复旦大学 复旦 1997年数学分析与线性代数 考研真题及答案解析
1997年全国硕士研究生入学考试数学二真题及答案
则
()
(A) f (x0 ) 是 f (x) 的极大值
(B) f (x0 ) 是 f (x) 的极小值
(C) (x0, f (x0 )) 是曲线 y f (x) 的拐点
(D) f (x0 ) 不是 f (x) 的极值, (x0, f (x0 )) 也不是曲线 y f (x) 的拐点
(4) 设F (x) x2 esint sin tdt, 则 F (x) x
1997 年全国硕士研究生入学统一考试数学二试题
一、填空题(本题共 5 分,每小题 3 分,满分 15 分.把答案填在题中横线上.)
(1)
已知
f
(
x)
(cos
x)
x2
,
x 0, 在 x 0 处连续,则 a
.
a,
x0
(2) 设 y ln
1 x 1 x2
,则
y x0
.
(3)
dx x(4 x)
x0
x0
x0
x0
lim e e e lncosx x2
lim ln cos x 洛必达 x0 x2
1 (sin x)
lim cos x
x0
2x
x0
lim sin x
1
e e x0 2xcos x
2
【相关知识点】1.函数 y f (x) 在点 x0 连续:
设函数
f
(
x)
在点
x0
的某一邻域内有定义,如果
程组1T x1 2T x2 3T x3 BX 0 有非零解,因
1 2 0
B
1T
,
T 2
,
T 3
2
1
0 t
1997年考研数学试题详解及评分参考
(A)为正常数
(B)为负常数
(C)恒为零
(D)不为常数
【答】 应选(A).
【解】 因函数 e sin t s in t 是以 2p 为周期的周期函数,故
ò ò ò ò F (x) = x+2p esint sin tdt = 2p esint sin tdt = - 2p esint d cos t = 0 + 2p cos2 t esint dt > 0.
郝海龙:考研数学复习大全·配套光盘·1997 年数学试题详解及评分参考
【解】由题意, f (x) 在 x 轴的上方、单调下降且是上凹的,
(如右图所示),设 S1 、S2 、S3 分别为图中所示区域的面积, 显然有 S1 < S2 < S3 . 故选(B).
ò (3) 设 F (x) = x + 2p e sin t s in td t ,则 F (x) x
(B) 连续, 偏导数不存在.
(C) 不连续, 偏导数存在.
(D) 不连续, 偏导数不存在.
【答】 应选(C).
【解】
令y
= kx ,则 lim x®0 y =kx
xy x2 + y2
k = 1+ k2
,因 k 不同时, k 1+ k2
的值不同,
( ) 故极限 lim x®0 y®0
xy x2 + y2
……2 分
Ñò ò 于是 I = (z - y)dx + (x - z)dy + (x - y)dz = - 0 (2(sinq + cosq ) - 2cos 2q -1)dq
C
2p
=
-[2(- cosq
华东师范大学《数学分析》与《高等代数》考研真题(1997年-2013年)
续.
19
五、设 f ( x) 在 [a, b] 上二阶可导,且 f ( x) ≥ 0 , f ′′( x) < 0 . 证明: f ( x) ≤
2 b f (t )dt , x ∈ [ a, b] . b − a ∫a
六、设 f ( x , y ) 在 D = [ a, b] × [ c, d ] 上有二阶连续偏导数.
15
六、 ( 15 分)假设 σ 是 n 维欧氏空间 V 的线性变换, τ 是同一空间 V 的变换 . 且对
∀α , β ∈ V , 有 (σα , β ) = (α ,τβ ).
证明: 1) τ 是线性变换, 2) σ 的核等于 τ 的值域的正交补.
七、 (15 分)证明:任意方阵可表为两个对称方阵之积,其中一个是非奇异的。
n →∞ a≤ x≤ b a≤ x≤ b a≤ x≤ b n →∞
八、设 S ⊂ R 2 , P0 ( x0 , y0 ) 为 S 的内点, P 1 ( x1 , y1 ) 为 S 的外点. 证明:直线段 P0 P 1 至少与 S 的边界 ∂S 有一个交点.
华东师范大学 1997 年攻读硕士学位研究生入学试题
考试科目:数学分析
一、 (12 分)设 f ( x) 是区间 I 上的连续函数. 证明:若 f ( x) 为一一映射,则 f ( x) 在 区间 I 上严格单调.
二、 (12 分)设
⎧1, x为有理数 D ( x) = ⎨ ⎩0, x为无理数
证明:若 f ( x) , D ( x) f ( x) 在点 x = 0 处都可导,且 f (0) = 0 ,则 f '(0) = 0.
二、(10 分)证明:方程组
⎧ a11 x1 + a12 x2 + ... + a1n xn = 0 ⎪a x + a x + ... + a x = 0 ⎪ 21 1 22 2 2n n ⋯ (1) ⎨ ............ ⎪ ⎪ ⎩ as1 x1 + as 2 x2 + ... + asn xn = 0
数学分析(复旦大学版)课后题答案40-45
§udÃF¼êPÂÈ©§y{'4Gª§& 1 ln xy dx9uy Q[ , b ](b > 1)þÂñ. b
+∞ a A
ln
0
b dx x
Âñ
#f (x, y)Q[ a, +∞; c, d ]ë§é[ c, d)þzy§ f (x, y) dxÂñ§¢È©Qy = duÑ. y²ùÈ©Q[ c, d ]Âñ. y²µd f (x, d) dxuѧ&∃ε > 0, ∀A > a, ∃A , A A §¦ f (x, d) dx ε
dx [ p1 , p2 ]
Q
ë
2−p
dx [ p1 , p2 ]
Q
ë
6.
π −1 p 2−p 1 2 1 p π π −1 p 2−p p 2−p p1 2−p1 1 2 1−p1 x→π −0 1 p1 2−p1 p1 π 1 π −1 p−1 2−p1 π π −1 p 2−p 1 2 π p 2−p 1 2 π −1 p 1 2 π 0 p 2−p +∞ +∞
2−p
π −1 1 p 2−p
1 π −1 π sin x sin x sin x sin x dx = dx + dx + dx p (π − x)2−p p (π − x)2−p p (π − x)2−p p (π − x)2−p x x x x 0 0 1 π −1 1 sin x dx p 2−p 0 x (π − x) sin x sin x (0 x 1, 0 < p1 p p2 < 2) p 2 − p p 2 x (π − x) x (π − x)2−p2 sin x 1 lim xp2 −1 p = 2−p 2 − p 2 2 2 x→+0 x (π − x) π 1 sin x p2 < 2 p2 − 1 < 1 dx p2 (π − x)2−p2 x 0 1 sin x dx p ∈ [ p1 , p2 ] p (π − x)2−p x 0 1 sin x sin x (0 , 1 ] × [ p , p ] dx [ p1 , p2 ] 1 2 p (π − x)2−p xp (π − x)2−p x 0 π
复旦大学1997年经济学基础考研真题
1997年复旦大学研究生入学考试经济学试题
一、简释下列概念(每小题5分,共25分)
1、绝对剩余价值与相对剩余价值
2、股票和股息
3、要素报酬递减和规模报酬递减
4、自愿失业和非自愿失业
二、按马克思主义政治经济学原理,不变资本在全部资本中所占比重越大,利润率就越低,试问为什么资本主义企业会不断提高资本有机构成?(15分)
三、垄断价格的形成怎样使价值规律进一步改变了它的表现形式?(15分)
四、免费发给消费者一定量实物(如食物)与发给消费者按市场价格计算的这些实物折算的现金,哪种方法给消费者带来更高的效用?为什么?试用无差异曲线图表示.(15分)
五、假定行业需求曲线为X=250-Px,每家厂商的边际成本为4
(1)求两家厂商的古诺反应函数
(2)求该古诺双寡头厂商的价格和产量
(3)若厂商数目无限增大,古诺均衡价格和产量是多少?(15分)
六、假定经济满足Y=C+I+G,且消费C=800+0.63Y,投资I=7500-20000Y,货币需求L=0.6125Y-10000r,名义货币供给量Ms=6000亿美元,价格水平p=1,试问当政府支出从7500亿美元增加到8500亿美元时,政府支出(这里指政府购买)的增加挤占了多少私人投资?(15分)。
1997考研数三真题及解析
1997年全国硕士研究生入学统一考试数学三试题一、填空题(本题共5分,每小题3分,满分15分.把答案在题中横线上.) (1) 设()(ln )f x y f x e=,其中f 可微,则dy =___________.(2)若1201()()1f x f x dx x =++,则10()f x dx =⎰___________.(3) 差分方程12tt t y y t +-=的通解为___________.(4) 若二次型2221231231223(,,)22f x x x x x x x x tx x =++++是正定的,则t 的取值范围是___________.(5) 设随机变量X 和Y 相互独立且都服从正态分布2(0,3)N ,而19,,X X 和19,,Y Y 分别是来自总体X Y 和的简单随机样本,则统计量U =服从___________分布(2分),参数为___________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (1) 设561cos 2()sin ,()56xx x f x t dt g x -==+⎰,则当0x →时,()f x 是()g x 的 ( )(A) 低阶无穷小 (B) 高阶无穷小(C) 等价无穷小 (D) 同阶但不等价的无穷小(2) 若()()()f x f x x -=-∞<<+∞,在(,0)-∞内()0f x '>,且()0f x ''<,则在(0,)+∞内有 ( ) (A) ()0f x '>,()0f x ''< (B) ()0f x '>,()0f x ''> (C) ()0f x '<,()0f x ''< (D) ()0f x '<,()0f x ''>(3) 设向量组1α,2α,3α线性无关,则下列向量组中,线性无关的是 ( )(A) 12αα+,23αα+,31αα- (B) 12αα+,23αα+,1232ααα++ (C) 122αα+,2323αα+,313αα+(D) 123ααα++,1232322ααα-+,123355ααα+-(4) 设,A B 为同阶可逆矩阵,则 ( )(A) AB BA = (B) 存在可逆矩阵P ,使1P AP B -= (C) 存在可逆矩阵C ,使TC AC B = (D) 存在可逆矩阵P 和Q ,使PAQ B = (5) 设两个随机变量X 与Y 相互独立且同分布:{}{}111,2P X P Y =-==-={}1P X = {}112P Y ===,则下列各式中成立的是 ( )(A) {}12P X Y == (B) {}1P X Y ==(C) {}104P X Y +== (D) {}114P XY ==三、(本题满分6分)在经济学中,称函数1()[(1)]xxxQ x A KL δδ---=+-为固定替代弹性生产函数,而称函数1Q AK L δδ-=为Cobb-Douglas 生产函数(简称C —D 生产函数).试证明:但0x →时,固定替代弹性生产函数变为C —D 生产函数,即有lim ()x Q x Q →=.四、(本题满分5分)设(,,)u f x y z =有连续偏导数,()y y x =和()z z x =分别由方程0xye y -=和0x e xz -=所确定,求du dx.五、(本题满分6分)一商家销售某种商品的价格满足关系70.2p x =-(万元/吨),x 为销售量(单位:吨),商品的成本函数31C x =+(万元).(1) 若每销售一吨商品,政府要征税t (万元),求该商家获最大利润时的销售量; (2) t 为何值时,政府税收总额最大.六、(本题满分6分)设函数()f x 在[0,)+∞上连续、单调不减且(0)0f ≥,试证函数1(),0,()0,0,x nt f t dt x F x x x ⎧>⎪=⎨⎪=⎩⎰若若 在[0,)+∞上连续且单调不减(其中0n >).七、(本题满分6分)从点1(1,0)P 作x 轴的垂线,交抛物线2y x =于点1(1,1)Q ;再从1Q 作这条抛物线的切线与x 轴交于2P ,然后又从2P 作x 轴的垂线,交抛物线于点2Q ,依次重复上述过程得到一系列的点1122,;,;;,;n n P Q P Q P Q .(1) 求n OP ;(2) 求级数1122n n Q P Q P Q P ++++的和.其中(1)n n ≥为自然数,而12M M 表示点1M 与2M 之间的距离.八、(本题满分6分)设函数()f t 在[0,)+∞上连续,且满足方程222244()t x y t f t e f dxdy π+≤=+⎰⎰, 求()f t .九、(本题满分6分)设A 为n 阶非奇异矩阵,α为n 维列向量,b 为常数.记分块矩阵0,T T E A P Q AA b ααα*⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦,其中A *是矩阵A 的伴随矩阵,E 为n 阶单位矩阵. (1) 计算并化简PQ ;(2) 证明:矩阵Q 可逆的充分必要条件是1TA b αα-≠.十、(本题满分10分)设三阶实对称矩阵A 的特征值是1,2,3;矩阵A 的属于特征值1,2的特征向量分别是12(1,1,1),(1,2,1)T T αα=--=--.(1) 求A 的属于特征值3的特征向量; (2) 求矩阵A .十一、(本题满分7分)假设随机变量X 的绝对值不大于1;11{1},{1}84P X P X =-===;在事件 {11}X -<<出现的条件下,X 在(1,1)-内的任一子区间上取值的条件概率与该子区间长度成正比.试求X 的分布函数(){}F x P X x =≤.十二、(本题满分6分)游客乘电梯从底层到电视塔顶层观光;电梯于每个整点的第5分钟、25分钟和55分钟从底层起行. 假设一游客在早晨八点的第X 分钟到达底层候梯处,且X 在[0,60]上均匀分布,求该游客等候时间的数学期望.十三、(本题满分6分)两台同样自动记录仪,每台无故障工作的时间服从参数为5的指数分布;首先开动其中一台,当其发生故障时停用而另一台自行开动.试求两台记录仪无故障工作的总时间T 的概率密度()f t 、数学期望和方差.1997年全国硕士研究生入学统一考试数学三试题解析一、填空题(本题共5分,每小题3分,满分15分.把答案在题中横线上.)(1)【答案】()()()()1[ln ln ]f x ef x f x f x dx x''+ 【解析】题目考察复合函数的微分法,利用链式法则计算如下:由()(ln )f x y f x e= 可知()()()()()()()()()1ln ln 1[ln ln ].f x f x f x dy f x e dx f x e f x dx xe f x f x f x dx x''=+''=+(2)【答案】4ππ-【分析】本题中1()f x dx ⎰是个常数,只要定出这个数问题就解决了.【解析】令1()f x dx A =⎰,则21()1f x x=++,两边从0到1作定积分得1201dx A A x =++⎰⎰10arctan 444x A A πππ=+=+, 解得4A ππ=-.【评注】本题主要考查定积分的概念和计算.本题中出现的积分⎰表示单位圆在第一象限部分的面积,可直接根据几何意义求得.考生务必注意这种技巧的应用.(3)【答案】(2)2tt y C t =+-【解析】对应的齐次差分方程是10t t y y +-=,显然有不恒等于零的特解1t y =. 因方程的右端函数()2tf t t =,可设非齐次差分方程的特解有形式()2t y At B *=+,代入方程得 (2)22,0,1,2,.ttAt A B t t ++==由于20t ≠,于是2,0,1,2,.At A B t t ++==可确定1,2A B ==-,即非齐次差分方程有一个特解是(2)2ty t *=-.从而,差分方程的通解是(2)2tt y C t =+-.(4)【答案】t <<【解析】二次型123(,,)f x x x 对应的矩阵为210112012t A t ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦. 因为f 正定⇔A 的顺序主子式全大于零.又2123211211112,,A t ∆=∆==∆==-, 故f 正定⇔21102t ->,即t <<(5)【答案】t 分布,参数为9 【解析】由19,,X X 是来自总体X 的简单随机样本,故19,,X X 独立,且都服从正态分布2(0,3)N .类似有19,,Y Y 相互独立,且都服从正态分布2(0,3)N .又因服从正态分布的独立随机变量的线性组合也服从正态分布,即219~(,)X X X N '=++μσ.其中19()()E X E X X '==++μ,219()()D X D X X σ'==++.由期望的性质,19129()()0E X E X X EX EX EX '==++=+++=μ;由独立随机变量方差的性质,21919()()81D X D X X DX DX σ'==++=++=,故2~(0,9)X N '.因219,,~(0,3)Y Y N ,故~(0,1),(1,2,,9)3i Y N i -=,所以,2921~(9)3i i Y Y χ=⎛⎫'= ⎪⎝⎭∑.由t 分布的定义,现已有2~(0,9)X N ',将其标准化得0~(0,1)9X N '-,~(9)X t '-.~(9)t ',~(9)t =.【相关知识点】1.数学期望的性质:()()()E aX bY c aE X bE Y c ++=++,其中,,a b c 为常数.2.方差的性质:X 与Y 相互独立时,22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数.3.2χ分布的定义:若1,,n Z Z 相互独立,且都服从标准正态分布(0,1)N ,则22~(1)iZ χ,221~()ni i Z n χ=∑.4.若2~(,)Z N u σ,则~(0,1)Z uN σ-.5.t 分布的定义:若~(0,1)X N ,2~()Y n χ,,X Y 独立,则~()T t n =.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (1)【答案】(B)【分析】只要求出极限 0()lim()x f x g x →就能判断出正确的选项. 【解析】用变上限积分求导公式及重要的等价无穷小关系,得1cos 2205640005244000sin ()(sin )sin(1cos )lim lim lim ()(1)5611(1cos )4lim lim lim 0,1xx x x x x x t dt f x x x x x g x x x x x x x xx -→→→→→→-==++-===+⎰故应选(B).【相关知识点】1.对积分上限的函数的求导公式:若()()()()t t F t f x dx βα=⎰,()t α,()t β均一阶可导,则[][]()()()()()F t t f t t f t ββαα'''=⋅-⋅.2.无穷小的比较:设在同一个极限过程中,(),()x x αβ为无穷小且存在极限 ()lim ()x l x αβ=, (1) 若0,l ≠称(),()x x αβ在该极限过程中为同阶无穷小; (2) 若1,l =称(),()x x αβ在该极限过程中为等价无穷小,记为()()x x αβ;(3) 若0,l =称在该极限过程中()x α是()x β的高阶无穷小,记为()()()x o x αβ=. 若()lim()x x αβ不存在(不为∞),称(),()x x αβ不可比较. (2)【答案】(C)【解析】题目考察抽象函数的凹凸性和单调性的问题.方法1:由()()f x f x -=(,)-∞+∞知,()f x 的图形关于y 轴对称.由在(,0)-∞内,()0f x '>且()0f x ''<知,()f x 的图形在(,0)-∞内单调上升且是凸的;由对称性知,在(0,)+∞内,()f x 的图形单调下降,且是凸的,所以应选(C).方法2:由()()f x f x -=可知()(),()()f x f x f x f x ''''''--=-=.当(0,)x ∈+∞时,(,0)x -∈-∞,此时由题设知()0f x '->,()0f x ''-<,则()0,()0,(0,)f x f x x '''<<∈+∞,故应选(C).方法3:排除法.取2()f x x =-,易验证()f x 符合原题条件,计算可知(A)、(B)、(D)三个选项均不正确,故应选(C).方法4:由题设可知()f x 是一个二阶可导的偶函数,则()f x '为奇函数,()f x ''为偶函数,又在(,0)-∞内()0,()0f x f x '''><,则在(0,)+∞内()0,()0f x f x '''<<,故应选(C). (3)【答案】(C)【分析】这一类题目最好把观察法与123123(,,)(,,)C βββααα=技巧相结合. 【解析】对于(A),()()()1223310αααααα+-++-=,即存在一组不全为零的数1, -1,1,使得等式为零,根据线性相关的定义可知122331,,αααααα++-线性相关,排除(A);对于(B),()()()122312320ααααααα+++-++=,即存在一组不全为零的数1,1, -1,使得等式为零,根据线性相关的定义可知1223123,,2ααααααα++++线性相关,排除(B);对于(C),简单的加加减减得不到零,就不应继续观察下去,而应立即转为计算行列式.