DSP课设(精)

合集下载

dsp简单课程设计

dsp简单课程设计

dsp简单课程设计一、教学目标本课程旨在让学生了解和掌握DSP(数字信号处理器)的基本原理和应用,培养学生对DSP技术的兴趣和热情。

知识目标:使学生掌握DSP的基本概念、工作原理和主要性能指标;了解DSP 在不同领域的应用,如通信、音视频处理、工业控制等。

技能目标:通过实践操作,培养学生使用DSP芯片进行程序设计和系统应用的能力;使学生能够运用DSP技术解决实际问题,提高创新能力。

情感态度价值观目标:培养学生对新技术的敏感度,增强其对DSP技术的自信心和责任感;激发学生对电子科技和自动化的兴趣,培养其积极向上的学习态度。

二、教学内容本课程的教学内容主要包括DSP的基本原理、DSP芯片的结构与工作原理、DSP程序设计方法和DSP应用实例。

1.DSP基本原理:介绍DSP的定义、分类和发展历程,使学生了解DSP技术的基本概念。

2.DSP芯片结构与工作原理:详细讲解DSP芯片的内部结构、工作原理和主要性能指标,以便学生能够深入理解DSP的运作方式。

3.DSP程序设计方法:教授DSP的编程语言、程序设计流程和调试技巧,使学生具备实际的编程能力。

4.DSP应用实例:分析DSP技术在通信、音视频处理、工业控制等领域的应用实例,帮助学生了解DSP技术的广泛应用。

三、教学方法为了提高教学效果,本课程将采用讲授法、讨论法、案例分析法和实验法等多种教学方法。

1.讲授法:通过教师的讲解,使学生掌握DSP的基本原理和应用。

2.讨论法:学生就DSP技术的相关问题进行讨论,培养学生的思考能力和团队协作精神。

3.案例分析法:分析DSP技术在实际应用中的案例,帮助学生更好地理解DSP技术的价值和应用前景。

4.实验法:安排学生进行DSP实验,锻炼学生的动手能力,提高其对DSP技术的实际应用能力。

四、教学资源为了保证教学效果,我们将准备以下教学资源:1.教材:选用权威、实用的DSP教材,为学生提供系统、全面的学习资料。

2.参考书:提供相关的DSP技术参考书籍,丰富学生的知识储备。

dsp大学课程设计

dsp大学课程设计

dsp大学课程设计一、教学目标本课程的教学目标旨在帮助学生掌握数字信号处理(DSP)的基本理论、算法和实现方法。

通过本课程的学习,学生应能够:1.知识目标:–理解数字信号处理的基本概念、原理和数学基础。

–熟悉常用的数字信号处理算法,如傅里叶变换、离散余弦变换、快速算法等。

–掌握DSP芯片的基本结构、工作原理和编程方法。

2.技能目标:–能够运用DSP算法进行实际问题的分析和解决。

–具备使用DSP开发工具和实验设备进行软硬件调试的能力。

–能够编写DSP程序,实现数字信号处理算法。

3.情感态度价值观目标:–培养学生的创新意识和团队合作精神,提高解决实际问题的能力。

–增强学生对DSP技术的兴趣和热情,为学生进一步深造和职业发展奠定基础。

二、教学内容本课程的教学内容主要包括以下几个方面:1.数字信号处理基础:包括信号与系统的基本概念、离散信号处理的基本算法等。

2.离散余弦变换和傅里叶变换:离散余弦变换(DCT)和快速傅里叶变换(FFT)的原理和应用。

3.数字滤波器设计:低通、高通、带通和带阻滤波器的设计方法和应用。

4.DSP芯片和编程:DSP芯片的基本结构、工作原理和编程方法,包括C语言和汇编语言编程。

5.实际应用案例:包括音频处理、图像处理、通信系统等领域的实际应用案例分析。

三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式:1.讲授法:通过教师的讲解,使学生掌握数字信号处理的基本概念和原理。

2.讨论法:通过分组讨论和课堂讨论,培养学生的思考能力和团队合作精神。

3.案例分析法:通过分析实际应用案例,使学生了解数字信号处理在工程中的应用。

4.实验法:通过实验操作,使学生掌握DSP芯片的基本编程方法和实验技能。

四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:《数字信号处理》(或其他指定教材)。

2.参考书:提供相关的参考书籍,供学生自主学习和深入研究。

3.多媒体资料:制作课件、教学视频等,以丰富教学手段和提高学生的学习兴趣。

DSP课程设计

DSP课程设计

1课程设计目的通过我们对DSP 控制器及其应用课程的学习和理解, 综合运用课本中所学到的理论知识完成一个温度采集与显示的课程设计。

通过这次实践锻炼我们查阅资料、方案比较、团结合作的能力。

在计。

学会采用简单电路的实验调试和整机指标测试方法,增强我们的动手能力,为以后学习和工作 打下坚实基础2课程设计正文 2.1系统分析 2.1.1设计的任务及步骤根据实验测得热敏电阻和温度的一些数据,设计温度一一电阻公式; 设计外部硬件电路;编写上位机程序2.1.2技术要求函数关系。

其次进行软件设计,主要包括 AD 转换模块、液晶显示模块、算法转换模块、主函数模块以及上位机模块。

最后进行软硬件联系调试,并能在液晶上正常显示温度值。

2.2总体设计 2.2.1硬件设计TMS320F2812作为本次课设使用的 DSP 芯片。

它包含33个电源引脚(为使器件正常运行,所电源复位、复位引脚~RS 软件复位、非法地址复位、看门狗定时器溢出、欠压复位六种复位信号。

所以在设计的初期,把它分成了五个模块。

其中复位采用电源复位的方式,由引脚这个过程我们必须掌握温度采集技术的硬件设计、熟悉A/D 转换技术和DSP 夜晶显示功能的软件设(1)熟悉MC1403芯片的应用;(2)软件完成程序流程图设计和编程,其中包括A/D 转换和液晶显示部分;(6) 软硬件联合调试; (7)书写设计说明书。

此系统利用热敏电阻测得电阻一温度之间的关系, 找到电阻和温度之间的代数关系, 从而检测温度,设计硬件外扩电路,同时设计软件程序,包括 A/D 程序设计,进行软硬件联系调试,能在液晶显示屏上显示温度。

