考研数学高数公式:微分方程
完整word高数微积分公式三角函数公式考研
高等数学微积分公式大全一、基本导数公式⑴ c⑵ x x1⑶ sin x cos x⑷ cosx sin x⑸ tan xsec 2 x⑹ cot xcsc 2 x⑺ sec x sec x tan x⑻ csc xcsc x cot x⑼ e xe x⑽ a xa x ln a⑾ ln x1x⑿ log a x1 ⒀ arcsin x1 x2 ⒁ arccos x1x ln a11 x 2⒂ arctan x1 ⒃ arccot x1 2⒄x1⒅x1 1 x 21 x2 x二、导数的四则运算法规u vuvuvu v uvu u v uvvv2三、高阶导数的运算法规( 1) u x v xnnv x nncu n xu x(2) cu xnnn( 3) u ax ba n u n ax b( 4) u x v xc n k u n k x v ( k ) xk 0四、基本初等函数的 n 阶导数公式( 1) xnnn!( 2) eaxbnaneax b (3) axna x ln na(4) sin ax bna nsin axb n(5)cos axb naxb n2a n cos21nna nn!nn 1a n n 1 !(6)(7)1 ax b1ax n 1ln ax baxnbb五、微分公式与微分运算法规⑴ d c 0⑵ d xx1dx⑶ d sin x cosxdx⑷ d cosx sin xdx ⑸ d tan xsec 2 xdx⑹ dcot xcsc 2 xdx⑺ d secx secx tan xdx⑻ d cscx cscx cot xdx⑼ dexe xdx⑽ daxa xln adx⑾ d ln x1dxx⑿ dlog a x1 dx ⒀ d arcsin x1 dx ⒁ d arccos x1 dxx ln a1 x 21 x 2⒂ d arctan x12 dx⒃ darccot x1dx1x 1 x 2六、微分运算法规⑴ du v du dv⑵d cu cdu⑶ duv vdu udv⑷ d uvdu udvvv 2七、基本积分公式⑴kdx kx c⑵ x dxx 1c⑶dx ln xc1x⑷a xdx a xc⑸ e x dxe x c⑹ cosxdxsin x cln a⑺sin xdxcosx c⑻1 dxsec 2 xdx tan x ccos 2 x ⑼ 12xdxcot xc⑽ 1 2 dx arctan x csin 2xcsc x1⑾1dxarcsin x c1x 2八、补充积分公式tan xdx ln cos x ccot xdx ln sin x csecxdx ln secx tan x ccscxdx ln cscx cot x c11x1 a 2dx1 x aa2x 2 dx a arctan a cx22a l n x ac1dx arcsinxc1dx ln xx 2 a 2ca 2 x 2ax 2 a 2九、以下常用凑微分公式积分型换元公式f axb dx1 f ax b d ax bu ax baf x x 1dx 1 f x d xu xf ln x1dxfln x d ln xu ln xxf e x e x dx f e x d e xf a x a x dx 1 f a x d a xln af sin x cosxdx f sin x d sin x f cos x sin xdx f cosx d cosx f tan x sec2 xdx f tan x d tan x f cot x csc2 xdx f cot x d cot xf12 dx f arcta n x d arc ta n x arctan xx1f arcsin x 1 dx f arcsin x d arcsin x1 x2十、分部积分法公式⑴形如x n e ax dx ,令u x n, dv e ax dx形如x n sin xdx 令u x n,dv sin xdx形如x n cos xdx 令u x n,dv cosxdx⑵形如x n arctanxdx ,令 u arctan x ,dv x n dx形如x n ln xdx ,令 u ln x ,dv x n dx⑶形如e ax sin xdx,e ax cos xdx令u e ax ,sin x,cos x 均可。
(完整word)高数微积分公式+三角函数公式考研
高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x xμμμ-= ⑶()sin cos x x '=⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅⑼()xxee'= ⑽()ln xxaaa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arccot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑ 四、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则 ⑴()0d c = ⑵()1d xxdx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅ ⑼()xxd ee dx = ⑽()ln xxd a aadx = ⑾()1ln d x dx x=⑿()1logln xad dx x a =⒀()arcsin d x =⒁()arccos d x = ⒂()21arctan 1d x dx x =+ ⒃()21arccot 1d x dx x=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dxx c x=+⎰ ⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰⑻221sec tan cos dx xdx x c x ==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x =++⎰ ⑾arcsin x c =+八、补充积分公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan xdx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsinxc a=+ ln x c =+十、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,axdv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx = ⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。