设有数123k ,k ,k ,使得()()()11222331322330k k k αααααα+++++=,整理得 ()()()13112223322330.k k k k k k a αα+++++=已知1α,2α,3α线性无关,上式成立,当且仅当1312230220330k k k k k k +=⎧⎪+=⎨⎪+=⎩ ①因①的系数行列式101220120033=≠,故①有唯一零解,即1230k k k ===.故原向量组122αα+,2323αα+,313αα+线性无关.应选(C).或者也可以将122αα+,2323αα+,313αα+用123,,ααα线性表出,且写成矩阵形式,有[][][]1223311231231012,23,3,,220,,033C αααααααααααα⎡⎤⎢⎥+++==⎢⎥⎢⎥⎣⎦记,120C =≠,则C 可逆,故两向量组是等价向量组,由1α,2α,3α线性无关知122αα+,2323αα+,313αα+线性无关.(4)【答案】(D)【解析】方法1:用排除法.任意两个同阶可逆矩阵不具备乘法的交换律,不一定相似,也不一定合同.例如,若10100302A ,B -⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,由于特征值不同,故不相似,又对应二次型的正、负惯性指数不同,故也不合同,(B)、(C)不成立;若10100302A ,B -⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,则 111012030206AB --⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,101111020306BA ,---⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦AB BA ≠. 故(A)不成立;应取(D).方法2:因,A B 是同阶(设为n )可逆阵,故有()()r A r B n,==而()()r A r B =⇔,A B 等价⇔存在可逆阵P,Q 使得PAQ B.=(这里只需取1P A ,Q B,-==既有1PAQ A BA B -==成立),故应选(D).或者,因,A B 是同阶可逆阵,故,A B 均可以通过初等行变换化成单位阵,A E,B E,→→行变换行变换即存在初等阵1212s r P P ,P ,P ,W W ,W W ,==使得PA E,WB E ==,从而有PA E WB ==,得1PAWPAQ B -==()1W Q -=.故(D)成立.(5)【答案】(A)【解析】因X 和Y 相互独立, 而{}{}{}{}1111,1122P X P Y P X P Y =-==-=====,故有:{}{}{}1111,111224P X Y P X P Y =-=-==-=-=⨯=;{}{}{}1111,111224P X Y P X P Y =-===-==⨯=;{}{}{}1111,111224P X Y P X P Y ==-===-=⨯=;{}{}{}1111,111224P X Y P X P Y ======⨯=;{}{}{}1111,11,1442P X Y P X Y P X Y ===-=-+===+=,故(A)正确,(B)错;{}{}{}11101,11,1442P X Y P X Y P X Y +===-=+=-==+=, 故(C)错;{}{}{}11111,11,1442P XY P X Y P X Y ===-=-+===+=, 故(D)错.三、(本题满分6分.)【分析】要证明0lim ()x Q x Q →=,只须证明0limln ()ln x Q x Q →=即可,因为()Q x 为指数函数,因此化为对数形式便于极限计算. 【解析】因为1ln ()ln ln[(1)]x x Q x A K L x--=-+-δδ,而且 001ln[(1)]lim ln (1)ln lim (1)ln (1)ln ln(),x x x x x x x x K L xK K L L K L K L K L --→----→-+----=+-=---=-δδδδδδδδδδ所以, 110limln ()ln ln()ln()x Q x A K LAK L --→=+=δδδδ,于是, 10lim ()x Q x AK LQ -→==δδ.四、(本题满分5分.) 【解析】由题设有du f f dy f dz dx x y dx z dx∂∂∂=++∂∂∂. (*) 在0xye y -=中,将y 视为x 的函数,两边对x 求导,得2()011xy xyxydy dy dy ye y e y x dx dx dx xe xy+-=⇒==--. (1) 在0ze xz -=中,将z 视为x 的函数,两边对x 求导,得0zz dz dz dz z z e z x dx dx dx e x xy x--=⇒==--. (2) 将(1)、(2)两式代入(*)式,得21du f y f z f dx x xy y xy x z∂∂∂=++∂-∂-∂. 【相关知识点】1.多元复合函数求导法则:若(,)u u x y =和(,)v v x y =在点(,)x y 处偏导数存在,函数(,)z f u v =在对应点(,)u v 具有连续偏导数,则复合函数[(,),(,)]z f u x y v x y =在点(,)x y 处的偏导数存在,且,z f u f v z f u f v x u x v x y u y v y∂∂∂∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂∂∂∂∂.五、(本题满分6分)【分析】要求获得最大利润时的销售量,需写出利润与销售量之间的的关系()x π,它是商品销售总收入减去成本和政府税收.正确写出()x π后,满足0()0x π'=的0x 即为利润最大时的销售量,此时,0()x t 是t 的函数,当商家获得最大利润时,政府税收总额()T tx t =,再由导数知识即可求出既保证商家获利最多,又保证政府税收总额达到最大的税值t . 【解析】(1)设T 为总税额,则T tx =.商品销售总收入为2(70.2)70.2R px x x x x ==-=-.利润函数为 2270.2310.2(4)1R C T x x x tx x t x =--=----=-+--π.令()0x π'=,即0.440x t -+-=,得45(4)0.42t x t -==-. 由于()0.40x π''=-<,因此,5(4)2x t =-即为利润最大时的销售量. (2)将5(4)2x t =-代入T tx =,得5(4)2T t t =⋅-25102t t =-.由()1050T t t '=-=,得惟一驻点2t =;由于()50T t ''=-<,可见当2t =时T 有极大值,这时也是最大值,此时政府税收总额最大.六、(本题满分6分)【分析】当0x >时,()F x 显然连续,故只要证0lim ()(0)x F x F +→=,且当0x >时,()0F x ''≥即可.【解析】方法1:显然0x >时,()F x 连续,又由洛必达法则知()lim ()lim lim ()0(0)xn n x x x t f t dt F x x f x F x+++→→→====⎰, 所以()F x 在[0,)+∞上连续.当(0,)x ∈+∞时,11022()()()()(),0xn n n n x f x t f t dtx f x f xF x x x x++--'==<<⎰ξξξ. 由于()f x 单调不减,故()()f x f ξ≥,又n nx ξ>,从而()()nnx f x f ≥ξξ.于是有()()00F x x '≥<<+∞.故()F x 在[0,)+∞上单调不减.方法2:连续性证明同上.由于10222()()()()()[()()]0,xn n x xxn n n n x f x t f t dtF x xx f x dt t f t dtx f x t f t dtxx +-'=--==≥⎰⎰⎰⎰可见,()F x 在[0,)+∞上单调不减.【评注】本题主要考查变上限定积分求导,洛必达法则.请考生注意本题两种证法中对于()F x '的不同处理方法.【相关知识点】1.对积分上限的函数的求导公式:若()()()()t t F t f x dx βα=⎰,()t α,()t β均一阶可导,则[][]()()()()()F t t f t t f t ββαα'''=⋅-⋅.七、(本题满分6分)【分析】先作出草图,再求出曲线2y x =在任一点2(,)a a 上的切线方程及其与x 轴的交点,然后依此类推,得出一系列与x 轴交点的坐标.最后进行相应计算即可. 【解析】(1)由2y x =,得2y x '=.对于任意(01)a a <≤,抛物线2y x =在点2(,)a a 处的切线方程为22()y a a x a -=-.且该切线与x 轴的交点为(,0)2a,故由11OP =可见21322111,221111,22221.2n n OP OP OP OP OP -====⋅==(2)由于()22211124n n n nn Q P OP --⎛⎫===⎪⎝⎭,可见 11101144mn n n n n m Q P ∞∞∞-===⎛⎫== ⎪⎝⎭∑∑∑. 利用几何级数求和公式1(1)1n n x x x∞==<-∑即得 1011414314mn n n m Q P ∞∞==⎛⎫=== ⎪⎝⎭-∑∑. 【评注】本题是级数与微分学的综合题,本题中所得的级数仍为收敛的几何级数,利用几何级数求和公式即可求出它的和.八、(本题满分6分)【解析】将直角坐标化为极坐标,由于2222220004()2()22t t x y t r r f dxdy d f rdr rf dr +≤==⎰⎰⎰⎰⎰πθπ,可得2240()2()2t t r f t erf dr =+⎰ππ.在积分中作换元2rs =,又有200()4()2t t r r f dr sf s ds =⎰⎰.于是,()f t 满足积分关系式240()8()tt f t sf s ds e =+⎰ππ.在上式中令0t =得(0)1f =.利用变上限积分的求导公式,将上式两端对t 求导,得24()8()8t f t tf t te '-=πππ.上述方程为关于()f t 的一阶线性微分方程,利用一阶线性微分方程通解公式,得224()(4)t f t t C e =+ππ,其中常数C 待定.由(0)1f =可确定常数1C =,因此,224()(41)t f t t e =+ππ. 【相关知识点】1.对积分上限的函数的求导公式:若()()()()t t F t f x dx βα=⎰,()t α,()t β均一阶可导,则[][]()()()()()F t t f t t f t ββαα'''=⋅-⋅.2. 一阶线性非齐次微分方程的标准形式为()()y p x y q x '+=,其通解公式为()()(())p x dx p x dx y e q x e dx C -⎰⎰=+⎰,其中C 为常数.九、(本题满分6分)【解析】(1)由**AA A A A E ==及1*A A A -=,有()*10.0T T TT T T EA A PQ A A A A A A b A b A A b A ααααααααααα**-⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥--+-+⎣⎦⎣⎦⎣⎦⎡⎤=⎢⎥-⎢⎥⎣⎦(2)用行列式拉普拉斯展开式及行列式乘法公式,有0T E P A A Aα*==-,()()2110TT A P Q PQ Ab A A b A ααααα--===--又因A 是非奇异矩阵,所以0A ≠,故()1T Q A b A αα-=-.由此可知Q 可逆的充要条件是0Q ≠,即10Tb A αα--≠,亦即1TA b αα-≠. 评注:本题考查分块矩阵的运算,要看清1TA αα-是1阶矩阵,是一个数.【相关知识点】1.两种特殊的拉普拉斯展开式:设A 是m 阶矩阵,B 是n 阶矩阵,则*,*A O A AB BO B==⋅()*1*mnO A AA B BB O==-⋅.2.行列式乘积公式:设,A B 是两个n 阶矩阵,则乘积AB 的行列式等于A 和B 的行列式的乘积,即AB A B =.十、(本题满分10分)【解析】(1)设A 的属于3λ=的特征向量为[]3123Tx ,x ,x =α,因为实对称矩阵属于不同特征值的特征向量相互正交,故1312323123020T Tx x x ,x x x .⎧=--+=⎪⎨=--=⎪⎩αααα 解上述方程组,设方程组的系数矩阵为111121B --⎡⎤=⎢⎥--⎣⎦,对B 进行初等行变换:111111101121030010B ----⎡⎤⎡⎤⎡⎤=→→⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦, 系数矩阵的秩为2,根据基础解系的个数与系数矩阵秩之间的关系,我们得到基础解系的个数为1,解得 []101T,,,即A 的对应于3λ=的特征向量为[]3101Tk ,,,α=其中k 为非零常数.(2)方法1:令[]123111120111P ,,-⎡⎤⎢⎥==--⎢⎥⎢⎥-⎣⎦ααα,则有1100020003P AP ,-⎡⎤⎢⎥==Λ⎢⎥⎢⎥⎣⎦即1A P P -=Λ,其中1P -计算如下:[][][]()[][][][][]()[][]()[][][]()211311312223131311211111001111001200100311101110010021011111103332211010011111030101022636001001111100222P E +⨯-+⨯⎛⎫⨯- ⎪+⨯-⎝⎭+⨯-+⨯---⎡⎤⎡⎤⎢⎥⎢⎥=--→---⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤---⎢⎥-⎢⎥⎢⎥→--→--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦2⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦得 122211216303P ---⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦, 11111002221325111200201212102661110033035213A P P -----⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=Λ=----=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦.方法2:因A 是对称矩阵,不同特征值对应的特征向量互相正交,故存在正交阵Q (对P单位化),使1T QAQ Q AQ -==Λ,TA QQ =Λ,其中Q ⎡⎢⎢⎢⎥=⎢⎥⎢⎥⎢⎢⎣. 10000200030132510210265210T A Q Q ⎡⎡⎤⎢⎢⎥⎢⎢⎥⎡⎤⎢⎥⎢⎢⎥=Λ=⎢⎥⎢⎢⎥⎢⎥⎢⎢⎥⎣⎦⎢⎢⎥⎢⎢⎥⎣⎦⎣⎡⎡⎤⎢⎢⎥⎢⎢⎥-⎢⎥⎢==-⎢⎥⎢⎢⎥⎢⎢⎢⎥⎢⎢⎥⎣⎦⎣3.⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦方法3:由于矩阵A 的特征值是1,2,3,特征向量依次为123,,ααα,利用分块矩阵有123123(,,)(,2,3)A =αααααα.因为123,,ααα是不同特征值的特征向量,它们线性无关,于是矩阵123(,,)ααα可逆.故11123123123111(,2,3)(,,)1401201231111232221325111401212102.661233035213A ----⎡⎤⎡⎤⎢⎥⎢⎥==----⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=----=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦αααααα 【评注】本题有两个难点,一是能否由“实对称矩阵”挖掘出隐含的信息,通过正交性求出3α,另一个难点就是反求矩阵A .十一、(本题满分7分)【分析】求分布函数(){}F x P X x =≤实质上是求{}X x ≤的概率. 【解析】由X 的绝对值不大于1,可得当1x <-时,{}()0F x P X x =≤=; 当1x ≥时,{}()1F x P X x =≤=; 又11{1},{1}84P X P X =-===,则 115{11}1{1}{1}1848P x P X P X -<<=-=--==--=;由题意X 在(1,1)-内的任一子区间上取值的条件概率与该子区间长度成正比,那么当X 的值属于(1,1)-的条件下,事件{}1X x -<≤的条件概率为:{}(1)11|111(1)2x x P X x X kk --+-<≤-<<==--(其中k 为比例正常数),又 {}11|111P X X -<<-<<=,而 {}1111|112P X X k k +-<<-<<==, 所以1k =,故{}11|112x P X x X +-<≤-<<=;当11x -<<时,{}{}{}1111X x X x X -<≤=-<≤-<<,所以{}{}11,11P X x P X x X -<≤=-<≤-<<.由条件概率公式,有{}{}{}11,111|11{11}1555,2816P X x P X x X P X x X P X x x -<≤=-<≤-<<=-<≤-<<-<<++=⨯= {}{}{}()11F x P X x P X P X x =≤=≤-+-<≤,而 {}{}{}11111088P X P X P X ≤-==-+<-=+=, 所以 {}{}{}15557()1181616x x F x P X x P X P X x ++=≤=≤-+-<≤=+=, 故所求的X 的分布函数为0,157(),11161,1x x F x x x <-⎧⎪+⎪=-≤<⎨⎪≥⎪⎩ .十二、(本题满分6分)【解析】已知X 在[0,60]上均匀分布,则其密度函数为:1,160,()600,x f x ⎧≤≤⎪=⎨⎪⎩ 其他.设Y 表示游客等候电梯的时间(单位:分钟),由于电梯于每个整点的第5分钟,25分钟,55分钟起行,则当05X ≤≤时,游客需等候时间5Y X =-; 当525X <≤时,游客需等候时间25Y X =-; 当2555X <≤时,游客需等候时间55Y X =-;当5560X <≤时,游客需等候时间60565Y X X =-+=-(这个时间段到达,就需要等下个整点的第5分钟,所以是605X -+).故Y 是关于到达时刻X 的函数:5,05,25,525,()55,2555,65,5560.X X X X Y g X X X X X -≤≤⎧⎪-<≤⎪==⎨-<≤⎪⎪-<≤⎩由随机变量函数期望的定义,有525556005255511()()()()60601(5)(25)(55)(65)601(12.520045037.5)11.67.60EY g x f x dx g x dx g x dx x dx x dx x dx x dx +∞+∞+∞-∞-∞-∞===⎡⎤=-+-+-+-⎢⎥⎣⎦=+++=⎰⎰⎰⎰⎰⎰⎰【相关知识点】1.随机变量函数期望的定义:若随机变量()Y g X =,且EY 存在,则有()()EY g x f x dx +∞-∞=⎰.十三、(本题满分6分)【解析】设12X X 和表示先后开动的记录仪无故障工作的时间,则两台记录仪无故障工作的总时间为12T X X =+.由于每台无故障工作的时间都服从参数为5的指数分布,则12X X 和的概率密度函数为55,0()0,0x e x f x x -⎧>=⎨≤⎩. 因为两台仪器是独立的,则其无故障工作的时间显然也是相互独立的,即12X X 和独立,应用两个独立随机变量之和的卷积公式:当0t >时,T 的概率密度为55()5120()()()2525tx t x t f t f x f t x dx e e dx te +∞-----∞=-==⎰⎰.当0t ≤时,()0f t =,即525,0,()0,0.t te t f t t -⎧>=⎨≤⎩ 由指数分布的期望和方差的结论,有12115EX EX λ===,1221125DX DX λ===, 由期望的性质,有1212112()555ET E X X EX EX =+=+=+=,由独立随机变量方差的性质,有1212112()252525DT D X X DX DX =+=+=+=. 【相关知识点】1.指数分布的期望和方差的结论:若X 服从参数为λ的指数分布,则其期望1EX λ=,方差21DX λ=.2. X 与Y 相互独立,数学期望和方差的性质:()()()E aX bY c aE X bE Y c ++=++, 22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数.。
1997-09,13华东师大高等代数考研真题
四(15 分)设 A 是实矩阵,Α' 是 A 的转置矩阵,求证:(1)ΑΑ' 与 A 的秩相等。
(2)当 A 是满秩时, ΑΑ' 是正定的。
n 五(20 分)设 A 是 阶方阵,证明:(1)A 的特征多项式 f (x) 与 A 的最小多项
式 m(x) 的根相同。(2)若 A 的特征根互异,则 m(x) = f (x) 。
g(λ) =
(
f
f (λ (λ), f
) (λ)'
)
,(
f
(λ)' 称为
f
(λ) 的一阶微商)。证明:A
与一个对角矩阵相似
的充要条件是 g(A) = 0.
n 六(15 分)假设 A 是 维欧氏空间 V 的线性变换,Α* 是同一空间 V 的变换。且
对 ∀α, β ∈V , 有 (Αα, β ) = (α, Α*β ). 证明:1 Α* 是线性变换。 2 Α 的核等于 Α*
( A) (2, 4); (B) (−4, 2); (C) (−2,3); (D) (2, −3).
8. 若 5 个方程 7 个未知量的齐次线性方程组的系数矩阵的秩为 3,则其线性无关解向量的最大个数
2.给出 A 可对角化的一个充要条件.