2.1.3设计思路首先设计温度采集电路,由于考虑到使用的是非线性负温度系数的热敏电阻, 因此采用了桥式电路尽量减小因外接不必要因素导致的误差,通过多次试验测得几个点,并拟合出一条合适的线性有电源引脚必须正确连接且不能悬空)时钟源模块,DSP 有六种信号可以使 DSP 控制器复位,即PCRESETI 起。

大学dsp课程设计

大学dsp课程设计

大学dsp课程设计一、教学目标本课程的教学目标是使学生掌握数字信号处理(DSP)的基本理论、算法和实现方法,培养学生运用DSP技术解决实际问题的能力。

具体目标如下:1.知识目标:(1)掌握数字信号处理的基本概念、原理和算法。

(2)熟悉DSP芯片的结构、工作原理和编程方法。

(3)了解数字信号处理在通信、音频、图像等领域的应用。

2.技能目标:(1)能够运用DSP算法进行数字信号处理。

(2)具备使用DSP开发工具进行程序设计和仿真。

(3)能够阅读和分析DSP芯片的数据手册,进行硬件编程。

3.情感态度价值观目标:(1)培养学生对数字信号处理的兴趣,提高学习的积极性。

(2)培养学生团队协作、自主学习的能力。

(3)使学生认识到数字信号处理技术在现代社会中的重要性,培养学生的责任感。

二、教学内容本课程的教学内容主要包括以下几个部分:1.数字信号处理基本理论:采样与恢复、离散时间信号与系统、离散傅里叶变换、快速傅里叶变换等。

2.DSP芯片及其编程:DSP芯片结构、指令系统、编程方法、硬件接口等。

3.数字信号处理算法实现:数字滤波器、快速卷积、数字信号合成等。

4.应用实例分析:通信系统、音频处理、图像处理等。

三、教学方法为实现教学目标,本课程将采用以下教学方法:1.讲授法:用于传授基本理论、概念和算法。

2.案例分析法:通过实际案例,使学生更好地理解理论知识。

3.实验法:培养学生动手能力,巩固理论知识。

4.讨论法:鼓励学生积极参与课堂讨论,提高思维能力。

四、教学资源为实现教学目标,本课程将采用以下教学资源:1.教材:选用权威、实用的教材,如《数字信号处理》(李晓波等编著)。

2.参考书:提供相关领域的参考书籍,如《DSP原理与应用》(陈后金著)。

3.多媒体资料:制作课件、视频等多媒体资料,辅助教学。

4.实验设备:配备DSP实验开发板、仿真器等实验设备,为学生提供动手实践的机会。

五、教学评估本课程的教学评估将采用多元化、全过程的评价方式,以全面、客观地评价学生的学习成果。

dsp课程设计设计方案

dsp课程设计设计方案

dsp课程设计设计方案一、教学目标本课程的教学目标是使学生掌握数字信号处理的基本理论、方法和应用,培养学生运用数字信号处理技术解决实际问题的能力。

具体目标如下:1.知识目标:(1)了解数字信号处理的基本概念、原理和特点;(2)掌握数字信号处理的基本算法和常用算法;(3)熟悉数字信号处理技术的应用领域。

2.技能目标:(1)能够运用数字信号处理理论分析和解决实际问题;(2)具备使用数字信号处理软件和工具进行算法实现和数据分析的能力;(3)掌握数学建模和编程技巧,提高科学研究和工程实践能力。

3.情感态度价值观目标:(1)培养学生的创新意识,提高学生分析问题和解决问题的能力;(2)培养学生团队合作精神,提高学生的沟通与协作能力;(3)培养学生对科学事业的热爱,激发学生持续学习的动力。

二、教学内容本课程的教学内容主要包括以下几个方面:1.数字信号处理基本概念:数字信号、离散时间信号、离散时间系统、Z域等;2.数字信号处理基础算法:离散傅里叶变换、快速傅里叶变换、离散余弦变换、快速离散余弦变换等;3.数字信号处理应用领域:通信系统、语音处理、图像处理、音频处理等;4.数学建模与编程实践:MATLAB软件的使用,数字信号处理算法的实现与分析。

三、教学方法本课程采用多种教学方法相结合,以提高学生的学习兴趣和主动性:1.讲授法:通过讲解基本概念、原理和算法,使学生掌握数字信号处理的基本知识;2.讨论法:学生进行课堂讨论,培养学生的思考能力和团队协作能力;3.案例分析法:分析实际案例,使学生了解数字信号处理在工程应用中的重要性;4.实验法:通过实验操作,让学生亲手实践,加深对数字信号处理算法的理解和掌握。

四、教学资源本课程的教学资源包括以下几个方面:1.教材:选用国内外优秀教材,如《数字信号处理》(郑志中)、《数字信号处理原理与应用》(李翠莲)等;2.参考书:提供相关领域的参考书籍,如《数字信号处理教程》(谢维信)、《数字信号处理学习指导》(张刺激)等;3.多媒体资料:制作课件、教学视频等,以图文并茂的形式展示教学内容;4.实验设备:配备计算机、MATLAB软件、信号发生器、示波器等实验设备,为学生提供实践操作的机会。

DSP课程设计

DSP课程设计
带通等
压缩:对数字信号进行压 缩处理,如MP3、JPEG等
数字信号处理:对数字信 号进行各种处理,如滤波、
变换、压缩等
采样:将连续时间信号离 散化,得到数字信号
编码:将数字信号转换为 适合传输或存储的格式
变换:对数字信号进行变 换处理,如FFT、DCT等
数字信号处理算法的分类和特点
线性和非线性算法:线性算法简单易实现,非线性算法处理能力强 时域和频域算法:时域算法直观,频域算法处理速度快 确定性和随机性算法:确定性算法稳定性好,随机性算法适应性强 数字滤波器:包括FIR和IIR滤波器,FIR滤波器线性相位,IIR滤波器非线性相位 数字信号处理算法特点:速度快、精度高、灵活性强、易于实现复杂算法
感谢观看
汇报人:
开发环境:CCS、IAR等用于开发DSP程序
03
DSP系统设计
数字信号处理系统的基本组成和原理
• 数字信号处理器(DSP):负责处理数字信号,实现各种信号处理算法 • 存储器:存储程序和数据,包括RAM和ROM • 输入/输出设备:接收和输出信号,如ADC、DAC、UART等 • 电源:为系统提供稳定的电源电压 • 控制单元:控制整个系统的运行,包括中断、定时器等 • 总线:连接各个部件,实现数据传输和通信 • 软件:实现各种信号处理算法,如FFT、FIR、IIR等 • 硬件:实现各种信号处理功能,如ADC、DAC、FIFO等 • 数字信号处理系统的基本原理:通过数字信号处理器(DSP)实现各种信号处理算法,如FFT、FIR、
数字信号处理算法的实现实例和演示
快速傅里叶变换 (FFT):用于信 号频谱分析,实现 快速计算
自适应滤波器:根 据输入信号自动调 整滤波器参数,实 现信号处理
数字滤波器:用于 信号滤波,实现信 号处理

dsp的课程设计

dsp的课程设计

dsp的课程设计一、课程目标知识目标:1. 理解数字信号处理(DSP)的基本概念,掌握其基本原理;2. 掌握DSP系统的数学模型和基本算法;3. 了解DSP技术在现实生活中的应用。

