2.【点睛】本题考查了线性规划问题,画出图像是解题的关键.16.【分析】在中利用正弦定理计算出分析出为等腰三角形可求得然后在中利用余弦定理可求得【详解】在中在中由正弦定理可得在中由余弦定理可得因此故答案为:【点睛】方法点睛:在解三角形的问题中若已知条件同时含有边 解析:455【分析】在BCD △中,利用正弦定理计算出BD ,分析出ACD △为等腰三角形,可求得AD ,然后在ABD △中,利用余弦定理可求得AB . 【详解】在ACD △中,150ADC ADB BDC ∠=∠+∠=,15DCA ∠=,15DAC ∴∠=,()45AD CD m ∴==,在BCD △中,15BDC ∠=,135BCD ACB ACD ∠=∠+∠=,30CBD ∴∠=,由正弦定理可得sin sin CD BDCBD BCD=∠∠,)45212BD m ∴==,在ABD △中,()45AD m =,)BD m =,135ADB ∠=, 由余弦定理可得22222cos 455AB AD BD AD BD ADB =+-⋅∠=⨯,因此,)AB m =.故答案为: 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.17.【分析】由条件求得利用正弦定理求得在中利用余弦定理即可求得【详解】故由正弦定理知即解得在中所以故答案为:【点睛】关键点点睛:本题关键在于求出通过三角恒等变换求出利用余弦定理求解考查了运算能力属于中档题【分析】由条件求得sin B ,sin C ,利用正弦定理sin sin BC ABA C=求得AB , 在BCD △中,利用余弦定理即可求得CD . 【详解】cos (0,),B B π=∈sin 5B ∴==故333cos cos()cos cos sin sin444C B B Bπππ=-=+22⎛=-⨯+=⎝⎭⎝⎭⎝⎭,nsi C===∴,由正弦定理知sin sinBC ABA C=310,解得6AB=,在BCD△中,222222cos3235CD BC AD BC AD B=+-⋅=+-⨯⨯=所以CD=【点睛】关键点点睛:本题关键在于求出通过三角恒等变换求出cos B,利用余弦定理求解CD,考查了运算能力,属于中档题.18.【分析】不妨令易知然后在中利用正弦定理求出的值最后在中利用正弦定理可求出的值【详解】解:在中角的平分线交于且设则即整理得所以:结合得即显然是锐角所以再由得:解得故答案为:【点睛】本题考查正弦定理三角【分析】不妨令Aα∠=,易知ACD BCDα∠==,3Bπα∠=-,然后在ABC中,利用正弦定理,求出sin α,cosα的值,最后在ABC中,利用正弦定理,可求出AB 的值.【详解】解:在ABC中,角C的平分线交AB于D,且CD AD=.设Aα∠=,则ACD BCDα∠==,3Bπα∠=-,∴sin sinAC BCB A=∠∠,即32sin(3)sinπαα=-,整理得2sin33sinαα=,所以:2(sin cos2cos sin2)3sinααααα+=,结合sin0α≠得222(2cos12cos)3αα-+=,即258cosα=,显然α是锐角,所以cosαα=,∴sin22sin cosααα==.再由ABC 得:2sin sin 2ABαα=,=, 解得10AB .【点睛】本题考查正弦定理,三角恒等变换的知识方法在解题中的作用,属于中档题.19.【分析】首先根据等比数列的性质得到从而得到利用等差数列的求和公式得到再利用裂项法求的值即可【详解】因为所以即解得或又因为数列为递增数列所以所以因为所以故故答案为:【点睛】本题主要考查等差等比数列的求 解析:40402021【分析】首先根据等比数列的性质得到21nn S =-,从而得到()2log 1+=n S n ,利用等差数列的求和公式得到()12n n n T +=,再利用裂项法求122020111+++T T T 的值即可.【详解】因为22a =,37S =, 所以31232227S a a a q q=++=++=,即22520q q -+=, 解得12q =-或2q .又因为数列{}n a 为递增数列,所以2q.所以11a =,122112nn n S -==--.因为()22log 1log 2+==nn S n ,()1122…+=+++=n n n T n ,所以()1211211⎛⎫==- ⎪++⎝⎭n T n n n n . 故122020111111112122320202021⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦T T T 140402*********⎛⎫=-=⎪⎝⎭故答案为:40402021【点睛】本题主要考查等差、等比数列的求和公式,同时考查裂项法求和,属于中档题.20.【解析】所以 解析:22(1)4n n n +++-【解析】1112222n n n n n T S b a b a b a n +-=-+-++-=+-所以222(1)4n n n n n n T T S S T n n +=-++=++-三、解答题21.(1)见解析;(2)(,4)-∞. 【详解】试题分析:(1)第(1)问,利用常量代换和基本不等式证明. (2)第(2)问,利用基本不等式求解. 试题(1)证明:∵1,0,0x y x y +=>> ∴0,0y x x y >>∴11224x y x y y x x y x y x y+++=+=++≥+= 当且仅当12x y ==时,等号成立. (2)因为,,,a b x y 为正实数,所以()a b ay bx x y a b a b x y x y ⎛⎫+⋅+=+++≥++= ⎪⎝⎭4=,当且仅当a b =,ay bxx y=,即a b =,x y =时等号成立,故只要4m <即可,所以实数m 的取值范围是(),4-∞22.(Ⅰ)32a b ==时,11a b ⎫+⎪⎭取得最大值为2-;(Ⅱ)6a =-3b =-+32+; 【分析】(Ⅰ)利用“乘1法”与基本不等式的性质,对数函数的单调性即可得出; (Ⅱ)先对已知式子进行化简,然后结合基本不等式即可求解. 【详解】 解:(Ⅰ)1133224233333333333a b a b b a b a a b a b a b a ba b +++=+=+=+++=, 当且仅当33b aa b =且3a b +=,即32a b ==时取等号,321123log a b ⎛⎫∴+=- ⎪⎝⎭即最大值为2-, (Ⅱ)3a b +=,∴223313131(1)121111a b a b a b a b a b a b a b ++=++-+=+-++=++++++3113(1)3(2()()332314444(1)4(1)a b b a b a b ab b ++=+++=+++=++++当且仅当3(1)44(1)b aa b +=+且3a b +=,即6a =-3b =-+时取等号, 【点睛】本题考查了基本不等式的性质、方程的解法,考查了推理能力与计算能力,属于中档题. 23.(1)3π;(2)3)493π. 【分析】(1)由余弦定理,求得1cos 2B =,即可求得角B 的大小; (2)由三角形的面积公式,即可求得ABCS 的面积;(3)由正弦定理,求得2sin AC R B ==,进而取得外接圆面积. 【详解】(1)由题意,在ABC 中,5BC =,7AC =,8AB =,由余弦定理有2222225871cos 22582BC AB AC B BC AB +-+-===⋅⨯⨯,因为(0,)B π∈,所以3B π=.(2)由三角形的面积公式,可得ABCS=11sin 85222AB BC B ⋅=⨯⨯⨯= (3)由正弦定理,可得72sin sin 3AC R B π===,所以外接圆面积为2493ππ⨯=. 24.(1)3π;(2 【分析】(1)由正弦定理化角为边,然后由余弦定理可得C 角;(2)利用余弦定理和已知6a b +=可求得,a b ,从而得三角形面积. 【详解】(1)由正弦定理,得sin 2a A R =,sin 2b B R =,sin 2c C R=,又()sin sin sin sin a A B b B c C -+=,所以222a b c ab +-=.由余弦定理,得222cos 22a b c abC ab ab+-==, 故1cos 2C =. 又()0,C π∈,所以3C π=.(2)由余弦定理,得229a b ab +-=.联立方程组,得2296a b aba b ⎧=+-⎨+=⎩,化简,得96ab a b =⎧⎨+=⎩,解得33a b =⎧⎨=⎩, 所以ABC的面积1sin 2S ab C ==. 25.(1)21n a n =-;(2)2332n nn S +=-. 【分析】(1)利用已知条件列出关于首项与公差的方程组,解方程组即得数列{}n a 的通项公式;(2)先由(1)得到n n na 2n 122-=,再利用错位相减法求和即可. 【详解】(1)设等差数列{}n a 的公差为d ,由已知得()()121223412a a a a a a +=⎧⎨+++=⎩,即122348a a a a +=⎧⎨+=⎩,所以()()()1111428a a d a d a d ⎧++=⎪⎨+++=⎪⎩,解得112a d =⎧⎨=⎩,所以21n a n =-. (2)由(1)得n n n a 2n 122-=,所以1212321223212n n n n n S ---=++⋯++,① 231123212222213n n n n n S +--=++⋯⋯++,② -①②得:21111112132322222222n n n n n n S ++-+⎛⎫=+⨯+⋯+-=- ⎪⎝⎭, 所以2332n nn S +=-. 【点睛】易错点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解. 26.条件选择见解析;(1)证明见解析;(2)122m m T m +=--.【分析】(1)选择①,可得(1)(1),22n n n n n b n +-=-=从而可得2,nn a =进而利用等比数列的定义可得结论;选择②,列出首项与公差的方程可得n b n =,从而可得2nn a =,进而利用等比数列的定义可得结论;(2)若选择①,则2nn a =,可得21mm c =-,利用分组求和法,结合等比数列的求和公式可得答案;选择②,则2nn a =,利用分组求和法,结合等比数列的求和公式可得答案; 【详解】(1)选择①,因为()*123(1)2n n n b b b b n N +++++=∈, 当1n =时,11b =, 当2n ≥时,(1)(1),122n n n n n b n n +-=-==时也成立,故n b n =. 所以1122,22n nn n n n a a a ++===, 所以数列{}n a 是以2为首项,2为公比的等比数列. 若选择②,设数列{}n b 公差为d ,由题意1112247b d b b d +=⎧⎨++=⎩,,得111b d =⎧⎨=⎩,,得n b n =,即2log n a n =,得2nn a =,所以11222n n n n a a ++==. 所以数列{}n a 是以2为首项,2为公比的等比数列. (2)若选择条件①,则2nn a =,所以1c 对应的区间为(0,2),则121c c =;对应的区间为(0,4),则23c =; 3c 对应的区间为(0,8),则37c =;m c 对应的区间为()0,2m ,则21m m c =-;所以()1212122121212212m m m mT m m +-=-+-+-=-=---.若选择条件②,则2nn a =,所以1c 对应的区间为(0,2),则121c c =;对应的区间为(0,4),则23c =; 3c 对应的区间为(0,8),则37c =;m c 对应的区间为()0,2m ,则21m m c =-;所以()1212122121212212m m m m T m m +-=-+-+-=-=---.【点睛】方法点睛:数列求和的常见方法:1、公式法;2、错位相减法;3、裂项相消法;4、分组求和法;5、倒序相加法.。

人教版高中数学必修5期末测试题及其详细答案94588

人教版高中数学必修5期末测试题及其详细答案94588

人教版高中数学必修5期末测试题及其详细答案A. 99 D. 101D. 310. —个等比数列{a n }的前n 项和为48,前2n 项和为60,则前3n 项和为()、填空题(本题共4小题,每小题5分,共20 分)•选择题 (本大题共10小题,每小题5分,共50分)1•由 a ! 1 , d 3确定的等差数列a n ,当a n298时,序号n 等于() 2. ABC 中, 若 a 1,c 2,B60,贝U ABC 的面积为( A. 3B4C. 5D.626.不等式ax bx c 0(a0)的解集为R ,那么()A. a 0,B. a 0,C. a 0, 0D. a 0, 0x y 17.设x, y 满足约束条件yx ,则z 3x y 的最大值为()y2A . 5 B. 3 C. 7 D. -88.在 ABC 中,a 80,b 100, A 45 ,则此三角形解的情况是()A. 一解B 两解C.一解或两解D.无解9.在△ ABC 中,如果 sinA:sinB:sinC 2:3:4,那么 cosC 等于()C. 96 E. 100 3.已知xA . 50,函数y -xB . 4x 的最小值是(C .D . 64..在数列{a .}中,6=1, a n 1 a n2 ,则a51的值为(A . 995.在等比数列中, B . 4912a 1D . 101C. 102丄,a n 丄,贝U 项数n 为(2322A.- 32 B.-- 3C. -11 D.-4A 、63B 108C 、75D 、8311•在ABC 中,B 45°,c 2血,b 亜,那么A=;312. ____________________________________________________________________ 已知等差数列a n的前三项为a 1,a 1,2a 3,贝吐匕数列的通项公式为 __________________ .2x 113. 不等式1的解集是3x 1 --------214. 已知数列{a n}的前n项和S n n n,那么它的通项公式为a n= ___________三、解答题(本大题共6个小题,共80分;解答应写出文字说明、证明过程或演算步骤)“ 515(12分)已知等比数列a n中,a1 a3 10, a4 a6匚,求其第4项及前5项和.4216(14分)(1)求不等式的解集:x 4x 5 0(2)求函数的定义域:y17 (14分)在厶ABC中,BC= a,AC= b, a, b 是方程X 2 3x 2 0的两个根,且2C0SA B) 1求:(1)角C的度数;(2)AB的长度2 I 118(12分)若不等式ax 5x 2 0的解集是x2 X 2,(1)求a的值;2 2⑵求不等式ax 5x a 1 0的解集.19 (14分)如图,货轮在海上以35n mile/h的速度沿方位角(从正北方向顺时针转到目标方向线的水平角)为152的方向航行.为了确定船位,在B点处观测到灯塔A的方位角为122 •半小时后,货轮到达C点处,观测到灯塔A的方位角为32 •求此时货轮与灯塔之间的距离.A20 ( 14分)某公司今年年初用25万元引进一种新的设备,投入设备后每年收益为21万元该公司第n年需要付出设备的维修和工人工资等费用a.的信息如下图。

【浙教版】高中数学必修五期末试题带答案

【浙教版】高中数学必修五期末试题带答案

一、选择题1.已知实数x ,y 满足221x y x m -≤-≤⎧⎨≤≤⎩且2z y x =-的最小值为-6,则实数m 的值为( ). A .2B .3C .4D .8 2.已知点(x ,y )在直线x +2y =4上移动,则24x y +的最小值是( ) A .42B .32C .6D .83.设,,a b c ∈R ,且a b >,则( ) A .ac bc >B .11a b< C .22a b > D .33a b >4.在锐角ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若22212a b c =+,则tan A 的取值范围是( ) A .)3,⎡+∞⎣B .()3,+∞C .()2,+∞D .[)2,+∞5.若ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b =2,c =5,△ABC 的面积S =5cos A ,则a =( ) A .1 B . 5 C . 13D . 176.在ABC ∆中,角A B C ,,的对边分别是a b c ,,,若sin 3cos 0b A a B -=,且三边a b c ,,成等比数列,则2a cb+的值为( ) A .2 B .22C .1D .2 7.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,302CD m =,并在点C 测得塔顶A 的仰角为30,则塔高AB 为( )A. B.C .60mD .20m8.设实数,x y 满足2025020x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,则112z x y =+的取值范围是( ) A .514z ≤≤B .1524z ≤≤ C .112z ≤≤ D .312z ≤≤9.已知数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,若1234480k k k k a a a a +++++++=,则k =( )A .3B .4C .5D .610.对于数列{}n a ,定义11222n nn a a a Y n-++⋅⋅⋅+=为数列{}n a 的“美值”,现在已知某数列{}n a 的“美值”12n n Y +=,记数列{}n a tn -的前n 项和为n S ,若6n S S ≤对任意的*n N ∈恒成立,则实数t 的取值范围是( )A .712,35⎡⎤⎢⎥⎣⎦B .712,35⎛⎫⎪⎝⎭C .167,73⎡⎤⎢⎥⎣⎦D .167,73⎛⎫⎪⎝⎭11.已知等差数列{}n a 的前n 项和为n S ,55a =,836S =,则数列11{}n n a a +的前n 项和为( ) A .11n + B .1n n + C .1n n- D .11n n -+ 12.等差数列{}n a 的前n 项和为n S ,1000S >,1010S <,则满足10n n a a +<的n =( ) A .50B .51C .100D .101二、填空题13.已知正数a ,b 满足30a b ab +-+=,则ab 的最小值是________.14.若实数m 和n 满足242329231m m n n m n ⨯-⋅+⨯=++,则23m n +的取值范围为______.15.设x ,y 满足约束条件2020260x y x y -≥⎧⎪+≥⎨⎪+-≤⎩,则z x y =+的最大值是________.16.在ABC 中,角,,A B C 分别对应边,,a b c ,ABC 的面积为S,若cos cos a B b A=+,cos sin 7tan cos sin 12A A A A π+=-,3c =,则a =__________. 17.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos 2c B a b =+,且ABC的面积为223a c +的最小值为__________.18.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4A π=,22212b c a -=,则tan B =________.19.给定*1log (2)()n n a n n N +=+∈,则使乘积12k a a a 为整数的()*k k ∈N 称为“和谐数”,则在区间内[1,2020]的所有“和谐数”的和为_______.20.已知函数()f x 在()1,∞-+上单调,且函数()2y f x =-的图象关于1x =对称,若数列{}n a 是公差不为0的等差数列,且()()5051f a f a =,则1100a a +等于________.三、解答题21.已知函数()245y x x x R =-+∈.(1)求关于x 的不等式2y <的解集;(2)若不等式3y m >-对任意x R ∈恒成立,求实数m 的取值范围. 22.已知a R ∈,若关于x 的不等式2(1)460a x x 的解集是(3,1)-.(1)求a 的值;(2)若关于x 的不等式230ax bx ++≥在[0,2]上恒成立,求实数b 的取值范围. 23.在ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状. 24.已知,,A B C 为ABC 的三内角,且其对边分别为,,a b c ,若()cos 2cos 0a C c b A ++=.(1)求A ;(2)若a =4b c +=,求ABC 的面积.25.已知{}n a 是公差不为0的等差数列,若1313,,a a a 是等比数列{}n b 的连续三项. (1)求数列{}n b 的公比;(2)若11a =,数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 和为n S 且99200n S >,求n 的最小值. 26.已知等差数列{}n a 的公差为()0d d ≠,前n 项和为n S ,且满足___________(从①()101051S a =+﹔②1a ,2a ,6a 成等比数列;③535S =,这三个条件中任选两个补充到题干中的横线位置,并根据你的选择解决问题). (1)求n a ﹔ (2)设11n n n b a a +=,数列{}n b 的前n 项和为n T ,求证:13n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】作出不等式组221x y x m-≤-≤⎧⎨≤≤⎩对应的区域,利用数形结合平移直线即可得到结论 .【详解】由题意可作图:当2z y x =-经过点P 时,z 取最小值6, 此时P 符合:2x my x =⎧⎨=-⎩,即(,2)P m m -代入2z y x =-得:m -2-2m =-6,解得m =4 故选:C 【点睛】简单线性规划问题的解题步骤: (1)画出可行域;(2)作出目标函数所表示的某条直线(通常选作过原点的直线),移动此直线并观察此直线经过可行域的哪个(些)点时,函数有最大(小)值; (3)求(写)出最优解和相应的最大(小)值; (4)下结论.2.D解析:D 【分析】运用基本不等式22422422x y x y x y ++≥【详解】因为20,40x y >>,所以24228x y +≥==,(当且仅当24x y =时取“=”). 故答案为D. 【点睛】利用两个数的基本不等式求函数的最值必须具备三个条件: ①各项都是正数; ②和(或积)为定值; ③等号取得的条件.3.D解析:D 【分析】结合不等式的性质、特殊值判断出错误选项,利用差比较法证明正确选项成立. 【详解】A 选项,当0c ≤ 时,由a b >不能得到ac bc >,故不正确;B 选项,当0a >,0b <(如1a =,2b =-)时,由a b >不能得到11a b<,故不正确; C 选项,由()()22a b a b a b -=+-及a b >可知当0a b +<时(如2a =-,3b =-或2a =,3b =-)均不能得到22a b >,故不正确;D 选项,()()()233222324b a b a b a ab b a b a b ⎡⎤⎛⎫-=-++=-⋅++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,因为,a b 不同时为0,所以223024b a b ⎛⎫++> ⎪⎝⎭,所以可由a b >知330a b ->,即33a b >,故正确.故选:D 【点睛】本小题主要考查不等式的性质以及差比较法,属于中档题.4.B解析:B 【分析】根据题中条件,由三角形的余弦定理、正弦定理和两角和的正弦公式,化简可得tan 3tan A B =,再由两角和的正切公式,以及锐角三角形的定义,可得tan 0A >,tan 0C >,解不等式可得所求范围.【详解】 因为22212a b c =+,由余弦定理可得,2222cos a b c bc A =+-, 则222212cos 2b c b c bc A +=+-,可得4cos c b A =,由正弦定理可得:sin 4sin cos C B A =,可得sin()sin cos sin cos 4sin cos A B A B B A B A +=+=, 化为3sin cos sin cos B A A B =, 在锐角ABC 中,cos 0A ≠,cos 0B ≠, 则tan 3tan A B =,又21tan tan tan tan 3tan tan()11tan tan 1tan 3A AA B C A B A B A ++=-+=-=---,由tan 0A >,tan 0C >,可得211tan 03A -<,解得tan A > 故选:B . 【点睛】本题考查三角形的正弦定理和余弦定理的运用,以及两角和的三角函数公式,考查方程思想和化简运算能力,属于中档题.5.A解析:A 【分析】由三角形的面积公式和已知条件得出sin A =12cos A ,再由同角三角函数间的关系求得cos A,运用余弦定理可求得边a . 【详解】因为b =2,cScos A =12bc sin AA ,所以sin A =12cos A .所以sin 2A +cos 2A =14cos 2A +cos 2A =54cos 2A =1.又0A π<<,所以sin >0,A 所以cos >0A ,故解得cos A. 所以a 2=b 2+c 2-2bc cos A =4+5-=9-8=1,所以a =1. 故选:A. 【点睛】本题综合考查运用三角形面积公式和余弦定理求解三角形,属于中档题.6.C解析:C 【分析】先利用正弦定理边角互化思想得出3B π=,再利余弦定理1cos 2B =以及条件2b ac =得出a c =可得出ABC ∆是等边三角形,于此可得出2a cb+的值. 【详解】sin cos 0b A B =,由正弦定理边角互化的思想得sin sin cos 0A B A B =,sin 0A >,sin 0B B ∴=,tan B ∴=,则3B π=.a 、b 、c 成等比数列,则2b ac =,由余弦定理得222221cos 222a cb ac ac B ac ac +-+-===,化简得2220a ac c -+=,a c ∴=,则ABC ∆是等边三角形,12a cb+∴=,故选C . 【点睛】本题考查正弦定理边角互化思想的应用,考查余弦定理的应用,解题时应根据等式结构以及已知元素类型合理选择正弦定理与余弦定理求解,考查计算能力,属于中等题.7.D解析:D 【分析】由正弦定理确定BC 的长,再tan30AB BC 求出AB .【详解】15BCD ∠=︒,45BDC ∠=︒120CBD由正弦定理得:sin120sin 45BC302sin 45203BC3tan 3020320AB BC故选D 【点睛】本题是正弦定理的实际应用,关键是利用正弦定理求出BC ,属于基础题.8.B解析:B 【分析】画出不等式组对应的平面区域,由,x y 都取最大值得出z 的最小值,当z 取最大值时,点(),x y 落在直线250x y +-=上,再结合基本不等式得出z 的最大值.【详解】该不等式组对应的平面区域如下图所示由可行域易知,当4,2x y ==时,112z x y =+取得最小值111442+= 当点(),x y 落在直线250x y +-=上时,112z x y=+取得最大值 此时25x y +=,2225224x y xy +⎛⎫≤=⎪⎝⎭ 112542225x y z x y xy xy +∴=+==≥ 当且仅当2x y =,即55,24x y ==时取等号,显然55,24⎛⎫⎪⎝⎭在可行域内 即1524z ≤≤ 故选:B 【点睛】关键点睛:平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.9.B解析:B 【分析】由已知,取1m =,则112n n n a a a a +=⋅=,得出数列{}n a 是以2为首项,2为公差的等比数列,根据等比数列的通项公式建立方程得可求得解. 【详解】因为数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,所以取1m =,则112n n n a a a a +=⋅=,所以数列{}n a 是以2为首项,2为公差的等比数列,所以2nn a =,又1234480k k k k a a a a +++++++=,即12344220282k k k k +++++++=,即040238k ⨯=,解得4k =, 故选:B . 【点睛】关键点点睛:解决本题的问题的关键在于令1m =,得出数列{}n a 是以2为首项,2为公差的等比数列,利用等比数列的通项公式建立方程得解.10.C解析:C 【分析】由1112222n n n n a a a Y n-+++⋅⋅⋅+==,可得1112222n n n n a a a -+=⋅+⨯++⋅⋅进而求得22n a n =+,所以()22n a tn t n -=-+可得{}n a tn -是等差数列,由6n S S ≤可得660a t -≥,770a t -≤,即可求解【详解】由1112222n n n n a a a Y n-+++⋅⋅⋅+==可得1112222n n n n a a a -+=⋅+⨯++⋅⋅,当2n ≥时()21212221n n n a a a n --+⋅=⋅-+⋅+,又因为1112222n n n a a n a -+=++⋅⋅⋅+,两式相减可得:()()11122221n n n n n n n n a -+=--=+,所以22n a n =+, 所以()22n a tn t n -=-+, 可得数列{}n a tn -是等差数列, 由6n S S ≤对任意的*n N ∈恒成立, 可得:660a t -≥,770a t -≤, 即()2620t -⨯+≥且()2720t -⨯+≤, 解得:16773t ≤≤,所以实数t 的取值范围是167,73⎡⎤⎢⎥⎣⎦, 故选:C 【点睛】关键点点睛:本题解题的关键点是由已知条件得出1112222n n n n a a a -+=⋅+⨯++⋅⋅再写一式可求得n a ,等差数列前n 项和最大等价于0n a ≥,10n a +≤,11.B解析:B 【解析】设等差数列{}n a 的首项为1a ,公差为d . ∵55a =,836S = ∴114582836a d a d +=⎧⎨+=⎩∴111a d =⎧⎨=⎩∴n a n =,则11111(1)1+==-++n n a a n n n n ∴数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为1111111111122334111nn n n n -+-+-+⋅⋅⋅+-=-=+++ 故选B.点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k =; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++ ()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.12.A解析:A 【分析】由题意和等差数列求和公式与性质可得50510a a +>;510a <,进而可得500a >,据此分析可得答案. 【详解】根据题意,等差数列{}n a 中,1000S >,1010S <, 则有110010*********()10050()50()02a a S a a a a +⨯==+=+>,则有50510a a +>;又由110110151()10110102a a S a +⨯==<,则有510a <;则有500a >,若10n n a a +<,必有50n =; 故选:A . 【点睛】本题考查等差数列的前n 项和公式的应用,涉及等差数列的性质,属于基础题.二、填空题13.9【分析】由已知结合基本不等式即可直接求解【详解】为正实数当且仅当时取等号即解得:或(舍去)当且仅当时取等号即的最小值是9故答案为:9【点睛】关键点点睛:本题主要考查了利用基本不等式求最值解题的关键解析:9 【分析】由已知结合基本不等式a b +≥ 【详解】30a b ab +-+=,3a b ab ∴+=-,a b为正实数,a b ∴+≥a b =时取等号,3ab ∴-≥30ab ∴-≥,即)310≥3≥1≤-(舍去),9ab ∴≥,当且仅当3a b ==时取等号,即ab 的最小值是9.故答案为:9 【点睛】关键点点睛:本题主要考查了利用基本不等式求最值,解题的关键是利用基本不等式将已算能力,属于基础题.14.【分析】设方程化简为得到再结合基本不等式得到根据一元二次不等式不等式的解法即可求解【详解】设因为可得所以解得或又由当且仅当时即时等号成立整理得解得所以即则的取值范围为故答案为:【点睛】方法点睛:设利解析:(1,2]. 【分析】设23m n t =+,方程化简为221523m n t t --=⨯⨯,得到2210t t -->,再结合基本不等式,得到23440t t --≤,根据一元二次不等式不等式的解法,即可求解. 【详解】 设23m n t =+,因为242329231m m n n m n ⨯-⋅+⨯=++,可得221523m n t t --=⨯⨯, 所以2210t t -->,解得1t >或12t <-, 又由222235215235()24m n mnt t t +--=⨯⨯≤⨯=, 当且仅当23m n =时,即0m n ==时等号成立, 整理得23440t t --≤,解得223t -≤≤,所以12t <≤,即则23m n +的取值范围为(1,2]. 故答案为:(1,2]. 【点睛】方法点睛:设23m n t =+,利用换元法把方程化简为221523m n t t --=⨯⨯,根据指数函数的性质和基本不等式,得出不等式2210t t -->和23440t t --≤是解答的关键.15.8【分析】根据xy 满足的约束条件画出可行域然后平移直线当直线在y 轴上截距最大时目标函数取得最大值【详解】依题意xy 满足约束条件可行域如图所示阴影部分:易得点平移直线(图中虚线)当直线经过C 点时在y 轴解析:8 【分析】根据x ,y 满足的约束条件2020260x y x y -≥⎧⎪+≥⎨⎪+-≤⎩画出可行域,然后平移直线0x y +=,当直线在y 轴上截距最大时,目标函数取得最大值. 【详解】依题意x ,y 满足约束条件2020260x y x y -≥⎧⎪+≥⎨⎪+-≤⎩可行域如图所示阴影部分:易得点()2,2A -、()2,2B 、()10,2C -,平移直线0x y +=(图中虚线),当直线0x y +=经过C 点时,在y 轴上的截距最大, 目标函数z x y =+有最大值,1028max z =-=, 所以目标函数z x y =+的最大值是8. 故答案为:8. 【点睛】方法点睛:本题考查线性规划求最值,考查数形结合思想. 线性规划问题考查的方式是由二元一次不等式组给出线性约束条件确定可行域,求可行域的面积、或确定形状;或者是在线性约束条件下求目标函数的取值范围、最值或取得最值时的点的坐标的确定以及由此衍生出来的其他相关问题,比如直线的斜率、平面距离的最值等问题.16.【分析】先根据三角形面积公式以及正弦定理化简条件得再利用弦化切以及两角和正切公式化简条件得即得最后根据余弦定理解得【详解】由可知根据正弦定理知又得因为所以故因此又故故答案为:【点睛】本题考查三角形面【分析】cos cos a B b A =+得sin b A =再利用弦化切以及两角和正切公式化简条件cos sin 7tan cos sin 12A A A A π+=-得3A π=,即得4b =,最后根据余弦定理解得a =. 【详解】由cos cos 3S a B b A =+可知1sin cos cos 32ab C a B b A =+,根据正弦定理知1sin sin sin cos sin cos sin 32A b C AB B AC ⋅=+=,又0,sin 0C C π<<>,得sin b A =cos sin 1tan cos sin 1tan A A A A A A ++=--7tan tan 412A ππ⎛⎫=+= ⎪⎝⎭,因为()0,A π∈,所以7412A ππ+=,故3A π=,因此4b =,又2222cos 13a b c bc A =+-=,故a .【点睛】本题考查三角形面积公式、正弦定理、余弦定理,考查综合分析求解能力,属中档题.17.80【分析】由已知结合正弦定理以及三角形内角和性质有根据面积公式有再应用余弦定理可得结合目标式有利用基本不等式即可求最小值;【详解】由及正弦定理可得∴即又故故因为的面积为所以即故由余弦定理可得∴当且解析:80 【分析】由已知结合正弦定理,以及三角形内角和性质有23C π=,根据面积公式有16ab =,再应用余弦定理可得22216c a b =++,结合目标式有22223164a c a b +++=,利用基本不等式即可求最小值; 【详解】由2cos 2c B a b =+及正弦定理可得2sin cos 2sin sin C B A B =+,∴2sin cos 2sin()sin C B B C B =++,即2sin cos sin 0B C B +=,又sin 0B >, 故1cos 2C =-,故23C π=. 因为ABC的面积为1sin 2ab C =12ab =16ab =, 由余弦定理可得222222212cos 216162c a b ab C a b a b ⎛⎫=+-=+-⨯⨯-=++ ⎪⎝⎭, ∴2222233a c a a b +=++221641641680a b ab +=++≥+=,当且仅当2a b ==时等号成立,故223a c +的最小值为80. 故答案为:80. 【点睛】本题考查了正余弦定理,应用了三角形内角和性质、三角形面积公式以及基本不等式求最值;18.3【分析】由题意结合余弦定理得进而可得再由余弦定理即可求得利用平方关系求得进而求得【详解】由余弦定理可得即又所以所以所以所以所以所以故答案为:3【点睛】本题考查了余弦定理的综合应用考查了同角三角函数解析:3 【分析】由题意结合余弦定理得c =,进而可得a =,再由余弦定理即可求得cos B =sin B =,进而求得sin tan 3cos B B B ==. 【详解】4A π=,∴由余弦定理可得2222cos a b c bc A =+-即222b a c -=-,又22212b a c -=,所以2212c c =-,所以c =, 222222145299a b c b b b =-=-=,所以a =,所以22222258cos 210b b ba cb B ac +-+-===,所以sin B==,所以sintan3cosBBB==,故答案为:3.【点睛】本题考查了余弦定理的综合应用,考查了同角三角函数关系式,考查了运算求解能力与转化化归思想,属于中档题.19.2026【分析】根据换底公式把代入并且化简转化为为整数即可求得区间内的所有和谐数的和【详解】由换底公式:得为整数∴分别可取最大值则最大可取10故所有和谐数的和为故答案为:2026【点睛】考查数列的综解析:2026【分析】根据换底公式把1log(2)n na n+=+代入12ka a a⋯并且化简,转化为lg(2)lg2k+为整数,即22nk+=,n*∈N,可求得区间[1,2020]内的所有“和谐数”的和.【详解】由换底公式:logloglogbabNNa=,得()231241log3log4log5log2kka a a k+=⋯+122lg3lg4lg5lg(2)lg(2)log(2)lg2lg3lg4lg(1)lg2==++⋯⋅⋅⋅⋅=++kk ka a a kk为整数,∴22nk+=,n*∈N,k分别可取23422,22,22---,最大值222020n-≤,则n最大可取10,故所有“和谐数”的和为()923104122221818202612-++⋅⋅⋅+-=-=-.故答案为:2026.【点睛】考查数列的综合应用及对数的换底公式,把12ka a a⋯化简并且转化为对数的运算,体现了转化的思想,属中档题.20.【分析】根据的图象的对称性利用平移变换的知识得到的图象的对称性结合函数的单调性根据得到的值最后利用等差数列的性质求得所求答案【详解】由函数的图象关于对称则函数的图象关于对称又在上单调且所以因为数列是解析:2-【分析】根据()2y f x =-的图象的对称性,利用平移变换的知识得到()f x 的图象的对称性,结合函数的单调性,根据()()5051f a f a =得到5051a a +的值,最后利用等差数列的性质求得所求答案. 【详解】由函数()2y f x =-的图象关于1x =对称,则函数()f x 的图象关于1x =-对称, 又()f x 在()1,∞-+上单调,且()()5051f a f a =,所以5051a a 2+=-,因为数列{}n a 是公差不为0的等差数列,所以11005051a a 2a a +=+=-, 故答案为:2-. 【点睛】本题考查函数的对称性和单调性,等差数列的性质,涉及函数的图象的平移变换,属中档题,小综合题,难度一般.三、解答题21.(1){|13}x x <<;(2)()24.,【分析】(1)利用一元二次不等式的解法求解即得;(2)根据不等式恒成立的意义,确定求函数245y x x =-+的最小值,并利用配方法求得最小值,将问题转化为解关于m 的简单的绝对值不等式,根据绝对值的意义即可求解. 【详解】(1)由2y <得2430x x -+<,即13x <<, 所以2y <的解集为{|13}x x <<;(2)不等式3y m >-对任意x R ∈恒成立3min m y ⇔-<,由()224521y x x x =-+=-+得y 的最小值为1,所以31m -<恒成立,即131m -<-<, 所以24m <<,所以实数m 的取值范围为()2,4. 【点睛】本题考查不含参数的一元二次不等式的求解;考查不等式在实数集上恒成立问题,涉及二次函数的最值和简单绝对值不等式的求解,属基础题,难度一般. 22.(1)3;(2)6b ≥- 【分析】(1)将1x =代入方程2(1)460a x x ,即可求出a 的值;(2)由(1)可知不等式2330x bx ++≥在[0,2]上恒成立,利用分离参数即可求出b 的取值范围.【详解】(1)1和3-是2(1)460a x x 的两根,将1x =代入方程解得3a =;(2)由(1)可知不等式2330x bx ++≥在[0,2]上恒成立,即233bx x -≤+在[0,2]上恒成立, 当0x =时,03≤恒成立,此时a R ∈;当2(]0,x ∈时,不等式可转化为13()b x x-≤+在[0,2]上恒成立,因为13()36x x +≥⨯=,当且仅当1x x =,即1x =时,等号成立, 所以6b -≤,所以6b ≥-, 综上,实数b 的取值范围为6b ≥-. 【点睛】本题主要考查三个二次式关系的应用,不等式恒成立问题的求法,属于中档题. 23.ABC 为等腰三角形或直角三角形 【分析】设三角形外接圆半径为R ,根据a 2tan B =b 2tan A ,利用商数关系和正弦定理,变形为sin A cos A =sin B cos B ,再利用二倍角公式转化sin2A =sin2B ,得到角的关系判断. 【详解】设三角形外接圆半径为R , 因为a 2tan B =b 2tan A ,所以22sin sin cos cos a B b AB A=, 所以22224sin sin 4sin sin cos cos R A B R B AB A=,所以sin A cos A =sin B cos B , 所以sin2A =sin2B , 则2A =2B 或2A +2B =π, 所以A =B 或A +B =2π. 所以ABC 为等腰三角形或直角三角形.24.(1)23π;(2 【分析】(1)由正弦定理,三角函数恒等变换的应用化简已知等式可得sin 2sin cos 0B B A +=,由于sin 0B ≠,可求cos A 的值,结合()0,A π∈,可求A 的值.(2)由已知利用余弦定理可求bc 的值,进而根据三角形的面积公式即可得解. 【详解】解:(1)∵()cos 2cos 0a C c b A ++=,∴由正弦定理可得:()sin cos sin 2sin cos 0A C C B A ++=,整理得sin cos sin cos 2sin cos 0A C C A B A ++=, 即:()sin 2sin cos 0A C B A ++=, 所以sin 2sin cos 0B B A +=, ∵sin 0B ≠,∴1cos 2A =-, ∵()0,A π∈,∴23A π=. (2)由a =4b c +=,由余弦定理得2222cos a b c bc A =+-, ∴2212()22cos 3b c bc bc π=+--,即有1216bc =-, ∴4bc =, ∴ABC的面积为112sin 4sin 223S bc A π==⨯⨯= 【点评】本题主要考查了正弦定理,三角函数恒等变换的应用,余弦定理,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.解题的过程中注意以下公式的灵活应用:22()22cos a b c bc bc A =+--、()sin sin A C B +=、()cos cos A C B +=-.25.(1)5;(2)50. 【分析】(1)利用基本量代换,求出12d a =,直接求出公比; (2)裂项相消法求出n S ,解不等式即可. 【详解】(1)设等差数列{}n a 的公差为d ,由1313,,a a a 是等比数列{}n b 的连续三项,得23113a a a =⋅,即()()2111212a d a a d +=⋅+,化简得2148d a d =.10,2d d a ≠∴=.设数列{}n b 的公比的公比为q ,则3111111245a a d a a q a a a ++====. (2)若11a =,则1111112,21,(21)(21)22121n n n d a n a a n n n n +⎛⎫==-==- ⎪-+-+⎝⎭, 111112133557(21)(21)n S n n ⎫⎛=++++⎪ ⨯⨯⨯-⨯+⎝⎭111111111111233557212122121nn n n n ⎛⎫⎛⎫=-+-+-++-=-= ⎪ ⎪-+++⎝⎭⎝⎭. 由99200n S >,得9999,212002n n n >∴>+,故n 的最小值为50.【点睛】(1)等差(比)数列问题解决的基本方法:基本量代换;(2)数列求和的方法:公式法、裂项相消法、错位相减法、倒序相加法. 26.条件选择见解析;(1)32n a n =-;(2)证明见解析. 【分析】(1)由①可得11a =,由②可得13d a =,由③可得3127a a d =+=,选择①②、①③、②③条件组合,均得11a =,3d =,即得解析式; (2)可得11133231n b n n ⎛⎫=- ⎪-+⎝⎭,由裂项相消法求出n T 即可证明.【详解】(1)①由()101051S a =+,得()11109105912a d a d ⨯+=++,即11a =; ②由1a ,2a ,6a 成等比数列,得2216a a a =,222111125a a d d a a d ++=+,即13d a =;③由535S =,得()15355352a a a +==,即3127a a d =+=; 选择①②、①③、②③条件组合,均得11a =,3d =, 故()13132n a n n =+-=-. (2)()()111111323133231n n nb a a n n n n +⎛⎫===- ⎪-+-+⎝⎭∴123n n T b b b b =++++11111111134477103231n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111331n ⎛⎫=- ⎪+⎝⎭, ∵n *∈N ,∴1031n >+,∴13n T <.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和.。