四.(15 分)已知 3 阶实数矩阵 A = (aij ) 满足条件 aij = Aij (i, j = 1, 2,3) ,其中 Aij 是 aij
的代数余子式,且 a33 = −1,求:1. A
2.方程组
A
⎛ ⎜ ⎜
x1 x2
⎞ ⎟ ⎟
=
⎛ ⎜ ⎜
0 0
⎞ ⎟ ⎟
n 足条件αTβ = 0 ,令 阶方阵 Α = αT β 。(1) 求 A2 ;(2) 矩阵 A 的特征值和特征
线性代数习题及答案(复旦版)
线性代数习题及答案习题一1. 求下列各排列的逆序数.(1) 341782659; (2) 987654321;(3) n (n -1)…321; (4) 13…(2n -1)(2n )(2n -2)…2. 【解】(1) τ(341782659)=11; (2) τ(987654321)=36;(3) τ(n (n -1)…3²2²1)= 0+1+2 +…+(n -1)=(1)2n n -;(4) τ(13…(2n -1)(2n )(2n -2)…2)=0+1+…+(n -1)+(n -1)+(n -2)+…+1+0=n (n -1). 2. 略.见教材习题参考答案. 3. 略.见教材习题参考答案.4. 本行列式4512312123122xx x D x xx=的展开式中包含3x和4x的项.解: 设123412341234()41234(1)i i i i i i i i i i i i D a a a a τ=-∑,其中1234,,,i i i i 分别为不同列中对应元素的行下标,则4D 展开式中含3x项有(2134)(4231)333(1)12(1)32(3)5x x x x x x x x xττ-⋅⋅⋅⋅+-⋅⋅⋅⋅=-+-=-4D 展开式中含4x项有(1234)4(1)2210x x x x xτ-⋅⋅⋅⋅=.5. 用定义计算下列各行列式.(1)02000010300004; (2)12300020304501.【解】(1) D =(-1)τ(2314)4!=24; (2) D =12.6. 计算下列各行列式.(1)2141312112325062-----; (2)ab ac ae bd cd de bf cf ef-------;(3)10011001101ab c d ---; (4) 1234234134124123.【解】(1)125062312101232562r r D+---=--;(2)1114111111D abcdef abcdef --==------;210110111(3)(1)111011111;bcD a a bcd c c dd ddabcd ab ad cd --⎡--⎤=+-=+++--⎢⎥⎣⎦=++++ 321221133142144121023410234102341034101130113(4)160.1041202220044101231114r r c c r r c c r r r r c c r r D -+-+-++---====-------7. 证明下列各式.(1)22222()111aab ba ab b a b +=-;(2)2222222222222222(1)(2)(3)(1)(2)(3)0(1)(2)(3)(1)(2)(3)a a a a bb b bc c c c dd d d ++++++=++++++;(3)232232232111()111a a a ab b ab bc ca b b cccc=++(4)20000()00nn aba b D ad bc cdcd==-;(5)121111111111111nni i i i na a a a a ==++⎛⎫=+ ⎪⎝⎭+∑∏.【证明】(1)1323223()()()2()201()()()()()2()21c c c c a b a b b a b ba b a b b a b a b b a b a b b a b a b a b a b--+--=--+--+==-=-=--左端右端.(2)32213142412222-2-2232221446921262144692126021446921262144692126c c c c c c c c c c aa a a aa b b b b b b c c c c c c dd d d dd ---++++++++====++++++++左端右端.(3) 首先考虑4阶范德蒙行列式:2323232311()()()()()()()(*)11x x x a a a f x x a x b x c a b a c b c b b b ccc==------从上面的4阶范德蒙行列式知,多项式f (x )的x 的系数为2221()()()()(),11a aab bc ac a b a c b c ab bc ac b b cc++---=++但对(*)式右端行列式按第一行展开知x 的系数为两者应相等,故231123231(1),11a ab b cc+-(4) 对D 2n 按第一行展开,得22(1)2(1)2(1)00000(),n n n n ab abab ab D abcdcdc d c d dcad D bc D ad bc D ---=-=⋅-⋅=-据此递推下去,可得22(1)2(2)112()()()()()()n n n n n nD ad bc D ad bc D ad bc D ad bc ad bc ad bc ----=-=-==-=--=-2().nn D ad bc ∴=-(5) 对行列式的阶数n 用数学归纳法.当n =2时,可直接验算结论成立,假定对这样的n -1阶行列式结论成立,进而证明阶数为n 时结论也成立. 按D n 的最后一列,把D n 拆成两个n 阶行列式相加:112211211111011111110111111101111111.n n nn n n a a a a D a a a a a a D ---++++=++=+但由归纳假设11121111,n n n i i D a a a a ---=⎛⎫+= ⎪⎝⎭∑从而有11211211121111111111.n n n n n i i nnnn n i i i i i i D a a a a a a a a a a a a a a a ---=-===⎛⎫+=+ ⎪⎝⎭⎛⎫⎛⎫++== ⎪ ⎪⎝⎭⎝⎭∑∑∑∏8. 计算下列n 阶行列式.(1)111111n xx D x =(2)122222222232222n D n=;(3)0000000000n x y x y D x y yx=. (4)nijD a =其中(,1,2,,)ija i j i j n =-= ;(5)21000121000120000021012n D =.【解】(1) 各行都加到第一行,再从第一行提出x +(n -1),得11111[(1)],11n x D x n x=+-将第一行乘(-1)后分别加到其余各行,得1111110[(1)](1)(1).01n n x D x n x n x x --=+-=+---(2)213111222210000101001002012n r r n r r r r D n ---=-按第二行展开222201002(2)!.002002n n -=---(3) 行列式按第一列展开后,得1(1)(1)(1)10000000000000(1)0000000(1)(1).n n n n n nn nx y y x y x y D x y x y x y y x xyx xy yx y +-+-+=+-=⋅+⋅-⋅=+-(4)由题意,知11121212221212110122103123n n n n n nnn a a a n a a a D n a a a n n n --==----012211111111*********1111n n ------------后一行减去前一行自第三行起后一行减去前一行01221122111111200002000020000000022n n n n --------=-按第一列展开1122000201(1)(1)(1)(1)22n n n n n n -----=---按第列展开.(5)21000200000100012100121001210001200012000120000021000210002101201212n D ==+122n n D D --=-.即有112211n n n n D D D D D D ----=-==-=由()()()112211n n n n D D D D D D n ----+-++-=- 得11,121n n D D n D n n -=-=-+=+. 9. 计算n 阶行列式.121212111n n n na a a a a a D a a a ++=+【解】各列都加到第一列,再从第一列提出11nii a=+∑,得232323123111111,11n n nn i n i na a a a a a D a a a a a a a =+⎛⎫=++ ⎪⎝⎭+∑将第一行乘(-1)后加到其余各行,得2311110011.001001n nnn i ii i a a a D a a ==⎛⎫=+=+ ⎪⎝⎭∑∑10. 计算n 阶行列式(其中0,1,2,,ia i n≠= ).1111123222211223322221122331111123n n n n nn n n n n nn n n n n n n n n n n na a a a ab a b a b a b D a b a b a b a b b b b b ----------------=.【解】行列式的各列提取因子1(1,2,,)n ja j n -= ,然后应用范德蒙行列式.3121232222312112123111131212311211111()().n n n n n n n n n n n n n j i n n j i n i j b b b b a a a a b b b b D a a a a a a a b b b b a a a a b b a a a a a ------≤<≤⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫-= ⎪⎝⎭∏11. 已知4阶行列式41234334415671122D =;试求4142A A +与4344A A +,其中4j A 为行列式4D 的第4行第j 个元素的代数余子式.【解】41424142234134(1)(1)3912.344344567167A A +++=-+-=+= 同理43441569.A A +=-+=-12. 用克莱姆法则解方程组.(1)123123412342345,2 1, 2 2, 23 3.x x x x x x x x x x x x x x++=⎧⎪+-+=⎪⎨+-+=⎪⎪++=⎩(2)121232343454556 1,56 0, 56 0, 560,5 1.x x x x x x x x x x x x x +=⎧⎪++=⎪⎪++=⎨⎪++=⎪+=⎪⎩ 【解】方程组的系数行列式为1110111013113121110131180;121052*********23141230123D -------=====≠-----1234511015101111211118;36;2211121131230323115011152111211136;18.1221121201330123D D D D --====---====--故原方程组有惟一解,为312412341,2,2,1.D D D D x x x x DDDD========-12345123452)665,1507,1145,703,395,212.15072293779212,,,,.66513335133665D D D D D D x x x x x ===-==-=∴==-==-=13. λ和μ为何值时,齐次方程组1231231230,0,20x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩ 有非零解?【解】要使该齐次方程组有非零解只需其系数行列式110,11121λμμ= 即(1)0.μλ-=故0μ=或1λ=时,方程组有非零解.14. 问:齐次线性方程组12341234123412340,20,30,0x x x ax x x x x x x x x x x ax bx +++=⎧⎪+++=⎪⎨+-+=⎪⎪+++=⎩ 有非零解时,a ,b 必须满足什么条件?【解】该齐次线性方程组有非零解,a ,b 需满足11112110,113111a ab =-即(a +1)2=4b . 15. 求三次多项式230123()f x a a x a x a x=+++,使得(1)0,(1)4,(2)3,(3)16.f f f f -====【解】根据题意,得0123012301230123(1)0;(1)4;(2)2483;(3)392716.f a a a a f a a a a f a a a a f a a a a -=-+-==+++==+++==+++=这是关于四个未知数0123,,,a a a a 的一个线性方程组,由于012348,336,0,240,96.D D D D D ====-=故得01237,0,5,2a a a a ===-=于是所求的多项式为23()752f x x x=-+16. 求出使一平面上三个点112233(,),(,),(,)x y x y x y 位于同一直线上的充分必要条件.【解】设平面上的直线方程为ax +by +c =0 (a ,b 不同时为0)按题设有1122330,0,0,ax by c ax by c ax by c ++=⎧⎪++=⎨⎪++=⎩ 则以a ,b ,c 为未知数的三元齐次线性方程组有非零解的充分必要条件为1122331101x y x y x y =上式即为三点112233(,),(,),(,)x y x y x y 位于同一直线上的充分必要条件.习题 二1. 计算下列矩阵的乘积.(1)[]11321023⎡⎤⎢⎥-⎢⎥-⎢⎥⎢⎥⎣⎦=; (2)500103120213⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦;(3)[]32123410⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (4) ()111213112321222323132333a a a x x x x a a a x a a a x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦;(5) 11121321222331323310001101a a a a a a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (6) 12101031010101210021002300303⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦.【解】(1)32103210;64209630-⎡⎤⎢⎥--⎢⎥⎢⎥-⎢⎥-⎣⎦(2)531⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦; (3) (10);(4)3322211122233312211213311323322311()()()iji ji j a x a x a x a a x x a a x x a a x x ax x ==++++++++=∑∑(5)111212132122222331323233a a a a a a a a a a a a +⎡⎤⎢⎥+⎢⎥⎢⎥+⎣⎦; (6)12520124004309⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦. 2.设111111111⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A ,121131214⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦B ,求(1)2-A B A;(2)-A B B A ;(3) 22()()-=-A +B A B A B吗?【解】(1)2422;400024⎡⎤⎢⎥-=⎢⎥⎢⎥⎣⎦A B A (2) 440;531311⎡⎤⎢⎥-=--⎢⎥⎢⎥--⎣⎦A B B A(3) 由于AB ≠BA ,故(A +B )(A -B )≠A 2-B 2.3. 举例说明下列命题是错误的.(1) 若2=A O , 则=A O; (2) 若2=A A , 则=A O或=A E;(3) 若A X =A Y,≠A O , 则X =Y.【解】(1) 以三阶矩阵为例,取2001,000000⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦0A A ,但A ≠0 (2) 令110000001-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,则A 2=A ,但A ≠0且A ≠E(3) 令11021,=,011121110⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=≠=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A Y X 0则AX =AY ,但X ≠Y .4.设11A λ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦, 求A 2,A 3,…,A k . 【解】2312131,,,.010101kk λλλ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A A A 5.10010λλλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦A =, 求23A ,A并证明:121(1)2000kk k kk k kk k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =.【解】2322233223213302,03.0000λλλλλλλλλλλ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A =A = 今归纳假设121(1)2000kk k kk k kk k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =那么11211111(1)1020100000(1)(1)2,0(1)00k kk k k k k kk kk k kk k k k k k k k k λλλλλλλλλλλλλλλ+---+-++=-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦+⎡⎤+⎢⎥⎢⎥=+⎢⎥⎢⎥⎣⎦AA A =所以,对于一切自然数k ,都有121(1)2.000kk k kk k kk k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A = 6. 已知A P =P B,其中10010000021001211⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦B =,P = 求A及5A.【解】因为|P |= -1≠0,故由AP =PB ,得1100200,611-⎡⎤⎢⎥==⎢⎥⎢⎥--⎣⎦A PB P而51551()()100100100100210000210200.211001411611--==⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦⎣⎦A PB PP B P A 7. 设a b c d ba d c c d ab dcba ⎡⎤⎢⎥--⎢⎥⎢⎥--⎢⎥--⎣⎦A =,求|A|.解:由已知条件,A 的伴随矩阵为22222222()()a b c d b a d ca b c d a b c d c d a b dcba *⎡⎤⎢⎥--⎢⎥-+++=-+++⎢⎥--⎢⎥--⎣⎦A =A又因为*A A =A E,所以有22222()a b c d -+++A =A E,且0<A ,即42222222224()()a b c d a b c d -++++++A=A A =AE于是有 2222422222()()a b c d a b c d =-+++=-+++A .8. 已知线性变换112112212321331233232,3,232,2,45;3,x y y y z z x y y y y z z x y y y y z z =+=-+⎧⎧⎪⎪=-++=+⎨⎨⎪⎪=++=-+⎩⎩ 利用矩阵乘法求从123,,z z z 到123,,x x x 的线性变换.【解】已知112233112233210,232415310,201013421124910116x y x y x y y z y z y z ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦-⎡⎤⎢⎥==-⎢⎥⎢⎥--⎣⎦X A Y Y B z X A Y A B z z,从而由123,,z z z 到123,,x x x 的线性变换为11232123312342,1249,1016.x z z z x z z z x z z z =-++⎧⎪=-+⎨⎪=--+⎩ 9. 设A,B 为n 阶方阵,且A为对称阵,证明:'B A B也是对称阵.【证明】因为n 阶方阵A 为对称阵,即A ′=A , 所以 (B ′AB )′=B ′A ′B =B ′AB , 故'B A B也为对称阵.10. 设A ,B 为n 阶对称方阵,证明:AB 为对称阵的充分必要条件是AB =BA . 【证明】已知A ′=A ,B ′=B ,若AB 是对称阵,即(AB )′=AB .则 AB =(AB )′=B ′A ′=BA , 反之,因AB =BA ,则(AB )′=B ′A ′=BA =AB ,所以,AB 为对称阵.11. A 为n 阶对称矩阵,B 为n 阶反对称矩阵,证明: (1) B 2是对称矩阵.(2) AB -BA 是对称矩阵,AB +BA 是反对称矩阵. 【证明】因A ′=A ,B ′= -B ,故(B 2)′=B ′²B ′= -B ²(-B )=B 2; (AB -BA )′=(AB )′-(BA )′=B ′A ′-A ′B ′ = -BA -A ²(-B )=AB -BA ;(AB +BA )′=(AB )′+(BA )′=B ′A ′+A ′B ′ = -BA +A ²(-B )= -(AB +BA ).所以B 2是对称矩阵,AB -BA 是对称矩阵,AB+BA 是反对称矩阵.12. 求与A =1101⎡⎤⎢⎥⎣⎦可交换的全体二阶矩阵. 【解】设与A 可交换的方阵为ab cd ⎡⎤⎢⎥⎣⎦,则由 1101⎡⎤⎢⎥⎣⎦a b cd ⎡⎤⎢⎥⎣⎦=a b cd ⎡⎤⎢⎥⎣⎦1101⎡⎤⎢⎥⎣⎦,得a cb d aa b c d cc d +++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦.由对应元素相等得c =0,d =a ,即与A 可交换的方阵为一切形如0a b a ⎡⎤⎢⎥⎣⎦的方阵,其中a,b 为任意数.13. 求与A =100012012⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦可交换的全体三阶矩阵. 【解】由于A =E +000002013⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦,而且由111111222222333333000000,002002013013a b c a b c a b c a b c a b c a b c ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦可得111222333333232323023000023222.023333c b c c b c a b c c b c a a b b c c -⎡⎤⎡⎤⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦由此又可得1113232332322333230,230,20,30,2,3,232,233,c b c a a a c b c b b b c c b c c c =-==-===--=-=-所以2311233230,2,3.a a b c c b c b b ======-即与A 可交换的一切方阵为12332300203a b b b b b ⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦其中123,,a b b 为任意数.14. 求下列矩阵的逆矩阵.(1)1225⎡⎤⎢⎥⎣⎦; (2)123012001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (3)121342541-⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦; (4)1000120021301214⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (5)520021000083052⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (6) ()1212,,,0n n a a a a a a ⎡⎤⎢⎥⎢⎥≠⎢⎥⎢⎥⎣⎦,未写出的元素都是0(以下均同,不另注). 【解】(1)5221-⎡⎤⎢⎥-⎣⎦; (2)12101201-⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦;(3)12601741632142-⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦; (4)100011002211102631511824124⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦;(5)120025000023058-⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦; (6) 12111n a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦.15. 利用逆矩阵,解线性方程组12323121,221,2.x x x x x x x ++=⎧⎪+=⎨⎪-=⎩【解】因123111102211102x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,而111002211≠-故112311101111122.0221113122110221112x x x -⎡⎤⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦16. 证明下列命题:(1) 若A ,B 是同阶可逆矩阵,则(AB )*=B *A *. (2) 若A 可逆,则A *可逆且(A *)-1=(A -1)*. (3) 若AA ′=E ,则(A *)′=(A *)-1.【证明】(1) 因对任意方阵c ,均有c *c =cc *=|c |E ,而A ,B 均可逆且同阶,故可得|A |²|B |²B *A *=|AB |E (B *A *)=(AB ) *AB (B *A *)=(AB ) *A (BB *)A * =(AB ) *A |B |EA *=|A |²|B |(AB ) *.∵ |A |≠0,|B |≠0, ∴ (AB ) *=B *A *.(2) 由于AA *=|A |E ,故A *=|A |A -1,从而(A -1) *=|A -1|(A -1)-1=|A |-1A . 于是A * (A -1) *=|A |A -1²|A |-1A =E ,所以(A -1) *=(A *)-1. (3) 因AA ′=E ,故A 可逆且A -1=A ′. 由(2)(A *)-1=(A -1) *,得(A *)-1=(A ′) *=(A *)′.17. 已知线性变换11232123312322,35,323,x y y y x y y y x y y y =++⎧⎪=++⎨⎪=++⎩ 求从变量123,,x x x 到变量123,,y y y 的线性变换.【解】已知112233221,315323x y x y x y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦X A Y 且|A |=1≠0,故A 可逆,因而1749,637324---⎡⎤⎢⎥==-⎢⎥⎢⎥-⎣⎦Y A X X所以从变量123,,x x x 到变量123,,y y y 的线性变换为112321233123749,637,324,y x x x y x x x y x x x =--+⎧⎪=+-⎨⎪=+-⎩ 18. 