技能目标:1. 能够运用数学工具进行DSP相关计算;2. 能够运用编程语言实现简单的DSP算法;3. 能够分析并解决简单的实际问题,运用DSP技术进行优化。

情感态度价值观目标:1. 培养学生对DSP技术的兴趣,激发其探索精神;2. 培养学生严谨、客观的科学态度,提高其分析问题和解决问题的能力;3. 培养学生的团队协作意识,提高其在团队中的沟通能力。

分析课程性质、学生特点和教学要求:1. 课程性质:DSP课程具有较强的理论性、实践性和应用性,要求学生具备一定的数学、编程和电路基础知识;2. 学生特点:高中年级学生,具备一定的逻辑思维能力和动手操作能力,对新技术和新知识充满好奇;3. 教学要求:注重理论与实践相结合,以实际问题为引导,激发学生的学习兴趣,提高其分析问题和解决问题的能力。

课程目标分解:1. 知识目标:通过本课程的学习,使学生掌握DSP的基本概念、原理和算法;2. 技能目标:通过实践操作,使学生能够运用数学工具和编程语言实现DSP 算法;3. 情感态度价值观目标:通过团队合作和实际问题解决,培养学生对DSP技术的兴趣,提高其科学素养和团队协作能力。

二、教学内容1. 数字信号处理基本概念:信号的定义、分类及特性;离散时间信号与系统;傅里叶变换及其性质。

2. DSP数学基础:复数运算;欧拉公式;离散傅里叶变换(DFT)及其快速算法(FFT)。

3. 数字滤波器设计:滤波器类型;无限长冲击响应(IIR)滤波器和有限长冲击响应(FIR)滤波器设计方法;滤波器的实现与优化。

4. DSP算法实现:快速傅里叶变换(FFT)算法;数字滤波器算法;数字信号处理中的数学优化方法。

5. DSP应用案例分析:语音信号处理;图像信号处理;通信系统中的应用。

dsp综合课程设计

dsp综合课程设计

dsp综合课程设计一、教学目标本课程的教学目标旨在帮助学生掌握数字信号处理(DSP)的基本原理和应用技能,通过理论学习与实践操作相结合的方式,培养学生的技术创新能力和实际问题解决能力。

知识目标:学生将掌握数字信号处理的基本概念、算法和典型的DSP芯片应用。

具体包括:•数字信号处理的基础理论•常用数字滤波器的设计与分析•快速算法实现,如FFT、IFFT等•DSP芯片的工作原理及编程方法技能目标:通过课程学习和实践操作,学生将能够熟练使用DSP相关软件(如MATLAB等)进行算法仿真和系统设计,并具备一定的硬件操作能力,包括:•利用仿真工具对DSP算法进行验证•设计简单的数字信号处理系统•进行DSP芯片编程和硬件调试情感态度价值观目标:通过课程学习,培养学生对数字信号处理技术的兴趣和热情,增强其科技责任感和创新意识,激发学生将所学知识应用于工程实践和科研探索中,为我国信息技术产业的发展贡献自己的力量。

二、教学内容教学内容围绕数字信号处理的基本理论、算法实现、DSP芯片应用及系统设计展开。

1.数字信号处理基础:涵盖信号的采样与恢复、离散时间信号处理、离散时间系统特性等基本概念。

2.数字滤波器设计:包括常用滤波器(低通、高通、带通、带阻)的设计方法和理论。

3.快速算法:重点讲解快速傅里叶变换(FFT)、快速卷积等高效算法。

4.DSP芯片介绍:详细讲解DSP芯片的结构、工作原理及编程环境。

5.实际应用案例:结合实际案例,使学生理解DSP技术在现代通信、音视频处理等领域的应用。

三、教学方法结合课程特点,采用多种教学方法激发学生的学习兴趣和主动性:1.讲授法:系统讲解理论知识,确保学生掌握扎实的基础。

2.案例分析法:通过具体案例,使学生理解DSP技术的应用。

3.实验法:安排实验课,让学生动手实践,加深对理论知识的理解。

4.小组讨论法:鼓励学生分组讨论,培养团队合作精神,提高问题解决能力。

四、教学资源为支持课程的顺利进行,将准备以下教学资源:1.教材:《数字信号处理》(或等同教材)2.参考书籍:提供相关领域的参考书籍,丰富学生的知识视野。

dsp课程设计

dsp课程设计

dsp课程设计一、课程目标知识目标:1. 理解数字信号处理(DSP)的基本概念,掌握其基本原理和算法;2. 学会使用数学工具进行信号的时域、频域分析,并能够解释分析结果;3. 掌握滤波器的设计方法,能够运用所学知识对实际信号进行处理。

技能目标:1. 能够运用DSP技术对实际信号进行采集、处理和分析,解决实际问题;2. 熟练使用DSP软件和硬件平台,进行算法的实现和验证;3. 培养创新意识和团队协作能力,通过小组合作完成综合性的DSP项目。

情感态度价值观目标:1. 培养学生对数字信号处理技术的兴趣和热情,激发其主动探索精神;2. 培养学生严谨的科学态度,注重实践与理论相结合,提高问题解决能力;3. 增强学生的团队合作意识,培养沟通、交流和协作能力。

课程性质:本课程为专业选修课,旨在帮助学生掌握数字信号处理的基本理论和方法,提高实际问题解决能力。

学生特点:学生已具备一定的电子技术和数学基础,对信号处理有一定了解,但实践经验不足。

教学要求:注重理论与实践相结合,强调学生动手实践,培养解决实际问题的能力。

通过本课程的学习,使学生能够独立完成DSP相关项目的设计与实现。

二、教学内容1. 数字信号处理基础:信号与系统、离散时间信号与系统、线性时不变系统、卷积运算等;2. 离散傅里叶变换:傅里叶级数、离散傅里叶变换(DFT)、快速傅里叶变换(FFT)等;3. 数字滤波器设计:滤波器原理、无限长冲激响应(IIR)滤波器设计、有限长冲激响应(FIR)滤波器设计等;4. 数字信号处理应用:数字信号处理在语音、图像、通信等领域的应用案例分析;5. 实践教学:使用DSP软件和硬件平台进行算法实现和验证,开展综合性的DSP项目。