【浙教版】高中数学必修五期末试卷带答案

【浙教版】高中数学必修五期末试卷带答案

一、选择题1.若实数x ,y 满足1,,1,x y y x y +≤⎧⎪≤⎨⎪≥-⎩则2z x y =+的最大值为( )A .3-B .0C .1D .32.若实数x ,y 满足约束条件21010x y x y -+≥⎧⎨--≤⎩,则2z x y =-的最大值是( )A .1-B .2C .3D .43.不等式ax 2+bx+2>0的解集是,则a+b 的值是( ) A .10B .﹣10C .14D .﹣144.如果0a b >>,0t >,设b M a =,b tN a t+=+,那么( ) A .M N < B .M N >C .MND .M 与N 的大小关系和t 有关5.ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos sin sin B A C =,则ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形6.已知锐角ABC 的内角,,A B C 的对边分别为,,a b c .若()2c a a b =+,则2cos cos()AC A -的取值范围是( )A .22⎛⎫ ⎪ ⎪⎝⎭B .132⎛ ⎝⎭C .2322⎛ ⎝⎭D .1,12⎛⎫⎪⎝⎭7.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若角A 、B 、C 成等差数列,且2sin 2sin a A c C +334ac b =+,则ABC 的面积的最大值为( ) A .33B .43C .23D 38.已知锐角ABC ,角A ,B ,C 所对的边分别为a ,b ,c ,若22sin sin sin sin B A A C -=⋅,3c =,则a 的取值范围是( )A .2,23⎛⎫⎪⎝⎭B .()1,2C .()1,3D .3,32⎛⎫⎪⎝⎭9.已知数列{}n a 中,11n n a a n +-=+,11a =,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则满足143n S n n ⎛⎫≥- ⎪⎝⎭)的n 的最大值为( )A .3B .4C .5D .610.已知数列{}n a 的前n 项和为n S ,且0n a >,n *∈N ,若数列{}n a 和{}n S 都是等差数列,则下列说法不正确的是( ) A .{}n n a S +是等差数列B .{}n n a S ⋅是等差数列C .{}2n a 是等比数列D .{}2n S 是等比数列11.在等差数列{a n }中,1233,a a a ++=282930165a a a ++=,则此数列前30项和等于( ) A .810B .840C .870D .90012.记数列{}n a 前n 项和为n S ,若1,n a ,n S 成等差数列,且数列()()11211n n n a a a +++⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭的前n 项和n T 对任意的*n N ∈都有210n T λ-+≥恒成立,则λ的取值范围为( ) A .1,6⎛⎤-∞ ⎥⎝⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .5,6D .(],1-∞二、填空题13.若x ,y ,z 满足约束条件4802400x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则22(4)z x y =++的最小值为__________. 14.已知不等式24xa x ≤+对任意的[]1,3x ∈恒成立,则实数a 的范围为_______. 15.如图,点A 是半径为1的半圆O 的直径延长线上的一点,3OA =,B 为半圆上任意一点,以AB 为一边作等边ABC ,则四边形OACB 的面积的最大值为___________.16.在△ABC 中,若2,23,30,a b A ===︒则角B 等于______ . 17.给出以下四个结论:①函数()211x f x x -=+的对称中心是()1,2-;②若关于x 的方程1x kx-+=在()0,1x∈没有实数根,则k的取值范围是2k≥;③在ABC中,若cos cosb A a B=则ABC为等腰三角形;④若将函数()sin23πf x x⎛⎫=-⎪⎝⎭的图象向右平移()0ϕϕ>个单位后变为偶函数,则ϕ的最小值是12π.其中正确的结论是________. 18.已知a>0,b>0,则p=2ba﹣a与q=b﹣2ab的大小关系是_____.19.已知等比数列{}n a中,21a=,58a=-,则{}n a的前6项和为__________.20.在数列{}n a中,121a a==,32a=,且数列1nnaa+⎧⎫⎨⎬⎩⎭为等比数列,则na=__________.三、解答题21.(1)若关于x的不等式m2x2﹣2mx>﹣x2﹣x﹣1恒成立,求实数m的取值范围.(2)解关于x的不等式(x﹣1)(ax﹣1)>0,其中a<1.22.已知2()(1)1f x ax a x=+--(1)若()0f x>的解集为11,2⎛⎫--⎪⎝⎭,求关于x的不等式31axx+≤-的解集;(2)解关于x的不等式()0f x≥.23.如图,AB是底部不可到达的一座建筑物,A为建筑物的最高点,经过测量得到在点D 处的仰角为45︒,C处的仰角为75︒,且CD=20,测角仪的高为1.2,求出建筑物的高度.24.如图,在ABC中,AB AC⊥,2AB AC==,点E,F是线段BC(含端点)上的动点,且点E在点F的右下方,在运动的过程中,始终保持π4EAF∠=不变,设EABθ∠=弧度.(1)写出θ的取值范围,并分别求线段AE,AF关于θ的函数关系式;(2)求EAF△面积S的最小值.25.设数列{}n a 的前n 项和为n S ,点(,)()nS n n N n*∈均在函数32y x =-的图像上. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设13n n n b a a +=,求数列{}n b 的前n 项和n T . 26.已知数列{}n a 是首项12a =,且满足()212log log 1n n a a n N *+-=∈的正项数列,设()23log 2n n b a n N *=-∈.(1)求证:数列{}n a 是等比数列; (2)求数列{}n n a b 的前n 项和n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】画出约束条件所表示的平面区域,根据目标函数的几何意义,结合图形,即可求出结果. 【详解】由x ,y 满足条件1,,1,x y y x y +≤⎧⎪≤⎨⎪≥-⎩作出可行域,如图.则()()1,1,2,1B C ---,由1x y y x+=⎧⎨=⎩得11,22A ⎛⎫⎪⎝⎭ 目标函数2z x y =+,化为2y x z =-+则z 表示直线2y x z =-+在y 轴上的截距.由图可知,当直线2y x z =-+过点C 时,z 有最大值. 所以z 的最大值为:2213z =⨯-= 故选:D【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.2.D解析:D 【分析】画出不等式组对应的平面区域,利用z 的几何意义,利用数形结合即可得到结论. 【详解】画出约束条件210110x y x x y -+≥⎧⎪≥⎨⎪--≤⎩或210110x y x x y -+≥⎧⎪<⎨⎪+-≥⎩所表示的平面区域,如图所示,.目标函数2z x y =-,可化为2y x z =-, 由图象可知,当直线2y x z =-经过点A 时, 使得目标函数2z x y =-取得最大值,又由10210x y x y --=⎧⎨-+=⎩,解得(3,2)A ,所以目标函数的最大值为2324z =⨯-=,故选:D.【点睛】思路点睛:本题主要考查线性规划中,利用可行域求目标函数的最值,属于中等题. 求目标函数最值的一般步骤是“一画、二移、三求”: (1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.3.D解析:D 【解析】试题分析:不等式ax 2+bx+2>0的解集是,说明方程ax 2+bx+2=0的解为,把解代入方程求出a 、b 即可. 解:不等式ax 2+bx+2>0的解集是即方程ax 2+bx+2=0的解为故则a=﹣12,b=﹣2.考点:一元二次方程的根的分布与系数的关系.4.A解析:A 【分析】对M 与N 作差,根据差值的正负即可比较大小. 【详解】()()()()()b a t a b t t b a b b t M N a a t a a t a a t +-+-+-=-==+++,因为0a b >>,所以0b a -<, 又0t >,所以0a t +>,所以()()0t b a a a t -<+,即0M N -<,所以M N <.故选:A 【点睛】本题主要考查作差法比较大小,考查学生的化简分析能力,属于常规题型.5.B解析:B 【分析】利用正弦定理、余弦定理将角化为边,即可得到,a b 之间的关系,从而确定出三角形的形状. 【详解】因为2cos sin sin B A C =,所以22222a c b a c ac+-⋅⋅=,所以22a b =,所以a b =,所以三角形是等腰三角形, 故选:B. 【点睛】本题考查利用正、余弦定理判断三角形的形状,难度一般.本例还可以直接利用()sin sin C A B =+,通过三角函数值找到角之间的联系从而判断三角形形状. 6.C解析:C 【分析】由余弦定理和正弦定理进行边化角,结合诱导公式和两角和与差的正弦公式可得2C A =,由锐角三角形得出A 角范围,再代入化简求值式,利用余弦函数性质可得结论. 【详解】∵2()c a a b =+,∴22222cos c a ab a b ab C =+=+-,∴(12cos )b a C =+, 由正弦定理得sin sin (12cos )B A C =+,∴sin()sin (12cos )sin cos cos sin A C A C A C A C +=+=+,整理得sin sin cos cos sin sin()A C A C A C A =-=-,∵,A C 是三角形的内角,∴A C A =-,即2C A =,又三角形是锐角三角形,∴2222A A A πππ⎧<⎪⎪⎨⎪--<⎪⎩,解得64A ππ<<,由2C A =得22cos cos cos cos()cos 2A A A C A A ⎛==∈ -⎝⎭. 故选:C . 【点睛】本题考查正弦定理和余弦定理的边角转换,考查两角与差的正弦公式,余弦函数的性质,考查学生分析问题解决问题的能力,属于中档题.7.B解析:B 【分析】由等差数列性质得3B π=,应用正弦定理边角转换、余弦定理由已知可求得三角形外接圆半径R ,从而边,a c 可用角表示,最后用角表示出三角形面积,结合三角函数恒等变换、正弦函数性质得出最大值. 【详解】∵角A 、B 、C 成等差数列,∴2B A C =+,又A B C π++=,∴3B π=,23C A π=-,2(0,)3A π∈,由正弦定理2sin sin sin a b c R A B C===得sin ,sin ,sin 222a b cA B C R R R ===,∵2sin 2sin a A c C +=,∴2sin 2sin 2sin 4a A c Cb B ac +-=,即222a b c R R R +-=2222cos a c b ac BR R +-==,∴R =又由正弦定理得2sin ,33a R A A c C ===,∴112sin sin sin()2233ABC S ac B A C A A ππ==⨯=-△21(cos sin )cos 2sin )3223A A A A A A =+=+21cos 2)3A A =+-)363A π=-+, ∵2(0,)3A π∈,∴3A π=时,sin(2)16A π-=,即ABCS 取得最大值+=. 故选:B . 【点睛】本题以我们熟知的三角形为背景,探究的是三角形面积的最大值,结合等差数列的性质,利用正弦定理进行边角转换,考查目的是让考生发现、揭示问题本质的关联点,从而有效的激发考生学习兴趣,本题同时考查了考生的逻辑推理能力、直观想象能力.本题属于中档题.8.D解析:D 【分析】由正弦定理可得三边的关系,再由余弦定理可得312cos a B=+,结合三角形为锐角三角形可得a 的取值范围. 【详解】∵22sin sin sin sin B A A C -=⋅, ∴由正弦定理可得22b a ac -=,∵由余弦定理2222cos b a c ac B =+-,可得2222cos a c ac B a ac +-=+, 又3c =,∴可得312cos a B=+,∵锐角ABC 中,若B 是最大角,则B 必须大于 3π,所以,3B ππ⎛⎫∈ ⎪⎝⎭, 所以1cos 02B ⎛⎫∈ ⎪⎝⎭,,所以3,32a ⎛⎫∈ ⎪⎝⎭, 故选:D. 【点睛】本题主要考查三角形的正余弦定理的应用,及锐角三角形的性质,属于中档题.9.C解析:C 【分析】利用累加法可求得数列{}n a 的通项公式,利用裂项求和法可求得n S ,然后解不等式143n S n n ⎛⎫≥- ⎪⎝⎭即可得解.【详解】因为2132123n n a a a a a a n--=⎧⎪-=⎪⎨⋅⋅⎪⎪-=⎩,所以123n a n a =+-++,()11232n n n a n +∴=++++=,()1211211n a n n n n ⎛⎫∴==- ⎪++⎝⎭,所以1111122122311n nS n n n ⎛⎫=⨯-+-++-=⎪++⎝⎭, 由21413n n S n n n ⎛⎫=≥- ⎪+⎝⎭,化简得2311200n n --≤,解得453n -≤≤, *n ∈N ,所以,满足143n S n n ⎛⎫≥-⎪⎝⎭的n 的最大值为5. 故选:C. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.10.D解析:D 【分析】由题意,判断出数列{}n a 是公差为0的等差数列,然后分别利用等差数列的定义与等比数列的定义判断每个选项即可. 【详解】因为数列{}n a 和{}n S 都是等差数列,1n n n a S S -=-,所以可判断n a 为定值,所以数列{}n a 是公差为0的等差数列,即10n n a a --=.对A ,()()1111----++-=-+-=n n n n n n n n n a S a S S S a a a ,所以数列{}n n a S +是等差数列;对B ,1121----=⋅⋅⋅⋅-=n n n n n n n n n a S a S a S a S a ,所以数列{}n n a S ⋅是等差数列;对C ,222211-==n n n n a a a a ,所以数列{}2n a 是等比数列;对D ,设n a a =,则222,==n n S na S n a ,则221222222(1)(1)-==--n n n a n n a n S S ,所以数列{}2nS 不是等比数列. 故选:D 【点睛】解答本题的关键在于判断出数列{}n a 是公差为0的等差数列,然后结合等差数列的定义,等比数列的定义列式判断是否为等差或者等比数列.11.B解析:B 【解析】数列前30项和可看作每三项一组,共十组的和,显然这十组依次成等差数列,因此和为10(3165)8402+= ,选B. 12.C解析:C 【分析】直接利用递推关系式的应用求出数列的通项公式,进一步利用裂项相消法的应用和分离参数法及函数的恒成立问题的应用求出参数的取值范围. 【详解】数列{}n a 前n 项和为n S ,若1,n a ,n S 成等差数列, 所以21n n a S =+①,当1n =时,11a =.当2n ≥时,1121n n a S --=+②,①﹣②得122n n n a a a --=,整理得12nn a a -=(常数), 所以数列{}n a 是以1为首项,2为公比的等比数列. 所以12n na .所以()()()()111122111121212121n n n n n n n n a a a +++++==-------,则1111111111337212121n n n n T ++=-+-++-=----. 由于对任意的*n N ∈都有210n T λ-+≥恒成立, 所以12n T λ+≥恒成立. 即()min 12n T λ+≥,当1n =时,()1min 5113n T T +=+=, 所以523λ≥,解得56λ≥, 所以5,6λ⎛⎤∈-∞ ⎥⎝⎦.故选:C【点睛】本题主要考查了由递推关系式求数列的通项公式,考查了裂项求和以及恒成立问题,属于中档题.二、填空题13.【分析】画出满足条件的平面区域结合的几何意义以及点到直线的距离求出的最小值即可【详解】画出满足约束条件的平面区域如图所示:而的几何意义表示平面区域内的点到点的距离显然到直线的距离是最小值由得最小值是 【分析】画出满足条件的平面区域,结合z =的几何意义以及点到直线的距离求出z的最小值即可. 【详解】画出x ,y ,z 满足约束条件4802400x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,的平面区域,如图所示:而22(4)z x y =++的几何意义表示平面区域内的点到点()40-,的距离, 显然()40-,到直线240x y -+=的距离是最小值, 由844541d -+==+4545 【点睛】本题主要考查了简单的线性规划问题,考查数形结合思想,属于中档题.14.【分析】利用基本不等式求得在的最大值即可求得实数的范围【详解】因为则当且仅当时即等号成立即在的最大值为又由不等式对任意的恒成立所以即实数的范围为故答案为:【点睛】本题主要考查不等式的恒成立问题其中解解析:1[,)4+∞.【分析】利用基本不等式求得24xx +在[]1,3x ∈的最大值,即可求得实数a 的范围. 【详解】因为[]1,3x ∈,则21144442x x x x x x=≤=++⨯,当且仅当4x x =时,即2x =等号成立, 即24xx +在[]1,3x ∈的最大值为14,又由不等式24x a x ≤+对任意的[]1,3x ∈恒成立,所以14a ≥ 即实数a 的范围为1[,)4+∞.故答案为:1[,)4+∞.【点睛】本题主要考查不等式的恒成立问题,其中解答中熟练应用基本不等式求得24xx +的最大值是解答的关键,着重考查推理与运算能力.15.【分析】设表示出的面积及的面积进而表示出四边形的面积并化简所得面积的解析式为正弦函数形式再根据三角函数的有界性进行求解【详解】四边形的面积的面积的面积设则的面积的面积四边形的面积故当即时四边形的面积解析:【分析】设AOB θ∠=,表示出ABC 的面积及OAB 的面积,进而表示出四边形OACB 的面积,并化简所得面积的解析式为正弦函数形式,再根据三角函数的有界性进行求解. 【详解】四边形OACB 的面积OAB =△的面积ABC +△的面积,设AOB θ∠=,2222cos 31214AB OA OB OA OB θθθ∴=+-⋅⋅=+-⨯=-则ABC 的面积213sin 60cos 22AB AC AB θ=⋅⋅︒==OAB 的面积11sin 122OA OB θθθ=⋅⋅=⨯=,四边形OACB 的面积3cos 2θθ=+13(sin )60)2θθθ==-︒,故当6090θ-︒=︒,即150θ=︒时,四边形OACB =故答案为: 【点睛】方法点睛:应用余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60︒︒︒等特殊角的三角函数值,以便在解题中直接应用.16.或【解析】∵∴由正弦定理得:∵∴或故答案为或解析:060或0120 【解析】∵2,30a b A ===︒∴由正弦定理sin sin a b A B=得:1sin 2sin 22b A B a === ∵b a > ∴60B =︒或120︒ 故答案为060或012017.①③④【分析】将化成后可得图象的对称中心故可判断①的正误;参变分离后考虑在上的值域后可判断②的正误;利用正弦定理和三角变换可判断③的正误;利用整体法求出的值从而可判断④的正误【详解】对于①因为故的图解析:①③④ 【分析】将()f x 化成()321f x x -=++后可得图象的对称中心,故可判断①的正误;参变分离后考虑1y x x=-在()0,1上的值域后可判断②的正误;利用正弦定理和三角变换可判断③的正误;利用整体法求出ϕ的值,从而可判断④的正误. 【详解】对于①,因为()321f x x -=++,故()f x 的图象可以看出3y x-=向左平移1个单位,向上平移2个单位,故()f x 的图象的对称中心为()1,2-,故①正确. 对于②,考虑方程10x k x -+=在()0,1上有实数根即1k x x=-在()0,1上有实数根, 故(),0k ∈-∞, 故关于x 的方程10x k x-+=在()0,1x ∈没有实数根时,则[)0,k ∈+∞,故②错误. 对于③,由正弦定理得到sin cos sin cos =B A A B ,故()sin 0B A -=, 因为(),B A ππ-∈-,故0B A -=即B A =,故③正确. 对于④,平移后得到的图象对应的解析式为sin 223πy x φ⎛⎫=-- ⎪⎝⎭, 因为该函数为偶函数,故202,32ππφk πk Z ⨯--=+∈,故5,212k ππφk Z =--∈,因为0ϕ>,故min 12πϕ=,故④正确. 故答案为:①③④. 【点睛】本题考查分式函数的图象性质、函数值域的求法、正弦定理和三角变换以及正弦型函数的图象特征,注意在三角形中,可利用正弦定理把边角的混合关系转化为边的关系或角的关系,而正弦型函数图象的性质,可利用整体法结合正弦函数的性质来讨论,本题属于中档题.18.【分析】由已知结合作差法进行变形后即可比较大小【详解】因为与所以时取等号所以故答案为:【点睛】本题主要考查了不等式大小的比较作差法的应用是求解问题的关键 解析:p q【分析】由已知结合作差法进行变形后即可比较大小. 【详解】因为0a >,0b >,2b p a a =-与2a qb b=-,所以2222222()()()()0b a b a b a b a b a b a p q a b ab ba-----+-=-==,b a =时取等号, 所以p q . 故答案为:p q . 【点睛】本题主要考查了不等式大小的比较,作差法的应用是求解问题的关键.19.【解析】因为已知等比数列中所以则故答案为【方法点睛】本题主要考查等比数列的通项公式属于中档题等比数列基本量的运算是等比数列的一类基本题型数列中的五个基本量一般可以知二求三通过列方程组所求问题可以迎刃解析:212【解析】因为已知等比数列{}n a 中,所以21a =,58a =-,3528,2a q q a ==-=-,则()()()66121611211212,21122a q a a S q q⎡⎤----⎣⎦==-===---,故答案为212. 【方法点睛】本题主要考查等比数列的通项公式,属于中档题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.20.【分析】由等比数列通项公式求出然后由累乘法求得【详解】∵为等比数列由已知∴∴时也适合此式∴故答案为:【点睛】本题考查等比数列的通项公式考查累乘法求数列通项公式如果已知则用累加法求通项公式如果已知则用 解析:()()2122n n --【分析】由等比数列通项公式求出1n na a +,然后由累乘法求得n a .【详解】∵1n n a a +⎧⎫⎨⎬⎩⎭为等比数列,由已知211a a =,322a a =,32212a aq a a ==, ∴112n n na a -+=,∴2n ≥时, (2)(1)2212(2)3242112311122222n n n n n n n a aa aa a a a a a ---+++--=⨯⨯⨯⨯⨯=⨯⨯⨯⨯==,1n =也适合此式, ∴(2)(1)22n n na --=.故答案为:(2)(1)22n n --.【点睛】本题考查等比数列的通项公式,考查累乘法求数列通项公式.如果已知1()n n a a f n --=,则用累加法求通项公式,如果已知1()nn a f n a -=,则用连乘法求通项公式. 三、解答题21.(1) m 34->;(2)见解析 【分析】(1)利用△<0列不等式求出实数m 的取值范围;(2)讨论0<a <1、a =0和a <0,分别求出对应不等式的解集. 【详解】(1)不等式m 2x 2﹣2mx >﹣x 2﹣x ﹣1化为(m 2+1)x 2﹣(2m ﹣1)x +1>0, 由m 2+1>0知,△=(2m ﹣1)2﹣4(m 2+1)<0, 化简得﹣4m ﹣3<0,解得m 34->,所以实数m 的取值范围是m 34->; (2)0<a <1时,不等式(x ﹣1)(ax ﹣1)>0化为(x ﹣1)(x 1a -)>0,且1a>1, 解得x <1或x 1a>, 所以不等式的解集为{x |x <1或x 1a>}; a =0时,不等式(x ﹣1)(ax ﹣1)>0化为﹣(x ﹣1)>0, 解得x <1,所以不等式的解集为{x |x <1};a <0时,不等式(x ﹣1)(ax ﹣1)>0化为(x ﹣1)(x 1a -)<0,且1a<1, 解得1a<x <1,所以不等式的解集为{x |1a<x <1}.综上知,0<a <1时,不等式的解集为{x |x <1或x 1a>}; a =0时,不等式的解集为{x |x <1}; a <0时,不等式的解集为{x |1a<x <1}. 【点睛】本题考查了不等式恒成立问题和含有字母系数的不等式解法与应用问题,是基础题. 22.(1)3(,1),2⎡⎫-∞⋃+∞⎪⎢⎣⎭;(2)当0a =时,解集为(,1]-∞-,当0a >时,解集为1(,1],a ⎡⎫-∞-⋃+∞⎪⎢⎣⎭,当1a <-时,解集为11,a ⎡⎤-⎢⎥⎣⎦,当1a =-时,解集为{}1-,当10a -<<时,解集为1,1a ⎡⎤-⎢⎥⎣⎦.【分析】(1)根据不等式的解与方程的根的关系,利用韦达定理列出方程组,求得a 的值,代入求得不等式的解集.(2)对参数a 分情况讨论,分别求得不等式的解集. 【详解】解:(1)由题意得11121112a a a -⎧--=-⎪⎪⎨-⎛⎫⎪-⨯-=⎪⎪⎝⎭⎩,解得2a =-,故原不等式等价于2301x x -+-,即(23)(1)010x x x --⎧⎨-≠⎩所以不等式的解集为3(,1),2⎡⎫-∞⋃+∞⎪⎢⎣⎭.(2)当0a =时,原不等式可化为10x +≤,解集为(,1]-∞-; 当0a >时,原不等式可化为1(1)0x x a ⎛⎫-+ ⎪⎝⎭,解集为1(,1],a ⎡⎫-∞-⋃+∞⎪⎢⎣⎭; 当0a <时,原不等式可化为1(1)0x x a ⎛⎫-+ ⎪⎝⎭, 当11a >-,即1a <-时,解集为11,a ⎡⎤-⎢⎥⎣⎦; 当11a=-,即1a =-时,解集为{}1-; 当11a <-,即10a -<<时,解集为1,1a ⎡⎤-⎢⎥⎣⎦. 【点睛】本题主要考查一元二次不等式的解法及分式不等式的解法,意在考查学生的分类讨论思想及数学运算的学科素养,属中档题.23.1) 1.2+【分析】在ADC 中,求得754530DAC ∠=-=,根据正弦定理可得AC =AEC 中,由sin AE AC α=⋅,即可求解.【详解】在ADC 中,根据题意可得754530DAC ∠=-=,由正弦定理可得20sin sin 4sin sin6CD DAC DACππ⨯===在直角AEC中,可得sin sin75202sin(3045)AE ACα=⋅==+cos45cos30sin 45)10(31)=+=所以建筑的高为1) 1.2AB =+.24.(1)π04θ≤≤,sin 4AEθ=+ ⎪⎝⎭cos AF θ=;(2))21.【分析】(1)依据直角三角形直接写出θ的范围,然后根据正弦定理可得AE ,AF 关于θ的函数关系式.(2)根据(1)的条件可得EAF S △,并结合辅助角公式,简单计算以及判断即可. 【详解】(1)由题意知π04θ≤≤,πππsin sin sin 444AE AB AE θθ=⇒=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭ππcos sin sin 42AF AC AF θθ=⇒=⎛⎫- ⎪⎝⎭. (2)1π2cos 22sin 422EAF S θθ=⋅⋅⋅=⎛⎫+ ⎪⎝⎭⎝⎭△)122111cos 2πsin 221224θθθ==≥=+⎛⎫+++ ⎪⎝⎭.当且仅当π8θ=时,取“=”. 25.(Ⅰ)*65()n a n n N =-∈;(Ⅱ)11(1)261n T n =-+. 【分析】 (Ⅰ)根据点(,)()nS n n N n*∈均在函数32y x =-的图像上,得到232n S n n =-,再利用数列通项与前n 项和的关系求解. (Ⅱ)由(I )得111()26561n b n n =--+,再利用裂项相消法求解. 【详解】 (Ⅰ)因为点(,)()nS n n N n*∈均在函数32y x =-的图像上, 所以3 2.nS n n=-即232n S n n =-. 当n ≥2时,221(32)3(1)2(1)65n n n a S S n n n n n -⎡⎤=-=-----=-⎣⎦;当1n =时,113121a S ==⨯-= 所以*65()n a n n N =-∈. (Ⅱ)由(I )得[]131111()(65)6(1)526561n n n b a a n n n n +===--+--+,所以1111111(1)()()277136561nn n l T b n n =⎡⎤==-+-+⋯+-⎢⎥-+⎣⎦∑, 11(1)261n =-+. 【点睛】方法点睛:求数列的前n 项和的方法(1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11nn na q S a q q q =⎧⎪=-⎨≠⎪-⎩;(2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 26.(1)证明见解析;(2)135210n n S n .【分析】(1)利用对数的运算性质结合等比数列的定义可证得结论成立; (2)求出n n a b 的表达式,利用错位相减法可求得n S . 【详解】(1)对任意的n *∈N ,12122log log log 1n n n n a a a a ++-==,所以,12n naa +=, 所以,数列{}n a 是等比数列,且首项和公比均为2,1222n n n a -∴=⨯=;(2)23log 232n n b a n =-=-,()322n n n a b n ∴=-⋅,()123124272322n n S n ∴=⨯+⨯+⨯++-⨯,()()23121242352322n n n S n n +=⨯+⨯++-⨯+-⨯,上式-下式得()()()()212311321223222322232212n n n n n S n n -++⨯--=+⨯+++--⨯=+--⨯-()153210n n +=-⨯-,因此,135210n nS n .【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和; (2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.。

【浙教版】高中数学必修五期末试题附答案

【浙教版】高中数学必修五期末试题附答案

一、选择题1.已知实数,x y 满足约束条件5000x y x y y ++≥⎧⎪-≤⎨⎪≤⎩,则241z x y =++的最小值是( )A .14-B .1C .5-D .9-2.不等式112x x ->+的解集是( ). A .{}|2x x <-B .{}|21x x -<<C .{}|1x x <D .{}|x x ∈R3.设m 1>,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z=x+my 的最大值小于2,则m 的取值范围为( ) A.(1,1 B.()1++∞ C .(1,3)D .(3,+∞)4.已知函数()3x f x -=,对任意的1x ,2x ,且12x x <,则下列四个结论中,不一定正确的是( )A .()()()1212f x x f x f x +=⋅B .()()()1212f x x f x f x ⋅=+C .()()()12120x x f x f x --<⎡⎤⎣⎦D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭5.在ABC ∆中,若sin (sin cos )sin 0A B B C +-=,sin cos20B C +=,4a =,则ABC ∆的面积为( )A.2+ B.4 C.6+D.8+6.在ABC 中,内角,A ,B C 的对边分别为,a ,b c,已知b =22cos c a b A -=,则a c +的最大值为( )AB.C.D7.已知ABC ∆中,a =b =60B =,那么角A 等于( )A .135B .45C .135或45D .908.在△ABC 中,a 2tanB =b 2tanA ,则△ABC 是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形9.设等差数列{}n a前n项和为n S,等差数列{}n b前n项和为n T ,若11 nnS nT n-=+.则55ab=()A.23B.45C.32D.5410.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图是由“杨辉三角”拓展而成的三角形数阵,记n a为图中虚线上的数1,3,6,10,构成的数列{}n a的第n项,则100a的值为()A.5049 B.5050 C.5051 D.510111.数列{}n a满足122,1a a==,并且()111212n n nna a a-+=-≥,则1011a a+=()A.192B.212C.2155D.236612.已知函数()()31f x x x=-+,数列{}n a中各项互不相等,记()()()12n nS f a f a f a=+++,给出两个命题:①若等差数列{}n a满足55S=,则33a=;②若正项等比数列{}n a满足33S=,则21a<;其中()A.①是假命题,②是真命题B.①是真命题,②是假命题C .①②都是假命题D.①②都是真命题二、填空题13.若实数x,y满足不等式组2025040x yx yx y-+≥⎧⎪--≤⎨⎪+-≥⎩,则1x yx++的取值范围为_____. 14.在ABC中,已知1AC=,A∠的平分线交BC于D,且1AD=,2BD=,则ABC的面积为_________.15.已知ABC中,内角、、A B C的对边分别为a b c、、,且222sin2a b cc B aa+--=,则B=___________.16.ABC内角A,B,C的对边分别为a,b,c,若2222b ac ac+-=,3sin B=,则C=__________.17.已知11()2x x f x e e a --=++只有一个零点,则a =____________. 18.已知x ,y 是正数,121x y +=,则21x y xy ++的最小值为________. 19.下图中的一系列正方形图案称为谢尔宾斯基地毯.在图中4个大正方形中,着色的正方形的个数依次构成一个数列{}n a 的前4项,则数列{}n a 的一个通项公式为______.20.已知数列{}n a 与{}n b 前n 项和分别为n S ,n T ,且0n a >,22n n n S a a =+,1121(2)(2)n n n n n n b a a +++=++,对任意的*n N ∈,n k T >,恒成立,则k 的最小值是__________.三、解答题21.已知实数x ,y 满足不等式组204030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,求目标函数23z x y =-的最值及相应的最优解.22.已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.23.ABC 的内角,,A B C 的对边分别为,,a b c .已知222sin sin sin sin sin B A C A C --=.(1)求B ;(2)若3b =,当ABC 的周长最大时,求它的面积.24.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,向量(sin ,),(1,sin )m A a n B ==(1)当2sin m n A =时,求b 的值;(2)当//m n 时,且1cos 2C a =,求tan tan A B 的值.25.已知等差数列{}n a 的公差为()0d d ≠,前n 项和为n S ,且满足___________(从①()101051S a =+﹔②1a ,2a ,6a 成等比数列;③535S =,这三个条件中任选两个补充到题干中的横线位置,并根据你的选择解决问题).(1)求n a ﹔ (2)设11n n n b a a +=,数列{}n b 的前n 项和为n T ,求证:13n T <. 26.已知数列{}n a 满足:12a =,()*112n nn a a n N n ++⎛⎫=∈ ⎪⎝⎭. (1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T ;(3)设2nn n b a =,数列{}n b 的前n 项和为n S ,求2n n S S -的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值. 【详解】解:作出不等式组5000x y x y y ++≥⎧⎪-≤⎨⎪≤⎩表示的平面区域,如图所示的阴影部分由241z x y =++可得11244z y x =-+-, 则144z -表示直线11244z y x =-+-在y 轴上的截距,截距越小,z 越小, 由题意可得,当11244z y x =-+-经过点A 时,z 最小, 由500x y x y ++=⎧⎨-=⎩可得5522A ⎛⎫-- ⎪⎝⎭,, 此时552411422z =-⨯-⨯+=-,故选:A. 【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.2.A解析:A 【解析】分析:首先对原式进行移项、通分得到302x ->+,之后根据不等式的性质可得20x +<,从而求得不等式的解集.详解:将原不等式化为1202x x x --->+,即302x ->+, 即302x <+,则有20x +<,解得2x <-,所以不等式102x x ->+的解集为{}|2x x <-,故选A. 点睛:该题是一道关于求不等式解集的题目,解答该题的关键是熟练掌握分式不等式的解法,属于简单题目.3.A解析:A 【解析】 试题分析:∵,故直线与直线交于点,目标函数对应的直线与直线垂直,且在点,取得最大值,其关系如图所示:即,解得,又∵,解得,选:A .考点:简单线性规划的应用.【方法点睛】本题考查的知识点是简单线性规划的应用,我们可以判断直线的倾斜角位于区间上,由此我们不难判断出满足约束条件的平面区域的形状,其中根据平面直线方程判断出目标函数对应的直线与直线垂直,且在点取得最大值,并由此构造出关于的不等式组是解答本题的关键.4.B解析:B 【分析】将函数()3xf x -=代入选项,由指数幂的运算性质可判断A 、B ;由函数的单调性可判断C ;由基本不等式可判断D ;即可得解. 【详解】对于A ,1212)(1212()333()()x x x x f x x f x f x -+--=⋅=⋅+=,故A 一定正确;对于B ,()12123x x f x x -=⋅,1212()()33x x f x f x --++=,()()()1212f x x f x f x ⋅=+不一定成立,故B 不一定正确;对于C ,因为()3xf x -=为减函数,故满足1212()[()()]0x x f x f x --<,故C 一定正确;对于D ,因为12x x <,所以1212()()22332x x f x f x --++=>=1212232x x x x f +-+⎛⎫= ⎪⎝⎭=,故D 一定正确. 故选:B. 【点睛】本题考查了指数函数性质及基本不等式的应用,考查了运算求解能力与转化化归思想,属于中档题.5.C解析:C 【分析】在ABC ∆中,()sin sin B A C +=,化简sin (sin cos )sin 0A B B C +-=可得4A π=,又sin cos20B C +=和34B C π+=,解得3B π=,512C π=,最后通过正弦定理求出1)c =,再根据三角形面积公式得到面积.【详解】由sin (sin cos )sin 0A B B C +-=得:sin sin sin cos sin cos cos sin sin sin cos sin 0A B A B A B A B A B A B ⋅+⋅-⋅-⋅=⋅-⋅=,∴sin cos A A =,又0()A π∈,,则4A π=,则34B C π+=,又3sin cos 2sin 22B C C π⎛⎫=-=-⎪⎝⎭,则3222B C k ππ=-+或222B C k ππ=-+,(0)B C π∈、,,则322B C π+=或22C B π-=,又34B C π+=,则取22C B π-=,得3B π=,512C π=,又4a =,根据正弦定理,sin 1)sin a Cc A ⋅==,∴1sin 62ABC S ac B ∆=⋅=+ 故选C. 【点睛】思路点睛:在三角形中,由于A B C π++=,根据诱导公式,()sin sin A B C +=,()sin sin A C B +=,()sin sin C B A +=,()cos cos A B C +=-,()cos cos A C B +=-,()cos cos C B A +=-等,以上常见结论需要非常熟练. 6.B解析:B 【分析】由正弦定理化边角,利用诱导公式两角和的正弦公式化简可得B 角,然后用余弦定理得2()33a c ac +-=,再利用基本不等式变形后解不等式得a c +的最大值.【详解】因为22cos c a b A -=,所以由正弦定理得,2sin sin 2sin cos C A B A -=,因为A B C π+=-,所以sin sin()sin cos cos sin C A B A B A B =+=+,所以2sin cos 2cos sin sin 2sin cos A B A B A B A +-=,化简得(2cos 1)sin 0B A -=,因为sin 0A ≠,所以2cos 10B -=,解得1cos 2B =,因为(0,)B π∈,所以3B π=,因为b =222232cos a c ac B a c ac =+-=+-,所以2()33a c ac +-=,所以222313()()()44a c a c a c ≥+-+=+,当且仅当a c =时取等号,所以a c +≤a c +的最大值为故选:B . 【点睛】方法点睛:本题考查主要正弦定理、余弦定理,在三角形问题中出现边角关系时可用正弦定理化边为角,然后由利用三角函数恒等变换公式如诱导公式,两角和与差的正弦公式等化简变形得出所要结论.7.B解析:B 【分析】先由正弦定理求出sin A ,进而得出角A ,再根据大角对大边,大边对大角确定角A . 【详解】由正弦定理得:sin sin sin sin a b A B A B =⇒=,sin 2A B ==, ∴45A =或135,∵a b <,∴A B <,∴45A =,故选B. 【点睛】本题主要考查正弦定理的应用以及大边对大角,大角对大边的三角形边角关系的应用.8.D解析:D 【分析】根据正弦定理22tan ta in n s sin B B A A =⋅⋅,化简得到sin 2sin 2A B =,得到答案. 【详解】22tan tan a B b A =,故22tan ta in n s sin B B A A =⋅⋅,即sin 2sin 2A B =.故22A B =或22A B π+=,即A B =或2A B π+=.故选:D . 【点睛】本题考查了正弦定理判断三角形形状,意在考查学生的计算能力.9.B解析:B 【分析】本题首先可令9n =,得出9945S T =,然后通过等差数列的性质得出959S a =以及959T b =,代入9945S T =中,即可得出结果. 【详解】 因为11n n S n T n -=+,所以99914915S T -==+, 因为n S 是等差数列{}n a 前n 项和,n T 是等差数列{}n b 前n 项和, 所以()1995992a a S a +==,()1995992b b T b +==, 则95959459S a T b ==,5545a b =, 故选:B. 【点睛】关键点点睛:本题考查等差数列的相关性质的应用,主要考查等差数列前n 项和公式以及等差中项的应用,若等差数列{}n a 前n 项和为n S ,则()12n n n a a S +=,当2m n k +=时,2m n k a a a +=,考查化归与转化思想,是中档题.10.B解析:B 【分析】观察数列的前4项,可得(1)2n n n a +=,将100n =代入即可得解. 【详解】由题意得11a =,2312a ==+,36123a ==++,4101234a ==+++⋅⋅⋅观察规律可得(1)1232n n n a n +=+++⋅⋅⋅+=, 所以10010010150502a ⨯==. 故选:B. 【点睛】关键点点睛:本题考查了观察法求数列的通项公式,关键是将各项拆成正整数的和的形式发现规律.11.C解析:C 【解析】 依题意有11111121,2n n n n n n n n a a a a a a a a -++--=-=-,由此计算得323a =,424a =,……101110112221,,101155a a a a ==+=. 12.A解析:A 【分析】先确定函数()f x 对称性与单调性,再结合等差数列的等距性确定3a ;结合基本不等式将等比数列性质转化到等差数列性质上,解不等式即得结果. 【详解】因为()()()3311(1)1f x x x x x =-+=-+-+,而3y x x =+关于原点对称且在R 上单调递增,所以()f x 关于(1,1)对称且在R 上单调递增, 先证明下面结论:若()g x 为奇函数且在R 上单调递增,{}n a 为等差数列,123g()()()()0n a g a g a g a ++++=,则1230n a a a a ++++=.证明:若1230n a a a a ++++>,则当n 为偶数时,1211220n n n n a a a a a a -++=+==+>111()()()()+()0n n n n a a g a g a g a g a g a >-∴>-=-∴>同理21+122()()0,,()+()0n n n g a g a g a g a -+>>,即123g()()()()0n a g a g a g a ++++>与题意矛盾,当n 为奇数时,1211220n n n a a a a a -++=+==>类似可得12112()()0,()(),,()0n n n g a g a g a g a g a -++>+>,即123g()()()()0n a g a g a g a ++++>,与题意矛盾 同理可证1230n a a a a ++++<也不成立,因此1230n a a a a ++++= 再引申结论: 若()f x 为关于(,)a b 函数且在R 上单调递增,{}n a 为等差数列,123()()()()n f a f a f a f a nb ++++=,则123n a a a a na ++++=证明过程只需令()()g x f x a b =+-,再利用上面结论即得.①若等差数列{}n a 满足55S =,即 12345()()()()()5f a f a f a f a f a ++++=,则123453555a a a a a a ++++=∴=, 31a ∴=,故①是假命题,②若正项等比数列{}n a 满足33S =, 即123()()()3f a f a f a ++=因为数列{}n a 中各项互不相等,所以公比不为1,不妨设公比大于1,即123123()()()a a a f a f a f a <<∴<<,因为1322a a a +>=∴2()1f a <,()3222111a a a -+<∴<故②是真命题故选:A【点睛】本题考查函数()f x 对称性与单调性、等差数列性质、基本不等式应用,考查综合分析判断能力,属中档题.二、填空题13.【分析】作出不等式组对应的平面区域然后化简目标函数利用不等式的几何意义利用线性规划的知识进行求解即可【详解】解:实数满足不等式组的可行域如图三角形的三边及其内部部分:它的几何意义是可行域内的点与连线 解析:5,53⎡⎤⎢⎥⎣⎦【分析】作出不等式组对应的平面区域,然后化简目标函数,利用不等式的几何意义,利用线性规划的知识进行求解即可.【详解】解:实数x ,y 满足不等式组2025040x y x y x y -+≥⎧⎪--≤⎨⎪+-≥⎩,的可行域如图,三角形ABC 的三边及其内部部分:111x y y x x+++=+,它的几何意义是可行域内的点与()0,1D -连线的斜率加1, 由图象知BD 的斜率最小,CB 的斜率最大,由4020x y x y +-=⎧⎨-+=⎩解得()1,3C ,此时DC 的斜率:3141+=, 由25040x y x y --=⎧⎨+-=⎩得()3,1B ,此时BD 的斜率:11233+=, 则1x y x ++的取值范围为是5,53⎡⎤⎢⎥⎣⎦, 故答案为:5,53⎡⎤⎢⎥⎣⎦.【点睛】本题考查了简单的线性规划问题,考查数形结合思想,属于中档题. 14.【分析】设将利用三角形面积公式表示出来可得在中利用余弦定理可得解得即可求出进而可得的值再利用三角形面积公式即可求解【详解】因为平分所以设则因为设所以所以因为所以即在中所以可得解得:所以所以所以故答案 解析:378【分析】 设12BAD CAD BAC θ∠=∠=∠=,AB x =,将BAD CAD ABC S S S +=△△△利用三角形面积公式表示出来,可得1cos 2x xθ+=,在ABD △中,利用余弦定理可得212cos 2x xθ+-=,解得2x =,即可求出cos θ,sin θ,进而可得sin BAC ∠的值,再利用三角形面积公式即可求解.【详解】因为AD 平分BAC ∠,所以12BAD CAD BAC ∠=∠=∠,设BAD θ∠=,则CAD θ∠=,2BAC θ∠=,因为BAD CAD ABC S S S +=△△△,设AB x =, 所以111sin sin sin 2222x x θθθ+=, 所以,sin sin 2sin cos x x θθθθ+=, 因为sin 0θ≠,所以12cos x x θ+=,即1cos 2x x θ+=, 在ABD △中,212cos 2x x θ+-=,所以21122x x x x-+=, 可得220x x --=,解得:2x =, 所以3cos cos 4BAD θ∠==,所以sin 4BAD ∠==,3sin 2sin cos 2448BAC θθ∠==⨯=,所以1sin 28ABC S AC AB BAC =⋅∠=,故答案为:8【点睛】 关键点点睛:本题解题的关键是将BAD CAD ABC S S S +=△△△用面积公式表示出来可得边角之间的关系,再结合余弦定理即求出边和角即可求面积.15.(或)【分析】利用余弦定理和正弦定理边角互化整理已知条件最后变形为求角的值【详解】根据余弦定理可知所以原式变形为根据正弦定理边角互化可知又因为则原式变形整理为即因为所以(或)故答案为(或)【点睛】方 解析:135︒(或34π) 【分析】利用余弦定理和正弦定理边角互化,整理已知条件,最后变形为tan 1B =-,求角B 的值.【详解】根据余弦定理可知2222cos a b c ab C +-=, 所以原式222sin 2a b c c B a a+--=,变形为cos sin b C c B a -=, 根据正弦定理边角互化,可知sin cos sin sin sin B C C B A -=,又因为()sin sin sin cos cos sin A B C B C B C =+=+,则原式变形整理为sin cos B B -=,即tan 1B =-,因为()0,180B ∈, 所以135B =(或34π) 故答案为135(或34π) 【点睛】 方法点睛:(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到;(2)解题中注意三角形内角和定理的应用及角的范围限制.16.【分析】首先利用余弦定理将题中条件整理得到根据正弦定理可得结合三角形内角的取值范围最后求得结果【详解】内角的对边分别为且整理得所以由正弦定理得整理得因为所以故答案为:【点睛】该题考查的是有关解三角形 解析:6π【分析】首先利用余弦定理将题中条件整理得到cos b C c =,根据正弦定理可得sin tan 3B C ==,结合三角形内角的取值范围,最后求得结果. 【详解】 ABC 内角A ,B ,C 的对边分别为a ,b ,c ,且2222b a c ac +-=,整理得222cos 22b a c ab ac C +-==,所以cos b C c =,由正弦定理得sin cos sin B C C =,整理得sin tan B C ==,因为(0,)C π∈,所以6B π=, 故答案为:6π. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理、正弦定理、已知三角函数值求角,属于中档题.17.【分析】由函数只有一个零点转化为方程有唯一的实数解结合基本不等式求得得到即可求解【详解】由题意函数只有一个零点即有唯一的实数根即方程有唯一的实数解令因为所以当且仅当时即等号成立因为方程有唯一的实数解 解析:1-【分析】由函数11()2x x f x ee a --=++只有一个零点,转化为方程112x x e e a --+=-有唯一的实数解,结合基本不等式,求得112x x e e --+≥=,得到22a -=,即可求解.【详解】由题意,函数11()2x x f x e e a --=++只有一个零点,即()0f x =有唯一的实数根,即方程112x x e e a --+=-有唯一的实数解,令()11x x g x ee --=+ 因为110,0x x e e -->>,所以()112x x g x e e --≥+==,当且仅当11x x e e --=时,即1x =等号成立,因为方程112x x e e a --+=-有唯一的实数解,所以22a -=,即1a =-.故答案为:1-.【点睛】本题主要考查了根据函数的零点公式求解参数问题,以及基本不等式的应用,其中解答中把函数的零点个数转化为方程解得个数,结合基本不等式求解是解答的关键,着重考查推理与运算能力.18.【分析】首先将题中已知条件转化可得利用基本不等式可求得之后应用不等式的性质求得结果【详解】由可得即所以由得当且仅当时取等号所以有所以所以的最小值为当且仅当时取等号故答案为:【点睛】该题考查的是有关求 解析:89【分析】首先将题中已知条件转化,可得2x y xy +=,利用基本不等式可求得8xy ≥,之后应用不等式的性质求得结果.【详解】 由121x y +=可得21x y xy+=,即2x y xy +=, 所以211111x y xy xy xy xy+==+++,由121x y =+≥ 得8xy ≥,当且仅当24x y ==时取等号, 所以有1108xy <≤,19118xy <+≤,18191xy≥+,所以21811191x y xy xy xy xy+==≥+++, 所以21x y xy ++的最小值为89,当且仅当24x y ==时取等号, 故答案为:89. 【点睛】该题考查的是有关求最值的问题,涉及到的知识点有利用基本不等式求最值,利用不等式的性质求最值,属于中档题. 19.【分析】根据图象的规律得到前后两项的递推关系然后利用迭代法求通项并利用等比数列求和【详解】由图分析可知依次类推数列是首项为1公比为8的等比数列所以故答案为:【点睛】关键点点睛:本题的关键是迭代法求通 解析:817n n a -= 【分析】根据图象的规律,得到前后两项的递推关系,然后利用迭代法求通项,并利用等比数列求和.【详解】由图分析可知11a =,218181a a =⨯+=+,23281881a a =⨯+=++,依次类推,1288...1n n n a --=+++,数列{}18n -是首项为1,公比为8的等比数列,所以1881187n n n a --==-, 故答案为:817n n a -= 【点睛】关键点点睛:本题的关键是迭代法求通项,重点是得到前后两项的递推关系.20.【分析】首先利用与的关系式求数列的通项公式再利用裂项相消法求再利用的最值求的最小值【详解】当时解得或当两式相减后可得整理后得:所以数列是公差为1的等差数列即数列单调递增当时对任意的恒成立即的最小值是 解析:13【分析】首先利用n S 与n a 的关系式,求数列{}n a 的通项公式,再利用裂项相消法求n T ,再利用n T 的最值求k 的最小值.【详解】当1n =时,2111122S a a a =+=,解得10a =或11a =,0n a >,11a ∴=,当2n ≥,2211122n n n n n n S a a S a a ---⎧=+⎨=+⎩,两式相减后可得()()()221112n n n n n n S S a a a a ----=-+-,整理后得:()()1110n n n n a a a a --+--=,所以11n n a a --=,∴数列{}n a 是公差为1的等差数列,即n a n =,()()112111221221n n n n n n b n n n n +++==-++++++,2231111111...21222223221n n n T n n +⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪+++++++⎝⎭⎝⎭⎝⎭1112121n n +=-+++ 111321n n +=-++, 数列{}n T 单调递增,当n →+∞时,13n T →对任意的*n N ∈,n k T >,恒成立, ()max n k T ∴>,即13k ≥,k 的最小值是13. 故答案为:13【点睛】易错点睛:本题主要考查函数与数列的综合问题,属于难题.解决该问题应该注意的事项:(1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.三、解答题21.在35x y =⎧⎨=⎩时,取得最小值min 9z =-,在31x y =⎧⎨=⎩时,取得最大值max 3z =. 【分析】作出可行域,作出目标函数对应的直线,平移直线可得最优解.【详解】作出可行域,如图ABC 内部(含边界),由2=030x y x -+⎧⎨-=⎩得()3A ,5,由+4=030x y x -⎧⎨-=⎩得()31B ,,由2=0+40x y x y -+⎧⎨-=⎩得()13C ,, 作直线:230l x y -=,向上平移直线l ,z 减小,当l 过点()3A ,5时,z 取得最小值23359⨯-⨯=-;向下平移直线l ,z 增大,当l 过点()31B ,时,z 取得最大值23313⨯-⨯=;所以目标函数23z x y =-在35x y =⎧⎨=⎩时,取得最小值min 9z =-,在31x y =⎧⎨=⎩时,取得最大值max 3z =.【点睛】本题考查简单的线性规划问题,解题方法是作出可行域,作出线性目标函数对应的直线,平移直线求得最优解,如果目标函数不是线性的,则可根据其几何意义求解,如直线的斜率、两点间的距离等,属于中档题.22.(1)证明见解析;(2)1.【分析】(1)对不等式两边式子作差,分解因式,判断作差的结果的符号,可得证.(2)根据2a b ab +=,可得22ab a b ab =+≥1ab ,进而求得1≥ab ,注意等号成立的条件,得到结果.【详解】证明:(1)∵()()222223220a b b a b a ab b a b +-+=-+=-≥,∴()2232a b b a b +≥+. (2)∵0a >,0b >, ∴22ab a b ab =+≥22ab ab ≥ ∴1≥ab ,∴1≥ab .当且仅当1a b ==时取等号,此时ab 取最小值1.【点睛】该题主要是考查不等式的证明和运用基本不等式求最值,在证明不等式时,可以运用综合法也可以运用分析法,一般的比较大小的最重要的方法就是作差法,然后结合综合法和分析法来一起证明,属于中档题.23.(1)23B π=;(2)4ABC S =△. 【分析】 (1)利用正弦定理角化边,整理求得cos B ,由B 的范围可得结果;(2)利用余弦定理和基本不等式可求得当3a c ==时周长最大,由三角形面积公式可求得结果.【详解】(1)由正弦定理得:222b ac ac --=,2221cos 22a c b B ac +-∴==-, ()0,B π∈,23B π∴=; (2)由余弦定理得:()()222222cos 29b a c ac B a c ac ac a c ac =+-=+-+=+-=,()2292a c ac a c +⎛⎫∴=+-≤ ⎪⎝⎭(当且仅当a c =时取等号),6a c ∴+≤,∴当3a c ==时,ABC 取得最大值,此时19sin 22ABC Sac B ===. 【点睛】 方法点睛:求解与边长相关的最值或取值范围类问题通常有两种方法:①利用正弦定理边化角,将所求式子转化为与三角函数值域有关的问题的求解,利用三角恒等变换和三角函数的知识来进行求解;②利用余弦定理构造方程,结合基本不等式求得基本范围;应用此方法时,需注意基本不等式等号成立的条件.24.(1)1;(2)2.【分析】(1)由题意得sin sin 2sin m n A a B A =+=,即1sin sin a A B=,由正弦定理有:sin sin a b A B=,联立即可得解b 的值. (2)由平行条件得sin sin a A B =,由1cos 2C a =,则可得1cos cos 2A B a =,联立即可得解.【详解】解:(1)由题意得:sin sin 2sin m n A a B A =+=, 即得1sin sin a A B=, 在三角形中由正弦定理有:sin sin a b A B=, 由以上两式可知:1b =. (2)由平行条件得sin sin a A B =,1cos cos()sin sin cos cos 2C A B A B A B a =-+=-=, 则可得到:1cos cos 2A B a =, ∴sin sin tan tan 2cos cos A B A B A B==. 25.条件选择见解析;(1)32n a n =-;(2)证明见解析.【分析】(1)由①可得11a =,由②可得13d a =,由③可得3127a a d =+=,选择①②、①③、②③条件组合,均得11a =,3d =,即得解析式;(2)可得11133231n b n n ⎛⎫=- ⎪-+⎝⎭,由裂项相消法求出n T 即可证明. 【详解】(1)①由()101051S a =+,得()11109105912a d a d ⨯+=++,即11a =; ②由1a ,2a ,6a 成等比数列,得2216a a a =,222111125a a d d a a d ++=+,即13d a =;③由535S =,得()15355352a a a +==,即3127a a d =+=; 选择①②、①③、②③条件组合,均得11a =,3d =, 故()13132n a n n =+-=-.(2)()()111111323133231n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭∴123n n T b b b b =++++ 11111111134477103231n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 111331n ⎛⎫=- ⎪+⎝⎭, ∵n *∈N ,∴1031n >+,∴13n T <. 【点睛】方法点睛:数列求和的常用方法: (1)对于等差等比数列,利用公式法可直接求解; (2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和. 26.(1)2n n a n =⋅;(2)()1122n n T n +=-⋅+;(3)12. 【分析】(1)利用累乘法可求得数列{}n a 的通项公式;(2)利用错位相减法可求得数列{}n a 的前n 项和n T ; (3)令2n n n c S S =-,分析数列{}n c 的单调性,由此可求得2n n S S -的最小值.【详解】(1)数列{}n a 满足:12a =,()*112n n n a a n N n ++⎛⎫=∈⎪⎝⎭, 则2140a a =>,323202a a =⨯>,,以此类推,对任意的n *∈N ,0n a >, 由已知条件可得()121n n n a a n++=, 3211212223222121n n n n a a a n a a n a a a n -⨯⨯=⋅⋅⋅⋅=⨯⨯⨯⨯=⋅-; (2)1231222322n n T n =⨯+⨯+⨯++⨯,()23121222122n n n T n n +=⨯+⨯++-⨯+⨯,上式-下式得()()2311121222222212212n n n n n n T n n n +++--=++++-⋅=-⋅=-⋅--, 因此,()1122n n T n +=-⋅+;(3)21n n n b a n ==,则111123n S n =++++, 令2n n n c S S =-,则()()()()122122221n n n n n n n n n n c c S S S S S S S S +++++-=---=---()()11111102221121222122n n n n n n n =+-=-=>+++++++,则1n n c c +>, 则数列{}n c 为单调递增数列,所以,数列{}n c 的最小值为12112c S S =-=. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.。

2021-2022高中数学必修五期末试题(带答案)

2021-2022高中数学必修五期末试题(带答案)