解下列矩阵方程.(1)12461321-⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦X =;(2)211211210210111111--⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦X ; (3)142031121101⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦X =; (4)01010004310000120101010120-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦X .【解】(1) 令A =1213⎡⎤⎢⎥⎣⎦;B =4621-⎡⎤⎢⎥⎣⎦.由于13211--⎡⎤=⎢⎥-⎣⎦A故原方程的惟一解为13246820.112127----⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦X A B 同理(2) X =10001001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (3) X =11104⎡⎤⎢⎥⎢⎥⎣⎦; (4) X =210.03412-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦19. 若kA =O(k 为正整数),证明:121()k --- E A =E +A +A ++A.【证明】作乘法212121()()k k k kk----=-----=-=E A E +A +A ++A E +A +A ++A A A A AE A E ,从而E -A 可逆,且121()k --- E A =E +A +A ++A20.设方阵A 满足A 2-A -2E =O ,证明A 及A +2E 都可逆,并求A -1及(A +2E )-1. 【证】因为A 2-A -2E =0, 故212().2-=⇒-=A A E A E A E由此可知,A 可逆,且11().2-=-AA E同样地2220,64(3)(2)41(3)(2)4--=--=--+=---+=A A E A A E E ,A E A E E ,A E A E E.由此知,A +2E 可逆,且1211(2)(3)().44-+=--=-A E A E A E21. 设423110123⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦A =,2A B =A +B ,求B .【解】由AB =A +2B 得(A -2E )B =A .而22310,1102121==-≠---A E 即A -2E 可逆,故11223423(2)110110121123143423386.1531102961641232129--⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==----⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦B A E A22. 设1-P AP =Λ.其中1411--⎡⎤⎢⎥⎣⎦P =,1002-⎡⎤⎢⎥⎣⎦=Λ, 求10A.【解】因1-P可逆,且1141,113-⎡⎤=⎢⎥--⎣⎦P故由1Λ-A =P P 得10110101101012121010()()141410331102113314141033110211331365136412421.34134031242--==⎡⎤⎢⎥---⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥--⎢⎥⎣⎦⎡⎤⎢⎥--⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥--⎢⎥⎣⎦⎡⎤-+-+⎡⎤==⎢⎥⎢⎥----⎣⎦⎣⎦AP P P PΛΛ23. 设m 次多项式01()mm f x a a x a x=+++ ,记01()mm f a a a =+++ A E A A,()f A 称为方阵A 的m 次多项式.(1)12λλ⎡⎤⎢⎥⎣⎦A =, 证明12kkk λλ⎡⎤⎢⎥⎣⎦A =,12()()()f f f λλ⎡⎤=⎢⎥⎣⎦A ;(2) 设1-A =P BP, 证明1kk-B =PA P,1()()f f -=B P A P.【证明】(1)232311232200,0λλλλ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦A A 即k =2和k =3时,结论成立.今假设120,0kkk λλ⎡⎤=⎢⎥⎣⎦A 那么111111222000,00kk k k k k λλλλλλ+++⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦AA A = 所以,对一切自然数k ,都有120,0kkk λλ⎡⎤=⎢⎥⎣⎦A 而011101220111012212()1100().()mm mm m m m m m f a a a a a a a a a a a a f f λλλλλλλλλλ=⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤+=⎢⎥+⎣⎦⎡⎤=⎢⎥⎣⎦A E +A ++A++++++(2) 由(1)与A =P -1BP ,得B =PAP -1.且B k =( PAP -1)k = PA k P -1,又0111011011()()().mm mm mm f a a a a a a a a a f ----=+++=+++=++=B E B BE PA PPA PP E A +A P P A P24. a b cd ⎡⎤⎢⎥⎣⎦A =,证明矩阵满足方程2()0x a d x ad bc -++-=.【证明】将A 代入式子2()xa d x ad bc-++-得222222()()10()()010000.00a d ad bc a b a b a d ad bc cd cd ad bca bc ab bd a adab bd ad bc ac cd cb d ac cdad d -++-⎡⎤⎡⎤⎡⎤=-++-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦-⎡⎤⎡⎤++++⎡⎤=-+⎢⎥⎢⎥⎢⎥-++++⎣⎦⎣⎦⎣⎦⎡⎤==⎢⎥⎣⎦A A E 0故A 满足方程2()0xa d x ad bc -++-=.25. 设n 阶方阵A 的伴随矩阵为*A,证明:(1) 若|A|=0,则|*A|=0;(2)1n *-=AA.【证明】(1) 若|A |=0,则必有|A *|=0,因若| A *|≠0,则有A *( A *)-1=E ,由此又得A =AE =AA *( A *)-1=|A |( A *)-1=0,这与| A *|≠0是矛盾的,故当|A | =0,则必有| A *|=0. (2) 由A A *=|A |E ,两边取行列式,得|A || A *|=|A |n ,若|A |≠0,则| A *|=|A |n -1 若|A |=0,由(1)知也有| A *|=|A |n -1.26. 设520032002100450000730041052062⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A =,B .求(1)A B ; (2)B A ; (3)1-A;(4)|A |k (k 为正整数).【解】(1)232000109000046130329⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A B =; (2) 1980030130000331405222⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦B A =;(3)1120025000023057--⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦A=; (4)(1)kk=-A .27. 用矩阵分块的方法,证明下列矩阵可逆,并求其逆矩阵.(1)1200025000003000001000001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (2)003100212100230-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦; (3)20102020130010*******1⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 【解】(1) 对A 做如下分块12⎡⎤=⎢⎥⎣⎦A A A 00 其中1230012;,0102501⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦A A 12,A A 的逆矩阵分别为1112100523;,01021001--⎡⎤⎢⎥-⎡⎤⎢⎥==⎢⎥-⎢⎥⎣⎦⎢⎥⎣⎦A A 所以A 可逆,且1111252000210001.0000300010001----⎡⎤⎢⎥-⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦A AA 同理(2)11112121310088110044.110055230055----⎡⎤-⎢⎥⎢⎥⎢⎥⎡⎤⎢⎥⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦A A AA A (3)1110012211300222.001000001001-⎡⎤--⎢⎥⎢⎥⎢⎥--⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A习题 三1. 略.见教材习题参考答案.2. 略.见教材习题参考答案.3. 略.见教材习题参考答案.4. 略.见教材习题参考答案.5.112223334441,,,=+=+=+=+βααβααβααβαα,证明向量组1234,,,ββββ线性相关.【证明】因为1234123412341312342()2()0+++=+++⇒+++=+⇒-+-=ββββααααββββββββββ 所以向量组1234,,,ββββ线性相关.6. 设向量组12,,,rααα线性无关,证明向量组12,,,r βββ也线性无关,这里12.i i +++ β=ααα【证明】 设向量组12,,,r βββ线性相关,则存在不全为零的数12,,,,r k k k 使得1122.r r k k k +++= 0βββ把12i i +++ β=ααα代入上式,得121232()()r r r r k k k k k k k +++++++++=0 ααα.又已知12,,,r ααα线性无关,故1220,0,0.r r r k k k k k k +++=⎧⎪++=⎪⎨⎪⎪=⎩该方程组只有惟一零解120r k k k ==== ,这与题设矛盾,故向量组12,,,rβββ线性无关.7. 略.见教材习题参考答案. 8.12(,,,),1,2,,i i i in i n ααα== α.证明:如果0ij a ≠,那么12,,,n ααα线性无关.【证明】已知ij a =≠A ,故R (A )=n ,而A 是由n 个n 维向量12(,,,),ii i in ααα= α1,2,,i n = 组成的,所以12,,,n ααα线性无关.9. 设12,,,,r t t t是互不相同的数,r ≤n .证明:1(1,,,),1,2,,n i i it t i r-== α是线性无关的.【证明】任取n -r 个数t r +1,…,t n 使t 1,…,t r ,t r +1,…,t n 互不相同,于是n 阶范德蒙行列式21111212111121110,11n n r rrn r r r n nnnt t t t t t t t t t t t ---+++-≠从而其n 个行向量线性无关,由此知其部分行向量12,,,r ααα也线性无关.10. 设12,,,sααα的秩为r 且其中每个向量都可经12,,,rααα线性表出.证明:12,,,rααα为12,,,s ααα的一个极大线性无关组.【证明】若12,,,r ααα (1)线性相关,且不妨设12,,,t ααα (t <r ) (2)是(1)的一个极大无关组,则显然(2)是12,,,sααα的一个极大无关组,这与12,,,sααα的秩为r 矛盾,故12,,,r ααα必线性无关且为12,,,s ααα的一个极大无关组.11. 求向量组1α=(1,1,1,k ),2α=(1,1,k ,1),3α=(1,2,1,1)的秩和一个极大无关组. 【解】把123,,ααα按列排成矩阵A ,并对其施行初等变换.111111111111112001001010110100100011101100100k k k k kk k k ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥=→→→⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦A当k =1时,123,,ααα的秩为132,,αα为其一极大无关组. 当k ≠1时,123,,ααα线性无关,秩为3,极大无关组为其本身. 12. 确定向量3(2,,)a b =β,使向量组123(1,1,0),(1,1,1),==βββ与向量组1α=(0,1,1),2α=(1,2,1),3α=(1,0,-1)的秩相同,且3β可由123,,ααα线性表出.【解】由于123123011120(,,);120011111000112112(,,),1101012a b b a ⎡⎤⎡⎤⎢⎥⎢⎥==→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦A B αααβββ而R (A )=2,要使R (A )=R (B )=2,需a -2=0,即a =2,又12330112120(,,,),12001121112aa b b a ⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦c αααβ要使3β可由123,,ααα线性表出,需b -a +2=0,故a =2,b =0时满足题设要求,即3β=(2,2,0). 13. 设12,,,nααα为一组n 维向量.证明:12,,,n ααα线性无关的充要条件是任一n 维向量都可经它们线性表出.【证明】充分性: 设任意n 维向量都可由12,,,nααα线性表示,则单位向量12,,,n εεε,当然可由它线性表示,从而这两组向量等价,且有相同的秩,所以向量组12,,,nααα的秩为n ,因此线性无关.必要性:设12,,,nααα线性无关,任取一个n 维向量α,则12,,,nααα线性相关,所以α能由12,,,n ααα线性表示.14. 若向量组(1,0,0),(1,1,0),(1,1,1)可由向量组α1,α2,α3线性表出,也可由向量组β1,β2,β3,β4线性表出,则向量组α1,α2,α3与向量组β1,β2,β3,β4等价.证明:由已知条件,1001103111R ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,且向量组(1,0,0),(1,1,0),(1,1,1)可由向量组α1,α2,α3线性表出,即两向量组等价,且123(,,)3R =ααα,又,向量组(1,0,0),(1,1,0),(1,1,1)可由向量组β1,β2,β3,β4线性表出,即两向量组等价,且1234(,,,)3R =ββββ,所以向量组α1,α2,α3与向量组β1,β2,β3,β4等价.15. 略.见教材习题参考答案. 16. 设向量组12,,,m ααα与12,,,sβββ秩相同且12,,,mααα能经12,,,sβββ线性表出.证明12,,,m ααα与12,,,s βββ等价.【解】设向量组12,,,mααα (1)与向量组12,,,s βββ (2)的极大线性无关组分别为12,,,r ααα (3)和12,,,r βββ (4)由于(1)可由(2)线性表出,那么(1)也可由(4)线性表出,从而(3)可以由(4)线性表出,即1(1,2,,).ri ijjj ai r ===∑ αβ因(4)线性无关,故(3)线性无关的充分必要条件是|a ij |≠0,可由(*)解出(1,2,,)jj r = β,即(4)可由(3)线性表出,从而它们等价,再由它们分别同(1),(2)等价,所以(1)和(2)等价. 17. 设A 为m ³n 矩阵,B 为s ³n 矩阵.证明:m ax{(),()}()()R R R R R ⎡⎤≤≤+⎢⎥⎣⎦A AB A B B .【证明】因A ,B 的列数相同,故A ,B 的行向量有相同的维数,矩阵⎡⎤⎢⎥⎣⎦A B 可视为由矩阵A 扩充行向量而成,故A 中任一行向量均可由⎡⎤⎢⎥⎣⎦A B 中的行向量线性表示,故 ()R R ⎡⎤≤⎢⎥⎣⎦A A B同理()R R ⎡⎤≤⎢⎥⎣⎦A B B故有m ax{(),()}R R R ⎡⎤≤⎢⎥⎣⎦A AB B又设R (A )=r ,12,,,i i ir ααα是A 的行向量组的极大线性无关组,R (B )=k ,12,,,j j jkβββ是B 的行向量组的极大线性无关组.设α是⎡⎤⎢⎥⎣⎦A B 中的任一行向量,则若α属于A 的行向量组,则α可由12,,,i i ir ααα表示,若α属于B的行向量组,则它可由12,,,j j jkβββ线性表示,故⎡⎤⎢⎥⎣⎦A B 中任一行向量均可由12,,,i i ir ααα,12,,,j j jkβββ线性表示,故()(),R r k R R ⎡⎤≤+=+⎢⎥⎣⎦A AB B 所以有m ax{(),()}()()R R R R R ⎡⎤≤≤+⎢⎥⎣⎦A AB A B B .18. 设A 为s ³n 矩阵且A 的行向量组线性无关,K 为r ³s 矩阵.证明:B =KA 行无关的充分必要条件是R (K )=r . 【证明】设A =(A s ,P s ³(n -s )),因为A 为行无关的s ³n 矩阵,故s 阶方阵A s 可逆. (⇒)当B =KA 行无关时,B 为r ³n 矩阵.r =R (B )=R (KA )≤R (K ),又K 为r ³s 矩阵R (K )≤r ,∴ R (K )=r . (⇐)当r =R (K )时,即K 行无关,由B =KA =K (A s ,P s ³(n -s ))=(KA s ,KP s ³(n -s)) 知R (B )=r ,即B 行无关. 19. 略.见教材习题参考答案.20. 求下列矩阵的行向量组的一个极大线性无关组.(1)2531174375945313275945413425322048⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (2)1122102151203131141⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦.【解】(1) 矩阵的行向量组1234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦αααα的一个极大无关组为123,,ααα;(2) 矩阵的行向量组1234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦αααα的一个极大无关组为124,,ααα.21. 略.见教材习题参考答案. 22. 集合V 1={(12,,,n x x x )|12,,,n x x x ∈R 且12n+++ x x x =0}是否构成向量空间?为什么?【解】由(0,0,…,0)∈V 1知V 1非空,设121122(,,,),(,,,),n n V V k =∈=∈∈x x x y y y αβR)则112212(,,,)(,,,).n n n x y x y x y k kx kx kx +=+++= αβα因为112212121212()()()()()0,()0,n n n n n n x y x y x y x x x y y y kx kx kx k x x x ++++++=+++++++=+++=+++=所以11,V k V +∈∈αβα,故1V 是向量空间.23. 试证:由123(1,1,0),(1,0,1),(0,1,1)===ααα,生成的向量空间恰为R 3.【证明】把123,,ααα排成矩阵A =(123,,ααα),则11020101011==-≠A ,所以123,,ααα线性无关,故123,,ααα是R 3的一个基,因而123,,ααα生成的向量空间恰为R 3. 24. 求由向量1234(1,2,1,0),(1,1,1,2),(3,4,3,4),(1,1,2,1)====αααα所生的向量空间的一组基及其维数.【解】因为矩阵12345(,,,,)113141131411314214150121301213,113260001200012024140241400=⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--------⎢⎥⎢⎥⎢⎥=→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A ααααα∴124,,ααα是一组基,其维数是3维的. 25. 设1212(1,1,0,0),(1,0,1,1),(2,1,3,3),(0,1,1,1)===-=--ααββ,证明:1212(,)(,)L L =ααββ.【解】因为矩阵1212(,,,)1120112010110131,01310000013100=⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=→⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦A ααββ 由此知向量组12,αα与向量组12,ββ的秩都是2,并且向量组12,ββ可由向量组12,αα线性表出.由习题15知这两向量组等价,从而12,αα也可由12,ββ线性表出.所以1212(,)(,)L L =ααββ.26. 在R 3中求一个向量γ,使它在下面两个基123123(1)(1,0,1),(1,0,0)(0,1,1)(2)(0,1,1),(1,1,0)(1,0,1)==-==-=-=αααβββ下有相同的坐标.【解】设γ在两组基下的坐标均为(123,,x x x ),即111232123233112233(,,)(,,),11001100111011101x x x x x x x x x x x x ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦γαααβββ即。
【考研数学】1997年一数一真题、标准答案及解析
1997 年全国硕士研究生入学统一考试理工数学一试题详解及评析一、填空题1 3 sin x + x cos2x ( 【 1)lim=.( + ) ( + ) x → 01 cos x ln 1 x 3答】. 213 sin x + x cos23 sin x 1 1x lim= lim + lim x cos【 详解】 原式= x →02x2 x →0 x x →0 2x3 = 3 + 0 = . 2 2∞∞∑∑+( − )n 1 n( 【 【 2)设幂级数a x n的收敛半径为 3,则幂级数 na x 1 的收敛区间为 .n n =0n =1(− )答】2,4 . ∞∑ na xn 1 的收敛半径仍为 3,故−详解】 根据幂级数的性质,逐项求导后,得nn =1∞∞∑ ( − )n +1= ( − ) ∑( − )n −2na x 1n2nax 1 x 1nn =1n =1的收敛区间为 x −1 < 3, 即(−2,4 .)( 3)对数螺线 ρ = e θ在点处切线的直角坐标方程为 .π【 答】 x + y = e 项解 1】2.【 由于 x = ρ cos θ, y = ρ sin θ, 螺线方程 ρ =e θ 可化为⎧ ⎨ ⎩ = θθ x e cos , y e sin . = θ θdy dxsin θ + cos θcos θ−sin θπ π|θ =π |θ =π由于= = −1,且当θ = 时, x = 0, y = e 2.222故所求切线方程为ππ y − e1 x 0 , = − ⋅( − ) 即 x + y = .22【 详解 2】螺线方程 ρ = e θ可化为隐函数方程:yln x 2 + y 2 = arctan ,x⎛ π⎞ ' (0)= −1,故所求切线方程为 y利用隐函数求导法,得在点⎜0,e 2⎟ 处的导数为⎝ ⎠π π y − e1 x 0 , = − ⋅( − ) 即 x + y =. 22 ⎡ 1 2 t −2⎤⎢ ⎥ ( 4)设 A = 4 3 , B 为三阶非零矩阵,且 AB = 0,则 t= .⎢ ⎥ ⎢ −1 ⎥ 13 ⎣ ⎦【 【答】 -3.详解】 由于 B 为三阶非零矩阵,且 AB = 0,,可见线性方程组 Ax = 0存在非零解,故 1 2 t−23 = 0 ⇒ t = −3. A = 43 −1 1(5)袋中有 50 个乒乓球,其中 20 个是黄球,30 个是白球,今有两人依次随机地从袋中各取一 球,取后不放回,则第二个人取得黄球的概率是 .2【 答】. 5【 详解】 设 A = {第一个人取出的为黄球}, B = {第一个人取出的为白球},C = {第二个人取 出的为黄球}. 2 5 3 5 19 49 2049( ) =P A( ) = , P B ( ) = ( ) = 则, P C | A , P C | B . 由全概率公式知:( )= ( )⋅( )+ ( )⋅( )P C P A P C | AP B P C | B 2 5 9 3 20 19 + ×49 5 49 492= . 5= × = 二、选择题⎧ ⎪ xy+ y ,(x , y )≠ (0,0 ) ) ( )= x 2 2 ( ) ,在点 0,0 处 ( 1)二元函数 f x , y ⎨⎪ 0 , (x , y )= (0,0 ⎩( A )连续,偏导数存在. C )不连续,偏导数存在. (B )连续,偏导数不存在. (D) 不连续,偏导数不存在.( 【 】【 【 答】 应选(C ).详解】 由偏导数的定义知( ++ )− ( )f 0 x ,0 f 0, 0(0, 0)= lim= 0,f ' x +x+ x →0而当 y = kx ,有xy + x ⋅kx k1+ k lim= lim = ,(x ,y ) (0,0) → x 2 y 2 x → 0 x 2 + k 2 x 2 2k + k xy+ y ( ) ( ) 不存在,因而 f x , y 在点 0,0 处不连续, 2当 k 不同时,不同,故极限 lim 1 2 ( )→(0,0) x2 x ,y 可见,应选(C ). ∫ b( ) f x dx ,[ ] ( ) > f x 0, f ( ) < x ( ) > x = (2)设在区间 a ,b 上'0, f ' 0 ,令 S 1 a 1( )( −) = ⎡ ( )+ ( )⎤( − ),则S 2 f b b a ,S = f a f b b a ⎣ ⎦ 3 2( A ) S < S < S (B) S < S < S213.1 2 3.(C) S < S < S(D) S < S < S231.3 1 2. 【 】【 答】 应选(B ).【 详解】( ) > ' ( ) < '( )>= ( ) [ ]0 知,曲线 y f x 在 a ,b 上单调减少且是凹曲线弧,于由 f x 0, f x 0, f x ( )> ( )是有 f x f b ,( )− ( )f b f a ( )< ( )+( − ) < <x a ,a x b .f x f a b − a 从而∫ b( ) > ( )( − ) = 2S 1 = = f x dx f b b a S ,a⎡ ⎢ ⎣ ( )− ( ) f b f a ⎤ ∫ b ( ) < f x dx∫ b ( )+ f a ( − ) S 1 x a dx ⎥ b − a a a ⎦ 12 = ⎡ ( )+ ( )⎤( − ) = f a f b b a S . ⎣ ⎦3 即S < S < S ,故应选(B ). 2 1 3x +2π( ) = (3)设F x ∫ e sin t sin tdt ,则F (x ) x( A ) 为正常数. C )恒为零.(B )为负常数. (D )不为常数.( 【 】【 答】 应选(A ).