初一上册数学 绝对值 专项练习带答案

合集下载

初中数学七年级上册绝对值练习题含答案

初中数学七年级上册绝对值练习题含答案

初中数学七年级上册绝对值练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________ 1. 化简−|−3|等于( )A.−3B.−13C.13D.32. 如果一个数的绝对值等于它的相反数,那么这个数一定是( )A.正数B.负数C.非正数D.非负数3. 已知a、b、c都是负数,且|x−a|+|y−b|+|z−c|=0,则xyz是()A.负数B.非负数C.正数D.非正数4. 下列推断正确的是( )A.若|a|=|b|,则a=bB.若|a|=|b|,则a=−bC.若|m|=|−n|,则m=−nD.若m=−n,则|m|=|n|5. 已知x、y、z为有理数,且x+y+z=0,xyz<0,则y−z|x|+x−z|y|+x+y|z|的值为().A.−1B.1C.1或−1D.−36. 下列判断正确的是()A.−14>−15B.−35<−45C.−34>−45D.−1>−0.017. 若关于x的方程|2x−3|+m=0无解,|3x−4|+n=0只有一个解,|4x−5|+k=0有两个解,则m, n, k的大小关系是()A.m>n>kB.n>k>mC.k>m>nD.m>k>n8. 下列四组有理数大小的比较正确的是()A.−12>13B.−|−1|>−|+1|C.12<13D.|−12|>|−13|9. 绝对值大于2,且不大于5的整数有( )10. 以下选项中比|−12|小的数是( )A.2B.32C.12D.−1311. 在数−4,−3,−1,2中,大小在−2和1之间的数是________.12. 已知1<x <2,化简|x −1|+|x −2|=________.13. √3−2的相反数是________,绝对值是________.14. 绝对值小于227的整数有________.15. 若|x −1|=|−3|,那么x =________.16. 当a =________时,代数式|a −4|+3有最小值是________.17. 已知|a −2|+|b −4|=0,则2a +3b =________.18. 已知,则的值可能是________.19. 已知有理数a ,b 在数轴上的位置如图所示,则︱b −a ︱=________.20. 比较大小:−34________−45;−(−2)________−|−2|.21. 已知|x −1|+|y +2|=0,则x −y =________.22. 比较下列各对数的大小:(2)−518和−29.23. 已知|x|=3,|y|=4,且xy <0,求x +y 的值.24.(1)计算:|−6|−√9+(1−√2)0−(−3).(2)如图,BD 是菱形ABCD 的对角线,∠ABF =30∘,EF 为AB 的垂直平分线, 垂足为E ,交AD 于F ,连接BF ,求∠ABD 的度数.25. 某检修小组从A 地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下(单位:千米):(1)求收工时检修小组是否回到A 地?(2)在第________次纪录时距A 地最远.(3)若每千米耗油0.2升,每升汽油需8元,问检修小组工作一天需汽油费多少元?26. 问题:比较 −|65| 与+(−43) 的大小. 解:化简可得−|65|=−65,+(−43)=−43①,因为|65|=65,|−43|=43②又65=1815<2015=43③,所以−65<−43④,所以−|6|<+(−4)⑤(2)请按照上述方法比较 −(+1011)与−|910|的大小.27. 比较下列各数的大小,用“<”连接起来.−1017,−1219,−1523,−3031,−6091.28. 已知a =−4,b =−5,求a −b 的值.29. 已知|a|=2,|b|=3,且a +b <0,求a +b 的值.30. 比较下面两个数的大小.(1)−43与−32(2)比较−(−3.1)与3.2的绝对值.31. 比较有理数的大小.(1)−57与23(2)−8与−5(3)−57与−34(4)已知a >b >0,试比较−a 和−b 的大小.32. 已知a <b <0<c ,化简|a|−|−b|+|c|.33. 有理数a 、b 在数轴上的位置如图,计算|a −b|−2|a −c|−|b +c|.(1)如果甲报的数为x ,则乙报的数为x −1,丙报的数为________,丁报的数为________;(2)若丁报出的答案为2,则甲报的数是多少?35. 大家都知道,|5−(−2)|表示5与−2之差的距离,试探索:若x 表示一个有理数,且|x −2|+|x +4|>6,则有理数x 的取值范围是________.36. 若|a −2|+|b −3|+|c −1|=0,求a +2b +3c 的值.37. 已知x|=|−7|,|y|=|−5|,求x +y 的值.38. 若|x|<1,化简|x +1|+|x −1|.39. 已知下列有理数:−(−3)、−4、0、+5、−12(1)这些有理数中,整数有________个,非负数有________个.(2)画数轴,并在数轴上表示这些有理数.(3)把这些有理数用“<“号连接起来:________.40. 利用绝对值比较大小(1)−3.14与−π(2)−32与−54(3)−56与−57参考答案与试题解析初中数学七年级上册绝对值练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】A【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答2.【答案】C【考点】绝对值的意义【解析】此题暂无解析【解答】此题暂无解答3.【答案】A【考点】非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答4.【答案】D【考点】绝对值的意义【解析】此题暂无解析【解答】此题暂无解答5.【答案】B此题暂无解析【解答】此题暂无解答6.【答案】C【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答7.【答案】A【考点】有理数大小比较非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答8.【答案】D【考点】有理数大小比较绝对值【解析】此题暂无解析【解答】此题暂无解答9.【答案】D【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答10.有理数大小比较绝对值【解析】此题暂无解析【解答】此题暂无解答二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】−1【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答12.【答案】1【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答13.【答案】2−√3,2−√3【考点】绝对值的意义相反数的意义【解析】此题暂无解析【解答】此题暂无解答14.【答案】7个【考点】绝对值【解析】此题暂无解析【解答】【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答16.【答案】4,3【考点】绝对值的意义非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答17.【答案】16【考点】非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答18.【答案】2或0或−2【考点】绝对值的意义【解析】此题暂无解析【解答】此题暂无解答19.【答案】a−b【考点】非负数的性质:绝对值【解析】此题暂无解析【解答】【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答三、解答题(本题共计 20 小题,每题 10 分,共计200分)21.【答案】3【考点】非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答22.【答案】解:(1)∵−(−5)=5,−(+6)=−6,∴−(−5)>−(+6);(2)∵|−518|=518,|−29|=29,∴−518<−29.【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答23.【答案】解:∵|x|=3,|y|=4,∴x=±3,y=±4,∵xy<0,∴x=3时,y=−4,x+y=−1,x=−3时,y=4,x+y=−3+4=1,综上所述,x+y的值是1或−1.【考点】绝对值【解析】此题暂无解析【解答】24.【答案】解:(1)原式=6−3+1+3=7.(2)∵ EF 为AB 的垂直平分线,∴ FA =FB ,∴ ∠A =∠ABF =30∘.∵ 四边形ABCD 是菱形,∴ AD =AB ,∴ ∠ABD =180∘−30∘2=75∘.【考点】绝对值的意义零指数幂、负整数指数幂二次根式的性质与化简菱形的性质线段垂直平分线的性质【解析】此题暂无解析【解答】此题暂无解答25.【答案】解:(1)−3+8−9+10+4−6−2=2(千米).∴ 收工时检修小组未回到A 地.五(3)(3+8+9+10+4+6+2)×0.2×8=42×0.2×8=67.2(元)答:检修小组工作一天需汽油费67.2元.【考点】绝对值的意义有理数的混合运算正数和负数的识别【解析】此题暂无解析【解答】此题暂无解答26.【答案】(1)②(2)解:化简可得−(+1011)=−1011,−|910|=−910,因为|−1011|=1011,|−910|=910, 又1011=100110>99110=910,所以−1011<−910, 所以−(+1011)<−|910|.【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答27.【答案】解:∵ |−1017|=1017=60102,|−1219|=1219=6095,|−1523|=1523=6092,|−3031|=3031=6062,|−6091|=6091 ∴ −3031<−6091<−1523<−1219<−1017.(各负数绝对值的分子相同,分母越小,其绝对值就越大,本身反而越小)【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答28.【答案】解:因为a =−4,b =−5,所以a −b =−4+5=1.【考点】实数的运算【解析】此题暂无解析【解答】此题暂无解答29.【答案】解:由题意得|a|=2,|b|=3,a +b <0,∴ a =±2 ,b =−3,①当a =2,b =−3时,a +b =−1;②当a =−2,b =−3时,a +b =−5.∴a+b=−1或−5【考点】绝对值的意义绝对值【解析】此题暂无解析【解答】此题暂无解答30.【答案】解:(1)∵|−43|=43=86,|−32|=32=96,∴−43>−32.(2)∵−(−3.1)=3.1,3.2的绝对值是3.2,∴−(−3.1)<3.2的绝对值.【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答31.【答案】解:(1)−57<23;(2)−8<−5(3)∵57<34,∴−57>−34;(4)∵a>b>0,∴|a|>|b|>0,又∵−a<0,−b<0,∴−a<−b.【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答32.【答案】解:∵a<b<0<c,|a|−|−b|+|c|=−a−(−b)+c=−a+b+c.【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答33.【答案】解:根据数轴可知:b<a<0<c,且|a|<|c|<|b|,∴a−b>0,a−c<0,b+c<0,∴|a−b|−2|a−c|−|b+c|=a−b+2a−2c+b+c=3a−c.【考点】有理数大小比较绝对值【解析】此题暂无解析【解答】此题暂无解答34.【答案】|x−1|,|x−1|−1设甲为x,则|x−1|−1=2,解得:x=4或x=−2.所以甲报的数是4或者−2.【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答35.【答案】x>2或x<−4【考点】绝对值的意义绝对值【解析】此题暂无解析【解答】此题暂无解答36.【答案】解:根据题意得:{a −2=0b −3=0c −1=0,解得:{a =2b =3c =1,则原式=2+6+3=11.【考点】非负数的性质:绝对值【解析】此题暂无解析【解答】此题暂无解答37.【答案】解:∵ |x|=|−7|=7,|y|=|−5|=5, ∴ x =±7,y =±5,∴ 当x =7、y =5时,x +y =12, 当x =7、y =−5时,x +y =2, 当x =−7、y =5时,x +y =−2, 当x =−7、y =−5时,x +y =−12.【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答38.【答案】解:∵ 由|x|<1可得−1<x <1, ∴ x −1<0,x +1>0,则|x +1|+|x −1|=x +1+1−x =2.【考点】绝对值【解析】此题暂无解析【解答】此题暂无解答39.【答案】4,3解:在数轴上表示这些有理数如图:−4<-12<0<−(−3)<+5【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答40.【答案】解:∵ |−3.14|<|−π|, ∴ −3.14>−π 解:∵ |−32|>|−54|,∴ −32<−54解:∵ |−56|>|−57|,∴ −56<−57【考点】有理数大小比较【解析】此题暂无解析【解答】此题暂无解答。

(完整版)七年级上册绝对值练习题及答案

(完整版)七年级上册绝对值练习题及答案

6.七年级上册绝对值练习题及答案同步练习1:1 .右 a=-3 则-a =()A. 2 >-3 >0 B. 2 >0>- 3 C. -3<2 < 0D.0< -3<24. 下列各式中,正确的是 4 5A. -16 >0 B. 0.2 >0.2 C. -> - D. 6 <01 15. 在-0.1 , 2,1,2这四个数中,最小的一个数是()1 1 A. -0.1 B. — C. 1 D.-226. (1)1= _______ ; 3.5 = ______ ; 0 = ____ ; 5(2)-3 = _____ ;- 0.37 = _____ ;6.57. - 31的绝对值是 ________ ;绝对值等于31的数是 _________ ,他们互为 _______2 2 8. 绝对值最小的数是 _______ ,绝对值最小的整数是 ________ . 9. 绝对值小于4的整数有 _______ . 10. 用“〉”或“ 填空: 11. 计算:2 一 22 -3 2 匕2 2与 _B.与一C.与一D.3332333“> '连接, 23 ,0,正确的是()或3 D.以上都不对2.下列各组数中,互为相反数的是A.3.用 与?2 A.-3 B.3 C.-3(1)| 3+ | 101 ;( 2) 2432 ;8 + 2 6I 3= ---------------51 =6.12. 在数轴上表示下列各数:5 11 623(3)3(4)绝对值是2的负数。

413•比较下列各数的大小(要有解答过程)135 5 (2)-2486的值。

Q a c^2-515•某制衣厂本周计划每日生产 100套西服,由于工人实行轮休,每日上班人数不一定相等, 实行14. a=2,b=-2,c=3,故 a+b+c=315. 因为-5 <-3,-5 <-2,-5 <+4,-5 <+7, 所以星期五生产的西服产量最小,生产量为95套。

7.初一(上册)数学绝对值专项练习带答案解析

7.初一(上册)数学绝对值专项练习带答案解析

③数轴上表示﹣ 4 和 3 的两点之间的距离是 7; ( 3)应用:①如果表示数 a 和 3 的两点之间的距离是 7, 则可记为: | a﹣ 3| =7,那么 a=10 或 a=﹣ 4, ②若数轴上表示数 a 的点位于﹣ 4 与 3 之间, | a+4|+| a﹣ 3| =a+4﹣ a+3=7, a=1 时, | a+4|+| a﹣ 1|+| a﹣ 3| 最小 =7, | a+4|+| a﹣ 1|+| a﹣ 3| 是 3 与﹣ 4 两点间的距离. 32.解: x<﹣ 1 时, | x+1|+| x﹣ 2|+| x﹣ 3| =﹣( x+1) ﹣( x﹣ 2)﹣( x﹣3 )=﹣ x﹣1﹣ x+2﹣ x+3=﹣ 3x+4;
32.计算: | x+1|+| x﹣ 2|+| x﹣ 3| . 33.已知数轴上三点 A, O, B 表示的数分别为﹣ 3,0,
1,点 P 为数轴上任意一点,其表示的数为 x.( 1)如果
点 P 到点 A,点 B 的距离相等,那么 x=
;(2)
范文范例 学习参考
若 b≠ 0,且
当 x=
时,点 P 到点 A,点 B 的距离之和是 6;( 3)

三.解答题(共 14 小题)
27.阅读下列材料并解决有关问题:
( 3)由以上探索猜想,对于任何有理数
x, | x﹣ 3|+| x
﹣ 6| 是否有最小值?如果有,写出最小值;如果没有,
说明理由.
29.计算: 已知 | x| = ,| y| = ,且 x< y<0,求 6÷( x
﹣ y)的值.