一、选择题1.已知正数a 、b 满足1a b +=,则411a ba b+--的最小值是( ) A .1B .2C .4D .82.已知0x >,0y >,21x y +=,若不等式2212m m x y+>+恒成立,则实数m 的取值范围是( ) A .4m ≥或2m ≤- B .2m ≥或4m ≤- C .24m -<<D .42m -<<3.若直线l :()200,0ax by a b -+=>>被圆222410x y x y ++-+=截得的弦长为4,则21a b+的最小值为( )A .2B .4CD .4.已知正数x ,y 满足x +y =1,且2211x y y x +++≥m ,则m 的最大值为( ) A .163B .13C .2D .45.在ABC 中,,,a b c 分别为三个内角,,A B C 的对边,若cos cos a A b B =,则ABC 一定是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形6.已知ABC 的内角,,A B C 所对的边分别为,,a b c ,若tan tan 1tan tan B C B C +=-⋅,且2bc =,则ABC 的面积为( )A .BC .4D .27.在锐角△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若22b c ac =+,则角C 的取值范围是( ) A .π(0,)4B .ππ(,)42C .ππ(,)43D .π,64π⎛⎫ ⎪⎝⎭8.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若tan C =cos A =,b =ABC 的面积为( )A .B .2C .4D .89.已知椭圆2222x y a b +=1(a>b>0)与双曲线2222x y m n-=1(m>0,n>0)有相同的焦点(-c ,0)和(c ,0),若c 是a ,m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率是 ( )A B C .14 D .1210.根据下面一组等式:11s =, 2235s =+=,345615s =++=, 47891034s =+++=, 5111213141565s =++++=, 6161718192021111s =+++++=,……可得21n S -=( )A .324641n n n -+-B .1413n -C .2184023n n -+D .(1)12n n -+11.设{}n a 为等比数列,给出四个数列:①{}2n a ,②{}2n a ,③{}2na ,④{}2log ||n a .其中一定为等比数列的是( ) A .①③B .②④C .②③D .①②12.已知{}n a 为等比数列,13527a a a =,246278a a a =,以n T 表示{}n a 的前n 项积,则使得n T 达到最大值的n 是( ) A .4B .5C .6D .7二、填空题13.若正数,x y 满足113122x y xy++=,则xy 的最小值为_________. 14.已知圆1C :()224x a y ++=和圆2C :()2221x y b +-=(,a b ∈R ,且0ab ≠),若两圆外切,则2222a b a b+的最小值为______.15.已知ABC 中,D 是BC 上的点,AD 平分BAC ∠,且2ABD ADC S S =△△,1AD =,12DC =,则AC =_________. 16.如图,设A 、B 两点在河的两岸,一测量者在A 的同侧所在的河岸边选定一点C ,测出AC 的距离为50m ,45ACB ∠=︒,105CAB ∠=︒后,就可以计算出A 、B 两点的距离为______17.若(0,1)x ∈时,不等式111m x x≤+-恒成立,则实数m 的最大值为________. 18.如图,在四边形ABCD 中,已知AB BC ⊥,5AB =,7AD =,135BCD ∠=︒,1cos 7A =,则BC =________.19.设数列{}2()n n n a +是等比数列,且116a =,2154a =,则数列{3}n n a 的前15项和为__________.20.在等比数列{}n a 中,2514,2==a a ,则公比q =__________. 三、解答题21.为摆脱美国政府针对中国高科技企业的封锁,加强自主性,某企业计划加大对芯片研发部的投入.据了解,该企业研发部原有100名技术人员,年人均投入a 万元,现把原有技术人员分成两部分:技术人员和研发人员,其中技术人员x 名(x ∈N 且4575x ≤≤),调整后研发人员的年人均投入增加()4%x ,技术人员的年人均投入调整为225x a m ⎛⎫-⎪⎝⎭万元. (1)要使这100x -名研发人员的年总投入不低于调整前100名技术人员的年总投入,求调整后的技术人员的人数最多多少人?(2)是否存在这样的实数m ,使得技术人员在已知范围内调整后,同时满足以下两个条件:①技术人员的年人均投入始终不减少;②研发人员的年总投入始终不低于技术人员的年总投入.若存在,求出m 的范围;若不存在,说明理由. 22.已知关于x 的不等式23240x ax -++>.(1)当2a =时,求此不等式的解集;(2)若此不等式的解集为()4,m -,求实数a ,m 的值. 23.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos cos 2cos b A a B c A +=. (1)求A ;(2)若2a =,ABC ,求ABC 的周长. 24.ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin cos b A B =,sin 4sin C A =.(1)求B ;(2)在ABC 的边AC 上存在一点D 满足4AD CD =,连接BD ,若BCD △的面积为,求b . 25.已知等差数列{}n a 满足()()()()*122312(1)n n a a a a a a n n n N +++++⋅⋅⋅++=+∈. (1)求数列{}n a 的通项公式;(2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .26.已知公差不为零的等差数列{}n a 的前n 项和为n S ,525S =,1a ,2a ,5a 成等比数列.(1)求数列{}n a 的通项公式;(2)若等差数列{}2log n b 的首项为1,公差为1,求数列{}n n a b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】 化简得出441511a b a b b a +=+---,将代数式14a b+与+a b 相乘,展开后利用基本不等式可求得411a b a b +--的最小值. 【详解】已知正数a 、b 满足1a b +=,则()414141511b a ba ab b a b a--+=+=+---()41454a b a b b a b a ⎛⎫=++-=+≥= ⎪⎝⎭,当且仅当2b a =时,等号成立,因此,411a ba b +--的最小值是4. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.D解析:D 【分析】先根据已知结合基本不等式得218x y+≥,再解不等式228m m +<即可得答案.【详解】解:由于0x >,0y >,21x y +=,所以()212142448y x x y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当4y x x y =,即122x y ==时等号成立, 由于不等式2212m m x y+>+成立, 故228m m +<,解得:42m -<<. 故实数m 的取值范围是:42m -<<. 故选:D. 【点睛】本题考查利用基本不等式求最值,一元二次不等式的解法,考查运算能力,是中档题.3.B解析:B 【分析】求出圆的圆心与半径,可得圆心在直线20(0,0)ax by a b -+=>>上,推出22a b +=,利用基本不等式转化求解21a b+取最小值. 【详解】解:圆222410x y x y ++-+=,即22(1)(2)4x y ++-=,表示以2()1,M -为圆心,以2为半径的圆,由题意可得圆心在直线20(0,0)ax by a b -+=>>上, 故220a b --+=,即22a b +=,∴2212222112242a ba b b a b a b a b a b a +++=+=++++, 当且仅当22b aa b=,即2a b =时,等号成立, 故选:B . 【点睛】本题考查直线与圆的方程的综合应用,基本不等式的应用,考查转化思想以及计算能力,属于中档题.4.B解析:B 【分析】根据题意2211x y y x +++=22(1)(1)11--+++y x y x =(4411+++y x )﹣5,由基本不等式的性质求出4411+++y x =13(4411+++y x )[(x +1)+(y +1)]的最小值,即可得2211x y y x +++的最小值,据此分析可得答案. 【详解】根据题意,正数x ,y 满足x +y =1,则2211x y y x +++=22(1)(1)11--+++y x y x=(y +1)+41+y ﹣4+(x +1)+41x +﹣4=(4411+++y x )﹣5, 又由4411+++y x =13(4411+++y x ) [(x +1)+(y +1)], =13[8+4(1)4(1)11+++++x y y x ]≥163, 当且仅当x =y =12时等号成立, 所以2211x y y x +++=(4411+++y x )﹣5163≥﹣5=13,即2211x y y x +++的最小值为13, 所以3m ≤,则m 的最大值为13; 故选:B . 【点睛】本题主要考查基本不等式的性质以及应用,还考查了转化求解问题的能力,属于中档题.5.D解析:D 【分析】根据cos cos a A b B =,利用正弦定理将边转化为角得到sin cos sin cos A A B B =,然后再利用二倍角的正弦公式化简求解. 【详解】因为cos cos a A b B =,由正弦定理得:sin cos sin cos A A B B =, 所以sin 2sin 2A B =, 所以22A B =或22A B π=-, 即A B =或2A B π+=所以ABC 一定是等腰三角形或直角三角形, 故选:D 【点睛】本题主要正弦定理,二倍角公式的应用,属于中档题.6.D解析:D 【分析】由两角和的正切公式可得()tan 1B C +=,即可得到34A π=,然后由面积公式可得结果. 【详解】因为tan tan 1tan tan B C B C +=-⋅,即()tan 1B C +=,在ABC 中,所以tan 1A =-,即34A π=,所以sin A =11sin 222ABCSbc A ==⨯=. 故选:D . 【点睛】本题考查三角形的面积公式的应用,考查两角和的正切公式,属于基础题.7.D解析:D 【分析】由22b c ac =+,并结合余弦定理,可求得2cos c a c B =-,进而结合正弦定理可得sin sin 2sin cos C A C B =-,由()sin sin A B C =+,代入并整理得sin C ()sin B C =-,结合△ABC 为锐角三角形,可得出2B C =,从而可得π02ππ2B BC ⎧<<⎪⎪⎨⎪<+<⎪⎩,即可求出答案. 【详解】由余弦定理可得,2222cos b a c ac B =+-,所以2222cos a c ac B c ac +-=+,即2cos c a c B =-, 由正弦定理可得,sin sin 2sin cos C A C B =-, 又()sin sin sin cos sin cos A B C B C C B =+=+, 所以sin sin cos sin cos 2sin cos C B C C B C B =+-()sin cos sin cos sin B C C B B C =-=-,因为π,0,2B C ⎛⎫∈ ⎪⎝⎭,所以ππ,22B C ⎛⎫-∈- ⎪⎝⎭, 所以C B C =-,即2B C =.在锐角△ABC 中,π02ππ2B B C ⎧<<⎪⎪⎨⎪<+<⎪⎩,即π022π3π2C C ⎧<<⎪⎪⎨⎪<<⎪⎩,解得ππ64C <<.故选:D. 【点睛】本题考查正弦、余弦定理在解三角形中的运用,考查两角和的正弦公式的运用,考查学生的计算求解能力,属于中档题.8.B解析:B 【分析】结合同角三角函数的基本关系可求出sin C =,cos C =,sin A =和的正弦公式可求出sin B ,结合正弦定理即可求出a ,进而可求出三角形的面积.【详解】因为sin tan cos C C C ==,且22sin cos 1C C +=,解得sin 4C =,cos 4C =,又cos 8A =,所以sin 8A ==,故sin sin[()]sin()sin cos cos sin B A C A C A C A C π=-+=+=+=.因为sin sin a bA B=,b =,故sin 2sin b A a B ==,故11sin 222ABC S ab C =⨯=⨯⨯=△. 故选:B . 【点睛】本题考查了同角三角函数的基本关系,考查了两角和的正弦公式,考查了正弦定理,考查了三角形的面积公式,属于中档题.9.D解析:D 【解析】由题意可知2n 2=2m 2+c 2. 又m 2+n 2=c 2, ∴m=2c . ∵c 是a ,m 的等比中项, ∴2c am =, ∴22ac c =, ∴12c e a ==.选D . 10.A解析:A 【分析】求出第()1n -行最后一项,可得第n 行为第一项,求出第n 行最后一项,根据第n 是等差数列求出n S ,即可求出21n S -. 【详解】易得第()1n -行最后一项为[]21(1)(1)22n n n n +---=,则第n 行第一项为212n n-+,第n 行最后一项为2(1)22n n n n++=, 故第n 行为第一项212n n -+,最后一项为22n n+,项数为n 的等差数列,故22312222n n n n n n n n S ⎛⎫-+++ ⎪+⎝⎭==, 所以32214641n S n n n -=-+-.故选:A. 【点睛】本题考查对数列的理解,以及等差数列的前n 项和的求法,属于中档题.11.D解析:D 【分析】设11n n a a q -=,再利用等比数列的定义和性质逐一分析判断每一个选项得解.【详解】设11n n a a q -=,①,112=2n n a a q-,所以数列{}2n a 是等比数列;②,222222111=()n n n a a qa q --=,所以数列{}2n a 是等比数列; ③,11112111211222=2,222n nn n n n n n a a q a a q a q a q a a q-------==不是一个常数,所以数列{}2n a 不是等比数列; ④,122122121log ||log |q |log ||log |q |n n n n a a a a ---=不是一个常数,所以数列{}2log ||n a 不是等比数列.故选D 【点睛】本题主要考查等比数列的判定,意在考查学生对该知识的理解掌握水平和分析推理能力.12.A解析:A 【分析】先求出首项和公比,得出{}n a 是一个减数列,前4项都大于1,从第五项开始小于1,从而得出结论. 【详解】{}n a 为等比数列,3135327a a a a ==,32464278a a a a ==, 33a ∴=,432a =,4312a q a ∴==,112a =,543·14a a q ==<. 故{}n a 是一个减数列,前4项都大于1,从第五项开始小于1, 以n T 表示{}n a 的前n 项积,则使得n T 达到最大值的n 是4, 故选:A . 【点评】本题主要考查等比数列的性质,属于基础题.二、填空题13.【分析】将化为后利用基本不等式得再解一元二次不等式可得结果【详解】由得因为所以当且仅当时等号成立所以所以所以或所以或(舍)所以即的最小值为故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必解析:92【分析】将113122x y xy++=化为232y x xy ++=后,利用基本不等式得23xy -≥一元二次不等式可得结果. 【详解】由113122x y xy++=得232y x xy ++=,因为0,0x y >>,所以232xy y x -=+≥2y x =时,等号成立.所以2302≥,所以2)22≥2-≥2≤,2≥2≤-(舍),所以92xy ≥,即xy 的最小值为92. 故答案为:92. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方14.1【分析】根据题意分析两圆的圆心与半径由两圆外切可得变形可得:据此可得结合基本不等式的性质分析可得答案【详解】解:根据题意圆其圆心为半径圆其圆心为半径若两圆外切则有变形可得:当且仅当时等号成立故的最解析:1【分析】根据题意,分析两圆的圆心与半径,由两圆外切可得12||C C R r =+,变形可得:2249a b +=,据此可得22222211a b a b a b+=+,结合基本不等式的性质分析可得答案.【详解】解:根据题意,圆221:()4C x a y ++=,其圆心1C 为(,0)a -,半径2r ,圆222:(2)1C x y b +-=其圆心2C 为(0,2)b ,半径1R =,若两圆外切,则有12||3C C R r =+=,变形可得:2249a b +=,2222222222222211111141(4)()(5)(521999a b a b a b a b a b a b b a +=+=++=+++=,当且仅当222a b =时等号成立,故2222a b a b+的最小值为1;故答案为:1. 【点睛】本题考查圆与圆的位置关系,涉及基本不等式的性质以及应用,属于中档题.15.【分析】由面积比得得由角平分线定理得在和中应用余弦定理结合可求得【详解】由已知则又平分所以设则中同理中因为所以解得(负的舍去)故答案为:【点睛】本题考查三角形面积公式三角形内角平分线定理余弦定理通过 【分析】 由面积比得2BD DC =,得1BD =,由角平分线定理得2ABAC=,在ABD △和ACD △中应用余弦定理结合cos cos ADB ADC ∠=-∠可求得AC . 【详解】由已知1sin 221sin 2ABD ACD BD AD ADBS BD S CD CD AD ADC ⋅∠===⋅∠△△,12CD =,则1BD =, 又AD 平分BAC ∠,所以2AB BDAC CD==,2AB AC =,设AC x =,则2AB x =, ABD △中,22222114cos 1222BD DA AB x ADB x BD AD +-+-∠===-⋅, 同理,ACD △中,221154cos 14212x ADC x +-∠==-⨯⨯,因为180ADB ADC ∠+∠=︒, 所以225cos cos 1204ADB ADC x x ∠+∠=-+-=,解得x (负的舍去),故答案为:2. 【点睛】本题考查三角形面积公式,三角形内角平分线定理,余弦定理,通过180ADB ADC ∠+∠=︒,cos cos 0ADB ADC ∠+∠=,把两个三角形联系起来达到求解的目的.16.【分析】由与求出的度数根据以及的长利用正弦定理即可求出的长【详解】解:在中即则由正弦定理得:故答案为:【点睛】本题考查正弦定理以及特殊角的三角函数值熟练掌握正弦定理是解本题的关键解析:【分析】由ACB ∠与BAC ∠,求出ABC ∠的度数,根据sin ACB ∠,sin ABC ∠,以及AC 的长,利用正弦定理即可求出AB 的长. 【详解】解:在ABC ∆中,50AC m =,45ACB ∠=︒,105CAB ∠=︒, 即30ABC ∠=︒, 则由正弦定理sin sin AB ACACB ABC=∠∠,得:50sin 21sin 2AC ACBAB ABC∠===∠.故答案为:. 【点睛】本题考查正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.17.【分析】根据题意只需小于等于的最小值即可利用基本不等式可得的最值进而即可得到结论【详解】由则所以当且仅当即时取等号所以即的最大值为故答案为:【点睛】本题主要考查了基本不等式求最值以及恒成立问题同时考 解析:4【分析】根据题意,只需m 小于等于111x x +-的最小值即可,利用基本不等式可得111x x+-的最值,进而即可得到结论. 【详解】由()0,1x ∈,则()10,1x -∈,11x x +-=, 所以,()11111124111x x x x x x x x x x-⎛⎫+=++-=++≥ ⎪---⎝⎭, 当且仅当11x xx x -=-,即12x =时取等号, 所以,4m ≤,即m 的最大值为4.故答案为:4. 【点睛】本题主要考查了基本不等式求最值,以及恒成立问题,同时考查了转化的思想和运算求解的能力,属于基础题.18.【分析】由余弦定理可得由诱导公式可得进而可得由三角恒等变换得再由正弦定理即可得解【详解】在中由余弦定理得所以所以又所以所以所以在中由正弦定理得所以故答案为:【点睛】本题考查了正弦定理和余弦定理解三角解析:)41【分析】由余弦定理可得8BD =、1cos 2ABD ∠=,由诱导公式可得1sin 2CBD ∠=,进而可得cos CBD ∠=sin BDC ∠,再由正弦定理即可得解. 【详解】在ABD △中,由余弦定理得2222cos 64BD AB AD AB AD A =+-⋅⋅=, 所以8BD =,所以2221cos 22AB BD AD ABD AB BD +-∠==⋅,又AB BC ⊥,所以1sin cos 2CBD ABD ∠=∠=,0,2CBD π⎛⎫∠∈ ⎪⎝⎭,所以cos 2CBD ∠==, 所以()sin sin sin cos cos sin BDC BCD CBD BCD CBD BCD CBD ∠=∠+∠=∠∠+∠∠1222=-=, 在BCD △中,由正弦定理得sin sin BC BD BDC BCD ===∠∠,所以)41BC BDC =∠==.故答案为:)41.【点睛】本题考查了正弦定理和余弦定理解三角形的应用,考查了三角恒等变换的应用及运算求解能力,属于中档题.19.【解析】等比数列首项为第二项为故是首项为公比为的等比数列所以所以其前项和为时为【点睛】本小题主要考查等比数列通项公式的求法考查利用裂项求和法求数列的前项和题目给定一个数列为等比数列并且给出和也就是要 解析:1516【解析】等比数列首项为1123a =,第二项为2169a =,故是首项为13,公比为13的等比数列.所以()21111333n n n nn a -+=⋅=,所以211131n n a n n n n ==-++,其前n 项和为111n -+,15n =时,为11511616-=. 【点睛】本小题主要考查等比数列通项公式的求法,考查利用裂项求和法求数列的前n 项和.题目给定一个数列()2n n n a +为等比数列,并且给出1a 和2a ,也就是要用这两项求得给定数列的第一和第二项,根据前两项求得等比数列的通项公式,由此得到211131n n a n n n n ==-++,利用裂项求和法求得数列的前n 项和. 20.【分析】本题先用表示再建立方程组解题即可【详解】解:∵是等比数列∴∵∴解得:故答案为:【点睛】本题考查等比数列的基本量法是基础题 解析:12【分析】本题先用1a ,q 表示2a ,5a ,再建立方程组21451412a a q a a q ==⎧⎪⎨==⎪⎩解题即可. 【详解】解:∵ {}n a 是等比数列,∴ 21a a q =,451a a q∵24a =,512a =,∴ 21451412a a q a a q ==⎧⎪⎨==⎪⎩,解得:1812a q =⎧⎪⎨=⎪⎩, 故答案为:12. 【点睛】本题考查等比数列的基本量法,是基础题.三、解答题21.(1)最多75人;(2)存在,{}7m ∈. 【分析】(1)根据题意直接列出不等式可求解; (2)由①可得2125x m ≥+,由②可得100325xm x ≤++,分别利用函数单调性和基本不等式即可求解. 【详解】(1)依题意可得调整后研发人员的年人均投入为()14%x a +⎡⎤⎣⎦万元, 则()()10014%100x x a a -+≥⎡⎤⎣⎦,(0a >) 解得075x ≤≤,4575x ,所以调整后的技术人员的人数最多75人;(2)①由技术人员年人均投入不减少有225x a m a ⎛⎫-≥ ⎪⎝⎭,解得2125xm ≥+. ②由研发人员的年总投入始终不低于技术人员的年总投入有()()210014%25x x x a x m a ⎛⎫-+≥-⎡⎤ ⎪⎣⎦⎝⎭, 两边同除以ax 得1002112525x x m x ⎛⎫⎛⎫-+≥- ⎪⎪⎝⎭⎝⎭,整理得100325xm x ≤++, 故有2100132525x x m x +≤≤++,因为10033725x x ++≥=,当且仅当50x =时等号成立,所以7m ≤, 又因为4575x ≤≤,当75x =时,225x取得最大值7,所以7m ≥, 77m ∴≤≤,即存在这样的m 满足条件,使得其范围为{}7m ∈.【点睛】本题考查不等式的应用,解题的关键是正确理解题中数量关系,建立正确的不等式,进而求解. 22.(1)223x x ⎧⎫-<<⎨⎬⎩⎭;(2)13m =,112a =-.【分析】(1)当2a =时,不等式为23440x x -++>,即23440x x --<,利用一元二次不等式求解.(2)根据不等式的解集为()4,m -,则由4-,m 为方程23240x ax -++=的两根求解. 【详解】(1)当2a =时,不等式为23440x x -++>, 所以23440x x --<, 所以()23203x x ⎛⎫+-< ⎪⎝⎭, 解得223x -<<, 所以不等式23440x x -++>的解集为223x x ⎧⎫-<<⎨⎬⎩⎭; (2)由已知得4-,m 为方程23240x ax -++=的两根,则有243a m -+=--且443m -=-, 解得13m =,112a =-.【点睛】本题主要考查一元二次不等式的解法以及一元二次不等式与一元二次方程的关系,属于中档题. 23.(1)3A π=;(2)6.【分析】(1)根据cos cos 2cos b A a B c A +=,利用正弦定理,结合两角和的正弦公式得到()sin 2sin cos A B C A +=,又A B C π+=-,由sin 2sin cos C C A =求解;(2)根据3A π=,ABC 4bc =,再结合余弦定理求得b c +即可. 【详解】(1)因为cos cos 2cos b A a B c A += 所以sin cos sin cos 2sin cos B A A B C A +=, 所以()sin 2sin cos A B C A +=, 因为A B C π+=-, 所以sin 2sin cos C C A =, 因为sin 0C ≠, 所以1cos 2A =.因为0A π<<, 所以3A π=.(2)因为3A π=,ABC所以1sin 23ABC S bc π==△ 解得4bc =,由余弦定理2222cos a b c bc A =+-, 得()22243b c bc b c bc =+-=+-, 所以4b c +=, 所以6a b c ++=. 所以ABC 的周长为6. 【点睛】方法点睛:(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(2)解题中注意三角形内角和定理的应用及角的范围限制. 24.(1)3π;(2. 【分析】(1)利用正弦定理把sin cos b A B =化为sin sin cos A B A B =,从而可得tan B =B ; (2)由于4AD CD =,所以51ABC BCDSAC SDC ==,从而可得ABC 的面积为用三角形面积公式可得8ac =,而由sin 4sin C A =得 4c a =,从而可求出,a c 的值,再利用余弦定理可求出b 的值. 【详解】解:(1) ∵sin cos b AB =,∴sin sin cos A B A B=, ∴tan B = ∵()0,B π∈ ∴3B π=;(2)依题意可知:51ABC BCDSAC SDC ==,∵BCD △的面积为5,∴ABC 的面积为∵ABC的面积为1sin 2S ac B ==∴8ac =,∵sin 4sin C A =,∴4c a =,c =a =∴b == 25.(1)21n a n =-;(2)2332n nn S +=-. 【分析】(1)利用已知条件列出关于首项与公差的方程组,解方程组即得数列{}n a 的通项公式;(2)先由(1)得到n n n a 2n 122-=,再利用错位相减法求和即可. 【详解】(1)设等差数列{}n a 的公差为d ,由已知得()()121223412a a a a a a +=⎧⎨+++=⎩,即122348a a a a +=⎧⎨+=⎩,所以()()()1111428a a d a d a d ⎧++=⎪⎨+++=⎪⎩,解得112a d =⎧⎨=⎩,所以21n a n =-. (2)由(1)得n n n a 2n 122-=, 所以1212321223212n n n n n S ---=++⋯++,① 231123212222213n n n n n S +--=++⋯⋯++,② -①②得:21111112132322222222n n n n n n S ++-+⎛⎫=+⨯+⋯+-=- ⎪⎝⎭, 所以2332n nn S +=-. 【点睛】易错点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.26.(1)21n a n =-;(2)()12326n n T n +=-⨯+.【分析】(1)由等差数列的前n 项和公式,等比数列的性质列出关于1a 和d 的方程组,解方程组后可得通项公式n a ;(2)由等差数列通项公式求得2log n b 后得n b ,然后由错位相减法求得和n T . 【详解】(1)设{}n a 公差为d ,则()()11211154525122124n a d a a n d a d a a d ⨯⎧+==⎧⎪⇒⇒=-⎨⎨=⎩⎪+=+⎩. (2)由题意2log 11(1)n b n n =+⨯-=,2n n b ∴=()2323252212n n T n =+⨯+⨯++-⨯,(1) ()2341223252212n n T n +=+⨯+⨯++-⨯,(2)(1)-(2)得:2312222222(21)2n n n T n +-=+⨯+⨯++⨯--⨯118(12)2(21)212n n n -+-=+--⨯-,()12326n n T n +=-⨯+.【点睛】本题考查求等差数列的通项公式,错位相减法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.。

【浙教版】高中数学必修五期末试题(带答案)

【浙教版】高中数学必修五期末试题(带答案)

一、选择题1.己知x ,y 满足()2403300220x y x y a x ay -+≥⎧⎪--≤>⎨⎪+-≥⎩,且22z x y =+,若z 的最大值是其最小值的654倍,则a 的值为( ) A .1B .2C .3D .42.设x ,y R +∈,1x y +=,求14x y+的最小值为( ). A .2B .4C .8D .93.已知x ,y 满足约束条件1,2,30,x x y x y ≥⎧⎪+≤⎨⎪-≤⎩若2x y m +≥恒成立,则m 的取值范围是( )A .3m ≥B .3m ≤C .72m ≤D .73m ≤4.不等式112x x ->+的解集是( ). A .{}|2x x <-B .{}|21x x -<<C .{}|1x x <D .{}|x x ∈R5.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若()sin sin sin c C a A b a B =+-,角C 的角平分线交AB 于点D,且CD =,3a b =,则c 的值为( )A .72BC .3 D.6.已知ABC 的内角,,A B C 所对的边分别为,,a b c ,若tan tan 1tan tan B C B C +=-⋅,且2bc =,则ABC 的面积为( )A.BC.4 D.27.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若角A 、B 、C 成等差数列,且2sin 2csin csin 2sin a A C a B b B +=+,则ABC 的面积的最大值为( ) A.BC.D.8.从某电视塔的正东方向的A 处,测得塔顶仰角是60°;从电视塔的西偏南30°的B 处,测得塔顶仰角为45°,A 、B 间距离是35m ,则此电视塔的高度是( ) A .35mB .10mC .490013m D.9.在等比数列{}n a 中,有31598a a a =,数列{}n b 是等差数列,且99b a =,则711b b +等于( ) A .4B .8C .16D .2410.在正项等比数列{}n a 中,若3788a a a =,2105a a +=,则公比q =( ) A .122B .122或1212⎛⎫ ⎪⎝⎭C .142D .142或1412⎛⎫ ⎪⎝⎭11.已知等差数列{}n a 的首项为1a ,公差为d ,其前n 项和为n S ,若直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称,则数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为( )A .1011B .910C .89D .212.在1和19之间插入个n 数,使这2n +个数成等差数列,若这n 个数中第一个为a ,第n 个为b ,当116a b+取最小值时,n 的值是( ) A .4B .5C .6D .7二、填空题13.已知函数2()4f x x =+,()g x ax =,当[]1,4x ∈时,()f x 的图象总在()g x 图象的上方,则a 的取值范围为_________.14.已知关于x 的一元二次不等式220bx x a -->的解集为{}(,,)xx c a b c R ≠∈∣,则228(0)a b b c b c+++≠+的最小值是___________.15.如图,研究性学习小组的同学为了估测古塔CD 的高度,在塔底D 和A ,B (与塔底D 同一水平面)处进行测量,在点A ,B 处测得塔顶C 的仰角分别为45︒和30,且A ,B 两点相距127m ,150ADB ∠=︒,则古塔CD 的高度为______m .16.已知二次函数2()f x ax bx c =++,满足940a c -<,对任意的x ∈R 都有()0f x >恒成立,则12(2)2(1)(0)⎛⎫ ⎪⎝⎭-+f f f f 的取值范围是_________.17.已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,且cos cos sin b C c B a A +=,则A =________.18.如图,在ABC 中,点D 是边BC 上的一点,1DC =,2AC =,3BD =,120BAD ∠=︒,则AB 的长为________.19.已知下列结论:①若数列{}n a 的前n 项和21n S n =+,则数列{}n a 一定为等差数列.②若数列{}n a 的前n 项和21nn S =-,则数列{}n a 一定为等比数列.③非零实数,,a b c 不全相等,若,,a b c 成等差数列,则111,,a b c 可能构成等差数列. ④非零实数,,a b c 不全相等,若,,a b c 成等比数列,则111,,a b c一定构成等比数列. 则其中正确的结论是_______.20.数列{}n a 满足11a =,()*132n n a a n n N ++=+∈,则{}n a 的通项公式为n a =________.三、解答题21.已知函数2()()f x x ax a R =-∈. (1)若2a =,求不等式()3f x ≥的解集;(2)若[1,)x ∈+∞时,2()2f x x ≥--恒成立,求a 的取值范围.22.已知圆22:4210C x y x y +---=. (1)求y 轴被圆C 所截得的线段的长;(2)过圆C 圆心的直线与两坐标轴在第一象限内围成的三角形面积为S ,求S 的最小值.23.a ,b ,c 分别为锐角ABC 内角A ,B ,C 的对边.已知2sin (2sin sin )(2sin sin )a A B C b C B c =-+-.(1)求A ;(2)若2c =,试问b 的值是否可能为5?若可能,求ABC 的周长;若不可能,请说明理由.24.在ABC 中,,,A B C 的对边分别为,,a b c 且2cos cos cos b B a C c A =+. (1)求B 的值;(2)求22sin cos()A A C +-的范围. 25.已知数列{}n a 满足:121(21)n n n a q ---=,224224231(N )22n n n n n a a a *++⋅⋅⋅+=+∈. (Ⅰ)求2n a ; (Ⅱ)若7553q <<,求数列{}n a 的最小项. 26.已知正项数列{}n a 、{}n b ,记数列{}n a 的前n 项和为n S ,若1143a b +=,21n n S a +=,2211(1)0n n n n nb b b n b ----+=(1)求数列{}n a 、{}n b 的通项公式; (2)求数列{}2n n a b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】作出不等式组表示的图象,22z x y =+可看作可行域内的点到原点距离的平方,由图可观察出最远的点和最近的点,分别求出距离做比值列出等式可得答案. 【详解】根据不等式组作出图象,则阴影部分即为可行域,由240330x y x y -+=⎧⎨--=⎩解得23x y =⎧⎨=⎩,即(2,3)A ,220x ay +-≥恒过(1,0)且0a >,因为22z x y =+, z 的几何意义是可行域内的点到原点距离的平方,由图点(2,3)A 到原点的距离的平方最大,22max 2313z =+=,z 的最小值为原点到直线BC 的距离的平方,2min244z a ⎛⎫==+, 根据题意可得maxmin21365444z z a ==+,整理得245a +=,解得1a =或1a =-(舍去). 故选:A. 【点睛】本题考查简单的线性规划问题,关键点是作出可行域,利用z 的几何意义确定点,考查了数形结合思想,属于基础题.2.D解析:D 【分析】由“1”有代换利用基本不等式可得最小值. 【详解】因为x ,y R +∈,1x y +=,所以14144()559x y x y x y x y y x ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4x y y x =,即12,33x y ==时,等号成立.故选:D . 【点睛】易错点睛:本题考查用基本不等式求最小值.解题关键是利用“1”的代换凑配出定值.用基本不等式求最值必须满足三个条件:一正二定三相等.特别是相等这个条件常常会不满足,因此就不能用基本不等式求得最值.3.D解析:D 【详解】作出满足约束条件1,2,30,x x y x y ≥⎧⎪+≤⎨⎪-≤⎩的可行域如图所示:平移直线20x y +=到点1(1,)3A 时,2x y +有最小值为73∵2x y m +≥恒成立 ∴min (2)m x y ≤+,即73m ≤ 故选D点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.4.A解析:A 【解析】分析:首先对原式进行移项、通分得到302x ->+,之后根据不等式的性质可得20x +<,从而求得不等式的解集.详解:将原不等式化为1202x x x --->+,即302x ->+, 即302x <+,则有20x +<,解得2x <-, 所以不等式102x x ->+的解集为{}|2x x <-,故选A. 点睛:该题是一道关于求不等式解集的题目,解答该题的关键是熟练掌握分式不等式的解法,属于简单题目.5.B解析:B 【分析】利用正弦定理边角互化以及余弦定理求出角C 的值,由ABC ACD BCD S S S =+△△△可得出ab a b =+,结合3a b =可求得a 、b 的值,再利用余弦定理可求得c 的值. 【详解】()sin sin sin c C a A b a B =+-,由正弦定理可得()22c a b a b =+-,可得222a b c ab +-=,由余弦定理可得:2221cos 22a b c C ab +-==,0C π<<,所以3C π=,由ABC ACD BCD S S S =+△△△,有111sin sin sin 232626ab a CD b CD πππ=⋅+⋅,得ab a b =+,所以234b b =,0b >,43b ∴=,34a b ==, 由余弦定理可得221616471692cos 3c a b ab C =+--==+. 故选:B. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.6.D解析:D 【分析】由两角和的正切公式可得()tan 1B C +=,即可得到34A π=,然后由面积公式可得结果. 【详解】因为tan tan 1tan tan B C B C +=-⋅,即()tan 1B C +=,在ABC 中,所以tan 1A =-,即34A π=,所以2sin 2A =,所以1122sin 22222ABCSbc A ==⨯⨯=. 故选:D .本题考查三角形的面积公式的应用,考查两角和的正切公式,属于基础题.7.B解析:B 【分析】由等差数列性质得3B π=,应用正弦定理边角转换、余弦定理由已知可求得三角形外接圆半径R ,从而边,a c 可用角表示,最后用角表示出三角形面积,结合三角函数恒等变换、正弦函数性质得出最大值. 【详解】∵角A 、B 、C 成等差数列,∴2B A C =+, 又A B C π++=,∴3B π=,23C A π=-,2(0,)3A π∈,由正弦定理2sin sin sin a b c R A B C===得sin ,sin ,sin 222a b c A B C R R R ===, ∵2sin 2csin csin 2sin a A C a B b B +=+,∴2sin 2sin 2sin 2a A c Cb B ac +-=,即222a b c R R R +-=2222cos a c b ac BR R+-==,∴R =又由正弦定理得2sin ,33a R A A c C ===,∴112sin sin sin()2233ABC S ac B A C A A △ππ==⨯=-21sin )cos 2sin )2A A A A A A =+=+21cos 2)3A A =+-)363A π=-+,∵2(0,)3A π∈,∴3A π=时,sin(2)16A π-=,即ABCS += 故选:B . 【点睛】本题以我们熟知的三角形为背景,探究的是三角形面积的最大值,结合等差数列的性质,利用正弦定理进行边角转换,考查目的是让考生发现、揭示问题本质的关联点,从而有效的激发考生学习兴趣,本题同时考查了考生的逻辑推理能力、直观想象能力,本题属于中档题.8.D解析:D设塔底为O ,设塔高为h ,根据已知条件求得,OA OB 的长,求得AOB ∠的大小,利用余弦定理列方程,解方程求得h 的值. 【详解】设塔底为O ,设塔高为h ,由已知可知3,3OA h OB h ==,且150AOB ∠=,在三角形AOB 中,由余弦定理得22233352cos150h h h h ⎛⎫=+-⨯⨯⨯ ⎪ ⎪⎝⎭,解得521h m =.故选D.【点睛】本小题主要考查解三角形的实际应用,考查利用余弦定理解三角形,属于基础题.9.C解析:C 【分析】根据等比数列性质求得9a ,再由等差数列性质求解. 【详解】∵{}n a 是等比数列,∴2931598a a a a ==,90a ≠,所以98a =,即998b a ==,∵{}n b 是等差数列,所以7119216b b b +==. 故选:C .关键点点睛:本题考查等差数列和等比数列的性质,掌握等差数列和等比数列的性质是解题关键,设,,,m n p l 是正整数,m n p l +=+,若{}n a 是等差数列,则m n p l a a a a +=+,若{}n a 是等比数列,则m n p l a a a a =.p l =时,上述结论也成立.10.D解析:D 【分析】由等比数列的性质可得出关于2a 、10a 的方程组,进而可求得等比数列{}n a 的公比. 【详解】由3788a a a =得()326753111168a q a q a q a q a ⋅⋅===,即62a =.22106()4a a a ∴==,又2105a a +=,解得21014a a =⎧⎨=⎩或21041a a =⎧⎨=⎩,0q >,11181084242a q a ⎛⎫∴=== ⎪⎝⎭或1111884104211242a q a -⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D. 【点睛】关键点点睛:本题的解题关键就是利用等比数列下标和的性质建立有关2a 、10a 的方程组,通过求出2a 、10a 的值,结合等比数列的基本量来进行求解.11.A解析:A 【分析】由题意可知,直线112y a x m =+与直线0x y d +-=垂直,且直线0x y d +-=过圆心,可求得1a 和d 的值,然后利用等差数列的求和公式求得n S ,利用裂项法可求得数列1n S ⎧⎫⎨⎬⎩⎭的前10项和. 【详解】 由于直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称, 则直线112y a x m =+与直线0x y d +-=垂直,直线0x y d +-=的斜率为1-,则1112a =,可得12a =, 且直线0x y d +-=过圆()2221x y -+=的圆心()2,0,则20d -=,可得2d =,()()112212n a a n d n n ∴=+-=+-=,则()()()122122n n n a a n n S n n ++===+,()111111n S n n n n ∴==-++, 因此,数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为1111111110112233410111111⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:A. 【点睛】本题考查裂项求和,同时也考查了直线与圆的综合问题,以及等差数列求和公式的应用,考查计算能力,属于中等题.12.B解析:B 【分析】设等差数列公差为d ,可得20a b +=,再利用基本不等式求最值,从而求出答案. 【详解】设等差数列公差为d ,则119a d b d =+=-,,从而20a b +=, 此时0d >,故0,0a b >>,所以11616()()1161725b a a b a b a b ++=+++≥+=, 即116255204a b +=,当且仅当16b aa b =,即4b a =时取“=”, 又1,19a d b d =+=-,解得3d =,所以191(1)3n =++⨯,所以5n =, 故选:B . 【点睛】本题主要考查数列和不等式的综合运用,需要学生对所学知识融会贯通,灵活运用.二、填空题13.【分析】由参变量分离法可得知不等式对任意的恒成立利用基本不等式求出的最小值即可得出实数的取值范围【详解】由题意可得则从而有由基本不等式可得当且仅当时等号成立所以因此实数的取值范围是故答案为:【点睛】 解析:(),4-∞【分析】由参变量分离法可得知,不等式4a x x<+对任意的[]1,4x ∈恒成立,利用基本不等式求出4x x+的最小值,即可得出实数a 的取值范围. 【详解】由题意可得[]1,4x ∀∈,则24x ax +>,从而有4a x x<+,由基本不等式可得44x x +≥=,当且仅当2x =时,等号成立,所以,4a <. 因此,实数a 的取值范围是(),4-∞. 故答案为:(),4-∞. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.14.【分析】根据一元二次不等式的解集求得的关系再根据均值不等式求得最小值【详解】因为的解集为得得又所以所以由均值不等式得所以当时取等号故的最小值是故答案为:【点睛】用均值不等式解最值问题是本题的解题关键点 解析:【分析】根据一元二次不等式的解集求得,,a b c 的关系,再根据均值不等式求得最小值. 【详解】因为220bx x a -->的解集为{}(,,)xx c a b c R ≠∈∣,得0b >,440ab ∆=+=,得1ab =-,又1c b=,所以a c =-,所以0b c +>,由均值不等式得2b c +≥=, 所以()()22222228688b c bc b c a b c b b c b c b c b c+-+++++++===++++ ()6b cb c =++≥+,当b c +=228a b b c+++的最小值是故答案为:【点睛】用均值不等式解最值问题是本题的解题关键点.15.12【分析】设用表示出在中由余弦定理列方程求出【详解】由题意知:平面设则在中由余弦定理得:即解得故答案为:12【点睛】此题考查了余弦定理以及特殊角的三角函数值熟练掌握余弦定理是解本题的关键属于中档题解析:12 【分析】设CD h =,用h 表示出,AD BD ,在ABD △中,由余弦定理列方程求出h . 【详解】由题意知:CD ⊥平面,45,30,150,,ABD DAC DBC ADB AB ∠=︒∠=︒∠=︒= 设CD h =,则,AD CD h BD ====,在ABD △中,由余弦定理得:2222cos AB AD BD AD BD ADB =+-⋅⋅∠即(222233h h h =++,解得12h m =故答案为:12 【点睛】此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键,属于中档题.16.【分析】用abc 把各函数值表示出来再由已知条件得到abc 之间的关系进而得到不等式恒成立即可求范围【详解】∵∴又由二次函数对任意的都有恒成立知:而∴故∴令即∴若有即可而在上无最大值无最小值但∴故答案为解析:1(,)2+∞【分析】用a 、b 、c 把各函数值表示出来,再由已知条件得到a 、b 、c 之间的关系,进而得到不等式恒成立,即可求范围 【详解】 ∵1(0),(),(1),(2)42242a bf c f c f a b c f a b c ==++=++=++ ∴1()2412242(2)2(1)(0)422()884a b f ca b c b c f f f a b c a b c c a a+++++===+-+++-+++ 又由二次函数2()f x ax bx c =++对任意的x ∈R 都有()0f x >恒成立知:2400b ac a ⎧∆=-<⎨>⎩,而940a c -<∴94c b a -<<>,故b a -<<∴2242c b c c a a a ++>>-32t => 即22222422t t b c t t a ++>>-∴22111211()()228422b c t t a ++>+>-,若221111()(),()()2222f t tg t t =+=- 有max min 12()()84b c f t g t a +>+>即可,而在3,2()t ∈+∞上()f t 无最大值,()g t 无最小值但31()()22g t g >=∴1()12(2)2(1)(0)2f f f f >-+故答案为:1(,)2+∞ 【点睛】本题考查了一元二次函数、一元二次不等式以及一元二次方程根与系数关系,首先由各函数值的表达式代入目标式并化简,再由一元二次方程根与系数关系确定系数间的不等关系,进而构造一元二次函数,根据不等式恒成立,求目标式范围17.【分析】根据正弦定理把已知等式中的边转化为角的正弦利用两角和公式化简求得的值进而求得【详解】由于为三角形内角可得故答案为:【点睛】本题主要考查正弦定理的应用解题的关键是利用正弦定理把等式中的边转化为解析:2π 【分析】 根据正弦定理把已知等式中的边转化为角的正弦,利用两角和公式化简求得sin A 的值进而求得A . 【详解】cos cos sin b C c B a A +=,2sin cos sin cos sin()sin sin B C C B B C A A ∴+=+==,sin 0A ≠, sin 1A ∴=,∴由于A 为三角形内角,可得2A π=.故答案为:2π. 【点睛】本题主要考查正弦定理的应用.解题的关键是利用正弦定理把等式中的边转化为角的正弦.18.【分析】在两个三角形中利用余弦定理建立等量关系式整理得出结合题中所给的条件利用余弦定理建立等量关系式求得结果【详解】因为所以可得在△中所以整理得出所以所以故答案为:【点睛】该题考查的是有关解三角形的解析:7【分析】在两个三角形中,利用余弦定理,建立等量关系式,整理得出2AB AD =,结合题中所给的条件,利用余弦定理建立等量关系式,求得结果. 【详解】因为cos cos ADB ADC ∠=-∠,所以2229142321AD AB AD AD AD+-+-=-⨯⨯⨯⨯,可得2AB AD =, 在△ABD 中,2222cos BD AD AB AD AB BAD =+-⨯⨯∠,所以22192()422AB AB AB AB =+-⨯⨯⨯-,整理得出2794AB =,所以2367AB =,所以AB =,. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理解三角形,属于简单题目.19.②④【分析】①先求出再当时求出判断当时有判断①错误;②先求出再当时求出判断数列是以1为首项以2为公比的等比数列判断②正确;③先建立方程组再整理得与非零实数不全相等矛盾判断③错误;④先得方程整理得判断解析:②④ 【分析】①先求出12a =,再当2n ≥时求出21n a n =-,判断当1n =时有11n a a =≠,判断①错误;②先求出11a =,再当2n ≥时求出12n na ,判断数列{}n a 是以1为首项以2为公比的等比数列,判断②正确;③先建立方程组2112a c b a c ac a c b +⎧=+=⎪⎨⎪+=⎩,再整理得a b c ==与非零实数,,a b c 不全相等矛盾,判断③错误;④先得方程2b ac =,整理得2111()b a c =⨯,判断④正确. 【详解】①:数列{}n a 的前n 项和21n S n =+, 当1n =时,211112a S ==+=,当2n ≥时,221(1)(1)121n n n a S S n n n -⎡⎤=-=+--+=-⎣⎦,当1n =时,11n a a =≠,故①错误;②:数列{}n a 的前n 项和21nn S =-, 当1n =时,111211a S ==-=,当2n ≥时,111(21)(21)2n n n n n n a S S ---=-=---=,当1n =时,11n a a ==,且12nn a a -= 所以数列{}n a 是以1为首项,以2为公比的等比数列, 故②正确;③:若111,,a b c是等差数列,则211a c b a c ac+=+=, 因为,,a b c 成等差数列,则2a c b +=,则2112a cb ac ac a c b +⎧=+=⎪⎨⎪+=⎩,整理得a b c ==,与非零实数,,a b c 不全相等矛盾, 故③错误;④:因为非零实数,,a b c 不全相等,且,,a b c 成等比数列, 所以2b ac =,则21111b ac a c==⨯, 则111,,a b c一定构成等比数列. 故④正确. 故答案为:②④. 【点睛】本题考查等差数列和等比数列的判断,是基础题.20.【分析】先根据条件得隔项成等差数列再根据等差数列通项公式得结果【详解】相减得所以当为奇数时当为偶数时因此故答案为:【点睛】本题考查等差数列通项公式根据递推关系求通项公式考查基本分析求解能力属中档题解析:()*31,21232,22n n k k N n n k -⎧=-⎪⎪∈⎨+⎪=⎪⎩ 【分析】先根据条件得隔项成等差数列,再根据等差数列通项公式得结果. 【详解】1+12323(1)2n n n n a a n a a n +++=+∴+=++相减得23n n a a +-=所以当n 为奇数时,111313(1)13(1)222n n n n a a ++-=+-=+-= 当n 为偶数时,2323(1)513(1)222n n nn a a +=+-=-+-=因此n a =()*31,21232,22n n k k N n n k -⎧=-⎪⎪∈⎨+⎪=⎪⎩ 故答案为:()*31,21232,22n n k k N n n k -⎧=-⎪⎪∈⎨+⎪=⎪⎩ 【点睛】本题考查等差数列通项公式、根据递推关系求通项公式,考查基本分析求解能力,属中档题.三、解答题21.(1){|1x x ≤-或3}x ≥;(2)(,4]-∞. 【解析】试题分析:(1)先对不等式移项并因式分解得()()310x x -+≥,再根据不等号方向得不等式解集,(2)先化简不等式,并分离12a x x ⎛⎫≤+⎪⎝⎭,转化为求对应函数最值:()min a h x ≤,其中()12h x x x⎛⎫=+ ⎪⎝⎭,再根据基本不等式求()h x 最值,即得a 的取值范围. 试题(1)若()2,3a f x =≥即()()2230,310x x x x --≥-+≥所以原不等式的解集为{|1x x ≤-或3}x ≥ (2)()22f x x ≥--即12a x x ⎛⎫≤+⎪⎝⎭在[)1,x ∈+∞时恒成立, 令()12h x x x ⎛⎫=+ ⎪⎝⎭,等价于()min a h x ≤在[)1,x ∈+∞时恒成立, 又()124h x x x ⎛⎫=+≥= ⎪⎝⎭,当且仅当1x x =即1x =等号成立,所以4a ≤. 故所求a 的取值范围是(],4-∞.22.(1)2)4 【分析】(1)将0x =代入22:4210C x y x y +---=可得2210y y --=,将线段长为12y y -=和韦达定理相结合即可得出结果;(2)设:1(,0)x yl a b a b +=>,由直线过圆心可得211a b=+,利用基本不等式可得8ab ≥,最后根据三角形面积公式即可得出结果. 【详解】(1)设圆22:4210C x y x y +---=与y 轴的交点为()10y ,,()20,y , 将0x =代入22:4210C x y x y +---=可得2210y y --=, 即122y y +=,121y y ⋅=-,所以y 轴被圆C 所截得的线段的长为12y y -==(2)设:1(,0)x yl a b a b +=>,由于l 过(2,1)C ,∴211a b=+,利用基本不等式,得2118ab a b =+≥≥,∴142S ab =≥, 即S 的最小值为4, 此时4,2a b ==,:142x yl +=,即:240l x y +-= 【点睛】本题主要考查了直线截圆所得弦长问题,直线截距式的应用,利用基本不等式求最值,属于中档题. 23.(1)3A π=;(2)不可能,理由见解析.【分析】(1)由正弦定理化角为边,再由余弦定理即可求出; (2)由余弦定理得出cos 0B <,得出B 为钝角,与已知矛盾. 【详解】解:(1)因为2sin (2sin sin )(2sin sin )a A B C b C B c =-+-, 由正弦定理可得22(2)(2)a b c b c b c =-+-,即222a b c bc =+-. 再由余弦定理得2222cos a b c bc A =+-,所以1cos 2A =. 因为(0,)A π∈,所以3A π=.(2)假设5b =,则由余弦定理,得2222cos 19a b c bc A =+-=,所以22219425cos 022a c b B ac ac+-+-==<,所以B 为钝角,这与ABC 为锐角三角形矛盾, 故b 的值不可能为5.24.(1)3B π=;(2)1(,12-. 【分析】(1)根据等差数列的性质可知cos cos 2cos a C c A b B +=,利用正弦定理把边转化成角的正弦,化简整理得sin 2sin cos B B B =,求得cos B ,进而求得B ;(2)先利用二倍角公式及辅助角对原式进行化简整理,进而根据A 的范围和正弦函数的单调性求得()2sin cos A A C 2+-的范围.【详解】因为2cos cos cos b B a C c A =+由正弦定理得, 2sin cos sin cos sin cos B B A C C A =+即:()sin 2sin cos A C B B +=,则sin 2sin cos B B B =,因为sin 0B ≠ 所以1cos 2B =,又0B π<< 得3B π=(2)∵3B π=,∴23A C π+=∴2222sin cos()2sin cos(2)3A A C A A π+-=+-=131cos 2cos 2212cos 222A A A A A --+=-=1)3A π-,∵203A π<<,233A πππ-<-<∴sin(2)13A π<-≤则()2sin cos A A C 2+-的范围为1,12⎛- ⎝ 【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.25.(Ⅰ)2231n n a n =-;(Ⅱ)25q . 【分析】(Ⅰ)设数列22n n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,利用122n n n n S S a -=-可求2n a .(2)讨论{}2-1n a 的单调性后可求数列{}21n a -的最小项,结合223n a >可求数列{}n a 的最小项. 【详解】解:(Ⅰ)设数列22n n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,即23122n S n n =+,∴2131(1)(1)22n S n n -=-+-.则12231(2)n n n n S S n n a -=-=-≥, 故()22231n na n n =≥-,当1n =,21a =,也符合此式, ∴2231n na n =-. (Ⅱ)222223313313n n a n n ==+>--. 考虑奇数项,∵12121n n q a n --=-,∴[]112121(21)(21)2121(21)(21)n n n n n q q n n q q a a n n n n --+---+-=-=+-+-()()()111121(21)(21)(21)(21)2222n n q n q q q q q n n n q n n --⎡⎤-+----==+⎢⎥-⎡⎤⎣⎦+⎦-⎣-,又()1112121q q q +=+--,∵7553q <<,得()112,321q +∈-,而220q ->, ∴当2n ≤时,2121n n a a +-<,当3n ≥时,2121n n a a +->,即奇数项中5a 最小.而25252593n q a a =<<<,所以数列{}n a 的最小项为255q a =. 【点睛】思路点睛:数列的最大项最小项,一般根据数列的单调性来处理,如果数列是分段数列,则可以分别讨论各段上的最大项最小项,比较后可得原数列的最大项最小项.26.(1)13n n a =,12n n b +=;(2)151144323n n nn T -+=--⋅⋅ 【分析】 (1)由1n =求得1a ,再風1b ,然后由11n n n a S S ++=-得到数列{}n a 的递推关系,知其为等比数列,从而得通项公式,由n b 的递推关系得1(1)n n nb n b -=+,用累乘的方法求得n b ;(2)用错位相减法求和n T .【详解】(1)由题意知:1111221S a a a +=+=,113a =,∴11413b a =-=, ∵1121,21n n n n S a S a +++=+= ∴111333n n n n a a q a +=⇒=⇒= 又∵()[]11(1)0,0n n n n n b b nb n b b --+⋅-+=> ∴121121131(1)122n n n n n n n b b b n n n nb n b b b b b n n ----++=+⇒⋅=⋅⋅⇒=-(1b 也适合), (2)∵123n n n n a b +=∴2323413333n n n T +=++++ 231123133333n n n n T ++=++++ ∴12311111221111219313333333313n n n n n n n T -++⎛⎫- ⎪++⎝⎭=++++-=+-- 11211113633n n n -++⎛⎫=+-- ⎪⎝⎭ ∴151144323n n nn T -+=--⋅⋅. 【点睛】 本题考查求等比数列的通项公式,累乘法求通项公式,错位相减法求和.数列求和的常用方法:设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和;(2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法;(3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.。