【详解】 由于esin tsin t 是以2π 为周期的,因此x +2π 2π( ) = F x ∫ e sin tsin tdt = ∫ e sin tsin tdtx 02π = = −∫e sin t d cos t2π∫0 +cos 2t ⋅e sin t dt > 0.故应选(A ).⎡ a ⎤ ⎡b ⎤ ⎡c ⎤1 1 1 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ( 4)设α = a ,α = b ,α = c , 则三条直线 ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ 12 2 23 2 ⎢ ⎣ ⎥ ⎦⎢ ⎥ ⎢ ⎥ c 3a 3 ⎣b 3 ⎦ ⎣ ⎦a x +b y +c = 0,a x + b y + c = 0,a x + b y + c = 0(其中a i2+ b i ≠ 0,i =1,2,3)交于一21 1 12 2 23 33 点的充要条件是( ( A )α ,α ,α 线性相关.(B )α ,α ,α 线性无关.1231 2 3 (α α α ) (α α ) α α ,α 线性相关, , 线性无关. α α 12C )秩r , , =秩r , (D ) , 1 2 3 1 2 1 2 3【 】【 【 答】 应选(D).详解】 由题设,三条直线相交于一点,即线性方程组⎧ ⎪ ⎨ a x + b y + c = 011 1 a x + b y + c = 02 22 ⎪ a x + b y + c = 0 ⎩3 3 3(α α α ) (α α ) , =2. 1 2 有唯一解,其充要条件为秩秩 r , , =秩r 1 2 3 ( ( ( A )、(C )必要但非充分;(B )既非充分又非必要;只有(D )为充要条件,故应选(D ). 5)设两个相互独立的随机变量 X 和Y 的方差分别为 4 和 2,则随机变量3X − 2Y 的方差是 A )8.(B )16.(C )28.(D )44.【 】【 【 答】 应选(D ). ( −) = 2 ( )+ 2 ( ) = × + × =详解】 D 3X 2Y 3 D X 2 D Y 9 4 4 2 44. ⎧ 2 = 2z y ∫ ∫∫(x 2)三、(1)计算 I =+ y 2 dV , 其中 Ω 为平面曲线 ⎨绕 z 轴旋转一周形成的曲面 x = 0⎩ Ω与平面 z = 8 所围成的区域.【详解】 利用柱面坐标,积分区域可表示为⎧ 2⎫ r Ω = (θ ⎨,r , z | 0 ) ≤θ ≤ 2π,0 ≤ r ≤ 4, ≤ ≤ z 8⎬,⎩ 2 ⎭ 于是⎛ ⎜ ⎝2⎞r 2π484∫ ∫ rdr ∫ ∫ 0I = d θ r 2dz = 2π r 38− dr ⎟ r 22 0⎠21 024π=. 3⎧ 2 + y =1 2 x v ∫ ( − ) + ( −) + ( − )( 2)计算曲线积分z y dx x z dy x y dz ,其中C 是曲线 ⎨,x − y + z = 2⎩ C从 z 轴正向往 z 轴负向看,C 的方向是顺时针的. 【详解 1】令 x = cos θ, y = sin θ, 则 z = 2 − x + y = 2 − cos θ + sin θ由于曲线C 是顺时针方向,其起点和终点所对应θ 值分别为θ = 2π,θ = 0. 于是v ∫ ( − ) + ( − ) + ( − ) z y dx x z dy x y dz C∫ 02 2cos 2θ −1⎤d θ − ⎡ (sin θ + cos θ )− ⎣= ⎦ 2 π| 0= = − ⎡ (cos θ + sin θ )−sin 2θ −θ ⎤ 2 ⎣ ⎦ 2 π −2π.【 详解 2】设 ∑ 是平面 x − y + z = 2 以 C 为边界的有限部分,其法向量与 Z 轴负向一致, D 为 ∑ 在 xyxOy 面上的投影区域.记F = (z − y )i + (x − z ) j + (x − y )k , i j ∂ k∂∂ 则rotF= 2k . ∂x ∂y ∂z z − y x − z x − y根据斯托克斯公式知v ∫ ( − ) + ( − ) + ( −) = ∫∫z y dx x z dy x y dz rotFdSC∑∫ ∫ ∫∫= 2dxdy = − 2dxdy ∑Dxy= −2π.( 3)在某一人群中推广新技术是通过其中掌握新技术的人进行的,设该人群的总人数为 N ,在t = 0时刻已掌握新技术的人数为 x , 在任意时刻t 已掌握新技术的人数为 x t (将 x t 视为( ) ( ) 0 连续可微变量),其变化率与已掌握新技术人数和未掌握新技术人数之积成正比,比例常数k > 0, 求 x t . ( )⎧ dx= ( − ) kx N x ⎪ 【 详解】 由题设,有⎨ dt , ⎪ ⎩x (0)= x 0 dx( − ) x N x 原方程可化为= kdt ,NCe kNt 积分,得x = , 1 + Ce kNtNx e kNt x =代入初始条件,得N − x + x e kNt0 0 ⎧ x + y + b = 0 四、(1)设直线 l : ⎨在平面 π 上,而平面 π 与曲面 z = x + y 2 相切于点2 x + ay − z −3 = 0⎩( − ) 1 , 2,5 ,求 a 、b 之值.【 详解 1】 令 F x , y , zx 2 y 2z ,则 F ( ) = + − '= 2x , F'= 2y , F' = −1.在点(1,−2, 5)处曲面得法向量为xy z n2, 4, 1= { − − },于是切平面方程为( − )− ( + )−( − ) = x 1 4 y 2 z 5 0,2 即 2x − 4y − z −5 = 0. ⎧ x + y + b = 0由l : ⎨, x + ay − z −3 = 0 ⎩ 得= − + (− − ) x −b , z x 3 a x b 代入平面π 方程,得2 x + 4x + 4b − x + 3+ ax + ab −5 = 0,5+ a = 0, 4b + ab − 2 = 0.a = −5,b = −2有由此解得 【 详解 2】由方法一知,平面π 方程为 2π − 4y − z −5 = 0.⎧ x + y + b = 0过直线l : ⎨的平面束为 x + ay − z −3 = 0⎩ + + +κ ( + −− ) = x y bx ay z 3 0, ( + λ) + ( + λ) − λ + − λ =0.即 1 x 1 a z b 3 y 其与平面π 重合,要求1 + λ 1+ a λ −λ b −3λ= = = ,2−4 −1 −5 解得λ =1, a = −5,b = −2∂ ∂ 2 z ∂ 2 z ( ) = ( x)+ = e z , 求 2x( 2)设函数 f u 具有二阶连续导数,而 z f e sin y 满足方程 x 2 ∂y2 ( )f u .【 详解】∂z ∂z ∂y = f ' (u )e (u )e (u )e xsin y , = f'(u )e x cos y ,y ,sin y + f ' (u )e 2x cos ∂x∂ ∂ ∂ ∂2 z= = f ' x sin y + f ' (u )e 2x sin 2x 2 2 z − f ' x2y ,y 2∂ ∂ 2 z ∂ 2 z + = e 2xz ,得'(u )− f (u )= 0.f代入方程 x 2 ∂y2 解此方程得( ) = u+ −uf u C eC e (其中C ,C 为任意常数). 1 2 1 2( ) f x ∫1( ) ( ) x 并讨论 'ϕ (x )( ) ϕ ( ) = = A ( A 为常数),求ϕ ' 五 、设 f x 连续, x f xt dt ,且 lim 0x → 0x 在 x = 0 处的连续性. ( )f x = A 知, f 0 0, f 0 ( ) = ' ( ) = A ,且有 0 0. ϕ ( ) =【 详解】 由题设 limx → 0x x∫ ( )f u du ∫ 1( ) ( ≠ ) x 0 ,又ϕ ( ) = x f xt dtu xt =x 0x( )− ∫ ( ) xf x f u du 于是 ϕ ' (x ) = 0 (x ≠ 0) x2 由导数定义,有∫x( ) f u du ( ) f x Aϕ '(0)= lim= lim= . 22x 2x → 0x x → 0而xx( )− ∫ ( ) ∫ ( ) xf x f u du ( ) f u du f x lim ϕ ' (x )= lim 0 2 = lim − lim 0 2x → 0 x → 0 x x → 0 x x →0 x A A= A − = = ϕ ' (0)2 2可见,ϕ(x )在 x = 0 处的连续性.' ⎛ ⎞ 1 2 1 ( = ") 证明: 六、设 a 1 2,a n +1= = ⎜a ⎝+ ⎟, n 1, 2, , n a n ⎠( 1) lim a 存在; nn →∞∞⎛ a n ⎞∑ ( 2)级数 ⎜ − ⎟ 收敛. 1 a n +1⎝ ⎠n =1 【 ( 详解】 1)因为⎛ ⎞− n 2 1 1 1 a a n +1 − a = ⎜a +⎟ − a = , n n n 2 a n 2a n⎝ ⎠ ⎛ ⎞ 1 1 1而a n +1 = ⎜a + ⎟ ≥ a ⋅ =1, n n2 a n a n⎝ ⎠ 于是有 a n +1 − a ≤ 0,故数列 a 单调递减且有下界,所以 lim a 存在. { } n n n n →∞(2)方法一:ana − a nn +1≤ a − a .nn +1 由(1)知 0 ≤ −1= a n +1a n +1∞∞∑∑ ( − ) = ( − a k +1 ) = − 由于级数a na n +1 的部分和数列 S n a k a 1 a n +1 的极限 lim S 存在,可见 nn →∞n =1k =1∞∞⎛ a ⎞ ∑ ∑ ( − ) − a n a n +1 收敛,由比较判别法知,级数⎜ ⎝n1 ⎟ 也收敛. 级数an +1⎠ n =1n =1 方法二:an令 b = n−1,利用递推公式,有an +1bn +1b n1 a = lim ⋅2 n 2 +1 a n 2 −1ρ = lim⋅ = 0 <1, +1 a n 2 n →∞ n →∞ 4 a n +1∞⎛ a ⎞ ∑ n− ⎟ 也收敛. 1 由比值判别法知级数⎜ ⎝ a n +1⎠ n =1 七、(1)设 B 是秩为 2 的5×4 矩阵,α = (1,1, 2, 3 ,) T α = (− 1,1, 4, 1 , −) T5, 1, 8,9 α = ( − − 3) T1 2 是齐次方程组 Bx = 0 的解向量,求 Bx = 0 的解空间的一个标准正交基. ( )= − ( )= − =详解】 因秩 r B 2, 故解空间的维数为: 4 r B 4 2 2,【又α ,α 线性无关,可见α ,α 是解空间的基. 1 2 1 2 先将其正交化,令:⎡ ⎢ ⎢ ⎢ 3⎤−⎥ 4 2 = ⎢ 3 ⎥ ⎡ ⎢ ⎢ 1⎤ ⎡−1⎤ ⎡1⎤ ⎥ ⎥ 1 ⎢ ⎥ 1 ⎢ ⎥ ⎥ (α β ) , 1 1 ⎥ ⎢ ⎥ ⎢ ⎥ − β = α = ,β = α − 2 1 β = 1 1 1 ⎢ ⎥ 2 2 (β β ) ⎢ ⎥ ⎢ ⎥ ⎢ ⎢ ⎢ ⎥ ⎥2 , 43 2 1 1 10 3 ⎥ ⎢ ⎣⎥ ⎢ ⎥ ⎢ ⎥ 3⎦ ⎣−1⎦ ⎣3⎦ ⎢ ⎥ − 2 ⎣ ⎦再将其单位化,令:⎡ ⎢ ⎢ 1⎤⎡−2⎤ ⎥1 ⎢ ⎢ ⎥ ⎥ ⎥⎥β1 β1 1 1 β2 β2 1 1 ⎥ η = 1 = ,η = = ⎢ ⎥ 2 ⎢ 5 2 39 5 ⎢ ⎥ ⎢ ⎣3⎦ ⎣−3⎦ 即为所求的一个标准正交基.⎡ ⎢ 1 ⎤⎡ 2 −1 2 ⎤⎥ ⎢ ⎥ ⎥ (2)已知 ζ = 1 是矩阵 A = 5 a b 3 − ⎥2的一个特征向量. ⎢ ⎥ ⎢ ⎢ ⎣ − ⎥ ⎢− ⎣ 1 1 ⎦ ⎦ (I)试确定参数 a ,b 及特征向量ζ 所对应的特征值;问 A 能否相似于对角阵?说明理由.(II)【 详解】 (I )由题设,有 A ζ = λ ζ ,即⎡ ⎢ ⎢2 −1 2 ⎤ ⎡1⎤ ⎡ 1 ⎤⎥ ⎢ ⎥ ⎢ ⎥ 5 a b 3 1 = λ 1 , 0 ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎣−1 2 1 − ⎥ ⎢ ⎥ ⎢− ⎥ 1 ⎦ ⎣ ⎦ ⎣⎦ ⎧ ⎪ 2 −1− 2 = λ0 ⎨ 5+ a −3 = λ 也即 0 ⎪ − 1+ b + 2 = −λ0 ⎩解得a = −3,b = 0,λ = −1.( I I )由⎡ ⎢ 2 −1 2 ⎤λ − 2 1λ +0 −2⎥ A = 5 a b 3 − ⎥2,知 λ − E A = −5 3 −31 , = (λ + )3 ⎢ ⎥⎦ ⎢ −1 λ + 2 1⎣ 可见 λ = −1为 A 的三重根,但秩 r E A2, 从而(− − ) = λ = −1对应的线性无关特征向量只有3− r (− −)= 个,故 A 不可对角化.E A1 八、设 A 是 n 阶可逆方阵,将 A 的第i 行和第 j 行对换后得到的矩阵为 B .( 1) 证明B 可逆;AB − .1 ( 【 ( 2) 求 详解】 ( ) 1) 记E i , j 是由n 阶单位矩阵的第i 行和第 j 行对换后得到的初等矩阵,则( ) ,于是有 B = E (i , j ) A = − A ≠ 0.故B 可逆E i , j A B = − 1 AB − 1 = A ⎡E (ij ) A ⎤ = ⎦AA −1 E −1 (i , j ) E − (i , j )= E (i , j ). = 1 ( 2) ⎣ 九、从学校乘汽车到火车站的途中有 3 个交通岗,假设再各个交通岗遇到红灯的事件是象话2 独立的,并且概率都是 , 设X 为途中遇到红灯的次数,求随机变量X 的分布律、分布函数 5 和数学期望.⎛ ⎝ 2 ⎞ 5 ⎠【 详解】 X 服从二项分布B ⎜3, ⎟,其分布律为k 3−k ⎛ ⎝ 2 ⎞ ⎛ 2 ⎞ { P X k = } =C 3k ⋅ ⋅ 1− ,k = 0,1, 2, 3. ⎜ ⎟ ⎜ ⎟ 5 ⎠ ⎝ 5 ⎠ 因此,X 的分布函数为 ⎧ ⎪ ⎪ 0, x < 0 7 , , , 0 ≤ x <1 1≤ x < 2⎪ ⎪125 1 ( )= { ≤ } = F x P X x ⎨ ⎪ ⎪ ⎪ 8 1 25 117 2 ≤ x < 3 ⎪ ⎩125 2 6 5( )= ⋅ = X 的数学期望为 E X 3 . 5 十、设总体X 的概率密度为⎧ ⎨ ⎩(θ + ) x ,0 < x <1 θ 1 ( ) = f x 0,其他 其中θ > −1是未知参数,x , x ,", x 是来自总体X 的一个容量为n 的简单随机样本,分别 1 2 n用矩估计法和极大似然估计法求θ 的估计值.详解】 总体 X 的数学期望为【 θ +1 θ + 2+ ∞ 1 ( )= ∫ ( ) = ∫ (θ + ) θ +1 E X xf x dx 1 x dx = . −∞ 0θ +1 θ + 2 2X −1 ^ 令 设 = X ,得参数θ 的矩估计量为θ = . 1− X x , x ,", x 是相应于样本 X , X ,", X 的一组观测值,则似然函数为 1 2 n 1 2 n⎧ ⎪ θ ⎛ n ⎞ ∏ " (θ + ) n < < ( = )1 x ,0 x i 1 i 1, 2,3, ,n ⎜ ⎟ i L = ⎨ ⎝ 0 i =1 ⎠ ⎪ ⎩ 其他. 当 0 x 1 i 1, 2,3, ,n < < ( = " )时, L > 0 且i n ∑ ln L = n ln (θ + )+θ 1 ln x ii =1d ln L d θ n θ +1 n ∑ 令 = + ln x = 0,i i =1^ n得θ 的极大似然估计值为 θ = −1− n ∑ ln x ii =1^ n从而 θ 的极大似然估计值为 θ = −1− n ∑ ln x ii =1。
]1997考研数二真题及解析
四、(本题满分 8 分.)
2x1 + λ x2 − x3 = 1 λ 取何值时,方程组 λ x1 − x2 + x3 =2 无解,有惟一解或有无穷多解?并在有无穷
4x1 + 5x2 − 5x3 = −1
多解时写出方程组的通解.
五、(本题满分 8 分)
设曲线 L 的极坐标方程为 r = r(θ ) , M (r,θ ) 为 L 上任一点, M 0 (2, 0) 为 L 上一定点,
α1 1 2 −1 1
α 2
=
2
0
t
0
,
α3 0 −4 5 −2
应有
1 2 −1 1 2 −1 1 2 −1 2 0 t = 0 −4 t + 2 = 0 −4 t + 2 = 0 , 0 −4 5 0 −4 5 0 0 3 − t
5
解得 t = 3 .
2 − x2, x < 0 (B)
2 + x, x ≥ 0
2 − x2, x < 0 (C)
2 − x, x ≥ 0
2 + x2, x < 0 (D)
2 + x, x ≥ 0
Born to win
()
三、(本题共 6 小题,每小题 5 分,满分 30 分.)
4x2 + x −1 + x +1
lim
x → x0
f (x) =
f (x0 ), 则称函数
f (x) 在点
x0 连续.
2.如果函数在
x0
处连续,则有
l= im f (x)
x→x0 +
l= im f (x)
线性代数习题及答案(复旦版)
线性代数习题及答案习题一1. 求下列各排列的逆序数.(1) 341782659; (2) 987654321;(3) n (n -1)…321; (4) 13…(2n -1)(2n )(2n -2)…2. 【解】(1) τ(341782659)=11; (2) τ(987654321)=36;(3) τ(n (n -1)…3·2·1)= 0+1+2 +…+(n -1)=(1)2n n -; (4) τ(13…(2n -1)(2n )(2n -2)…2)=0+1+…+(n -1)+(n -1)+(n -2)+…+1+0=n (n -1). 2. 略.见教材习题参考答案. 3. 略.见教材习题参考答案.4. 本行列式4512312123122x x x D x xx=的展开式中包含3x 和4x 的项.解: 设 123412341234()41234(1)i i i i i i i i i i i i D a a a a τ=-∑ ,其中1234,,,i i i i 分别为不同列中对应元素的行下标,则4D 展开式中含3x 项有(2134)(4231)333(1)12(1)32(3)5x x x x x x x x x ττ-⋅⋅⋅⋅+-⋅⋅⋅⋅=-+-=-4D 展开式中含4x 项有(1234)4(1)2210x x x x x τ-⋅⋅⋅⋅=.5. 用定义计算下列各行列式.(1)0200001030000004; (2)1230002030450001.【解】(1) D =(-1)τ(2314)4!=24; (2) D =12.6. 计算下列各行列式.(1)214131211232562-----; (2) abac ae bdcd de bfcfef-------; (3)10011001101a b c d ---; (4) 1234234134124123. 【解】(1) 125062312101232562r r D+---=--;(2) 1114111111D abcdef abcdef --==------;21011111(3)(1)111011001011;b c D a a b cd c c d d d dabcd ab ad cd --⎡--⎤=+-=+++--⎢⎥⎣⎦=++++ 321221133142144121023410234102341034101130113(4)160.10412022200441012301110004r r c c r r c c r r r r c c r r D -+-+-++---====-------7. 证明下列各式.(1) 22222()111a ab b a a b b a b +=-;(2) 2222222222222222(1)(2)(3)(1)(2)(3)0(1)(2)(3)(1)(2)(3)a a a a b b b b c c c c d d d d ++++++=++++++; (3) 232232232111()111a a a a b b ab bc ca b b c c c c =++(4) 20000()000n n a b a b D ad bc c d cd==-;(5)121111111111111nni i i i na a a a a ==++⎛⎫=+ ⎪⎝⎭+∑∏. 【证明】(1)1323223()()()2()2001()()()()()2()21c c c c a b a b b a b b a b a b ba b a b b a b a b ba b a b a b a b --+--=--+--+==-=-=--左端右端.(2) 32213142412222-2-2232221446921262144692126021446921262144692126c c c c c c c c c c a a a a a a b b b b b b cc c c cc d d d d d d ---++++++++====++++++++左端右端.(3) 首先考虑4阶范德蒙行列式:2323232311()()()()()()()(*)11xx x a a a f x x a x b x c a b a c b c b b b c c c ==------从上面的4阶范德蒙行列式知,多项式f (x )的x 的系数为2221()()()()(),11a a ab bc ac a b a c b c ab bc ac b b cc ++---=++但对(*)式右端行列式按第一行展开知x 的系数为两者应相等,故231123231(1),11a a b b c c +- (4) 对D 2n 按第一行展开,得22(1)2(1)2(1)000000(),n n n n ab aba b a b D ab c dc dc d c d dc ad D bc D ad bc D ---=-=⋅-⋅=-据此递推下去,可得222(1)2(2)112()()()()()()n n n n n nD ad bc D ad bc D ad bc D ad bc ad bc ad bc ----=-=-==-=--=- 2().n n D ad bc ∴=-(5) 对行列式的阶数n 用数学归纳法.当n =2时,可直接验算结论成立,假定对这样的n -1阶行列式结论成立,进而证明阶数为n 时结论也成立.按D n 的最后一列,把D n 拆成两个n 阶行列式相加:112211211111011111110111111101111111.n n nn n n a a a a D a a a a a a D ---++++=++=+但由归纳假设11121111,n n n i i D a a a a ---=⎛⎫+= ⎪⎝⎭∑ 从而有11211211121111111111.n n n n n i i n n nn n i i i i i i D a a a a a a a a a a a a a a a ---=-===⎛⎫+=+ ⎪⎝⎭⎛⎫⎛⎫++== ⎪ ⎪⎝⎭⎝⎭∑∑∑∏8. 计算下列n 阶行列式.(1) 111111n x xD x=(2) 122222222232222n D n=; (3)000000000n x y x y D x y y x=. (4)n ij D a =其中(,1,2,,)ij a i j i j n =-= ;(5)2100012100012000002100012n D =.【解】(1) 各行都加到第一行,再从第一行提出x +(n -1),得11111[(1)],11n x D x n x=+-将第一行乘(-1)后分别加到其余各行,得1111110[(1)](1)(1).01n n x D x n x n x x --=+-=+---(2) 213111222210000101001002010002n r r n r r r r D n ---=-按第二行展开222201002(2)!.00200002n n =---(3) 行列式按第一列展开后,得1(1)(1)(1)10000000000000(1)0000000(1)(1).n n n n n n n n x y y x y x y D xy x y x y yxxyx x y y x y +-+-+=+-=⋅+⋅-⋅=+-(4)由题意,知11121212221201211012213123n n n n n nnn a a a n a a a D n a a a n n n --==---- 0122111111111111111111111n n ------------后一行减去前一行自第三行起后一行减去前一行0122112211111120000200002000000000220n n n n --------=-按第一列展开1122000201(1)(1)(1)(1)2002n n n n n n -----=---按第列展开.(5) 210002000001000121001210012100012000120001200000210002100021000120001200012n D ==+122n n D D --=-.即有 112211n n n n D D D D D D ----=-==-=由 ()()()112211n n n n D D D D D D n ----+-++-=- 得11,121n n D D n D n n -=-=-+=+. 9. 计算n 阶行列式.121212111n n n na a a a a a D a a a ++=+【解】各列都加到第一列,再从第一列提出11nii a=+∑,得232323123111111,11n n nn i n i na a a a a a D a a a a a a a =+⎛⎫=++ ⎪⎝⎭+∑ 将第一行乘(-1)后加到其余各行,得23111010011.001001n nnn i i i i a a a D a a ==⎛⎫=+=+ ⎪⎝⎭∑∑10. 计算n 阶行列式(其中0,1,2,,i a i n ≠=).1111123222211223322221122331111123n n n n n n n n n n nn n n n n n nn n n n na a a a ab a b a b a b D a b a b a b a b b b b b ----------------=.【解】行列式的各列提取因子1(1,2,,)n j a j n -=,然后应用范德蒙行列式.3121232222312112123111131212311211111()().n n n n n n n n n n n n n j i n n j i n ij b b b b a a a a b b b b D a a a a a a a b b b b a a a a b b a a a a a ------≤<≤⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫-= ⎪⎝⎭∏11. 已知4阶行列式41234334415671122D =;试求4142A A +与4344A A +,其中4j A 为行列式4D 的第4行第j 个元素的代数余子式. 【解】41424142234134(1)(1)3912.344344567167A A +++=-+-=+=同理43441569.A A +=-+=- 12. 用克莱姆法则解方程组.(1) 12312341234234 5,2 1, 2 2, 23 3.x x x x x x x x x x x x x x ++=⎧⎪+-+=⎪⎨+-+=⎪⎪++=⎩ (2) 121232343454556 1,56 0,56 0, 560, 5 1.x x x x x x x x x x x x x +=⎧⎪++=⎪⎪++=⎨⎪++=⎪+=⎪⎩【解】方程组的系数行列式为1110111013113121110131180;121052*********23140123123D -------=====≠-----1234511015101111211118;36;2211121131230323115011152111211136;18.122112120133123D D D D --====---====--故原方程组有惟一解,为312412341,2,2, 1.D D D Dx x x x D D D D========- 12345123452)665,1507,1145,703,395,212.15072293779212,,,,.66513335133665D D D D D D x x x x x ===-==-=∴==-==-=13. λ和μ为何值时,齐次方程组1231231230,0,20x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩ 有非零解?【解】要使该齐次方程组有非零解只需其系数行列式110,11121λμμ= 即(1)0.μλ-=故0μ=或1λ=时,方程组有非零解. 