(word完整版)7.初一上册数学绝对值专项练习带答案

(word完整版)7.初一上册数学绝对值专项练习带答案

状元私塾内部资料——全体都有-针对性练习绝对值的数的绝对值相等,那么点 A 表示的数是()一.选择题(共16 小题)1.相反数不大于它自己的数是()A.正数B.负数C.非正数D.非负数2.以下各对数中,互为相反数的是()A.2 和B.﹣ 0.5 和C.﹣ 3 和D.和﹣23.a, b 互为相反数,以下各数中,互为相反数的一组为()A. a2与 b2B. a3与 b5C. a2n与 b2n( n 为正整数)D. a2n+1与 b2n+1(n 为正整数)4.以下式子化简不正确的选项是()A. +(﹣ 5) =﹣ 5 B.﹣(﹣ 0.5) =0.5C.﹣ |+ 3| =﹣ 3D.﹣( +1)=15.若 a+b=0,则以下各组中不互为相反数的数是()A.a3和 b3 B.a2和 b 2 C.﹣ a 和﹣ b D.和6.若 a 和 b 互为相反数,且a≠0,则以下各组中,不是互为相反数的一组是()A.﹣ 2a3和﹣ 2b3 B. a2和 b 2C.﹣ a 和﹣ b D. 3a 和 3b7.﹣ 2018 的相反数是()A.﹣2018 B. 2018 C.± 2018D.﹣8.﹣ 2018 的相反数是()A.2018B.﹣ 2018 C.D.﹣9.以下各组数中,互为相反数的是()A.﹣ 1 与(﹣ 1)2B.1 与(﹣ 1)2 C . 2与D. 2 与 | ﹣ 2|10.如图,图中数轴的单位长度为1.假如点 B,C表示A.﹣ 4 B.﹣ 5 C.﹣ 6D.﹣ 211.化简 | a﹣ 1|+ a﹣ 1=()A.2a﹣2B.0 C. 2a﹣ 2 或 0D. 2﹣ 2a12.如图, M ,N, P, R 分别是数轴上四个整数所对应的点,此中有一点是原点,而且MN=NP=PR=1.数 a 对应的点在M 与 N 之间,数 b 对应的点在P 与 R 之间,若 | a|+| b| =3,则原点是()A.M 或 RB.N 或 P C. M 或 N D. P 或 R13.已知: a> 0, b < 0, | a| < | b| < 1,那么以下判断正确的选项是()A.1﹣ b>﹣ b> 1+a> aB.1+a> a> 1﹣b >﹣ bC.1+a> 1﹣b> a>﹣ bD. 1﹣b>1+a>﹣ b> a14.点 A, B 在数轴上的地点以下图,其对应的数分别是 a 和 b.关于以下结论:甲: b﹣ a< 0 乙: a+b> 0 丙: | a| < | b|丁:> 0此中正确的选项是()A.甲乙B.丙丁C.甲丙D.乙丁15.有理数a、b 在数轴上的地点以下图,则以下各式中错误的选项是()A.b<aB.| b| > | a| C. a+b> 0D. ab< 016.﹣ 3 的绝对值是()A. 3B.﹣ 3 C.D.状元私塾内部资料——全体都有 -针对性练习二.填空题(共 10小题)( 1)分别求出 | x﹣ 5| 和 | x﹣ 4| 的零点值;17. | x+1|+|x﹣ 2|+|x﹣ 3| 的值为.( 2)化简代数式 | x﹣ 5|+| x﹣ 4| ;18.已知 | x| =4, | y| =2,且 xy< 0,则 x﹣ y 的值等( 3)求代数式 | x﹣ 5|+| x﹣ 4| 的最小值.于.28.同学们都知道 | 5﹣(﹣ 2) | 表示 5与(﹣ 2)之差19.﹣ 2 的绝对值是,﹣ 2 的相反数是.的绝对值,也可理解为 5 与﹣ 2 两数在数轴上所对的两20.一个数的绝对值是 4,则这个数是.点之间的距离,尝试究:21.﹣ 2018 的绝对值是.( 1)求 | 5﹣(﹣ 2) | =.22 .假如x、 y 都是不为 0的有理数,则代数式( 2)找出全部切合条件的整数x,使得 | x+5|+| x﹣ 2| =7的最大值是.建立的整数是.23+=0,则( 3)由以上研究猜想,关于任何有理数x, | x﹣ 3|+| x.已知的值为.﹣ 6| 能否有最小值?假如有,写出最小值;假如没有,24.计算: | ﹣ 5+3| 的结果是.说明原因.25.已知 | x| =3,则 x 的值是.29.计算:已知 | x| =,| y| =,且 x< y<0,求 6÷( x 26.计算: | ﹣ 3| =.三.解答题(共 14 小题)﹣ y)的值.30.求以下各数的绝对值.2,﹣,3,0,﹣4.27.阅读以下资料并解决相关问题:我们知道, | m| =.此刻我们能够用这一结论来31.联合数轴与绝对值的知识回答以下问题:化简含有绝对值的代数式,如化简代数式| m+1|+| m﹣( 1)研究:①数轴上表示 5 和 2的两点之间的距离2| 时,可令 m+1=0 和 m﹣ 2=0,分别求得 m=﹣ 1, m=2是;②数轴上表示﹣ 2 和﹣ 6的两点之间的距离(称﹣ 1, 2 分别为 | m+1| 与 | m﹣2| 的零点值).在实数是;③数轴上表示﹣ 4 和 3的两点之间的距离范围内,零点值m=﹣ 1 和 m=2 可将全体实数分红不重是;复且不遗漏的以下 3 种状况:(1) m<﹣ 1;( 2)﹣ 1≤( 2)概括:一般地,数轴上表示数m 和数 n 的两点之m< 2;( 3)m≥ 2.进而化简代数式 | m+1|+| m﹣ 2| 可分间的距离等于 | m﹣ n| .以下 3 种状况:( 1)当 m<﹣ 1 时,原式 =﹣( m+1)﹣( 3)应用:①假如表示数 a 和 3 的两点之间的距离是 7,( m﹣ 2) =﹣ 2m+1;( 2)当﹣ 1≤ m< 2 时,原式 =m+1则可记为: | a﹣ 3| =7,那么 a=;②若数轴上表﹣( m﹣ 2)=3;(3)当 m≥ 2 时,原式 =m+1+m﹣ 2=2m示数 a 的点位于﹣ 4 与 3 之间,求 | a+4|+| a﹣ 3| 的值;﹣ 1.③当 a 取何值时, | a+4|+|a﹣1|+| a﹣ 3| 的值最小,最综上议论,原式 =小值是多少?请说明原因.32.计算: | x+1|+| x﹣ 2|+|x﹣ 3| .经过以上阅读,请你解决以下问题:状元私塾内部资料——全体都有-针对性练习33.已知数轴上三点A, O, B 表示的数分别为﹣3, 0,1,点 P 为数轴上随意一点,其表示的数为x.( 1)假如点 P 到点 A,点 B 的距离相等,那么x=;(2)当 x=时,点P到点A,点B的距离之和是6;(3)若点 P 到点 A,点 B 的距离之和最小,则x 的取值范围是;( 4)在数轴上,点M , N 表示的数分别为x1,x2,我们把x1, x2之差的绝对值叫做点M ,N 之间的距离,即MN= | x1﹣ x2| .若点 P 以每秒 3 个单位长度39.若 a> b,计算:( a﹣ b)﹢ | a﹣ b| .40.当 a≠ 0 时,请解答以下问题:( 1)求的值;(2)若 b≠ 0,且,求的值.的速度从点 O 沿着数轴的负方向运动时,点 E 以每秒1个单位长度的速度从点 A 沿着数轴的负方向运动、点F 以每秒 4 个单位长度的速度从点 B 沿着数轴的负方向运动,且三个点同时出发,那么运动秒时,点P 到点 E,点 F 的距离相等.34.阅读下边资料:如图,点A、 B 在数轴上分别表示有理数 a、b,则 A、B 两点之间的距离能够表示为| a﹣b| .依据阅读资料与你的理解回答以下问题:( 1)数轴上表示 3 与﹣ 2 的两点之间的距离是.( 2)数轴上有理数 x 与有理数 7 所对应两点之间的距离用绝对值符号能够表示为.(3)代数式 | x+8| 能够表示数轴上有理数 x 与有理数所对应的两点之间的距离;若 | x+8| =5 ,则x=.( 4)求代数式| x+1008|+| x+504|+| x﹣ 1007| 的最小值.35.已知 | a| =8, | b| =2,| a﹣ b| =b﹣ a,求 b+a 的值.36.如图 ,数轴上的三点A,B, C 分别表示有理数a, b,c,化简 | a﹣ b| ﹣ | a+c|+| b﹣ c| .37.若 ab> 0,化简:+.38.若 a、b 都是有理数,试比较| a+b| 与 | a|+| b| 大小.状元私塾内部资料——全体都有 -针对性练习当 x≥5 时,原式 =2x﹣ 9>1.参照答案与试题分析故代数式的最小值是 1.一.选择题(共16 小题)28.解:( 1)原式 =| 5+2| =71. D. 2. B. 3. D. 4. D. 5. B. 6. B.7. B故答案为: 7;. 8. A. 9. A.10. A. 11. C. 12.A.( 2)令 x+5=0 或 x﹣ 2=0 时,则 x=﹣ 5 或 x=213. D. 14.C.15.C.16. A.当 x<﹣ 5 时,二.填空题(共10 小题)∴﹣( x+5)﹣( x﹣ 2) =7,﹣ x﹣5﹣ x+2=7,17..x=5(范围内不建立)当﹣ 5<x< 2 时,18. 6 或﹣ 6.∴( x+5)﹣( x﹣ 2) =7,19. 2,2.x+5﹣ x+2=7, 7=7,20.4,﹣ 4.∴ x=﹣ 4,﹣ 3,﹣ 2,﹣ 1,0, 121.2018.当 x>2 时,22.1.∴( x+5) +( x﹣ 2) =7,23.﹣ 1.x+5+x﹣ 2=7,24.2.2x=4, x=2,25.± 3.x=2(范围内不建立)26. =3.∴综上所述,切合条件的整数x 有:﹣ 5,﹣ 4 ,﹣ 3,三.解答题(共14 小题)﹣ 2,﹣ 1, 0, 1, 2;27.【解答】( 1)令 x﹣ 5=0, x﹣ 4=0,故答案为:﹣ 5,﹣ 4,﹣ 3,﹣ 2,﹣ 1,0, 1, 2;解得: x=5 和 x=4,( 3)由( 2)的研究猜想,关于任何有理数x,| x﹣3|+| x 故 | x﹣ 5| 和| x﹣ 4| 的零点值分别为 5 和 4;﹣ 6| 有最小值为 3.( 2)当 x<4 时,原式 =5﹣ x+4﹣ x=9﹣ 2x;29.解:∵ | x| = , | y| =,且 x< y< 0,当4≤ x< 5 时,原式 =5﹣ x+x﹣4=1;∴ x=﹣, y=﹣,当 x≥ 5 时,原式 =x﹣ 5+x﹣ 4=2x﹣ 9.∴ 6÷( x﹣ y) =6÷(﹣ + ) =﹣36.综上议论,原式 =.30.【解答】解: | 2| =2, | ﹣| = ,( 3)当 x<4 时,原式 =9﹣ 2x>1;| 3 | =3 , | 0| =0, | ﹣4| =4.当 4≤ x< 5 时,原式 =1;31.解:研究:①数轴上表示 5 和 2 的两点之间的距状元私塾内部资料——全体都有 -针对性练习离是 3,∵点 P 到点 E,点 F 的距离相等,②数轴上表示﹣ 2 和﹣ 6 的两点之间的距离是4,∴ | ﹣3t ﹣(﹣ 3﹣ t ) | =| ﹣ 3t﹣( 1﹣ 4t) | ,③数轴上表示﹣ 4 和 3 的两点之间的距离是7;∴﹣ 2t+3=t ﹣1 或﹣ 2t+3=1﹣ t ,( 3)应用:①假如表示数 a 和 3 的两点之间的距离是7,解得 t= 或 t=2 .则可记为: | a﹣ 3| =7,那么 a=10 或 a=﹣ 4,故答案为:(1)﹣1;( 2)﹣ 4 或 2;(3)﹣3≤ x≤ 1;( 4)②若数轴上表示数 a 的点位于﹣ 4 与 3 之间,或 2.| a+4|+| a﹣ 3| =a+4﹣ a+3=7,a=1 时, | a+4|+|a﹣ 1|+| a﹣ 3| 最小 =7,34.解:( 1) | 3﹣(﹣ 2) | =5,| a+4|+| a﹣ 1|+|a﹣ 3| 是 3 与﹣ 4 两点间的距离.( 2)数轴上有理数 x 与有理数7 所对应两点之间的距32.解: x<﹣ 1 时, | x+1|+| x﹣ 2|+| x﹣ 3| =﹣( x+1)离用绝对值符号能够表示为| x﹣ 7| ,﹣( x﹣ 2)﹣( x﹣3 )=﹣ x﹣1﹣ x+2﹣ x+3=﹣ 3x+4;﹣1≤ x≤ 2 时,| x+1|+| x﹣ 2|+| x﹣ 3| =( x+1)﹣( x﹣2)﹣( x﹣ 3)=x+1﹣ x+2﹣ x+3=﹣ x+6;2<x≤ 3 时, | x+1|+| x﹣ 2|+| x﹣ 3| =( x+1)+( x﹣ 2)﹣(x﹣ 3) =x+1+x﹣ 2﹣x+3=x+2;x> 3 时, | x+1|+| x﹣ 2|+| x﹣ 3| =( x+1) +(x﹣ 2) +( x﹣3) =x+1+x﹣ 2+x﹣3=3x﹣ 4.33.解:( 1)由题意得,| x﹣(﹣ 3) | =| x﹣ 1| ,解得x=﹣ 1;(2)∵ AB=| 1﹣(﹣ 3) | =4,点 P 到点 A,点 B 的距离之和是 6,∴点 P 在点 A 的左侧时,﹣ 3﹣ x+1 ﹣x=6,解得 x=﹣4 ,点 P 在点 B 的右侧时, x﹣ 1+x﹣(﹣ 3)=6,解得 x=2,综上所述, x=﹣ 4 或 2;( 3)由两点之间线段最短可知,点P 在 AB 之间时点P到点 A,点 B 的距离之和最小,因此 x 的取值范围是﹣3≤ x≤1;(4)设运动时间为 t ,点 P 表示的数为﹣ 3t,点 E 表示的数为﹣ 3﹣t ,点 F 表示的数为 1﹣ 4t,( 3)代数式 | x+8| 能够表示数轴上有理数x 与有理数﹣ 8所对应的两点之间的距离;若| x+8| =5,则x=﹣3或﹣13,( 4)如图,| x+1008|+| x+504|+| x﹣ 1007| 的最小值即| 1007 ﹣(﹣1008) | =2015.故答案为: 5, | x﹣ 7| ,﹣ 8, =﹣ 3 或﹣ 13.35.解:∵ | a| =8, | b| =2,∴ a=±8 ,b=± 2,∵| a﹣ b| =b﹣ a,∴ a﹣b≤0.①当 a=8, b=2 时,由于 a﹣ b=6> 0,不符题意,舍去;②当 a=8, b=﹣ 2 时,由于 a﹣ b=10> 0,不符题意,舍去;③当 a=﹣ 8, b=2 时,由于 a﹣ b=﹣ 10<0,符题意;因此 a+b=﹣ 6;④当 a=﹣ 8, b=﹣2 时,由于a﹣b=﹣6<0,符题意,因此 a+b=﹣ 10.综上所述 a+b=﹣10 或﹣ 6.36.解:由数轴得,c> 0, a< b< 0,状元私塾内部资料——全体都有-针对性练习因此 a﹣b<0, a+c< 0, b﹣ c< 0.∴原式 =b﹣ a+a+c+c﹣ b=2c.37.解:∵ ab> 0,∴①当 a> 0, b> 0 时,+=1+1=2.②当 a<0,b<0 时,+=﹣1﹣ 1=﹣ 2.综上所述:+=2 或﹣ 2.38.解:①当a, b 同号时, | a+b| =| a|+| b| ,②当 a,b 中起码有一个0 时, | a+b| =| a|+| b| ,③当 a,b 异号时, | a+b| < | a|+| b| ,综上所述 | a+b| ≤ | a|+| b| .39.解:∵ a> b,∴ a﹣ b> 0,∴( a﹣b )﹢ | a﹣ b| =( a﹣b )+( a﹣b )=2a﹣2b.40.解:(1)当 a> 0 时,=1;当 a< 0 时,=﹣ 1;( 2)∵,∴ a,b异号,当 a> 0,b <0 时,=﹣ 1;当 a< 0,b >0 时,=﹣ 1;。