最新高中数学必修五期末试卷及答案

最新高中数学必修五期末试卷及答案

一、选择题1.己知x ,y 满足()2403300220x y x y a x ay -+≥⎧⎪--≤>⎨⎪+-≥⎩,且22z x y =+,若z 的最大值是其最小值的654倍,则a 的值为( )A .1B .2C .3D .4 2.当0x >时,不等式290x mx -+>恒成立,则实数m 的取值范围是( )A .(6)∞-,B .(6]∞-,C .[6)∞,+D .(6)∞,+3.已知实数,x y 满足约束条件5000x y x y y ++≥⎧⎪-≤⎨⎪≤⎩,则241z x y =++的最小值是( )A .14-B .1C .5-D .9-4.已知函数()()log 31a f x x =+-(0a >且1a ≠)的图象恒过定点A ,若点A 在直线40mx ny ++=上,其中0mn >,则12m n+的最小值为( ) A .23B .43C .2D .45.如图,某人在一条水平公路旁的山顶P 处测得小车在A 处的俯角为30,该小车在公路上由东向西匀速行驶7.5分钟后,到达B 处,此时测得俯角为45.已知小车的速度是20km/h ,且33cos 8AOB ∠=-,则此山的高PO =( )A .1 kmB .2 km 2C 3 kmD 2 km6.我国古代数学家刘徽在《九章算术注》中提出割圆术:“割之弥细,所失弥少,割之割,以至于不可割,则与圆合体,而无所失矣”,即通过圆内接正多边形细割圆,并使正多边形的面积无限接近圆的面积,进而来求得较为精确的圆周率.如果用圆的内接正n 边形逼近圆,算得圆周率的近似值记为n π,那么用圆的内接正2n 边形逼近圆,算得圆周率的近似值加2n π可表示成( )A .360sinnnπ︒ B .360cosnnπ︒ C .180cosnnπ︒ D .90cosnnπ︒ 7.在ABC 中,a ,b ,c 分别为内角A ,B ,C所对的边,若b =60B =︒,若ABC 仅有一个解,则a 的取值范围是( )A.({}2⋃B .30,2C .{}30,22⎛⎤⋃ ⎥⎝⎦D .28.已知锐角ABC ,角A ,B ,C 所对的边分别为a ,b ,c ,若22sin sin sin sin B A A C -=⋅,3c =,则a 的取值范围是( )A .2,23⎛⎫⎪⎝⎭B .()1,2C .()1,3D .3,32⎛⎫⎪⎝⎭ 9.已知数列{}n a 为等比数列,若2312a a a ⋅=,且4a 与72a 的等差中项为54,则123n a a a a ⋅⋅⋅⋅⋅的最大值为( ) A .5B .512C .1024D .204810.已知数列{}n a 的前n 项和n S 满足21n n S a =-.若对任意正整数n 都有10n n S S λ+-<恒成立,则实数λ的取值范围为( ) A .(),1-∞B .12⎛⎫-∞ ⎪⎝⎭,C .13⎛⎫-∞ ⎪⎝⎭,D .14⎛⎫-∞ ⎪⎝⎭,11.已知{}n a 是公比为整数的等比数列,设212n nn na ab a -+=,n ∈+N ,且113072b =,记数列{}n b 的前n 项和为n S ,若2020n S ≥,则n 的最小值为( ) A .11B .10C .9D .812.已知数列{}n a 的通项公式为211n aa n n n=-+,5a 是数列{}n a 的最小项,则实数a 的取值范围是( ) A .[40,25]--B .[40,0]-C .[25,0]-D .[25,0]-二、填空题13.若实数a ,b 满足22221a b +=,则22141a b ++的最小值为___________. 14.西气东输工程把西部的资源优势变为了经济优势,实现了气能源需求与供给的东西部衔接,同时该项工程的建设也加快了西部及沿线地区的经济发展.在输气管道工程建设过程中,某段直线形管道铺设需要经过一处平行峡谷,勘探人员在峡内恰好发现一处四分之一圆柱状的圆弧拐角,用测量仪器得到此横截圆面的圆心为O ,半径OM ON =且为1米,而运输人员利用运输工具水平横向移动直线形输气管不可避免的要经过此圆弧拐角,需从宽为38米的峡谷拐入宽为16米的峡谷.如图所示,位于峡谷悬崖壁上的两点A ,B 的连线恰好与圆弧拐角相切于点T (点A ,T ,B 在同一水平面内),若要使得直线形输气管能够顺利地通过圆弧拐角,其长度不能超过______________米.15.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4A π=,22212b c a -=,则tan B =________.16.ABC 内角A ,B ,C 的对边分别为a ,b ,c ,若2222b a c ac +-=,3sin B =,则C =__________. 17.已知正项等比数列{}n a 满足:28516a a a ,35+20a a =,若存在两项,m n a a 使得=32m n a a ,则14m n+的最小值为______ 18.对于ABC ,有如下命题:①若sin2A =sin2B ,则ABC 为等腰三角形; ②若sin A =cos B ,则ABC 为直角三角形; ③若sin 2A +sin 2B +cos 2C <1,则ABC 为钝角三角形; ④若满足C =6π,c =4,a =x 的三角形有两个,则实数x 的取值范围为(4,8). 其中正确说法的序号是_____.19.n S 为等差数列{}n a 的前n 项和,且11a =,621S =,记[]lg n n b a =,其中[]x 表示不超过x 的最大整数,如[]0.90=,[]lg991=,则数列{}n b 的前100项和为________. 20.若等差数列{}n a 中,10a <,n S 为前n 项和,713S S =,则当n S 最小时n =________. 三、解答题21.已知集合(){}2log 421xA x y ==-+∣,1,11B y y x a x x ⎧⎫==++>-⎨⎬+⎩⎭∣. (1)求集合A 和集合B ;(2)若“R x B ∈”是“x A ∈”的必要不充分条件,求a 的取值范围.22.解关于x 的不等式:()2230x a a x a -++>.23.在①()22sin sin sin sin sin A B C B C --=,②sin sin 2B Cb a B +=,③2sin sin 3a B b A π⎛⎫=-⎪⎝⎭这三个条件中任选一个,补充在下面问题中并作答. ABC 的内角A 、B 、C 的对边分别为a 、b 、c2b c +=,______求A 和C .24.已知在△ABC 中,a ∶b ∶c =2∶1),求角A 的大小.25.已知数列{}n a 满足:121(21)n n n a q---=,224224231(N )22n n n n n a a a *++⋅⋅⋅+=+∈. (Ⅰ)求2n a ; (Ⅱ)若7553q <<,求数列{}n a 的最小项. 26.已知数列{}n a 的前n 项和2n S n =.等比数列{}n b 的前n 项和为n T ,公比1q ≠且653222b b b b -=-,430T =.(1)求数列{}n a ,{}n b 的通项公式;(2)记1122n n n Q a b a b a b =++⋯+,是否存在正整数,(1)m k m k <<,使得m Q 是13Q 与k Q 的等差中项?若存在,求出所有m ,k 的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】作出不等式组表示的图象,22z x y =+可看作可行域内的点到原点距离的平方,由图可观察出最远的点和最近的点,分别求出距离做比值列出等式可得答案. 【详解】根据不等式组作出图象,则阴影部分即为可行域,由240330x y x y -+=⎧⎨--=⎩解得23x y =⎧⎨=⎩,即(2,3)A , 220x ay +-≥恒过(1,0)且0a >,因为22z x y =+, z 的几何意义是可行域内的点到原点距离的平方, 由图点(2,3)A 到原点的距离的平方最大,22max 2313z =+=,z 的最小值为原点到直线BC 的距离的平方,2min22444z a a ⎛⎫==++, 根据题意可得max min 21365444z z a ==+,整理得245a +=,解得1a =或1a =-(舍去).故选:A. 【点睛】本题考查简单的线性规划问题,关键点是作出可行域,利用z 的几何意义确定点,考查了数形结合思想,属于基础题.2.A解析:A 【分析】当x >0时,不等式x 2﹣mx +9>0恒成立⇔m <(x 9x+)min ,利用基本不等式可求得(x 9x+)min =6,从而可得实数m 的取值范围. 【详解】当x >0时,不等式x 2﹣mx +9>0恒成立⇔当x >0时,不等式m <x 9x+恒成立⇔m <(x 9x+)min ,当x>0时,x9 x +≥29xx⋅=6(当且仅当x=3时取“=”),因此(x9x+)min=6,所以m<6,故选A.【点睛】本题考查函数恒成立问题,分离参数m是关键,考查等价转化思想与基本不等式的应用,属于中档题.3.A解析:A【分析】求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.【详解】解:作出不等式组50x yx yy++≥⎧⎪-≤⎨⎪≤⎩表示的平面区域,如图所示的阴影部分由241z x y=++可得11244zy x=-+-,则144z-表示直线11244zy x=-+-在y轴上的截距,截距越小,z越小,由题意可得,当11244z y x =-+-经过点A 时,z 最小, 由500x y x y ++=⎧⎨-=⎩可得5522A ⎛⎫-- ⎪⎝⎭,, 此时552411422z =-⨯-⨯+=-,故选:A. 【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.4.C解析:C 【分析】由对数函数的图象得出A 点坐标,代入直线方程得,m n 的关系,从而用凑出基本不等式形式后可求得最小值. 【详解】令31+=x ,2x =-,(2)1f -=-,∴(2,1)A --,点A 在直线40mx ny ++=上,则240m n --+=,即24m n +=, ∵0mn >,24m n +=,∴0,0m n >>,∴12112141(2)442444n m m n m n m n m n ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当4n mm n=,即1,2m n ==时等号成立. 故选:C . 【点睛】本题考查对数函数的性质,考查点在直线上,考查用基本不等式求最小值.是一道综合题,属于中档题.5.A解析:A 【分析】由题意作图可得60APO ∠=,45BPO ∠=,设PO h =,在Rt POA △,Rt POB 中求出AO =,BO h =,在AOB 中,由余弦定理列方程即可求解. 【详解】由题意可知:PO ⊥平面AOB ,903060APO ∠=-=,904545BPO ∠=-=,7.520 2.560AB =⨯=km , 设PO h =,在POA 中,tan AO APO PO ∠=,tan 60AOh=,所以3AO h =, 在POB 中,tan BO BPO PO ∠=,tan 45BOh=,所以BO h =, 在AOB 中,由余弦定理可得:2222cos AB AO BO AO A BO OB =∠+-⨯,所以)2222.5323338h h h h =+-⨯⎛- ⎝⎭⨯,即2252544h =,解得:1h =, 所以山的高1PO =, 故选:A.6.C解析:C 【分析】设圆的半径为r ,由内接正n 边形的面积无限接近圆的面积可得:180180sincosn n n nπ⨯=⨯,由内接正2n 边形的面积无限接近圆的面积可得:2180sinn n nπ⨯=,问题得解. 【详解】设圆的半径为r ,将内接正n 边形分成n 个小三角形, 由内接正n 边形的面积无限接近圆的面积可得:221360sin2r n r n π≈⨯⨯,整理得:1360sin 2n nπ≈⨯⨯, 此时1360sin 2n n n π⨯⨯=,即:180180sin cosn n n nπ⨯=⨯ 同理,由内接正2n 边形的面积无限接近圆的面积可得:2213602sin22r n r n π≈⨯⨯,整理得:13601802sin sin 22n n n nπ≈⨯⨯=⨯此时2180sinnnnπ⨯=所以2180sin180cosnnnnnππ==⨯故选C【点睛】本题主要考查了圆的面积公式及三角形面积公式的应用,还考查了正弦的二倍角公式,考查计算能力,属于中档题.7.A解析:A【分析】根据3b=,60B=︒,由正弦定理得到sin2sinsinb Aa AB==,然后作出函数2sin=y A的图象,将问题转化为y a=与2sin=y A的图象只有一个交点求解.【详解】因为3b=,60B=︒,由正弦定理得sin sina bA B=,所以sin2sinsinb Aa AB==,因为()0,120∈︒A,2sin=y A的图象如图所示:因为ABC仅有一个解,所以y a=与2sin=y A的图象只有一个交点,所以03a<≤2a=,故选:A【点睛】本题主要考查正弦定理的应用以及三角函数的图象的应用,还考查了数形结合的思想方法,属于中档题.8.D解析:D 【分析】由正弦定理可得三边的关系,再由余弦定理可得312cos a B=+,结合三角形为锐角三角形可得a 的取值范围. 【详解】∵22sin sin sin sin B A A C -=⋅, ∴由正弦定理可得22b a ac -=,∵由余弦定理2222cos b a c ac B =+-,可得2222cos a c ac B a ac +-=+, 又3c =,∴可得312cos a B=+,∵锐角ABC 中,若B 是最大角,则B 必须大于 3π,所以,3B ππ⎛⎫∈ ⎪⎝⎭, 所以1cos 02B ⎛⎫∈ ⎪⎝⎭,,所以3,32a ⎛⎫∈ ⎪⎝⎭, 故选:D. 【点睛】本题主要考查三角形的正余弦定理的应用,及锐角三角形的性质,属于中档题.9.C解析:C 【分析】用1a 和q 表示出2a 和3a 代入2312a a a ⋅=求得4a ,再根据3474422a a a a q +=+,求得q ,进而求得1a 到6a 的值,即得解. 【详解】2231112a a a q a q a ⋅=⋅=42a ∴=3474452224a a a a q +=+=⨯12q ∴=,41316a a q ==故1415116()2222n n nn a ---=⨯=⨯=,所以123456116,8,4,2,1,12a a a a a a ======<,所以数列的前4或5项的积最大,且最大值为16842=1024⨯⨯⨯. 故选:C 【点睛】结论点睛:等比数列{}n a 中,如果11,01a q ><<,求123n a a a a ⋅⋅⋅⋅⋅的最大值,一般利用“1交界”法求解,即找到大于等于1的项,找到小于1的项,即得解.10.C解析:C 【分析】先利用1,1,2n nn S n a S S n =⎧=⎨-≥⎩求出数列{}n a 的通项公式,于是可求出n S ,再利用参变量分离法得到1n n S S λ+<,利用数列的单调性求出数列1n n S S +⎧⎫⎨⎬⎩⎭的最小项的值,可得出实数λ的取值范围. 【详解】当1n =时,1121S a =-,即1121a a =-,得11a =;当2n ≥时,由21n n S a =-,得1121n n S a --=-,两式相减得122n n n a a a -=-,得12n n a a -=,12nn a a -∴=,所以,数列{}n a 为等比数列,且首项为1,公比为2,11122n n n a --∴=⨯=. 12122121n n n n S a -∴=-=⨯-=-,由10n n S S λ+-<,得()()11111112121112221212221n nnn n n n S S λ+++++---<===----, 所以,数列1n n S S +⎧⎫⎨⎬⎩⎭单调递增,其最小项为122211213S S -==-,所以,13λ<, 因此,实数λ的取值范围是1,3⎛⎫-∞ ⎪⎝⎭,故选C . 【点睛】本题考查利用数列前n 项和求数列的通项,其关系式为1,1,2n nn S n a S S n =⎧=⎨-≥⎩,其次考查了数列不等式与参数的取值范围问题,一般利用参变量分离法转化为数列的最值问题来求解,考查化归与转化问题,属于中等题.11.B解析:B 【分析】设{}n a 是公比为q ,根据已知条件有1n n n b qq -=+求得2q,数列{}n b 的前n 项和为3(21)n n S =-即2020n S ≥可求n 的最小值【详解】令{}n a 是公比为q ,由212n nn na ab a -+=,n ∈+N ∴1n n n b qq -=+,又113072b =即10113072q q +=,又q Z ∈,知:2q∵{}n b 的前n 项和为n S ,则3(21)nn S =-∴2020n S ≥时,3(21)2020n -≥,n ∈+N 解得10n ≥ 故选:B 【点睛】本题考查了数列,由数列的递推关系及已知条件求公比,进而根据新数列的前n 项和及不等式条件求n 的最小值12.D解析:D 【分析】由题设得到5n a a ≥恒成立,参变分离后可得实数a 的取值范围. 【详解】由题设有5n a a ≥恒成立,故21125555a an n n -+≥-+恒成立即()()()5565a n n n n---≥, 当6n ≥时,有()56a n n ≤-恒成立,故0a ≤, 当14n ≤≤时,有()56a n n ≥-恒成立,故25a ≥-, 当5n =时,a R ∈, 故250a -≤≤. 故选:D. 【点睛】本题考查数列的函数性质:最值问题,此类问题可利用函数的单调性来研究,也可以利用恒成立来研究,本题属于较难题.二、填空题13.6【分析】由条件可得则由均值不等式可得答案【详解】实数满足即所以则当且仅当又即时取得等号故答案为:6【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各解析:6 【分析】由条件可得()22312a b ++=,则()222222142141131a b a b a b ⎛⎫⎡⎤+=⨯+++ ⎪⎣⎦++⎝⎭由均值不等式可得答案. 【详解】实数a ,b 满足22221a b +=,即2212a b +=,所以()22312a b ++=则()222222142141131a b a b a b ⎛⎫⎡⎤+=⨯+++ ⎪⎣⎦++⎝⎭()2222214221455463133b a a b ⎛⎛⎫+=⨯+++≥⨯+=⨯+= ⎪ +⎝⎭⎝ 当且仅当2222141b a a b +=+, 又2212a b +=,即22120a b ⎧=⎪⎨⎪=⎩ 时,取得等号. 故答案为:6 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,这时改用勾型函数的单调性求最值.14.75【分析】设则可得AB 长度的表达式利用凑1法结合基本不等式即可求得答案【详解】设其中延长OM 交AB 于D 过B 做SB 垂线交DO 于G 延长ON 交AB 于E 过A 做SA 垂线交NO 于F 如图所示:在中AF=39则即解析:75 【分析】设=MOT θ∠,则可得AB 长度的表达式,利用凑“1”法,结合基本不等式,即可求得答案. 【详解】设=MOT θ∠,其中(0)2πθ∈,,延长OM ,交AB 于D ,过B 做SB 垂线,交DO 于G ,延长ON ,交AB 于E ,过A 做SA 垂线,交NO 于F ,如图所示:在Rt AEF 中,AEF θ∠=,AF =39,则sin AF AE θ=,即39sin AE θ=, 在Rt BDG 中,DBG θ∠=,17BG =,则cos BG BD θ=,即17cos BD θ=, 在Rt DOE 中, OT DE ⊥,OT=1,所以11,cos sin DO EO θθ==, 又1122DO EO DE OT ⨯⨯=⨯⨯,所以1sin cos DE θθ=, 所以39171()sin cos sin cos AB f AE BD DE θθθθθ==+-=+-=39cos 17sin 1sin cos θθθθ+-, 因为4sin 3cos 5sin()5θθθϕ+=+≤,其中3tan 4ϕ=,当且仅当2πθϕ+=时,等号成立,所以1(4sin 3cos )(39cos 17sin )139cos 17sin 15()sin cos sin cos f θθθθθθθθθθθ++-+-=≥22221(68sin 207sin cos 117cos )(sin cos )5sin cos θθθθθθθθ++-+==2263207112sin sin cos cos 716207555(9tan )sin cos 5tan 5θθθθθθθθ++=++71620729tan 755tan 5θθ≥⨯⨯=, 当且仅当169tan tan θθ=,即4tan 3θ=时等号成立,所以若要使得直线形输气管能够顺利地通过圆弧拐角,其长度不能超过75米. 故答案为:75. 【点睛】解题的关键是根据题意,得到AB 长度的表达式,难点在于需利用凑“1”法,将表达式化简成齐次式,结合基本不等式求解,考查计算化简的能力,属中档题.15.3【分析】由题意结合余弦定理得进而可得再由余弦定理即可求得利用平方关系求得进而求得【详解】由余弦定理可得即又所以所以所以所以所以所以故答案为:3【点睛】本题考查了余弦定理的综合应用考查了同角三角函数解析:3 【分析】由题意结合余弦定理得3c =,进而可得3a =,再由余弦定理即可求得cos 10B =,利用平方关系求得sin 10B =,进而求得sin tan 3cos B B B ==. 【详解】4A π=,∴由余弦定理可得2222cos a b c bc A =+-即222b a c -=-,又22212b a c -=,所以2212c c =-,所以c =, 222222145299a b c b b b =-=-=,所以a =,所以22222258cos 2b b ba cb B ac +-+-===,所以sin B ==, 所以sin tan 3cos BB B==, 故答案为:3. 【点睛】本题考查了余弦定理的综合应用,考查了同角三角函数关系式,考查了运算求解能力与转化化归思想,属于中档题.16.【分析】首先利用余弦定理将题中条件整理得到根据正弦定理可得结合三角形内角的取值范围最后求得结果【详解】内角的对边分别为且整理得所以由正弦定理得整理得因为所以故答案为:【点睛】该题考查的是有关解三角形 解析:6π【分析】首先利用余弦定理将题中条件整理得到cos b C c =,根据正弦定理可得sin tan B C ==,结合三角形内角的取值范围,最后求得结果.ABC 内角A ,B ,C 的对边分别为a ,b ,c ,且2222b a c ac +-=,整理得222cos 22b a c ab ac C +-==,所以cos b C c =, 由正弦定理得sin cos sin B C C =,整理得sin tan B C ==,因为(0,)C π∈,所以6B π=,故答案为:6π. 【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有余弦定理、正弦定理、已知三角函数值求角,属于中档题.17.【分析】由先求出数列的通项公式由找到把乘以1等量代换最后利用均值定理即可求解【详解】解:设正项等比数列的公比为由又所以所以即当且仅当即时取等号则的最小值为故答案为:【点睛】考查等比数列的性质以及用均解析:34【分析】 由28516a a a ,35+20a a =找到12m n +=,把14m n+乘以1,等量代换,最后利用均值定理即可求解. 【详解】解:设正项等比数列{}n a 的公比为()0q q >, 由28516a a a ,255516,16a a a ==,又35+20a a =,所以34a =,25316=4,24a q q a === 5515=1622n n n n a a q ---=⨯=,,所以1110222n m m n a a --==,即12m n +=,14145531212123124m n n m m n m n m n +⎛⎫+=+⋅=++≥+= ⎪⎝⎭ 当且仅当123n mm n=,即4,8m n ==时取等号, 则14m n +的最小值为34故答案为:34.考查等比数列的性质以及用均值定理求最小值,基础题.18.③④【分析】举出反例可判断①②;由同角三角函数的平方关系正弦定理可得再由余弦定理可判断③;由正弦定理可得再由三角形有两个可得且即可判断④;即可得解【详解】对于①当时满足此时△ABC 不是等腰三角形故①解析:③④ 【分析】举出反例可判断①、②;由同角三角函数的平方关系、正弦定理可得222a b c +<,再由余弦定理可判断③;由正弦定理可得8sin x A =,再由三角形有两个可得566A ππ<<且2A π≠,即可判断④;即可得解.【详解】 对于①,当3A π=,6B π=时,满足sin 2sin 2A B =,此时△ABC 不是等腰三角形,故①错误; 对于②,当23A π=,6B π=时,满足sin cos A B =,此时△ABC 不是直角三角形,故②错误;对于③,∵222sin sin cos 1A B C ++<,∴22222sin sin cos sin cos A B C C C ++<+, ∴222sin sin sin A B C +<,∴根据正弦定理得222a b c +<,∵222cos 02a b c C ab+-=<,()0,C π∈,∴C 为钝角,∴△ABC 为钝角三角形,故③正确;对于④,∵,4,6C c a x π===,∴根据正弦定理得481sin sin 2a c A C ===,∴8sin x A =,由题意566A ππ<<,且2A π≠,∴1sin 12A <<,∴48x ,即x 的取值范围为(4,8),故④正确.故答案为:③④. 【点睛】本题考查了三角函数及解三角形的综合应用,考查了运算求解能力,合理转化条件是解题关键,属于中档题.19.92【分析】设的公差为d 由解得则然后由分和三种情况求解【详解】设的公差为d 所以解得∴记的前n 项和为则当时当时当即时∴故答案为:92【点睛】本题主要考查等差数列的基本运算和数列求和以及取整函数的应用还【分析】设{}n a 的公差为d ,由11a =,621S =,解得1d =,则n a n =,然后由[]lg n n b a =,分0lg 1n a ≤<, 1lg 2n a ≤<和 lg 2n a =三种情况求解.【详解】设{}n a 的公差为d ,()6166212s a a =+=, 所以167a a +=, 解得1d =, ∴n a n =,记{}n b 的前n 项和为n T ,则[][][]1001210012100lg lg lg T b b b a a a =++⋯+=++⋯+, 当0lg 1n a ≤<时,1,2,9n =⋅⋅⋅,0n b =, 当1lg 2n a ≤<时,10,11,99n =⋅⋅⋅,1n b =, 当lg 2n a =,即100n a =时,2n b = ∴10009190292T =⨯+⨯+=. 故答案为:92 【点睛】本题主要考查等差数列的基本运算和数列求和以及取整函数的应用,还考查了运算求解的能力,属于中档题.20.10【分析】根据条件确定中项的符号变化规律即可确定最小时对应项数【详解】单调递增因此即最小故答案为:10【点睛】本题考查等差数列性质等差数列前项和性质考查基本分析求解能力属中档题解析:10 【分析】根据条件确定{}n a 中项的符号变化规律,即可确定n S 最小时对应项数. 【详解】7138910111213101103()0S S a a a a a a a a =∴+++++=∴+= 17130,a S S <=∴{}n a 单调递增,因此10110,0a a <>即10n =,n S 最小 故答案为:10 【点睛】本题考查等差数列性质、等差数列前n 项和性质,考查基本分析求解能力,属中档题.三、解答题21.(1)(,2)A =-∞,[1,)B a =++∞;(2)1a >.(1)由对数函数的性质求对数型复合函数的定义域,即集合A ,利用基本不等式求函数的值域可得集合B ;(2)根据必要不充分条件与集合包含之间的关系确定a 的范围. 【详解】(1)4202x x ->⇒<,所以(,2)A =-∞, 因为1x >-,所以10x +>,所以11(1)11111y x a x a a a x x =++=+++-≥-=+++,当且仅当111x x +=+,即0x =时等号成立. 所以[1,)B a =++∞. (2)由(1)(,1)RB a =-∞+,因为“R x B ∈”是“x A ∈”的必要不充分条件,所以A 是B R的真子集,所以12a +>,所以1a >. 【点睛】本题考查求函数的定义域和值域,考查充分必要条件与集合包含之间的关系,考查对数函数、指数函数性质,考查基本不等式求最值,考查由集合包含关系求参数取值范围.知识点较多,但内容较基础.属于中档题. 22.见解析 【分析】由题意,将不等式()2230x a a x a -++>变形为2(0)()x a x a -->,分三种情况讨论,分别求解不等式的解集,即可得到答案. 【详解】将不等式()2230x a a x a -++>变形为()()20x a x a -->.当a <0或1a >时,有a < a 2,所以不等式的解集为{|x x a <或2}x a >; 当a =0或1a =时,a = a 2=0,所以不等式的解集为{|,x x R ∈且}x a ≠; 当0< a <1时,有a > a 2,所以不等式的解集为2{|x x a <或}x a >; 【点睛】本题主要考查了含参数的一元二次不等式的求解问题,其中解含参数的一元二次不等式的步骤:(1)若二次项含有参数,应先讨论参数是等于0、小于0,还是大于0,然后整理不等式;(2)当二次项系数不为0时,讨论判别式与0的关系,判断方程的根的个数;(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集的形式. 23.选择见解析,3A π=,512C π=.【分析】选择条件①,利用正弦定理结合余弦定理求出cos A 的值,结合角A 的取值范围可求得A2b c +=sin 2sin A B C +=,由三角形的内角和定理以及三角恒等变换思想求出1sin 62C π⎛⎫-= ⎪⎝⎭,由角C 的取值范围可求得结果;选择条件②,利用诱导公式、正弦定理以及三角恒等变换思想求出sin2A的值,结合角A的取值范围可求得角A 2b c +=可得出sin 2sin A B C +=,由三角形的内角和定理以及三角恒等变换思想求出1sin 62C π⎛⎫-= ⎪⎝⎭,由角C 的取值范围可求得结果;选择条件③,由正弦定理以及两角差的正弦公式可求得tan A 的值,结合角A 的取值范围可求得角A 2b c +=sin 2sin A B C +=,由三角形的内角和定理以及三角恒等变换思想求出1sin 62C π⎛⎫-= ⎪⎝⎭,由角C 的取值范围可求得结果. 【详解】(1)选择条件①,由()22sin sin sin sin sin A B C B C --=及正弦定理知()22a b c bc --=,整理得,222b c a bc +-=,由余弦定理可得2221cos 222b c a bc A bc bc +-===,又因为()0,A π∈,所以3A π=,2b c +=sin 2sin A B C +=,由23B C π=-2sin 2sin 33C C ππ⎛⎫+-= ⎪⎝⎭,即1cos sin 2sin 222C C C ++=,即3sin C C6C π⎛⎫-= ⎪⎝⎭sin 62C π⎛⎫-= ⎪⎝⎭, 因为20,3C π⎛⎫∈ ⎪⎝⎭,所以,662C πππ⎛⎫-∈- ⎪⎝⎭,从而64C ππ-=,解得512C π=; 选择条件②,因为A B C π++=,所以222B C Aπ+=-, 由sinsin 2B C b a B +=得cos sin 2Ab a B =,由正弦定理知,sin cos sin sin 2sin cos sin 222A A AB A B B ==, ()0,B π∈,()0,A π∈,可得0,22A π⎛⎫∈ ⎪⎝⎭, 所以,sin 0B >,cos 02A >,可得1sin 22A =,所以,26A π=,故3A π=. 以下过程同(1)解答; 选择条件③,由2sin sin 3aB b A π⎛⎫=- ⎪⎝⎭, 及正弦定理知,2sin sin sin sin 3A B B A π⎛⎫=-⎪⎝⎭,()0,B π∈,则sin 0B >,从而21sin sin sin 322A A A A π⎛⎫=-=+ ⎪⎝⎭,则sin A A =,解得tan A ,又因为()0,A π∈,所以3A π=,以下过程同(1)解答. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”;(2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”;(3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”;(4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理. 24.45A =︒【分析】利用余弦定理可求A 的大小.【详解】由题设可设)2,,1(0)a k b c k k ===>,由余弦定理得,222222644cos 22k k k b c a A bc +-+-===, 而A 为三角形内角,故45A =︒.25.(Ⅰ)2231n n a n =-;(Ⅱ)25q . 【分析】(Ⅰ)设数列22n n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,利用122n n n n S S a -=-可求2n a . (2)讨论{}2-1n a 的单调性后可求数列{}21n a -的最小项,结合223n a >可求数列{}n a 的最小项.【详解】解:(Ⅰ)设数列22n n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,即23122n S n n =+, ∴2131(1)(1)22n S n n -=-+-.则12231(2)n n n n S S n n a -=-=-≥, 故()22231n n a n n =≥-,当1n =,21a =,也符合此式, ∴2231n n a n =-. (Ⅱ)222223313313n n a n n ==+>--. 考虑奇数项,∵12121n n q a n --=-, ∴[]112121(21)(21)2121(21)(21)n n n n n q q n n q q a a n n n n --+---+-=-=+-+- ()()()111121(21)(21)(21)(21)2222n n q n q q q q q n n n q n n --⎡⎤-+----==+⎢⎥-⎡⎤⎣⎦+⎦-⎣-, 又()1112121q q q +=+--, ∵7553q <<,得()112,321q +∈-,而220q ->, ∴当2n ≤时,2121n n a a +-<,当3n ≥时,2121n n a a +->,即奇数项中5a 最小. 而25252593n q a a =<<<,所以数列{}n a 的最小项为255q a =. 【点睛】思路点睛:数列的最大项最小项,一般根据数列的单调性来处理,如果数列是分段数列,则可以分别讨论各段上的最大项最小项,比较后可得原数列的最大项最小项.26.(1)21n a n =-,2n n b =;(2)不存在,理由见解析.【分析】(1)利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求得数列{}n a 的通项公式.利用已知条件求得1,b q ,由此求得数列{}n b 的通项公式.(2)利用错位相减求和法求得n Q ,利用123m k Q Q Q =+列方程,化简后判断不存在符合题意的,m k .【详解】(1)当1n =时,111a S ==, 当2n ≥时,221(1)21n n n a S S n n n -=-=--=-, 当1n =时,等式也成立,所以,数列{}n a 的通项公式为21n a n =-. 在等比数列{}n b 中,653222b b b b -=-, 即()32(2)10b q q --=,又20b ≠且1q ≠, 2q ∴=,()414123012b T -∴==-, 12b ∴=,112n n n b b q -∴==. (2)23123252(21)2n n Q n =⨯+⨯+⨯+⋯+-⋅ ①,①×2得:23412123252(23)2(21)2n n n Q n n +=⨯+⨯+⨯+⋯+-⋅+-⋅ ②, -②①得:2312222222(21)2n n n Q n +=--⨯-⨯-⋯-⨯+-⋅ 1(23)26n n +=-⋅+,13326Q =⨯=,1(23)26k k Q k +=-⋅+,1(23)26m m Q m +=-⋅+, 若123m k Q Q Q =+,即112(23)2126(23)26m k m k ++-⋅+=+-⋅+, 112(23)2(23)2m k m k ++∴-⋅=-⋅, 46223k m m k +-∴=- ③, 又1m k <<,22k m -∴≥,464622323m k k k --<=--, ∴③式不成立,故不存在这样的正整数m ,k 使m Q 是13Q 与k Q 的等差中项.【点睛】如果已知条件是有关n S 与n 的关系式,可利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求得数列的通项公式.如果一个数列是由等差数列乘以等比数列构成,则利用错位相减求和法进行求和.。

【人教版】高中数学必修五期末试题(附答案)(1)

【人教版】高中数学必修五期末试题(附答案)(1)

一、选择题1.若正数x,y满足21yx+=,则2xy+的最小值为()A.2 B.4 C.6 D.82.已知正数x,y满足1431x y+=+,则x y+的最小值为()A.53B.2 C.73D.63.设变量,x y、满足约束条件236y xx yy x≤⎧⎪+≥⎨⎪≥-⎩,则目标函数2z x y=+的最大值为()A.2 B.3 C.4 D.94.如图,地面四个5G中继站A、B、C、D ,已知()62kmCD=+,30ADB CDB∠=∠=︒,45DCA∠=︒,60ACB∠=︒,则A、B两个中继站的距离是()A.3km B.10km C10km D.62km 5.ABC∆的内角A,B,C的对边分别为a,b,c,已知2b=,6Bπ=,4Cπ,则ABC∆的面积为()A.223+B31C.232D316.设ABC的内角A,B,C的对边分别是a,b,c.已知2cos0b a C-=,()sin3sinA A C=+,则2bca=()A7B14C.23D67.在ABC中,角A,B,C的对边分别为a,b,c,若22tan tanB Cb c=,则ABC的形状为()A.等腰三角形或直角三角形B.等腰直角三角形C.等腰三角形D.直角三角形8.已知实数x ,y 满足2402401x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,则2x y +的最大值为( )A .2B .8C .11D .139.数列{}n a 的前n 项和为()21n S n n =-(*n ∈N ),若173a a ka +=,则实数k 等于( ) A .2B .3C .269D.25910.已知递增的等差数列{}n a 的前n 项和为n S ,175a a ⋅=,266a a +=,对于n *∈N ,不等式1231111+++⋅⋅⋅+<nM S S S S 恒成立,则整数M 的最小值是( ) A .1B .2C .3D .411.若{}n a 是等比数列,其公比是q ,且546,,a a a -成等差数列,则q 等于( ) A .-1或2B .1或-2C .1或2D .-1或-212.在等比数列{}n a 中,若1234531a a a a a ++++=,2345662a a a a a ++++=,则通项n a 等于( ) A .12n -B .2nC .12n +D .22n -二、填空题13.已知实数x ,y 满足约束条件010x y x y x -≤⎧⎪+≤⎨⎪⎩,则23x y z +=的最大值__________.14.若x >1,y >1,且a b x y xy ==,则a +4b 的最小值为___________. 15.设ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且3cos 2cos a C c A b ⋅=⋅+,则()tan A C -的最大值为__________.16.在ABC 中,角A ,B ,C 的对边a ,b ,c 为三个连续自然数,且2C A =,则a =_______.17.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个观测点,C D ,测得15BCD ︒∠=,30CBD ︒∠=,152m CD =,并在C 处测得塔顶A 的仰角为45︒,则塔高AB =______m .18.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,若4a =,2c =,60B =︒,则b = ,C = .19.数列{}n a 中,已知22a =,21n n n a a a ++=+,若834a =,则数列{}n a 的前6项和为______.20.在数列{}n a 中,11a =()*1n =∈N ;等比数列{}n b 的前n 项和为2n n S m =-.当n *∈N 时,使得n n b a λ≥恒成立的实数λ的最小值是_________.三、解答题21.已知函数()()()23f x x a x =-+. (1)当72a >-时,解关于x 的不等式()46f x x >+; (2)若关于x 的方程()80f x +=在(–),1∞上有两个不相等实根,求实数a 的取值范围. 22.已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.23.在ABC 中a ,b ,c 分别为内角A ,B ,C 所对的边,若()()2sin 2sin sin 2sin sin a A B C b C B c =+++.(1)求A 的大小; (2)求sin sin B C +的最大值.24.ABC 是等边三角形,点D 在边AC 的延长线上,且AD =3CD ,BD,求AD 的值和sin ∠ABD 的值25.在①数列{}n a 为递增的等比数列,且2312a a +=,②数列{}n a 满足122n n S S +-=,③数列{}n a 满足1121222n n n n a a a na -++++=这三个条件中任选一个,补充在下面问题中,再完成解答.问题:设数列{}n a 的前n 项和为n S ,12a =,__________. (1)求数列{}n a 的通项公式; (2)设2221log log n n n b a a +=⋅,求数列{}n b 的前n 项和n T .26.已知等比数列{}n a 的公比3q =,并且满足2a ,318a +,4a 成等差数列. (1)求数列{}n a 的通项公式; (2)设数列{}n b 满足31log n n nb a a =+,记n S 为数列{}n b 的前n 项和,求使2220n S n ->成立的正整数n 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 由21y x +=,对2x y +乘以21y x+=,构造均值不等式求最值 .【详解】22242248x y x xy y x y xy ⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当421xy xy y x⎧=⎪⎪⎨⎪+=⎪⎩,即412x y =⎧⎪⎨=⎪⎩时,等号成立,∴min28x y ⎛⎫+= ⎪⎝⎭.故选:D 【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:“一正、二定、三相等” (1) “一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.如果等号成立的条件满足不了,说明函数在对应区间单调,可以利用单调性求最值或值域.2.B解析:B 【分析】化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y x y +=++-=++⨯-=++⨯+-+ 1141(5)1(5)123131y x x y y +=++-≥+-=++ 当且仅当1x y ==时取等.所以x y +的最小值为2. 故选:B 【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.3.D解析:D 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论. 【详解】画出满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩的可行域,如图,画出可行域ABC ∆,(2,0)A ,(1,1)B ,(3,3)C , 平移直线2z x y =+,由图可知,直线2z x y =+经过(3,3)C 时 目标函数2z x y =+有最大值,2z x y =+的最大值为9.故选D. 【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.4.C解析:C 【分析】由正弦定理得求得AC 、BC 长,再由余弦定理得AB 长可得答案. 【详解】由题意可得75DAC ∠=︒,45DBC ∠=︒, 在ADC 中,由正弦定理得()362sin 223sin sin 75CD ADCAC DAC+⨯⋅∠===∠︒, 在BDC 中,由正弦定理得()162sin 231sin 22CD BDC BC DBC+⨯⋅∠===+∠,在ACB △中,由余弦定理得2222cos AB AC BC AC BC ACB =+-⨯⨯⋅∠()()()22123312233112=++-⨯⨯+⨯=,所以10km AB =. 故选:C. 【点睛】本题考查了正弦定理、余弦定理解三角形的应用.5.B解析:B 【解析】试题分析:根据正弦定理,,解得,,并且,所以考点:1.正弦定理;2.面积公式.6.D解析:D 【分析】根据正弦定理把角化边,可得3a b =,进一步得到2cos 3C =,然后根据余弦定理,可得6c b =,最后可得结果.【详解】 在ABC ∆中,sin sin a b A B=,由()sin 3sin()3sin 3sin A A C B B π=+=-=,所以3a b =①,又2cos 0b a C -=②,由①②可知:2cos 3C =,又2222cos 23a b c C ab +-==③,把①代入③化简可得:c =,则()2293bc b a b ==, 故选:D. 【点睛】本题考查正弦定理、余弦定理的综合应用,难点在于将c 用b 表示,当没有具体数据时,可以联想到使用一个参数表示另外两个参数,属于中档题.7.A解析:A 【分析】由三角函数恒等变换的应用,正弦定理化简已知等式可得sin 2sin 2B C =,可得22B C =,或22B C π+=,解得B C =,或2B C π+=,即可判断ABC ∆的形状.【详解】22tan tan B Cb c =, ∴22sin sin cos cos B C b B c C =,由正弦定理可得:22cos cos b cb Bc C=,可得:cos cos b B c C =,可得sin cos sin cos B B C C =,可得:sin 2sin 2B C =,22B C ∴=,或22B C π+=,B C ∴=,或2B C π+=,ABC ∆∴的形状为等腰三角形或直角三角形. 故选:A . 【点睛】本题主要考查了三角函数恒等变换的应用,正弦定理在解三角形中的应用,考查了转化思想,属于基础题.8.C解析:C 【分析】根据条件作出可行域,根据图形可得出答案. 【详解】由实数x ,y 满足2402401x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,作出可行域,如图.设2z x y =+,则化为2y x z =-+ 所以z 表示直线2y x z =-+在y 轴上的截距.2401x y y -+=⎧⎨=-⎩可得()6,1A --,2401x y y +-=⎧⎨=-⎩可得()61B -, 根据图形可得,当直线2y x z =-+过点()61B -,时截距最大, 所以2z x y =+的最大值为11. 故选:C【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.9.C解析:C 【分析】由已知结合递推公式可求n a ,然后结合等差数列的通项公式即可求解. 【详解】因为()21n S n n =-, 所以111a S ==,当2n ≥时,()()()12112343n n n a S S n n n n n -=-=----=-,111a S ==适合上式,故43n a n =-,因为173a a ka +=, ∴1259k +=, 解可得269k = 故选:C. 【点睛】本题主要考查了由数列前n 项和求数列的通项公式,考查来了运算能力,属于中档题.10.C解析:C 【分析】先求出等差数列的1a 和d ,由等差数列前n 项和公式得n S ,把1nS 拆成两项的差,用裂项相消法求得和12111nS S S +++,在n 变化时,求得M 的范围,得出结论. 【详解】∵{}n a 是等差数列,∴17266a a a a +=+=,由171765a a a a +=⎧⎨=⎩解得1715a a =⎧⎨=⎩或1751a a =⎧⎨=⎩,又{}n a 是递增数列,∴1715a a =⎧⎨=⎩,715127163a a d --===-, 1(1)(1)(2)233n n n n n n n S na d n --+=+=+=, 121113331324(2)n S S S n n +++=+++⨯⨯+3111111112324112n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦31119311122124212n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭94<, 由不等式1231111+++⋅⋅⋅+<n M S S S S 恒成立,得94M ≥,∴最小的整数3M =. 故选:C . 【点睛】本题考查不等式恒成立问题,考查等差数列的性质,等差数列的通项公式和前n 项和公式,裂项相消法求和,本题属于中档题.11.A解析:A 【解析】分析:由546,,a a a -成等差数列可得5642a a a -+=,化简可得()()120q q +-=,解方程求得q 的值. 详解:546,,a a a -成等差数列,所以5642a a a -+=,24442a q a q a ∴-+=,220q q ∴--=,()()120q q ∴+-=,1q ∴=-或2,故选A.点睛:本题考查等差数列的性质,等比数列的通项公式基本量运算,属于简单题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用.12.A解析:A 【详解】设等比数列{a n }的公比为q ,∵a 1+a 2+a 3+a 4+a 5=31,a 2+a 3+a 4+a 5+a 6=62, ∴q=2,∴a1(1+q+q 2+q 3+q 4)=31, 则a 1=1, 故an=2n−1. 故选A.二、填空题13.【分析】先作出不等式组对应的可行域再通过数形结合求出的最大值即得解【详解】由题得不等式组对应的可行域是如图所示的阴影三角形区域设它表示斜率为纵截距为的直线系要求的最大值即求的最大值当直线经过点时直线 解析:9【分析】先作出不等式组对应的可行域,再通过数形结合求出2x y +的最大值即得解. 【详解】由题得不等式组对应的可行域是如图所示的阴影三角形区域,设12,22m m x y y x =+∴=-+,它表示斜率为12-,纵截距为2m的直线系, 要求23x y z +=的最大值即求m 的最大值.当直线122m y x =-+经过点(0,1)A 时,直线的纵截距2m最大,m 最大. 此时max 022m =+=, 所以23x y z +=的最大值为239=.故答案为:9 【点睛】方法点睛:线性规划问题一般用图解法,其步骤如下: (1)根据题意,设出变量,x y ; (2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域); (5)利用线性目标函数作平行直线系()(y f x z =为参数);(6)观察图形,找到直线()(y f x z =为参数)在可行域上使z 取得欲求最值的位置,以确定最优解,给出答案。