14. 问:齐次线性方程组12341234123412340,20,30,0x x x ax x x x x x x x x x x ax bx +++=⎧⎪+++=⎪⎨+-+=⎪⎪+++=⎩ 有非零解时,a ,b 必须满足什么条件?【解】该齐次线性方程组有非零解,a ,b 需满足11112110,113111aa b=-即(a +1)2=4b .15. 求三次多项式230123()f x a a x a x a x =+++,使得(1)0,(1)4,(2)3,(3)16.f f f f -====【解】根据题意,得0123012301230123(1)0;(1)4;(2)2483;(3)392716.f a a a a f a a a a f a a a a f a a a a -=-+-==+++==+++==+++=这是关于四个未知数0123,,,a a a a 的一个线性方程组,由于012348,336,0,240,96.D D D D D ====-=故得01237,0,5,2a a a a ===-= 于是所求的多项式为23()752f x x x =-+16. 求出使一平面上三个点112233(,),(,),(,)x y x y x y 位于同一直线上的充分必要条件. 【解】设平面上的直线方程为ax +by +c =0 (a ,b 不同时为0)按题设有1122330,0,0,ax by c ax by c ax by c ++=⎧⎪++=⎨⎪++=⎩ 则以a ,b ,c 为未知数的三元齐次线性方程组有非零解的充分必要条件为1122331101x y x y x y = 上式即为三点112233(,),(,),(,)x y x y x y 位于同一直线上的充分必要条件.习题 二1. 计算下列矩阵的乘积.(1)[]11321023⎡⎤⎢⎥-⎢⎥-⎢⎥⎢⎥⎣⎦=; (2)500103120213⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (3) []32123410⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (4)()111213112321222323132333a a a x x x x a a a x a a a x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (5) 111213212223313233100011001a a a a a a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (6) 1210131010101210021002300030003⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦. 【解】(1) 32103210;64209630-⎡⎤⎢⎥--⎢⎥⎢⎥-⎢⎥-⎣⎦(2)531⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦; (3) (10);(4) 3322211122233312211213311323322311()()()ij iji j a x a x a x a a x x a a x x a a x x a x x==++++++++=∑∑(5)111212132122222331323233a a a a a a a a a a a a +⎡⎤⎢⎥+⎢⎥⎢⎥+⎣⎦; (6) 1252012400430009⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦.2. 设111111111⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A ,121131214⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦B , 求(1)2-AB A ;(2) -AB BA ;(3) 22()()-=-A+B A B A B 吗?【解】(1) 2422;400024⎡⎤⎢⎥-=⎢⎥⎢⎥⎣⎦AB A (2) 440;531311⎡⎤⎢⎥-=--⎢⎥⎢⎥--⎣⎦AB BA (3) 由于AB ≠BA ,故(A +B )(A -B )≠A 2-B 2.3. 举例说明下列命题是错误的.(1) 若2=A O , 则=A O ; (2) 若2=A A , 则=A O 或=A E ; (3) 若AX =AY ,≠A O , 则X =Y . 【解】(1) 以三阶矩阵为例,取2001,000000⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦0A A ,但A ≠0(2) 令110000001-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,则A 2=A ,但A ≠0且A ≠E (3) 令11021,=,0111210110⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=≠=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A Y X 0 则AX =AY ,但X ≠Y .4. 设101A λ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦, 求A 2,A 3,…,A k .【解】2312131,,,.010101k k λλλ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A A A 5. 100100λλλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦A =, 求23A ,A 并证明:121(1)2000kk k k kk k k k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =.【解】2322233223213302,03.0000λλλλλλλλλλλ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A =A =今归纳假设121(1)2000kk k k kk k k k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =那么11211111(1)102010000(1)(1)2,0(1)00k k k k k kk k k kk k k k k k k k k k k k λλλλλλλλλλλλλλλ+---+-++=-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦+⎡⎤+⎢⎥⎢⎥=+⎢⎥⎢⎥⎣⎦A A A= 所以,对于一切自然数k ,都有121(1)2.000kk k k kk k k k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =6. 已知AP =PB ,其中100100000210001211⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦B =,P =求A 及5A .【解】因为|P |= -1≠0,故由AP =PB ,得1100200,611-⎡⎤⎢⎥==⎢⎥⎢⎥--⎣⎦A PBP而51551()()100100100100210000210200.211001411611--==⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦⎣⎦A PBP PB P A7. 设a bc d ba d c c d ab dcba ⎡⎤⎢⎥--⎢⎥⎢⎥--⎢⎥--⎣⎦A =,求|A |. 解:由已知条件,A 的伴随矩阵为22222222()()a b cd b a d c a b c d a b c d c d a b dcba *⎡⎤⎢⎥--⎢⎥-+++=-+++⎢⎥--⎢⎥--⎣⎦A =A 又因为*A A =A E ,所以有22222()a b c d -+++A =A E ,且0<A ,即 42222222224()()a b c d a b c d -++++++A =A A =A E 于是有22222()a b c d ==-+++A . 8. 已知线性变换112112212321331233232,3,232,2,45;3,x y y y z z x y y y y z z x y y y y z z =+=-+⎧⎧⎪⎪=-++=+⎨⎨⎪⎪=++=-+⎩⎩ 利用矩阵乘法求从123,,z z z 到123,,x x x 的线性变换. 【解】已知112233112233210,232415310,201013421124910116x y x y x y y z y z y z ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦-⎡⎤⎢⎥==-⎢⎥⎢⎥--⎣⎦X AY Y Bz X AY ABz z,从而由123,,z z z 到123,,x x x 的线性变换为11232123312342,1249,1016.x z z z x z z z x z z z =-++⎧⎪=-+⎨⎪=--+⎩ 9. 设A ,B 为n 阶方阵,且A 为对称阵,证明:'B AB 也是对称阵.【证明】因为n 阶方阵A 为对称阵,即A ′=A ,所以 (B ′AB )′=B ′A ′B =B ′AB , 故'B AB 也为对称阵.10. 设A ,B 为n 阶对称方阵,证明:AB 为对称阵的充分必要条件是AB =BA . 【证明】已知A ′=A ,B ′=B ,若AB 是对称阵,即(AB )′=AB .则 AB =(AB )′=B ′A ′=BA , 反之,因AB =BA ,则(AB )′=B ′A ′=BA =AB ,所以,AB 为对称阵.11. A 为n 阶对称矩阵,B 为n 阶反对称矩阵,证明: (1) B 2是对称矩阵.(2) AB -BA 是对称矩阵,AB +BA 是反对称矩阵. 【证明】因A ′=A ,B ′= -B ,故(B 2)′=B ′·B ′= -B ·(-B )=B 2;(AB -BA )′=(AB )′-(BA )′=B ′A ′-A ′B ′= -BA -A ·(-B )=AB -BA ;(AB +BA )′=(AB )′+(BA )′=B ′A ′+A ′B ′= -BA +A ·(-B )= -(AB +BA ).所以B 2是对称矩阵,AB -BA 是对称矩阵,AB+BA 是反对称矩阵. 12. 求与A =1101⎡⎤⎢⎥⎣⎦可交换的全体二阶矩阵. 【解】设与A 可交换的方阵为a b c d ⎡⎤⎢⎥⎣⎦,则由1101⎡⎤⎢⎥⎣⎦a b c d ⎡⎤⎢⎥⎣⎦=a b c d ⎡⎤⎢⎥⎣⎦1101⎡⎤⎢⎥⎣⎦, 得a cb d a a bcd c c d +++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦.由对应元素相等得c =0,d =a ,即与A 可交换的方阵为一切形如0a b a ⎡⎤⎢⎥⎣⎦的方阵,其中a,b 为任意数.13. 求与A =100012012⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦可交换的全体三阶矩阵. 【解】由于A =E +000002013⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦, 而且由111111222222333333000000,002002013013a b c a b c a b c a b c a b c a b c ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦可得11122233333323232302300023222.023333c b c cb c a b c c b c a a b b c c -⎡⎤⎡⎤⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦由此又可得1113232332322333230,230,20,30,2,3,232,233,c b c a a a c b c b b b c c b c c c =-==-===--=-=-所以2311233230,2,3.a a b c c b c b b ======-即与A 可交换的一切方阵为12332300203a b b b b b ⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦其中123,,a b b 为任意数. 14. 求下列矩阵的逆矩阵.(1) 1225⎡⎤⎢⎥⎣⎦; (2) 123012001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (3)121342541-⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦; (4) 1000120021301214⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (5) 5200210000830052⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (6) ()1212,,,0n n a a a a a a ⎡⎤⎢⎥⎢⎥≠⎢⎥⎢⎥⎣⎦,未写出的元素都是0(以下均同,不另注). 【解】(1) 5221-⎡⎤⎢⎥-⎣⎦; (2)121012001-⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦;(3) 12601741632142-⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦; (4) 100011002211102631511824124⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦; (5) 1200250000230058-⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦; (6) 12111n a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 15. 利用逆矩阵,解线性方程组12323121,221,2.x x x x x x x ++=⎧⎪+=⎨⎪-=⎩ 【解】因123111102211102x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,而1110022110≠- 故112311101111122.02211130122110221112x x x -⎡⎤⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦16. 证明下列命题:(1) 若A ,B 是同阶可逆矩阵,则(AB )*=B *A *. (2) 若A 可逆,则A *可逆且(A *)-1=(A -1)*. (3) 若AA ′=E ,则(A *)′=(A *)-1. 【证明】(1) 因对任意方阵c ,均有c *c =cc *=|c |E ,而A ,B 均可逆且同阶,故可得|A |·|B |·B *A *=|AB |E (B *A *)=(AB ) *AB (B *A *)=(AB ) *A (BB *)A * =(AB ) *A |B |EA *=|A |·|B |(AB ) *.∵ |A |≠0,|B |≠0, ∴ (AB ) *=B *A *.(2) 由于AA *=|A |E ,故A *=|A |A -1,从而(A -1) *=|A -1|(A -1)-1=|A |-1A . 于是A * (A -1) *=|A |A -1·|A |-1A =E ,所以(A -1) *=(A *)-1. (3) 因AA ′=E ,故A 可逆且A -1=A ′. 由(2)(A *)-1=(A -1) *,得(A *)-1=(A ′) *=(A *)′.17. 已知线性变换11232123312322,35,323,x y y y x y y y x y y y =++⎧⎪=++⎨⎪=++⎩ 求从变量123,,x x x 到变量123,,y y y 的线性变换. 【解】已知112233221,315323x y x y x y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦X AY且|A |=1≠0,故A 可逆,因而1749,637324---⎡⎤⎢⎥==-⎢⎥⎢⎥-⎣⎦Y A X X所以从变量123,,x x x 到变量123,,y y y 的线性变换为112321233123749,637,324,y x x x y x x x y x x x =--+⎧⎪=+-⎨⎪=+-⎩ 18. 解下列矩阵方程.(1) 12461321-⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦X =; (2)211211************--⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦X ;(3) 142031121101⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦X =; (4) 010100043100001201001010120-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦X .【解】(1) 令A =1213⎡⎤⎢⎥⎣⎦;B =4621-⎡⎤⎢⎥⎣⎦.由于13211--⎡⎤=⎢⎥-⎣⎦A 故原方程的惟一解为13246820.112127----⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦X A B同理(2) X =100010001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (3) X =11104⎡⎤⎢⎥⎢⎥⎣⎦; (4) X =210.034102-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦19. 若kA =O (k 为正整数),证明:121()k ---E A =E +A+A ++A .【证明】作乘法212121()()k k k k k ----=-----=-=E A E +A+A ++A E +A+A ++A A A A A E A E,从而E -A 可逆,且121()k ---E A =E +A+A ++A20.设方阵A 满足A 2-A -2E =O ,证明A 及A +2E 都可逆,并求A -1及(A +2E )-1. 【证】因为A 2-A -2E =0, 故212().2-=⇒-=A A E A E A E由此可知,A 可逆,且11().2-=-A A E同样地2220,64(3)(2)41(3)(2)4--=--=--+=---+=A A E A A E E,A E A E E,A E A E E. 由此知,A +2E 可逆,且1211(2)(3)().44-+=--=-A E A E A E21. 设423110123⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦A =,2AB =A+B ,求B . 【解】由AB =A +2B 得(A -2E )B =A .而22310,1102121==-≠---A E即A -2E 可逆,故11223423(2)110110121123143423386.1531102961641232129--⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==----⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦B A E A 22. 设1-P AP =Λ. 其中1411--⎡⎤⎢⎥⎣⎦P =,1002-⎡⎤⎢⎥⎣⎦=Λ, 求10A . 【解】因1-P 可逆,且1141,113-⎡⎤=⎢⎥--⎣⎦P 故由1Λ-A =P P 得10110101101012121010()()141410331102113314141033110211331365136412421.34134031242--==⎡⎤⎢⎥---⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥--⎢⎥⎣⎦⎡⎤⎢⎥--⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥--⎢⎥⎣⎦⎡⎤-+-+⎡⎤==⎢⎥⎢⎥----⎣⎦⎣⎦A P P P P ΛΛ 23. 设m 次多项式01()m m f x a a x a x =+++,记01()m m f a a a =+++A E A A ,()f A 称为方阵A 的m 次多项式.(1)12λλ⎡⎤⎢⎥⎣⎦A =, 证明12kk k λλ⎡⎤⎢⎥⎣⎦A =,12()()()f f f λλ⎡⎤=⎢⎥⎣⎦A ; (2) 设1-A =P BP , 证明1k k -B =PA P ,1()()f f -=B P A P . 【证明】(1)232311232200,00λλλλ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦A A 即k =2和k =3时,结论成立. 今假设120,0kkk λλ⎡⎤=⎢⎥⎣⎦A 那么111111222000,000kk k k k k λλλλλλ+++⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦AA A = 所以,对一切自然数k ,都有120,0kkk λλ⎡⎤=⎢⎥⎣⎦A 而011101220111012212()1100().()mm mm m mm m m f a a a a a a a a a a a a f f λλλλλλλλλλ=⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤+=⎢⎥+⎣⎦⎡⎤=⎢⎥⎣⎦A E +A++A ++++++ (2) 由(1)与A =P -1BP ,得B =PAP -1.且B k =( PAP -1)k = PA k P -1,又0111011011()()().mm m m mm f a a a a a a a a a f ----=+++=+++=++=B E B B E PAP PA P P E A+A PP A P24. a b c d ⎡⎤⎢⎥⎣⎦A =,证明矩阵满足方程2()0x a d x ad bc -++-=.【证明】将A 代入式子2()x a d x ad bc -++-得222222()()10()()010000.00a d ad bc a b a b a d ad bc c d c d ad bca bc ab bd a ad ab bd ad bc ac cd cb d ac cd ad d -++-⎡⎤⎡⎤⎡⎤=-++-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦-⎡⎤⎡⎤++++⎡⎤=-+⎢⎥⎢⎥⎢⎥-++++⎣⎦⎣⎦⎣⎦⎡⎤==⎢⎥⎣⎦A A E0 故A 满足方程2()0x a d x ad bc -++-=. 25. 设n 阶方阵A 的伴随矩阵为*A ,证明:(1) 若|A |=0,则|*A |=0;(2) 1n *-=A A .【证明】(1) 若|A |=0,则必有|A *|=0,因若| A *|≠0,则有A *( A *)-1=E ,由此又得 A =AE =AA *( A *)-1=|A |( A *)-1=0,这与| A *|≠0是矛盾的,故当|A | =0,则必有| A *|=0. (2) 由A A *=|A |E ,两边取行列式,得|A || A *|=|A |n ,若|A |≠0,则| A *|=|A |n -1 若|A |=0,由(1)知也有| A *|=|A |n -1.26. 设52003200210045000073004100520062⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A =,B . 求(1) AB ; (2)BA ; (3) 1-A ;(4)|A |k (k 为正整数). 【解】(1)2320001090000461300329⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦AB =; (2) 19800301300003314005222⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦BA =;(3) 11200250000230057--⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦A =; (4)(1)k k =-A . 27. 用矩阵分块的方法,证明下列矩阵可逆,并求其逆矩阵.(1)1200025000003000001000001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (2)00310021********-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦; (3)20102020130010*******0001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦.【解】(1) 对A 做如下分块 12⎡⎤=⎢⎥⎣⎦A A A 00其中1230012;,01025001⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦A A12,A A 的逆矩阵分别为1112100523;,01021001--⎡⎤⎢⎥-⎡⎤⎢⎥==⎢⎥-⎢⎥⎣⎦⎢⎥⎣⎦A A 所以A 可逆,且1111252000210001.000030001000001----⎡⎤⎢⎥-⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦A A A 同理(2)11112121310088110044.110055230055----⎡⎤-⎢⎥⎢⎥⎢⎥⎡⎤⎢⎥⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦A A A A A (3)1110012211300222.001000001001-⎡⎤--⎢⎥⎢⎥⎢⎥--⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A习题 三1. 略.见教材习题参考答案.2. 略.见教材习题参考答案.3. 略.见教材习题参考答案.4. 略.见教材习题参考答案.5.112223334441,,,=+=+=+=+βααβααβααβαα,证明向量组1234,,,ββββ线性相关.【证明】因为1234123412341312342()2()0+++=+++⇒+++=+⇒-+-=ββββααααββββββββββ 所以向量组1234,,,ββββ线性相关.6. 设向量组12,,,r ααα线性无关,证明向量组12,,,r βββ也线性无关,这里12.i i +++β=ααα【证明】 设向量组12,,,r βββ线性相关,则存在不全为零的数12,,,,r k k k 使得1122.r r k k k +++=0βββ把12i i +++β=ααα代入上式,得121232()()r r r r k k k k k k k +++++++++=0ααα.又已知12,,,r ααα线性无关,故1220,0, 0.r rr k k k k k k +++=⎧⎪++=⎪⎨⎪⎪=⎩该方程组只有惟一零解120r k k k ====,这与题设矛盾,故向量组12,,,r βββ线性无关.7. 略.见教材习题参考答案. 8. 12(,,,),1,2,,i i i in i n ααα==α.证明:如果0ij a ≠,那么12,,,n ααα线性无关.【证明】已知0ij a =≠A ,故R (A )=n ,而A 是由n 个n 维向量12(,,,),i i i in ααα=α1,2,,i n =组成的,所以12,,,n ααα线性无关.9. 设12,,,,r t t t 是互不相同的数,r ≤n .