教学大纲安排:第一周:数字信号处理基础第二周:离散时间信号与系统第三周:线性时不变系统与卷积运算第四周:离散傅里叶变换第五周:快速傅里叶变换第六周:数字滤波器设计原理第七周:IIR滤波器设计第八周:FIR滤波器设计第九周:数字信号处理应用案例分析第十周:实践教学与项目开展教学内容与教材关联性:本课程教学内容依据教材章节进行安排,涵盖数字信号处理的基本理论、方法和应用,确保学生系统掌握DSP相关知识。

dsp实验课程设计

dsp实验课程设计

dsp实验 课程设计一、课程目标知识目标:1. 理解数字信号处理(DSP)的基本原理和概念;2. 掌握DSP实验中常用的算法和编程技巧;3. 学习并应用DSP实验相关软件工具,如MATLAB和DSP开发板;4. 识别并分析实际信号处理问题,设计合适的DSP解决方案。

技能目标:1. 能够运用MATLAB进行DSP算法仿真和数据处理;2. 掌握使用DSP开发板进行硬件实现的步骤和方法;3. 通过实验操作,提升动手能力和问题解决能力;4. 培养团队协作和沟通交流技巧,形成良好的学术研究习惯。

情感态度价值观目标:1. 培养学生对数字信号处理领域的兴趣和热情;2. 增强学生的创新意识和实践能力,鼓励探索未知领域;3. 树立正确的学术态度,遵循学术规范,尊重他人成果;4. 培养学生面对挑战时的积极心态,增强心理素质和抗压能力。

课程性质:本课程为实验课程,旨在通过实践操作,使学生将理论知识与实际应用相结合,提高解决实际问题的能力。

学生特点:学生已具备一定的数字信号处理理论基础,但实践操作能力和问题解决能力有待提高。

教学要求:结合学生特点和课程性质,注重理论与实践相结合,强调动手实践和团队协作,培养学生自主学习和创新能力。

通过课程学习,使学生达到上述知识、技能和情感态度价值观目标,为后续相关课程和实际工作打下坚实基础。

二、教学内容1. 数字信号处理基本原理回顾:包括采样定理、信号重建、数字滤波器设计等;- 教材章节:第1章 数字信号处理基础2. DSP算法及编程技巧:快速傅里叶变换(FFT)、滤波器设计(FIR和IIR)、数字信号生成等;- 教材章节:第2章 离散傅里叶变换;第3章 数字滤波器设计3. 实验软件工具应用:MATLAB和DSP开发板的使用方法;- 教材章节:附录A MATLAB工具箱简介;附录B DSP开发板基础操作4. DSP实验案例分析与实现:- 教学案例:语音信号的采集、处理与识别;图像的去噪和增强处理等- 教材章节:第4章 语音信号处理;第5章 图像处理5. 实验操作步骤与要求:包括实验前的准备工作、实验过程中的注意事项以及实验报告的撰写规范;- 教材章节:各章节实验操作指导教学进度安排:1. 第1周:数字信号处理基本原理回顾;2. 第2周:DSP算法及编程技巧;3. 第3-4周:实验软件工具应用;4. 第5-6周:DSP实验案例分析与实现;5. 第7周:实验操作步骤与要求讲解及实验报告撰写。