初一数学上册《绝对值》练习题及答案

初一数学上册《绝对值》练习题及答案

初一数学上册《绝对值》练习题及答案初一数学上册《绝对值》练习题及答案学习是一个边学新知识边巩固的过程,对学过的知识一定要多加练习,这样才能进步,所以店铺为大家整理了一份绝对值练习题,供大家参考。

一、选择题1.(2007年嘉兴市)-3的绝对值是()(A)3(B)-3(C)13(D)-132.绝对值等于其相反数的数一定是A.负数B.正数C.负数或零D.正数或零3.若│x│+x=0,则x一定是()A.负数B.0C.非正数D.非负数二、填空题4.│3.14-|= .5.绝对值小于3的所有整数有.6.数轴上表示1和-3的两点之间的距离是;7.(2007年深圳市)若,则的值是()A.B.C.D.8.正式排球比赛,对所使用的排球的重量是严重规定的,检查5个排球的重量,超过规定重量的'克数记为正数,不足规定重量的克数记作负数,检查结果如下表:+15-10+30-20-40指出哪个排球的质量好一些(即重量最接近规定重量)?你怎样用学过的绝对值知识来说明这个问题?10.写出绝对值大于2.1而不大于5的所有整数_一个正数增大时,它的绝对值,一个负数增大时,它的绝对值.(填增大或减小)1.如果|a|=4,|b|=3,且a>b,求a,b的值.2.(1)对于式子|x|+13,当x等于什么值时,有最小值?最小值是多少?(2)对于式子2-|x|,当x等于什么值时,有最大值?最大值是多少3.阅读下列解题过程,然后答题:已知如果两个数互为相反数,则这两个数的和为0,例如,若x和y互为相反数,则必有x+y=0.现已知:|a|+a=0,求a的取值范围.因为|a|+a=0,所以|a|与a互为相反数,所以|a|=-a,所以a的取值范围是a0.阅读以上解题过程,解答下题已知:|a-1|+(a-1)=0,求a的取值范围.以上就是给大家带来的绝对值练习题,大家还满意吗?希望对大家有所帮助,祝大家考试顺利。

【初一数学上册《绝对值》练习题及答案】。

初一七年级数学绝对值练习题及答案解析

初一七年级数学绝对值练习题及答案解析

初一七年级数学绝对值练习题及答案解析数学绝对值是初中数学中的一个重要概念,它常常在方程、不等式、函数等各个章节中出现。

掌握绝对值的概念和性质对于解决数学问题非常重要。

下面是一些初一七年级的数学绝对值练习题及答案解析,帮助你巩固对绝对值的理解。

1. 计算以下数的绝对值:a) |-5|b) |0|c) |3|答案:a) |-5| = 5b) |0| = 0c) |3| = 3解析:绝对值表示一个数与0点之间的距离。

所以绝对值的结果总是非负数。

对于a) |-5|,-5与0之间的距离是5,所以结果是5。

对于b) |0|,0与0之间的距离是0,所以结果是0。

对于c) |3|,3与0之间的距离是3,所以结果是3。

2. 求解以下方程:a) |x| = 5b) |2x - 3| = 7答案:a) x = 5 或 x = -5b) x = 5 或 x = -2解析:对于a) |x| = 5,由于绝对值的定义是非负数,所以x可以是5或-5。

因为5与-5的绝对值都是5。

对于b)|2x - 3| = 7,需要分情况讨论。

当2x - 3 = 7时,解得x = 5。

当2x - 3 = -7时,解得x = -2。

3. 解以下不等式:a) |x + 2| < 3b) |3x - 1| ≥ 5答案:a) -5 < x < 1b) x ≤ -2 或x ≥ 2解析:对于a) |x + 2| < 3,我们可以使用绝对值的定义进行讨论。

当x + 2 > 0时,即x > -2,方程等价于x + 2 < 3,解得x < 1。

当x + 2 < 0时,即x < -2,方程等价于-(x + 2) < 3,解得x > -5。

所以综合起来,-5 < x < 1。

对于b) |3x - 1| ≥ 5,我们也需要分情况讨论。

当3x - 1 > 0时,即3x > 1,方程等价于3x - 1 ≥ 5,解得x ≥ 2。

初一数学《绝对值》专项练习(含答案)

初一数学《绝对值》专项练习(含答案)

绝对值姓名:__________班级:__________考号:__________一 、选择题1.已知|x|=0.19,|y|=0.99,且0<yx ,则x-y 的值为( ) A 、1.18或-1.18 B 、0.8或-1.18 C 、0.8或-0.8 D 、1.18或-0.82.已知:x <0<z ,xy >0,且|y|>|z|>|x|,那么|x+z|+|y+z|-|x-y|的值( )A 、是正数B 、是负数C 、是零D 、不能确定符号3.如果|-a|=-a ,则a 的取值范围是(A 、a >OB 、a ≥OC 、a ≤OD 、a <O4.如果a 的绝对值是2,那么a 是( )A 、2B 、-2C 、±2D 、21±5.已知a 、b 互为相反数,且|a-b|=6,则|b-1|的值为( )A 、2B 、2或3C 、4D 、2或46.若|x+y|=y-x ,则有( )A 、y >0,x <0B 、y <0,x >0C 、y <0,x <0D 、x=0,y ≥0或y=0,x ≤07.下列说法,不正确的是( )A .数轴上的数,右边的数总比左边的数大B .绝对值最小的有理数是0C .在数轴上,右边的数的绝对值比左边的数的绝对值大D .离原点越远的点,表示的数的绝对值越大8.给出下面说法,其中正确的有( )(1)互为相反数的两数的绝对值相等;(2)一个数的绝对值等于本身,这个数不是负数;(3)若|m|>m ,则m <0;(4)若|a|>|b|,则a >b ,A 、(1)(2)(3)B 、(1)(2)(4)C 、(1)(3)(4)D 、(2)(3)(4)9.一个数与这个数的绝对值相等,那么这个数是( )A 、1,0B 、正数C 、非正数D 、非负数11.若1-=x x,则x 是( )A 、正数B 、负数C 、非负数D 、非正数12.若|a-3|=2,则a+3的值为( )A 、5B 、8C 、5或1D 、8或413.如果|x-1|=1-x ,那么( )A 、x <1B 、x >1C 、x ≤1D 、x ≥114.已知|x|=5,|y|=2,且xy >0,则x-y 的值等于( )A 、7或-7B 、7或3C 、3或-3D 、-7或-315.如图,下列各数中,数轴上点A 表示的可能是( )A .2的平方B .-3.4的绝对值C .-4.2的相反数D .512的倒数16.已知:a >0,b <0,|a|<|b|<1,那么以下判断正确的是() A 、1-b >-b >1+a >aD 、1-b >1+a >-b >aC 、1+a >1-b >a >-bB 、1+a >a >1-b >-b17.a <0,ab <0,计算|b-a+1|-|a-b-5|,结果为( )A 、6B 、-4C 、-2a+2b+6D 、2a-2b-618.在-(-2),-|-7|,3-+,23-,115⎛⎫-+⎪⎝⎭中,负数有()A.1个B.2个C.3个D.4个19.若a<0,则4a+7|a|等于()A、11aB、-11aC、-3aD、3a20.有理数a,b,c在数轴上对应的点的位置如图所示,给出下面四个命题:(1)abc<0 (2)|a-b|+|b-c|=|a-c| (3)(a-b)(b-c)(c-a)>0 (4)|a|<1-bc其中正确的命题有()A、4个B、3个C、2个D、1个21.下列说法正确的有()①有理数的绝对值一定比0大;②如果两个有理数的绝对值相等,那么这两个数相等;③互为相反数的两个数的绝对值相等;④没有最小的有理数,也没有绝对值最小的有理数;⑤所有的有理数都可以用数轴上的点来表示;⑥符号不同的两个数互为相反数.A、②④⑤⑥B、③⑤C、③④⑤D、③⑤⑥22.到数轴原点的距离是2的点表示的数是()A、±2B、2C、-2D、4二、填空题23.若220x x-+-=,则x的取值范围是24.23-的相反数的绝对值的倒数是25.已知a,b,c为三个有理数,它们在数轴上的对应位置如图所示,则|c-b|-|b-a|-|a-c|= _________26.若3230x y-++=,则yx的值是多少?27.若x<2,则|x-2|+|2+x|=________________28.当x __________时,|2-x|=x-229.在数轴上表示数a的点到原点的距离是13,那么a=30.计算:3π-= ,若23x-=,则x=31.已知|x|=2,|y|=3,且xy<0,则x+y的值为 _________同可能.当a、b、c都是正数时,M= ______;当a、b、c中有一个负数时,则M= ________;当a、b、c中有2个负数时,则M= ________;当a、b、c都是负数时,M=__________ .33.若x<-2,则|1-|1+x||=______;若|a|=-a,则|a-1|-|a-2|= ________34.如图,有理数x,y在数轴上的位置如图,化简:|y-x|-3|y+1|-|x|= ________35.绝对值不大于7且大于4的整数有个,是36.2的绝对值是.37.绝对值等于2的数有个,是38.已知00x z xy y z x <<>>>,,,那么x z y z x y +++--=39.的相反数是 ;倒数是 ;绝对值是 . 40.若|a|+a=0,|ab|=ab ,|c|-c=0,化简:|b|-|a+b|-|c-b|+|a-c|= ________41.如图所示,a 、b 是有理数,则式子|a|+|b|+|a+b|+|b-a|化简的结果为 __________43.已知a ,b ,c 的位置如图,化简:|a-b|+|b+c|+|c-a|= ______________三 、解答题44.已知a a =-,0b <,化简22442(2)24323a b a b a b b a +--+++-- 45.如果有理数a 、b 、c 在数轴上的位置如图所示,求11a b b a c c +------的值.46.如果3a b -+47.已知:①52a b ==,,且a b <;分别求a b ,的值48.设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+-49.已知x ,y ,z满足21441()02x y z -+-=,求()x z y -的值. 50.设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+-51.数,a b 在数轴上对应的点如右图所示,化简a b b a b a a ++-+--52.已知a a =-,0b <,化简22442(2)24323a ba b a b b a +--+++-- 53.()02b 1a 2=-++,分别求a ,b 的值54.数,a b 在数轴上对应的点如右图所示,化简a b b a b a a ++-+--绝对值答案解析一、选择题1.A2.C;由题意可知,x、y、z在数轴上的位置如图所示:所以|x+z|+|y+z|-|x-y|=x+z-(y+z)-(x-y)=03.C4.C5.D6.D;解:∵|x+y|=y-x,又当x+y≥0时,|x+y|=x+y,可得x=0,y≥0或者y=0,x≤0 又当x+y≤0时,|x+y|=-x-y,可得y=0,x≤0或x=0,y≥0 ∴x=0,y≥0或y=0,x≤0选D.7.C8.A9.D10.B11.B12.D13.C14.C15.B16.D17.A;根据已知条件先去掉绝对值即可求解.18.C19.C20.B21.B22.A二 、填空题23.2x ≤24.3227.4或-2x28.x ≥229.13a =±30.3π-,5x =或1-31.±132.当a 、b 、c 中都是正数时,M=1+1+1=3;当a 、b 、c 中有一个负数时,不妨设a 是负数,则M=-1+1+1=1;当a 、b 、c 中有2个负数时,不妨设a ,b 是负数,则M=-1-1+1=-1; 当a 、b 、c 都是负数时,M=-1-1-1=-3;故M 有4种不同结果.33.-2-x ,-134.2y+3;根据数轴图可知:x >0,y <-1,∴|y-x|=x-y ,|y+1|=-1-y ,|x|=x ;∴|y-x|-3|y+1|-|x|=x-y+3(1+y )-x=2y+3. 35.6个,5±、6±、7±237.2个,2±38.解:∵ 0x z <<,0xy > ∴0y <∵y z x >> ∴y z x ->>- ∴0x z +>,0y z +<,0x y ->∴原式=()()()0x z y z x y x z y z x y +-+--=+---+=;.40.∵|a|+a=0,|ab|=ab,|c|-c=0,∴a≤0,b≤0,c≥0,∴a+b≤0,c-b≥0,a-c≤0,∴原式=-b+a+b-c+b-a+c=b.故答案为b.41.3b-a42.【解析】根据绝对值的定义,对本题需去括号,那么牵涉到x的取值,因而分①当x<-1;②当-1≤x≤5;③当x>5这三种情况讨论该式的最小值.【答案】①当x<-1,|x+1|+|x-5|+4=-(x+1)+5-x+4=8-2x>10,②当-1≤x≤5,|x+1|+|x-5|+4=x+1+5-x+4=10,③当x>5,|x+1|+|x-5|+4=x+1+x-5+4=2x>10;所以|x+1|+|x-5|+4的最小值是10.故答案为:10.43.2a;由数轴可知a<c<0<b,所以a-b<0,b+c<0,c-a>0,则|a-b|+|b+c|+|c-a|=b-a-b-c+c-a=-2a.三、解答题44.解:∵a a=-∴0a≤∵0b<∴20a b+<,230a-<∴原式=22(2)42(2)24323a ba b a b b a-++-++++-=242222a b a b a b-+++++=42a b+45.解:如图所示,得0a b<<,01c<<∴0a b+<,10b-<,0a c-<,10c->∴原式=()(1)()(1)a b b a c c-++-+---=11a b b a c c--+-+--+=2-46.有题可知30220a ba b-+=⎧⎨+-=⎩解得4353ab⎧=-⎪⎪⎨⎪=⎪⎩3=.47.解:∵5a =,2b =∴5a =±,2b =±∵a b < ∴5a =-,2b =±48.∵0a a +=、0c c -= ∴a a =-,c c =∵a 、b 、c 为非零实数,∴0a <,0c > ∵ab ab = ∴0ab > ∴0b <∴0a b +<,0c b ->,0a c -<∴原式=()()()()b a b c b a c -++----=b a b c b a c b -++-+-+=49.由题可知441020102x y y z z ⎧⎪-+=⎪+=⎨⎪⎪-=⎩,解得121412x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩,()x z y -1111()()22416=--⨯-=.50.解: ∵0a a +=、0c c -= ∴a a =-,c c =∵a 、b 、c 为非零实数,∴0a <,0c > ∵ab ab = ∴0ab > ∴0b <∴0a b +<,0c b ->,0a c -<∴原式=()()()()b a b c b a c -++----=b a b c b a c b -++-+-+=51.解:如图,得0a <,0b >,0a b +<,0b a ->∴原式=()()2a b b a b a a a b b a b a b -++-+-+=--+-++=52.解:∵a a =- ∴0a ≤ ∵0b < ∴20a b +<,230a -<∴原式=22(2)42(2)24323a b a b a b b a -++-++++-=242222a b a b a b -+++++=42a b+ 53.()02,012≥-≥+b a 可得02,01=-=+b a ;所以2,1=-=b a54.解:如图,得0a <,0b >,0a b +<,0b a ->∴原式=()()2 -++-+-+=--+-++=a b b a b a a a b b a b a b。