【人教版】高中数学必修五期末模拟试卷附答案

【人教版】高中数学必修五期末模拟试卷附答案

一、选择题1.已知正数x,y 满足1431x y+=+,则x y+的最小值为()A.53B.2 C.73D.62.已知实数,x y满足约束条件50x yx yy++≥⎧⎪-≤⎨⎪≤⎩,则241z x y=++的最小值是()A.14-B.1C.5-D.9-3.在各项均为正数的等差数列{}n a中,n S为其前n项和,7S=14,则2614ta a=+的最小值为()A.9 B.94C.52D.24.在ABC中,内角A、B、C所对的边分别为a、b、c,若()sin sin sinc C a A b a B=+-,角C的角平分线交AB于点D,且3CD=,3a b=,则c的值为()A.72B.473C.3D.235.一艘游轮航行到A处时看灯塔B在A的北偏东75︒,距离为126海里,灯塔C在A 的北偏西30,距离为123海里,该游轮由A沿正北方向继续航行到D处时再看灯塔B 在其南偏东60︒方向,则此时灯塔C位于游轮的()A.正西方向B.南偏西75︒方向C.南偏西60︒方向D.南偏西45︒方向6.如图,测量河对岸的塔高AB时,选与塔底B在同一水平面内的两个测点C与D.现测得15BCD∠=︒,45BDC∠=︒,302CD m=,并在点C测得塔顶A的仰角为30,则塔高AB为( )A. B.C .60mD .20m7.已知在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若ABC 的面积为S ,且222()S a b c =+-,则tan C =( )A .43-B .34-C .34D .438.若实数,x y 满足约束条件40400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z x y =+的最大值为( )A .0B .4C .8D .129.在正项等比数列{}n a 中,若3788a a a =,2105a a +=,则公比q =( ) A .122B .122或1212⎛⎫ ⎪⎝⎭C .142D .142或1412⎛⎫ ⎪⎝⎭10.《张丘建算经》是我国北魏时期大数学家丘建所著,约成书于公元466485~年间,其记臷着这么一道题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同. 已知第一天织布5尺,30天其织布390尺,则该女子织布每天增加的尺数(不作近似计算)为( ) A .1629B .1627C .1113D .132911.已知等差数列{}n a 的首项为1a ,公差为d ,其前n 项和为n S ,若直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称,则数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为( ) A .1011B .910C .89D .212.设等差数列{}n a 的前n 项和为n S ,523S =,360n S =,5183n S -=,则n =( ) A .18B .19C .20D .21二、填空题13.若x ,y ,z 满足约束条件4802400x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则z =__________.14.在ABC 中,角A ,B ,C 的对边a ,b ,c 为三个连续偶数,且2C A =,则a =______.15.在ABC 中,已知1AC =,A ∠的平分线交BC 于D ,且1AD =,BD =,则ABC 的面积为_________.16.已知正实数,x y 满足x y xy +=,则3211x yx y +--的最小值为______. 17.设x 、y 满足约束条件22010240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则2z x y =+的最大值是__________.18.如图,在四边形ABCD 中,已知AB BC ⊥,5AB =,7AD =,135BCD ∠=︒,1cos 7A =,则BC =________.19.已知数列{}n a 满足112a =,()*112n n a a n +=∈N .设2n n n b a λ-=,*n ∈N ,且数列{}n b 是递增数列,则实数λ的取值范围是________.20.对于数列{}n a ,存在x ∈R ,使得不等式()2*144n na x x n N a +≤≤-∈成立,则下列说法正确的有______.(请写出所有正确说法的序号). ①数列{}n a 为等差数列; ②数列{}n a 为等比数列; ③若12a =,则212n na -=;④若12a =,则数列{}n a 的前n 项和21223n n S +-=.三、解答题21.已知a >0,b >0,a +b =3. (1)求11+2+a b的最小值; (2)证明:92+a b b aab22.如果x ,y R ∈,比较()222+x y 与()2xy x y +的大小.23.将函数()sin 3cos f x x x =图象上所有点向右平移6π个单位长度,然后横坐标缩短为原来的12(纵坐标不变),得到函数()g x 的图象.(1)求函数()g x 的解析式及单调递增区间;(2)在ABC 中,内角,,A B C 的对边分别为,,a b c ,若1sin cos 364B B ππ⎛⎫--= ⎪⎝⎭⎛⎫ ⎪⎝⎭,,6c g b π⎛⎫== ⎪⎝⎭ABC 的面积. 24.在ABC 中,a ,b ,c 分别为角A ,B ,C的对边,且bcos A c ⋅=. (1)求角B ;(2)若ABC的面积为BC 边上的高1AH =,求b ,c . 25.若数列{}n a 的前n 项和()2*n S n n N =∈.(1)求{}n a 的通项公式; (2)若数列{}n b 满足3nn n a b =,求数列{}n b 的前n 项和n S . 26.已知{}n a 是由正整数组成的无穷数列,该数列前n 项的最大值记为n A ,最小值记为n B ,令nn nA bB =. (1)若2(1,2,3,)n a n n ==,写出1b ,2b ,3b 的值.(2)证明:1(1,2,3,)n n b b n +≥=.(3)若{}n b 是等比数列,证明:存在正整数0n ,当0n n 时,n a ,1n a +,2n a +是等比数列.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y x y +=++-=++⨯-=++⨯+-+ 1141(5)1(5)123131y x x y y +=++-≥+-=++当且仅当1x y ==时取等. 所以x y +的最小值为2. 故选:B 【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.2.A解析:A 【分析】求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值. 【详解】解:作出不等式组5000x y x y y ++≥⎧⎪-≤⎨⎪≤⎩表示的平面区域,如图所示的阴影部分由241z x y =++可得11244z y x =-+-, 则144z -表示直线11244z y x =-+-在y 轴上的截距,截距越小,z 越小, 由题意可得,当11244z y x =-+-经过点A 时,z 最小, 由500x y x y ++=⎧⎨-=⎩可得5522A ⎛⎫-- ⎪⎝⎭,,此时552411422z=-⨯-⨯+=-,故选:A.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.3.B解析:B【分析】根据等差数列的性质和前n项和公式求得26a a+,然后由“1”的代换应用基本不等式求得最小值.【详解】由题意172677()7()1422a a a aS++===,∴264a a+=,∴26262614114()()4t a aa a a a=+=++6622262644119(5)(52)444a aa aa a a a=++≥+⋅=,当且仅当62264a aa a=,即622a a=时等号成立.故选:B.【点睛】本题考查等差数列的性质,考查基本不等式求最值.解题基础是掌握等差数列的性质,掌握基本不等式求最值中“1”的代换法.4.B解析:B【分析】利用正弦定理边角互化以及余弦定理求出角C的值,由ABC ACD BCDS S S=+△△△可得出ab a b=+,结合3a b=可求得a、b的值,再利用余弦定理可求得c的值.【详解】()sin sin sinc C a A b a B=+-,由正弦定理可得()22c a b a b=+-,可得222a b c ab+-=,由余弦定理可得:2221cos22a b cCab+-==,0Cπ<<,所以3Cπ=,由ABC ACD BCD S S S =+△△△,有111sin sin sin 232626ab a CD b CD πππ=⋅+⋅,得ab a b =+,所以234b b =,0b >,43b ∴=,34a b ==, 由余弦定理可得221616471692cos 33c a b ab C =+--==+. 故选:B. 【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下: (1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”; (2)若式子中含有a 、b 、c 的齐次式,优先考虑正弦定理“边化角”; (3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”; (4)代数式变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理求解;(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.5.C解析:C 【分析】根据题设中的方位角画出,ABD ACD ∆∆,在ABD ∆中利用正弦定理可求出AD 的长,在ACD ∆中利用余弦定理求出CD 的长,利用正弦定理求CDA ∠的大小(即灯塔C 的方位角). 【详解】 如图,在ABD ∆中,45B =︒,由正弦定理有126242sin 45sin 603AD AB ===︒︒,24AD =. 在ACD ∆中,余弦定理有2222cos30CD AC AD AC AD =+-⨯⨯︒,因AC =,24AD =,12CD =,由正弦定理有sin 30sin CD AC CDA =︒∠,sin CDA ∠=60CDA ∠=︒或者120CDA ∠=︒.因AD CD >,故CDA ∠为锐角,所以60CDA ∠=︒,故选C. 【点睛】与解三角形相关的实际问题中,我们常常碰到方位角、俯角、仰角等,注意它们的差别.另外,把实际问题抽象为解三角形问题时,注意分析三角形的哪些量是已知的,要求的哪些量,这样才能确定用什么定理去解决.6.D解析:D 【分析】由正弦定理确定BC 的长,再tan30AB BC 求出AB .【详解】15BCD ∠=︒,45BDC ∠=︒120CBD由正弦定理得:sin120sin 45BC302sin 45203BC3tan 30203203ABBC故选D【点睛】本题是正弦定理的实际应用,关键是利用正弦定理求出BC ,属于基础题.7.A解析:A 【分析】由三角形面积公式和余弦定理可得C 的等式,利用二倍角公式求得tan2C,从而求得tan C . 【详解】∵222222()2S a b c a b ab c =+-=++-,即22212sin 22ab C a b ab c ⨯⋅=++-, ∴222sin 2ab C ab a b c ⋅-=+-,又222sin 2sin cos 1222a b c ab C ab CC ab ab +-⋅-===-,∴sin cos 12C C +=,即22cos sin cos 222C C C =,则tan 22C =,∴222tan2242tan 1231tan 2CC C ⨯===---, 故选:A . 【点睛】本题考查三角形面积公式,余弦定理,考查二倍角公式,同角间的三角函数关系,掌握相应的公式即可求解.属于中档题,考查了学生的运算求解能力.8.C解析:C 【分析】画出不等式组表示的平面区域,将2z x y =+转化为斜截式,即22x zy =-+,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论. 【详解】画出约束条件40400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩表示的可行域,如图所示,将2z x y =+转化为斜截式,即22x z y =-+,平移直线2xy =-,由图可知当直22x zy =-+经过点A 时,直线在y 轴上的截距最大,由4040x y x y +-=⎧⎨-+=⎩,可得40y x =⎧⎨=⎩,所以2z x y =+的最大值为0248+⨯=. 故选:C. 【点睛】方法点睛:本题主要考查线性规划求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值,属于基础题.9.D解析:D 【分析】由等比数列的性质可得出关于2a 、10a 的方程组,进而可求得等比数列{}n a 的公比. 【详解】由3788a a a =得()326753111168a q a q a q a q a ⋅⋅===,即62a =.22106()4a a a ∴==,又2105a a +=,解得21014a a =⎧⎨=⎩或21041a a =⎧⎨=⎩,0q >,11181084242a q a ⎛⎫∴=== ⎪⎝⎭或1111884104211242a q a -⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D. 【点睛】关键点点睛:本题的解题关键就是利用等比数列下标和的性质建立有关2a 、10a 的方程组,通过求出2a 、10a 的值,结合等比数列的基本量来进行求解.10.A解析:A 【解析】由题设可知这是一个等差数列问题,且已知13030,390a S ==,求公差d .由等差数列的知识可得30293053902d ⨯⨯+=,解之得1629d =,应选答案A . 11.A解析:A 【分析】由题意可知,直线112y a x m =+与直线0x y d +-=垂直,且直线0x y d +-=过圆心,可求得1a 和d 的值,然后利用等差数列的求和公式求得n S ,利用裂项法可求得数列1n S ⎧⎫⎨⎬⎩⎭的前10项和. 【详解】 由于直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称, 则直线112y a x m =+与直线0x y d +-=垂直,直线0x y d +-=的斜率为1-,则1112a =,可得12a =,且直线0x y d +-=过圆()2221x y -+=的圆心()2,0,则20d -=,可得2d =,()()112212n a a n d n n ∴=+-=+-=,则()()()122122n n n a a n n S n n ++===+,()111111n S n n n n ∴==-++, 因此,数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为1111111110112233410111111⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:A. 【点睛】本题考查裂项求和,同时也考查了直线与圆的综合问题,以及等差数列求和公式的应用,考查计算能力,属于中等题.12.A解析:A 【分析】根据题意,由等差数列的前n 项和公式可得()155355232a a S a+⨯===,变形可得3235a =,又由5432125360183177n n n n n n n n S S a a a a a a ------++-=+===+-,变形可得21775n a -=,结合等差数列的性质分析可得答案. 【详解】根据题意,等差数列{}n a 中,523S =,则()155355232a a S a+⨯===,变形可得3235a =, 又由360n S =,5183n S -=,则5432125360183177n n n n n n n n S S a a a a a a ------++-=+===+-,则21775n a -=, 又由360n S =,则()()()13223177203602210n n n a a n a a n n S n -+⨯+⨯+⨯=====,解可得18n =. 故选:A. 【点睛】本题考查利用等差数列求和公式求参数,同时也考查了等差数列基本性质的应用,考查计算能力,属于中等题.二、填空题13.【分析】画出满足条件的平面区域结合的几何意义以及点到直线的距离求出的最小值即可【详解】画出满足约束条件的平面区域如图所示:而的几何意义表示平面区域内的点到点的距离显然到直线的距离是最小值由得最小值是 解析:455【分析】画出满足条件的平面区域,结合22(4)z x y =++的几何意义以及点到直线的距离求出z 的最小值即可. 【详解】画出x ,y ,z 满足约束条件4802400x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,的平面区域,如图所示:而22(4)z x y =++()40-,的距离, 显然()40-,到直线240x y -+=的距离是最小值, 由8445541d -+==+,得最小值是55, 45. 【点睛】本题主要考查了简单的线性规划问题,考查数形结合思想,属于中档题.14.8【分析】根据大边对大角可得可设由已知条件利用正弦的二倍角公式和正余弦定理得到关于的方程求解即可【详解】由题意可得又角ABC 的对边abc 为三个连续偶数故可设由由余弦定理得所以即解得故故答案为:【点睛解析:8 【分析】根据大边对大角,可得a c <, 可设22,2,22a n b n c n =-==+,由已知条件,利用正弦的二倍角公式和正余弦定理得到关于n 的方程求解即可. 【详解】由题意可得A C <,a c ∴<,又角A ,B ,C 的对边a ,b ,c 为三个连续偶数,故可设22,2,22,a n b n c n =-==+由2,sin sin 2,sin 2sin cos ,C A C A C A A =∴=∴=sin sin a b A B=,()sin 1cos 2sin 221C c n A A a n +∴===-,由余弦定理得()()()()()()22222224414144cos 222222121n n n b c a n n n A bc n n n n n ++--+-++====+++. 所以()()142121n n n n ++=-+,即()()()2114,n n n +=-+解得5n =,故228a n =-=. 故答案为:8. 【点睛】本题考查正余弦定理在解三角形中的综合运用,关键是熟练使用二倍角公式,正弦定理角化边,正余弦定理联立得到方程求解.15.【分析】设将利用三角形面积公式表示出来可得在中利用余弦定理可得解得即可求出进而可得的值再利用三角形面积公式即可求解【详解】因为平分所以设则因为设所以所以因为所以即在中所以可得解得:所以所以所以故答案解析:8【分析】设12BAD CAD BAC θ∠=∠=∠=,AB x =,将BAD CAD ABC S S S +=△△△利用三角形面积公式表示出来,可得1cos 2x xθ+=,在ABD △中,利用余弦定理可得212cos 2x xθ+-=,解得2x =,即可求出cos θ,sin θ,进而可得sin BAC ∠的值,再利用三角形面积公式即可求解. 【详解】因为AD 平分BAC ∠,所以12BAD CAD BAC ∠=∠=∠, 设BAD θ∠=,则CAD θ∠=,2BAC θ∠=, 因为BAD CAD ABC S S S +=△△△,设AB x =,所以111sin sin sin 2222x x θθθ+=, 所以,sin sin 2sin cos x x θθθθ+=, 因为sin 0θ≠,所以12cos x x θ+=,即1cos 2x xθ+=, 在ABD △中,212cos 2x x θ+-=,所以21122x x x x-+=, 可得220x x --=,解得:2x =, 所以3cos cos 4BAD θ∠==,所以sin BAD ∠==,3sin 2sin cos 24BAC θθ∠===,所以1sin 2ABCSAC AB BAC =⋅∠=,【点睛】关键点点睛:本题解题的关键是将BAD CAD ABC S S S +=△△△用面积公式表示出来可得边角之间的关系,再结合余弦定理即求出边和角即可求面积.16.【详解】正实数满足故得到等号成立的条件为点睛:在利用基本不等式求最值时要特别注意拆拼凑等技巧使其满足基本不等式中正(即条件要求中字母为正数)定(不等式的另一边必须为定值)等(等号取得的条件)的条件才解析:5+. 【详解】正实数,x y 满足x y xy +=,1111132321111111111x y x y x y x y x y yx ⎧=-⎪⎪+=⇒⇒+=+⎨--⎪--=-⎪⎩故得到113121323211=5++111111x 1111y x y x x y y x y x y⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭+=++≥------()()1111-y x ⎫⎫-⎪⎪⎭⎭. 点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.17.16【分析】作出不等式组表示的平面区域由可得则表示直线在轴上的截距截距越大越大结合图象即可求解的最大值【详解】作出满足约束条件表示的平面区域如图所示:由可得则表示直线在轴上的截距截距越大越大作直线然解析:16 【分析】作出不等式组表示的平面区域,由2z x y =+可得2y x z =-+,则z 表示直线2y x z =-+在y 轴上的截距,截距越大,z 越大,结合图象即可求解z 的最大值.【详解】作出x 、y 满足约束条件22010240x y x y x y +-⎧⎪-+⎨⎪--⎩表示的平面区域,如图所示:由2z x y =+可得2y x z =-+,则z 表示直线2y x z =-+在y 轴上的截距,截距越大,z 越大作直线20x y +=,然后把该直线向可行域平移, 当直线经过A 时,z 最大 由10240x y x y -+=⎧⎨--=⎩可得(5,6)A ,此时16z =.故答案为:16.【点睛】本题主要考查了线性规划知识的应用,求解的关键是明确目标函数中z 的几何意义.属于中档题.18.【分析】由余弦定理可得由诱导公式可得进而可得由三角恒等变换得再由正弦定理即可得解【详解】在中由余弦定理得所以所以又所以所以所以在中由正弦定理得所以故答案为:【点睛】本题考查了正弦定理和余弦定理解三角解析:)41【分析】由余弦定理可得8BD =、1cos 2ABD ∠=,由诱导公式可得1sin 2CBD ∠=,进而可得cos CBD ∠=sin BDC ∠,再由正弦定理即可得解. 【详解】在ABD △中,由余弦定理得2222cos 64BD AB AD AB AD A =+-⋅⋅=, 所以8BD =,所以2221cos 22AB BD AD ABD AB BD +-∠==⋅,又AB BC ⊥,所以1sin cos 2CBD ABD ∠=∠=,0,2CBD π⎛⎫∠∈ ⎪⎝⎭,所以cos CBD ∠==, 所以()sin sin sin cos cos sin BDC BCD CBD BCD CBD BCD CBD ∠=∠+∠=∠∠+∠∠12==, 在BCD △中,由正弦定理得sin sin BC BD BDC BCD ===∠∠,所以)41BC BDC =∠==.故答案为:)41.【点睛】本题考查了正弦定理和余弦定理解三角形的应用,考查了三角恒等变换的应用及运算求解能力,属于中档题.19.【分析】根据题意可得数列的通项公式代入表示根据数列是递增数列所以得恒成立参变分离以后计算【详解】由可得数列是首项和公比均为的等比数列所以则又因为是递增数列所以恒成立即恒成立所以所以故答案为:【点睛】解析:3,2⎛⎫-∞ ⎪⎝⎭【分析】根据题意可得数列{}n a 的通项公式,代入表示n b ,根据数列{}n b 是递增数列,所以得10n n b b +->恒成立,参变分离以后计算.【详解】 由()*112n n a a n +=∈N 可得,数列{}n a 是首项和公比均为12的等比数列,所以12n n a =,则()222n n nn b n a λλ-==-,又因为{}n b 是递增数列,所以()()()11122222220n n n n n b b n n n λλλ++=+---=+->-恒成立,即220n λ+->恒成立,所以()min 223n λ<+=,所以32λ<. 故答案为:3,2⎛⎫-∞ ⎪⎝⎭.【点睛】关于数列的单调性应用的问题,一般需要计算1n n a a +-判断其正负,将不等式再转化为恒成立问题,通过参变分离的方法求解min ()a f n <或者max ()a f n >.20.②③④【分析】由题意可得存在使求得值可得再由等比数列的定义通项公式及前项和逐一核对四个命题得答案【详解】解:由存在使得不等式成立得即则则数列为等比数列故①错误②正确;若则故③正确;若则数列的前项和故解析:②③④ 【分析】由题意可得,存在x ∈R ,使244x x -,求得x 值,可得14n na a +=,再由等比数列的定义、通项公式及前n 项和逐一核对四个命题得答案. 【详解】解:由存在x ∈R ,使得不等式2*144()n na xx n N a +-∈成立, 得244x x -,即2440x x -+,则2(2)0x -,2x ∴=.∴14n na a +=. 则数列{}n a 为等比数列,故①错误,②正确; 若12a =,则121242n n n a --==,故③正确;若12a =,则数列{}n a 的前n 项和212(14)22143n n n S +⨯--==-,故④正确. 故答案为:②③④. 【点睛】本题考查命题的真假判断与应用,考查等比数列的判定,训练了等比数列通项公式与前n项和的求法,属于中档题.三、解答题21.(1)45;(2)证明见解析 【分析】 (1)由所给等式得()215a b ++=,再利用基本不等式即可求得最小值;(2)利用()2222a b a b ++≥即可逐步证明.【详解】(1)3a b +=,()215a b ++∴=,且200a b +>>,,∴()1111112++2225252b a a b a b a b a b +⎛⎫⎛⎫=++=++ ⎪ ⎪+++⎝⎭⎝⎭14255⎛≥+= ⎝,当且仅当2=2b a a b ++即1522a b ==,时等号成立, ∴11+2+a b 的最小值为45. (2)因为a >0,b >0,所以要证92+a bb aab,需证2292a b +≥,因为()222239222a b a b ++≥==, 所以92+a bb a ab ,当且仅当32a b ==时等号成立. 【点睛】本题考查条件等式求最值、基本不等式的应用,属于中档题.22.()()2222x y xy x y ≥++,当且仅当x y =时等号成立【分析】运用作差比较法,结合配方法进行比较大小即可. 【详解】()()()2222442224433222x y xy x y x y x y xy x xy y x y x y xy +-++--++=+--=()()()()()()()2223333222324y x x y y y x x y x y x y x xy y x y x y ⎡⎤⎛⎫=-+-=--=-++=-++⎢⎥⎪⎝⎭⎢⎥⎣⎦()20x y -≥,223024y x y ⎛⎫++≥ ⎪⎝⎭,()2223024y x y x y ⎡⎤⎛⎫∴-++≥⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.()()2222x y xy x y ∴≥++,当且仅当x y =时等号成立.【点睛】本题考查了用作差比较法进行比较两个多项式的大小,考查了配方法的应用,属于中档题. 23.(1)()2sin 26g x x π⎛⎫=+⎪⎝⎭,单调递增区间为:(,3)k k k Z πππ⎡⎤⎢⎥⎣⎦-++∈;(2)2或 【分析】(1)由题可得()2sin 26g x x π⎛⎫=+ ⎪⎝⎭,令222262k x k πππππ-+≤+≤+即可解得单调递增区间;(2)由题可得2c =,6B π=或2B π=,由余弦定理可求得a ,即可求出面积.【详解】(1)()sin 2sin 3f x x x x π⎛⎫=+=+⎪⎝⎭, ()f x 图象向右平移6π个单位长度得到2sin 6y x π⎛⎫=+ ⎪⎝⎭的图象,横坐标缩短为原来的12 (纵坐标不变)得到2sin 6y x π⎛⎫=+ ⎪⎝⎭图象, 所以()2sin 26g x x π⎛⎫=+ ⎪⎝⎭, 令222262k x k πππππ-+≤+≤+,解得36k x k ππππ-+≤≤+,所以()g x 的单调递增区间为:(,3)k k k Z πππ⎡⎤⎢⎥⎣⎦-++∈ (2)由(1)知,62c g π⎛⎫⎪⎝⎭==, 因为21sin cos cos 3664B B B πππ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-+=+=,所以1cos 62B π⎛⎫⎪⎝=±⎭+又因为()0,B π∈,所以7,666B πππ+=⎛⎫ ⎪⎝⎭, 当1cos 62B π⎛⎫⎪⎝=⎭+时,,636B B πππ+==,此时由余弦定理可知,2422cos 126a a π+-⨯⨯=,解得a =,所以12sin26ABCSπ=⨯⨯⨯=, 当1cos 62B π⎛⎫⎪⎝=-⎭+时,2,632B B πππ+==,此时由勾股定理可得,a ==,所以122S =⨯⨯=△ABC 【点睛】关键点睛:本题考查三角函数的图象变换求三角函数的性质,以及解三角形的应用,解题的关键是根据图象变换正确得出变换后的解析式. 24.(1)6π;(2)b =2c =. 【分析】(1)化角为边,化简得222c a b +-=,再利用余弦定理求角B ; (2)由正弦定理算出c ,由面积公式算出a ,由余弦定理计算b 中即可. 【详解】解:(1)因为cos b A c =-,所以2222b c a b c bc +-⋅=-,所以22222b c a c +-=-,即222c a b +-=.由余弦定理可得222cos 22c a b B ac +-==, 因为(0,)B π∈,所以6B π=.(2)由正弦定理可得sin sin 22sin sin6AH AH AHBc Bππ∠===.因为ABC的面积为11sin 22ac B a ==,解得a = 由余弦定理可得2222cos b a c ac B =+-=4842228+-⨯⨯=,则b = 【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.25.(1)21n a n =-;(2)113n nn S +=-. 【分析】 (1)利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,求通项公式;(2)由(1)知利用错位相减法求和. 【详解】解:(1)当1n =时,111a S ==,当2n ≥时,()221121n n n a S S n n n -=-=--=-, 当1n =时,也符合上式,所以对任意正整数n ,21n a n =-.(2)由(1)得213n n n b -=, 所以1312135232133333n n n n n S ---=+++++…,① 234111352321333333…n n n n n S +--=+++++,② -①②,得32121111212333333n n n n S +-⎛⎫=++++- ⎪⎝⎭…, 21113311132[1()]12122231333n n n n n -++⨯--+=+-=--, 所以113n nn S +=-. 【点睛】 方法点睛:本题考查已知数列n S 与n a 的关系式,求通项公式,和错位相减法求和,一般数列求和包含1.公式法,利用等差和等比数列的前n 项和公式求解;2.错位相减法求和,适用于等差数列乘以等比数列的数列求和;3.裂项相消法求和,适用于能变形为()()1n a f n f n =+-, 4.分组转化法求和,适用于n n n c a b =+;5.倒序相加法求和. 26.(1)11b =,22b =,33b =;(2)证明见解析;(3)证明见解析【分析】(1)由{}n a 是单调递增数列可得1n n a b a =即可求出; (2)设1n a k +=,讨论n k B ≤,n n B k A <<和n k A ≥可证明;(3)设{}n b 的公比为q ,且1q ≥,显然1q =时满足;1q >时,由{}n A 是递增数列,{}n B 是递减数列,且{}n B 不能无限减少可得.【详解】(1)2n a n =,可得{}n a 是单调递增数列,1,n n n a B A a ∴==,1111a b a ∴==,2212a b a ==,3313a b a ==, (2)设1n a k +=,n n n A b B =, 若n k B ≤,则+1n n n n nk A A b b B =≥=, 若n n B k A <<,则+1n n n n A b b B ==, 若n k A ≥,则+1n n n nn A k b b B B =≥=, 综上,1(1,2,3,)n n b b n +≥=; (3)设等比数列{}n b 的公比为q ,1111a b a ==,则1n n nn A b q B -==, 由(2)可得1n n b b +≥,则1q ≥, 当1q =时,1n nA B =,即n n A B =,此时{}n a 为常数列,则存在01n =,当0n n ≥时,n a ,1n a +,2n a +是等比数列;当1q >时,{}n A 是递增数列,{}n B 是递减数列,{}n a 是由正整数组成的无穷数列,则数列{}n a 必存在最小值,即存在正整数0n ,0n a 是数列{}n a 的最小值,则当0n n ≥时,0n n B a =, 此时01n n n n n n A a b q B a -===,即01n n n a a q -=, 故当0n n ≥时,n a ,1n a +,2n a +是等比数列;综上,存在正整数0n ,当0n n ≥时,n a ,1n a +,2n a +是等比数列. 【点睛】本题考查数列单调性的有关判断,解题的关键是正确理解数列的变化情况,清楚{}n b 的变化特点.。

【苏科版】高中数学必修五期末试题(带答案)(1)

【苏科版】高中数学必修五期末试题(带答案)(1)

一、选择题1.已知实数x,y满足221x yx m-≤-≤⎧⎨≤≤⎩且2z y x=-的最小值为-6,则实数m的值为().A.2 B.3 C.4 D.82.实数x,y满足约束条件40250270x yx yx y+-≤⎧⎪-+≤⎨⎪-+≥⎩,则242x yzx+-=-的最大值为()A.53-B.15-C.13D.953.已知变量,x y满足不等式组2203x yx yy+-≥⎧⎪-≤⎨⎪≤⎩,则2z x y=-的最大值为()A.3-B.23-C.1 D.24.设函数2()1f x mx mx=--,若对于任意的x∈{x|1 ≤ x ≤ 3},()4f x m<-+恒成立,则实数m的取值范围为()A.m≤0B.0≤m<57C.m<0或0<m<57D.m<575.如图,某人在一条水平公路旁的山顶P处测得小车在A处的俯角为30,该小车在公路上由东向西匀速行驶7.5分钟后,到达B处,此时测得俯角为45.已知小车的速度是20km/h,且33cos AOB∠=-,则此山的高PO=()A .1 kmBCD6.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,6B π=,4Cπ,则ABC ∆的面积为( ) A.2+B1C.2D17.已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2sin sin sin B A C =,1a cc a+=+,则B = ( ) A .56π B .6π C .3π D .2π 8.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos a C ,cos b B ,cos c A 成等差数列,且8a c +=,则AC 边上中线长的最小值是( )A .2B .4C.D.9.已知函数()()f x x R ∈满足()()42f x f x -++=,若函数2xy x =-与()y f x =图象的交点为()()()1122,,,,,,n n x y x y x y ⋯,则()1nii i xy =+=∑( )A .0B .nC .2nD .3n10.已知函数()()31f x x x =-+,数列{}n a 中各项互不相等,记()()()12n n S f a f a f a =+++,给出两个命题:①若等差数列{}n a 满足55S =,则33a =;②若正项等比数列{}n a 满足33S =,则21a <;其中( )A .①是假命题,②是真命题B .①是真命题,②是假命题C .①②都是假命题D .①②都是真命题11.等差数列{}n a 中,10a >,310S S =,则当n S 取最大值时,n 的值为 ( ) A .6B .7C .6或7D .不存在12.已知数列{}n a 满足123n n a a +-=,11a =,3n n b a =+,则10b =( ) A .92B .103C .2048D .1024二、填空题13.正实数,x y 满足1x y +=,则12y x y++的最小值为________. 14.已知实数,x y 满足102801x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,则3yx +的最大值为_______.15.ABC 中,D 是边BC 上的点,满足90BAD ∠=︒,30DAC ∠=︒,4BD CD =.则sin sin BC=______. 16.设角,,A B C 是ABC ∆的三个内角,已知向量()sin sin ,sin sin m A C B A =+-,()sin sin ,sin n A C B =-,且m n ⊥.则角C 的大小为_____________.17.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,①若sin A >sin B ,则A >B ;②若sin2A =sin2B ,则△ABC 一定为等腰三角形;③若222cos cos cos 1A B C +-=,则△ABC 为直角三角形;④若△ABC 为锐角三角形,则sin A <cos B .以上结论中正确的有____________.(填正确结论的序号)18.已知点(3,A ,O 是坐标原点,点(),P x y的坐标满足0200y x y -≤+≥⎨⎪≥⎪⎩,设z 为OA 在OP 上的投影,则z 的取值范围是__________.19.已知111,2n n a a a +==,若(1)n n n b a n =+-⋅,则数列{}n b 的前10项的和10S =______.20.已知等比数列{a n }的前n 项和为S n ,且133,12n n a S a λ++==,则实数λ的值为_____三、解答题21.已知定义域为R 的函数()22x xb n f x b +=--是奇函数,且指数函数xy b =的图象过点(2,4).(Ⅰ)求()f x 的表达式;(Ⅱ)若方程()23()0f x x f a x ++-+=,(4,)x ∈-+∞恰有2个互异的实数根,求实数a 的取值集合;(Ⅲ)若对任意的[1,1]t ∈-,不等式()22(1)0f t a f at -+-≥恒成立,求实数a 的取值范围.22.已知关于x 的不等式23240x ax -++>. (1)当2a =时,求此不等式的解集;(2)若此不等式的解集为()4,m -,求实数a ,m 的值.23.在①tan 2tan B C =,②22312b a -=,③cos 2cos b C c B =三个条件中任选一个,补充在下面问题中的横线上,并解决该问题.问题:已知ABC ∆的内角,,A B C 及其对边,,a b c ,若2c =,且满足___________.求ABC ∆的面积的最大值(注:如果选择多个条件分别解答,按第一个解答计分)24.在△ABC 中,A =60°,sin B =12,a =3,求三角形中其他边与角的大小. 25.已知等差数列{}n a 的前n 项和为n S ,35a =,636S =.(1)求数列{}n a 的通项公式; (2)记m b 为2log k 在区间(]()*0,m a m N∈中正整数k 的个数,求数列{}mb 的前m 项和.26.在①2na n nb a =⋅,②10nn b a =-,③21n n n b a a +=这三个条件中任选一个,补充在下面问题中,并完成问题的解答.问题:已知数列{}n a 是各项均为正数的等差数列,22a =,且11a +、4a 、8a 成等比数列. (1)求数列{}n a 的通项公式;(2)记_____________,求数列{}n b 的前n 项和n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】 作出不等式组221x y x m-≤-≤⎧⎨≤≤⎩对应的区域,利用数形结合平移直线即可得到结论 .【详解】由题意可作图:当2z y x =-经过点P 时,z 取最小值6, 此时P 符合:2x my x =⎧⎨=-⎩,即(,2)P m m -代入2z y x =-得:m -2-2m =-6,解得m =4 故选:C 【点睛】简单线性规划问题的解题步骤: (1)画出可行域;(2)作出目标函数所表示的某条直线(通常选作过原点的直线),移动此直线并观察此直线经过可行域的哪个(些)点时,函数有最大(小)值; (3)求(写)出最优解和相应的最大(小)值; (4)下结论.2.D解析:D 【分析】首先画出可行域,变形24222x y y z x x +-==+--,利用2yx -的几何意义求z 的最大值.【详解】24222x y yz x x +-==+--设2ym x =-,m 表示可行域内的点和()2,0D 连线的斜率, 4250x y x y +=⎧⎨-+=⎩,解得:1,3x y ==,即()1,3C , 250270x y x y -+=⎧⎨-+=⎩ ,解得:3,1x y =-=,即()3,1B -, 如图,101325BD k -==---,30312CD k -==--,所以m 的取值范围是13,5⎡⎤--⎢⎥⎣⎦,即z 的取值范围是91,5⎡⎤-⎢⎥⎣⎦,z 的最大值是95.故选:D 【点睛】关键点点睛:本题的关键是变形242x y z x +-=-,并理解z 的几何意义,利用数形结合分析问题.3.B解析:B 【分析】画出不等式组表示的区域,将目标函数2z x y =-转化为22x zy =-,表示斜率为12截距为2z-平行直线系,当截距最小时,z 取最大值,由图即可求解. 【详解】解:画出不等式组表示的区域,如图中阴影部分所示:故将目标函数2z x y =-转化为22x z y =-, 表示斜率为12截距为2z -平行直线系, 所以当截距最小时,z 取最大值,由图可知,使得直线22x zy =-经过可行域且截距最小时的解为22,33C ⎛⎫ ⎪⎝⎭, 此时242333max z =-=-. 故选:B 【点睛】本题考查了线性规划的应用,注意将目标函数化成斜截式,从而由截距的最值确定目标函数的最值.4.D解析:D 【分析】将()4f x m <-+恒成立转化为g (x ) = mx 2-mx +m -5 < 0恒成立,分类讨论m 并利用一元二次不等式的解法,求m 的范围 【详解】若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立 即可知:mx 2-mx +m -5 < 0在x ∈{x |1 ≤ x ≤ 3}上恒成立 令g (x )=mx 2-mx +m -5,对称轴为12x = 当m =0时,-5 < 0恒成立当m < 0时,有g (x )开口向下且在[1,3]上单调递减∴在[1,3]上max ()(1)50g x g m ==-<,得m < 5,故有m < 0 当m >0时,有g (x ) 开口向上且在[1,3]上单调递增 ∴在[1,3]上max ()(3)750g x g m ==-<,得507m << 综上,实数m 的取值范围为57m < 故选:D 【点睛】本题考查了一元二次不等式的应用,将不等式恒成立等价转化为一元二次不等式在某一区间内恒成立问题,结合一元二次不等式解法,应用分类讨论的思想求参数范围5.A解析:A 【分析】由题意作图可得60APO ∠=,45BPO ∠=,设PO h =,在Rt POA △,Rt POB 中 求出3AO h =,BO h =,在AOB 中,由余弦定理列方程即可求解.【详解】由题意可知:PO ⊥平面AOB ,903060APO ∠=-=,904545BPO ∠=-=,7.520 2.560AB =⨯=km , 设PO h =,在POA 中,tan AO APO PO ∠=,tan 60AOh=,所以3AO h =, 在POB 中,tan BO BPO PO ∠=,tan 45BOh=,所以BO h =, 在AOB 中,由余弦定理可得:2222cos AB AO BO AO A BO OB =∠+-⨯, 所以()2222.532333h h h h =+-⨯⎛⎫- ⎪ ⎝⎭⨯⎪,即2252544h =,解得:1h =, 所以山的高1PO =, 故选:A.6.B解析:B 【解析】试题分析:根据正弦定理,,解得,,并且,所以考点:1.正弦定理;2.面积公式.7.B解析:B 【分析】根据正弦定理,边角互化可得2b ac =,再根据2221a c a c b c a ac+-+-=,利用余弦定理求角.【详解】∵2sin sin sin B A C =,∴21b ac=,∴2221a c a c b c a ac+-+-==∴cos B =,又()0,πB ∈∴6B π=.故选:B . 【点睛】本题考查正弦定理和余弦定理解不等式,重点考查转化的思想,计算能力,属于基础题型.8.C解析:C 【分析】根据等差中项的性质,结合正弦定理化简可得3B π=,设AC 中点为D ,再利用平面向量的线性运算可得1||||2BD BA BC =+,再平方利用基本不等式求解即可. 【详解】cos a C ,cos b B ,cos c A 成等差数列,2cos cos cos b B a C c A ∴=+,根据正弦定理有2sin cos sin cos sin cos sin()B B A C C A A C =+=+,2sin cos sin B B B ∴=,又sin 0B ≠,1cos 2B ∴=,可得3B π=,设AC 中点为D ,则AC 边上中线长为1||||2BD BA BC =+, 平方可得()()2222221112()444BD BA BC BA BC c a ac a c ac ⎡⎤=++⋅=++=+-⎣⎦ 2221()3()()124416a c a c a c ⎡⎤+≥+-=+=⎢⎥⎣⎦, 当且仅当4a c ==时取等号,故2BD 的最小值为12,即AC 边上中线长的最小值为 故选:C. 【点睛】本题主要考查了正弦定理边角互化的运用,同时也考查了利用基本不等式求最值的问题,同时在处理三角形中线的时候可以用平面向量表示从而简化计算,属于中档题.9.D解析:D 【分析】由题意可得()()f x x R ∈的图像关于点()2,1对称,函数2xy x =-的图像也关于()2,1对称,然后利用对称性以及倒序相加法即可得出答案. 【详解】函数()()f x x R ∈满足()()42f x f x -++=,∴()f x 的图像关于点()2,1对称,而函数2xy x =-的图像也关于()2,1对称, 设123n x x x x >>>>121224n n x x x x -∴+=+==⨯= 121212n n y y y y -+=+==⨯=令121nin i xx x x ==++∑,则111ni n n i x x x x -==++∑,()()()1211124ni n n n i x x x x x x x n -==++++∴+=∑,12ni i x n =∴=∑令121nin i y y yy ==++∑,则111ni n n i y y y y -==++∑,()()()1211122n i n n n i y y y n y y y y -=∴=+++++=∑,1ni i n y =∴=∑()13ni i i x y n =+=∴∑,故选:D 【点睛】本题考查了函数的对称性应用,考查了倒序相加法求和,解题的关键是找出中心对称点,属于中档题.10.A解析:A 【分析】先确定函数()f x 对称性与单调性,再结合等差数列的等距性确定3a ;结合基本不等式将等比数列性质转化到等差数列性质上,解不等式即得结果. 【详解】因为()()()3311(1)1f x x x x x =-+=-+-+,而3y x x =+关于原点对称且在R 上单调递增,所以()f x 关于(1,1)对称且在R 上单调递增, 先证明下面结论:若()g x 为奇函数且在R 上单调递增,{}n a 为等差数列,123g()()()()0n a g a g a g a ++++=,则1230n a a a a ++++=.证明:若1230n a a a a ++++>, 则当n 为偶数时,1211220n n n n a a a a a a -++=+==+> 111()()()()+()0n n n n a a g a g a g a g a g a >-∴>-=-∴>同理21+122()()0,,()+()0n n n g a g a g a g a -+>>,即123g()()()()0n a g a g a g a ++++>与题意矛盾, 当n 为奇数时,1211220n n n a a a a a -++=+==> 类似可得12112()()0,()(),,()0n n n g a g a g a g a g a -++>+>, 即123g()()()()0n a g a g a g a ++++>,与题意矛盾 同理可证1230n a a a a ++++<也不成立,因此1230n a a a a ++++= 再引申结论: 若()f x 为关于(,)a b 函数且在R 上单调递增,{}n a 为等差数列,123()()()()n f a f a f a f a nb ++++=,则123n a a a a na ++++=证明过程只需令()()g x f x a b =+-,再利用上面结论即得.①若等差数列{}n a 满足55S =,即 12345()()()()()5f a f a f a f a f a ++++=,则123453555a a a a a a ++++=∴=, 31a ∴=,故①是假命题,②若正项等比数列{}n a 满足33S =, 即123()()()3f a f a f a ++=因为数列{}n a 中各项互不相等,所以公比不为1,不妨设公比大于1,即123123()()()a a a f a f a f a <<∴<<,因为1322a a a +>=∴2()1f a <,()3222111a a a -+<∴<故②是真命题故选:A【点睛】本题考查函数()f x 对称性与单调性、等差数列性质、基本不等式应用,考查综合分析判断能力,属中档题.11.C解析:C【解析】设等差数列{}n a 的公差为d∵310S S =∴()()113319913922a d a d ⨯-⨯-+=+∴160a d +=∴70a =∵10a >∴当n S 取最大值时,n 的值为6或7故选C12.C解析:C【分析】根据题意得到12n n b b +=,计算得到答案.【详解】123n n a a +-=,()1323n n a a +∴+=+,即12n n b b +=,14b =,910422048b ∴=⨯=.故选:C .【点睛】本题考查了根据数列的递推式求通项公式,确定12n n b b +=是解题的关键.二、填空题13.【分析】根据题中条件由展开后利用基本不等式即可求出结果【详解】因为正实数xy 满足所以当且仅当即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三 解析:7【分析】 根据题中条件,由1222()2212y x y x y y x x y x y x y++++=+=+++,展开后,利用基本不等式,即可求出结果.【详解】因为正实数x ,y 满足1x y +=,所以1222()221237y x y x y y x x y x y x y ++++=+=+++≥+=, 当且仅当y x x y =,即1212x y ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立. 故答案为:7.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14.【分析】根据约束条件画出可行域目标函数可以看成是可行域内的点和的连线的斜率从而找到最大值时的最优解得到最大值【详解】根据约束条件可以画出可行域如下图阴影部分所示目标函数可以看成是可行域内的点和的连线 解析:78【分析】根据约束条件,画出可行域,目标函数可以看成是可行域内的点(),x y 和()3,0-的连线的斜率,从而找到最大值时的最优解,得到最大值.【详解】根据约束条件102801x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩可以画出可行域,如下图阴影部分所示, 目标函数3y x +可以看成是可行域内的点(),x y 和()3,0-的连线的斜率, 因此可得,当在点A 时,斜率最大 联立2801x y x +-=⎧⎨=⎩,得172x y =⎧⎪⎨=⎪⎩即71,2A ⎛⎫⎪⎝⎭所以此时斜率为 ()7072138-=--, 故答案为78.【点睛】本题考查简单线性规划问题,求目标函数为分式的形式,关键是要对分式形式的转化,属于中档题.15.【分析】直接利用三角形的面积建立等量关系进一步利用正弦定理的应用求出结果【详解】解:中D 是边上的点满足所以又因为则则故答案为:【点睛】本题考查了正弦定理三角形面积计算公式及其性质考查了推理能力与计算 解析:12 【分析】 直接利用三角形的面积建立等量关系,进一步利用正弦定理的应用求出结果. 【详解】 解:ABC中,D 是边BC 上的点,满足90BAD ∠=︒,30DAC ∠=︒,4BD CD =,所以1sin 90221sin 302ABD ACD AB AD S AB S ACAC AD ⋅︒==⋅⋅︒△△, 又因为4ABD ACD S BD S CD ==△△,则24AB BD AC CD==, 则sin 1sin 2B AC C AB ==. 故答案为:12.【点睛】本题考查了正弦定理、三角形面积计算公式及其性质,考查了推理能力与计算能力,属于中档题.16.【分析】先利用得到三角正弦之间的关系再根据正余弦定理求出即得角【详解】因为且所以即根据正弦定理得故根据余弦定理知又因为得故答案为:【点睛】本题考查了向量垂直的坐标运算和正余弦定理的应用是常考的综合题 解析:3π【分析】先利用0m n ⋅=得到三角正弦之间的关系,再根据正、余弦定理求出cos C ,即得角C .【详解】因为()sin sin ,sin sin m A C B A =+-,()sin sin ,sin n A C B =-,且m n ⊥ 所以()()()sin sin sin sin sin sin sin 0m n A C A C B A B ⋅=+-+-=即222sin sin sin sin sin A B C A B +-=根据正弦定理得222a b c ab +-= 故根据余弦定理知222cos 122a b c C ab +-==,又因为()0,C π∈ 得3C π= 故答案为:3π. 【点睛】本题考查了向量垂直的坐标运算和正余弦定理的应用,是常考的综合题,属于中档题. 17.①③【分析】结合三角形的性质三角函数的性质及正弦定理对四个结论逐个分析可选出答案【详解】对于①由正弦定理所以由sinA >sinB 可推出则即①正确;对于②取则而△ABC 不是等腰三角形即②错误;对于③则 解析:①③【分析】结合三角形的性质、三角函数的性质及正弦定理,对四个结论逐个分析可选出答案.【详解】对于①,由正弦定理sin sin a b A B =,所以由sin A >sin B ,可推出a b >,则A B >,即①正确;对于②,取15,75A B ︒︒==,则sin 2sin 2A B =,而△ABC 不是等腰三角形,即②错误;对于③,()()()222222cos cos cos 1sin 1sin 1sin 1A B C A B C +-=-+---=, 则222sin sin sin A B C +=,由正弦定理可得222+=a b c ,故△ABC 为直角三角形,即③正确;对于④,若△ABC 为锐角三角形,取80,40A B ︒︒==,此时sin80cos40sin50︒︒︒>=,即sin cos A B >,故④错误.故答案为:①③.【点睛】本题考查真假命题的判断,考查三角函数、解三角形知识,考查学生推理能力与计算求解能力,属于中档题.18.【分析】作出可行域根据投影的定义得数形结合求出的取值范围即求z 的取值范围【详解】作出可行域如图所示∴当时;当时的取值范围是故答案为:【点睛】本题考查简单的线性规划和向量的投影属于中档题解析:[]3,3-【分析】作出可行域.根据投影的定义得23cos z AOP =∠,数形结合求出AOP ∠的取值范围,即求z 的取值范围.【详解】作出可行域,如图所示cos 3OA OPz OA AOP AOP OP ⋅==⋅∠=∠.5,66AOP ππ⎡⎤∠∈⎢⎥⎣⎦,∴当6AOP π∠=时,max 2336z π==;当56AOP π∠=时,min 52336z π==-,z ∴的取值范围是[]3,3-. 故答案为:[]3,3-.【点睛】本题考查简单的线性规划和向量的投影,属于中档题. 19.1028【分析】由题可知为等比数列求出的通项公式即可写出的通项公式利用分组求和法即可求出前10项和【详解】是首项为1公比为2的等比数列则故答案为:1028【点睛】本题考查等比数列的判断以及通项公式的解析:1028【分析】由题可知{}n a 为等比数列,求出{}n a 的通项公式,即可写出{}n b 的通项公式,利用分组求和法即可求出前10项和.【详解】111,2n n a a a +==,{}n a ∴是首项为1,公比为2的等比数列,11122n n n a --∴=⨯=,121n n nb n , 则910124212310S 1011251102812. 故答案为:1028.【点睛】 本题考查等比数列的判断以及通项公式的求法,考查分组求和法求数列的前n 项和,属于基础题.20.【分析】首先利用与的关系式得到求得公比首项和第二项再通过赋值求的值【详解】当时两式相减得即并且数列是等比数列所以当时解得故答案为:【点睛】关键点点睛:本题的关键是利用数列和的关系式求数列的通项解析:34- 【分析】首先利用1n a +与n S 的关系式,得到14n n a a +=,求得公比,首项和第二项,再通过赋值2n =求λ的值.【详解】当2n ≥时,1133n n nn a S a S λλ+-+=⎧⎨+=⎩,两式相减得()1133n n n n n a a S S a +--=-=, 即14n n a a +=,并且数列{}n a 是等比数列,所以4q =,312a =,2133,4a a ∴==, 当2n =时,()321233a S a a λ+==+, 解得34λ=-. 故答案为:34-【点睛】 关键点点睛:本题的关键是利用数列n a 和n S 的关系式,求数列的通项.三、解答题21.(Ⅰ)121()22x x f x +-+=+;(Ⅱ){}40a a -<<;(Ⅲ){}0a a ≥. 【分析】(Ⅰ)先利用已知条件得到b 的值,再利用奇函数得到()00f =,进而得到n 的值,经检验即可得出结果;(Ⅱ)先利用指数函数的单调性判断()f x 的单调性,再利用奇偶性和单调性得到23x x a x +=-,把23x x a x +=-在(4,)x ∈-+∞恰有2个互异的实数根转化为()24f x x x a =+-在(4,)x ∈-+∞恰与x 轴有两个交点,求解即可;(Ⅲ)先利用函数()f x 为R 上的减函数且为奇函数,得到221t a at -≤-,把问题转化为2210t at a +--≤对任意的[1,1]t ∈-恒成立,令()221g t t at a =+--,利用二次函数的图像特点求解即可.【详解】(Ⅰ)由指数函数x y b =的图象过点(2,4),得2b =, 所以2()222x x n f x +=-⋅-, 又()f x 为R 上的奇函数,所以()00f =,得1n =-,经检验,当1n =-时,符合()()f x f x -=-, 所以121()22x x f x +-+=+; (Ⅱ)12111()22221x x x f x +-+==-+++, 因为21x y =+在定义域内单调递增, 则121x y =+在定义域内单调递减, 所以()f x 在定义域内单调递增减,由于()f x 为R 上的奇函数,所以由()23()0f x x f a x ++-+=,可得()()23()f x x f a x f a x +=--+=-, 则23x x a x +=-在(4,)x ∈-+∞恰有2个互异的实数根,即()24f x x x a =+-在(4,)x ∈-+∞恰与x 轴有两个交点, 则()()4000440204f a a a f a ⎧-><⎧⎪⎪∆>⇒>-⇒-<<⎨⎨⎪⎪-<>-⎩⎩, 所以实数a 的取值集合为{}40a a -<<.(Ⅲ)由(Ⅱ)知函数()f x 为R 上的减函数且为奇函数, 由()22(1)0f t a f at -+-≥, 得()()221f t a f at -≥-,所以221t a at -≤-,即2210t at a +--≤对任意的[1,1]t ∈-恒成立,令()221g t t at a =+--, 由题意()()1010g g ⎧-≤⎪⎨≤⎪⎩, 得0a ≥,所以实数a 的取值范围为:{}0a a ≥.【点睛】关键点睛:利用函数的奇偶性求解析式,(Ⅱ)把问题转化为()24f x x x a =+-在(4,)x ∈-+∞恰与x 轴有两个交点的问题;(Ⅲ)把问题转化为2210t at a +--≤对任意的[1,1]t ∈-恒成立是解决本题的关键.22.(1)223x x ⎧⎫-<<⎨⎬⎩⎭;(2)13m =,112a =-. 【分析】(1)当2a =时,不等式为23440x x -++>,即23440x x --<,利用一元二次不等式求解.(2)根据不等式的解集为()4,m -,则由4-,m 为方程23240x ax -++=的两根求解.【详解】(1)当2a =时,不等式为23440x x -++>,所以23440x x --<, 所以()23203x x ⎛⎫+-< ⎪⎝⎭, 解得223x -<<,所以不等式23440x x -++>的解集为223x x ⎧⎫-<<⎨⎬⎩⎭; (2)由已知得4-,m 为方程23240x ax -++=的两根, 则有243a m -+=--且443m -=-, 解得13m =,112a =-. 【点睛】 本题主要考查一元二次不等式的解法以及一元二次不等式与一元二次方程的关系,属于中档题.23.条件选择见解析;最大值为3.【分析】分别选择条件①②③,利用正弦定理和余弦定理,化简得到22312b a -=,再由余弦定理得28cos 2b A b -=,进而求得sin A ,利用面积公式求得ABC S ∆=,即可求解.【详解】选择条件①:因为tan 2tan B C =,所以sin cos 2sin cos B C C B =,根据正弦定理可得cos 2cos b C c B =, 由余弦定理得:222222222a b c a c b b c ab ac+-+-⨯=⨯, 又由2c =,可得22312b a -=, 根据余弦定理得22228cos 22b c a b A bc b+--==,则sin A ===,所以1sin 22ABC S bc A b b ∆==⨯=, 所以当且仅当210b =时,ABC ∆面积取得最大值,最大值为3.选择条件②:因为22312b a -=,由余弦定理得22228cos 22b c a b A hc h+--==,所以sin 2A b ===,1sin 22ABC S bc A b b ∆==⨯=, 所以当且仅当210b =时,ABC ∆面积取得最大值,最大值为3.选择条件③:因为cos 2cos b C c B =,由余弦定理得:222222222a b c a c b b c ab ac+-+-⨯=⨯, 因为2c =,可得22312b a -=,又由余弦定理得:22228cos 22b c a b A bc b+--==,所以sin A ===,1sin 22ABC S bc A b b ∆==⨯=, 所以当且仅当210b =时,ABC ∆面积取得最大值,最大值为3.【点睛】对于解三角形问题的常见解题策略:对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用正、余弦定理解三角形问题是高考高频考点,同时注意三角形内角和定理,三角形面积公式在解题中的应用.24.B =30°,90C =,b =c =. 【分析】由三角函数值、三角形内角和性质确定B 、C 的大小,应用正弦定理求,b c 即可.【详解】由1sin 2B =且60A =︒,即0120B <<︒,可知:30B =︒. ∴90C =︒,由正弦定理sin sin sin b c a B C A ==,∴sin 3sin 30sin sin 60a B b A ︒===︒sin 3sin 90sin sin 60a C c A ︒===︒25.(1)21n a n =-;(2)212233m m +-- 【分析】(1)根据等差数列的通项公式和前n 项和公式列出式子求出首项和公差即可求出通项公式;(2)由20log 21m k a m ≤=-<解得2112m k -<≤,即可得出1241m m b -=⨯-,再分组求和即可得出.【详解】(1)设等差数列{}n a 的公差为d , 则3161+25656+362a a d S a d ==⎧⎪⎨⨯==⎪⎩,解得1a 1,d 2, ()11221n a n n ∴=+-⨯=-;(2)由20log 21m k a m ≤=-<,解得2112m k -<≤,m b 为2log k 在区间(]()*0,m a m N ∈中正整数k 的个数,21121241m m m b --∴=-=⨯-,设数列{}m b 的前m 项和为m T ,则()21214221433m m m T m m +-=-=---. 【点睛】本题考查等差数列基本量的计算,解题的关键是求出首项和公差,考查等比数列的求和公式,解题的关键是求出1241m m b -=⨯-.26.(1)n a n =;(2)答案见解析.【分析】(1)设等差数列{}n a 的公差为d ,根据已知条件可得出关于1a 、d 的方程组,解出这两个量的值,利用等差数列的通项公式可求得{}n a 的通项公式;(2)选①,求得2n n b n =⋅,利用错位相减法可求得n S ;选②,求得10,101010,10n n n b n n n -≤⎧=-=⎨->⎩,分10n ≤和10n >两种情况讨论,结合等差数列的求和公式可求得n S ;选③,可得11122n b n n ⎛⎫- ⎪+⎝⎭=,利用裂项相消法可求得n S . 【详解】 (1)因为11a +、4a 、8a 成等比数列,所以()24181a a a =+,设等差数列{}n a 的公差为d ,则0d ≥,则有()()()2111317a d a a d +=++,①又22a =,所以12a d +=,②联立①②解得111a d =⎧⎨=⎩,所以()11n a a n d n =+-=;(2)选①,则2n n b n =⋅,231222322n n S n =⨯+⨯+⨯++⨯()23121222122n n n S n n +=⨯+⨯++-⨯+⨯,上式-下式得()()2311121222222212212n n n n n n S n n n +++--=++++-⨯=-⨯=-⋅--, 化简得()1122n n S n +=-⋅+;选②,则10,101010,10n n n b n n n -≤⎧=-=⎨->⎩, 当10n ≤时,10n b n =-,()()9101922n n n n n S +--==; 当10n >时,()()()()2101109101918098101210+222n n n n n S n -+-⨯-+⎡⎤=++++++++-==⎣⎦. 综上()219,10219180,102n n n n S n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩; 选③,则()1111222n b n n n n ⎛⎫==- ⎪++⎝⎭1111111111111213243546112n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ()()2111113521212412n n n S n n n n +⎛⎫∴=+--= ⎪++++⎝⎭. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.。