DSP技术及应用课程设计

DSP技术及应用课程设计

DSP技术及应用课程设计一、教学目标本课程的教学目标是使学生掌握数字信号处理(DSP)技术的基本原理和应用方法。

通过本课程的学习,学生应能理解DSP技术的基本概念,熟悉DSP芯片的结构和编程方法,掌握DSP技术在信号处理、通信、控制等领域的应用。

具体来说,知识目标包括:掌握DSP技术的基本原理,了解DSP芯片的结构和工作原理,熟悉DSP编程方法和算法。

技能目标包括:能够使用DSP芯片进行信号处理和算法实现,具备DSP系统的调试和优化能力。

情感态度价值观目标包括:培养学生对DSP技术的兴趣和好奇心,提高学生解决实际问题的能力,培养学生的创新意识和团队合作精神。

二、教学内容本课程的教学内容主要包括DSP技术的基本原理、DSP芯片的结构和编程方法,以及DSP技术在信号处理、通信、控制等领域的应用。

具体包括以下几个部分:1.DSP技术的基本原理:包括数字信号处理的概念、特点和基本算法,如离散傅里叶变换(DFT)、快速傅里叶变换(FFT)和小波变换等。

2.DSP芯片的结构和工作原理:包括DSP芯片的内部结构、指令系统、编程方法和中断管理等内容。

3.DSP编程方法和算法实现:包括C语言编程、汇编语言编程和算法实现,如数字滤波器设计、信号去噪和特征提取等。

4.DSP技术在信号处理、通信、控制等领域的应用:包括数字音频处理、数字图像处理、无线通信系统和控制系统等。

三、教学方法为了实现本课程的教学目标,我们将采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。

1.讲授法:通过教师的讲解和演示,向学生传授DSP技术的基本原理和应用方法。

2.讨论法:通过小组讨论和课堂讨论,引导学生深入思考和探讨DSP技术的相关问题。

3.案例分析法:通过分析具体的DSP应用案例,使学生更好地理解和掌握DSP技术的应用。

4.实验法:通过实验操作和调试,让学生亲自动手实践,提高学生的实际操作能力和解决问题的能力。

四、教学资源为了支持本课程的教学内容和教学方法的实施,我们将选择和准备适当的教学资源,包括教材、参考书、多媒体资料和实验设备等。

简单dsp课程设计

简单dsp课程设计

简单dsp课程设计一、课程目标知识目标:1. 学生能理解数字信号处理(DSP)的基本概念,包括采样、量化、滤波等。

2. 学生能掌握简单DSP算法,如快速傅里叶变换(FFT)的基本原理和运用。

3. 学生能描述DSP技术在现实生活中的应用。

技能目标:1. 学生能运用所学知识,使用计算机软件(如MATLAB)进行简单的数字信号处理操作。

2. 学生能设计并实现基本的DSP滤波器,对信号进行处理和分析。

3. 学生能通过实际案例,运用FFT对信号进行处理,并解释结果。

情感态度价值观目标:1. 学生对数字信号处理产生兴趣,认识到其在科技发展中的重要性。

2. 学生培养良好的团队合作精神,通过讨论、分享,共同解决问题。

3. 学生能从实际案例中体会到科技改变生活,增强科技创新意识。

课程性质:本课程为选修课,旨在帮助学生拓展知识面,提高实践能力。

学生特点:学生为高中生,具有一定的数学基础和编程能力。

教学要求:结合实际案例,注重理论与实践相结合,鼓励学生动手实践和主动探究。

将课程目标分解为具体的学习成果,便于教学设计和评估。

二、教学内容1. 数字信号处理基础概念:包括信号的定义、分类、采样与量化原理,涉及课本第二章相关内容。

2. 数字滤波器设计:讲解不同类型的数字滤波器原理,如低通、高通、带通、带阻滤波器,以及FIR和IIR滤波器的区别与设计方法,参考课本第三章。

3. 快速傅里叶变换(FFT):介绍FFT的基本原理、算法步骤及其在信号处理中的应用,以课本第四章内容为主。

4. DSP技术在生活中的应用:通过案例分析,展示DSP技术在通信、音视频处理、雷达等领域的作用,结合课本第五章内容。

5. 实践操作:使用MATLAB软件进行数字信号处理实验,包括滤波器设计、信号分析等,涉及课本第六章实验内容。

教学安排与进度:第一周:数字信号处理基础概念学习;第二周:数字滤波器设计原理与分类;第三周:FFT原理与算法学习;第四周:DSP技术应用案例分析;第五周:实践操作,分组完成滤波器设计和信号分析实验。

(完整word版)dsp课设

(完整word版)dsp课设

目录1。

设计目的及要求 01。

1设计目的 01.2 设计要求 02.设计原理 02。

1 系统设计原理 02。

2 DSP硬件实现数据压缩解压的简单流程 (1)2。

3 u律语音信号压缩原理 (1)3.设计步骤 (3)4。

编程设计及程序注释 (4)4.1 CMD文件 (4)4.2 ASM文件 (5)5.运行结果及讨论 (15)6。

总结体会 (17)7。

参考文献 (18)1。

设计目的及要求1.1设计目的1. 学习语音压缩系统的设计及在DSP处理器上的实现;2. 加深对DSP和CCS的认识.1。

2 设计要求1.完成语音信号的采集;2.对语音信号进行u律的压缩;3.传输压缩后的信号。

2.设计原理2.1 系统设计原理随着通信、计算机网络等技术的飞速发展,语音压缩编码技术得到了快速发展和广泛应用,尤其是最近20年,语音压缩编码技术在移动通信、卫星通信、多媒体技术以及IP电话通信中得到普遍应用,起着举足轻重的作用.语音编码就是将模拟语音信号数字化,数字化之后可以作为数字信号传输、存储或处理,可以充分利用数字信号处理的各种技术.为了减小存储空间或降低传输比特率节省带宽,还需要对数字化之后的语音信号进行压缩编码,这就是语音压缩编码技术。

语音的压缩编码方法归纳起来可以分为三大类:波形编码、参数编码和混合编码。

2。

2 DSP硬件实现数据压缩解压的简单流程DSP将传输来的压缩后的数据进行解压成16位或32位,而后对解压后的数据进行分析,处理,最后将处理后的数据按照要求压缩成8位的数据格式输出到相应设备以供读取:DR→RSR →RBR→解压→RJUST→DDR→DXR→压缩→XSR→DX.在进行压缩时,采样后的12位数据,默认其最高位为符号位,压缩时要保持最高位即符号位不变;原数据的后11位要压缩成7位.这7位码由3位段落码和4位段内码组成,具体压缩变换后的根据后11位数据大小决定。

压缩后数据的最高位(第7位)表示符号,量阶分别为1,1,2,4,8,16,32,64,由压缩后数据的第6位到第4位决定,第3位到第0位是段内码,压缩后数据有一定的失真,有些数据不能表示出,只能取最接近该数据的压缩值。

DSP设计课程设计

DSP设计课程设计

DSP设计课程设计一、课程目标知识目标:1. 让学生理解DSP(数字信号处理)的基本原理和概念,包括采样定理、傅里叶变换和数字滤波器设计等。

2. 使学生掌握DSP算法的数学推导和实现方法,具备使用DSP芯片进行信号处理的能力。

3. 帮助学生了解DSP技术在通信、音视频处理等领域的应用。

技能目标:1. 培养学生运用数学工具进行DSP相关算法推导和仿真能力。

2. 提高学生实际操作DSP芯片,完成信号处理实验的能力。

3. 培养学生团队协作和沟通能力,能够就DSP技术问题进行讨论和分析。

情感态度价值观目标:1. 激发学生对数字信号处理技术的兴趣,培养其探索精神和创新意识。

2. 培养学生严谨的科学态度,注重实践和理论相结合。

3. 引导学生关注DSP技术在国家和社会发展中的应用,增强其社会责任感和使命感。

分析课程性质、学生特点和教学要求,本课程旨在让学生通过学习DSP设计,掌握数字信号处理的基本原理和方法,培养其实践操作能力。

课程目标分解为具体学习成果,以便后续教学设计和评估:学生能够独立完成DSP算法推导、仿真和实验操作,具备解决实际问题的能力,并在团队合作中发挥积极作用。

二、教学内容1. DSP基本原理与概念- 采样定理与信号重建- 傅里叶变换及其应用- 数字滤波器设计原理2. DSP算法及其数学推导- 离散时间信号处理基础- 快速傅里叶变换(FFT)算法- 数字滤波器算法实现3. DSP芯片与应用- DSP芯片架构与特点- DSP芯片编程与实验操作- DSP技术在通信、音视频处理等领域的应用案例4. 教学大纲安排与进度- 第一阶段:基本原理与概念(2周)- 课本章节:第1-3章- 第二阶段:DSP算法及其数学推导(3周)- 课本章节:第4-6章- 第三阶段:DSP芯片与应用(3周)- 课本章节:第7-9章教学内容按照课程目标进行选择和组织,确保科学性和系统性。