证明:1(1,,,),1,2,,n i i i t t i r -==α是线性无关的.【证明】任取n -r 个数t r +1,…,t n 使t 1,…,t r ,t r +1,…,t n 互不相同,于是n 阶范德蒙行列式21111212111121110,11n n rr r n r r r n nn nt t t t t t t t tt t t ---+++-≠从而其n 个行向量线性无关,由此知其部分行向量12,,,r ααα也线性无关.10. 设12,,,s ααα的秩为r 且其中每个向量都可经12,,,r ααα线性表出.证明:12,,,r ααα为12,,,s ααα的一个极大线性无关组.【证明】若 12,,,r ααα (1)线性相关,且不妨设12,,,t ααα (t <r ) (2)是(1)的一个极大无关组,则显然(2)是12,,,s ααα的一个极大无关组,这与12,,,sααα的秩为r 矛盾,故12,,,r ααα必线性无关且为12,,,s ααα的一个极大无关组.11. 求向量组1α=(1,1,1,k ),2α=(1,1,k ,1),3α=(1,2,1,1)的秩和一个极大无关组. 【解】把123,,ααα按列排成矩阵A ,并对其施行初等变换.1111111111111120010010101101001000111011001000k k k k k k k k ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥=→→→⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦A 当k =1时,123,,ααα的秩为132,,αα为其一极大无关组. 当k ≠1时,123,,ααα线性无关,秩为3,极大无关组为其本身.12. 确定向量3(2,,)a b =β,使向量组123(1,1,0),(1,1,1),==βββ与向量组1α=(0,1,1),2α=(1,2,1),3α=(1,0,-1)的秩相同,且3β可由123,,ααα线性表出.【解】由于123123011120(,,);120011111000112112(,,),110101002a b b a ⎡⎤⎡⎤⎢⎥⎢⎥==→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦A B αααβββ而R (A )=2,要使R (A )=R (B )=2,需a -2=0,即a =2,又12330112120(,,,),12001121110002a a b b a ⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦c αααβ要使3β可由123,,ααα线性表出,需b -a +2=0,故a =2,b =0时满足题设要求,即3β=(2,2,0). 13. 设12,,,n ααα为一组n 维向量.证明:12,,,n ααα线性无关的充要条件是任一n 维向量都可经它们线性表出.【证明】充分性: 设任意n 维向量都可由12,,,n ααα线性表示,则单位向量12,,,n εεε,当然可由它线性表示,从而这两组向量等价,且有相同的秩,所以向量组12,,,n ααα的秩为n ,因此线性无关.必要性:设12,,,n ααα线性无关,任取一个n 维向量α,则12,,,n ααα线性相关,所以α能由12,,,n ααα线性表示.14. 若向量组(1,0,0),(1,1,0),(1,1,1)可由向量组α1,α2,α3线性表出,也可由向量组β1,β2,β3,β4线性表出,则向量组α1,α2,α3与向量组β1,β2,β3,β4等价.证明:由已知条件,1001103111R ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,且向量组(1,0,0),(1,1,0),(1,1,1)可由向量组α1,α2,α3线性表出,即两向量组等价,且123(,,)3R =ααα,又,向量组(1,0,0),(1,1,0),(1,1,1)可由向量组β1,β2,β3,β4线性表出,即两向量组等价,且1234(,,,)3R =ββββ,所以向量组α1,α2,α3与向量组β1,β2,β3,β4等价.15. 略.见教材习题参考答案. 16. 设向量组12,,,m ααα与12,,,s βββ秩相同且12,,,m ααα能经12,,,s βββ线性表出.证明12,,,m ααα与12,,,s βββ等价.【解】设向量组12,,,m ααα (1)与向量组12,,,s βββ (2)的极大线性无关组分别为12,,,r ααα (3)和12,,,r βββ (4)由于(1)可由(2)线性表出,那么(1)也可由(4)线性表出,从而(3)可以由(4)线性表出,即1(1,2,,).ri ij jj a i r ===∑αβ因(4)线性无关,故(3)线性无关的充分必要条件是|a ij |≠0,可由(*)解出(1,2,,)j j r =β,即(4)可由(3)线性表出,从而它们等价,再由它们分别同(1),(2)等价,所以(1)和(2)等价.17. 设A 为m ×n 矩阵,B 为s ×n 矩阵.证明:max{(),()}()()R R R R R ⎡⎤≤≤+⎢⎥⎣⎦A AB A B B .【证明】因A ,B 的列数相同,故A ,B 的行向量有相同的维数,矩阵⎡⎤⎢⎥⎣⎦A B 可视为由矩阵A 扩充行向量而成,故A 中任一行向量均可由⎡⎤⎢⎥⎣⎦A B 中的行向量线性表示,故()R R ⎡⎤≤⎢⎥⎣⎦A A B同理()R R ⎡⎤≤⎢⎥⎣⎦A B B故有max{(),()}R R R ⎡⎤≤⎢⎥⎣⎦A AB B又设R (A )=r ,12,,,i i ir ααα是A 的行向量组的极大线性无关组,R (B )=k , 12,,,j j jkβββ是B 的行向量组的极大线性无关组.设α是⎡⎤⎢⎥⎣⎦A B 中的任一行向量,则若α属于A 的行向量组,则α可由12,,,i i ir ααα表示,若α属于B 的行向量组,则它可由12,,,j j jk βββ线性表示,故⎡⎤⎢⎥⎣⎦A B 中任一行向量均可由12,,,i i ir ααα,12,,,j j jk βββ线性表示,故()(),R r k R R ⎡⎤≤+=+⎢⎥⎣⎦A AB B 所以有max{(),()}()()R R R R R ⎡⎤≤≤+⎢⎥⎣⎦A AB A B B .18. 设A 为s ×n 矩阵且A 的行向量组线性无关,K 为r ×s 矩阵.证明:B =KA 行无关的充分必要条件是R (K )=r .【证明】设A =(A s ,P s ×(n -s )),因为A 为行无关的s ×n 矩阵,故s 阶方阵A s 可逆. (⇒)当B =KA 行无关时,B 为r ×n 矩阵.r =R (B )=R (KA )≤R (K ),又K 为r ×s 矩阵R (K )≤r ,∴ R (K )=r . (⇐)当r =R (K )时,即K 行无关,由B =KA =K (A s ,P s ×(n -s ))=(KA s ,KP s ×(n -s)) 知R (B )=r ,即B 行无关.19. 略.见教材习题参考答案.20. 求下列矩阵的行向量组的一个极大线性无关组.(1)2531174375945313275945413425322048⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (2)11221021512031311041⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦.【解】(1) 矩阵的行向量组1234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦αααα的一个极大无关组为123,,ααα;(2) 矩阵的行向量组1234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦αααα的一个极大无关组为124,,ααα.21. 略.见教材习题参考答案. 22. 集合V 1={(12,,,n x x x )|12,,,n x x x ∈R 且12n +++x x x =0}是否构成向量空间?为什么? 【解】由(0,0,…,0)∈V 1知V 1非空,设121122(,,,),(,,,),n n V V k =∈=∈∈x x x y y y αβR )则112212(,,,)(,,,).n n n x y x y x y k kx kx kx +=+++=αβα因为112212121212()()()()()0,()0,n n n n n n x y x y x y x x x y y y kx kx kx k x x x ++++++=+++++++=+++=+++= 所以11,V k V +∈∈αβα,故1V 是向量空间.23. 试证:由123(1,1,0),(1,0,1),(0,1,1)===ααα,生成的向量空间恰为R 3.【证明】把123,,ααα排成矩阵A =(123,,ααα),则11020101011==-≠A ,所以123,,ααα线性无关,故123,,ααα是R 3的一个基,因而123,,ααα生成的向量空间恰为R 3.24. 求由向量1234(1,2,1,0),(1,1,1,2),(3,4,3,4),(1,1,2,1)====αααα所生的向量空间的一组基及其维数. 【解】因为矩阵12345(,,,,)113141131411314214150121301213,113260001200012024140241400000=⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--------⎢⎥⎢⎥⎢⎥=→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A ααααα∴124,,ααα是一组基,其维数是3维的.25. 设1212(1,1,0,0),(1,0,1,1),(2,1,3,3),(0,1,1,1)===-=--ααββ,证明:1212(,)(,)L L =ααββ.【解】因为矩阵1212(,,,)1120112010110131,0131000001310000=⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=→⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦A ααββ 由此知向量组12,αα与向量组12,ββ的秩都是2,并且向量组12,ββ可由向量组12,αα线性表出.由习题15知这两向量组等价,从而12,αα也可由12,ββ线性表出.所以1212(,)(,)L L =ααββ.26. 在R 3中求一个向量γ,使它在下面两个基123123(1)(1,0,1),(1,0,0)(0,1,1)(2)(0,1,1),(1,1,0)(1,0,1)==-==-=-=αααβββ下有相同的坐标.【解】设γ在两组基下的坐标均为(123,,x x x ),即111232123233112233(,,)(,,),110011001110101101x x x x x x x x x x x x ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦γαααβββ即1231210,111000x x x --⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦求该齐次线性方程组得通解123,2,3x k x k x k ===- (k 为任意实数)故112233(,2,3).x x x k k k =++=-γεεε27. 验证123(1,1,0),(2,1,3),(3,1,2)=-==ααα为R 3的一个基,并把1(5,0,7),=β2(9,8,13)=---β用这个基线性表示.【解】设12312(,,),(,),==A B αααββ又设11112123132121222323,x x x x x x =++=++βαααβααα,即11121212321223132(,)(,,),x x x x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ββααα 记作 B =AX .则2321231235912359()111080345170327130327131235910023032713010330022400112r r r r r r -+↔--⎡⎤⎡⎤⎢⎥⎢⎥=−−−→−−−→---⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦-⎡⎤⎡⎤⎢⎥⎢⎥−−−−−→--⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦A B 作初等行变换因有↔A E ,故123,,ααα为R 3的一个基,且1212323(,)(,,),3312⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦ββααα即1123212323,332=+-=--βαααβααα.习题四1. 用消元法解下列方程组.(1) 12341241234123442362242322312338;x x x x ,x x x ,x x x x ,x x x x +-+=⎧⎪++=⎪⎨++-=⎪⎪++-=⎩(2) 1231231232222524246;x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩【解】(1)412213223123(1)14236142362204211021()322313223112338123381423603215012920256214236012920321502562r r r r r r r r r r -⋅---⋅↔--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=−−→−−−→⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦⎣⎦-⎡⎤⎢⎥---⎢⎥−−−−→⎢⎥---⎢⎥--⎣⎦-⎡⎤⎢⎥-⎢⎥⎢⎥---⎢⎥--⎣⎦A b 32434243324142360129200426100112614236142360129201292,0011260011260042610007425r r r r r r r +↔++-⎡⎤⎢⎥-⎢⎥−−−→−−−→⎢⎥-⎢⎥⎣⎦--⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥−−−→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦得12342343444236 292 126 7425x x x x x x x x x x +-+=⎧⎪-+=⎪⎨+=⎪⎪=⎩ 所以1234187,74211,74144,7425.74x x x x ⎧=-⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩(2)解②-①×2得 x 2-2x 3=0③-① 得2x 3=4 得同解方程组由⑥得 x 3=2,由⑤得 x 2=2x 3=4,由④得 x 1=2-2x 3 -2x 2 = -10, 得 (x 1,x 2,x 3)T =(-10,4,2)T . 2. 求下列齐次线性方程组的基础解系.(1) 123123123 320 5 03580;x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩ (2)1234123412341234 5 0 2303 8 0 3970;x x x x ,x x x x ,x x x x ,x x x x -+-=⎧⎪+-+=⎪⎨-++=⎪⎪+-+=⎩ (3) 1234512341234 22702345 03568 0;x x x x x ,x x x x ,x x x x ++++=⎧⎪+++=⎨⎪+++=⎩ (4)123451234512345 222 0 2 320247 0.x x x x x ,x x x x x ,x x x x x +-+-=⎧⎪+-+-=⎨⎪+-++=⎩ 【解】(1)123123123320503580.x x x ,x x x ,x x x ++=⎧⎪++=⎨⎪++=⎩ 32213123132132132151021021358042000r r r r r r +--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=−−−→−−−→--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A得同解方程组1323123232333723,23201,202,x x x x x x x x x x x x x ⎧=--=-⎪++=⎪⎧⇒⎨⎨=-=⎩⎪⎪=⎩得基础解系为T71122⎛⎫- ⎪⎝⎭. (2) 系数矩阵为32213142413211511151112302743181027413970414811510274() 2.00000000r r r r r r r r r r r ---------⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=−−−→−−−→⎢⎥⎢⎥--⎢⎥⎢⎥--⎣⎦⎣⎦--⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥⎣⎦A A∴ 其基础解系含有4()2R -=A 个解向量.1342123434342343344331225077222227400110x x x x x x x x x x x x x x x x x x x ⎡⎤⎡⎤⎡⎤---⎢⎥⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-+-=-⎧⎢⎥⎢⎥⎢⎥-⎢⎥⇒==+⎨⎢⎥⎢⎥⎢⎥-+=⎢⎥⎩⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦基础解系为。
1997考研数学一真题及答案详解
1997年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5分,每小题3分,满分15分.把答案在题中横线上.)(1) 2013sin coslim(1cos )ln(1)x x x x x x →+=++ . (2) 设幂级数nn n a x∞=∑的收敛半径为3,则幂级数11(1)n nn na x ∞+=-∑的收敛区间为 .(3) 对数螺线e θρ=在点2(,)(,)2e ππρθ=处的切线的直角坐标方程为 .(4) 设12243311A t -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,B 为三阶非零矩阵,且0AB =,则t = .(5) 袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是 .二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1) 二元函数22, (,)(0,0),(,)0, (,)(0,0)xyx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩在点(0,0)处 ( )(A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在 (2) 设在区间[,]a b 上()0,()0,()0,f x f x f x '''><>令12(),()()baS f x dx S f b b a ==-⎰,31[()()]()2S f a f b b a =+-,则 ( )(A) 123S S S << (B) 213S S S << (C) 312S S S << (D) 231S S S << (3) 2sin ()sin ,x t xF x e tdt π+=⎰设则()F x ( )(A) 为正常数 (B) 为负常数 (C) 恒为零 (D) 不为常数(4) 设111122232333,,,a b c a b c a b c ααα⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦则三条直线1110a x b y c ++=,2220a x b y c ++=,3330a x b y c ++=(其中220,1,2,3i i a b i +≠=)交于一点的充要条件是 ( )(A) 123,,ααα线性相关 (B) 123,,ααα线性无关(C) 秩123(,,)r ααα=秩12(,)r αα (D) 123,,ααα线性相关,12,αα线性无关(5) 设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量32X Y -的方差是 ( )(A) 8 (B) 16 (C) 28 (D) 44三、(本题共3小题,每小题5分,满分15分.)(1) 计算22(),I x y dV Ω=+⎰⎰⎰其中Ω为平面曲线22,0y z x ⎧=⎨=⎩绕z 轴旋转一周形成的曲面与平面8z =所围成的区域.(2) 计算曲线积分()()()C z y dx x z dy x y dz -+-+-⎰,其中C 是曲线221,2,x y x y z ⎧+=⎨-+=⎩从z 轴正向往z轴负向看,C 的方向是顺时针的.(3) 在某一人群中推广新技术是通过其中已掌握新技术的人进行的.设该人群的总人数为N ,在0t =时刻已掌握新技术的人数为0x ,在任意时刻t 已掌握新技术的人数为()x t (将()x t 视为连续可微变量),其变化率与已掌握新技术人数和未掌握新技术人数之积成正比,比例常数0,k >求()x t .四、(本题共2小题,第(1)小题6分,第(2)小题7分,满分13分.) (1) 设直线0,:30x y b L x ay z ++=⎧⎨+--=⎩在平面∏上,且平面∏与曲面22z x y =+相切于点(1,2,5)-,求,a b之值.(2) 设函数()f u 具有二阶连续导数,而(sin )xz f e y =满足方程22222xz z e z x y∂∂+=∂∂,求()f u .五、(本题满分6分)设()f x 连续,1()(),x f xt dt ϕ=⎰且0()limx f x A x→=(A 为常数),求()x ϕ'并讨论()x ϕ'在0x =处的连续性.六、(本题满分8分)设11112,(),1,2,...,2n n na a a n a +==+=证明: (1) lim n n a →∞存在;(2) 级数111n n n a a ∞=+⎛⎫- ⎪⎝⎭∑收敛.七、(本题共2小题,第(1)小题5分,第(2)小题6分,满分11分.)(1) 设B 是秩为2的54⨯矩阵,123(1,1,2,3),(1,1,4,1),(5,1,8,9)T T Tααα==--=--是齐次线性方程组0Bx =的解向量,求0Bx =的解空间的一个标准正交基.(2) 已知111ξ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦是矩阵2125312A a b -⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦的一个特征向量.(Ⅰ) 试确定参数,a b 及特征向量ξ所对应的特征值; (Ⅱ) 问A 能否相似于对角阵?说明理由.八、(本题满分5分)设A 是n 阶可逆方阵,将A 的第i 行和第j 行对换后得到的矩阵记为B . (1) 证明B 可逆; (2) 求1AB -.九、(本题满分7分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是25.设X 为途中遇到红灯的次数,求随机变量X 的分布律、分布函数和数学期望.十、(本题满分5分)设总体X 的概率密度为(1), 01,()0, x x f x θθ⎧+<<=⎨⎩其它,其中1θ>-是未知参数.12,,,n x x x 是来自总体X 的一个容量为n 的简单随机样本,分别用矩估计法和最大似然估计法求θ的估计量.1997年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5分,每小题3分,满分15分.把答案在题中横线上.) (1)【答案】32【分析】这是00型极限.注意两个特殊极限00sin ln(1)lim1,lim 1x x x x x x→→+==. 【解析】将原式的分子、分母同除以x ,得2001sin 13sin cos 3cos3limlim .ln(1)(1cos )ln(1)2(1cos )x x x x x x x x x x x x x x→→++==++++ 评注:使用洛必达法则的条件中有一项是0()lim()x x f x g x →''应存在或为∞,而本题中,[]200111(3sin cos )3cos 2cos sinlimlim 1cos (1cos )ln(1)sin ln(1)1x x x x x x x x x xx x x x x→→'+++=+'++-+++ 极限不存在,也不为∞,不满足使用洛必达法则的条件,故本题不能用洛必达法则.【相关知识点】1.有界量乘以无穷小量为无穷小量. (2)【答案】(2,4)-【解析】考察这两个幂级数的关系.令1t x =-,则()1212111n n n n n nn n n na ttna tta t ∞∞∞+-==='==∑∑∑. 由于逐项求导后的幂级数与原幂级数有相同的收敛半径,1nn n a t∞=∑的收敛半径为3⇒()1nn n a t ∞='∑的收敛半径为3.从而()2111n n n n n n t a t na t ∞∞+=='=∑∑的收敛半径为3,收敛区间即(-3,3),回到原幂级数11(1)n nn na x ∞+=-∑,它的收敛区间为313x -<-<,即(2,4)-.评注:幂级数的收敛区间指的是开区间,不考虑端点. 对于n n n a x ∞=∑,若1limn n na a ρ+→+∞=⇒它的收敛半径是1R ρ=.但是若只知它的收敛半径为R ,则⇒11limn n n a a R +→+∞=,因为1lim n n naa +→+∞可以不存在(对于缺项幂级数就是这种情形).(3)【答案】2x y e π+=【解析】求切线方程的主要问题是求其斜率x k y '=,而xy '可由e θρ=的参数方程 cos cos ,sin sin x e y e θθρθθρθθ⎧==⎪⎨==⎪⎩ 求得: 2sin cos sin cos ,1cos sin cos sin x x y e e y y x e e θθθπθθθθθθθθθθθθ='++''====-'--, 所以切线的方程为2(0)y e x π-=--,即2x y e π+=.评注:本题难点在于考生不熟悉极坐标方程与直角坐标方程之间的关系. (4)【答案】3t =-【解析】由0AB =,对B 按列分块,设[]123,,B βββ=,则[][][]123123,,,,0,0,0AB A A A A ββββββ===,即123,,βββ是齐次方程组0Ax =的解.又因B O ≠,故0Ax =有非零解,那么()1221024343373031131A tt t --==+=+=-,由此可得3t =-.评注:若熟悉公式0AB =,则()()3r A r B n +≤=,可知()3r A <,亦可求出3t =-. (5)【答案】25【解析】方法1:利用全概率公式.求第二人取得黄球的概率,一般理解为这事件与第一人取得的是什么球有关.这就要用全概率公式.全概率公式首先需要一个完全事件组,这就涉及到设事件的问题.设事件i A =“第i 个人取得黄球”,1,2i =,则完全事件组为11,A A (分别表示第一个人取得黄球和第一个人取得白球).根据题设条件可知{}1202505P A ===黄球的个数球的总数;{}1303505P A ===白球的个数球的总数;{}2120119|50149P A A -==-(第一个人取得黄球的条件下,黄球个数变成20119-=,球的总数变成50149-=,第二个人取得黄球的概率就为1949);{}2120|49P A A =(第一个人取得白球的条件下,黄球个数亦为20,球的总数变成50-1=49,第二个人取得黄球的概率就为2049).故应用全概率公式{}{}{}{}{}21211212193202||5495495P A P A P A A P A P A A =+=⋅+⋅=.方法二:利用“抽签原理”.只考虑第二个人取得的球,这50个球中每一个都会等可能地被第二个人取到.犹如几个人抽奖,其中只有一张彩票有奖,那么这几个人先抽与后抽,抽到有奖彩票的概率是一样的,这就是我们抽奖的公平性,此题中取到黄球的可能有20个,所以第二个人取到黄球的概率为202505=. 