初一(七年级)数学绝对值练习题及答案解析

初一(七年级)数学绝对值练习题及答案解析

初一(七年级)数学绝对值练习题及答案解析基础检测:1.-8的绝对值是,记做。

2.绝对值等于5的数有。

3.若︱a︱= a , 则 a 。

4.的绝对值是2004,0的绝对值是。

5一个数的绝对值是指在上表示这个数的点到的距离。

6.如果 x < y < 0, 那么︱x ︱︱y︱。

7.︱x - 1 ︱ =3 ,则 x =。

8.若︱x+3︱+︱y -4︱= 0,则 x + y = 。

9.有理数a ,b在数轴上的位置如图所示,则a b,︱a︱︱b︱。

10.︱x ︱<л,则整数x = 。

11.已知︱x︱-︱y︱=2,且y =-4,则 x = 。

12.已知︱x︱=2 ,︱y︱=3,则x +y = 。

13.已知︱x +1 ︱与︱y -2︱互为相反数,则︱x ︱+︱y︱= 。

14. 式子︱x +1 ︱的最小值是,这时,x值为。

15. 下列说法错误的是()A 一个正数的绝对值一定是正数B 一个负数的绝对值一定是正数C 任何数的绝对值一定是正数D 任何数的绝对值都不是负数16.下列说法错误的个数是()(1)绝对值是它本身的数有两个,是0和1(2)任何有理数的绝对值都不是负数(3)一个有理数的绝对值必为正数(4)绝对值等于相反数的数一定是非负数A 3B 2C 1D 017.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则 a + b + c 等于 ( )A -1B 0C 1D 2拓展提高:18.如果a , b 互为相反数,c, d 互为倒数,m 的绝对值为2,求式子a b a b c+++ + m -cd 的值。

19.某司机在东西路上开车接送乘客,他早晨从A 地出发,(去向东的方向正方向),到晚上送走最后一位客人为止,他一天行驶的的里程记录如下(单位:㎞) +10 ,— 5, —15 ,+ 30 ,—20 ,—16 ,+ 14(1) 若该车每百公里耗油 3 L ,则这车今天共耗油 多少升?(2) 据记录的情况,你能否知道该车送完最后一个乘客是,他在A 地的什么方向?距A 地多远?20.工厂生产的乒乓球超过标准重量的克数记作正数,低于标准重量的克数记作负数,现对5个乒乓球称重情况如下表所示,分析下表,根据绝对值的定义判断哪个球的重量最接初一(七年级)数学上册绝对值同步练习答案基础检测:1.-8的绝对值是8 ,记做︱-8︱。

初一数学《绝对值与绝对值的几何意义》专项练习(含答案)

初一数学《绝对值与绝对值的几何意义》专项练习(含答案)

绝对值与绝对值的几何意义姓名:__________班级:__________考号:__________一 、填空题1.若42a b -=-+,则_______a b +=2.若7322102m n p ++-+-=,则23_______p n m +=+ 3.设a 、b 同时满足①2(2)|1|1a b b b -++=+;②|3|0a b +-=.那么ab =4.已知2()55a b b b +++=+,且210a b --=,那么ab =_______5.已知m 是实数,求12m m m +-+-的最小值是6.4x -的几何意义是数轴上表示 的点与表示 的点之间的距离,若42x -=,则x = .二 、解答题7.如果3a b -+8.已知x ,y ,z 满足21441()02x y z -+-=,求()x z y -的值. 9.m n -的几何意义是数轴上表示m 的点与表示n 的点之间的距离 ⑴ x 的几何意义是数轴上表示 的点与 之间的距离;x 0x -(>,=,<);⑵ 21-的几何意义是数轴上表示2的点与表示1的点之间的距离;则21-= ;⑶ 3x -的几何意义是数轴上表示 的点与表示 的点之间的距离,若31x -=,则x = .⑷ 2x +的几何意义是数轴上表示 的点与表示 的点之间的距离,若22x +=,则x = .⑸ 当1x =-时,则22x x -++=10.已知m 是实数,求2468m m m m -+-+-+-的最小值绝对值的几何意义答案解析一 、填空题1.2;∵42a b -=-+ ∴420a b -++= ∵40a -≥,20b +≥ ∴40a -=,20b += 则4a =,2b =-2.解:∵30m +≥,702n -≥,210p -≥ ∴30m +=,702n -=,210p -= 则3m =-,72n =,12p = ∴3232p n m ++=-3.2;∵2(2)0a b -≥,10b +≥,且2(2)|1|1a b b b -++=+ ∴10b +≥ ∴2(2)11a b b b -++=+ 则2(2)0a b -= ∴2a b = ∵30a b +-= ∴230b b +-= 则1b =,2a = ∴2ab =4.19-;∵2()0a b +≥,50b +≥,且2()55a b b b +++=+ ∴50b +≥ ∴2()55a b b b +++=+ 则2()0a b += ∴a b =- ∵210a b --= ∴210b b ---= ∴13b =-,13a = 则19ab =- 5.绝对值的几何意义 解:令0m =,10m -=,20m -=,则零点有0m =,1m =,2m = 设0、1、2、m 在数轴上分别用A 、B 、C 、P 表示,如图①当点P 在点A 左侧时,12m m m +-+-=PA PB PC ++=32PA AB BC ++=33PA +P C B A∴当0PA =时,即点P 与点A 重合时,原式取得最小值为3 ∵点P 在点A 左侧 ∴原式3>②当点P 在线段AB 上时(不包含点B ),12m m m +-+-=PA PB PC ++=2PB AC PB +=+∴当0PB =时,原式取得最小值∵此时不包含点B ,∴原式2>③当点P 在线段BC 上时(不包含点C ),12m m m +-+-=PA PB PC ++=2PB AC PB +=+∴当0PB =时,即当点P 与点B 重合时,原式取得最小值,最小值为2④当点P 在点C 及点C 右侧时,12m m m +-+-=PA PB PC ++=32PC BC AB ++=33PC +∴当0PC =时,即点P 与点C 重合时,原式取得最小值,最小值为3 综上所述,当点P 与点B 重合时,即1m =时,原式取得最小值为26.x 、4、2或6二 、解答题7.有题可知30220a b a b -+=⎧⎨+-=⎩解得4353a b ⎧=-⎪⎪⎨⎪=⎪⎩3=.P C B AP C B APC B A8.由题可知441020102x y y z z ⎧⎪-+=⎪+=⎨⎪⎪-=⎩,解得121412x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩,()x z y -1111()()22416=--⨯-=.9.解:⑴x 、原点、=;⑵1;⑶x 、3、4或2;⑷x 、2-、4-或0;⑸设2-、2、x 在数轴代表的点为A 、B 、P ,如图则2x PA +=,2x PB -=,∴224x x PA PB AB ++-=+==10.绝对值的几何意义解:令20m -=,40m -=,60m -=,80m -=则零点有2m =,4m =,6m =,8m =设2、4、6、8、m 在数轴上分别用A 、B 、C 、D 、P ∴2468m m m m PA PB PC PD -+-+-+-=+++ ①当点P 在点A 左侧时,43241212PA PB PC PD PA AB BC CD PA +++=+++=+> ②当点P 在线段AB 上时,(不包含点B ),2288PA PB PC PD PB BC AD PB +++=++=+>③当点P 在线段BC 上时(不包含点C ),8PA PB PC PD BC AD +++=+= ④当点P 在线段CD 上时(不包含点D ),2288PA PB PC PD PC BC AD PC +++=++=+≥当点P 与点C 重合时,取等号⑤当点P 在点D 及点D 右侧时,43241212PA PB PC PD PD CD BC AB PD +++=+++=+≥ 综上所述,当点P 在线段BC 上时,即46m ≤≤时,原式取得最小值为8 P B A1。

七年级数学上册《绝对值》 习题及答案

七年级数学上册《绝对值》 习题及答案

七年级数学上册:绝对值习题及答案1.-6的绝对值是()A.6B.-6C.16D.-162.下列各式中,不成立的是()A.|-3|=3B.-|3|=-3C.|-3|=|3|D.-|-3|=33.若|x|=5,则x的值是()A.5B.-5C. 5D.154.一个数a在数轴上的对应点在原点左边,则|a|=4,则a的值为()A.4或-4B.4C.-4D.以上都不对5.检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数,从质量角度看,最接近标准质量的工件是()A.-2B.-3C.3D.56.-2016的绝对值记作,它的值是,它表示的意义为。

7.绝对值最小的有理数是。

8.在-5,-6,-7这三个数中,绝对值最小的数是,表示在数轴上,离原点最远的数是。

9.-8的相反数的绝对值是,-8的绝对值的相反数是。

10.绝对值大于它本身的数是,绝对值等于它本身的数是。

11.计算:(1)|-3|+|-10|-|-1|(2)|-24|÷|-6|×|-3|12.已知a为有理数,则下列四个数中一定为非负数的是()A.aB.-aC.|-a|D.-|-a|13.如果|a|=-a,那么下列成立的是()A.a>0B.a<0C.a≥0D.a≤014.当x=时,代数|x-6|+3有最小值,最小值是。

15.绝对值大于2且小于4.5的整数有()A.2个B.3个C.4个D.5个16.如果一个数的绝对值大于另一个数的绝对值,那么下列说法正确的是()A.这个数必大于另一个数B.这个数必小于另一个数C.这两个数的符号必相反D.无法确定两个数的大小17.下列说法正确的有()①若a=b,则|a|=|b|;②若a=-b,则|a|=|b|;③若|a|=|b|,则a=b;④若|a|=|b|,则a= b;A.0个B.1个C.2个D.3个18.下列说法中错误的个数是()(1)绝对值是它本身的数有两个,它们是1和0;(2)一个有理数的绝对值必为正数;(3)2的相反数的绝对值是2;(4)任何有理数的绝对值都不是负数;A.0B.1C.2D.319.请写出一个x的值,使|x-1|=x-1成立,你写出的x的值是。

七年级数学上册《绝对值》练习题(附答案解析)

七年级数学上册《绝对值》练习题(附答案解析)