考研数学公式大全(含高中部分)
平面的方程: 1、点法式:A( x x0 ) B( y y0 ) C ( z z 0 ) 0,其中n { A, B, C}, M 0 ( x0 , y0 , z 0 ) 2、一般方程:Ax By Cz D 0 x y z 3、截距世方程: 1 a b c 平面外任意一点到该平 面的距离:d Ax0 By0 Cz 0 D A2 B 2 C 2
十、导数公式:
(tgx) sec 2 x (ctgx) csc 2 x (sec x ) sec x tgx (csc x ) csc x ctgx ( a x ) a x ln a 1 (loga x) x ln a
基本积分表:
(arcsin x)
sin 2 2 sin cos cos 2 2 cos2 1 1 2 sin 2 cos2 sin 2 ctg 2 1 ctg 2 2ctg 2tg tg 2 1 tg 2
·半角公式:
sin 3 3 sin 4 sin 3 cos3 4 cos3 3 cos tg 3 3tg tg 3 1 3tg 2
隐函数的求导公式: Fx F F dy dy d2y 隐函数F ( x, y ) 0, , 2 ( x )+ ( x ) dx Fy x Fy y Fy dx dx Fy F z z 隐函数F ( x, y, z ) 0, x , x Fz y Fz
直线:K 0; 1 半径为a的圆:K . a
定积分的近似计算:
b
矩形法: f ( x)
a
ba ( y0 y1 yn1 ) n ba 1 [ ( y0 yn ) y1 yn1 ] n 2 ba [( y0 yn ) 2( y2 y 4 yn2 ) 4( y1 y3 yn1 )] 3n
高数微分方程公式大全
高数微分方程公式大全微分方程是数学中的重要概念,包含了许多公式和方法。
下面我将从不同角度介绍一些常见的高等数学微分方程公式。
1. 一阶微分方程:可分离变量方程公式,dy/dx = f(x)g(y),可通过分离变量并积分求解。
齐次方程公式,dy/dx = f(x)/g(y),可通过变量代换或分离变量求解。
线性方程公式,dy/dx + P(x)y = Q(x),可通过积分因子法或常数变易法求解。
2. 二阶微分方程:齐次线性方程公式,d²y/dx² + P(x)dy/dx + Q(x)y = 0,可通过特征方程法求解。
非齐次线性方程公式,d²y/dx² + P(x)dy/dx + Q(x)y = f(x),可通过常数变易法或待定系数法求解。
欧拉方程公式,x²d²y/dx² + pxdy/dx + qy = 0,可通过变量代换或特征方程法求解。
3. 高阶微分方程:常系数线性齐次方程公式,andⁿy/dxⁿ +an⁻¹dⁿ⁻¹y/dxⁿ⁻¹ + ... + a1dy/dx + a0y = 0,可通过特征方程法求解。
常系数线性非齐次方程公式,andⁿy/dxⁿ +an⁻¹dⁿ⁻¹y/dxⁿ⁻¹ + ... + a1dy/dx + a0y = f(x),可通过常数变易法或待定系数法求解。
常系数二阶齐次方程公式,d²y/dx² + py' + qy = 0,可通过特征方程法求解。
4. 常见的变换和公式:指数函数变换,对于形如y = e^(kx)的方程,可通过变量代换进行求解。
对数函数变换,对于形如y = ln(x)的方程,可通过变量代换进行求解。
三角函数变换,对于形如y = sin(kx)或y = cos(kx)的方程,可通过变量代换进行求解。
常用公式,如指数函数的导数公式、对数函数的导数公式、三角函数的导数公式等。
考研数学高数公式:微分方程
考研数学高数公式:微分方程考研数学高数公式:微分方程第七章:微分方程考研要求1.了解微分方程及其解、阶、通解、初始条件和特解等概念。
2.掌握可分离变量的微分方程,会用简单变量代换,解某些微分方程3.会解奇次微分方程,会用简单变量代换解某些微分方程4.掌握一阶线性微分方程的解法,会解伯努利方程5.会用降阶法解下列微分方程 y"=f(x,y')6.y"=f(y,y')7.掌握二阶常系数齐次微分方程的解法,并会解某些高于二阶的常系数齐次微分方程8.会解自由项为多项式,指数函数,正弦函数,余弦函数,以及他们和与积的二阶常系数非齐次线性微分方程。
9.会解欧拉方程。
微分方程的基本公式和定理1、多元函数极限存在的条件极限存在是指P(x,y)以任何方式趋于P0(x0,y0)时,函数都无限接近于A,如果P(x,y)以某一特殊方式,例如沿着一条定直线或定曲线趋于P0(x0,y0)时,即使函数无限接近某一确定值,我们还不能由此断定函数极限存在。
反过来,如果当P(x,y)以不同方式趋于P0(x0,y0)时,函数趋于不同的值,那么就可以断定这函数的极限不存在。
例如函数:f(x,y)={0(xy)/(x^2+y^2)x^2+y^2≠02、多元函数的连续性定义设函数f(x,y)在开区域(或闭区域)D内有定义,P0(x0,y0)是D的内点或边界点且P0∈D,如果lim(x→x0,y→y0)f(x,y)=f(x0,y0)则称f(x,y)在点P0(x0,y0)连续。
性质(最大值和最小值定理)在有界闭区域D上的多元连续函数,在D上一定有最大值和最小值。
性质(介值定理)在有界闭区域D上的多元连续函数,如果在D上取得两个不同的函数值,则它在D上取得介于这两个值之间的任何值至少一次。
3、多元函数的连续与可导如果一元函数在某点具有导数,则它在该点必定连续,但对于多元函数来说,即使各偏导数在某点都存在,也不能保证函数在该点连续。
微分方程公式大全
以下是一些常见的微分方程公式和概念:
1.一阶线性微分方程:y' + P(x)y = Q(x),其中P(x)和Q(x)是已知函数。
2.一阶齐次线性微分方程:y' = f(y/x),其中f是已知函数。
3.二阶线性微分方程:y'' + p(x)y' + q(x)y = f(x),其中p(x),q(x)和f(x)是已知
函数。
4.二阶齐次线性微分方程:y'' + p(x)y' + q(x)y = 0,其中p(x)和q(x)是已知函数。
5.可分离变量的微分方程:如果方程可以整理成g(y)dy = f(x)dx的形式,则称
为可分离变量的微分方程。
此时对两边同时积分,就可以得到通解。