在教学过程中,教师将依据教学大纲,引导学生学习课本相关章节,完成教学内容的学习。

dsp课程设计图文

dsp课程设计图文

dsp课程设计图文一、教学目标本课程的教学目标是使学生掌握DSP(数字信号处理器)的基本原理、应用和编程方法。

通过本课程的学习,学生将能够:1.理解DSP的基本概念、结构和分类;2.掌握DSP的基本算法和编程技巧;3.熟悉DSP的开发工具和仿真环境;4.能够运用DSP解决实际信号处理问题。

二、教学内容本课程的教学内容主要包括以下几个部分:1.DSP的基本原理:DSP的概念、发展历程、分类和应用领域;2.DSP的结构与工作原理:哈佛结构、冯·诺依曼结构、DSP的内部组成和信号流程;3.DSP的基本算法:数字滤波器、快速傅里叶变换、自适应滤波器等;4.DSP的编程方法:C语言编程、汇编语言编程、算法实现和代码优化;5.DSP的开发工具和仿真环境:CCS、MATLAB等工具的使用。

三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用多种教学方法:1.讲授法:讲解DSP的基本原理、结构和算法;2.讨论法:学生讨论DSP的应用案例和编程技巧;3.案例分析法:分析实际信号处理问题,引导学生运用DSP解决问题;4.实验法:让学生动手实践,熟悉DSP的开发工具和仿真环境。

四、教学资源为了支持教学内容和教学方法的实施,本课程将准备以下教学资源:1.教材:选用权威、实用的DSP教材,为学生提供系统的理论知识;2.参考书:提供相关的DSP参考书籍,方便学生深入研究;3.多媒体资料:制作课件、视频等多媒体资料,丰富学生的学习体验;4.实验设备:准备DSP开发板和仿真器,让学生进行实践操作。

五、教学评估本课程的评估方式包括平时表现、作业、考试等,以全面反映学生的学习成果。

具体评估方式如下:1.平时表现:包括课堂参与度、提问回答、小组讨论等,占总分的30%;2.作业:布置适量的作业,巩固所学知识,占总分的20%;3.考试:包括期中考试和期末考试,期中考试占总分的20%,期末考试占总分的30%。

六、教学安排本课程的教学安排如下:1.教学进度:按照教材的章节顺序进行教学,确保学生系统地掌握DSP知识;2.教学时间:每周安排2课时,共16周,确保在有限的时间内完成教学任务;3.教学地点:教室和实验室,以便进行理论讲解和实践操作。

dsp项目课程设计

dsp项目课程设计

dsp项目课程设计一、课程目标知识目标:1. 学生能理解数字信号处理(DSP)的基本概念,掌握其基本原理和应用领域。

2. 学生能运用数学知识,如傅里叶变换、Z变换等,分析并解决实际问题。

3. 学生能了解DSP技术在现实生活中的应用,如音频处理、图像处理等。

技能目标:1. 学生能够熟练使用DSP开发工具和软件,完成简单的项目设计。

2. 学生能够运用所学知识,设计并实现一个简单的DSP应用系统,如音频信号滤波、图像去噪等。

3. 学生能够通过小组合作,培养团队协作和沟通能力,提高问题解决能力。

情感态度价值观目标:1. 学生能够认识到数字信号处理在科技发展中的重要性,激发对相关领域的兴趣。

2. 学生在学习过程中,培养勇于探索、积极进取的精神,增强自信心。

3. 学生通过课程学习,认识到科技发展对社会的贡献,树立正确的价值观。

课程性质:本课程为实践性较强的课程,结合理论教学和实际操作,培养学生对数字信号处理技术的理解和应用能力。

学生特点:学生具备一定的数学基础和编程能力,对新技术充满好奇,喜欢动手实践。

教学要求:教师需结合课本内容,以实际项目为导向,引导学生掌握基本理论,提高实际操作能力。

在教学过程中,注重培养学生的团队协作和创新能力,提高学生的综合素质。

通过课程目标分解,确保学生能够达到预期学习成果,为后续教学设计和评估提供依据。

二、教学内容1. 数字信号处理基础理论:- 傅里叶变换理论及其应用- Z变换及其性质- 离散时间信号与系统2. DSP算法与应用:- 数字滤波器设计- 快速傅里叶变换(FFT)算法- 数字信号处理在音频、图像领域的应用3. DSP实践项目:- 项目一:音频信号处理(滤波、增强)- 项目二:图像处理(去噪、边缘检测)- 项目三:DSP综合应用(如语音识别、图像识别)4. 教学内容的安排与进度:- 基础理论部分:占总课时的1/3,以课本相关章节为基础,逐步引导学生掌握基本概念和原理。