七年级数学上册《绝对值》练习题(附答案解析)一、选择题(共13小题)1. −3的绝对值是( )A. 3B. −3C. −13D. 132. −2的绝对值是( )A. 2B. −2C. ±2D. √23. 绝对值不大于3的正整数有( )A. 1个B. 2个C. 3个D. 4个4. 若∣x∣=∣y∣,则x与y的关系是( )A. 都是零B. 互为相反数C. 相等D. 相等或互为相反数5. 下列大小关系中错误的是( )A. −1<−1.5B. −12<−13C. ∣∣−12∣∣>∣∣−13∣∣ D. π>3.146. 小明和小兰玩游戏,小兰说出一个数,小明要说出它的相反数,如果小兰说出的数是−2021,那么小明要说出的数是( )A. 12021B. −12021C. 2021D. −20217. 如图,数轴上有A,B,C,D四个点,其中表示的数互为相反数的点是( )A. 点A与点DB. 点A与点CC. 点B与点DD. 点B与点C8. 已知∣x∣=3,∣y∣=8,且xy<0,则x+y的值等于( )A. ±5B. ±11C. −5或11D. −5或−119. 在数轴上有两个点,分别表示数x和y,已知∣x∣=1,且x>0,∣y+1∣=4,那么这两个点之间距离为( )A. 2或6B. 5或3C. 2D. 310. 在−3,−1,1,3四个数中,比−2小的数是( )A. −3B. −1C. 1D. 311. 下面两个数互为相反数的是( )A. −(+2015) 与 +(−2015)B. −0.8 和 −(+0.8)C. −1.25 和 45 D. +(−0.02) 与 −(−150)12. −2021 的绝对值是 ( )A. −2021B. 2021C. ±2021D. 1202113. 有理数 a 、 b 、 c 表示的点在数轴上的位置如下图所示,则 ∣a +c∣−∣c −b∣−2∣b +a∣= ( )A. 3a −bB. −a −bC. a +3b −2cD. a −b −2c二、填空题(共7小题)14. −12 的相反数是 .15. 方程 ∣x −3∣=2 的解是 .16. 若 x <y <0,则 −x y ,x −y ,∣x ∣ ∣y ∣.(填“>”“<”或“=”)17. 若 ∣a ∣=5,b =3,且 a <b ,则 a = .18. 数轴上到原点的距离小于 3.2 的点中,表示整数的点共有 个.19. 若有理数 a ,b 满足 ab ≠0,则 m =a∣a∣+∣b∣b 的值为 .20. 如图,在数轴上,点 A 表示的数是 ,其绝对值是 ;点 B 表示的数是 ,其绝对值是 ;点 C 表示的数是 ,其绝对值是 .三、解答题(共5小题)21. 求下列各数的绝对值:−5,4.5,−0.5,+1,0,π−3.22. 若点 A ,B ,C ,D 分别表示 −(−52),−(+12),+(−4),+(+712),点 E ,F 分别表示 +(−4) 与 +(+712) 的相反数,请画出数轴并在数轴上标出点 A ,B ,C ,D ,E ,F .23. 如果 1<x <2,求代数式 ∣x−2∣x−2−∣x−1∣1−x +∣x∣x 的值.24. 已知a>0,b<0,且a+b<0,请利用数轴比较a,b,−a,−b的大小,并用“<”号连接.25. 比较下列每组数的大小:(1)−334和−323;(2)−∣∣212∣∣和−(−314);(3)−1327和−3029;(4)−5.34和−∣∣−513∣∣.参考答案与解析1. A【解析】负数的绝对值是它的相反数,−3的绝对值是3.2. A【解析】负数的绝对值是它的相反数,故−2的绝对值是2.3. C4. D【解析】因为∣x∣=∣y∣,所以x,y在数轴上对应的点到原点的距离相等,则x=y或x=−y.5. A【解析】∵−1>−1.5,故选项A错误;∵∣∣−12∣∣=12,∣∣−13∣∣=13,且12>13,∴−12<−13,选项B和C都是正确的.选项D中π>3.14故选项D正确.故选:A.6. C7. A【解析】由题图可知,点A,B,C,D到原点的距离分别为2,1,0.5,2,到原点的距离相等的点是点A与点D,故选A.8. A【解析】∵∣x∣=3,∣y∣=8,∴x=±3,y=±8.∵xy<0,∴当x=3时,y=−8,当x=−3时,y=8.当x=3,y=−8时,x+y=3+(−8)=−5;当x=−3,y=8时.x+y=−3+8=5.9. A【解析】∵∣x∣=1,且x>0,∴x=1,∵∣y+1∣=4,∴y=−5或3,∴这两个点之间距离为1−(−5)=6或3−1=2.10. A11. D【解析】−(+2015)=−2015,+(−2015)=−2015,两数相等,A不合题意;−(+0.8)=−0.8,两数相等,B不合题意;−1.25和45不是互为相反数,C不合题意;+(−0.02)=−150,−(−150)=150,两个数互为相反数,D符合题意.12. B13. C14. 12【解析】根据只有符号不同的两个数叫做互为相反数,可得一个数的相反数.所以−12的相反数是12.15. x1=1,x2=516. >,<,>17. −5【解析】因为∣a∣=5,所以a=±5.又b=3,且a<b,所以a=−5.18. 719. 2或0或−220. 5.5,5.5,−3,3,−0.5,0.521. 5;4.5;0.5;1;0;π−3.22. −(−52)=52,−(+12)=−12,+(−4)=−4,+(+712)=712,+(−4) 的相反数是 4,+(+712) 的相反数是 −712,画出的数轴及各点在数轴上的位置如图.23. 当 1<x <2 时,x >0,x −1>0,x −2<0,原式=∣x−2∣x−2+∣x−1∣x−1+∣x∣x=−1+1+1=1.24. ∵a >0,b <0,且 a +b <0, ∴∣b ∣>∣a ∣, 在数轴上表示为:b <−a <a <−b . 25. (1) −334<−323;(2) −∣∣212∣∣<−(−314); (3) −1327>−3029;(4) −5.34<−∣∣−513∣∣.。

7.初一上册数学 绝对值 专项练习带答案

7.初一上册数学 绝对值 专项练习带答案

绝对值一.选择题(共16小题)1.相反数不大于它本身的数是()A.正数B.负数C.非正数D.非负数2.下列各对数中,互为相反数的是()A.2和B.﹣0.5和C.﹣3和D.和﹣23.a,b互为相反数,下列各数中,互为相反数的一组为()A.a2与b2B.a3与b5C.a2n与b2n(n为正整数)D.a2n+1与b2n+1(n为正整数)4.下列式子化简不正确的是()A.+(﹣5)=﹣5 B.﹣(﹣0.5)=0.5C.﹣|+3|=﹣3 D.﹣(+1)=15.若a+b=0,则下列各组中不互为相反数的数是()A.a3和b3B.a2和b2C.﹣a和﹣b D.和6.若a和b互为相反数,且a≠0,则下列各组中,不是互为相反数的一组是()A.﹣2a3和﹣2b3B.a2和b2C.﹣a和﹣b D.3a和3b7.﹣2018的相反数是()A.﹣2018 B.2018 C.±2018 D.﹣8.﹣2018的相反数是()A.2018B.﹣2018 C.D.﹣9.下列各组数中,互为相反数的是()A.﹣1与(﹣1)2B.1与(﹣1)2C.2与D.2与|﹣2|10.如图,图中数轴的单位长度为1.如果点B,C表示的数的绝对值相等,那么点A表示的数是()A.﹣4 B.﹣5 C.﹣6 D.﹣211.化简|a﹣1|+a﹣1=()A.2a﹣2B.0 C.2a﹣2或0 D.2﹣2a12.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是()A.M或RB.N或P C.M或N D.P或R13.已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是()A.1﹣b>﹣b>1+a>aB.1+a>a>1﹣b>﹣bC.1+a>1﹣b>a>﹣bD.1﹣b>1+a>﹣b>a14.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙B.丙丁C.甲丙D.乙丁15.有理数a、b在数轴上的位置如图所示,则下列各式中错误的是()A.b<aB.|b|>|a| C.a+b>0 D.ab<016.﹣3的绝对值是()A.3 B.﹣3 C.D.二.填空题(共10小题)17.|x+1|+|x﹣2|+|x﹣3|的值为.18.已知|x|=4,|y|=2,且xy<0,则x﹣y的值等于.19.﹣2的绝对值是,﹣2的相反数是.20.一个数的绝对值是4,则这个数是.21.﹣2018的绝对值是.22.如果x、y都是不为0的有理数,则代数式的最大值是.23.已知+=0,则的值为.24.计算:|﹣5+3|的结果是.25.已知|x|=3,则x的值是.26.计算:|﹣3|=.三.解答题(共14小题)27.阅读下列材料并解决有关问题:我们知道,|m|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|的零点值).在实数范围内,零点值m=﹣1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2|可分以下3种情况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m ﹣1.综上讨论,原式=通过以上阅读,请你解决以下问题:(1)分别求出|x﹣5|和|x﹣4|的零点值;(2)化简代数式|x﹣5|+|x﹣4|;(3)求代数式|x﹣5|+|x﹣4|的最小值.28.同学们都知道|5﹣(﹣2)|表示5与(﹣2)之差的绝对值,也可理解为5与﹣2两数在数轴上所对的两点之间的距离,试探索:(1)求|5﹣(﹣2)|=.(2)找出所有符合条件的整数x,使得|x+5|+|x ﹣2|=7成立的整数是.(3)由以上探索猜想,对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,写出最小值;如果没有,说明理由.29.计算:已知|x|=,|y|=,且x<y<0,求6÷(x﹣y)的值.30.求下列各数的绝对值.2,﹣,3,0,﹣4.31.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是;②数轴上表示﹣2和﹣6的两点之间的距离是;③数轴上表示﹣4和3的两点之间的距离是;(2)归纳:一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(3)应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a=;②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值;③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.32.计算:|x+1|+|x﹣2|+|x﹣3|.33.已知数轴上三点A,O,B表示的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=;(2)当x=时,点P到点A,点B的距离之和是6;(3)若点P 到点A,点B的距离之和最小,则x的取值范围是;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O沿着数轴的负方向运动时,点E以每秒1个单位长度的速度从点A沿着数轴的负方向运动、点F以每秒4个单位长度的速度从点B沿着数轴的负方向运动,且三个点同时出发,那么运动秒时,点P到点E,点F的距离相等.34.阅读下面材料:如图,点A、B在数轴上分别表示有理数a、b,则A、B两点之间的距离可以表示为|a﹣b|.根据阅读材料与你的理解回答下列问题:(1)数轴上表示3与﹣2的两点之间的距离是.(2)数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为.(3)代数式|x+8|可以表示数轴上有理数x与有理数所对应的两点之间的距离;若|x+8|=5,则x=.(4)求代数式|x+1008|+|x+504|+|x ﹣1007|的最小值.35.已知|a|=8,|b|=2,|a﹣b|=b﹣a,求b+a的值.36.如图,数轴上的三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|a+c|+|b﹣c|.37.若ab>0,化简:+.38.若a、b都是有理数,试比较|a+b|与|a|+|b|大小.39.若a>b,计算:(a﹣b)﹢|a﹣b|.40.当a≠0时,请解答下列问题:(1)求的值;(2)若b≠0,且,求的值.参考答案与试题解析一.选择题(共16小题)1.D.2.B.3.D.4.D.5.B.6.B.7.B.8.A.9.A.10.A.11.C.12.A.13.D.14.C.15.C.16.A.二.填空题(共10小题)17..18.6或﹣6.19.2,2.20.4,﹣4.21.2018.22.1.23.﹣1.24.2.25.±3.26.=3.三.解答题(共14小题)27.【解答】(1)令x﹣5=0,x﹣4=0,解得:x=5和x=4,故|x﹣5|和|x﹣4|的零点值分别为5和4;(2)当x<4时,原式=5﹣x+4﹣x=9﹣2x;当4≤x<5时,原式=5﹣x+x﹣4=1;当x≥5时,原式=x﹣5+x﹣4=2x﹣9.综上讨论,原式=.(3)当x<4时,原式=9﹣2x>1;当4≤x<5时,原式=1;当x≥5时,原式=2x﹣9>1.故代数式的最小值是1.28.解:(1)原式=|5+2|=7故答案为:7;(2)令x+5=0或x﹣2=0时,则x=﹣5或x=2 当x<﹣5时,∴﹣(x+5)﹣(x﹣2)=7,﹣x﹣5﹣x+2=7,x=5(范围内不成立)当﹣5<x<2时,∴(x+5)﹣(x﹣2)=7,x+5﹣x+2=7,7=7,∴x=﹣4,﹣3,﹣2,﹣1,0,1当x>2时,∴(x+5)+(x﹣2)=7,x+5+x﹣2=7,2x=4,x=2,x=2(范围内不成立)∴综上所述,符合条件的整数x有:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;故答案为:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;(3)由(2)的探索猜想,对于任何有理数x,|x ﹣3|+|x﹣6|有最小值为3.29.解:∵|x|=,|y|=,且x<y<0,∴x=﹣,y=﹣,∴6÷(x﹣y)=6÷(﹣+)=﹣36.30.【解答】解:|2|=2,|﹣|=,|3|=3,|0|=0,|﹣4|=4.31.解:探究:①数轴上表示5和2的两点之间的距离是3,②数轴上表示﹣2和﹣6的两点之间的距离是4,③数轴上表示﹣4和3的两点之间的距离是7;(3)应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a=10或a=﹣4,②若数轴上表示数a的点位于﹣4与3之间,|a+4|+|a﹣3|=a+4﹣a+3=7,a=1时,|a+4|+|a﹣1|+|a﹣3|最小=7,|a+4|+|a﹣1|+|a﹣3|是3与﹣4两点间的距离.32.解:x<﹣1时,|x+1|+|x﹣2|+|x﹣3|=﹣(x+1)﹣(x﹣2)﹣(x﹣3)=﹣x﹣1﹣x+2﹣x+3=﹣3x+4;﹣1≤x≤2时,|x+1|+|x﹣2|+|x﹣3|=(x+1)﹣(x ﹣2)﹣(x﹣3)=x+1﹣x+2﹣x+3=﹣x+6;2<x≤3时,|x+1|+|x﹣2|+|x﹣3|=(x+1)+(x ﹣2)﹣(x﹣3)=x+1+x﹣2﹣x+3=x+2;x>3时,|x+1|+|x﹣2|+|x﹣3|=(x+1)+(x﹣2)+(x﹣3)=x+1+x﹣2+x﹣3=3x﹣4.33.解:(1)由题意得,|x﹣(﹣3)|=|x﹣1|,解得x=﹣1;(2)∵AB=|1﹣(﹣3)|=4,点P到点A,点B 的距离之和是6,∴点P在点A的左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B的右边时,x﹣1+x﹣(﹣3)=6,解得x=2,综上所述,x=﹣4或2;(3)由两点之间线段最短可知,点P在AB之间时点P到点A,点B的距离之和最小,所以x的取值范围是﹣3≤x≤1;(4)设运动时间为t,点P表示的数为﹣3t,点E 表示的数为﹣3﹣t,点F表示的数为1﹣4t,∵点P到点E,点F的距离相等,∴|﹣3t﹣(﹣3﹣t)|=|﹣3t﹣(1﹣4t)|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:(1)﹣1;(2)﹣4或2;(3)﹣3≤x ≤1;(4)或2.34.解:(1)|3﹣(﹣2)|=5,(2)数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为|x﹣7|,(3)代数式|x+8|可以表示数轴上有理数x与有理数﹣8所对应的两点之间的距离;若|x+8|=5,则x=﹣3或﹣13,(4)如图,|x+1008|+|x+504|+|x﹣1007|的最小值即|1007﹣(﹣1008)|=2015.故答案为:5,|x﹣7|,﹣8,=﹣3或﹣13.35.解:∵|a|=8,|b|=2,∴a=±8,b=±2,∵|a﹣b|=b﹣a,∴a﹣b≤0.①当a=8,b=2时,因为a﹣b=6>0,不符题意,舍去;②当a=8,b=﹣2时,因为a﹣b=10>0,不符题意,舍去;③当a=﹣8,b=2时,因为a﹣b=﹣10<0,符题意;所以a+b=﹣6;④当a=﹣8,b=﹣2时,因为a﹣b=﹣6<0,符题意,所以a+b=﹣10.综上所述a+b=﹣10或﹣6.36.解:由数轴得,c>0,a<b<0,因而a﹣b<0,a+c<0,b﹣c<0.∴原式=b﹣a+a+c+c﹣b=2c.37.解:∵ab>0,∴①当a>0,b>0时,+=1+1=2.②当a<0,b<0时,+=﹣1﹣1=﹣2.综上所述:+=2或﹣2.38.解:①当a,b同号时,|a+b|=|a|+|b|,②当a,b中至少有一个0时,|a+b|=|a|+|b|,③当a,b异号时,|a+b|<|a|+|b|,综上所述|a+b|≤|a|+|b|.39.解:∵a>b,∴a﹣b>0,∴(a﹣b)﹢|a﹣b|=(a﹣b)+(a﹣b)=2a﹣2b.40.解:(1)当a>0时,=1;当a<0时,=﹣1;(2)∵,∴a,b异号,当a>0,b<0时,=﹣1;当a<0,b>0时,=﹣1;我始终相信,时光会证明每天不管多晚多累都坚持在自己脸上涂抹半小时是正确的!。