6.齐次方程:如果一阶微分方程的右边为0,即y' = f(y/x),则称为齐次方程。
可以通过令u = y/x进行变量替换,将其化为可分离变量的微分方程。
7.伯努利方程:形如y' + P(x)y = Q(x)y^n的微分方程称为伯努利方程。
可以通
过令z = y^(1-n)进行变量替换,将其化为一阶线性微分方程。
8.全微分方程:如果一阶微分方程的左边恰好是某个函数的全微分,即dy/dx =
f(x,y),则称为全微分方程。
此时可以通过积分得到通解。
以上是一些常见的微分方程公式和概念,掌握这些公式和概念对于解决微分方程问题非常重要。
当然,还有许多其他的微分方程类型和公式,需要在实际学习和应用中不断积累和掌握。
(整理)考研必备考研数学公式(高数,线性代数)全收录
高等数学公式篇·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-co tαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
考研数学三大公式
高等数学公式导数公式:基本积分表:ax x a a a x x x x x x x x x x a x x ln 1)(log ln )(cot csc )(csc tan sec )(sec csc )(cot sec )(tan 22='='⋅-='⋅='-='='222211)cot (11)(arctan 11)(arccos 11)(arcsin x x arc x x x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx xdx x Cx dx x x Cx xdx x dx C x xdx x dx xx)ln(ln csc cot csc sec tan sec cot csc sin tan sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xa x a dx Cx x xdx C x x xdx Cx xdx C x xdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 21arctan 1cot csc ln csc tan sec ln sec sin ln cot cos ln tan 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x aa x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数的有理式积分:和差角公式: ·和差化积公式:倍角公式: ·半角公式: ·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:x arcc x x xtan 2arctan arccos 2arcsin -=-=ππ高阶导数公式——莱布尼兹(Leibniz )公式: 中值定理与导数应用: 多元函数微分法及应用 多元函数的极值及其求法: 常数项级数: 级数审敛法:绝对收敛与条件收敛: 幂级数:函数展开成幂级数: 一些函数展开成幂级数: 欧拉公式:微分方程的相关概念: 一阶线性微分方程: 全微分方程: 二阶微分方程:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαcot cot 1cot cot )cot(tan tan 1tan tan )tan(sin sin cos cos )cos(sin cos cos sin )sin(±⋅=±⋅±=±=±±=±二阶常系数齐次线性微分方程及其解法:二阶常系数非齐次线性微分方程线性代数公式大全——最新修订1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ;3. 代数余子式和余子式的关系:(1)(1)i j i j ijij ij ijM A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =;5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnkn kk k E A S λλλ-=-=+-∑,其中kS 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1. A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3. 1**111**()()()()()()T T T T AA A A A A ----===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B OB ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块)③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nE OF OO ⨯⎛⎫=⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ;2. 行最简形矩阵:①、只能通过初等行变换获得; ②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换) ①、 若(,)(,)rA E E X,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵; ②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤; ②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式; 二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化:7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话) ②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程; ②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换); ②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭);④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1. m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTm βββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪⎪ ⎪⎝⎭; 含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出Ax b ⇔=是否有解;(线性方程组)③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程) 3. 