【浙教版】高中数学必修五期末试卷含答案

【浙教版】高中数学必修五期末试卷含答案

一、选择题1.若实数x ,y 满足约束条件403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是( )A .1B .20C .28D .322.不等式20ax bx c -+>的解集为{}|21x x -<<,则函数2y ax bx c =++的图像大致为( )A .B .C .D .3.已知,20a b c a b c >>++=,则ca的取值范围是( ) A .31ca-<<- B .113c a -<<- C .21ca-<<- D .112c a -<<- 4.在ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,b c =且sin 1cos sin cos B BA A-=,若点O 是ABC 外一点,()0AOB θθπ∠=<<,2OA =,1OB =.则平面四边形OACB 的面积的最大值是( )A .8534+ B .4534+ C .3 D .432+ 5.在△ABC 中,AC 2=BC =1,∠B =45°,则∠A =( )A .30°B .60°C .30°或150°D .60°或120°6.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知45A =︒,2a =,2b =B 为( ) A .60︒B .60︒或120︒C .30D .30或150︒7.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,若ABC 的面积为S ,且()2243S a b c =+-,则πsin 4C ⎛⎫+= ⎪⎝⎭( )A .1 B.2 C.4D.48.若实数,x y 满足约束条件40400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z x y =+的最大值为( )A .0B .4C .8D .129.已知数列{}n a 满足11a =,+121nn n a a a =+,则数列{}1n n a a +的前n 项和n T =( ) A .21nn - B .21nn + C .221nn + D .42nn + 10.数列{}n a 的前n 项和为()21n S n n =-(*n ∈N ),若173a a ka +=,则实数k 等于( ) A .2B .3C .269D .25911.已知数列{}n a的通项公式为)*n a n N =∈,其前n 项和为n S ,则在数列1S ,2S …,2019S 中,有理数项的项数为( ) A .42B .43C .44D .4512.记等差数列{}n a 的前n 项和为n S .若64a =,19114S =,则15S =( ) A .45B .75C .90D .95二、填空题13.已知实数,x y 满足约束条件222,22x y x y x y -≤⎧⎪-≥-⎨⎪+≥⎩则2z x y =-的最大值为___.14.已知a ,b 为正实数,且4a +b ﹣ab +2=0,则ab 的最小值为_____. 15.已知ABC 的面积为4,2tan 3B =,AB AC >,设M 是边BC的中点,若AM =,则BC =___________.16.在ABC 中,点M 是边BC的中点,AM =2BC =,则2AC AB +的最大值为___________.17.已知ABC 中,内角、、A B C 的对边分别为a b c 、、,且222sin 2a b c c B a a+--=,则B =___________.18.已知ABC 中,D 、E 分别为AB 、AC 的中点,DF tDE =,AF x AB y AC =+,则xy 的最大值为________.19.已知数列{}n a 的前n 项和为n S ,若11a =,22a =,0n a ≠,()111122n n n n n a n S a S nS +++--=-,其中2n ≥,且*n ∈N .设21n n b a -=,数列{}n b 的前n 项和为n T ,则100T =______.20.设,n n S T 分别是等差数列{}{},n n a b 的前n 项和,已知()*2142n n S n n N T n +=∈-,则10317a b b =+_________.三、解答题21.近年来,某市在旅游业方面抓品牌创建,推进养生休闲度假旅游产品升级,其景区成功创建国家5A 级旅游景区填补了该片区的空白,某投资人看到该市旅游发展的大好前景后,打算在该市投资甲、乙两个旅游项目,根据市场前期调查, 甲、乙两个旅游项目五年后可能的最大盈利率分别为01000和0080,可能的最大亏损率分别为0040和0020,投资人计划投资金额不超过5000万,要求确保亏损不四超过1200万,问投资人对两个项目各投资多少万元,才能使五年后可能的盈利最大?22.用硬纸做一个体积为32,高为2的长方体无盖纸盒,这个纸盒的长、宽各为多少时,表面积最小?并求出最小值.23.a ,b ,c 分别为锐角ABC 内角A ,B ,C 的对边.已知2sin (2sin sin )(2sin sin )a A B C b C B c =-+-.(1)求A ;(2)若2c =,试问b 的值是否可能为5?若可能,求ABC 的周长;若不可能,请说明理由.24.在△ABC 中,角A ,B ,C 所对的变分别为a ,b ,c ,已知2cos 212sin 2B B += (1)求角B 的大小; (2)若b =a c +的最大值.25.设数列{}n a 的前n 项和为n S ,______.从①数列{}n a 是公比为2的等比数列,2a ,3a ,44a -成等差数列;②22n n S a =-;③122n n S +=-.这三个条件中任选一个,补充在下面问题中,并作答.(1)求数列{}n a 的通项公式; (2)若21log nn na b a +=,求数列{}n b 的前n 项和n T . 26.已知数列{}n a 的前n 项和为n S ,且n nS a 和2n a 的等差中项为1.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设41log n n b a +=,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】画出可行域,向上平移基准直线320x y +=到可行域边界的位置,由此求得目标函数的最大值. 【详解】在平面直角坐标系内画出题中的不等式组表示的平面区域,如下图所示的阴影部分:其三角形区域(包含边界),由40340x y x y -+=⎧⎨--=⎩得点(4,8)A ,由图得当目标函数=3+2z x y 经过平面区域的点(4,8)A 时,=3+2z x y 取最大值max 342828z =⨯+⨯=.故选:C.【点睛】方法点睛:求目标函数最值的一般步骤是“一画、二移、三求”: (1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.2.C【分析】根据一元二次不等式的解集与一元二次方程的解求出,,a b c 的关系,然后再判断二次函数的图象. 【详解】∵不等式20ax bx c ++>的解集为{}|21x x -<<,∴21210b a c a a ⎧-+=⎪⎪⎪-⨯=⎨⎪<⎪⎪⎩,∴20b a c a a =-⎧⎪=-⎨⎪<⎩, 2222(2)y ax bx c ax ax a a x x =++=--=--,图象开口向下,两个零点为2,1-.故选:C . 【点睛】关键点点睛:本题考查一元二次不等式的解集,二次函数的图象,解题关键是掌握一元二次不等式的解集与一元二次方程的解、二次函数的图象之间的关系.3.A解析:A 【分析】先将20a b c ++=变形为2b a c =--,再代入不等式a b >,b c >,解这两个不等式,即可得a 与c 的比值关系,联立可求ca的取值范围 【详解】解:因为,20a b c a b c >>++=, 所以0,0a c ><,2b a c =--, 因为a b c >>,所以2a c a --<,即3a c >-,解得3ca>-, 将2b a c =--代入b c >中,得2a c c -->, 即a c <-,得1ca<-, 所以31ca-<<-, 故选:A 【点睛】此题考查一元一次不等式的应用,考查不等式性质的应用,考查转化思想,属于中档题4.A【分析】由条件整理可得ABC 是等边三角形,利用OACB AOBABCS SS=+可化简得532sin 34OACB S πθ⎛⎫=-+⎪⎝⎭,即可求出最值. 【详解】在ABC 中,sin 1cos sin cos B BA A-=, sin cos cos sin sin B A B A A ∴+=, 即sin()sin()sin sin A B C C A π+=-==A C ∴=,b c =, ∴ABC 是等边三角形,OACB AOBABCS SS∴=+2113||||sin ||222OA OB AB θ=⋅+⨯⨯()221321sin ||||2||||cos 2OA OB OA OB θθ=⨯⨯⨯++-⋅ 3sin (41221cos )θθ=++-⨯⨯⨯ 53sin 3cos 4θθ=-+532sin 34πθ⎛⎫=-+⎪⎝⎭, 0θπ<<,2333πππθ∴-<-<, 则当32ππθ-=,即56πθ=时,sin 3πθ⎛⎫- ⎪⎝⎭取得最大值1,故四边形OACB 面积的最大值为53853244++=. 故选:A.【点睛】本题考查两角差的正弦公式,考查三角形的面积公式,考查余弦定理,考查三角恒等变换的应用,解题的关键是利用三角形面积公式结合三角恒等变换化简得2sin 34OACB S πθ⎛⎫=-+⎪⎝⎭ 5.A解析:A 【分析】直接利用正弦定理求出sin A 的大小,根据大边对大角可求A 为锐角,即可得解A 的值. 【详解】因为:△ABC 中,BC =1,AC =∠B =45°,所以:BC AC sinA sinB=,sinA 112BC sinB AC ⨯⋅===. 因为:BC <AC ,可得:A 为锐角, 所以:A =30°. 故选:A . 【点评】本题考查正弦定理在解三角形中的应用,考查计算能力,属于基础题.6.C解析:C 【分析】根据正弦定理得到1sin 2B =,再根据a b >知A B >,得到答案. 【详解】 根据正弦定理:sin sin a bA B =,即1sin 2B =,根据a b >知A B >,故30B =︒. 故选:C . 【点睛】本题考查了根据正弦定理求角度,多解是容易发生的错误.7.D解析:D 【分析】根据()22a b c =+-cos 1C C -=,结合三角函数的性质,求得C 的值,最后利用两角和的正弦函数,即可求解. 【详解】由()22a b c =+-,可得2221sin 22ab C a b c ab =+-+,因为2222cos a b c ab C +-=,所以sin 2cos 2C ab C ab =+,即3sin cos 1C C -=,可得π2sin 16C ⎛⎫-= ⎪⎝⎭,则π1sin 62C ⎛⎫-= ⎪⎝⎭, 又因为0πC <<,则ππ5π666C -<-<,所以ππ66C -=,解得π3C =, 所以πππππππsin sin sin cos cos sin 4343434C ⎛⎫⎛⎫+=+=+ ⎪ ⎪⎝⎭⎝⎭ 3212622+=⨯+⨯=. 故选:D. 【点睛】本题主要考查了两角和的正弦函数的化简、求值,以及余弦定理的应用,其中解答中根据题设条件和余弦定理,求得C 的值,结合三角函数的性质求解是解答的关键,着重考查推理与运算能力.8.C解析:C 【分析】画出不等式组表示的平面区域,将2z x y =+转化为斜截式,即22x zy =-+,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论. 【详解】画出约束条件40400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩表示的可行域,如图所示,将2z x y =+转化为斜截式,即22x z y =-+,平移直线2xy =-,由图可知当直22x zy =-+经过点A 时,直线在y 轴上的截距最大,由4040x y x y +-=⎧⎨-+=⎩,可得40y x =⎧⎨=⎩,所以2z x y =+的最大值为0248+⨯=. 故选:C.【点睛】方法点睛:本题主要考查线性规划求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值,属于基础题.9.B解析:B 【分析】利用倒数法求出数列{}n a 的通项公式,进而利用裂项相消法可求得n T . 【详解】已知数列{}n a 满足11a =,+121nn n a a a =+, 在等式+121n n n a a a =+两边同时取倒数得112112n n n n a a a a ++==+,1112n n a a +∴-=, 所以,数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,且首项为111a ,公差为2,则()112121n n n a =+-=-,121n a n ∴=-, ()()11111212122121n n a a n n n n +⎛⎫∴==- ⎪-+-+⎝⎭,因此,1111111111111112323525722121221n T n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=- ⎪ ⎪ ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21n n =+. 故选:B. 【点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.10.C解析:C 【分析】由已知结合递推公式可求n a ,然后结合等差数列的通项公式即可求解. 【详解】因为()21n S n n =-, 所以111a S ==,当2n ≥时,()()()12112343n n n a S S n n n n n -=-=----=-,111a S ==适合上式,故43n a n =-,因为173a a ka +=, ∴1259k +=, 解可得269k = 故选:C. 【点睛】本题主要考查了由数列前n 项和求数列的通项公式,考查来了运算能力,属于中档题.11.B解析:B 【分析】本题先要对数列{}n a 的通项公式n a 运用分母有理化进行化简,然后求出前n 项和为n S 的表达式,再根据n S 的表达式的特点判断出那些项是有理数项,找出有理数项的下标的规律,再求出2019内属于有理数项的个数. 【详解】解:由题意,可知:n a ====. 12n n S a a a ∴=++⋯+1=1= 3S ∴,8S ,15S ⋯为有理项,又下标3,8,15,⋯的通项公式为21(2)n b n n =-,212019n ∴-,且2n ,解得:244n ,∴有理项的项数为44143-=.故选:B . 【点睛】本题主要考查分母有理化的运用,根据算式判断有理数项及其下标的规律,属于中档题.12.B解析:B 【分析】结合题意根据等差数列的通项公式和前n 项和公式列方程115419199114a d a d +=⎧⎨+⨯=⎩,解得11232d a ⎧=⎪⎪⎨⎪=⎪⎩,再利用前n 项和公式即可求得答案. 【详解】解:根据题意64a =,19114S =,结合等差数列的通项公式和前n 项和公式得:115419199114a d a d +=⎧⎨+⨯=⎩,即:115496a d a d +=⎧⎨+=⎩,解得11232d a ⎧=⎪⎪⎨⎪=⎪⎩, 所以()1511515131451051515157752222S a d -+=+=⨯+⨯⨯==. 故选:B. 【点睛】本题考查利用等差数列的通项公式和前n 项和公式求等差数列的基本量,考查数学运算能力,是基础题.二、填空题13.1【分析】作出不等式组对应的平面区域利用目标函数的几何意义进行求最值即可【详解】由z=x-2y 得作出不等式组对应的平面区域如图(阴影部分):平移直线的截距最小此时z 最大由得A (10)代入目标函数z=解析:1 【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可. 【详解】 由z=x-2y 得1122y x z =-,作出不等式组对应的平面区域如图(阴影部分):平移直线1122y x z =-,,1122y x z =-,的截距最小, 此时z 最大,由2222x y x y -⎧⎨+⎩== ,得A (1,0).代入目标函数z=x-2y , 得z=1-2×0=1, 故答案为1. 【点睛】本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.14.【分析】利用基本不等式转化为再利用换元法设转化为关于的一元二次不等式求的最小值【详解】当时等号成立设解得:或即的最小值为故答案为:【点睛】本题考查基本不等式一元二次不等式重点考查转化与变形计算能力属 解析:106+【分析】利用基本不等式转化为420ab ab +≤0ab t =>,转化为关于t 的一元二次不等式,求ab 的最小值. 【详解】0,0a b >>,4244a b ab ab ∴+≥=,当4a b =时等号成立, 420ab ab ∴+≤,0ab t =>,2420t t -+≤,2420t t --≥,解得:26t ≥26t ≤-0t >,2t ∴≥+(2210ab ≥+=+ab ∴的最小值为10+故答案为:10+【点睛】本题考查基本不等式,一元二次不等式,重点考查转化与变形,计算能力,属于基础题型.15.4【分析】首先利用余弦定理和三角形面积公式建立关于的方程再分别求根据余弦定理求结合条件求得的值【详解】得:解得:①中利用余弦定理②由①②可得解得:或即当时得此时不成立当时得此时成立故故答案为:4【点解析:4 【分析】首先利用余弦定理和三角形面积公式,建立关于,a c 的方程,再分别求,a c ,根据余弦定理求b ,结合条件AB AC >,求得BC 的值. 【详解】2tan 3B =,得:sin 13B =,cos 13B =11sin 422ABCSac B ac ===,解得:ac =① ABM中,利用余弦定理222252cos 5424a a a c c B c =+-⋅⋅=+= ②由①②可得22174ac a c ⎧=⎪⎨+=⎪⎩,解得:2a c ⎧=⎪⎨=⎪⎩4a c =⎧⎪⎨=⎪⎩, AB AC >,即c b >当2a c ==时,2222cos 32b a c ac B =+-=,得b =c b <,不成立,当4,a c == 2222cos 5b a c ac B =+-=,得b =c b >,成立,故4BC a ==. 故答案为:4 【点睛】易错点点睛:本题的易错点是求得,a c 后,还需满足条件AB AC >这个条件,否则会增根.16.【分析】用余弦定理表示出求出后利用余弦函数性质可得最大值【详解】记则在中同理在中可得∴设则其中是锐角显然存在使得∴的最大值为故答案为:【点睛】关键点点睛:本题考查余弦定理考查换元法求最值解题方法是用解析:【分析】用余弦定理表示出,AC AB ,求出2AC AB +后利用余弦函数性质可得最大值. 【详解】记AMC α∠=,则AMB πα∠=-, 在AMC 中,2222cos 314AC AM MC AM MC ααα=+-⋅=+-=-,同理在AMB 中可得24AB α=+,∴228AB AC +=,设AB x =,AC x =,(0,)2x π∈.则12cos )cos )2AC AB x x x x x x +=+=+=+)x θ=+,其中cosθθ==θ是锐角, 显然存在0(0,)22x ππθ=-∈,使得0sin()1x θ+=,∴2AC AB +的最大值为故答案为: 【点睛】关键点点睛:本题考查余弦定理,考查换元法求最值.解题方法是用余弦定理表示出,AB AC,得出228AB AC +=,利用三角换元法AB x =,AC x =,(0,)2x π∈.这里注意标明x 的取值范围.在下面求最值时需确认最值能取到,然后结合三角函数的性质求最值.17.(或)【分析】利用余弦定理和正弦定理边角互化整理已知条件最后变形为求角的值【详解】根据余弦定理可知所以原式变形为根据正弦定理边角互化可知又因为则原式变形整理为即因为所以(或)故答案为(或)【点睛】方解析:135︒(或34π) 【分析】利用余弦定理和正弦定理边角互化,整理已知条件,最后变形为tan 1B =-,求角B 的值. 【详解】根据余弦定理可知2222cos a b c ab C +-=,所以原式222sin 2a b c c B a a+--=,变形为cos sin b C c B a -=,根据正弦定理边角互化,可知sin cos sin sin sin B C C B A -=, 又因为()sin sin sin cos cos sin A B C B C B C =+=+, 则原式变形整理为sin cos B B -=,即tan 1B =-,因为()0,180B ∈,所以135B =(或34π) 故答案为135(或34π) 【点睛】方法点睛:(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到;(2)解题中注意三角形内角和定理的应用及角的范围限制.18.【分析】首先根据平面向量的线性运算表示出再根据向量相等得到最后利用基本不等式计算可得;【详解】解:因为DE 分别为ABAC 的中点所以又所以由所以当且仅当时取等号;故答案为:【点睛】本题考查平面向量基本 解析:116【分析】首先根据平面向量的线性运算表示出()11122AF t AB AC =-+,再根据向量相等得到12x y +=,最后利用基本不等式计算可得;【详解】解:因为D 、E 分别为AB 、AC 的中点,DF tDE =, 所以()12AF AD DF AD tDE AB t AE AD =+=+=+- ()11111122222AB t AC AB t AB AC ⎛⎫=+-=-+ ⎪⎝⎭ 又AF x AB y AC =+,所以()11212x t y t ⎧=-⎪⎪⎨⎪=⎪⎩,由12x y +=所以21216x y xy +⎛⎫≤= ⎪⎝⎭,当且仅当14x y ==时取等号; 故答案为:116【点睛】本题考查平面向量基本定理的应用,以及基本不等式的应用,属于中档题.19.【分析】根据已知条件推导出数列从第三项开始奇数项成等差数列且公差为然后利用等差数列的求和公式可求得的值【详解】当且时由可得即可得①所以②②①得所以则则所以数列从第三项开始奇数项成等差数列且公差为故答 解析:9901【分析】根据已知条件推导出数列{}n a 从第三项开始,奇数项成等差数列,且公差为2,然后利用等差数列的求和公式可求得100T 的值. 【详解】当2n ≥且*n ∈N 时,0n a ≠, 由()111122n n n n n a n S a S nS +++--=-,可得()()11112n n n n n a S S n S S ++-+-=-,即()1112n n n n a a a na ++++=, 可得12n n a a n ++=,①,所以,()2121n n a a n +++=+,②, ②-①得22n n a a +-=,所以,32224a a +=⨯=,则32a =,则3112a a -=≠, 所以,数列{}n a 从第三项开始,奇数项成等差数列,且公差为2,21n n b a -=,10099982199299012T ⨯⨯=+⨯+=. 故答案为:9901. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.20.【分析】利用等差数列的性质得到再根据求解【详解】因为所以故答案为:【点睛】本题主要考查等差数列的性质以及前n 项和公式的应用还考查了运算求解的能力属于中档题 解析:39148【分析】利用等差数列的性质得到1013171191912a a a b b b b =⨯+++191912S T =⨯,再根据2142n n S n T n +=-求解.【详解】因为()*2142n n S n n NT n +=∈-, 所以()()110113171119191991921912221a a a b b b a b b b a =⨯=⨯+++++, 191911219139224192148S T ⨯+=⨯=⨯=⨯-, 故答案为:39148【点睛】本题主要考查等差数列的性质以及前n 项和公式的应用,还考查了运算求解的能力,属于中档题.三、解答题21.甲乙两项目投资额分别为1000 万元和4000万元 【解析】试题分析:设投资人对甲,乙两个项目分别投资,x y 万元.根据已知条件可列出可行域为5000{0.40.212000,0x y x y x y +≤+≤≥≥,目标函数为0.8z x y =+,画出可行域,根据图像可知目标函数在点()1000,4000处取得最大值. 试题设投资人对甲,乙两个项目分别投资,x y 万元5000{0.40.212000,0x y x y x y +≤+≤≥≥求0.8z x y =+最大值 如图作出可行域当目标函数结果点()1000,4000A 时,0.8z x y =+取得最大值为4200 万元,此时对甲乙两项目投资额分别为1000 万元和4000 万元盈利最大. 22.当这个纸盒的长为4、宽为4时,表面积最小,最小值为48 【分析】设底面矩形的长为x ,利用长方体的体积公式求出16x ,即宽为16x,记所求表面积为S ,进一步利用表面积公式和均值不等式求出结果. 【详解】解:设底面矩形的长为x ,则宽为16x,记所求表面积为S ,则 1664162222164S x x x x=+⨯+⨯⨯=++, 因为x >0,所以646442432x x x x+⨯=,即321648S +=, 当且仅当644x x=,即x =4时取等号, 此时宽也为4.所以当这个纸盒的长为4、宽为4时,表面积最小,最小值为48. 【点睛】本题考查的知识要点:长方体面积和体积公式的应用,均值不等式的应用,属于基础题. 23.(1)3A π=;(2)不可能,理由见解析.【分析】(1)由正弦定理化角为边,再由余弦定理即可求出; (2)由余弦定理得出cos 0B <,得出B 为钝角,与已知矛盾. 【详解】解:(1)因为2sin (2sin sin )(2sin sin )a A B C b C B c =-+-, 由正弦定理可得22(2)(2)a b c b c b c =-+-,即222a b c bc =+-. 再由余弦定理得2222cos a b c bc A =+-,所以1cos 2A =. 因为(0,)A π∈,所以3A π=.(2)假设5b =,则由余弦定理,得2222cos 19a b c bc A =+-=,所以22219425cos 022a c b B ac ac+-+-==<,所以B 为钝角,这与ABC 为锐角三角形矛盾, 故b 的值不可能为5.24.(1)3π;(2) 【分析】(1)根据降幂公式和升幂公式可求得结果;(2)利用正弦定理边化角得到)6a c A π+=+,根据角A 的范围可得结果.【详解】(1)由2cos 212sin2BB +=,得22cos 1cos B B =-, 得(2cos 1)(cos 1)0B B -+=,得1cos 2B =或cos 1B =-(舍), 因为0B π<<,所以3B π=.(2)由正弦定理可得2sin ,2sin a A c C ==所以22(sin sin )2(sin sin())3a c A C A A π+=+=+- 222sin 2sincos 2cos sin 33A A A ππ=+-2sin sin A A A =++3sin A A =1sin cos )22A A =+6A π⎛⎫=+ ⎪⎝⎭,又20,3A π⎛⎫∈ ⎪⎝⎭,可得当3A π=时,a c +最大为 【点睛】关键点点睛:利用正弦定理边化角得到)6a c A π+=+是解题关键.25.(1)条件性选择见解析,2nn a =;(2)332n n n T +=-.【分析】(1)选①:由题意可得32442a a a =+-,再利用等比数列的公比为2可求1a ,进而可求数列{}n a 的通项公式;选②:22n n S a =-,令1n =可求1a ,当2n ≥时,可得1122n n S a --=-,与已知条件两式相减可求得()122n n a a n -=≥,进而可求数列{}n a 的通项公式;选③:122n n S +=-,当1n =时,112S a ==,当2n ≥时,122nn S -=-,与已知条件两式相减可求得2nn a =,检验12a =也满足,进而可求数列{}n a 的通项公式;(2)由(1)知2nn a =,则221log 1log 2122n n n nn n a n b a +++===,利用乘公比错位相减即可求和. 【详解】(1)选①:因为2a ,3a ,44a -成等差数列, 所以32442a a a =+-,又因为数列{}n a 的公比为2,所以2311122242a a a ⨯=+⨯-,即1118284a a a =+-,解得12a =,所以1222n nn a -=⨯=.选②:因为22n n S a =-,当1n =时,1122S a =-,解得12a =. 当2n ≥时,1122n n S a --=-,所以()()111222222n n n n n n n a S S a a a a ---=-=---=-. 即()122n n a a n -=≥.所以数列{}n a 是首项为2,公比为2的等比数列.故1222n nn a -=⨯=.选③:因为122n n S +=-,所以当1n =时,112S a ==,当2n ≥时,122nn S -=-,所以()()1122222n n n n n n a S S +-=-=---=,当1n =时,1122a ==依然成立.所以2nn a =.(2)由(1)知2nn a =,则221log 1log 2122n n n nn n a n b a +++===, 所以2323412222n nn T +=++++, ① 231123122222n n n n n T ++=++++, ② ①-②得23111111122222n nn n T ++⎛⎫=++++-⎪⎝⎭212111111111111121222211111222221122n n n n n n n n n -+++++⎛⎫-- ⎪+++⎝⎭=+-=+-=+---- 13322n n ++=-. 所以332n nn T +=-. 所以数列{}n b 的前n 项和332n n n T +=-. 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1n n a f n =-类型,可采用两项合并求解.26.(Ⅰ)2n n a =;(Ⅱ)22n n T n =+. 【分析】(Ⅰ)利用等差中项的定义得出n S 与n a 的关系,然后由1(2)n n n a S S n -=-≥得出数列{}n a 的递推关系,求出1a 其为等比数列,从而得通项公式;(Ⅱ)用裂项相消法求和n T .【详解】解:(Ⅰ)因为n nS a 和2n a 的等差中项为1, 所以22n n nS a a +=,即22n n S a =-, 当2n 时,1122n n S a --=-.两式相减得1122n n n n S S a a ---=-,整理得12n n a a -=.在22n n S a =-中,令1n =得12a =,所以,数列{}n a 是以2为首项,2为公比的等比数列,因此1222n n n a -=⨯=.(Ⅱ)411log 2n n n b a ++==. 则114114(1)(2)12+⎛⎫==- ⎪++++⎝⎭n n b b n n n n . 所以11111111244233412222n n T n n n n ⎛⎫⎛⎫=⨯-+-++-=⨯-= ⎪ ⎪++++⎝⎭⎝⎭. 【点睛】方法点睛:本题考查求等比数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和;(2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法;(3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.。

【浙教版】高中数学必修五期末试题(附答案)

【浙教版】高中数学必修五期末试题(附答案)

一、选择题1.不等式20ax bx c -+>的解集为{}|21x x -<<,则函数2y ax bx c =++的图像大致为( )A .B .C .D .2.若直线l :()200,0ax by a b -+=>>被圆222410x y x y ++-+=截得的弦长为4,则21a b+的最小值为( ) A .2B .4C 2D .223.已知实数x ,y 满足222y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,3z x y =-,则z 的最小值是( )A .2-B .4-C .6-D .8-4.若a ,b ,c ∈R ,a >b ,则下列不等式恒成立的是( ) A .1a <1bB .a 2>b 2C .21a c +>21b c + D .a |c |>b |c |5.一艘客船上午9:30在A 处,测得灯塔S 在它的北偏东30,之后它以每小时32海里的速度继续沿正北方向匀速航行,上午10:00到达B 处,此时测得船与灯塔S 相距82里,则灯塔S 在B 处的( ) A .北偏东75 B .北偏东75或东偏南75 C .东偏南75D .以上方位都不对6.设ABC 的内角A ,B ,C 的对边分别是a ,b ,c .已知2cos 0b a C -=,()sin 3sin A A C =+,则2bca =( )ABC .23D7.在ABC 中,角A 、B 、C 对边分别为a 、b 、c,若b =cos 20B B -=,且sin 2sin C A =,则ABC 的周长是( )A.12+B.C.D.6+8.设ABC 的三个内角,,A B C 的对边分别为,,a b c ,若6a =,8b =,12c =,若D 为AB 边的中点,则CD 的值为( ) A .7B .10CD.9.已知数列{}n a 的前n 项和n S 满足21n n S a =-.若对任意正整数n 都有10n n S S λ+-<恒成立,则实数λ的取值范围为( ) A .(),1-∞B .12⎛⎫-∞ ⎪⎝⎭,C .13⎛⎫-∞ ⎪⎝⎭,D .14⎛⎫-∞ ⎪⎝⎭,10.某食品加工厂2019年获利20万元,经调整食品结构,开发新产品.计划从2020年开始每年比上一年获利增加20%,则从( )年开始这家加工厂年获利超过60万元.(已知lg 20.3010=,lg30.4771=) A .2024年B .2025年C .2026年D .2027年11.数列{}n a 的通项公式是*1()(1)n a n n n =∈+N ,若前n 项的和为1011,则项数为( ). A .12B .11C .10D .912.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问相逢时驽马行几里?( ) A .540B .785C .855D .950二、填空题13.若实数x ,y 满足不等式组2025040x y x y x y -+≥⎧⎪--≤⎨⎪+-≥⎩,则1x y x ++的取值范围为_____.14.已知0a >,0b >,182+1a b +=,则2a b +的最小值为__________. 15.设角,,A B C 是ABC ∆的三个内角,已知向量()sin sin ,sin sin m A C B A =+-,()sin sin ,sin n A C B =-,且m n ⊥.则角C 的大小为_____________.16.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222a b =,sin C B =,则cos A =________.17.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,则满足10a =,18b =,30A =︒的三角形解的个数是______.18.已知0a >,0b >,若a ,1,b 依次成等差数列,则41a b+的最小值为________. 19.已知数列{}n a 的前n 项和为n S ,点()()*,,2n n S a n N n ∈≥在2441xy x =-的图像上,11a =,数列{}n a 通项为__________.20.已知数列{}n a 的前n 项和是n S ,若111,n n a a a n +=+=,则1916S S -的值为________.三、解答题21.在等腰直角三角形ABC 中,AB =AC =3,点P 是边AB 上异于A ,B 的一点,光线从点P 出发,经BC ,CA 反射后又回到点P (如图),光线QR 经过ABC 的重心,若以点A 为坐标原点,射线AB ,AC 分别为x 轴正半轴,y 轴正半轴,建立平面直角坐标系.(1)AP 等于多少?(2)D (x ,y )是RPQ 内(不含边界)任意一点,求x ,y 所满足的不等式组,并求出D (x ,y )到直线2x +4y +1=0距离的取值范围. 22.已知0a >,0b >且3a b +=.(Ⅰ)求311()a b +的最大值及此时a ,b 的值; (Ⅱ)求2231a b a b +++的最小值及此时a ,b 的值. 23.已知ABC 的内角,,A B C 的对边分别为,,a b c ,2cos cos cos aA b C c B=+.(1)求角A 的大小; (2)若3a =11b c+的取值范围. 24.ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 3cos b A a B ,sin 4sin C A =.(1)求B ;(2)在ABC 的边AC 上存在一点D 满足4AD CD =,连接BD ,若BCD △的面积为235,求b .25.已知正项等比数列{}n a ,首项13a =,且13213,,22a a a 成等差数列. (1)求数列{}n a 的通项公式; (2)若数列{}nb 满足3321log log n n n b a a +=⋅,求数列{}n b 的前n 项和n S .26.从①1a 、2a 、5a 成等比数列,②525S =,③222n nS S n n+-=+,这三个条件中任选一个,补充在下面问题中并作答.已知等差数列{}n a 的前n 项和为n S ,47a =, ,122n a n nb a +=+,求数列{}n b 的前n 项和为n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据一元二次不等式的解集与一元二次方程的解求出,,a b c 的关系,然后再判断二次函数的图象. 【详解】∵不等式20ax bx c ++>的解集为{}|21x x -<<,∴21210b a c a a ⎧-+=⎪⎪⎪-⨯=⎨⎪<⎪⎪⎩,∴20b a c a a =-⎧⎪=-⎨⎪<⎩, 2222(2)y ax bx c ax ax a a x x =++=--=--,图象开口向下,两个零点为2,1-.故选:C . 【点睛】关键点点睛:本题考查一元二次不等式的解集,二次函数的图象,解题关键是掌握一元二次不等式的解集与一元二次方程的解、二次函数的图象之间的关系.2.B解析:B 【分析】求出圆的圆心与半径,可得圆心在直线20(0,0)ax by a b -+=>>上,推出22a b +=,利用基本不等式转化求解21a b+取最小值. 【详解】解:圆222410x y x y ++-+=,即22(1)(2)4x y ++-=, 表示以2()1,M -为圆心,以2为半径的圆,由题意可得圆心在直线20(0,0)ax by a b -+=>>上, 故220a b --+=,即22a b +=,∴22122221122422a ba b b a b a a b a b a b a b+++=+=++++⋅=, 当且仅当22b a a b=,即2a b =时,等号成立, 故选:B . 【点睛】本题考查直线与圆的方程的综合应用,基本不等式的应用,考查转化思想以及计算能力,属于中档题.3.D解析:D 【分析】根据约束条件画出可行域,将问题转化为133zy x =-在y 轴截距最大值的求解问题,利用数形结合的方式可求得结果. 【详解】由约束条件可得可行域如下图阴影部分所示:由3z x y =-得:133zy x =-, ∴当z 取最小值时,133zy x =-在y 轴截距最大;由图象可知,当133zy x =-过点A 时,在y 轴截距最大, 由222x x y =-⎧⎨+=⎩得:()2,2A -,min 2328z ∴=--⨯=-.故选:D . 【点睛】本题考查线性规划中的最值问题的求解,关键是能够将所求最值转化为直线在y 轴截距的最值的求解问题,属于常考题型.4.C解析:C 【分析】首先利用特值法排除A 、B 两项,利用不等式的性质可确定C 项是正确的,再举出反例判断D 项是错误的,从而得到答案. 【详解】当a =1,b =-2时,满足a >b ,但11a b>,a 2<b 2,排除A 、B ; 因为211c +>0,a >b ⇒2211a b c c >++,故C 是正确的; 当c =0时,a |c |>b |c |不成立,排除D , 故选:C. 【点睛】该题考查的是有关不等式的问题,涉及到的知识点有利用不等式的性质比较式子的大小,利用特值法排除不正确的选项,坚持做到小题小做的思想,属于简单题目.5.B解析:B 【分析】根据题意作出示意图,利用正弦定理求出ASB ∠,可求得ABS ∠,即可得解. 【详解】 如下图所示:客船半小时的行程为132162AB =⨯=(海里), 因为82BS =30BAS ∠=821630sin ASB=∠, 所以,2sin 82ASB ∠==,45ASB ∴∠=或135. 当45ASB ∠=时,105ABS ∠=,此时,灯塔S 在B 处的北偏东75; 当135ASB ∠=时,15ABS ∠=,此时,灯塔S 在B 处的东偏南75. 综上所述,灯塔S 在B 处北偏东75或东偏南75. 故选:B. 【点睛】方法点睛:在求解测量角度问题时,方法如下:(1)对于和航行有关的问题,要抓住时间和路程两个关键量,解三角形时将各种关系集中在一个三角形中利用条件求解;(2)根据示意图,把所求量放在有关三角形中,有时直接解此三角形解不出来,需要先在其他三角形中求解相关量.6.D解析:D 【分析】根据正弦定理把角化边,可得3a b =,进一步得到2cos 3C =,然后根据余弦定理,可得6c b =,最后可得结果.【详解】 在ABC ∆中,sin sin a b A B=,由()sin 3sin()3sin 3sin A A C B B π=+=-=,所以3a b =①,又2cos 0b a C -=②,由①②可知:2cos 3C =,又2222cos 23a b c C ab +-==③,把①代入③化简可得:c ,则23bc a b ==, 故选:D. 【点睛】本题考查正弦定理、余弦定理的综合应用,难点在于将c 用b 表示,当没有具体数据时,可以联想到使用一个参数表示另外两个参数,属于中档题.7.D解析:D 【分析】由已知条件求出角B 的值,利用余弦定理求出a 、c 的值,由此可计算出ABC 的周长. 【详解】cos 2sin 26B B B π⎛⎫+=+= ⎪⎝⎭,sin 16B π⎛⎫∴+= ⎪⎝⎭,0B π<<,7666B πππ∴<+<,则62B ππ+=,3B π∴=,sin 2sin C A =,2c a ∴=,由余弦定理得2222cos b a c ac B =+-,即2312a =,2a ∴=,24c a ==,因此,ABC 的周长是6a b c ++=+故选:D. 【点睛】本题考查三角形周长的计算,涉及余弦定理的应用,考查计算能力,属于中等题.8.C解析:C 【分析】由已知可求6AD BD ==,在ABC 中,由余弦定理可求cos B 的值,在BCD 中,利用余弦定理即可求得||CD 的值. 【详解】 解:6a =,8b =,12c =,若D 为AB 边的中点,6AD BD ∴==,∴在ABC 中,222222612829cos 2261236a cb B ac +-+-===⨯⨯,∴在BCD 中,可得||CD ===.故选:C . 【点睛】本题主要考查了余弦定理在解三角形中的应用,考查了数形结合思想和转化思想,属于基础题.9.C解析:C 【分析】先利用1,1,2n n n S n a S S n =⎧=⎨-≥⎩求出数列{}n a 的通项公式,于是可求出n S ,再利用参变量分离法得到1n n S S λ+<,利用数列的单调性求出数列1n n S S +⎧⎫⎨⎬⎩⎭的最小项的值,可得出实数λ的取值范围. 【详解】当1n =时,1121S a =-,即1121a a =-,得11a =;当2n ≥时,由21n n S a =-,得1121n n S a --=-,两式相减得122n n n a a a -=-,得12n n a a -=,12nn a a -∴=,所以,数列{}n a 为等比数列,且首项为1,公比为2,11122n n n a --∴=⨯=. 12122121n n n n S a -∴=-=⨯-=-,由10n n S S λ+-<,得()()11111112121112221212221n nnn n n n S S λ+++++---<===----, 所以,数列1n n S S +⎧⎫⎨⎬⎩⎭单调递增,其最小项为122211213S S -==-,所以,13λ<,因此,实数λ的取值范围是1,3⎛⎫-∞ ⎪⎝⎭,故选C . 【点睛】本题考查利用数列前n 项和求数列的通项,其关系式为1,1,2n nn S n a S S n =⎧=⎨-≥⎩,其次考查了数列不等式与参数的取值范围问题,一般利用参变量分离法转化为数列的最值问题来求解,考查化归与转化问题,属于中等题.10.C解析:C 【分析】本题根据题意各年获利构成一个等比数列,然后得到通项公式,根据题意可得出关于n 的不等式,解出n 的值,注意其中对数式的计算. 【详解】由题意,设从2019年开始,第n 年的获利为()n a n *∈N 万元,则数列{}n a 为等比数列,其中2019年的获利为首项,即120a =.2020年的获利为()2620120%205a =⋅+=⋅万元,2021年的获利为()223620120%205a ⎛⎫=⋅+=⋅ ⎪⎝⎭万元,∴数列{}n a 的通项公式为()16205n n n N a *-⎛⎫⋅⎪⎝⎭∈= ,由题意可得1620605n n a -⎛⎫=⋅> ⎪⎝⎭,即1635n -⎛⎫> ⎪⎝⎭,()65lg3lg3lg3lg30.47711log 3610lg6lg52lg 2lg3120.30100.47711lg lg 23lg 52n ∴->=====-+-⨯+-⨯-6.03166=>,8n ∴≥,∴从2026年开始这家加工厂年获利超过60万元.故选:C . 【点评】本题主要考查等比数列在实际生活中的应用,考查了等比数列的通项公式,不等式的计算,对数运算.属于中档题.11.C解析:C 【解析】分析:由已知,111(1)1n a n n n n ==-++,利用裂项相消法求和后,令其等于1011,得到n 所满足的等量关系式,求得结果.详解:111(1)1n a n n n n ==-++ ()n *∈N ,数列{}n a 的前n 项和11111(1)()()2231n S n n =-+-+⋯+-+ 1111n n n =-=++,当1011n S =时,解得10n =,故选C. 点睛:该题考查的是有关数列的问题,在解题的过程中,需要对数列的通项公式进行分析,选择相应的求和方法--------错位相减法,之后根据题的条件,建立关于n 的等量关系式,从而求得结果.12.C解析:C 【分析】由已知条件转化为两个等差数列的前n 项和为定值问题,进而计算可得结果. 【详解】由题可知,良马每日行程构成一个首项为103,公差13的等差数列{}n a , 驽马每日行程构成一个首项为97,公差为﹣0.5的等差数列{}n b , 则a n =103+13(n ﹣1)=13n +90,b n =97﹣0.5(n ﹣1)=97.5﹣0.5n , 则数列{a n }与数列{b n }的前n 项和为1125×2=2250, 又∵数列{a n }的前n 项和为2n ×(103+13n +90)=2n×(193+13n ), 数列{b n }的前n 项和为2n ×(97+97.5﹣0.5n )=2n ×(194.5﹣2n), ∴2n ×(193+13n )+2n ×(194.5﹣2n)=2250,整理得:25n 2+775n ﹣9000=0,即n 2+31n ﹣360=0,解得:n =9或n =﹣40(舍),即九日相逢,相逢时驽马行了92×(194.5﹣92)=855. 故选:C 【点睛】本题以数学文化为背景,考查等差数列及等差数列的前n 项和,考查转化思想,考查分析问题、解决问题的能力,属于中档题.二、填空题13.【分析】作出不等式组对应的平面区域然后化简目标函数利用不等式的几何意义利用线性规划的知识进行求解即可【详解】解:实数满足不等式组的可行域如图三角形的三边及其内部部分:它的几何意义是可行域内的点与连线解析:5,53⎡⎤⎢⎥⎣⎦【分析】作出不等式组对应的平面区域,然后化简目标函数,利用不等式的几何意义,利用线性规划的知识进行求解即可. 【详解】解:实数x ,y 满足不等式组2025040x y x y x y -+≥⎧⎪--≤⎨⎪+-≥⎩,的可行域如图,三角形ABC 的三边及其内部部分:111x y y x x+++=+,它的几何意义是可行域内的点与()0,1D -连线的斜率加1, 由图象知BD 的斜率最小,CB 的斜率最大, 由4020x y x y +-=⎧⎨-+=⎩解得()1,3C ,此时DC 的斜率:3141+=, 由25040x y x y --=⎧⎨+-=⎩得()3,1B ,此时BD 的斜率:11233+=, 则1x y x ++的取值范围为是5,53⎡⎤⎢⎥⎣⎦, 故答案为:5,53⎡⎤⎢⎥⎣⎦.【点睛】本题考查了简单的线性规划问题,考查数形结合思想,属于中档题.14.8【解析】由题意可得:则的最小值为当且仅当时等号成立点睛:在应用基本不等式求最值时要把握不等式成立的三个条件就是一正——各项均为正;二定——积或和为定值;三相等——等号能否取得若忽略了某个条件就会出解析:8 【解析】 由题意可得:()2111821211161102111029,a b a b a b a b b a ++⎛⎫⎡⎤=++⨯+ ⎪⎣⎦+⎝⎭+⎛⎫=++ ⎪+⎝⎭⎛≥+ ⎝=则2a b +的最小值为918-=. 当且仅当3,52a b ==时等号成立. 点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.15.【分析】先利用得到三角正弦之间的关系再根据正余弦定理求出即得角【详解】因为且所以即根据正弦定理得故根据余弦定理知又因为得故答案为:【点睛】本题考查了向量垂直的坐标运算和正余弦定理的应用是常考的综合题 解析:3π【分析】先利用0m n ⋅=得到三角正弦之间的关系,再根据正、余弦定理求出cos C ,即得角C . 【详解】因为()sin sin ,sin sin m A C B A =+-,()sin sin ,sin n A C B =-,且m n ⊥ 所以()()()sin sin sin sin sin sin sin 0m n A C A C B A B ⋅=+-+-= 即222sin sin sin sin sin A B C A B +-= 根据正弦定理得222a b c ab +-=故根据余弦定理知222cos 122a b c C ab +-==,又因为()0,C π∈得3C π=故答案为:3π. 【点睛】本题考查了向量垂直的坐标运算和正余弦定理的应用,是常考的综合题,属于中档题.16.【分析】由根据正弦定理边化角可得根据余弦定理结合已知联立方程组即可求得角【详解】根据正弦定理:根据余弦定理:又故可联立方程:解得:故答案为:【点睛】本题主要考查了求三角形的一个内角解题关键是掌握由正【分析】由sin C B =,根据正弦定理“边化角”,可得=c ,根据余弦定理2222cos a b c bc A =+-,结合已知联立方程组,即可求得角cos A .【详解】sin C B =,根据正弦定理:sin sin b cB C=,∴=c , 根据余弦定理:2222cos a b c bc A =+-,又222a b =,故可联立方程:222222cos 2c a b c bc A a b ⎧=⎪=+-⎨⎪=⎩,解得:cos A =.故答案为:3. 【点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.17.2【分析】直接利用正弦定理得到答案【详解】根据正弦定理得到:故故满足条件的三角形共有个故答案为:【点睛】本题考查了利用正弦定理判断三角形的个数问题意在考查学生的应用能力解析:2 【分析】直接利用正弦定理得到答案. 【详解】根据正弦定理得到:sin sin a b A B=,故9sin 10B =,91sin sin 10B A >=>. 故满足条件的三角形共有2个. 故答案为:2. 【点睛】本题考查了利用正弦定理判断三角形的个数问题,意在考查学生的应用能力.18.【分析】由a1b 依次成等差数列可得再利用乘1法及基本不等式计算即可求得答案【详解】且a1b 依次成等差数列当且仅当即取等号故的最小值为故答案为:【点睛】本题考查基本不等式的性质以及应用涉及等差中项的定解析:92【分析】由a ,1,b 依次成等差数列,可得2a b +=,再利用乘“1”法及基本不等式计算,即可求得答案.【详解】a>,0b>,且a,1,b依次成等差数列,∴2a b+=,∴()41141141941(52222b aa ba b a b a b⎛⎫⎛⎫+=++=+++≥+=⎪ ⎪⎝⎭⎝⎭,当且仅当4b aa b=,即43a=,23b=,取等号,故14a b+的最小值为92.故答案为:92.【点睛】本题考查基本不等式的性质以及应用,涉及等差中项的定义,考查了分析能力和计算能力,属于中档题.19.【分析】把数列递推式中换为整理得到是等差数列公差然后由等差数列的通项公式得答案【详解】由题意可得:∴∴两边除以并移向得出是等差数列公差故当时当时不符合上式故答案为:【点睛】本题考查了数列递推式考查了解析:()()()()*1,14,,24347nnan N nn n⎧=⎪=-⎨∈≥⎪--⎩【分析】把数列递推式中na换为1n ns s--,整理得到1{}nS是等差数列,公差2d=,然后由等差数列的通项公式得答案.【详解】由题意可得:()24,241nnnSa nS=≥-∴()214,241nn nnSS S nS--=≥-,∴1140n n n ns s s s---+=.两边除以1n ns s-,并移向得出1114,(2)n nnS S--=,1{}nS∴是等差数列,公差4d=,11111S a==.∴114(1)43nn n S =+-=-, 故143n S n =-. ∴当2n 时,()()111443474347n n n a S S n n n n --=-=-=----. 当1n =时,11a =不符合上式.()()()()*1,14,,24347n n a n N n n n ⎧=⎪∴=-⎨∈≥⎪--⎩. 故答案为:()()()()*1,14,,24347n n a n N n n n ⎧=⎪=-⎨∈≥⎪--⎩. 【点睛】本题考查了数列递推式,考查了等差关系的确定,考查了运算求解能力,属于中档题.20.27【分析】由得相减后得数列的奇数项与偶数项分别成等差数列由此可得通项从而求得结论【详解】∵∴相减得又所以数列的奇数项与偶数项分别成等差数列公差为1故答案为:27【点睛】易错点睛:本题考查等差数列的解析:27 【分析】由1n n a a n ++=得121n n a a n +++=+相减后得数列的奇数项与偶数项分别成等差数列,由此可得通项,从而求得结论. 【详解】∵1n n a a n ++=,∴121n n a a n +++=+,相减得21n na a +-=,又1121,1a a a =+=,20a =,211a a -=-,所以数列{}n a 的奇数项与偶数项分别成等差数列,公差为1,21n a n -=,21n a n =-,1916171819981027S S a a a -=++=++=.故答案为:27. 【点睛】易错点睛:本题考查等差数列的通项公式,解题时由已知等式中n 改写为1n +,两相减后得21n na a +-=,这里再计算21a a -,如果2211()22n na a a a +--==,则可说明{}n a 是等差数列,象本题只能说明奇数项与偶数项分别成等差数列.不能混淆,误以为{}n a 是等差数列.这是易错的地方.三、解答题21.(1)||1AP =;(2)x ,y 所满足的不等式组为210210220x y x y x y -+>⎧⎪+->⎨⎪--<⎩,D (x ,y )到直线2x +4y +1=0距离的取值范围为32955)1030(,. 【分析】(1)建立坐标系,设点P 的坐标,可得P 关于直线BC 的对称点1P 的坐标,和P 关于y 轴的对称点2P 的坐标,由1P ,Q ,R ,2P 四点共线可得直线的方程,由于过ABC 的重心,代入可得关于a 的方程,解之可得P 的坐标,进而可得AP 的值;(2)先求出,,RQ PR PQ 所在直线的方程,即得x ,y 所满足的不等式组,再利用数形结合求出D (x ,y )到直线2x +4y +1=0距离的取值范围. 【详解】(1)以A 为原点,AB 为x 轴,AC 为y 轴建立直角坐标系如图所示. 则(0,0)A ,(3,0)B ,(0,3)C .设ABC ∆的重心为E ,则E 点坐标为(1,1),设P 点坐标为(,0)m ,则P 点关于y 轴对称点1P 为(,0)m -, 因为直线BC 方程为30x y +-=, 所以P 点关于BC 的对称点2P 为(3,3)m -, 根据光线反射原理,1P ,2P 均在QR 所在直线上,∴12E P E P k k =, 即113113mm -+=+-, 解得,1m =或0m =.当0m =时,P 点与A 点重合,故舍去.∴1m =. 所以||1AP =.(2)由(1)得2P 为(3,2),又1(1,0)-P ,所以直线RQ 的方程为210x y -+=; 令210x y -+=中10,2x y =∴=,所以1(0,),2R 所以直线PR 的方程为210x y +-=; 联立直线BC 和RQ 的方程30210x y x y +-=⎧⎨-+=⎩得54(,)33Q ,所以直线PQ 的方程为220x y --=.D (x ,y )是RPQ 内(不含边界)任意一点,所以x ,y 所满足的不等式组为210210220x y x y x y -+>⎧⎪+->⎨⎪--<⎩. 直线2410x y ++=和直线PR 平行,所以它们之间的距离为223=51024+; 点Q 到直线2410x y ++=的距离为2254|2+4+1|2933=53024⨯⨯+.所以D (x ,y )到直线2x +4y +1=0距离的取值范围为32955)1030(,.【点睛】本题主要考查二元一次不等式组对应的平面区域,考查线性规划问题,考查解析法和直线方程的求法,意在考查学生对这些知识的理解掌握水平. 22.(Ⅰ)32a b ==时,311log a b ⎫+⎪⎭取得最大值为2-;(Ⅱ)623a =-323b =-+332+; 【分析】(Ⅰ)利用“乘1法”与基本不等式的性质,对数函数的单调性即可得出;(Ⅱ)先对已知式子进行化简,然后结合基本不等式即可求解.【详解】解:(Ⅰ)1133224233333333333a b a b b a b aa b a b a b a b a b+++=+=+=+++=,当且仅当33b aa b=且3a b+=,即32a b==时取等号,31123loga b⎛⎫∴+=-⎪⎝⎭即最大值为2-,(Ⅱ)3a b+=,∴223313131(1)121111a ba b a ba b a b a b a b++=++-+=+-++=++++++3113(1)3(2()()332314444(1)4(1)a b ba ba b a b b++=+++=+++=++++当且仅当3(1)44(1)b aa b+=+且3a b+=,即6a=-3b=-+时取等号,【点睛】本题考查了基本不等式的性质、方程的解法,考查了推理能力与计算能力,属于中档题.23.(1)3Aπ=;(2)⎫+∞⎪⎪⎣⎭.【分析】(1)利用正弦定理边化角可化简已知关系式求得cos A,结合A的范围可求得结果;(2)解法一:利用正弦定理边化角可整理得到1161sin262Bb cBππ⎛⎫+⎪⎝⎭+=⎛⎫-+⎪⎝⎭,利用B的范围可求得sin6Bπ⎛⎫+⎪⎝⎭的范围,代入整理可求得结果;解法二:利用余弦定理和基本不等式可求得3bc≤,整理得到11b c+=合二次函数的性质可求得所求的范围.【详解】(1)由正弦定理得:()sin sin2cossin cos sin cos sinA AAB C C B B C==++.B C Aπ+=-,()sin sinB C A∴+=,2cos1A∴=,即1cos2A=,()0,Aπ∈,3Aπ∴=.(2)解法一:由正弦定理知,2sin sin sin sin 3a b c A B C π====,sin sin 1111sin sin 3612sin 2sin 2sin sin 2sin sin sin 2362B B B B C b c B C B C B B B ππππ⎛⎫⎛⎫+++ ⎪ ⎪+⎝⎭⎝⎭∴+=+===⎛⎫⎛⎫+-+⎪ ⎪⎝⎭⎝⎭.3A π=,20,3B π⎛⎫∴∈ ⎪⎝⎭. 令6B πθ=+,则5,66ππθ⎛⎫∈⎪⎝⎭,则1sin ,12θ⎛⎤∈ ⎥⎝⎦.则11cos 24sin sin 22sin 22b cθθθθ⎫+====+∞⎪⎪⎣⎭-+--+⎪⎝⎭. 解法二:3a =,3A π=,∴由余弦定理知:2232b c bc bc bc +-=≥-(当且仅当b c =时取等号),3bc ∴≤,()233b c bc +=+,则113bc ≥,11b c b c bc +∴+===.11b c ∴+的取值范围为⎫+∞⎪⎪⎣⎭. 【点睛】方法点睛:求解与边长相关的取值范围类问题通常有两种方法:①利用正弦定理边化角,将所求式子转化为与三角函数值域有关的问题的求解,利用三角恒等变换和三角函数的知识来进行求解;②利用余弦定理构造方程,结合基本不等式求得基本范围;将所求式子化为符合基本不等式的形式或配凑成函数的形式来进行求解;应用此方法时,需注意基本不等式等号成立的条件. 24.(1)3π;(2【分析】(1)利用正弦定理把sin cos b A B =化为sin sin cos A B A B =,从而可得tan B ,进而可求出角B ;(2)由于4AD CD =,所以51ABC BCDSAC SDC ==,从而可得ABC 的面积为用三角形面积公式可得8ac =,而由sin 4sin C A =得 4c a =,从而可求出,a c 的值,再利用余弦定理可求出b 的值.【详解】解:(1)∵sin cos b A B =,∴sin sin cos A B A B =,∴tan B∵()0,B π∈ ∴3B π=; (2)依题意可知:51ABC BCD S AC S DC ==,∵BCD △,∴ABC 的面积为 ∵ABC 的面积为1sin 2S ac B ==∴8ac =, ∵sin 4sin C A =,∴4c a =,c =a=∴b .25.(1)3n n a =;(2)13112212n n ⎛⎫-- ⎪++⎝⎭. 【分析】 (1)由已知13213,,22a a a 成等差数列求出公比q 后可得通项公式; (2)用裂项相消法求和n S .【详解】(1)解:设等比数列{}n a 的公比为q ,由题意得:31212322a a a ⨯=+, 即211132a q a a q =+,即232q q =+,所以3q =或1q =-(舍),所以1333n n n a -=⋅=.(2)由(1)知233233111log log log 3log 3(2)n n n n n b a a n n ++===⋅⋅+, 则11122n b n n ⎛⎫- ⎪+⎝⎭=, 所以1111111112324112n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 111112212n n ⎛⎫=+-- ⎪++⎝⎭13112212n n ⎛⎫=-- ⎪++⎝⎭【点睛】本题考查求等比数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法;(3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和. 26.答案见解析.【分析】选①,设等差数列{}n a 的公差为d ,根据已知条件可得出关于1a 、d 的方程组,解出这两个量的值,可求得数列{}n a 的通项公式,可求得n b ,进而可求得n T ; 选②,设等差数列{}n a 的公差为d ,根据已知条件可得出关于1a 、d 的方程组,解出这两个量的值,可求得数列{}n a 的通项公式,可求得n b ,进而利用分组求和法可求得n T ; 选③,设等差数列{}n a 的公差为d ,利用等差数列的求和公式求出d 的值,可求得1a 的值,求出数列{}n a 的通项公式,可求得n b ,进而利用分组求和法可求得n T .【详解】解:选①,设数列{}n a 的公差为d ,则由47a =可得137a d +=, 由1a 、2a 、5a 成等比数列得()()21114a a d a d +=+,可得212d a d =, 所以,121372a d d a d +=⎧⎨=⎩,解得170a d =⎧⎨=⎩或112a d =⎧⎨=⎩, 若17a =,0d =,则7n a =,23n b =,23n T n =;若11a =,2d =,则()1121n a a n d n =+-=-,212n n b n =-+,()()()()23123252212n n T n ⎡⎤∴=+++++++-+⎣⎦ ()()23135212222n n =++++-+++++⎡⎤⎣⎦()()1221212122212n n n n n +-+-=+=+--; 选②,设数列{}n a 的公差为d ,则由47a =可得137a d +=,由525S =得1545252a d ⨯+=,即125a d +=, 联立以上两式可得11a =,2d =,所以,()1121n a a n d n =+-=-,212n n b n =-+,()()()()23123252212n n T n ⎡⎤∴=+++++++-+⎣⎦ ()()23135212222n n =++++-+++++⎡⎤⎣⎦ ()()1221212122212n n n n n +-+-=+=+--;选③,设数列{}n a 的公差为d ,则由47a =可得137a d +=,()112n n n d S na -=+,()112n n d S a n -∴=+,()21122n n d S a n ++∴=++, 由222n n S S n n+-=+得2d =,则11a =, 所以,()1121n a a n d n =+-=-,212n n b n =-+,()()()()23123252212n n T n ⎡⎤∴=+++++++-+⎣⎦ ()()23135212222n n =++++-+++++⎡⎤⎣⎦ ()()1221212122212n n n n n +-+-=+=+--.【点睛】 方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和; (2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.。