dsp原理及应用课程设计

dsp原理及应用课程设计

dsp原理及应用 课程设计一、课程目标知识目标:1. 理解数字信号处理(DSP)的基本原理,掌握其核心概念,如采样、量化、滤波器设计等。

2. 掌握DSP技术在音频、视频和通信领域的应用,了解不同应用场景下的技术特点和要求。

3. 学习DSP相关算法,如快速傅里叶变换(FFT)、数字滤波器设计等,并能运用所学知识解决实际问题。

技能目标:1. 能够运用所学知识分析实际问题,提出基于DSP技术的解决方案。

2. 掌握使用DSP开发工具和软件,如MATLAB、Python等,进行算法仿真和实现。

3. 培养团队协作和沟通能力,通过项目实践,提高解决实际问题的综合能力。

情感态度价值观目标:1. 培养学生对数字信号处理技术的兴趣和热情,激发其探索精神和创新意识。

2. 增强学生对我国在DSP领域取得的成果的自豪感,培养其爱国主义情怀。

3. 培养学生严谨、务实的学术态度,提高其面对挑战、克服困难的信心和勇气。

课程性质分析:本课程为专业核心课程,旨在使学生掌握数字信号处理的基本原理、方法和应用,培养具备实际工程能力的专业人才。

学生特点分析:学生已具备一定的数学基础和编程能力,具有较强的逻辑思维和动手实践能力,但对DSP技术的了解相对有限。

教学要求:1. 结合实际案例,深入浅出地讲解DSP原理,注重理论与实践相结合。

2. 采用项目驱动教学法,引导学生主动探索,培养其解决实际问题的能力。

3. 注重培养学生的团队协作和沟通能力,提高其综合素质。

二、教学内容1. 数字信号处理基础:包括采样定理、量化原理、信号的表示与处理等基本概念,参照教材第一章内容。

2. 离散傅里叶变换(DFT):讲解DFT的基本原理、性质、应用,以及快速傅里叶变换(FFT)算法,涉及教材第二章。

3. 数字滤波器设计:包括数字滤波器的基本类型、设计方法、性能分析,参照教材第三章。

4. DSP应用案例分析:分析音频处理、图像处理、通信系统等领域的DSP技术,结合教材第四章内容。

dsp语音通信系统课程设计

dsp语音通信系统课程设计

dsp语音通信系统课程设计一、课程目标知识目标:1. 理解数字信号处理(DSP)的基本原理,掌握其在语音通信中的应用。

2. 学习并掌握语音信号的采集、处理、传输和接收等基本环节。

3. 掌握语音信号的数字化过程,包括采样、量化、编码等关键技术。

技能目标:1. 能够运用所学知识,设计并实现一个简单的DSP语音通信系统。

2. 培养学生动手实践能力,学会使用相关软件和硬件工具进行语音信号处理和通信。

3. 提高学生的问题分析和解决能力,能够针对实际通信过程中的问题进行优化和调试。

情感态度价值观目标:1. 培养学生对通信工程领域的兴趣,激发学生的创新意识和探索精神。

2. 培养学生的团队合作意识,学会与他人合作共同解决问题。

3. 增强学生的责任心和使命感,认识到通信技术在我国经济社会发展中的重要地位。

分析课程性质、学生特点和教学要求:1. 课程性质:本课程为电子信息类学科的专业课程,具有较强的理论性和实践性。

2. 学生特点:学生已具备一定的电子技术和数字信号处理基础,具有一定的编程和实践能力。

3. 教学要求:结合实际应用,注重理论与实践相结合,强调学生的动手实践能力和创新能力。

二、教学内容1. DSP基本原理回顾:包括数字信号处理的基本概念、系统函数、傅里叶变换等基础理论。

相关教材章节:第一章 数字信号处理基础2. 语音信号处理技术:学习语音信号的特性、预处理方法、特征提取等关键技术。

相关教材章节:第二章 语音信号处理技术3. 语音信号的数字化:介绍语音信号的采样、量化、编码等过程,分析其影响通信质量的因素。

相关教材章节:第三章 语音信号的数字化4. 语音通信系统设计:学习语音通信系统的基本架构,探讨各个环节的设计方法。

相关教材章节:第四章 语音通信系统设计5. DSP语音通信系统实践:结合实际案例,指导学生设计并实现一个简单的DSP语音通信系统。

相关教材章节:第五章 实践环节6. 系统优化与调试:分析通信过程中的问题,探讨优化和调试方法,提高通信质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录摘要 (I)1数字滤波器简介 (1)1.1数字滤波器的分类 (1)1.2数字滤波器的设计方法概述 (1)2设计原理 (3)2.1数字滤波器工作原理 (3)2.2IIR滤波器设计 (3)3实验源程序及其运行结果 (6)3.1实验MATLAB程序 (6)3.2运行结果 (7)3.3分析总结 (8)4心得体会 (9)参考文献 (10)摘要随着集成电路技术的发展,各种新型的大规模和超大规模集成电路不断涌现集成电路技术与计算机技术结合在一起,使得对数字信号处理系统功能的要求越来越强。

DSP 技术就是基于VLSI技术和计算机技术发展起来的一门重要技术,DSP 技术已在通信、控制信号处理、仪器仪表、医疗、家电等很多领域得到了越来越广泛的应用.在数字信号处理中数字滤波占有极其重要的地位。

数字滤波在语音信号、图象处理模式识别和谱分析等领域中的一个基本的处理技术。

数字滤波与模拟滤波相比数字滤波具有很多突出的优点,主要是因为数字滤波器是过滤时间离散信号的数字系统,它可以用软件(计算机程序)或用硬件来实现,而且在两种情况下都可以用来过滤实时信号或非实时信号。

尽管数字滤波器这个名称一直到六十年代中期才出现,但是随着科学技术的发展及计算机的更新普及,数字滤波器有着很好的发展前景,在各个领域中越用越广泛。

关键字:带通滤波器,数字滤波器,数字信号处理1.数字滤波器简介1.1数字滤波器的分类数字滤波器按照不同的分类方法,有许多分类,但总体上可以分为两大类,一类称为经典滤波器,即一般滤波器,特点是输入信号中有用的频率成分和希望滤除的频率成分各占有不同的频带,通过一个合适的选频滤波器达到想要的信号。

例如,当输入信号中含有干扰信号时,如果信号和干扰的频带互不重叠,即可滤除干扰得到想要的信号。

但对于一般滤波器,如果信号和干扰的频带互相重叠,则 不能完成对干扰的有效滤除,这时需要另一种所谓的现代滤波器,这些滤波器可按照随机信号内部的一些统计分布规律,从干扰中最佳的提取信号。

从功能上分类,一般数字滤波器可以分为低通、高通、带通、带阻和全通滤波器,此种分类和模拟滤波器是一样的。

另外,数字滤波器从实现的网络结构和单位冲激响应分类,可以分为无限长单位冲击响应滤波器(IIR)和有限长单位冲激响应滤波器(FIR),它们的系统函数分别表示如下:H(z)=∑∑=-=--=N kk Mk kk z a zb z X z Y 1k 01)()(,H(z)=∑-=-1)(N k k z k h而本次课程设计就是要求设计一个带通IIR 数字滤波器。

1.2数字滤波器的设计方法概述实际中的数字滤波器设计都是用有限精度算法实现的线性非移变系统,一般的设计内容和步骤包括:(1)根据实际需要确定数字滤波器的技术指标。

例如滤波器的频率响应的幅度响应和截止频率等等。

(2)用一个因果稳定的离散线性非移变系统的系统函数去逼近这些性能指标。

集体来说,就是用这些指标来计算系统函数H(z)。

(3)利用有限精度算法来实现这个系统函数。

这里包括选择运算结构、进行误差分析和选择合适的字长等。

(4)实际的数字滤波器实现技术,包括采用通用的计算机软件和专用的数字滤波器硬件来实现,或者采用通用或专用的数字信号处理器来实现。

而IIR 滤波器设计的方法有两类,经常采用的第一类设计方法是借用于模拟滤波器设计方法来进行的。

其设计的步骤是:先设计模拟原型滤波器,得到其传输函数)(a s H ,然后将)(a s H 按某种方法转换成数字滤波器的系统函数H(z),这一类相对来说容易一些。