【相关知识点】1.全概率公式: {}{}{}{}{}2121121||P A P A P A A P A P A A =+; 2. 古典型概率公式:()i i A P A =有利于事件的样本点数样本空间的总数.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (1)【答案】(C)【解析】这是讨论(,)f x y 在(0,0)点是否连续,是否存在偏导数的问题.按定义00(0,0)(0,0)(,0),(0,)x y f d f df x f y x dx y dy ==∂∂==∂∂, 由于 (,0)0(),(0,)0()f x x f y y =∀=∀,⇒∃偏导数且(0,0)(0,0)0,0f f x y∂∂==∂∂. 再看(,)f x y 在(0,0)是否连续?由于222(,)(0,0)01lim(,)lim (0,0)2x y x y xx f x y f x x →→===≠+,因此(,)f x y 在(0,0)不连续.应选(C).评注:① 证明分段函数在某点连续,一般要用定义证,有难度.证明分段函数(,)f x y 在某点000(,)M x y 不连续的方法之一是:证明点(,)x y 沿某曲线趋于0M 时,(,)f x y 的极限不存在或不为00(,)f x y .② 证明00(,)(,)lim(,)x y x y f x y →不存在的重要方法是证明点(,)x y 沿两条不同曲线趋于000(,)M x y 时,(,)f x y 的极限不想等或沿某条曲线趋于0M 时,(,)f x y 的极限不存在.对于该题中的(,)f x y ,若再考察(,)(0,0)(,)(0,0)1lim (,)lim 00lim (,)2x y x y y x y xf x y f x y →→→====≠=, (,)(0,0)lim (,)x y f x y →⇒不存在.由本例可见,函数在一点处不连续,但偏导数却可以存在.容易找到这种例子,例如(,),f x y x y =+它在点(0,0)处连续,但(0,0)x f '与(0,0)y f '都不存在.可见二元函数的连续性与偏导数的存在性可以毫无因果关系.(2)【答案】(B)【解析】方法1:用几何意义.由()0,()0,()0f x f x f x '''><>可知,曲线()y f x =是上半平面的一段下降的凹弧,()y f x =的图形大致如右图.1()baS f x dx =⎰是曲边梯形ABCD 的面积;2()()S f b b a =-是矩形ABCE 的面积;31[()()]()2S f a f b b a =+-是梯形ABCD 的面积.由图可见213S S S <<,应选(B).方法2:观察法.因为是要选择对任何满足条件的()f x 都成立的结果,故可以取满足条件的特定的()f x 来观察结果是什么.例如取21(),[1,2]f x x x=∈,则 2123213211115,,248S dx S S S S S x ====⇒<<⎰.【评注】本题也可用分析方法证明如下:由积分中值定理,至少存在一个点ξ,使()()(),baf x dx f b a a b =-<<⎰ξξ成立,再由()0,f x '<所以()f x 是单调递减的,故()(),f f b ξ>从而12()()()()()baS f x dx f b a f b b a S ==->-=⎰ξ.为证31S S >,令1()[()()]()(),2x a x f x f a x a f t dt ϕ=+--⎰则()0,a ϕ=11()()()(()())()2211()()(()())2211()()()()()()221(()())(),2x f x x a f x f a f x f x x a f x f a f x x a f x a a x f x f x a ''=-++-'=---''=---<<''=--ϕηηη拉格朗日中值定理 由于()0f x ''>,所以()f x '是单调递增的,故()()f x f ''>η,()0x '>ϕ,即()x ϕ在[,]a b 上单调递增的.由于()0,a ϕ=所以()0,[,]x x a b >∈ϕ,从而1()[()()]()()02bab f b f a b a f t dt =+-->⎰ϕ,即31S S >.因此,213S S S <<,应选(D).如果题目改为证明题,则应该用评注所讲的办法去证,而不能用图证.【相关知识点】1.积分中值定理:如果函数()f x 在积分区间[,]a b 上连续,则在(,)a b 上至少存在一个点ξ,使下式成立:()()()()ba f x dx fb a a b =-<<⎰ξξ.这个公式叫做积分中值公式.2. 拉格朗日中值定理:如果函数()f x 满足在闭区间[,]a b 上连续,在开区间(),a b 内可导,那么在(),a b 内至少有一点()a b ξξ<<,使等式()()()()f b f a f b a ξ'-=-成立. (3)【答案】(A) 【解析】由于函数sin sin tet 是以2π为周期的函数,所以, 22sin sin 0()sin sin x t t xF x e tdt e tdt +==⎰⎰ππ,()F x 的值与x 无关.不选D,(周期函数在一个周期的积分与起点无关).估计2sin 0sin t e tdt ⎰π的值有多种方法.方法1:划分sin sin te t 取值正、负的区间.22sin sin sin 0sin sin 0sin sin 0()sin sin sin sin (sin )()sin t t t tu t t F x e tdt e tdt e tdtetdt e u due e tdt--==+=+-=-⎰⎰⎰⎰⎰⎰πππππππ当0t π<<时,sin 0t >,sin sin 0,tt e e -->所以()0F x >.选(A).方法2:用分部积分法.22sin sin 022sin sin 00220sin 2sin 20()sin cos cos cos (11)cos cos 0.tt t tt t F x etdt e d te ttde e e t dt e t dt ==-=-+=--+=>⎰⎰⎰⎰⎰ππππππ故应选(A).【评注】本题的方法1十分有代表性.被积函数在积分区间上可以取到正值与负值时,则常将积分区间划分成若干个,使每一个区间内,被积函数保持确定的符号,然后再作适当的变量变换,使几个积分的积分上下限相同,然后只要估计被积函数的正、负即可. (4)【答案】(D)【解析】方法1:三条直线交于一点的充要条件是方程组111111222222333333000a x b y c a x b y c a x b y c a x b y c a x b y c a x b y c++=+=-⎧⎧⎪⎪++=⇒+=-⎨⎨⎪⎪++=+=-⎩⎩ 有唯一解.将上述方程组写成矩阵形式:32A X b ⨯=,其中112233a b A a b a b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦是其系数矩阵,123c b c c -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦.则AX b =有唯一解⇔[]()2r A r A b ==(方程组系数矩阵的秩与增广矩阵的秩相等且等于未知量的个数),即A 的列向量组12,αα线性相关.所以应选(D). 方法2:用排除法.(A)123,,ααα线性相关,当123ααα==时,方程组的系数矩阵与增广矩阵的秩相等且小于未知量的个数,则①式有无穷多解,根据解的个数与直线的位置关系.所以三条直线重合,相交有无穷多点,(A)不成立.(B)123,,ααα线性无关,3α不能由12,αα线性表出,方程组的系数矩阵与增广矩阵的秩不相等,方程组无解,根据解得个数与直线的位置关系,所以一个交点也没有,(B)不成立.(C)秩123(,,)r ααα=秩12(,)r αα,当123(,,)r ααα=12(,)1r αα=时,三条直线重合,不只交于一点,与题设条件矛盾,故(C)不成立.由排除法知选(D). 评注:应重视线性代数中的几何背景.空间直线方程及平面方程其在空间的位置关系应与线性代数中的线性相关性、秩及方程组的解及其充要条件有机的结合起来. (5)【答案】(D)【解析】因X 与Y 独立,故3X 和2Y 也相互独立.由方差的性质,有(32)(3)(2)9()4()44D X Y D X D Y D X D Y -=+-=+=.【相关知识点】方差的性质:X 与Y 相互独立时,22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数.三、(本题共3小题,每小题5分,满分15分.)(1)【分析】三重积分的计算有三种方法:直角坐标中的计算,柱面坐标中的计算,球面坐标中的计算,其中柱面坐标中又可分先z 后(,)r θ,或先(,)r θ后z 两种方法.本题的区域Ω为绕z 轴旋转的旋转体,用柱面坐标先(,)r θ后z 方便.【解析】方法1:采用柱面坐标,先(,)r θ后z ,为此,作平面z z =.{}22(,,)|2,,z D x y z x y z z z =+≤=82220()zD I x y dv dz r rdrd θΩ=+=⋅⎰⎰⎰⎰⎰⎰(将直角坐标化为柱面坐标)82301024.3dz d dr ππθ==⎰⎰ 方法2:将Ω投影到xOy 平面,得圆域{}22(,)|16,D x y x y =+≤用柱面坐标先z 后(,)r θ,有22248422330021024()2(8).23r r I x y dv d dr r dz r dr ππθπΩ=+==-=⎰⎰⎰⎰⎰⎰评注:做二次积分或三次积分时,如果里层积分的结果不含外层积分变量,那么里、外层积分可以分别积分然后相乘即可.如本例方法2中20d πθ⎰可以单独先做.(2)【解析】方法1:写出C 的参数方程,然后用曲线积分化为定积分的公式.由平面上圆的参数方程易写出C 的参数方程为:()cos ,()sin ,()2cos sin x x t t y y t t z z t t t ======-+,其中2z x y =-+.由C 的方向知,C 在Oxy 平面上的投影曲线相应地也是顺时针的,于是t 从π2到0. 在把参数方程代入被积表达式之前,先用C 的方程将被积表达式化简,有222022220()()()(2)()(2)(2())()[cos (2cos sin )]cos (2())()0[2cos sin cos 2cos ]02cos 2.C CI z y dx x z dy x y dzx dx x z dy z dzx t dx t t t t tdt z t dz t t t t t dt tdt ππππππ=-+-+-=-+-+-=-+--++-=+--+=-=-⎰⎰⎰⎰⎰⎰⎰方法2:用斯托克斯公式来计算.记S 为平面2x y z -+=上C 所围有限部分,由L 的定向,按右手法则S 取下侧.原积分2SS dydzdzdx dxdy dxdy x y z z yx zx y∂∂∂==∂∂∂---⎰⎰⎰⎰. S 在xy 平面上的投影区域xy D 为221x y +≤.将第二类曲面积分化为二重积分得原积分22xyD dxdy π=-=-⎰⎰.这里因S 取下侧,故公式取负号.(3)【解析】已掌握新技术人数()x t 的变化率,即dxdt,由题意可立即建立初值问题 0(),(0).dxkx N x dtx x ⎧=-⎪⎨⎪=⎩ 把方程分离变量得,()dx kdt x N x =-111()dx kdt N x N x+=-.积分可得 11ln xkt c N N x=+-,1kNt kNt cNe x ce =+. 以0(0)x x =代入确定00x c N x =-,故所求函数为000.kNtkNtNx e x N x x e =-+四、(本题共2小题,第(1)小题6分,第(2)小题7分,满分13分.)(1)【分析】求出曲面22:0S x y z +-=在点0(1,2,5)M -(位于S 上)处的切平面方程,再写出L 的参数方程,L 上的点的坐标应满足切平面方程,由此定出参数a 与b . 【解析】曲面S 在点0M 的法向量{2,2,1}{2,4,1}M n x y =-=--.切平面∏的方程是2(1)4(2)(5)0x y z --+--=,即 2450x y z ---=.将直线L 的方程改写成参数方程,(1) 3.y x b z a x ab =--⎧⎨=---⎩ 将它代入平面∏方程得24()(1)350x x b a x ab -----++-=,即(5)420a x b ab +++-=.解得5,2a b =-=-.(2)【分析】(sin )x z f e y =是由一元函数()z f u =与二元函数sin xu e y =复合而成的二元函数,它满足方程22222xz z e z x y∂∂+=∂∂. (*) 为了求()f u ,我们将用复合函数求导法,导出z x ∂∂,z y ∂∂,22z x ∂∂,22zy ∂∂与(),()f u f u '''的关系,然后由(*)式导出()f u 满足的常微分方程,从而求出()f u . 【解析】先用复合函数求导法导出22222222()()sin ,()()cos ,()sin ()sin ,()cos ()sin .x x x x x xz u z u f u f u e y f u f u e y x x y y z z f u e y f u e y f u e y f u e y xy∂∂∂∂''''====∂∂∂∂∂∂''''''=+=-∂∂将后两式代入(*)得 222222()()x xz z f u e e f u x y∂∂''+==∂∂,即 ()()0f u f u ''-=.这是二阶线性常系数齐次方程,相应的特征方程210λ-=的特征根为1λ=±,因此求得12()u u f u C e C e -=+,其中1C 、2C 为任意常数.五、(本题满分6分)【分析】通过变换将()x ϕ化为积分上限函数的形式,此时0x ≠,但根据0()limx f x A x→=,知 (0)0f =,从而1(0)(0)0f dt ϕ==⎰,由此,利用积分上限函数的求导法则、导数在一点处的定义以及函数连续的定义来判定()x ϕ'在0x =处的连续性. 【解析】由题设0()limx f x A x→=知,(0)0,(0),f f A '==且有(0)0ϕ=.又 10()()()(0),xf u du x f xt dtu xtx xϕ==≠⎰⎰于是 02()()()(0),xxf x f u dux x xϕ-'=≠⎰由导数定义,有0200()()(0)()(0)limlimlim22xx x x f u du x f x Axx x ϕϕϕ→→→-'====⎰. 而 022000()()()()lim ()limlim lim x xx x x x xf x f u duf u du f x x x x xϕ→→→→-'==-⎰⎰ (0)22A AA ϕ'=-==, 从而知()x ϕ'在0x =处连续. 评注:对1()()x f xt dt ϕ=⎰作积分变量变换xt u =时,必附加条件0x ≠.因此,由01()()xx f u du x ϕ=⎰得到的()x ϕ'也附加有条件0x ≠.从而(0)ϕ'应单独去求.六、(本题满分8分)【解析】(1)先证n a 单调有界.显然0(1,2,)n a n >=,由初等不等式:对∀非负数,x y必有x y +≥,易知 1111()21(1,2,)22n n n a a n a +=+≥⋅==.再考察 121111(1)(1)1221n n n a a a +=+≤+=.因此,n a 单调下降且有界,存在极限lim n n a →+∞.(2)方法1:由n a 单调下降11110n n n n n a a a a a +++-⇒-=≥. ⇒原级数是正项级数.现适当放大,注意1n a ≥,得111101.n n n n n n n a a a a a a a ++++-≤-=≤- 11()nn n aa ∞+=-∑的部分和1111()n k k n k S a a a a ∞++==-=-∑,11lim lim n n n n S a a +→+∞→+∞⇒=-存在,可见级数11()n n n a a ∞+=-∑收敛.由比较判别法知,级数111n n n a a ∞=+⎛⎫- ⎪⎝⎭∑也收敛. 方法2:令11nn n a b a +=-,利用递推公式,有 221221111lim lim 0141n n n n n n n n b a a b a a ρ+→∞→∞++-==⋅⋅=<+, 由比值判别法知级数111n n n a a ∞=+⎛⎫- ⎪⎝⎭∑也收敛. 【评注】由证明中可见,有下述结论:11()nn n aa ∞+=-∑收敛⇔lim n n a →∞存在.在考研题中多次用到这个知识点,考生可倍加注意.七、(本题共2小题,第(1)小题5分,第(2)小题6分,满分11分.)【分析】要求0Bx =的解空间的一个标准基,首先必须确定此解空间的维数以及相应个数的线性无关的解.【解析】(1)因秩()2r B =,故解空间的维数()422n r B -=-=,又因12,αα线性无关,12,αα是方程组0Bx =的解,由解空间的基的定义,12,αα是解空间的基.用施密特正交化方法先将其正交化,令:[][][][]1121221111,1,2,3,(,)521,1,4,11,1,2,32,1,5,3.(,)153TT T T βααββαβββ===-=---=--将其单位化,有]]1212121,1,2,3,2,1,5,3T T ββηηββ====--, 即为所求的一个标准正交基.评注:此题是一个基本计算题,只要求得一个齐次方程组的基础解系再标准正交化即可. 由于解空间的基不唯一,施密特正交化处理后标准正交基也不唯一.已知条件中12,,αα3α是线性相关的(注意12323ααα-=),不要误认为解空间是3维的.(2)(I)设ξ是矩阵A 的属于特征值0λ的特征向量,即0,A ξλξ=021*******,1211a b λ-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦即 0002125312a b λλλ--=⎧⎪+-=⎨⎪-++=-⎩0130,a ,b λ⇒=-=-=. (II)将(1)解得的30a ,b =-=代入矩阵A ,得212533102A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦. 其特征方程为3212533(1)0,102E A λλλλλ---=-+-=+=+知矩阵A 的特征值为1231λλλ===-.由于 312()5232101r E A r --⎡⎤⎢⎥--=--=⎢⎥⎢⎥⎣⎦, 从而1λ=-只有一个线性无关的特征向量,故A 不能相似对角化. 评注:A 相似于对角阵⇔A 的每个i r 重特征值有i r 个线性无关的特征向量.八、(本题满分5分)【解析】由于ij B E A =,其中ij E 是初等矩阵10111ij i E j ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(1)因为A 可逆,0A ≠,故0ij ij B E A E A A ==⋅=-≠,所以B 可逆.(2)由ij B E A =,知11111().ij ij ij ij AB A E A AA E E E -----====评注:①本题考查初等矩阵的概念与性质,要知道初等变换与初等矩阵左右乘的关系以及初等矩阵的逆矩阵的三个公式.有的考生写不出初等矩阵ij E ,或将B 写成ij B AE =,或不知道1ij ij E E -=,或认为A B =±,而不知道B A =-等,这些要引起注意.②经初等变换矩阵的秩不变,易知()()r B r A n ==,也可证明B 可逆.九、(本题满分7分)【分析】首先需要清楚二项分布的产生背景.它的背景是:做n 次独立重复试验,每次试验的结果只有两个(要么成功,要么失败),每次试验成功的概率都为p ,随机变量X 表示n 次试验成功的次数,则~(,)X B n p .这道题中经过三个交通岗,在各个交通岗遇到红灯的事件是独立的,概率都为25,相当于做了3次独立重复试验,试验的结果只有两个(要么遇到红灯(成功),要么不遇到(失败)),每次成功的概率都为25,X 表示遇到红灯的次数,相当于做了3次试验成功的次数,故2~(3,)5X B . 【解析】由题意知:2~(3,)5X B ,由二项分布的分布律的定义,有{}33(1),0,1,2,3.k kk p X k C p p k -==-=再由离散型随机变量分布函数的定义,有()kk xF x p≤=∑,(1)当0x <时,()0kk xF x p≤==∑;(2)当01x ≤<,{}300300322327()0()(1)555125k k xF x p p P X C -≤⎛⎫=====-== ⎪⎝⎭∑;(3)当12x ≤<,{}{}1131013272281()01()(1)12555125k k xF x p p p P X P X C -≤==+==+==+-=∑; (4)当23x ≤<,{}{}{}012()012kk xF x pp p p P X P X P X ≤==++==+=+=∑223238122117()(1)12555125C -=+-=; (5)当3x ≥时 {}{}{}{}0123()01231kk xF x pp p p p P X P X P X P X ≤==+++==+=+=+==∑.因此X 的分布函数为:0,0,27,01,12581(),12,125117,23,1251,3.x x F x x x x <⎧⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪≥⎪⎩ 2~(3,)5X B 的数学期望为26355EX np ==⋅=.【相关知识点】1.二项分布分布律的定义:{}(1),0,1,,k kn k n P X k C p p k n -==-=.2.离散型随机变量分布函数的定义:{}()i ix xF x P X x p ≤=≤=∑.3.二项分布~(,)X B n p 的期望为EX np =.十、(本题满分5分)【分析】矩估计的实质在于用样本矩来估计相应的总体矩,此题中被估参数只有一个,故只需要用样本一阶原点矩(样本均值)来估计总体的一阶原点矩(期望);最大似然估计,实质上就是找出使似然函数最大的那个参数,问题的关键在于构造似然函数. 【解析】(1)矩估计 由期望的定义:1110()()(1)(1)E X xf x dx x x dx x dx θθθθ+∞+-∞==+=+⎰⎰⎰1211001(1)(1)22x x dx θθθθθθθ+++=+=+=++⎰.样本均值11n i i X X n ==∑,用样本均值估计期望有EX X =,即12X θθ+=+,解得未知参数θ的矩估计量为:^21.1X Xθ-=- (2)最大似然估计设 12,,...,n x x x 是相应于样本12,,...,n X X X 的样本值,则样本的似然函数为:1(1)01(1,2,,)0 .nn ii i x x i n L θθ=⎧+<<=⎪=⎨⎪⎩∏其他当01i x <<时,10ni i x θ=>∏,又1θ>-,故10θ+>,即()10nθ+>.所以()0L θ>.111ln ln (1)ln(1)ln ln(1)ln n n nn i i i i i i L x n x n x θθθθθθ===⎡⎤=+=++=++⎢⎥⎣⎦∑∑∏.(由于ln L 是单调递增函数,L 取最大与ln L 取最大取到的θ是一致的,而加对数后能把连乘转换成累加,这样求导,找极值比较方便)1ln ln 1ni i d L nx d θθ==++∑. 令1ln ln 01n i i d L nx d θθ==+=+∑, 解得θ的最大似然估计值为^11ln nii nxθ==--∑,从而得θ的最大似然估计量为:^11ln nii nXθ==--∑.。
考研数学理学真题及答案
考研数学理学真题及答案考研数学理学真题及答案考研数学是考研复试的一项重要科目,对于理学专业的考生来说尤为重要。
为了帮助考生更好地备考数学理学,本文将介绍一些历年的数学理学真题及其答案,并探讨一些解题技巧和备考建议。
一、线性代数线性代数是数学理学中的一门基础课程,也是考研数学中的重点内容。
下面是一个线性代数的真题:1. 设A是n阶实对称矩阵,证明存在正交矩阵P,使得P^TAP是对角矩阵。
答案及解析:首先,由于A是实对称矩阵,所以存在n个线性无关的特征向量。
将这n个特征向量构成一个矩阵P,由于特征向量是线性无关的,所以P是可逆的。
又因为A是实对称矩阵,所以A可以对角化,即存在对角矩阵D和可逆矩阵P,使得P^TAP=D。
由于P是正交矩阵,所以P^T=P^-1,因此有P^TAP=P^-1AP=D,即P^TAP是对角矩阵。
二、数学分析数学分析是数学理学中的另一门重要课程,也是考研数学中的重点内容。
下面是一个数学分析的真题:2. 设函数f(x)在区间[a, b]上连续,且在(a, b)内可导,证明在(a, b)内至少存在一点ξ,使得f'(ξ)=[f(b)-f(a)]/(b-a)。
答案及解析:根据拉格朗日中值定理,存在ξ∈(a, b),使得f'(ξ)=[f(b)-f(a)]/(b-a)。
因此,只需要证明f(x)在(a, b)上满足拉格朗日中值定理的条件即可。
根据题目给出的条件,f(x)在[a, b]上连续,且在(a, b)内可导,所以满足拉格朗日中值定理的条件。
因此,存在ξ∈(a, b),使得f'(ξ)=[f(b)-f(a)]/(b-a)。
三、概率论与数理统计概率论与数理统计是数学理学中的一门重要课程,也是考研数学中的重点内容。
下面是一个概率论与数理统计的真题:3. 设X和Y是两个相互独立的随机变量,其概率密度函数分别为f(x)和g(y),求Z=X+Y的概率密度函数。
答案及解析:根据概率论的知识,两个相互独立的随机变量的概率密度函数的乘积即为它们的联合概率密度函数。
华东师范大学1997-2015年高等代数考研真题及解答完整版
华东师范大学1997年攻读硕士学位研究生入学试题一.(10分)计算下列行列式:11222221122111112211...1(1)(1) (1)(1)(1)...(1)(1)(1)...(1)n n nn n n n n n x x x x x x x x x x x x x x x x x x ------------二.(15分)设5200200000520022A -⎛⎫ ⎪-⎪= ⎪- ⎪-⎝⎭,求正交矩阵T,使'1T AT T AT -=为对角形矩阵,并写出这个对角形矩阵.三.(15分)设200201A a b c ⎛⎫⎪= ⎪ ⎪-⎝⎭是复矩阵.1.求出A 的一切可能的Jordan 标准形;2.给出A 可对角化的一个充要条件.四.(15分)已知3阶实数矩阵()ij A a =满足条件(,1,2,3)ij ij a A i j ==,其中ij A 是ij a 的代数余子式,且331a =-,求: 1.A2.方程组123001x A x x ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭的解.五.(15分)证明:一个非零复数α是某一有理系数非零多项式的根⇔存在一个有理系数多项式()f x 使得1().f αα=六.(15分)设A 是n 阶反对称阵。
证明:1.当n 为奇数时|A|=0.当n 为偶数时|A|是一实数的完全平方;2.A 的秩为偶数 .七.(15分)设V 是有限维欧氏空间.内积记为(,)αβ.又A 设是V 的一个正交变换。
记{}{}12|,,|V V V V ααααααα=A =∈=-A ∈,求证:1.12,V V 是v 的子空间;2. 12.V V V =⊕八.(15分)设n 阶实数方阵的特征值全是实数且A 的所有1阶主子式之和为0,2阶主子式之和也为0.求证:0n A =九.(15分)设A,B 均是正定矩阵,证明: 1 .方程0A B λ-=的根均大于0; 2 .方程0A B λ-=所有根等于1⇔A=B.华东师范大学1998年攻读硕士学位研究生入学试题一.(10分)计算下列行列式:131********...2223333 (336)...n n n n n n n n n n n n n n-------------二.(10分)证明:方程组111122121122221122...0...0(1) 0n n n ns s sn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩的解全是方程1122...0(2)n n b x b x b x +++=的解的充分必要条件是:12(,...,)n b b b β=可由向量组12,...,s ααα线性表示,其中12(,,...,)(1,2,...,).i i i in i s αααα==三(15分)设32()f x x ax bx c =+++是整系数多项式,证明:若ac+bc 为奇数,则f(x)在有理数域上不可约.四(15分)设A 是非奇异实对称矩阵,B 是反对称实方阵。