矩阵m nA ⨯与l nB ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14) 4. ()()Tr AA r A =;(101P 例15)5. n 维向量线性相关的几何意义:①、α线性相关 ⇔0α=;②、,αβ线性相关⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关; 若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论) 8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9. 对于矩阵m nA ⨯与l nB ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m ss n m n AB C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,TA 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ⇒ =只有零解; ②、0Bx = 有非零解0ABx ⇒ =一定存在非零解; 12.设向量组12:,,,n rrBb b b ⨯可由向量组12:,,,n ss Aa a a ⨯线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K=(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用; 13.①、对矩阵m nA ⨯,存在n mQ ⨯,mAQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P )②、对矩阵m nA ⨯,存在n mP ⨯,nPA E =()r A n ⇔=、P 的行向量线性无关;14.12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-; 16.若*η为Ax b=的一个解,12,,,n rξξξ-为Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵TAA E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T ij i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T AA -=也为正交阵,且1A =±;③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----; 3. 对于普通方阵,不同特征值对应的特征向量线性无关; 对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆;()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ;5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格);6. A 为对称阵,则A 为二次型矩阵;7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0; 0,0ii a A ⇒>>;(必要条件)考研概率论公式汇总1.随机事件及其概率吸收律:A AB A A A A =⋃=∅⋃Ω=Ω⋃)( AB A A A A A =⋃⋂∅=∅⋂=Ω⋂)( 反演律:B A B A =⋃ BA AB ⋃= 2.概率的定义及其计算若B A ⊂ )()()(A P B P A B P -=-⇒ 对任意两个事件A , B , 有 )()()(AB P B P A B P -=- 加法公式:对任意两个事件A , B , 有3.条件概率乘法公式全概率公式Bayes 公式4.随机变量及其分布分布函数计算5.离散型随机变量(1) 0 – 1 分布(2) 二项分布 ),(p n B若P ( A ) = p* Possion 定理有 ,2,1,0!)1(lim ==---∞→k k e p p C kk n n k n k n n λλ(3) Poisson 分布 )(λP6.连续型随机变量(1) 均匀分布 ),(b a U(2) 指数分布 )(λE(3) 正态分布 N (? , ? 2 )*N (0,1) — 标准正态分布7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数 边缘分布函数与边缘密度函数8. 连续型二维随机变量(1) 区域G 上的均匀分布,U ( G )(2)二维正态分布9.二维随机变量的条件分布10.随机变量的数字特征数学期望随机变量函数的数学期望X 的k阶原点矩X 的k阶绝对原点矩X 的k阶中心矩X 的方差X ,Y 的k + l阶混合原点矩X ,Y 的k + l阶混合中心矩X ,Y 的二阶混合原点矩X ,Y 的二阶混合中心矩X ,Y 的协方差X ,Y 的相关系数X 的方差D (X ) =E ((X - E(X))2)协方差相关系数。
考研数学微积分公式
考研数学微积分公式微积分是数学中的一个重要分支,用来研究变化和累积的过程。
在考研数学中,微积分是一个重要的考察点,掌握常见的微积分公式对于解题非常有帮助。
下面是一些考研数学微积分公式的详细介绍。
1.基本导数公式(1) 常数导数公式:如果常数k,那么d/dx(k) = 0。
(2) 幂函数导数公式:如果f(x) = x^n(n不等于-1,-2...),那么d/dx(f(x)) = nx^(n-1)。
(3)基本初等函数导数公式:a. 常数函数的导数:d/dx(c) = 0。
b. 正弦函数的导数:d/dx(sin(x)) = cos(x)。
c. 余弦函数的导数:d/dx(cos(x)) = -sin(x)。