高中数学必修五期末试卷含答案

高中数学必修五期末试卷含答案

一、选择题1.已知实数x ,y 满足260,{0,2,x y x y x -+≥+≥≤若目标函数z mx y =-+的最大值为210m -+,最小值为22m --,则实数m 的取值范围是( ) A .[]2,1-B .[]1,3-C .[]1,2-D .[]2,32.设m 1>,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z=x+my 的最大值小于2,则m 的取值范围为( ) A.(1,1 B.()1+∞ C .(1,3)D .(3,+∞)3.已知正数a ,b 满足2a b +=,则2238a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为( ) A .36B .42C .49D .604.已知正数x ,y 满足x +y =1,且2211x y y x +++≥m ,则m 的最大值为( ) A .163B .13C .2D .45.在ABC 中,内角,A ,B C 的对边分别为,a ,b c,已知b =22cos c a b A -=,则a c +的最大值为( )AB.C.D6.在△ABC 中,若b =2,A =120°,三角形的面积S = AB.C .2 D .47.在ABC 中,60A ∠=︒,4AC =,BC =ABC 的面积为 A.B .4C.D8.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,若ABC 的面积为S,且()22a b c =+-,则πsin 4C ⎛⎫+= ⎪⎝⎭( )A .1B .22 C.62- D .62+ 9.若等差数列{}n a 的前n 项和为n S ,首项10a >,202020210a a +>,202020210a a ⋅<,则满足0n S >成立的最大正整数n 是( ) A .4039B .4040C .4041D .404210.在等差数列{}n a 中,0n a ≠,()21102n n n a a a n -+-+=≥,若2138n S -=,则n =( ).A .38B .20C .10D .911.已知等差数列{}n a 的首项为1a ,公差为d ,其前n 项和为n S ,若直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称,则数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为( ) A .1011B .910C .89D .212.公元前四世纪,毕达哥拉斯学派对数和形的关系进行了研究.他们借助几何图形(或格点)来表示数,称为形数.形数是联系算术和几何的纽带.如图所示,数列1,6,15,28,45,…,从第二项起每一项都可以用六边形表示出来,故称它们为六边形数,那么该数列的第11项对应的六边形数为( )A .153B .190C .231D .276二、填空题13.已知实数,x y 满足约束条件1210320y x y x y c ≥⎧⎪-+≥⎨⎪+-≤⎩,若2z y x =-的最大值为11,则实数c的值为____.14.如图,点A 是半径为1的半圆O 的直径延长线上的一点,3OA =B 为半圆上任意一点,以AB 为一边作等边ABC ,则四边形OACB 的面积的最大值为___________.15.ABC 的三边边长,,a b c 成递增的等差数列,且最大角等于最小角的2倍,则::a b c =______16.给出以下四个结论:①函数()211x f x x -=+的对称中心是()1,2-;②若关于x 的方程10x k x-+=在()0,1x ∈没有实数根,则k 的取值范围是2k ≥;③在ABC 中,若cos cos b A a B =则ABC 为等腰三角形;④若将函数()sin 23πf x x ⎛⎫=- ⎪⎝⎭的图象向右平移()0ϕϕ>个单位后变为偶函数,则ϕ的最小值是12π.其中正确的结论是________.17.已知0a >,0b >,若a ,1,b 依次成等差数列,则41a b+的最小值为________. 18.已知正项等比数列{}n a 满足:28516a a a ,35+20a a =,若存在两项,m n a a 使得=32m n a a ,则14m n+的最小值为______ 19.已知数列{}n a 的各项均不为零,其前n 项和为n S ,且11a =,()12n n n S a a n *+=∈N .若11n n n b a a +=,则数列{}n b 的前n 项和n T =______. 20.若a 、b 、c 成等比数列,a 、x 、b 成等差数列,b 、y 、c 成等差数列(x 、y 均不为0),则a cx y+=______. 三、解答题21.(1)已知()2f x kx =+,不等式()3f x <的解集为()1,5-,不等式()1xf x ≥的解集为A .求集合A ;(2)解关于x 的不等式()2220ax a x +--≥.22.已知关于x 的一元二次不等式()22600kx x k k -+<≠.(1)若不等式的解集是{|3x x <-或}2x >-,求k 的值; (2)若不等式的解集是R ,求k 的取值范围.23.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若sin bC a-=tan cos A C -. (1)求角A 的大小;(2)若b =2c =,点D 在边BC 上,且2CD DB =,求a 及AD . 24.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,222sin sin sin sin sin A C B A C +=+.(1)求角B 的大小;(2)若ABC为锐角三角形,b =2a c -的取值范围. 25.已知数列{}n a 满足:121(21)n n n a q---=,224224231(N )22n n n n n a a a *++⋅⋅⋅+=+∈. (Ⅰ)求2n a ; (Ⅱ)若7553q <<,求数列{}n a 的最小项. 26.在数列{}n a ,{}n b 和{}n c 中,{}n a 为等差数列,设{}n a 前n 项的和为n S ,{}n c 的前n 项和为n T ,11a =,410S a =,12b =,n n n c a b =⋅,22n n T c =-. (1)求数列{}n a ,{}n b 的通项公式; (2)求证:()()()()()()12122311111111nn n c c c c c c c c c ++++<------.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题分析:画出可行域如下图所示,依题意可知,目标函数在点()2,10取得最大值,在点()2,2-取得最小值.由图可知,当0m ≥时,[]0,2m ∈,当0m <时,[)1,0m ∈-,故取值范围是[]1,2-.考点:线性规划.2.A解析:A【解析】试题分析:∵,故直线与直线交于点,目标函数对应的直线与直线垂直,且在点,取得最大值,其关系如图所示:即,解得,又∵,解得,选:A.考点:简单线性规划的应用.【方法点睛】本题考查的知识点是简单线性规划的应用,我们可以判断直线的倾斜角位于区间上,由此我们不难判断出满足约束条件的平面区域的形状,其中根据平面直线方程判断出目标函数对应的直线与直线垂直,且在点取得最大值,并由此构造出关于的不等式组是解答本题的关键.3.C解析:C 【分析】由已知可得2294(3)(8)(4)(9)37b a b aa b a b a b++=++=++,然后结合基本不等式即可求解.【详解】解:因为正数a ,b 满足2a b +=,所以229494(3)(8)(4)(9)3737249b a b a b aa b a b a b a b++=++=+++=, 当且仅当65a =,45b =时取等号. 故选:C . 【点睛】本题主要考查了利用基本不等式求解最值,属于基础题.4.B解析:B 【分析】根据题意2211x y y x +++=22(1)(1)11--+++y x y x =(4411+++y x )﹣5,由基本不等式的性质求出4411+++y x =13(4411+++y x )[(x +1)+(y +1)]的最小值,即可得2211x y y x +++的最小值,据此分析可得答案.【详解】根据题意,正数x ,y 满足x +y =1,则2211x y y x +++=22(1)(1)11--+++y x y x=(y +1)+41+y ﹣4+(x +1)+41x +﹣4=(4411+++y x )﹣5, 又由4411+++y x =13(4411+++y x ) [(x +1)+(y +1)], =13[8+4(1)4(1)11+++++x y y x ]≥163, 当且仅当x =y =12时等号成立, 所以2211x y y x +++=(4411+++y x )﹣5163≥﹣5=13, 即2211x y y x +++的最小值为13,所以3m ≤,则m 的最大值为13; 故选:B . 【点睛】本题主要考查基本不等式的性质以及应用,还考查了转化求解问题的能力,属于中档题.5.B解析:B 【分析】由正弦定理化边角,利用诱导公式两角和的正弦公式化简可得B 角,然后用余弦定理得2()33a c ac +-=,再利用基本不等式变形后解不等式得a c +的最大值.【详解】因为22cos c a b A -=,所以由正弦定理得,2sin sin 2sin cos C A B A -=,因为A B C π+=-,所以sin sin()sin cos cos sin C A B A B A B =+=+,所以2sin cos 2cos sin sin 2sin cos A B A B A B A +-=,化简得(2cos 1)sin 0B A -=,因为sin 0A ≠,所以2cos 10B -=,解得1cos 2B =,因为(0,)B π∈,所以3B π=,因为b =222232cos a c ac B a c ac =+-=+-,所以2()33a c ac +-=,所以222313()()()44a c a c a c ≥+-+=+,当且仅当a c =时取等号,所以a c +≤a c+的最大值为故选:B.【点睛】方法点睛:本题考查主要正弦定理、余弦定理,在三角形问题中出现边角关系时可用正弦定理化边为角,然后由利用三角函数恒等变换公式如诱导公式,两角和与差的正弦公式等化简变形得出所要结论.6.C解析:C【解析】12sin1202S c==⨯︒,解得c=2.∴a2=22+22−2×2×2×cos120°=12,解得a=,∴24sinaRA===,解得R=2.本题选择C选项.7.C解析:C【分析】利用三角形中的正弦定理求出角B,利用三角形内角和求出角C,再利用三角形的面积公式求出三角形的面积,求得结果.【详解】因为ABC∆中,60A∠=︒,4AC=,BC=由正弦定理得:sin sinBC ACA B=,所以4sin60sin B︒=,所以sin1B=,所以90,30B C︒︒∠=∠=,所以14sin302ABCS︒∆=⨯⨯= C.【点睛】该题所考查的是有关三角形面积的求解问题,在解题的过程中,需要注意根据题中所给的条件,应用正弦定理求得sin1B=,从而求得90,30B C︒︒∠=∠=,之后应用三角形面积公式求得结果.8.D解析:D 【分析】根据()22a b c =+-cos 1C C -=,结合三角函数的性质,求得C 的值,最后利用两角和的正弦函数,即可求解. 【详解】由()22a b c =+-,可得2221sin 22ab C a b c ab =+-+,因为2222cos a b c ab C +-=,所以sin 2cos 2C ab C ab =+,cos 1C C -=,可得π2sin 16C ⎛⎫-= ⎪⎝⎭,则π1sin 62C ⎛⎫-= ⎪⎝⎭, 又因为0πC <<,则ππ5π666C -<-<,所以ππ66C -=,解得π3C =, 所以πππππππsin sin sin cos cos sin 4343434C ⎛⎫⎛⎫+=+=+ ⎪ ⎪⎝⎭⎝⎭12==故选:D. 【点睛】 本题主要考查了两角和的正弦函数的化简、求值,以及余弦定理的应用,其中解答中根据题设条件和余弦定理,求得C 的值,结合三角函数的性质求解是解答的关键,着重考查推理与运算能力.9.B解析:B 【分析】由等差数列的10a >,及202020210a a ⋅<得数列是递减的数列,因此可确定202020210,0a a ><,然后利用等差数列的性质求前n 项和,确定和n S 的正负.【详解】∵202020210a a ⋅<,∴2020a 和2021a 异号,又数列{}n a 是等差数列,首项10a >,∴{}n a 是递减的数列,202020210,0a a ><, 由202020210a a +>,所以140404040202020214040()2020()02a a S a a +==+>,14041404120214041()404102a a S a +==<,∴满足0n S >的最大自然数n 为4040. 故选:B . 【点睛】关键点睛:本题求满足0n S >的最大正整数n 的值,关键就是求出100n n S S +><,,时成立的n 的值,解题时应充分利用等差数列下标和的性质求解,属于中档题.10.C解析:C 【分析】由2110n n n a a a -+-+=,可得2112n n n n a a a a -++==,得到2n a =,再根据等差数列的求和公式,得到2138(21)n n n S a --==,代入即可求解,得到答案. 【详解】由题意,等差数列{}n a 中,()21102n n n a a a n -+-+=≥,可得2112n n n n a a a a -++==,又0,n a ≠解得2n a =, 又由12121(21)()(2)3812n n n n a a n a S ---+==-=,即(21)823n -⨯=,解得10n =,故选C . 【点睛】本题主要考查了等差数列的性质,以及等差数列的求和公式的应用,其中解答中熟记等差数列的性质,求得2n a =和2138(21)n n n S a --==是解答本题的关键,着重考查了推理与运算能力,属于基础题.11.A解析:A 【分析】由题意可知,直线112y a x m =+与直线0x y d +-=垂直,且直线0x y d +-=过圆心,可求得1a 和d 的值,然后利用等差数列的求和公式求得n S ,利用裂项法可求得数列1n S ⎧⎫⎨⎬⎩⎭的前10项和. 【详解】由于直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称,则直线112y a x m =+与直线0x y d +-=垂直,直线0x y d +-=的斜率为1-,则1112a =,可得12a =, 且直线0x y d +-=过圆()2221x y -+=的圆心()2,0,则20d -=,可得2d =,()()112212n a a n d n n ∴=+-=+-=,则()()()122122n n n a a n n S n n ++===+,()111111n S n n n n ∴==-++,因此,数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为1111111110112233410111111⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:A. 【点睛】本题考查裂项求和,同时也考查了直线与圆的综合问题,以及等差数列求和公式的应用,考查计算能力,属于中等题.12.C解析:C 【分析】根据题中所给图与对应的六边形数,记第n 个六边形数为n a ,找出规律,相邻两项差构成等差数列,累加求得22n a n n =-,将11n =代入求得结果. 【详解】记第n 个六边形数为n a ,由题意知:11a =,215141a a -==+⨯,32142a a -=+⨯,43143a a -=+⨯,,114(1)n n a a n --=+-,累加得21(1)[543]59[14(1)]212n n n a a n n n -+--=++++-==--,即22n a n n =-,所以21121111231a =⨯-=, 故选:C. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有利用累加法求数列的通项公式,属于中档题目.二、填空题13.23【分析】画出不等式组表示的平面区域数形结合判断出取最大值的点即可建立关系求出【详解】画出不等式组表示的平面区域如图阴影部分直线在轴上的截距为则由图可知即将化为观察图形可知当直线经过点时取得最大值解析:23 【分析】画出不等式组表示的平面区域,数形结合判断出2z y x =-取最大值的点,即可建立关系求出. 【详解】画出不等式组表示的平面区域,如图阴影部分,直线320x y c +-=在y 轴上的截距为2c,则由图可知12c ≥,即2c ≥,将2z y x =-化为122zy x =+, 观察图形可知,当直线122zy x =+经过点A 时,z 取得最大值, 由210320x y x y c -+=⎧⎨+-=⎩解得27237c x c y -⎧=⎪⎪⎨+⎪=⎪⎩,故23221177c c +-⨯-=,解得23c =. 故答案为:23. 【点睛】方法点睛:线性规划常见类型, (1)y bz x a-=-可看作是可行域内的点到点(),a b 的斜率; (2)z ax by =+,可看作直线a zy x b b=-+的截距问题; (3)()()22z x a y b =-+-可看作可行域内的点到点(),a b 的距离的平方.14.【分析】设表示出的面积及的面积进而表示出四边形的面积并化简所得面积的解析式为正弦函数形式再根据三角函数的有界性进行求解【详解】四边形的面积的面积的面积设则的面积的面积四边形的面积故当即时四边形的面积 解析:23【分析】设AOB θ∠=,表示出ABC 的面积及OAB 的面积,进而表示出四边形OACB 的面积,并化简所得面积的解析式为正弦函数形式,再根据三角函数的有界性进行求解. 【详解】四边形OACB 的面积OAB =△的面积ABC +△的面积,设AOB θ∠=,2222cos 31214AB OA OB OA OB θθθ∴=+-⋅⋅=+-⨯=-则ABC 的面积213sin 60cos 22AB AC AB θ=⋅⋅︒==OAB 的面积11sin 1sin 222OA OB θθθ=⋅⋅=⨯=,四边形OACB 的面积3cos 2θθ=+13(sin )60)2θθθ==-︒,故当6090θ-︒=︒,即150θ=︒时,四边形OACB =故答案为: 【点睛】方法点睛:应用余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60︒︒︒等特殊角的三角函数值,以便在解题中直接应用.15.【分析】由题意可得又最大角等于最小角的倍运用正弦定理求出用余弦定理化简求出边长关系【详解】的三边边长成递增的等差数列最大角为最小角为由正弦定理可得化简可得用余弦定理代入并化简可得:则则移项可得:消去 解析:4:5:6【分析】由题意可得2b a c =+,又最大角等于最小角的2倍,运用正弦定理求出2cos a A c =,用余弦定理化简求出边长关系. 【详解】ABC 的三边边长a 、b 、c 成递增的等差数列,2b a c ∴=+,最大角为C ∠,最小角为A ∠, sin sin 2C A ∴=, 由正弦定理可得sin sin sin 22sin cos a c c cA C A A A===,化简可得2cos a A c =, 用余弦定理代入并化简可得:23220ab a ac bc -+-=,()()2220c a b a a b ---=,则()()20a b c a a b ⎡⎤--+=⎣⎦,a b ≠,则22c a ab =+,移项可得:()()c a c a ab -+=,()2b c a ab -=,消去b 并化简可得23a c =, 设4a k =,6c k =,则5b k =,则::4:5:6a bc =.故答案为:4:5:6. 【点睛】本题结合数列知识考查了运用正弦定理和余弦定理来解三角形,探究出三角形根据已知条件得到的三边数量关系,有一定的计算量,需要熟练运用各公式进行化简.16.①③④【分析】将化成后可得图象的对称中心故可判断①的正误;参变分离后考虑在上的值域后可判断②的正误;利用正弦定理和三角变换可判断③的正误;利用整体法求出的值从而可判断④的正误【详解】对于①因为故的图解析:①③④ 【分析】将()f x 化成()321f x x -=++后可得图象的对称中心,故可判断①的正误;参变分离后考虑1y x x=-在()0,1上的值域后可判断②的正误;利用正弦定理和三角变换可判断③的正误;利用整体法求出ϕ的值,从而可判断④的正误. 【详解】对于①,因为()321f x x -=++,故()f x 的图象可以看出3y x-=向左平移1个单位,向上平移2个单位,故()f x 的图象的对称中心为()1,2-,故①正确. 对于②,考虑方程10x k x -+=在()0,1上有实数根即1k x x=-在()0,1上有实数根, 故(),0k ∈-∞, 故关于x 的方程10x k x-+=在()0,1x ∈没有实数根时,则[)0,k ∈+∞,故②错误. 对于③,由正弦定理得到sin cos sin cos =B A A B ,故()sin 0B A -=, 因为(),B A ππ-∈-,故0B A -=即B A =,故③正确. 对于④,平移后得到的图象对应的解析式为sin 223πy x φ⎛⎫=-- ⎪⎝⎭, 因为该函数为偶函数,故202,32ππφk πk Z ⨯--=+∈, 故5,212k ππφk Z =--∈,因为0ϕ>,故min 12πϕ=,故④正确. 故答案为:①③④. 【点睛】本题考查分式函数的图象性质、函数值域的求法、正弦定理和三角变换以及正弦型函数的图象特征,注意在三角形中,可利用正弦定理把边角的混合关系转化为边的关系或角的关系,而正弦型函数图象的性质,可利用整体法结合正弦函数的性质来讨论,本题属于中档题.17.【分析】由a1b 依次成等差数列可得再利用乘1法及基本不等式计算即可求得答案【详解】且a1b 依次成等差数列当且仅当即取等号故的最小值为故答案为:【点睛】本题考查基本不等式的性质以及应用涉及等差中项的定解析:92【分析】由a ,1,b 依次成等差数列,可得2a b +=,再利用乘“1”法及基本不等式计算,即可求得答案. 【详解】0a >,0b >,且a ,1,b 依次成等差数列,∴2a b +=, ∴()41141141941(52222b a a b a b a b a b ⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪⎝⎭⎝⎭, 当且仅当4b a a b =,即43a =,23b =,取等号, 故14a b +的最小值为92. 故答案为:92. 【点睛】本题考查基本不等式的性质以及应用,涉及等差中项的定义,考查了分析能力和计算能力,属于中档题.18.【分析】由先求出数列的通项公式由找到把乘以1等量代换最后利用均值定理即可求解【详解】解:设正项等比数列的公比为由又所以所以即当且仅当即时取等号则的最小值为故答案为:【点睛】考查等比数列的性质以及用均解析:34【分析】 由28516a a a ,35+20a a =找到12m n +=,把14m n+乘以1,等量代换,最后利用均值定理即可求解. 【详解】解:设正项等比数列{}n a 的公比为()0q q >, 由28516a a a ,255516,16a a a ==,又35+20a a =,所以34a =,25316=4,24a q q a ===5515=1622n n n n a a q ---=⨯=,,所以1110222n m m n a a --==,即12m n +=,14145531212123124m n n m m n m n m n +⎛⎫+=+⋅=++≥+= ⎪⎝⎭ 当且仅当123n mm n=,即4,8m n ==时取等号, 则14m n +的最小值为34故答案为:34. 【点睛】考查等比数列的性质以及用均值定理求最小值,基础题.19.【分析】由得数列的递推关系数列奇数项成等差数列偶数项成等差数列分别求出通项公式后合并可得然后用裂项相消法求和【详解】∵∴两式相减得又∴由且得因此综上∴故答案为:【点睛】本题考查求等差数列的通项公式裂 解析:1n n + 【分析】由11n n n a S S ++=-得数列{}n a 的递推关系,数列奇数项成等差数列,偶数项成等差数列,分别求出通项公式后,合并可得n a ,然后用裂项相消法求和n T . 【详解】∵12n n n S a a +=,∴1122n n n S a a +++=,两式相减得11121222n n n n n n n a S S a a a a +++++=-=-,又10n a +≠,∴22n n a a +-=, 由1122S a a =且11a =得22a =,因此2112(1)12(1)21n a a n n n -=+-=+-=-,222(1)22(1)2n a a n n n =+-=+-=, 综上,n a n =,*n N ∈,111(1)1n b n n nn ,∴11111111223111n n T n n n n =-+-++-=-=+++. 故答案为:1n n +. 【点睛】本题考查求等差数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和;(2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.20.【分析】由题意可得出代入计算可得出的值【详解】由题意可得出故答案为:【点睛】本题考查利用等差中项和等比中项求值考查计算能力属于中等题 解析:2【分析】由题意可得出2b ac =,2a bx +=,2b c y +=,代入计算可得出a c x y +的值.【详解】由题意可得出2b ac =,2a bx +=,2b c y +=, ()()()()()222222224222a b c c a b ab ac bc a c a cab ac bc x y a b b c a b b c ab ac b bc ab ac bc +++++++∴+=+====+++++++++.故答案为:2. 【点睛】本题考查利用等差中项和等比中项求值,考查计算能力,属于中等题. 三、解答题21.(1)[)1,2;(2)见解析 【分析】 (1)由题意得,23523k k ⎧-+=⎪⎨+=⎪⎩,由此可求得()2f x x =-+,代入后转化为一元二次不等式即可求出答案;(2)分类讨论法解不等式即可. 【详解】解:(1)∵()2f x kx =+,不等式()3f x <的解集为()1,5-, ∴方程23kx +=的解集为1,5,∴23523k k ⎧-+=⎪⎨+=⎪⎩,解得1k =-,∴()2f x x =-+,∴()112x x f x x ≥⇔≥-+()2102x x -⇔≤-()()12020x x x ⎧--≤⇔⎨-≠⎩, 解得12x ≤<,∴[)1,2A =;(2)∵()2220ax a x +--≥,①当0a =时,原不等式化为220x --≥,解得1x ≤-; 当()2010a a x x a ⎛⎫≠∴-+≥ ⎪⎝⎭, ②当0a >时,原不等式化为()210x x a ⎛⎫-+≥ ⎪⎝⎭, 解得1x ≤-,或2x a≥; ③当0a <时,原不等式化为()210x x a ⎛⎫-+≤ ⎪⎝⎭, 1︒当21a=-即2a =-时,原不等式化为()210x +≤,解得1x =-; 2︒当21a<-即20a -<<时,解得21x a ≤≤-;3︒当21a >-即2a <-时,解得21x a-≤≤; 综上:当2a <-时,原不等式的解集为21,x a ⎡⎤∈-⎢⎥⎣⎦; 当2a =-时,原不等式的解集为{}1x ∈-; 当20a -<<时,原不等式的解集为2,1x a ⎡⎤∈-⎢⎥⎣⎦; 当0a =时,原不等式的解集为(],1x ∈-∞-; 当0a >时,原不等式的解集为(]2,1,x a ⎡⎫∈-∞-+∞⎪⎢⎣⎭. 【点睛】本题主要考查一元二次不等式的解法,考查分式不等式的解法,考查转化与化归思想,考查分类讨论法,属于中档题.22.(1)25-;(2)⎛-∞ ⎝⎭,. 【分析】(1)由不等式的解集为{}32x x x <->-或知0k <,且3-,2-是方程2260kx x k -+=的两根,代入可解.(2)不等式的解集为R ,知二次函数图像恒在x 轴下方,则利用0k <且24240k ∆=-<可解【详解】(1)∵不等式的解集为{}32x x x <->-或 ∴3-,2-是方程2260kx x k -+=的两根,且0k < ∴25k =-(2)∵不等式的解集为R ∴0k <且24240k ∆=-<∴6k <-∴k 的取值范围是(-∞, 【点睛】解含参数的一元二次不等式时分类讨论的依据(1)二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)当不等式对应方程的实根的个数不确定时,讨论判别式∆与0的关系.(3)确定无实根时可直接写出解集,确定方程有两个实根时,要讨论两实根的大小关系,从而确定解集形式.23.(1)π4A =;(2)a =AD = 【分析】(1()sin sin sin tan cos C B A C A C -=-,再化简计算即可求出cos A =(2)由余弦定理求得a =cos 10B =-3a BD ==,再由余弦定理即可求出AD . 【详解】解:(1()sin sin sin tan cos C B A C A C -=-,()()sin sin sin tan cos C A C A C A C -+=-,∴2sin sin cos cos sin sin sin cos cos AC A C A C C A C A--=-,∵sin 0C ≠,∴2sin cos cos AA A+=,∴cos A =0πA <<,∴π4A =.(2)由余弦定理可得:2222cos 1841210a b c bc A =+-=+-=, ∴a =∵点D 在边BC 上,且2CD DB =,∴3a BD ==,又222cos 2a c b B ac +-==∴222582cos 9AD AB BD AB BD B =+-⋅⋅=,∴AD = 【点睛】关键点睛:本题考查正余弦定理的应用,解题的关键是正确利用正弦定理化边为角处理条件,再结合三角恒等变换化简运算. 24.(1)3B π=;(2)()0,3.【分析】(1)利用正弦定理边角互化,再利用余弦定理求出角B 的大小;(2)利用正弦定理结合三角恒等变换化简2a c -,再由锐角三角形得出C 的范围,进而得出答案. 【详解】(1)由已知222sin sin sin sin sin A C B A C +=+,结合正弦定理,得222a c b ac +=+.再由余弦定理,得2221cos 222a cb ac B ac ac +-===,又()0,B π∈,则3B π=.(2)由3B π=,b =224sin 2sin 4sin 2sin 3a c A C C Cπ⎛⎫-=-=-- ⎪⎝⎭224sin cos cos sin 2sin 33C C C C ππ⎛⎫=--= ⎪⎝⎭因为ABC 为锐角三角形,则62C ππ<<,则0cos 2C <<. 所以2a c -的取值范围为()0,3.25.(Ⅰ)2231n n a n =-;(Ⅱ)25q . 【分析】(Ⅰ)设数列22n n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,利用122n n n n S S a -=-可求2n a . (2)讨论{}2-1n a 的单调性后可求数列{}21n a -的最小项,结合223n a >可求数列{}n a 的最小项.【详解】解:(Ⅰ)设数列22n n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,即23122n S n n =+, ∴2131(1)(1)22n S n n -=-+-.则12231(2)n n n n S S n n a -=-=-≥, 故()22231n n a n n =≥-,当1n =,21a =,也符合此式, ∴2231n n a n =-. (Ⅱ)222223313313n n a n n ==+>--. 考虑奇数项,∵12121n n q a n --=-, ∴[]112121(21)(21)2121(21)(21)n n n n n q q n n q q a a n n n n --+---+-=-=+-+- ()()()111121(21)(21)(21)(21)2222n n q n q q q q q n n n q n n --⎡⎤-+----==+⎢⎥-⎡⎤⎣⎦+⎦-⎣-, 又()1112121q q q +=+--, ∵7553q <<,得()112,321q +∈-,而220q ->, ∴当2n ≤时,2121n n a a +-<,当3n ≥时,2121n n a a +->,即奇数项中5a 最小. 而25252593n q a a =<<<,所以数列{}n a 的最小项为255q a =. 【点睛】思路点睛:数列的最大项最小项,一般根据数列的单调性来处理,如果数列是分段数列,则可以分别讨论各段上的最大项最小项,比较后可得原数列的最大项最小项.26.(1)n a n =,2nn b n=;(2)证明见解析; 【分析】(1)设{}n a 的公差为d ,由410S a =,即可得到1d a =,从而求出{}n a 的通项公式,再由1122n n n n n c T T c c --=-=-,可得{}n c 是首项为2,公比为2的等比数列,即可求出{}n c 的通项,最后由n n n c a b =⋅,求出{}n b 的通项公式;(2)依题意可得()()1111112121n n n n n c c c ++=-----,利用裂项相消法求和即可得证; 【详解】解:(1)因为{}n a 为等差数列,且{}n a 前n 项的和为n S ,设其公差为d , 因为410S a =,11a =,所以()11441492a d a d ⨯-+=+,所以11d a ==,所以n a n =,因为11a =,12b =,n n n c a b =⋅,所以1112c a b =⋅=,因为{}n c 的前n 项和为n T 且22n n T c =-,当2n ≥时,()()111222222n n n n n n n c T T c c c c ---=-=---=-,所以()122n n c c n -=≥,所以{}n c 是首项为2,公比为2的等比数列,所以2n n c =,因为n n n c a b =⋅,所以2nn n n c b a n== (2)因为()()()()1112111121212121n n n n n n n n c c c +++==-------所以()()()()()()1212231111111n n n c c c c c c c c c ++++------ 122311111111111111212121212121212121n n n n +++=-+-++-=-=-<--------- 【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和.(2)错位相减:用于等差数列与等比数列的积数列的求和.(3)分组求和:用于若干个等差或等比数列的和或差数列的求和.。

2021-2022高中数学必修五期末试卷(附答案)

2021-2022高中数学必修五期末试卷(附答案)