7.初一(上册)数学绝对值专项练习带答案解析

7.初一(上册)数学绝对值专项练习带答案解析

绝对值一.选择题(共16小题)1.相反数不大于它本身的数是()A.正数B.负数C.非正数D.非负数2.下列各对数中,互为相反数的是()A.2和B.﹣0.5和C.﹣3和D.和﹣23.a,b互为相反数,下列各数中,互为相反数的一组为()A.a2与b2B.a3与b5C.a2n与b2n(n为正整数)D.a2n +1与b2n+1(n为正整数)4.下列式子化简不正确的是()A .+(﹣5)=﹣5 B.﹣(﹣0.5)=0.5C.﹣|+3|=﹣3 D.﹣(+1)=15.若a+b=0,则下列各组中不互为相反数的数是()A.a3和b3B.a2和b2C.﹣a和﹣b D.和6.若a和b互为相反数,且a≠0,则下列各组中,不是互为相反数的一组是()A.﹣2a3和﹣2b3B.a2和b2C.﹣a和﹣b D.3a和3b7.﹣2018的相反数是()A.﹣2018 B.2018 C.±2018 D.﹣8.﹣2018的相反数是()A.2018B.﹣2018 C.D.﹣9.下列各组数中,互为相反数的是()A.﹣1与(﹣1)2B.1与(﹣1)2C.2与D.2与|﹣2|10.如图,图中数轴的单位长度为1.如果点B,C表示的数的绝对值相等,那么点A表示的数是()A.﹣4 B.﹣5 C.﹣6 D.﹣211.化简|a﹣1|+a﹣1=()A.2a﹣2B.0 C.2a﹣2或0 D.2﹣2a12.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是()A.M或RB.N或P C.M或N D.P或R13.已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是()A.1﹣b>﹣b>1+a >aB.1+a >a>1﹣b>﹣bC.1+a>1﹣b>a>﹣bD.1﹣b>1+a>﹣b>a14.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙B.丙丁C.甲丙D.乙丁15.有理数a、b在数轴上的位置如图所示,则下列各式中错误的是()A.b<aB.|b|>|a|C.a+b>0 D.ab<016.﹣3的绝对值是()A.3 B.﹣3 C.D.二.填空题(共10小题)17.|x+1|+|x﹣2|+|x﹣3|的值为.18.已知|x|=4,|y|=2,且xy<0,则x﹣y的值等于.19.﹣2的绝对值是,﹣2的相反数是.20.一个数的绝对值是4,则这个数是.21.﹣2018的绝对值是.22.如果x、y都是不为0的有理数,则代数式的最大值是.23.已知+=0,则的值为.24.计算:|﹣5+3|的结果是.25.已知|x|=3,则x的值是.26.计算:|﹣3|=.三.解答题(共14小题)27.阅读下列材料并解决有关问题:我们知道,|m|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|的零点值).在实数范围内,零点值m=﹣1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2|可分以下3种情况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m ﹣1.综上讨论,原式=通过以上阅读,请你解决以下问题:(1)分别求出|x﹣5|和|x﹣4|的零点值;(2)化简代数式|x﹣5|+|x﹣4|;(3)求代数式|x﹣5|+|x﹣4|的最小值.28.同学们都知道|5﹣(﹣2)|表示5与(﹣2)之差的绝对值,也可理解为5与﹣2两数在数轴上所对的两点之间的距离,试探索:(1)求|5﹣(﹣2)|=.(2)找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7成立的整数是.(3)由以上探索猜想,对于任何有理数x,|x﹣3|+|x ﹣6|是否有最小值?如果有,写出最小值;如果没有,说明理由.29.计算:已知|x|=,|y|=,且x<y<0,求6÷(x ﹣y)的值.30.求下列各数的绝对值.2,﹣,3,0,﹣4.31.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是;②数轴上表示﹣2和﹣6的两点之间的距离是;③数轴上表示﹣4和3的两点之间的距离是;(2)归纳:一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(3)应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a=;②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值;③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.32.计算:|x+1|+|x﹣2|+|x﹣3|.33.已知数轴上三点A,O,B表示的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=;(2)若b≠0,且,求的值.当x=时,点P到点A,点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O沿着数轴的负方向运动时,点E以每秒1个单位长度的速度从点A沿着数轴的负方向运动、点F以每秒4个单位长度的速度从点B沿着数轴的负方向运动,且三个点同时出发,那么运动秒时,点P到点E,点F的距离相等.34.阅读下面材料:如图,点A、B在数轴上分别表示有理数a、b,则A、B两点之间的距离可以表示为|a﹣b|.根据阅读材料与你的理解回答下列问题:(1)数轴上表示3与﹣2的两点之间的距离是.(2)数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为.(3)代数式|x+8|可以表示数轴上有理数x与有理数所对应的两点之间的距离;若|x+8|=5,则x=.(4)求代数式|x+1008|+|x+504|+|x﹣1007|的最小值.35.已知|a|=8,|b|=2,|a﹣b|=b﹣a,求b+a的值.36.如图,数轴上的三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|a+c|+|b﹣c|.37.若ab>0,化简:+.38.若a、b都是有理数,试比较|a+b|与|a|+|b|大小.39.若a>b,计算:(a﹣b)﹢|a﹣b|.40.当a≠0时,请解答下列问题:(1)求的值;(2)参考答案与试题解析一.选择题(共16小题)1.D.2.B.3.D.4.D.5.B.6.B.7.B .8.A.9.A.10.A.11.C.12.A.13.D.14.C.15.C.16.A.二.填空题(共10小题)17..18.6或﹣6.19.2,2.20.4,﹣4.21.2018.22.1.23.﹣1.24.2.25.±3.26.=3.三.解答题(共14小题)27.【解答】(1)令x﹣5=0,x﹣4=0,解得:x=5和x=4,故|x﹣5|和|x﹣4|的零点值分别为5和4;(2)当x<4时,原式=5﹣x+4﹣x=9﹣2x;当4≤x<5时,原式=5﹣x+x﹣4=1;当x≥5时,原式=x﹣5+x﹣4=2x﹣9.综上讨论,原式=.(3)当x<4时,原式=9﹣2x>1;当4≤x<5时,原式=1;当x≥5时,原式=2x﹣9>1.故代数式的最小值是1.28.解:(1)原式=|5+2|=7故答案为:7;(2)令x+5=0或x﹣2=0时,则x=﹣5或x=2当x<﹣5时,∴﹣(x+5)﹣(x﹣2)=7,﹣x﹣5﹣x+2=7,x=5(范围内不成立)当﹣5<x<2时,∴(x+5)﹣(x﹣2)=7,x+5﹣x+2=7,7=7,∴x=﹣4,﹣3,﹣2,﹣1,0,1当x>2时,∴(x+5)+(x﹣2)=7,x+5+x﹣2=7,2x=4,x=2,x=2(范围内不成立)∴综上所述,符合条件的整数x有:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;故答案为:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;(3)由(2)的探索猜想,对于任何有理数x,|x﹣3|+|x ﹣6|有最小值为3.29.解:∵|x|=,|y|=,且x<y<0,∴x=﹣,y=﹣,∴6÷(x﹣y)=6÷(﹣+)=﹣36.30.【解答】解:|2|=2,|﹣|=,|3|=3,|0|=0,|﹣4|=4.31.解:探究:①数轴上表示5和2的两点之间的距离是3,②数轴上表示﹣2和﹣6的两点之间的距离是4,③数轴上表示﹣4和3的两点之间的距离是7;(3)应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a=10或a=﹣4,②若数轴上表示数a的点位于﹣4与3之间,|a+4|+|a﹣3|=a+4﹣a+3=7,a=1时,|a+4|+|a﹣1|+|a﹣3|最小=7,|a+4|+|a﹣1|+|a﹣3|是3与﹣4两点间的距离.32.解:x<﹣1时,|x+1|+|x﹣2|+|x﹣3|=﹣(x+1)﹣(x﹣2)﹣(x﹣3)=﹣x﹣1﹣x+2﹣x+3=﹣3x+4;﹣1≤x≤2时,|x+1|+|x﹣2|+|x﹣3|=(x+1)﹣(x﹣2)﹣(x﹣3)=x+1﹣x+2﹣x+3=﹣x+6;2<x≤3时,|x+1|+|x﹣2|+|x﹣3|=(x+1)+(x﹣2)﹣(x﹣3)=x+1+x﹣2﹣x+3=x+2;x>3时,|x+1|+|x﹣2|+|x﹣3|=(x+1)+(x﹣2)+(x ﹣3)=x+1+x﹣2+x﹣3=3x﹣4.33.解:(1)由题意得,|x﹣(﹣3)|=|x﹣1|,解得x=﹣1;(2)∵AB=|1﹣(﹣3)|=4,点P到点A,点B的距离之和是6,∴点P在点A的左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B的右边时,x﹣1+x﹣(﹣3)=6,解得x=2,综上所述,x=﹣4或2;(3)由两点之间线段最短可知,点P在AB之间时点P 到点A,点B的距离之和最小,所以x的取值范围是﹣3≤x≤1;(4)设运动时间为t,点P表示的数为﹣3t,点E表示的数为﹣3﹣t,点F表示的数为1﹣4t,∵点P到点E,点F的距离相等,∴|﹣3t﹣(﹣3﹣t)|=|﹣3t﹣(1﹣4t)|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:(1)﹣1;(2)﹣4或2;(3)﹣3≤x≤1;(4)或2.34.解:(1)|3﹣(﹣2)|=5,(2)数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为|x﹣7|,(3)代数式|x+8|可以表示数轴上有理数x与有理数﹣8所对应的两点之间的距离;若|x+8|=5,则x=﹣3或﹣13,(4)如图,|x+1008|+|x+504|+|x﹣1007|的最小值即|1007﹣(﹣1008)|=2015.故答案为:5,|x﹣7|,﹣8,=﹣3或﹣13.35.解:∵|a|=8,|b|=2,∴a=±8,b=±2,∵|a﹣b|=b﹣a,∴a﹣b≤0.①当a=8,b=2时,因为a﹣b=6>0,不符题意,舍去;②当a=8,b=﹣2时,因为a﹣b=10>0,不符题意,舍去;③当a=﹣8,b=2时,因为a﹣b=﹣10<0,符题意;所以a+b=﹣6;④当a=﹣8,b=﹣2时,因为a﹣b=﹣6<0,符题意,所以a+b=﹣10.综上所述a+b=﹣10或﹣6.36.解:由数轴得,c>0,a<b<0,因而a﹣b<0,a+c<0,b﹣c<0.∴原式=b﹣a+a+c+c﹣b=2c.37.解:∵ab>0,∴①当a>0,b>0时,+=1+1=2.②当a<0,b<0时,+=﹣1﹣1=﹣2.综上所述:+=2或﹣2.38.解:①当a,b同号时,|a+b|=|a|+|b|,②当a,b中至少有一个0时,|a+b|=|a|+|b|,③当a,b异号时,|a+b|<|a|+|b|,综上所述|a+b|≤|a|+|b|.39.解:∵a>b,∴a﹣b>0,∴(a﹣b)﹢|a﹣b|=(a﹣b)+(a﹣b)=2a﹣2b.40.解:(1)当a>0时,=1;当a<0时,=﹣1;(2)∵,∴a,b异号,当a>0,b<0时,=﹣1;当a<0,b>0时,=﹣1;。