d. 正切函数的导数:d/dx(tan(x)) = sec^2(x)。
e. 反正弦函数的导数:d/dx(arcsin(x)) = 1/√(1-x^2)。
f. 反余弦函数的导数:d/dx(arccos(x)) = -1/√(1-x^2)。
g. 反正切函数的导数:d/dx(arctan(x)) = 1/(1+x^2)。
(4) 乘法法则:如果f(x) = u(x)v(x),那么d/dx(f(x)) =u'(x)v(x) + u(x)v'(x)。
(5) 除法法则:如果f(x) = u(x)/v(x) (其中v(x)不等于0),那么d/dx(f(x)) = (u'(x)v(x) - u(x)v'(x))/[v(x)]^22.基本积分公式(1) 幂函数积分公式:∫x^n dx = (1/n+1)x^(n+1) + C (n不等于-1)a. 常数函数的积分:∫k dx = kx + C。
b. 正弦函数的积分:∫sin(x) dx = -cos(x) + C。
c. 余弦函数的积分:∫cos(x) dx = sin(x) + C。
d. 正切函数的积分:∫tan(x) dx = -ln,cos(x), + C。
考研数学公式大全(考研必备)
高等数学公式篇·平方关系sin2(α)+cos2(α)=1tan2(α)+1=sec2(α)cot2(α)+1=csc2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A2+B2)1/2sin(α+t),其中sint=B/(A2+B2) 1/2cost=A/(A2+B2) 1/2tant=B/AAsinα+Bcosα=(A2+B2) 1/2cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)tan(2α)=2tanα/[1-tan2(α)]·三倍角公式:sin(3α)=3sinα-4sin3(α)cos(3α)=4cos3 (α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin2(α)=(1-cos(2α))/2=versin(2α)/2cos2(α)=(1+cos(2α))/2=covers(2α)/2tan2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:si nα=2tan(α/2)/[1+tan2(α/2)]cosα=[1-tan2(α/2)]/[1+tan2(α/2)]tanα=2tan(α/2)/[1-tan2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos2α1-cos2α=2sin2α1+sinα=(sinα/2+cosα/2) 2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-ta nαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
考研高数重点概率论数理统计公式整理(超全)
的事件。互斥未必对立。 ②运算:
结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C 分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)
∞
∞
∩ Ai = ∪ Ai
德摩根率: i=1
i=1
A∪B = A∩B, A∩B = A∪ B
(7)概率 的公理化 定义
设 Ω 为样本空间, A 为事件,对每一个事件 A 都有一个实数 P(A),若满
这样一组事件中的每一个事件称为基本事件,用ω 来表示。
基本事件的全体,称为试验的样本空间,用 Ω 表示。
一个事件就是由 Ω 中的部分点(基本事件ω )组成的集合。通常用大写字母
A,B,C,…表示事件,它们是 Ω 的子集。 Ω 为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理, 必然事件(Ω)的概率为 1,而概率为 1 的事件也不一定是必然事件。 ①关系:
(9)几何 概型
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空 间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何 概型。对任一事件 A,
P( A) = L( A) 。其中 L 为几何度量(长度、面积、体积)。 L(Ω)
(10)加法 公式
(11)减法 公式
P(A+B)=P(A)+P(B)-P(AB) 当 P(AB)=0 时,P(A+B)=P(A)+P(B) P(A-B)=P(A)-P(AB)
j =1
此公式即为贝叶斯公式。
P(Bi ) ,( i = 1 , 2 ,…, n ),通常叫先验概率。 P(Bi / A) ,( i = 1, 2 ,…, n ),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了
考研高数公式大全-常微分方程
通过课程学习巩固考研写作的要点重点难点,并掌握写作的大体思路
12
王诚
《经济类联考综合阅卷人核心笔记·写作》
《经济类联考综合阅卷人核心笔记·写作》
冲刺串讲
各科冲刺串讲,系统串讲各科知识体系,指导考生针对核心考点进行深度 学习。
8
刘京环
《考研管综初数冲刺讲义》
《管理类联考数学阅卷人核心预测 4 套卷》
逻辑冲刺
提高运用各种知识点和逻辑方法解答各种类型的逻辑题的数学能力;消灭 逻辑理解中的盲点和误区;提高解题的速度和正确率
4
饶思中
《考研管综逻辑冲刺讲义》
《管理类联考数学阅卷人考前 8 天写作大预测》
24
李擂
《经济类联考综合阅卷人核心笔记·数学》
《经济类联考综合阅卷人核心笔记·数学》
逻辑强化
熟悉逻辑各题型的特点和表现形式,能熟练地运用各知识点和相关的逻辑 方法解题
16
饶思中
《考研管综逻辑强化讲义》
《经济类联考综合阅卷人核心笔记·逻辑》
写作强化
通过课程学习巩固考研写作的要点重点难点,并掌握写作的大体思路
12
王诚
《经济类联考综合阅卷人核心笔记·写作》
《经济类联考综合阅卷人核心笔记·写作》
冲刺串讲
各科冲刺串讲,系统串讲各科知识体系,指导考生针对核心考点进行深度 学习。
8
逻辑真题解析
了解逻辑真题的主要考查内容,试题结构,预测逻辑真题的命题趋向
2
王晓东
《考研管综真题》
数学基础
通过学习管理类联考数学的基本概念、基本理论、基本方法,为强化提高 打基础
考研数学二公式高数线代(整理)技巧归纳(精选.)