一、选择题1.已知正数x ,y 满足1431x y +=+,则x y +的最小值为( ) A .53 B .2 C .73 D .62.已知a b >,不等式220ax x b ++≥对于一切实数x 恒成立,且0x R ∃∈,使得2020ax x b ++=成立,则22a b a b +-的最小值为( ) A .1 B .2 C .2 D .223.当02x π<<时,函数21cos 28sin ()sin 2x x f x x ++=的最小值为( ) A .2 B .23 C .4 D .43 4.若正数x ,y 满足35x y xy += ,则43x y + 的最小值为( )A .275B .245C .5D .65.构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2BD AD =,则DEF 与ABC 的面积之比为( )A .12B .13C .15D .176.在△ABC 中,AC 2=BC =1,∠B =45°,则∠A =( ) A .30° B .60° C .30°或150° D .60°或120° 7.已知a 、b 、c 分别是ABC 内角A 、B 、C 的对边,sin sin 3sin A B C +=,cos cos 2a B b A +=,则ABC 面积的最大值是( )A .2B .2C .3D .238.小华想测出操场上旗杆OA 的高度,在操场上选取了一条基线BC ,请从测得的数据①12m BC =,②B 处的仰角60°,③C 处的仰角45∘,④36cos 8BAC ∠=⑤30BOC ∠=︒中选取合适的,计算出旗杆的高度为( ) A .103m B .12m C .122m D .123m9.已知等差数列{}n a 满足3434a a =,则该数列中一定为零的项为( ) A .6a B .7a C .8a D .9a10.若{}n a 是等比数列,其公比是q ,且546,,a a a -成等差数列,则q 等于( ) A .-1或2 B .1或-2 C .1或2 D .-1或-2 11.设{}n a 为等差数列,122a =,n S 为其前n 项和,若1013S S =,则公差d =( ) A .-2 B .-1 C .1 D .212.已知等比数列{}n a 中,若1324,,2a a a 成等差数列,则公比q =( )A .1B .1-或2C .3D .1-二、填空题13.已知函数()()log 310,1a y x a a =-+>≠的图像恒过定点A ,若点A 在一次函数2m y x n =+的图像上,其中0,0m n >>,则12m n +的最小值是__________. 14.已知x ,y 满足041x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2z x y =+的最大值为________.15.在ABC中,已知,cos 4A B π==BC =D 为AB 的中点,则CD 的长为________.16.在ABC 中,内角,,A B C 的对边分别是,,a b c,若22a b -=,sin C B =,则A =____.17.ABC 的内角A ,B ,C 的对边分别为a ,b ,c.已知sin sin sin sin b C c B B C +=,2226b c a +-=,则ABC 的面积为_______. 18.对一切R θ∈,213sin cos 2m m θθ->恒成立,则实数m 的取值范围是_______. 19.定义max{,}a b 表示实数,a b 中的较大的数.已知数列{}n a 满足1a a =2(0),1,a a >=122max{,2}()n n n a a n N a *++=∈,若20154a a =,记数列{}n a 的前n 项和为n S ,则2015S 的值为___________.20.已知数列{}n a 的通项公式为()12n n a n =+⋅,若不等式()2235n n n a λ--<-对任意*n N ∈恒成立,则整数λ的最大值为_____.三、解答题21.已知函数2(1)()a x a f x bx c-+=+(a ,b ,c 为常数). (1)当1,0b c ==时,解关于x 的不等式()1f x >;(2)当0,2b c a =>=时,若()1f x <对于0x >恒成立,求实数b 的取值范围. 22.某公司生产某种产品,其年产量为x 万件时利润为()R x 万元,当035x <≤时,年利润为21()2R x x =-20250x ++,当35x >时,年利润为()18005202R x x x=--+. (1)若公司生产量在035x <≤且年利润不低于400万时,求生产量x 的范围; (2)求公司年利润()R x 的最大值.23.在①222b c a bc +-=;②4AB AC ⋅=;③2sin 22cos 122A A π⎛⎫++= ⎪⎝⎭这三个条件中任选一个,补充在下面问题中,求ABC 的面积.问题:已知ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin 2sin C B =,2b =, ?注:如果选择多个条件分别解答,按第一个解答计分.24.在ABC 中,角A ,B ,C 所对边分别为a ,b ,c,b =,sin 1c A =.点D 是AC 的中点,BD AB ⊥,求c 和ABC ∠.25.已知等差数列{}n a 的前n 项和为n S ,满足332S a =,8522a a =-.(1)求数列{}n a 的通项公式;(2)记121n n n n b a a a ++=⋅⋅,求数列{}n b 的前n 项和n T .26.已知数列满足递推关系,且10a =,121n n a a -=+.(1)求证:数列{}1n a +为等比数列;(2)设()1n n b n a =+,求数列{}n b 的项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】 化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】 由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y x y +=++-=++⨯-=++⨯+-+1141(5)1(5)123131y x x y y +=++-≥+-=++ 当且仅当1x y ==时取等.所以x y +的最小值为2.故选:B【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.2.D解析:D【分析】根据条件对于一切实数x 不等式恒成立和0x R ∃∈使得方程成立结合二次不等式、二次方程、二次函数,可得1ab =,将22a b a b+-化成2a b a b -+-,再结合基本不等式求解即可. 【详解】解:因为不等式220ax x b ++≥对于一切实数x 恒成立,所以0440a ab >⎧⎨-≤⎩, 又因为0x R ∃∈,使得20020ax x b ++=成立,所以440ab -≥,所以440ab -=,即0,0,1a b ab >>=,所以222()22a b a b ab a b a b a b a b+-+==-+≥--- 当且仅当2a b a b-=-时取得最小值. 故选:D.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 3.C解析:C【解析】0,tan 02x x π<∴,()21cos28sin sin2x x f x x++=2222cos 8sin 28tan 14tan 42sin cos 2tan tan x x x x x x x x ++===+≥=,当且仅当1tan 2x =时取等号,函数()21cos28sin sin2x x f x x++=的最小值为4,选C. 4.A解析:A【解析】正数x ,y 满足35x y xy +=,则13155y x +=,()13492743433355555x y x y x y y x y x ⎛⎫+=++=++≥+= ⎪⎝⎭故答案为A.点睛:这个题目考查的是含有两个变量的表达式的最值的求法,解决这类问题一般有以下几种方法,其一,不等式的应用,这个题目用的是均值不等式,注意要满足一正二定三相等;其二,二元化一元,减少变量的个数;其三可以应用线线性规划的知识来解决,而线性规划多用于含不等式的题目中.5.D解析:D【分析】由题意得出点D为AF 的中点,由余弦定理得出AB =,结合三角形面积公式得出正确答案.【详解】 2,BD AD AF BD ==,2AF AD ∴=,即点D 为AF 的中点由余弦定理得:2222cos120AB AD BD AD BD ︒⋅-=+ 解得:AB =)22ABC 1()sin 601217sin 602DEF AD S S ︒︒∴== 故选:D【点睛】本题主要考查了余弦定理以及三角形的面积公式,属于中档题.6.A解析:A【分析】直接利用正弦定理求出sin A 的大小,根据大边对大角可求A 为锐角,即可得解A 的值.【详解】因为:△ABC 中,BC =1,AC =∠B =45°, 所以:BC AC sinA sinB =,sinA 112BC sinB AC ⋅===. 因为:BC <AC ,可得:A 为锐角,所以:A =30°.故选:A .【点评】本题考查正弦定理在解三角形中的应用,考查计算能力,属于基础题.7.B解析:B【分析】由cos cos 2a B b A +=,利用余弦定理代入化简解得2c =,再根据sin sin 3sin A B C +=,利用正弦定理得到36a b c +==,即62CA CB AB +=>=,得到点C 的轨迹是以A ,B 为焦点的椭圆,再利用椭圆的焦点三角形求解.【详解】∵cos cos 2a B b A +=, ∴222222222a c b b c a a b ac bc+-+-⋅+⋅=, ∴2c =,∵sin sin 3sin A B C +=∴36a b c +==, 即62CA CB AB +=>=,∴点C 的轨迹是以A ,B 为焦点的椭圆,其中长半轴长3,短半轴长以AB 为x 轴,以线段AB 的中点为原点,建立平面直角坐标系, 其方程为22198x y ,如图所示:则问题转化为点C 在椭圆22198x y 上运动求焦点三角形的面积问题. 当点C 在短轴端点时,ABC 的面积取得最大值,最大值为22故选:B .【点睛】 本题主要考查正弦定理,余弦定理以及椭圆焦点三角形的应用,还考查了转化求解问题的能力,属于中档题.8.D解析:D【分析】设旗杆的高度OA h =.选①②③⑤,表示出OB OC ,,在BOC ∆中,由余弦定理列方程求解;选①②③④,表示出AB AC ,,在BAC ∆中,由余弦定理列方程求解.【详解】设旗杆的高度OA h =.选①②③⑤,则OC h =,3OB =, 在BOC ∆中,由余弦定理得2222cos BC OB OC OB OC BOC =+-⋅⋅∠, 即222312233h h =+-⋅,解得123h = 选①②③④,则3AB =,2AC h =, 在BAC ∆中,由余弦定理得2222cos BC AB AC AB AC BAC =+-⋅⋅∠, 即)2223612222833h h =+-,解得123h = 故选:D .【点睛】本题主要考查了余弦定理在解三角形的应用,考查了仰角的概念,考查了学生对概念的理解和运算求解能力,属于中档题.9.B解析:B【分析】由条件可得34a d =-,进而得n a (7)n d =-,从而得解.【详解】33a 44a =,33a ∴()33444a d a d =+=+,34d a ∴=-n a ∴3(3)a n d =+-⋅4(3)d n d =-+-(7)n d =-70a ∴=,故选:B【点睛】本题主要考查了等差数列的通项公式,等差数列的性质,属于基础题.10.A解析:A【解析】分析:由546,,a a a -成等差数列可得5642a a a -+=,化简可得()()120q q +-=,解方程求得q 的值.详解:546,,a a a -成等差数列,所以5642a a a -+=,24442a q a q a ∴-+=,220q q ∴--=,()()120q q ∴+-=,1q ∴=-或2,故选A.点睛:本题考查等差数列的性质,等比数列的通项公式基本量运算,属于简单题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用.11.A解析:A【分析】由题意结合等差数列的性质和前n 项和的定义求解公差即可.【详解】由题意可得:12111213131030a a a a S S =++=-=,则120a =,等差数列的公差121022212111a a d --===--. 本题选择A 选项.【点睛】本题主要考查数列的前n 项和与通项公式的关系,等差数列公差的计算等知识,意在考查学生的转化能力和计算求解能力. 12.B解析:B【分析】用等比数列的通项公式和等差中项公式求解.【详解】因为1324,,2a a a 成等差数列,所以312242a a a =+,即2111242a q a a q =+,化简得220q q --=,解得1q =-或2q.故选B.【点睛】本题考查等比数列与等差数列的综合运用. 二、填空题13.8【分析】可得定点代入一次函数得利用展开由基本不等式求解【详解】由可得当时故点A 在一次函数的图像上即当且仅当即时等号成立故的最小值是8故答案为:8【点睛】本题考查基本不等式的应用解题的关键是得出定点 解析:8【分析】可得定点()4,1A ,代入一次函数得21m n +=,利用()12122m n m n m n ⎛⎫+=++ ⎪⎝⎭展开由基本不等式求解.【详解】由()()log 310,1a y x a a =-+>≠可得当4x =时,1y =,故()4,1A ,点A 在一次函数2m y x n =+的图像上,142m n ∴=⨯+,即21m n +=, 0,0m n >>,()121242448n m m n m n m n m n ⎛⎫∴+=++=++≥= ⎪⎝⎭, 当且仅当4n m m n =,即11,42m n ==时等号成立, 故12m n+的最小值是8. 故答案为:8.【点睛】本题考查基本不等式的应用,解题的关键是得出定点A ,代入一次函数得出21m n +=,利用“1”的妙用求解.14.6【分析】作出不等式组所表示的平面区域结合图象确定目标函数的最优解即可得到答案【详解】由题意作出不等式组所表示的平面区域如图所示因为目标函数可化为直线当直线过点A 时此时目标函数在轴上的截距最大此时目 解析:6【分析】作出不等式组所表示的平面区域,结合图象确定目标函数的最优解,即可得到答案.【详解】由题意,作出不等式组041x y x y x -≤⎧⎪+≤⎨⎪≥⎩所表示的平面区域,如图所示,因为目标函数2z x y =+,可化为直线2y x z =-+,当直线2y x z =-+过点A 时,此时目标函数在y 轴上的截距最大,此时目标函数取得最大值,又由04x y x y -=⎧⎨+=⎩,解得(2,2)A , 所以目标函数2z x y =+的最大值为2226z =⨯+=.故答案为:6.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.15.【分析】由条件求得利用正弦定理求得在中利用余弦定理即可求得【详解】故由正弦定理知即解得在中所以故答案为:【点睛】关键点点睛:本题关键在于求出通过三角恒等变换求出利用余弦定理求解考查了运算能力属于中档题 5【分析】由条件求得sin B ,sin C ,利用正弦定理sin sin BC AB A C=求得AB , 在BCD △中,利用余弦定理即可求得CD .【详解】 25cos (0,),B B π=∈ 25sin 1cos B B ∴=-=故333cos cos()cos cos sin sin 444C B B B πππ=-=+ 2252510252510⎛⎛⎫⎛⎫=-⨯+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 22103101cos 1(n )010si 1C C =-=--=∴, 由正弦定理知sin sin BC AB A C =252310,解得6AB =,在BCD△中,222222cos32355CD BC AD BC AD B=+-⋅=+-⨯⨯=所以CD=【点睛】关键点点睛:本题关键在于求出通过三角恒等变换求出cos B,利用余弦定理求解CD,考查了运算能力,属于中档题.16.【分析】由根据正弦定理边化角可得根据余弦定理结合已知联立方程组即可求得角【详解】根据正弦定理:可得根据余弦定理:由已知可得:故可联立方程:解得:由故答案为:【点睛】本题主要考查了求三角形的一个内角解解析:6π【分析】由sin C B=,根据正弦定理“边化角”,可得c=,根据余弦定理2222cosa b c bc A=+-,结合已知联立方程组,即可求得角A.【详解】sin C B=根据正弦定理:sin sinb cB C=∴可得c=根据余弦定理:2222cosa b c bc A=+-由已知可得:22a b-=故可联立方程:222222cosca b c bc Aa b⎧=⎪=+-⎨⎪-=⎩解得:cos A=由0Aπ<<∴6Aπ=故答案为:6π.【点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.17.【分析】由正弦定理得由平方关系和余弦定理可得再利用面积公式即可得解【详解】由已知条件及正弦定理可得易知所以又所以所以所以即所以的面积故答案为:【点睛】本题考查了正弦定理余弦定理和三角形面积公式的应用 解析:32【分析】由正弦定理得sin A =32bc =,再利用面积公式1sin 2S bc A =即可得解. 【详解】由已知条件及正弦定理可得2sin sin sin sin B C A B C =,易知sin sin 0B C ≠,所以sin A =又2226b c a +-=,所以2223cos 2b c a A bc bc+-==,所以cos 0A >,所以cos 2A ==,即3bc =,bc =,所以ABC 的面积113sin 2222S bc A ==⨯=. 故答案为:32. 【点睛】本题考查了正弦定理、余弦定理和三角形面积公式的应用,属于中档题. 18.【分析】求出的最大值然后解相应的不等式即可得【详解】由得或故答案为:【点睛】本题考查不等式恒成立问题根据参数出现的位置首先求出三角式的最大值然后只要解不等式即可得这实质上就是不等式恒成立问题中的分离 解析:121,,3⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【分析】求出sin cos θθ的最大值,然后解相应的不等式即可得. 【详解】11sin cos sin 222θθθ=≤, 由211322m m ->得13m <-或12m >.故答案为:121,,3⎛⎫⎛⎫-∞-+∞ ⎪⎪⎝⎭⎝⎭. 【点睛】 本题考查不等式恒成立问题,根据参数出现的位置,首先求出三角式sin cos θθ的最大值,然后只要解不等式即可得.这实质上就是不等式恒成立问题中的分离参数法,只是本题中不等式已经参变分离了.19.7254【分析】参数进行分类讨论由已知求出数列的前几项从中发现是以5为周期的再根据求得的值可得答案【详解】由题意当时因此是周期数列周期为所以不合题意当时同理是周期数列周期为所以故答案为:【点睛】本题 解析:7254 【分析】参数a 进行分类讨论,由已知求出数列的前几项,从中发现是以5为周期的,再根据20154a a =求得a 的值可得答案.【详解】由题意34a a=,当2a ≥时,44a =,52a a =,6a a =,71a =,因此{}n a 是周期数列,周期为5,所以2015524a a a a ==≠,不合题意,当02a <<时,48a a =,54a =,6a a =,71a =,同理{}n a 是周期数列,周期为5,所以2015544a a a ===,1a =,1234518a a a a a ++++=,2015403187254S =⨯=.故答案为:7254.【点睛】本题考查新定义问题,考查周期数列的知识,解决此类问题常采取从特殊到一般的方法,可先按新定义求出数列的前几项(本题由12,a a 依次求出34567,,,,a a a a a ),从中发现周期性的规律,本题求解中还要注意由新定义要对参数a 进行分类讨论.解决新定义问题考查的学生的阅读理解能力,转化与化归的数学思想,即把新定义的“知识”、“运算”等用我们已学过的知识表示出来,用已学过的方法解决新的问题.20.4【分析】根据题意等价变形得对任意恒成立再求数列的最大值即可得答案【详解】解:∵∴不等式等价于记∴时即时数列单调递减又∵∴∴即∴整数的最大值为4故答案为:4【点睛】本题考查根据数列不等式恒成立求参数 解析:4 【分析】根据题意等价变形得2352n n λ-->对任意*n N ∈恒成立,再求数列232n n n b -=的最大值即可得答案.【详解】解:∵()102n n a n =+⋅>,∴不等式()2235n n n a λ--<-等价于2352nn λ-->, 记232n n n b -=,112121223462n n n n n b n n b n ++--==--, ∴3n ≥时,11n nb b +<,即3n ≥时数列单调递减, 又∵ 1211,24b b =-=, ∴ ()3max 38n b b ==, ∴358λ->,即337588λ<-=, ∴整数λ的最大值为4.故答案为:4.【点睛】本题考查根据数列不等式恒成立求参数,考查化归转化思想,是中档题.三、解答题21.(1)见解析(2)1b >+. 【分析】(1)原不等式转化为()()10-+<x a x 然后利用分类讨论思想进行分类求解; (2)原不等式转化22(0)1x b x x +>>+ ,设()()222151214x t g x x t t t+===≤+-++-1122b =+⇒>+. 【详解】 (1)当1,0b c ==时,()()()21100f x x a x a x >⇔---<≠ ()()10x a x ⇔-+<,讨论:①当1a <-时,原不等式的解集为(),1a -;②当1a =-时,原不等式的解集为φ;③当10a -<≤时,原不等式的解集为()1,a -;④当0a >时,原不等式的解集为()()1,00,a -⋃.(2)当,2b c a ==时,()2211x f x bx b +<⇔<+ 22(0)1x b x x +⇔>>+ 设()221x g x x +=+,令()=22t x t +>, 则()()22211512214x t g x t x t t t +===≤=+=+-++-,时取等号,故12b >+. 【点睛】关键点睛:解题的关键在于利用二次函数的性质,进行数形结合的讨论,难点在于对a 的分类讨论;由参变分离得到函数不等式区间D 上恒成立,一般有以下结论:min 1.():,()a f x x D a f x <∈<即可.max 2.():,()a f x x D a f x >∈>即可.22.(1)1030x ;(2)480.【分析】(1)令21()202504002R x x x =-++,解之即可; (2)利用二次函数的最值和基本不等式分别求出()R x 两段函数的最大值,再比较大小即可.【详解】(1)当035x <时,令21()202504002R x x x =-++, 即2403000x x -+≤,解得1030x ,所以生产量x 的范围是1030x ;(2)当035x <时,222111()20250(40)250(20)450222R x x x x x x =-++=--+=--+, 故此时()R x 在(0,20)上单调递增,在(20,35)上单调递减,则此时()R x 最大值为(20)450R =;当35x >时,116001()()52052048022R x x x =-++≤-⨯=, 当且仅当160040x x==时,等号成立, 则此时()R x 最大值为(40)480R =,综上公司年利润()R x 的最大值为480万元.【点睛】本题考查了函数的应用,利用二次函数的性质和基本不等式求最值是解题的关键,考查了推理能力与计算能力,属于中档题.23.答案见解析【分析】利用边角互化可得24c b ==,选①:利用余弦定理以及三角形的面积公式即可求解;选②:利用向量数量积的定义可得1cos 2A =,从而可得3A π=,再利用三角形的面积公式即可求解;选③:利用诱导公式以及二倍角的余弦公式可得1cos 2A =,从而可得3A π=,再利用三角形的面积公式即可求解.【详解】因为sin 2sin C B =,2b =,所以24c b ==,选①:因为222b c a bc +=+,所以2221cos 22b c a A bc +-==, 又因为()0,A π∈,所以3A π=.所以ABC 的面积11sin 2422S bc A ==⨯⨯=. 选②:若4AB AC ⋅=,故cos 4AB AC A ⋅⋅=, 则1cos 2A =,故3A π=,所以ABC 的面积11sin 24222S bc A ==⨯⨯⨯=. 选③:若2sin 22cos 122A A π⎛⎫++= ⎪⎝⎭,则cos2cos 0A A +=, 故22cos cos 10A A +-=,解得1cos 2A =(cos 1A =-舍去),故3A π=.所以ABC 的面积11sin 2422S bc A ==⨯⨯=.24.c =34ABC π∠=. 【分析】由勾股定理求出BD ,再由sin BD A AD=,sin 1c A =,b =求出c =5b =,再由余弦定理求出a ,最后由正弦定理求出ABC ∠.【详解】解:在直角三角形ABD中,22 222224b cBD AD AB c⎛⎫=-=-=⎪⎝⎭,所以2cBD=.所以5sinBDAAD==.又因为sin1c A=,所以5c=由5b c=得,5b=.因为5sin A=,0,2Aπ⎛⎫∈ ⎪⎝⎭,所以225cos1sinA A=-=.在ABC中,由余弦定理,得22255(5)255105a=+-⨯⨯⨯=由正弦定理,得sin sina bA ABC=∠,即510sin5ABC=∠2sin ABC∠=.又因为,2ABCππ⎛⎫∠∈ ⎪⎝⎭,所以34ABCπ∠=.【点睛】关键点睛:解决本题的关键在于正余弦定理的综合应用,综合利用两个定理求出c和ABC∠.25.(1)n a n=;(2)()()23412n nn n+++.【分析】(1)由已知求得1a和公差d,可得通项公式;(2)用裂项相消法求和.【详解】(1)因为数列{}n a为等差数列,设其公差为d,结合332S a=,8522a a=-,()()111133227242a d a da d a d⎧+=+⎪⎨+=+-⎪⎩解得:11a d==所以11na n n=+-=(2)()()()()()1211111122112 nn n nba a a n n n n n n n++⎡⎤===-⎢⎥⋅⋅+++++⎣⎦()()()11111111121223223342112n T n n n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪ ⎪⨯⨯⨯⨯+++⎝⎭⎝⎭⎝⎭所以()()()()211132212412n n n T n n n n ⎡⎤+=-=⎢⎥++++⎣⎦. 【点睛】本题考查求等差数列的通项公式,裂项相消法求和.数列求和的常用方法:设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和;(2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法;(3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和. 26.(1)证明见解析;(2)()12+1nn T n =-⋅. 【分析】(1)由121n n a a -=+及等比数列定义得到11121n n a a +-++=即可证明; (2)由(1)知112n n a -+=,所以12n n b n -=⋅,用错位相减法求数列{}n b 的项和n T .【详解】解:(1)由121n n a a -=+,即()1121n n a a -+=+,所以11121n n a a +-++=, 所以数列{}1n a +是以1为首项,2为公比的等比数列.(2)由(1)知112n n a -+=,所以()112n n n b a n -=+=⋅.所以01211222322n n T n -=⨯+⨯+⨯++⋅,① 则12321222322n n T n =⨯+⨯+⨯++⋅,②由①②得0121121212122n n n T n --=⨯+⨯+⨯++⨯-⋅ ()12212112nn n n n -=-⋅=---, 所以()121nn T n =-⋅+. 【点睛】方法点睛:根据递推关系求通项公式的三个常见方法:(1)对于递推关系式可转化为1()n n a a f n +=+的数列,通常采用累加法(逐差相加法)求其通项公式;(2)对于递推关系式可转化为1()n na f n a +=的数列,并且容易求数列()f n 前n 项的积时,采用累乘法求数列{}n a 的通项公式;(3)对于递推关系式形如1(0,1,0)n n a pa q p q +=+≠≠的数列,采用构造法求数列的通项.。

2021-2022高中数学必修五期末试卷(带答案)

2021-2022高中数学必修五期末试卷(带答案)

一、选择题1.已知0x >,0y >,21x y +=,若不等式2212m m x y+>+恒成立,则实数m 的取值范围是( ) A .4m ≥或2m ≤- B .2m ≥或4m ≤- C .24m -<<D .42m -<<2.在各项均为正数的等差数列{}n a 中,n S 为其前n 项和,7S =14,则2614t a a =+的最小值为( ) A .9B .94 C .52D .23.若正数x ,y 满足35x y xy += ,则43x y + 的最小值为( ) A .275B .245C .5D .64.已知实数x 、y 满足约束条件22x y a x y ≤⎧⎪≤⎨⎪+≥⎩,且32x y +的最大值为10,则a =( )A .1B .2C .3D .45.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若cos 2a B c=,21sin sin (2cos )sin 22A B C A -=+,则A =( ) A .6π B .3π C .2π D .23π 6.在ABC 中,内角,,A B C 所对应的边分别为,,a b c,若sin cos 0b A B =,且2b ac =,则a cb+ 的值为( ) ABC .2D .47.在ABC ∆中,角A B C ,,的对边分别是a b c ,,,若sin cos 0b A B =,且三边a b c ,,成等比数列,则2a cb+的值为( ) AB.2C .1D .28.在ABC 中,60A ∠=︒,4AC =,BC =ABC 的面积为 A.B .4C.D9.若等差数列{}n a 的前n 项和为n S ,首项10a >,202020210a a +>,202020210a a ⋅<,则满足0n S >成立的最大正整数n 是( ) A .4039B .4040C .4041D .404210.已知数列{}n a 的前n 项和为n S ,且0n a >,n *∈N ,若数列{}n a 和{}n S 都是等差数列,则下列说法不正确的是( ) A .{}n n a S +是等差数列B .{}n n a S ⋅是等差数列C .{}2n a 是等比数列D .{}2n S 是等比数列11.设等差数列{}n a 的前n 项和为n S ,若10a >,81335a a =,则n S 中最大的是( ). A .10SB .11SC .20SD .21S12.在等比数列{}n a 中,48,a a 是关于x 的方程21040x x ++=的两个实根,则2610a a a =( ) A .8B .8-C .4D .88-或二、填空题13.已知0a >,0b >且3a b +=.式子2021202120192020a b +++的最小值是___________.14.若x ,y 满足约束条件10,20,220,x y x y x y -+≤⎧⎪-≤⎨⎪+-≤⎩则z x y =+的最大值为______.15.已知60A =︒,ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,其中7a =,sin sin B C +=,则bc 的值为______. 16.在ABC 中,角,,A B C 的对边分别为,,a b c,b =ABC ∆面积为)222S b a c =--,则面积S 的最大值为_____. 17.在平面四边形ABCD 中,已知ABC 的面积是ACD △的面积的3倍.若存在正实数x ,y 使得12(2)(1)AC AB AD x y=-+-成立,则x y +的最小值为___________. 18.一渔船在A 处望见正北方向有一灯塔B ,在北偏东45方向的C 处有一小岛,渔船向正东方向行驶2海里后到达D 处,这时灯塔B 和小岛C 分别在北偏西30和北偏东15的方向,则灯塔B 和小岛C 之间的距离为___________海里. 19.已知正项等比数列{}n a ,12q =,若存在两项m a 、n a12a =,则9m n-的最小值为___________.20.已知数列{}n a 中,11a =,()11*22,2n n n a a n N n a --=≥+∈,若1211145ma a a +++=,则m =________. 三、解答题21.已知函数()21f x x x =-++. (1)求不等式()5f x ≤的解集; (2)若()f x 的最小值是m ,且3m a b +=,求212a b +的最小值.22.解关于x 的不等式:()2230x a a x a -++>.23.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若1||2AB AC AC ⋅=,且1c =. 在①cos cos 2aC c A +=;② sin cos b C B c =;③ sin 2sin a B c A =这三个条件中任选一个,补充在下面问题中,并解答问题. (1)求角A ;(2)若___________,角B 的平分线交AC 于点D ,求BD 的长. (注:如果选择多个条件分别解答,按第一个解答计分) 24.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,222sin sin sin sin sin A C B A C +=+.(1)求角B 的大小;(2)若ABC 为锐角三角形,b =2a c -的取值范围. 25.已知数列{}n a 的前n 项和为21n S n n =++.(1)求这个数列的通项公式; (2)设()11n n n b n a a *+=∈N ,证明:对n *∀∈N ,数列{}n b 的前n 项和524n T <. 26.已知等差数列{}n a 的前n 项和为n S ,且4224,21,n n S S a a n N *==+∈. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若13n n b -=,令11=n n n n n c a b a a +⋅+⋅,求数列{}n c 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D解析:D 【分析】先根据已知结合基本不等式得218x y+≥,再解不等式228m m +<即可得答案. 【详解】解:由于0x >,0y >,21x y +=,所以()212142448y x x y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当4y x x y =,即122x y ==时等号成立, 由于不等式2212m m x y+>+成立,故228m m +<,解得:42m -<<. 故实数m 的取值范围是:42m -<<. 故选:D. 【点睛】本题考查利用基本不等式求最值,一元二次不等式的解法,考查运算能力,是中档题.2.B解析:B 【分析】根据等差数列的性质和前n 项和公式求得26a a +,然后由“1”的代换应用基本不等式求得最小值. 【详解】 由题意172677()7()1422a a a a S ++===,∴264a a +=, ∴26262614114()()4t a a a a a a =+=++62264119(5)(5444a a a a =++≥+=,当且仅当62264a a a a =,即622a a =时等号成立. 故选:B . 【点睛】本题考查等差数列的性质,考查基本不等式求最值.解题基础是掌握等差数列的性质,掌握基本不等式求最值中“1”的代换法.3.A解析:A 【解析】正数x ,y 满足35x y xy +=,则13155y x+=,()1349362743433325555255x y x y x y y x y x ⎛⎫+=++=++≥+=⎪⎝⎭故答案为A.点睛:这个题目考查的是含有两个变量的表达式的最值的求法,解决这类问题一般有以下几种方法,其一,不等式的应用,这个题目用的是均值不等式,注意要满足一正二定三相等;其二,二元化一元,减少变量的个数;其三可以应用线线性规划的知识来解决,而线性规划多用于含不等式的题目中.4.B解析:B 【分析】作出不等式组所表示的可行域,平移直线32z x y =+,找出使得目标函数32z x y =+取得最大值时对应的最优解,代入目标函数可得出关于实数a 的等式,由此可解得实数a 的值. 【详解】不等式组所表示的可行域如下图所示:易知点()2,A a ,由题意可知,点A 在直线2x y +=上或其上方,则22a +≥,可得0a ≥,令32z x y =+,平移直线32z x y =+,当直线32z x y =+经过点A 时,直线32z x y =+在y 轴上的截距最大,此时,z 取得最大值,即max 3226210z a a =⨯+=+=,解得2a =. 故选:B. 【点睛】本题考查利用线性目标函数的最值求参数,考查数形结合思想的应用,属于中等题.5.C解析:C 【分析】先利用余弦定理化简条件得sin sin B C =,再利用三角恒等变换即求得B ,C ,再求A 角.【详解】∵cos 2a B c =,∴22222a c b aac c+-=,解得b c =,∴sin sin B C =.∵212cos sin sin (2cos )sin 222A AB C A --=+=,易知2cos 0A -≠,∴1sin sin 2B C =,又sin sin B C =,∴sin sin B C ==,即4B C π==,∴2A π=.故选:C . 【点睛】本题考查了三角恒等变换与解三角形的综合,属于中档题.6.C解析:C 【分析】利用正弦定理边化角,结合辅助角公式可求得sin 03B π⎛⎫-= ⎪⎝⎭,从而确定3B π=;利用余弦定理构造方程可求得()24+=a c ac ,代入所求式子即可化简得到结果. 【详解】sin cos 0b A B =,()sin sin cos sin sin 2sin sin 03B A A B A B B A B π⎛⎫∴=-=-= ⎪⎝⎭,()0,A π∈,sin 0A ∴≠,sin 03B π⎛⎫∴-= ⎪⎝⎭,又()0,B π∈,3B π∴=.()22222231cos 2222a c ac a cb ac ac B ac ac ac +-+-+-∴====,整理可得:()24+=a c ac ,2a cb+∴====. 故选:C . 【点睛】本题考查解三角形的相关知识,涉及到正弦定理边化角、余弦定理的应用等知识;解决此类问题的关键是能够通过正弦定理,将边的齐次式转化为角的关系,属于常考题型.7.C解析:C 【分析】先利用正弦定理边角互化思想得出3B π=,再利余弦定理1cos 2B =以及条件2b ac =得出a c =可得出ABC ∆是等边三角形,于此可得出2a cb+的值. 【详解】sin cos 0b A B =,由正弦定理边角互化的思想得sin sin cos 0A B A B =,sin 0A >,sin 0B B ∴=,tan B ∴=,则3B π=.a 、b 、c 成等比数列,则2b ac =,由余弦定理得222221cos 222a cb ac ac B ac ac +-+-===,化简得2220a ac c -+=,a c ∴=,则ABC ∆是等边三角形,12a cb+∴=,故选C . 【点睛】本题考查正弦定理边角互化思想的应用,考查余弦定理的应用,解题时应根据等式结构以及已知元素类型合理选择正弦定理与余弦定理求解,考查计算能力,属于中等题.8.C解析:C 【分析】利用三角形中的正弦定理求出角B ,利用三角形内角和求出角C ,再利用三角形的面积公式求出三角形的面积,求得结果. 【详解】因为ABC ∆中,60A ∠=︒,4AC =,BC = 由正弦定理得:sin sin BC ACA B=,4sin B=,所以sin 1B =, 所以90,30B C ︒︒∠=∠=,所以14sin 302ABC S ︒∆=⨯⨯= C. 【点睛】该题所考查的是有关三角形面积的求解问题,在解题的过程中,需要注意根据题中所给的条件,应用正弦定理求得sin 1B =,从而求得90,30B C ︒︒∠=∠=,之后应用三角形面积公式求得结果.9.B解析:B由等差数列的10a >,及202020210a a ⋅<得数列是递减的数列,因此可确定202020210,0a a ><,然后利用等差数列的性质求前n 项和,确定和n S 的正负.【详解】∵202020210a a ⋅<,∴2020a 和2021a 异号,又数列{}n a 是等差数列,首项10a >,∴{}n a 是递减的数列,202020210,0a a ><, 由202020210a a +>,所以140404040202020214040()2020()02a a S a a +==+>,14041404120214041()404102a a S a +==<,∴满足0n S >的最大自然数n 为4040. 故选:B . 【点睛】关键点睛:本题求满足0n S >的最大正整数n 的值,关键就是求出100n n S S +><,,时成立的n 的值,解题时应充分利用等差数列下标和的性质求解,属于中档题.10.D解析:D 【分析】由题意,判断出数列{}n a 是公差为0的等差数列,然后分别利用等差数列的定义与等比数列的定义判断每个选项即可. 【详解】因为数列{}n a 和{}n S 都是等差数列,1n n n a S S -=-,所以可判断n a 为定值,所以数列{}n a 是公差为0的等差数列,即10n n a a --=.对A ,()()1111----++-=-+-=n n n n n n n n n a S a S S S a a a ,所以数列{}n n a S +是等差数列;对B ,1121----=⋅⋅⋅⋅-=n n n n n n n n n a S a S a S a S a ,所以数列{}n n a S ⋅是等差数列;对C ,222211-==n n n n a a a a ,所以数列{}2n a 是等比数列;对D ,设n a a =,则222,==n n S na S n a ,则221222222(1)(1)-==--n n n a n n a n S S ,所以数列{}2n S 不是等比数列. 故选:D 【点睛】解答本题的关键在于判断出数列{}n a 是公差为0的等差数列,然后结合等差数列的定义,等比数列的定义列式判断是否为等差或者等比数列.11.C解析:C分析:利用等差数列的通项公式,化简求得20210a a +=,进而得到20210,0a a ><,即可作出判定.详解:在等差数列{}n a 中,18130,35a a a >=,则113(7)5(12)a d a d +=+,整理得12390a d +=,即()()1119200a d a d +++=, 所以20210a a +=,又由10a >,所以20210,0a a ><,所以前n 项和n S 中最大是20S ,故选C .点睛:本题考查了等差数列的通项公式,及等差数列的前n 项和n S 的性质,其中解答中根据等差数列的通项公式,化简求得20210a a +=,进而得到20210,0a a ><是解答的关键,着重考查了学生分析问题和解答问题的能力.12.B解析:B 【分析】结合根与系数关系,根据等比中项满足的性质,计算6a ,代入,计算式子,即可. 【详解】48,a a 是关于x 的方程21040x x ++=的两实根,所以24821064a a a a a ===,由48480,100a a a a >+=-<得480,0a a <<,所以2640a a q =<,即62a =-,所以26108a a a =-.故选B【点睛】本道题考查了等比中项的性质,关键利用好该性质,计算结果,即可,难度中等.二、填空题13.2【分析】令从而可得再利用基本不等式即可求解【详解】令则且∴∴当且仅当取等号即时成立故答案为:2【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项必解析:2 【分析】令2019a x +=,2020b y +=,从而可得1()14042x y +=,再利用基本不等式即可求解. 【详解】令2019a x +=,2020b y +=, 则2019x >,2020y >且4042x y +=, ∴1()14042x y +=, ∴202120211111120212021()201920204042x y a b x y x y ⎛⎫⎛⎫+=+=+⋅+ ⎪ ⎪++⎝⎭⎝⎭11112222y x y x x y x y⎛⎫=+++⋅⋅= ⎪⎝⎭≥,当且仅当y xx y=取等号,即2021,2,1x y a b ====时成立. 故答案为:2 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方14.1【分析】画出可行域和目标函数根据目标函数的几何意义得到答案【详解】如图所示:画出可行域和目标函数则表示直线在轴的截距当直线过点时即时有最大值为故答案为:【点睛】本题考查了线性规划问题意在考查学生的解析:1 【分析】画出可行域和目标函数,根据目标函数的几何意义得到答案. 【详解】如图所示:画出可行域和目标函数,z x y =+,则y x z =-+,z 表示直线在y 轴的截距, 当直线过点()0,1时,即0,1x y ==时,z 有最大值为1. 故答案为:1.【点睛】本题考查了线性规划问题,意在考查学生的应用能力,画出图像是解题的关键.15.40【分析】首先根据正弦定理求并表示最后根据余弦定理求的值【详解】根据正弦定理可知根据余弦定理可知得解得:故答案为:40【点睛】方法点睛:(1)在解有关三角形的题目时要有意识地考虑用哪个定理更适合或解析:40 【分析】首先根据正弦定理求2R ,并表示sin sin 22b c B C R R+=+,最后根据余弦定理求bc 的值. 【详解】22sin a R R A =⇒==,根据正弦定理可知132214b c b c R R +=⇒+=, 根据余弦定理可知()2222222cos 3a b c bc A b c bc b c bc =+-=+-=+-,得249133bc =-,解得:40bc =. 故答案为:40 【点睛】方法点睛:(1)在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到;(2)解题中注意三角形内角和定理的应用及角的范围限制.16.【分析】利用三角形面积构造方程可求得可知从而得到;根据余弦定理结合基本不等式可求得代入三角形面积公式可求得最大值【详解】由余弦定理得:(当且仅当时取等号)本题正确结果:【点睛】本题考查解三角形问题中解析:4-【分析】利用三角形面积构造方程可求得tan B =,可知56B π=,从而得到sin ,cos B B ;根据余弦定理,结合基本不等式可求得(82ac ≤-,代入三角形面积公式可求得最大值. 【详解】()()222312cos sin 2S b a c ac B ac B =--=-=sin tan cos B B B ∴==()0,B π∈ 56B π∴=cos B ∴=,1sin 2B = 由余弦定理2222cos b a c ac B =+-得:(2282a c ac =+≥(当且仅当a c=时取等号)(82ac∴≤=11sin424S ac B ac∴==≤-本题正确结果:4-【点睛】本题考查解三角形问题中的三角形面积的最值问题的求解;求解最值问题的关键是能够通过余弦定理构造等量关系,进而利用基本不等式求得边长之积的最值,属于常考题型. 17.【分析】由面积比得再利用三点共线可得出的关系从而利用基本不等式可求得的最小值【详解】如图设与交于点由得所以又三点共线即共线所以存在实数使得因为所以所以又因为所以当且仅当即时等号成立所以的最小值为故答解析:57+【分析】由面积比得3BM MD=,再利用,,A M C三点共线可得出,x y的关系,从而利用基本不等式可求得x y+的最小值.【详解】如图,设AC与BD交于点M,由1sin231sin2ABCADCAC BM AMBS BMS DMAC DM AMD⋅∠===⋅∠△△得3BM MD=,所以1313()4444AM AB BM AB BD AB AD AB AB AD=+=+=+-=+,又,,A M C三点共线,即,AM AC共线,所以存在实数k使得AC k AM=,因为12(2)(1)AC AB ADx y=-+-,所以11242314kxky⎧-=⎪⎪⎨⎪-=⎪⎩,所以327x y+=,又因为0,0x y>>,所以1321321()()(5)5777y xx y x yx y x y⎛+=++=++≥+=⎝,当且仅当32y xx y=,即x=,y=时等号成立.所以x y+的最小值为57+.【点睛】本题考查向量共线定理,考查基本不等式求最值,解题关键是利用平面向量共线定理得出,x y 的关系,然后用“1”的代换,凑配出定值,用基本不等式求得最小值.18.【分析】求得在三角形中利用余弦定理求得【详解】依题意画出图象如下图所示在三角形中由正弦定理得所以在中所以在三角形中由余弦定理得所以故答案为:【点睛】本小题主要考查正弦定理余弦定理解三角形属于中档题 解析:22【分析】求得,BD CD ,在三角形BCD 中利用余弦定理求得BC . 【详解】依题意,画出图象如下图所示,2AD =,301545BDC ∠=︒+︒=︒,903060BDA ∠=︒-︒=︒,45,180********CAD ACD ∠=︒∠=︒-︒-︒-︒=︒,在三角形ACD 中,由正弦定理得2sin 30sin 45CD=︒︒,所以22CD =. 在Rt ABD △中,906030ABD ∠=︒-︒=︒,所以24BD AD ==. 在三角形BCD 中,由余弦定理得()2224222422cos458BC =+-⨯⨯⨯︒=,所以22BC =. 故答案为:22【点睛】本小题主要考查正弦定理、余弦定理解三角形,属于中档题.19.【分析】由等比数列的通项公式结合可得出利用基本不等式可求得的最小值【详解】由于则即则由已知可得因此当且仅当时等号成立所以的最小值为故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的 解析:2【分析】12a =可得出4m n =-,利用基本不等式可求得9m n-的最小值. 【详解】12a =,则214m n a a a =,即221121111124m n m n a a q a q a +---⎛⎫⋅=⋅= ⎪⎝⎭,则22m n +-=,4m n ∴=-,由已知可得m 、n *∈N ,因此,()9994442m n n n n n -=--=+-≥=, 当且仅当3n =时,等号成立, 所以,9m n-的最小值为2. 故答案为:2. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.20.12【分析】先取倒数得成等差数列再根据等差数列求和公式列式求得结果【详解】所以为以为首项为公差的等差数列故答案为:12【点睛】本题考查等差数列定义以及求和公式考查基本分析求解能力属基础题解析:12 【分析】先取倒数得1n a ⎧⎫⎨⎬⎩⎭成等差数列,再根据等差数列求和公式列式求得结果.【详解】()111*121111112,+222n n n n n n n N a a n n a a a a a ----=∴=∴∈≥-=+ 所以1n a ⎧⎫⎨⎬⎩⎭为以111a 为首项,12为公差的等差数列, 1211111(1)4522m m m m a a a ∴+++=+-⋅= 2312150012m m m m ∴+-⨯=>∴=故答案为:12 【点睛】本题考查等差数列定义以及求和公式,考查基本分析求解能力,属基础题.三、解答题21.(1)[]23,-;(2)92. 【分析】(1)将()f x 解析式中绝对值符号去掉,求得分段函数解析式;再在每一段中求得()5f x ≤时的解集;从而得出答案;(2)先由(1)求出()f x 的最小值3m =,所以得1a b +=;再将212a b+构造成符合基本不等式的形式,从而求其最小值. 【详解】解:(1)21,1()213,1221,2x x f x x x x x x -+≤⎧⎪=-++=-<<⎨⎪-≥⎩,()5f x ≤等价于1,215x x ≤-⎧⎨-+≤⎩或1235x -<<⎧⎨≤⎩或2215x x ≥⎧⎨-≤⎩,解得21x -≤≤-或12x -<<或23x ≤≤.故不等式()5f x ≤的解集为[]23,-. (2)由(1)可知3m =,则1a b +=, 则21212559()2222222b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭(当23a =,13b =时,等号成立). 故212a b +最小值为92. 【点睛】本题主要考查分段函数和基本不等式的相关性质,考查运算求解能力,属于基础题型.22.见解析 【分析】由题意,将不等式()2230x a a x a -++>变形为2(0)()x a x a -->,分三种情况讨论,分别求解不等式的解集,即可得到答案. 【详解】将不等式()2230x a a x a -++>变形为()()20x a x a -->.当a <0或1a >时,有a < a 2,所以不等式的解集为{|x x a <或2}x a >; 当a =0或1a =时,a = a 2=0,所以不等式的解集为{|,x x R ∈且}x a ≠; 当0< a <1时,有a > a 2,所以不等式的解集为2{|x x a <或}x a >; 【点睛】本题主要考查了含参数的一元二次不等式的求解问题,其中解含参数的一元二次不等式的步骤:(1)若二次项含有参数,应先讨论参数是等于0、小于0,还是大于0,然后整理不等式;(2)当二次项系数不为0时,讨论判别式与0的关系,判断方程的根的个数;(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集的形式.23.(1)3A π=; (2 【分析】 (1)由1||2AB AC AC ⋅=,得到1cos 2AB A =,进而求得1cos 2A =,即可求解;(2)分别选①②③,结合正弦定理和余弦定理,求得2B π=,得到4ABD π∠=,进而得到sin ADB ∠的值,在ABD △中结合正弦定理,即可求解. 【详解】 (1)由1||2AB AC AC ⋅=,可得1cos ||2AB AC A AC ⋅=,所以1cos 2AB A =,又由1c =,所以1cos 2A =, 因为(0,)A π∈,所以3A π=. (2)若选①:因为cos cos 2a C c A +=,由余弦定理可得222222222a b c b c a a c ab bc+-+-⋅+⋅=,整理得220b b,解得2b =,又由余弦定理可得2222212cos 2122132a b c bc A =+-=+-⨯⨯⨯=,即a = 因为222a c b +=,所以2B π=,又因为角B 的平分线交AC 于点D ,可得4ABD π∠=,所以5()3412ADB ππππ∠=-+=,则sin sin[()]sin cos cos sin 343434ADB πππππππ∠=-+=+=, 在ABD △中,由正弦定理可得sin sin 22ABBD A ADB=⋅==∠. 若选②:由sin cos b C B c =,根据正弦定理可得sin sin cos sin B C C B C =, 因为(0,)C π∈,可得sin 0C >,所以sin 1B B =,可得sin 2sin()13B B B π-=-=,即1sin()32B π-=,因为2333B πππ-<-<,所以36B ππ-=,可得2B π=又因为角B 的平分线交AC 于点D ,可得4ABD π∠=,所以5()3412ADB ππππ∠=-+=,则sin sin[()]sin cos cos sin 343434ADB πππππππ∠=-+=+=, 在ABD △中,由正弦定理可得sin sin ABBD A ADB=⋅==∠. 若选③:由sin 2sin a B c A =,根据正弦定理可得sin sin 2sin sin A B C A =, 因为(0,)C π∈,可得sin 0C >,可得sin 2sin B C =, 又由()()3C A B B πππ=-+=-+,可得sin 2sin 2sin()sin 3B C B B B π==+=+,所以cos 0B =,因为(0,)B π∈,所以2B π=.又因为角B 的平分线交AC 于点D ,可得4ABD π∠=,所以5()3412ADB ππππ∠=-+=,则sin sin[()]sin cos cos sin 343434ADB πππππππ∠=-+=+=, 在ABD △中,由正弦定理可得sin sin 22ABBD A ADB=⋅==∠. 【点睛】方法点睛:对于解三角形问题的常见解题策略:对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用正、余弦定理解三角形问题是高考高频考点,同时注意三角形内角和定理,三角形面积公式在解题中的应用. 24.(1)3B π=;(2)()0,3.【分析】(1)利用正弦定理边角互化,再利用余弦定理求出角B 的大小;(2)利用正弦定理结合三角恒等变换化简2a c -,再由锐角三角形得出C 的范围,进而得出答案. 【详解】(1)由已知222sin sin sin sin sin A C B A C +=+,结合正弦定理,得222a c b ac +=+.再由余弦定理,得2221cos 222a cb ac B ac ac +-===,又()0,B π∈,则3B π=.(2)由3B π=,b =224sin 2sin 4sin 2sin 3a c A C C Cπ⎛⎫-=-=-- ⎪⎝⎭224sin cos cos sin 2sin 33C C C C ππ⎛⎫=--= ⎪⎝⎭因为ABC 为锐角三角形,则62C ππ<<,则0cos 2C <<. 所以2a c -的取值范围为()0,3.25.(1)*3,(1)2,(2,)n n a n n n N =⎧=⎨≥∈⎩;(2)证明见解析. 【分析】(1)利用*1,(1),(2,)n n nn S n a S S n n N -=⎧=⎨-≥∈⎩求解即可;(2)利用n a 求n b ,当1n =时,1151224b =≤显然成立,当2n ≥时,利用列项相消法求和判断即可. 【详解】解:(1)当1n =时,111113a S ==++=; 当2n ≥时,1n n n a S S -=-22(1)[(1)(1)1]n n n n =++--+-+2n =,所以*3,(1)2,(2,)n n a n n n N =⎧=⎨≥∈⎩; (2)由(1)易知*1,(1)121(2,),4(1)n n b n n N n n ⎧⎪=⎪=⎨≥∈⎪+⎪⎩ 当1n =时,1151224b =≤显然成立. 当2n ≥时,1111()4(1)41n b n n n n ==-++,123n n T b b b b =+++11111111[()()()]12423341n n =+-+-++-+ 1111()12421n =+-+ 515244(1)24n =-<+; 故结论成立. 【点睛】关键点睛:本题考查数列求通项公式,利用数列求和证明不等式.利用列项相消法求和是解决本题的关键.26.(Ⅰ)21()n a n n *=-∈N ;(Ⅱ)()13121n n nT n n =-⋅+++. 【分析】(Ⅰ)根据条件列出方程组求出数列的首项和公差,即可得出通项公式; (Ⅱ)分组求和结合错位相减法和裂项相消法可求出. 【详解】解: (Ⅰ)设等差数列{}n a 的公差为d ,则由4224,21,n n S S a a n N *==+∈可得11114684,(21)22(1) 1.a d a d a n d a n d +=+⎧⎨+-=+-+⎩,解得11,2.a d =⎧⎨=⎩因此21()n a n n *=-∈N(Ⅱ)由(Ⅰ)及13n n b -= ,∴111111(21)3(21)3(21)(21)2212+1n n n c n n n n n n --⎛⎫=-⋅+=-⋅+- ⎪-+-⎝⎭则令0121133353(21)3n A n -=⨯+⨯+⨯+⋅⋅⋅+-⋅,111111111+++12335212122121nB n n n n ⎛⎫⎛⎫=---=-= ⎪ ⎪-+++⎝⎭⎝⎭, 则n T A B =+,0121133353(21)3,n A n -=⨯+⨯+⨯+⋅⋅⋅+-⋅()12313133353233(21)3n n A n n -=⨯+⨯+⨯+⋅⋅⋅+-⋅+-⋅,两式相减得1231212(3333)(21)3n n A n --=+⨯+++⋅⋅⋅+--⋅,2(33)21+(21)33(22)213n n n A n n --=--⋅=⋅---所以()131nA n =-⋅+综合知()13121nn nT A B n n =+=-⋅+++. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和.。

人教版高中数学必修5期末测试题及其详细答案

人教版高中数学必修5期末测试题及其详细答案

数学必修5试总复习题一一.选择题〔本大题共10小题,每题5分,共50分〕题号12345678910答案1.由a11,d3确定的等差数列a n,当a n298时,序号n等于〔〕A.99B.100C.96D.1012.A BC中,假设a1,c2,B60,那么ABC的面积为〔〕A.1B.3 D.3223.在数列{a n}中,a1=1,an1a n2,那么a51的值为〔〕A.99B.49C.102D.1014.x0,函数y 4x的最小值是〔〕xA.5B.4C.8D.65.在等比数列中,a11,q1,a n1,那么项数n为〔〕2232A.3B.4C.5D.66.不等式ax2bx c0(a0)的解集为R,那么〔〕A.a0,0B.a0,0C.a0,0D.a0,0x y17.设x,y满足约束条件y x,那么z3x y的最大值为〔〕y2A.5 B.3 C.7 D.-88.在ABC中,a80,b100,A45,那么此三角形解的情况是〔〕A.一解B.两解C.一解或两解D.无解9.在△ABC中,如果sinA:sinB:sinC2:3:4,那么cosC等于〔〕A.22C.-1D.-1 3B.-34310.一个等比数列{a n}的前n项和为48,前2n项和为60,那么前3n项和为〔〕A、63 B 、108 C 、75 D 、83二、填空题〔此题共4小题,每题5分,共20分〕11.在ABC中,B450,c22,b43,那么A=_____________;312.等差数列a n的前三项为a1,a1,2a3,那么此数列的通项公式为________.13.2x1.不等式1的解集是3x114.数列{an}的前n项和S n n2n,那么它的通项公式为an=_____三、解答题(本大题共6个小题,共80分;解容许写出文字说明、证明过程或演算步骤)15(12分)等比数列a n中,a1a310,a4a65,求其第4项及前5项和. 416(14分)(1)求不等式的解集:2450x x(2)求函数的定义域:x1y5x217(14分)在△ABC中,BC=a,AC=b,a,b是方程x223x20的两个根,且2cos(AB)1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教数学A版必修 5 期末测试练习二选择题1.已知三角形的三边长分别是2m+3, 2m +2m,,2m +3m+3 且m >0,则这个三角形的最大角为()A.1500 B.1350C.1200 D.9002.在△ABC 中,A=60°,b=1,S ABC = 3 ,则sin aAbsin B()A.8381B.2393C.2633D.2 73.已知△ABC 的三边长分别为a-2,a,a + 2,且它的最大角的正弦值为32,则这个三角形的面积是()A.154B.1543C.2143 35D. 342 ,则△ABC 一定是()24.△ABC 中,a b ab 2 3S ABCA.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形2 x5.三角形的两边分别是 5 和3,它们夹角的余弦是方程5x 7 6 0 的根,则S=()A.12 B.6C..24 D.46.已知数列a n 的前n 项的积为 2n ,则这个数列的第 3 项与第5 项的和是().A 6116B3115C259D5672257.数列1, 1,2, 2,3, 3,4, 4,⋯的通项公式是().A 12n1 1n B212n 1 1 nn 1 14nD16nC n 1 18.一个项数是偶数的等差数列,奇数项的和与偶数项的和分别是24 与30,最后一项比首项多10.5,那么这个数列共有().A 18 项B 12 项C 10 项D 8 项2 ,且100 9、已知数列{a n} 的前n 项和S nan bnS ,则a12 a14 =()25A、16 B 、4 C 、8 D 、不确定10、某人2004 年1 月31 日存入若干万元人民币,年利率为2%,到2005 年1 月31 日取款时被银行扣除利息税(税率为20%),共计138.64 元,则该人存款的本金介于()A、1 万元-2 万元 B 、2 万元-3 万元C、3 万元-4 万元 D 、4 万元-5 万元2 kx11.当x R时,不等式kx 1 0 恒成立,则k 之的取值范围是()A.(0, ) B.0,C.0,4 D.(0,4)2 ab x b12.不等式ax ( 1) 0 的解集是x |1 x 2 ,则a 和b 的值为()A.a b 1或a b 2B.1a 1,b 或a 2,b 121C.a ,b 1或a 1,b 22D.1a b 或a b 2213.以下四个命题中,正确的是()A.原点与点(2,3)在直线2x y 3 0 同侧B.点(3,2)与点(2,3)在直线x y 0 同侧1C.原点与点(2,1)在直线y 3x 0 异侧21D.原点与点(2,l)在直线y 3x 0 同侧2a b14.已知a b 0,全集U=R,A { x | ab x a} ,B { x |b x } ,则( U A) B2为()A.{ x | b x ab}a bB.{x|ab x }2a bC.{x| b x }2a bD.{ x|x或x a}22 kx k215.设x1,x2 关于x的二次方程x 2 1 0 的两个实根,k 为实数,则2 2 x1 x2最小值为()A.-2 B.-1 C.1 D.2填空题16、已知等差数列a n 的公差是-2,且S20 50 ,则__________17、已知等差数列a n 中,S4 1,S8 4 ,则a17 a18 a19 a20 .18、已知等差数列a n 共有n 项,且前 4 项的和是26,最后4 项的和是110,n 项的和是187,则n=_____.19.若等差数列{a n }中,当a r a s (r s) 时,数列{a n }必定为常数列,然而在等比数列{a n }中,对某些正整数r,s(r s),当a r a s 时,非常数数列{a n }的一个例子是_________.解答题20.解不等式:2 x(1)x 5 5 1ax 1(2) 22 xx 8 1521、若a>0,b >0, 且a+b=1, 求证:(1+ 1 )(1+a 1 ) ≥9 . b22、已知为奇函数,且满足,(1)求的函数式;(2)数列的前多少项之和为4094。

23、数列,满足,当数列是首项为,公差为的等差数列时,求数列的通项及前项和。

24、已知数列,求这个数列的第项以及它的前项的和。

25、已知关于的二次方程的两根、,满足,(1)试用表示;(2)求证是等比数列;(3)当时,求数列的通项公式。

答案:1-5 CBBBB 6-10 AADCC 11-15 CCCAC16、a n 2n 51217、9 18 、1119、a, a, a, a,⋯⋯(a≠0)20、解:22.(1) x |1x 2或3 x 4x(2)∵ 22 xx 8 15(x 6)(2 x5)∴0(x 3)( x 5)5∴,3) (5,6)x (25∴原不等式的解集为,3) ( 5,6)(221、证明:∵a+b=1,∴(1+ 1 )(1+a 1 )=(1+ba )(1+baa b ).b=(1+1+ b )(1+1+a a ) ≥ 3b3b 3a3a =9 .b∴原式得证.22、(1);(2)11 项。

23、。

24、。

25、(1);(3)。

人生中每一次对自己心灵的释惑,都是一种修行,都是一种成长。

相信生命中的每一次磨砺,都会让自己的人生折射出异常的光芒,都会让自己的身心焕发出不一样的香味。

与宽厚,我们常常用人生中的一些痛,换得人生的一份成熟与成长,用一些不可避免的遗憾,换取生命的一份美丽。

在大风大雨,大风大浪,大悲大喜之后,沉淀出一份人生的淡然与淡泊,静好与安宁,深邃慈悲与欣然⋯⋯。

生活里的每个人,都是我们的一面镜子,你给别人什么,别人就会回待你什么。

当你为一件事情不悦的时候,应该想想你给过人家怎样负面的情绪?世界上的幸福,没有一处不是来自用心经营和珍惜。

当你一味的去挑剔指责别人的时候,有没有反思过自己是否做得尽善尽美呢假如你的心太过自我,不懂得经营和善待,不懂得尊重他人的感受,那么你永远也不会获得真正的爱和幸福⋯⋯似在预料之中。

人生就像一场旅行,我们所行走的每一步都是在丰富生命的意义。

我们一边穿越在陌生的吸引里,一边咀嚼回味着一抹远走光阴的旧味,一切都是不可预料,一切又人生看的多了,走的多了,经历的多了,也就懂得多了。

每一份深刻的感悟大多来自一个人深刻的经历。

的领悟吧!人生总有那么一两件重大的事情让你成熟和改变。

这份错失,会让你反思自己,检讨自己,叩问自己,也让你意识到了自己真正的缺失,这或许就是一份痛苦人生可以平平淡淡,亦可以异彩纷呈。

相信只要自己的德馨足够善美,上天就会把最好的一切赐予你。

予人快乐,收获快乐;予人幸福,收获幸福;予人真情,收获厚意。

人生的一切往来皆有因果,生活只善待有心人⋯⋯。

净蓝干假如你有一颗计较的心,你就会很难获得一份幸福。

当一个人放下了自己内心的那份累心的奢求,你的心空就会变得更加蔚饰了你的一份美丽。

宽容,不仅是一种豁达的态度,更是一种心灵的品德,是一种处事的修行,宽容别人不是低矮了自己,而是释放了自己,升华了自己。

你把世界宽待在心中,世界也同样装声心的笑来递。

开传和过你温当你简约、释然了自己的时候,你会发现另一份生命中的快乐。

那快乐是发自一颗简单的心,那快乐是从心灵的草地里欢快的迸发出来,通柔的眸眼驭⋯⋯所以,心宽便心悦,你人生的天空是什么颜色,往往取决于你对人生的态度和对于自己情绪的驾世界上美好的东西那么多,有缘来到你的身旁,被你握到掌心的却又那么少。

所以一切在的时候请学会珍惜,因为大多美丽的东西只会为你来过一次。

你一不小心就会失落,无处找寻,增加了你人生的又一⋯⋯次遗憾记。

过往,终是回不去的曾经。

人总是在失去的时候才懂得珍惜,人总是在回味的时候才知道甜美。

往事已矣,该放下的终归要放下,该忘记的一定要学会忘其实这个世界上什么都不是我们的,在人间,我们只是一场心灵的路过而已⋯⋯或许唯一属于过我们的,只是生命刹那的快乐与悲伤,以及自己一颗思索的灵魂⋯⋯化作尘埃随风飞去⋯⋯过的,都将站在时光的路口回望曾经,盘点每一份经历过的心情,人生有太多得不到的美好,有太多想不到的结局。

终有一天,我们热望过的,贪念过的,彷徨过的,握紧过的,放手正的来过了。

人生渺如尘埃,小如露珠,寻常如泥土,从不可知处而来,到不可知处而去。

我们用灵魂结伴身体,走过这短暂的一朝一夕的寒暖,踏过流年的坎坷与花香,便是在世间真。

相关文档
最新文档