人教版初一七年级上册数学 绝对值 课时练04含答案

人教版初一七年级上册数学  绝对值 课时练04含答案

1.2.4绝对值一、选择题1.﹣25的绝对值是()A .﹣25B .25C .﹣52D .522.3-的绝对值的相反数是()A .3B .13-C .3-D .133.1|1||3|x x x ++-+-的最小值是()A .5B .4C .3D .24.绝对值小于3的非负整数的个数为()A .7B .4C .3D .25.若21x -=,则x =()A .±1B .2±C .3±D .1或36.如果33a a =-,则a 一定是().A .非正数B .负数C .非负数D .正数7.若3->-a ,则a 的值可以是()A .4-B .2-C .2D .48.有理数a 、b 在数轴上的位置如图所示,则化简|a ﹣b |-b 的结果为()A .aB .-aC .-a -2bD .a -2b9.若a 是有理数,则下面说法正确的是()A .a 一定是正数B .a -一定是正数C .a -一定是正数D .1a +一定是正数10.下列说法不正确的是()A .0既不是正数,也不是负数B .0的绝对值是0C .一个有理数不是整数就是分数D .1是绝对值最小的正数二、填空题11.比较大小:13-___12-.(填“>”、“<”或“=”)12.在数轴上表示,,a b c 三个数的点的位置如图所示,化简式子:a c b c +--结果为__________.13.三个数,,a b c 是均不为0的三个数,且0a b c ++=,则a b ca b c ++=______________.14.已知0a <,0b >,并且a b >,那么a b a b --、、、按照由小到大的顺序排列是__________.15.写出一个负数,使这个数的绝对值小于4______.三、解答题16.已知112,3a b éù==êúëû,求a b +的值.17.已知实数x 、y 、z 在数轴上的对应点如图所示,试化简:x zx y y z x z x z---++++-.18.已知,,a b c 在数轴上的对应点如图所示,且a b =;(1)根据数轴判断:+a b _________0,c b -__________0.(填>,<,=)(2)1c a c b a b c ---+++-.19.a 、b 在数轴上位置如图所示,已知0a b +<,且a b <,a 、b 异号.(1)判断:a 0,b 0.(填“>”或“<”)(2)若3b a =,请在图中标出原点及a -、b -的位置,并用“<”将a 、b 、a -、b -连接起来.20.阅读材料m n -的几何意义是数轴上表示m 的点与表示n 的点之间的距离.例如:21-可以看着数轴上表示数2的点与表示数1的距离,所以211-=.尝试应用(1)1x +的几何意义是表示x 的点与表示______的点之间的距离;(2)观察数轴,若12x +=,则x 的值可以是______;拓展延伸(3)求11x x ++-的最小值.21.已知下列三个有理数a ,b ,c ,其中132a æö=--ç÷èø,b 是4-的相反数,c 是在1713-与263-之间的整数.请你解答下列问题:(1)这三个数分别是多少?(2)将这三个数用“>”号连接起来.(3)这三个数中,哪一个数在数轴上表示的点离原点的距离最近?22.探索性问题:已知点A ,B 在数轴上分别表示m 、n .(1)填写表:m 5−5−6−6−10n34−42A ,B 两点的距离(2)若A ,B 两点的距离为d ,则d 与m 、n 有何数量关系;(3)在数轴上标出所有符合条件的整数点P ,使它到3和−3的距离之和为6,并求出所有这些整数的和;(4)若点C 表示的数为x ,当C 在什么位置时,23x x ++-取得值最小?23.数轴是初中数学的一个重要工具,利用数轴可以将数与形进行完美地结合.研究数轴我们发现了很多重要的规律.譬如:数轴上点A 、点B 表示的数分别为a 、b ,则A 、B 两点之间的距离AB =|a ﹣b |,线段AB 的中点表示的数为2a b+.如图,数轴上点A 表示的数为﹣4,点B 表示的数为2.(1)求线段AB 的长和线段AB 的中点表示的数.(2)找出所有符合条件的整数x ,使得|x +1|+|x ﹣2|=3.(3)并由此探索猜想,对于任意的有理数x ,|x ﹣2|+|x +4|是否有最小值,如果有,写出最小值;如果没有,请说明理由.32(4)点C 在数轴上对应的数为x ,且x 是方程2x ﹣1=x +1的解.数轴上是否存在一点P ,使得P A +PB =PC ,若存在,写出点P 所对应的数;若不存在,请说明理由.【参考答案】1.B2.C3.B4.C5.D6.A7.A8.B9.D10.D 11.<12.a b--13.1或-1.14.a b b a<-<<15.-1或-2或-316.16或56或16-或56-17.-118.(1)=;<;(2)1c+19.(1)>,<;(2)作图略,b<a-<a<b-20.(1)-1;(2)1或−3;(3)221.(1)132a=;4b=;7c=-;(2)b a c>>;(3)a22.(1)2;5;10;2;12;(2)d=|m﹣n|;(3)作图略;0;(4)点C在点﹣2和点3之间时,|x+2|+|x﹣3|的值最小,其最小值为5.23.(1)AB=6,线段AB的中点表示的数为﹣1;(2)0、﹣1;(3)它的最小值是6;(4)存在,p点作对应的数为﹣6或﹣2。