高等数学公式一、常用的等价无穷小当x →0时x x x x x (1+x ) ~-11x a(1+x )α-1 ~ αx (α为任意实数,不一定是整数)1x ~21x 2增加x x ~61x 3 对应 x –x ~ 61x 3x –x ~ 31x 3 对应 x - x ~ 31x 3二、利用泰勒公式= 1 + x + +!22x o (2x ) ) (33 o !3sin x x x x +-=x 1 – +!22x o (2x ) (1+x )=x – +22x o (2x )导数公式: 基本积分表:三角函数的有理式积分:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·和差角公式: ·和差化积公式:·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹()公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμαααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。
考研数学三大公式
高等数学公式导数公式:基本积分表:三角函数的有理式积分:ax x a a a x x x x x x x x x x a x x ln 1)(log ln )(cot csc )(csc tan sec )(sec csc )(cot sec )(tan 22='='⋅-='⋅='-='='222211)cot (11)(arctan 11)(arccos 11)(arcsin x x arc x x x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx xdx x Cx dx x x Cx xdx x dx C x xdx x dx xx)ln(ln csc cot csc sec tan sec cot csc sin tan sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xa x a dx Cx x xdx C x x xdx Cx xdx C x xdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 21arctan 1cot csc ln csc tan sec ln sec sin ln cot cos ln tan 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , 和差角公式: ·和差化积公式:倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cot cos 1sin sin cos 1cos 1cos 12tan2cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±= ·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:x arcc x x x tan 2arctan arccos 2arcsin -=-=ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理和导数使用:拉格朗日中值定理。
考研复习高等数学微分方程——欧拉方程
y C1 cos 2t C2 sin 2t et
C1
cos(2 ln
x)
C2
sin(2 ln
x)
1 x
利用初始条件④得
C1 1,
C2
1 2
故所求特解为
y cos(2ln x) 1 sin(2ln x) 1
2
x
机动 目录 上页 下页 返回 结束
思考: 如何解下述微分方程
微分方程-第十节 欧拉方程
第十二章
欧拉方程
xn y(n) p1xn1y(n1) pn1x y pn y f (x) ( pk为常数) 令 x et , 即 t ln x
常系数线性微分方程
机动 目录 上页 下页 返回 结束
欧拉方程的算子解法:
xn y(n) p1xn1y(n1) pn1x y pn y f (x)
转化为常系数线性方程:
Dn y b1Dn1y bn y f (et )
即
dn y d tn
b1
dn1 y d t n1
bn y
f
(et )
机动 目录 上页 下页 返回 结束
例1.
解:
则原方程化为
亦即
①
特征方程
其根
则①对应的齐次方程的通解为
机动 目录 上页 下页 返回 结束
记
D
d, dt
Dk
dk dtk
(k
2, 3, ),则由上述计算可知:
xy Dy
x2 y D2 y D y D(D 1) y
用归纳法可证 xk y(k) D(D 1)(D k 1) y
完整版考研微分方程知识归纳
微分方程部分重点内容1、变量可分离的微分方程(1)形式2 = /(x)g(v)或M (x)Mr(y)dx+N (x)N(y)dy = 0ax⑵通解或用欲+J诜訥=c2、齐次方程⑴形式字=疋)或字=斥)cix x ay y(2)通解[dU = f —+C (令上=“,则y = xii,字= “ + x半)或J- u J x x ax axr du cdx , x ml dx du、--------- =一+ C (令一则x=yu , — = w + y—)J - u J x y ay ay3、一阶线性微分方程(1)形式y' + p(x)y = q (x)(2)通解尸e^x)dx(J q⑴ e^x)dx dx + C)4、可降阶的高阶微分方程(1)k)= y(x),其中/(x)为已知函数积分〃次可得其通解(2)/ = /(%,/)(不显含y)令y f = p9则y” =卄于是,原方程可化为设①的通解为p =(p(x、C),即y' = 0(x,CJ (—阶)②由②可得通解y = ^(p(x.C i)clx+C2(3)/ = (不显含X)令y = p,则『”=卩=卑=卑勢=p学。
于是,原方程可化为ax ay ax ayp孑= f(y,p)(—阶)①dy设①的通解为〃 = 0(y,CJ,即V = 0(y,Cj (—阶)②由②可得通解r dy ---- :--- =x+ C、」0(y,cj _5、二阶线性微分方程(1)形式非齐次y" + p(x)y f + q(x)y = f(x)(1)齐次y" + p(x)y' + g(x)y = O (2)(2)解的结构定理1若y 2«为(2)的两个解,则G儿(x) + C』2(x)为(2)的解。