另一类设计方法是直接在频域或者时域中进行设计,这个需要借助于计算机做一些辅助设计。

2.设计原理2.1数字滤波器工作原理在数字滤波中,我们主要讨论离散时间序列。

如图2.1所示。

设输入序列为x(n),离散或数字滤波器对单位抽样序列()n δ的响应为h(n)。

因()n δ在时域离散信号和系统中所起的作用相当于单位冲激函数在时域连续信号和系统中所起的作用。

图2.1 数字滤波器原理数字滤波器的序列()n y 将是这两个序列的离散卷积,即()()()k n x k h n y k -=∑∞∞=。

同样,两个序列卷积的z 变换等于个自z 变换的乘积,即()()()z X z H Y =z ,用T j e z ω=代入上式,其中T 为抽样周期,则得到()()()T j T j T j e X e H e Y ωωω=,式中()T j e X ω和 ()T j e Y ω 分别为数字滤波器输入序列和输出序列的频谱,而()Tj e H ω为单位抽样序列响应()n h 的频谱。

由此可见,输入序列的频谱()Tj e X ω经过滤波后,变为()()Tj Tj e X e H ωω ,按照()Tj e X ω的特点和我们处理信号的目的,选取适当的()Tj e H ω使的滤波后的()()Tj Tj e X e H ωω符合我们的要求。

本次设计的是带通数字滤波器,则其频谱特性如下图2.2所示:⎪⎩⎪⎨⎧≥>>≥≥≥=0||, 0)()(2121ωωωωπωωωωωj j e H e H图2.2 带通数字滤波器的频谱2.2IIR 滤波器设计冲激响应不变法的设计原理是利用数字滤波器的单位抽样响应序列H(z)来逼近模拟)滤波器的冲激响应g(t)。

按照冲激响应不变法的原理,通过模拟滤波器的系统传递函数G(s),可以直接求得数字滤波器的系统函数H(z),其转换步骤如下:IIR数字滤波器经典设计法的一般步骤是:(1)根据给定的性能指标和方法不同,首先对设计性能指标中的频率指标进行转换,转换后的频率指标作为模拟滤波器原型设计性能指标。

(2)估计模拟低通滤波器最小阶数和边界频率,利用MATLAB 工具函数buttord 、cheb1ord 等。

(3)设计模拟低通滤波器原型,利用MATLAB 工具函数buttap 、cheb1ap 等。

(4)由模拟低通原型经频率变换获得模拟滤波器(低通、高通、带通、带阻),利用MATLAB 工具函数lp2lp 、lp2hp 、lp2bp 、lp2bs 。

(5)将模拟滤波器离散化获得IIR 数字滤波器,利用MATLAB 工具函数bilinear 。

设计IIR 滤波器时,给出的性能指标通常分为数字指标和模拟指标两种。

数字性能指标给出通带截止频率p ω,阻带截止频率s ω,通带衰减p R ,阻带衰减s R 等。

数字频率p ω和s ω的取值范围为0~π,单位:弧度,而MATLAB 工具函数常采用标准化频率,p ω和s ω的取值范围为0~1。

MATLAB 使用[n,Wn]=buttword(Wp,Ws,Rp,Rs); [n,Wn]=buttword(Wp,Ws,Rp,Rs,’s ’),来计算滤波器所需的最小阶数。

参数如下:(频率单位为rad/s)Wp :通带截至频率, Ws :阻带截至频率, rp :通带允许的最大衰减, rs :阻带应达到的最小衰减, N :滤波器所需最小阶数,Wn :滤波器的截至频率(3DB 带宽截至频率), 对模拟滤波器阶数计算必须指定s ,数字滤波器无需指定。

在确定了模拟滤波器的阶数后,就进行模拟低通滤波器的原型设计。

函数BUTTER 用于Butterworth 滤波器设计,调用格式: [b,a]=butter(n,n ω,’s’) [b,a]=butter(n, n ω,’ftype’,’s’)其中,n 为滤波器阶数;n ω为滤波器截止频率,‘s’为模拟滤波器,确省时为数字滤波器。

‘ftype ’滤波器类型:‘high ’为高通滤波器,截止频率n ω; ‘stop ’为带阻滤波器,n ω=[]21ωω(21ωω<);‘ftype ’缺省时为低通或带通滤波器。

3.实验源程序及其运行结果3.1实验MATLAB程序本次课程设计主要是要求设计一个中心频率为500Hz,带宽为400Hz的IIR数字带通滤波器,那么根据之前的设计原理及其设计步骤主要有两种方法如下:一种是巴特沃斯带通滤波器,一种是切比雪夫滤波器,可得以下MATLAB的程序语句,其具体依次如下:巴特沃斯滤波器:fs=2000;wp=[300 700]*2/fs;ws=[250 750]*2/fs;rp=3;rs=40;Nn=256;[N,Wn]=buttord(wp,ws,rp,rs);[b,a]=butter(N,Wn,'bandpass');[H,w]=freqz(b,a);subplot(2,1,1)plot(w*fs/(2*pi),abs(H));grid on;xlabel('频率/HZ');ylabel('幅度/DB');title('IIR带通滤波器');subplot(2,1,2)plot(w*fs/(2*pi),angle(H));grid on;xlabel('频率/HZ');ylabel('相位/度');grid on;切比雪夫I型滤波器:fs=2000;N=256;wp=[300 700]*2/fs;ws=[250 750]*2/fs;rp=3;rs=40;[N,Wn]=cheb1ord(wp,ws,rp,rs); [b,a]=cheby1(N,rp,Wn); [H,w]=freqz (b,a); subplot(2,1,1)plot(w*fs/(2*pi),abs(H));grid on; xlabel('频率/HZ'); ylabel('幅度/dB');title('带通切比雪夫滤波器');grid on; subplot(2,1,2);plot(w*fs/(2*pi),angle(H));grid on; xlabel('频率/HZ'); ylabel('相位'); grid on;3.2运行结果通过在MATLAB 软件中运行上面的语句,可得如下的幅频和相频图:010020030040050060070080090010000.511.5频率/HZ幅度/D BIIR 巴特沃斯带通滤波器01002003004005006007008009001000-4-2024频率/HZ相位/度图3.1巴特沃斯带通滤波器幅频和相频响应010020030040050060070080090010000.511.5频率/HZ幅度/d BIIR 切比雪夫带通滤波器01002003004005006007008009001000-4-2024频率/HZ相位图3.2切比雪夫带通滤波器幅频和相频响应3.3分析总结通过运行MATLAB ,得出图3.1的图形,在某种程度上已经说明完成了本次课程设计的基本要求,设计要求中提到中心频率为500HZ ,带宽为400HZ 。

相关文档
最新文档