初一上册数学绝对值专项练习带答案解析

初一上册数学绝对值专项练习带答案解析

绝对值一.选择题(共16小题)1.相反数不大于它本身的数是()A.正数 B.负数C.非正数D.非负数2.下列各对数中,互为相反数的是()A.2和B.﹣0.5和C.﹣3和D.和﹣23.a,b互为相反数,下列各数中,互为相反数的一组为()A.a2与b2B.a 3与b5C.a2n与b2n(n为正整数)D.a2n+1与b2n+1(n为正整数)4.下列式子化简不正确的是()A .+(﹣5)=﹣5 B.﹣(﹣0.5)=0.5C.﹣|+3|=﹣3 D .﹣(+1)=15.若a+b=0,则下列各组中不互为相反数的数是()A.a3和b3 B.a2和b2C.﹣a和﹣b D.和6.若a和b互为相反数,且a≠0,则下列各组中,不是互为相反数的一组是()A.﹣2a3和﹣2b3 B.a2和b2C.﹣a和﹣b D.3a和3b7.﹣2018的相反数是()A.﹣2018 B.2018 C.±2018 D.﹣8.﹣2018的相反数是()A.2018B.﹣2018 C.D.﹣9.下列各组数中,互为相反数的是()A.﹣1与(﹣1)2B.1与(﹣1)2C.2与D.2与|﹣2|10.如图,图中数轴的单位长度为1.如果点B,C表示的数的绝对值相等,那么点A表示的数是()A.﹣4 B.﹣5 C.﹣6 D.﹣211.化简|a﹣1|+a﹣1=()A.2a﹣2B.0 C.2a﹣2或0 D.2﹣2a12.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M 与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是()A.M或RB.N或P C.M或N D.P或R13.已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是()A.1﹣b>﹣b>1+a>aB.1+a>a>1﹣b>﹣bC.1+a>1﹣b>a>﹣bD.1﹣b>1+a>﹣b>a14.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙 B.丙丁C.甲丙 D.乙丁15.有理数a、b在数轴上的位置如图所示,则下列各式中错误的是()A.b<aB.|b|>|a| C.a+b>0 D.ab<0 16.﹣3的绝对值是()A.3 B.﹣3 C.D.二.填空题(共10小题)17.|x+1|+|x﹣2|+|x﹣3|的值为.18.已知|x|=4,|y|=2,且xy<0,则x﹣y的值等于.19.﹣2的绝对值是,﹣2的相反数是.20.一个数的绝对值是4,则这个数是.21.﹣2018的绝对值是.22.如果x、y都是不为0的有理数,则代数式的最大值是.23.已知+=0,则的值为.24.计算:|﹣5+3|的结果是.25.已知|x|=3,则x的值是.26.计算:|﹣3|=.三.解答题(共14小题)27.阅读下列材料并解决有关问题:我们知道,|m|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|的零点值).在实数围,零点值m=﹣1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2|可分以下3种情况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m ﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m ﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m﹣1.综上讨论,原式=通过以上阅读,请你解决以下问题:(1)分别求出|x﹣5|和|x﹣4|的零点值;(2)化简代数式|x﹣5|+|x﹣4|;(3)求代数式|x﹣5|+|x﹣4|的最小值.28.同学们都知道|5﹣(﹣2)|表示5与(﹣2)之差的绝对值,也可理解为5与﹣2两数在数轴上所对的两点之间的距离,试探索:(1)求|5﹣(﹣2)|=.(2)找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7成立的整数是.(3)由以上探索猜想,对于任何有理数x,|x﹣3|+|x ﹣6|是否有最小值?如果有,写出最小值;如果没有,说明理由.29.计算:已知|x|=,|y|=,且x<y<0,求6÷(x﹣y)的值.30.求下列各数的绝对值.2,﹣,3,0,﹣4.31.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是;②数轴上表示﹣2和﹣6的两点之间的距离是;③数轴上表示﹣4和3的两点之间的距离是;(2)归纳:一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(3)应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a=;②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值;③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.32.计算:|x+1|+|x﹣2|+|x﹣3|.33.已知数轴上三点A,O,B表示的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=;(2)当x=时,点P到点A,点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值围是;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O沿着数轴的负方向运动时,点E以每秒1个单位长度的速度从点A沿着数轴的负方向运动、点F 以每秒4个单位长度的速度从点B沿着数轴的负方向运动,且三个点同时出发,那么运动秒时,点P 到点E,点F的距离相等.34.阅读下面材料:如图,点A、B在数轴上分别表示有理数a、b,则A、B两点之间的距离可以表示为|a﹣b|.根据阅读材料与你的理解回答下列问题:(1)数轴上表示3与﹣2的两点之间的距离是.(2)数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为.(3)代数式|x+8|可以表示数轴上有理数x与有理数所对应的两点之间的距离;若|x+8|=5,则x=.(4)求代数式|x+1008|+|x+504|+|x﹣1007|的最小值.35.已知|a|=8,|b|=2,|a﹣b|=b﹣a,求b+a的值.36.如图,数轴上的三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|a+c|+|b﹣c|.37.若ab>0,化简:+.38.若a、b都是有理数,试比较|a+b|与|a|+|b|大小.39.若a>b,计算:(a﹣b)﹢|a﹣b|.40.当a≠0时,请解答下列问题:(1)求的值;(2)若b≠0,且,求的值.参考答案与试题解析一.选择题(共16小题)1.D.2.B.3.D.4.D.5.B.6.B.7.B .8.A.9.A.10.A.11.C.12.A.13.D.14.C.15.C.16.A.二.填空题(共10小题)17..18.6或﹣6.19.2,2.20.4,﹣4.21.2018.22.1.23.﹣1.24.2.25.±3.26.=3.三.解答题(共14小题)27.【解答】(1)令x﹣5=0,x﹣4=0,解得:x=5和x=4,故|x﹣5|和|x﹣4|的零点值分别为5和4;(2)当x<4时,原式=5﹣x+4﹣x=9﹣2x;当4≤x<5时,原式=5﹣x+x﹣4=1;当x≥5时,原式=x﹣5+x﹣4=2x﹣9.综上讨论,原式=.(3)当x<4时,原式=9﹣2x>1;当4≤x<5时,原式=1;当x≥5时,原式=2x﹣9>1.故代数式的最小值是1.28.解:(1)原式=|5+2|=7故答案为:7;(2)令x+5=0或x﹣2=0时,则x=﹣5或x=2当x<﹣5时,∴﹣(x+5)﹣(x﹣2)=7,﹣x﹣5﹣x+2=7,x=5(围不成立)当﹣5<x<2时,∴(x+5)﹣(x﹣2)=7,x+5﹣x+2=7,7=7,∴x=﹣4,﹣3,﹣2,﹣1,0,1当x>2时,∴(x+5)+(x﹣2)=7,x+5+x﹣2=7,2x=4,x=2,x=2(围不成立)∴综上所述,符合条件的整数x有:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;故答案为:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;(3)由(2)的探索猜想,对于任何有理数x,|x﹣3|+|x ﹣6|有最小值为3.29.解:∵|x|=,|y|=,且x<y<0,∴x=﹣,y=﹣,∴6÷(x﹣y)=6÷(﹣+)=﹣36.30.【解答】解:|2|=2,|﹣|=,|3|=3,|0|=0,|﹣4|=4.31.解:探究:①数轴上表示5和2的两点之间的距离是3,②数轴上表示﹣2和﹣6的两点之间的距离是4,③数轴上表示﹣4和3的两点之间的距离是7;(3)应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a=10或a=﹣4,②若数轴上表示数a的点位于﹣4与3之间,|a+4|+|a﹣3|=a+4﹣a+3=7,a=1时,|a+4|+|a﹣1|+|a﹣3|最小=7,|a+4|+|a﹣1|+|a﹣3|是3与﹣4两点间的距离.32.解:x<﹣1时,|x+1|+|x﹣2|+|x﹣3|=﹣(x+1)﹣(x﹣2)﹣(x﹣3)=﹣x﹣1﹣x+2﹣x+3=﹣3x+4;﹣1≤x≤2时,|x+1|+|x﹣2|+|x﹣3|=(x+1)﹣(x ﹣2)﹣(x﹣3)=x+1﹣x+2﹣x+3=﹣x+6;2<x≤3时,|x+1|+|x﹣2|+|x﹣3|=(x+1)+(x﹣2)﹣(x﹣3)=x+1+x﹣2﹣x+3=x+2;x>3时,|x+1|+|x﹣2|+|x﹣3|=(x+1)+(x﹣2)+(x﹣3)=x+1+x﹣2+x﹣3=3x﹣4.33.解:(1)由题意得,|x﹣(﹣3)|=|x﹣1|,解得x=﹣1;(2)∵AB=|1﹣(﹣3)|=4,点P到点A,点B的距离之和是6,∴点P在点A的左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B的右边时,x﹣1+x﹣(﹣3)=6,解得x=2,综上所述,x=﹣4或2;(3)由两点之间线段最短可知,点P在AB之间时点P 到点A,点B的距离之和最小,所以x的取值围是﹣3≤x≤1;(4)设运动时间为t,点P表示的数为﹣3t,点E表示的数为﹣3﹣t,点F表示的数为1﹣4t,∵点P到点E,点F的距离相等,∴|﹣3t﹣(﹣3﹣t)|=|﹣3t﹣(1﹣4t)|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:(1)﹣1;(2)﹣4或2;(3)﹣3≤x≤1;(4)或2.34.解:(1)|3﹣(﹣2)|=5,(2)数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为|x﹣7|,(3)代数式|x+8|可以表示数轴上有理数x与有理数﹣8所对应的两点之间的距离;若|x+8|=5,则x=﹣3或﹣13,(4)如图,|x+1008|+|x+504|+|x﹣1007|的最小值即|1007﹣(﹣1008)|=2015.故答案为:5,|x﹣7|,﹣8,=﹣3或﹣13.35.解:∵|a|=8,|b|=2,∴a=±8,b=±2,∵|a﹣b|=b﹣a,∴a﹣b≤0.①当a=8,b=2时,因为a﹣b=6>0,不符题意,舍去;②当a=8,b=﹣2时,因为a﹣b=10>0,不符题意,舍去;③当a=﹣8,b=2时,因为a﹣b=﹣10<0,符题意;所以a+b=﹣6;④当a=﹣8,b=﹣2时,因为a﹣b=﹣6<0,符题意,所以a+b=﹣10.综上所述a+b=﹣10或﹣6.36.解:由数轴得,c>0,a<b<0,因而a﹣b<0,a+c<0,b﹣c<0.∴原式=b﹣a+a+c+c﹣b=2c.37.解:∵ab>0,∴①当a>0,b>0时,+=1+1=2.②当a<0,b<0时,+=﹣1﹣1=﹣2.综上所述:+=2或﹣2.38.解:①当a,b同号时,|a+b|=|a|+|b|,②当a,b中至少有一个0时,|a+b|=|a|+|b|,③当a,b异号时,|a+b|<|a|+|b|,综上所述|a+b|≤|a|+|b|.39.解:∵a>b,∴a﹣b>0,∴(a﹣b)﹢|a﹣b|=(a﹣b)+(a﹣b)=2a﹣2b.40.解:(1)当a>0时,=1;当a<0时,=﹣1;(2)∵,∴a,b异号,当a>0,b<0时,=﹣1;当a<0,b>0时,=﹣1;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝对值一.选择题(共16小题)1.相反数不大于它本身的数是()A.正数B.负数C.非正数D.非负数2.下列各对数中,互为相反数的是()和B.﹣和 C.﹣3和 D.和﹣23.a,b互为相反数,下列各数中,互为相反数的一组为()A.a2与b2B.a3与b5C.a2n与b2n(n为正整数)D.a2n+1与b2n+1(n为正整数)4.下列式子化简不正确的是()A.+(﹣5)=﹣5 B.﹣(﹣)=C.﹣|+3|=﹣3 D.﹣(+1)=15.若a+b=0,则下列各组中不互为相反数的数是()和b3和b2C.﹣a和﹣b D .和6.若a和b互为相反数,且a≠0,则下列各组中,不是互为相反数的一组是()A.﹣2a3和﹣2b3B.a2和b2C.﹣a和﹣b D.3a和3b7.﹣2018的相反数是()A.﹣2018 B.2018 C.±2018 D .﹣8.﹣2018的相反数是().﹣2018 C .D .﹣9.下列各组数中,互为相反数的是()A.﹣1与(﹣1)2B.1与(﹣1)2C.2与D.2与|﹣2|10.如图,图中数轴的单位长度为1.如果点B,C表示的数的绝对值相等,那么点A表示的数是()A.﹣4 B.﹣5 C.﹣6 D.﹣2 11.化简|a﹣1|+a﹣1=()﹣2 C.2a﹣2或0 D.2﹣2a12.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是()或R 或P C.M或N D.P或R13.已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是()﹣b>﹣b>1+a>+a>a>1﹣b>﹣b+a>1﹣b>a>﹣bD.1﹣b>1+a>﹣b>a14.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙B.丙丁C.甲丙D.乙丁15.有理数a、b在数轴上的位置如图所示,则下列各式中错误的是()<aB.|b|>|a| C.a+b>0 D.ab<016.﹣3的绝对值是()A.3 B.﹣3 C .D .二.填空题(共10小题)17.|x+1|+|x﹣2|+|x﹣3|的值为.18.已知|x|=4,|y|=2,且xy<0,则x﹣y的值等于.19.﹣2的绝对值是,﹣2的相反数是.20.一个数的绝对值是4,则这个数是.21.﹣2018的绝对值是.22.如果x、y都是不为0的有理数,则代数式的最大值是.23.已知+=0,则的值为.24.计算:|﹣5+3|的结果是.25.已知|x|=3,则x的值是.26.计算:|﹣3|=.三.解答题(共14小题)27.阅读下列材料并解决有关问题:我们知道,|m|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|的零点值).在实数范围内,零点值m=﹣1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2|可分以下3种情况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m ﹣1.综上讨论,原式=通过以上阅读,请你解决以下问题:(1)分别求出|x﹣5|和|x﹣4|的零点值;(2)化简代数式|x﹣5|+|x﹣4|;(3)求代数式|x﹣5|+|x﹣4|的最小值.28.同学们都知道|5﹣(﹣2)|表示5与(﹣2)之差的绝对值,也可理解为5与﹣2两数在数轴上所对的两点之间的距离,试探索:(1)求|5﹣(﹣2)|=.(2)找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7成立的整数是.(3)由以上探索猜想,对于任何有理数x,|x﹣3|+|x ﹣6|是否有最小值如果有,写出最小值;如果没有,说明理由.29.计算:已知|x|=,|y|=,且x<y<0,求6÷(x ﹣y)的值.30.求下列各数的绝对值.2,﹣,3,0,﹣4.31.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是;②数轴上表示﹣2和﹣6的两点之间的距离是;③数轴上表示﹣4和3的两点之间的距离是;(2)归纳:一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(3)应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a=;②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值;③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少请说明理由.32.计算:|x+1|+|x﹣2|+|x﹣3|.33.已知数轴上三点A,O,B表示的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=;(2)当x=时,点P到点A,点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O沿着数轴的负方向运动时,点E以每秒1个单位长度的速度从点A沿着数轴的负方向运动、点F以每秒4个单位长度的速度从点B沿着数轴的负方向运动,且三个点同时出发,那么运动秒时,点P 到点E,点F的距离相等.34.阅读下面材料:如图,点A、B在数轴上分别表示有理数a、b,则A、B两点之间的距离可以表示为|a﹣b|.根据阅读材料与你的理解回答下列问题:(1)数轴上表示3与﹣2的两点之间的距离是.(2)数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为.(3)代数式|x+8|可以表示数轴上有理数x与有理数所对应的两点之间的距离;若|x+8|=5,则x=.(4)求代数式|x+1008|+|x+504|+|x﹣1007|的最小值.35.已知|a|=8,|b|=2,|a﹣b|=b﹣a,求b+a的值.36.如图,数轴上的三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|a+c|+|b﹣c|.37.若ab>0,化简:+.38.若a、b都是有理数,试比较|a+b|与|a|+|b|大小.39.若a>b,计算:(a﹣b)﹢|a﹣b|.40.当a≠0时,请解答下列问题:(1)求的值;(2)若b≠0,且,求的值.参考答案与试题解析一.选择题(共16小题)1.D.2.B.3.D.4.D.5.B.6.B.7.B .8.A.9.A.10.A.11.C.12.A.13.D.14.C.15.C.16.A.二.填空题(共10小题)17..18.6或﹣6.19.2,2.20.4,﹣4.21.2018.22.1.23.﹣1.24.2.25.±3.26.=3.三.解答题(共14小题)27.【解答】(1)令x﹣5=0,x﹣4=0,解得:x=5和x=4,故|x﹣5|和|x﹣4|的零点值分别为5和4;(2)当x<4时,原式=5﹣x+4﹣x=9﹣2x;当4≤x<5时,原式=5﹣x+x﹣4=1;当x≥5时,原式=x﹣5+x﹣4=2x﹣9.综上讨论,原式=.(3)当x<4时,原式=9﹣2x>1;当4≤x<5时,原式=1;当x≥5时,原式=2x﹣9>1.故代数式的最小值是1.28.解:(1)原式=|5+2|=7故答案为:7;(2)令x+5=0或x﹣2=0时,则x=﹣5或x=2当x<﹣5时,∴﹣(x+5)﹣(x﹣2)=7,﹣x﹣5﹣x+2=7,x=5(范围内不成立)当﹣5<x<2时,∴(x+5)﹣(x﹣2)=7,x+5﹣x+2=7,7=7,∴x=﹣4,﹣3,﹣2,﹣1,0,1当x>2时,∴(x+5)+(x﹣2)=7,x+5+x﹣2=7,2x=4,x=2,x=2(范围内不成立)∴综上所述,符合条件的整数x有:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;故答案为:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;(3)由(2)的探索猜想,对于任何有理数x,|x﹣3|+|x ﹣6|有最小值为3.29.解:∵|x|=,|y|=,且x<y<0,∴x=﹣,y=﹣,∴6÷(x﹣y)=6÷(﹣+)=﹣36.30.【解答】解:|2|=2,|﹣|=,|3|=3,|0|=0,|﹣4|=4.31.解:探究:①数轴上表示5和2的两点之间的距离是3,②数轴上表示﹣2和﹣6的两点之间的距离是4,③数轴上表示﹣4和3的两点之间的距离是7;(3)应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a=10或a=﹣4,②若数轴上表示数a的点位于﹣4与3之间,|a+4|+|a﹣3|=a+4﹣a+3=7,a=1时,|a+4|+|a﹣1|+|a﹣3|最小=7,|a+4|+|a﹣1|+|a﹣3|是3与﹣4两点间的距离.32.解:x<﹣1时,|x+1|+|x﹣2|+|x﹣3|=﹣(x+1)﹣(x﹣2)﹣(x﹣3)=﹣x﹣1﹣x+2﹣x+3=﹣3x+4;﹣1≤x≤2时,|x+1|+|x﹣2|+|x﹣3|=(x+1)﹣(x﹣2)﹣(x﹣3)=x+1﹣x+2﹣x+3=﹣x+6;2<x≤3时,|x+1|+|x﹣2|+|x﹣3|=(x+1)+(x﹣2)﹣(x﹣3)=x+1+x﹣2﹣x+3=x+2;x>3时,|x+1|+|x﹣2|+|x﹣3|=(x+1)+(x﹣2)+(x ﹣3)=x+1+x﹣2+x﹣3=3x﹣4.33.解:(1)由题意得,|x﹣(﹣3)|=|x﹣1|,解得x=﹣1;(2)∵AB=|1﹣(﹣3)|=4,点P到点A,点B的距离之和是6,∴点P在点A的左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B的右边时,x﹣1+x﹣(﹣3)=6,解得x=2,综上所述,x=﹣4或2;(3)由两点之间线段最短可知,点P在AB之间时点P 到点A,点B的距离之和最小,所以x的取值范围是﹣3≤x≤1;(4)设运动时间为t,点P表示的数为﹣3t,点E表示的数为﹣3﹣t,点F表示的数为1﹣4t,∵点P到点E,点F的距离相等,∴|﹣3t﹣(﹣3﹣t)|=|﹣3t﹣(1﹣4t)|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:(1)﹣1;(2)﹣4或2;(3)﹣3≤x≤1;(4)或2.34.解:(1)|3﹣(﹣2)|=5,(2)数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为|x﹣7|,(3)代数式|x+8|可以表示数轴上有理数x与有理数﹣8所对应的两点之间的距离;若|x+8|=5,则x=﹣3或﹣13,(4)如图,|x+1008|+|x+504|+|x﹣1007|的最小值即|1007﹣(﹣1008)|=2015.故答案为:5,|x﹣7|,﹣8,=﹣3或﹣13.35.解:∵|a|=8,|b|=2,∴a=±8,b=±2,∵|a﹣b|=b﹣a,∴a﹣b≤0.①当a=8,b=2时,因为a﹣b=6>0,不符题意,舍去;②当a=8,b=﹣2时,因为a﹣b=10>0,不符题意,舍去;③当a=﹣8,b=2时,因为a﹣b=﹣10<0,符题意;所以a+b=﹣6;④当a=﹣8,b=﹣2时,因为a﹣b=﹣6<0,符题意,所以a+b=﹣10.综上所述a+b=﹣10或﹣6.36.解:由数轴得,c>0,a<b<0,因而a﹣b<0,a+c<0,b﹣c<0.∴原式=b﹣a+a+c+c﹣b=2c.37.解:∵ab>0,∴①当a>0,b>0时,+=1+1=2.②当a<0,b<0时,+=﹣1﹣1=﹣2.综上所述:+=2或﹣2.38.解:①当a,b同号时,|a+b|=|a|+|b|,②当a,b中至少有一个0时,|a+b|=|a|+|b|,③当a,b异号时,|a+b|<|a|+|b|,综上所述|a+b|≤|a|+|b|.39.解:∵a>b,∴a﹣b>0,∴(a﹣b)﹢|a﹣b|=(a﹣b)+(a﹣b)=2a﹣2b.40.解:(1)当a>0时,=1;当a<0时,=﹣1;(2)∵,∴a,b异号,当a>0,b<0时,=﹣1;当a<0,b>0时,=﹣1;。

相关文档
最新文档