定理2若y2(x)为(2)的两个线性无关的解,则C$(x) + C*2(x)为(2)的通解。
XW、F ,(刀线性无关O丄心-建常数。
考研高等数学常用公式以及函数图像
考研高等数学常用公式及函数图象导数公式:基本积分表:三角函数得有理式积分:一些初等函数: 两个重要极限:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数公式: ·诱导公式:·与差角公式: ·与差化积公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理: ·余弦定理:·反三角函数性质:高阶导数公式——莱布尼兹(Leib niz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:曲率:.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。
高数考研备战常微分方程的齐次与非齐次解法
高数考研备战常微分方程的齐次与非齐次解法常微分方程是高等数学中的重要内容,也是考研数学中必考的知识点之一。
在常微分方程中,齐次方程和非齐次方程的解法是备战考研的重点。
本文将为大家详细介绍常微分方程的齐次与非齐次解法,助力大家高效备考。
一、齐次方程的解法齐次方程是指形式为dy/dx = f(x,y)的方程,其中f(x,y)满足齐次性质f(tx,ty) = f(x,y)。
齐次方程的解法相对简单,可以通过变量分离法和换元法来求解。
1. 变量分离法变量分离法是求解齐次方程的常用方法。
具体步骤如下:(1)将方程变形为dy = g(x)dx,其中g(x)为x的函数。
(2)对方程两边同时积分,得到∫dy = ∫g(x)dx。
(3)对上式进行求积分,并加上任意常数C,得到y = ∫g(x)dx + C。
(4)得到的方程即为齐次方程的通解。
2. 换元法换元法是另一种常用的齐次方程求解方法。
具体步骤如下:(1)设u = y/x,即y = ux。
(2)将dy/dx = f(x,y)转化为关于u和x的方程,求出du/dx,并将y用u和x表示。
(3)对上式进行变量分离,得到du/u = g(x)dx。
(4)对上式进行求积分,并加上任意常数C,得到ln|u| = ∫g(x)dx + C。
(5)解出u,即得到u = e^(∫g(x)dx + C)。
(6)将u = y/x代入上式,得到y = xe^(∫g(x)dx + C)。
(7)得到的方程即为齐次方程的通解。
二、非齐次方程的解法非齐次方程是指形式为dy/dx = f(x,y) + g(x)的方程,其中g(x)为非零的函数。
求解非齐次方程的方法主要有常数变易法和特解叠加法。
1. 常数变易法常数变易法是求解非齐次方程的常用方法。
具体步骤如下:(1)先求齐次方程dy/dx = f(x,y)的通解y0。
(2)设非齐次方程的通解为y = y0 + u(x),其中u(x)为待定函数。
(3)将y = y0 + u(x)代入非齐次方程,得到dy/dx = f(x,y0+u) + g(x)。
考研数学一公式大全
考研数学涉及多个领域,而每个领域都有大量的公式和概念。
以下是一些考研数学中常见的公式:### 高等数学1. 微积分- 极限定义:$$\lim_{x \to a} f(x) = L$$- 求导法则:$\frac{d}{dx}(u \pm v) = u' \pm v'$,$\frac{d}{dx}(uv) = uv' + vu'$,$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{u'v -uv'}{v^2}$- 不定积分:$\int f(x) \,dx$- 定积分:$\int_a^b f(x) \,dx$2. 微分方程- 一阶线性微分方程:$y' + P(x)y = Q(x)$- 二阶线性常系数齐次微分方程:$ay'' + by' + cy = 0$### 线性代数1. 矩阵- 矩阵乘法:$C = A \cdot B$- 逆矩阵:$A^{-1}$- 行列式:$|A|$2. 向量- 向量点积:$ \mathbf{a} \cdot \mathbf{b} =|\mathbf{a}| |\mathbf{b}| \cos{\theta}$- 向量叉积:$ \mathbf{a} \times \mathbf{b} =|\mathbf{a}| |\mathbf{b}| \sin{\theta}$### 概率论与数理统计1. 概率- 条件概率:$P(A|B) = \frac{P(A \cap B)}{P(B)}$- 贝叶斯定理:$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$2. 统计- 样本均值:$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$- 样本方差:$s^2 = \frac{\sum_{i=1}^{n} (x_i -\bar{x})^2}{n-1}$这只是一小部分的公式。
考研数学三讲义微分方程
3
24
dy P( x) y Q( x) y 的方程称为 形如 dx
伯努利方程, 如例7.2.7所示方程即为伯努利方程,其中α为 任意常数. 当α=0时,该方程是一阶线性微分方 程,当α=1时,它是一阶齐次线性微分方程.一 α 般地,原方程两边同除以y ,得:
dy 1 y P ( x) y Q( x) dx 1 u , 就可将其化为新未知函数u 然后令 y
两端积分,得
2
u ln | u | C ln | x |, ln | ux | u C
以
y x
代替上式中的u,便得原方程的通解为
dx ln | y | C x
16
dy x y 例7.2.4 求方程 的通解. dx x y
解 :方程右边分子分母同除x
y 令 u ,得 x
y x C (C为任意常数),
2
1
几何上表示一簇曲线,将y|x=1=2代入上式,可 2 求出C=1, 则 y x 1 即为过点(1,2),且切线斜 率为2x的曲线方程 . 可将求解的问题和条件归结为以下方程:
dy 2 x, dx y | x 1 2.
2
y 1 dy x y dx 1 x
1 u dx du 2 x 1 u
17
两边积分得
1 arctan u ln(1 u 2 ) ln | x | C 2
通解为
y 2 2 arctan ln x y C. x
18
例7.2.5
解方程 y 2xy dx u( x) Q( x)e dx C
其中C
11
ye
P ( x ) dx
P ( x ) dx ( Q( x)e dx C )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考研数学高数公式:微分方程
第七章:微分方程
考研要求
1.了解微分方程及其解、阶、通解、初始条件和特解等概念。
2.掌握可分离变量的微分方程,会用简单变量代换,解某些微分方程
3.会解奇次微分方程,会用简单变量代换解某些微分方程
4.掌握一阶线性微分方程的解法,会解伯努利方程
5.会用降阶法解下列微分方程 y"=f(x,y')
6.y"=f(y,y')
7.掌握二阶常系数齐次微分方程的解法,并会解某些高于二阶的常系数齐次微分方程
8.会解自由项为多项式,指数函数,正弦函数,余弦函数,以及他们和与积的二阶常系数非齐次线性微分方程。
9.会解欧拉方程。
微分方程的基本公式和定理
1、多元函数极限存在的条件极限存在是指P(x,y)以任何方式趋于P0(x0,y0)时,函数都无限接近于A,如果P(x,y)以某一特殊方式,例如沿着一条定直线或定曲线趋于P0(x0,y0)时,即使函数无限接近某一确定值,我们还不能由此断定函数极限存在。
反过来,如果当P(x,y)以不同方式趋于P0(x0,y0)时,函数趋于不同的值,那么就可以断定这函数的极限不存在。
例如函数:f(x,y)={0(xy)/(x^2+y^2)x^2+y^2≠0
2、多元函数的连续性定义设函数f(x,y)在开区域(或闭区域)D内有定义,P0(x0,y0)是D的内点或边界点且P0∈D,如果lim(x→x0,y→y0)f(x,y)=f(x0,y0)则称f(x,y)在点P0(x0,y0)连续。
性质(最大值和最小值定理)在有界闭区域D上的多元连续函数,在D上一定有最大值和最小值。
性质(介值定理)在有界闭区域D上的多元连续函数,如果在D上取得两个不同的函数值,则它在D上取得介于这两个值之间的任何值至少一次。
3、多元函数的连续与可导如果一元函数在某点具有导数,则它在该点必定连续,但对于多元函数来说,即使各偏导数在某点都存在,也不能保证函数在该点连续。
这是因为各偏导数存在只能保证点P沿着平行于坐标轴的方向趋于P0时,函数值f(P)趋于f(P0),但不能保证点P按任何方式趋于P0时,函数值f(P)都趋于f(P0)。
4、多元函数可微的必要条件一元函数在某点的导数存在是微分存在的充分必要条件,但多元函数各偏导数存在只是全微分存在的必要条件而不是充分条件,即可微=>可偏导。
5、多元函数可微的充分条件定理(充分条件)如果函数z=f(x,y)的偏导数存在且在点(x,y)连续,则函数在该点可微分。
6.多元函数极值存在的必要、充分条件定理(必要条件)设函数z=f(x,y)在点(x0,y0)具有偏导数,且在点(x0,y0)处有极值,则它在该点的偏导数必为零。
定理(充分条件)设函数z=f(x,y)在点(x0,y0)的某邻域内连续且有一阶及二阶连续偏导数,又fx(x0,y0)=0,fy(x0,y0)=0,令fxx(x0,y0)=0=A,fxy(x0,y0)=B,fyy(x0,y0)=C,则f(x,y)在点(x0,y0)处是否取得极值的条件如下:(1)AC-B2>0时具有极值,且当A<0时有极大值,当A>0时有极小值;(2)AC-B2<0时没有极值;(3)AC-B2=0时可能有也可能没有。
7、多元函数极值存在的解法(1)解方程组fx(x,y)=0,fy(x,y)=0求的一切实数解,即可求得一切驻点。
(2)对于每一个驻点(x0,y0),求出二阶偏导数的值A、B、C.(3)定出AC-B2的符号,按充分条件进行判定f(x0,y0)是否是极大值、极小值。
注意:在考虑函数的极值问题时,除了考虑函数的驻点外,如果有偏导数不存在的点,那么对这些点也应当考虑在内。
小提示:目前本科生就业市场竞争激烈,就业主体是研究生,在如今考研竞争日渐激烈的情况下,我们想要不在考研大军中变成分母,我们需要:早开始+好计划+正确的复习思路+好的辅导班(如果经济条件允许的情况下)。
2017考研开始准备复习啦,早起的鸟儿有虫吃,一分耕耘一分收获。
加油!。