高考数学线性规划专项练习题
(完整版)线性规划高考题及答案
一、已知线性约束条件,探求线性目标关系最值问题例1、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。
二、已知线性约束条件,探求非线性目标关系最值问题例2、已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是 .三、约束条件设计参数形式,考查目标函数最值范围问题。
例3、在约束条件024x y y x s y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是()A.[6,15]B. [7,15]C. [6,8]D. [7,8]四、已知平面区域,逆向考查约束条件。
例4、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是()(A)0003x y x y x -≥⎧⎪+≥⎨⎪≤≤⎩ (B)0003x y x y x -≥⎧⎪+≤⎨⎪≤≤⎩ (C)003x y x y x -≤⎧⎪+≤⎨⎪≤≤⎩ (D) 0003x y x y x -≤⎧⎪+≥⎨⎪≤≤⎩五、已知最优解成立条件,探求目标函数参数范围问题。
例5已知变量x ,y 满足约束条件1422x y x y ≤+≤⎧⎨-≤-≤⎩。
若目标函数z ax y =+(其中0a >)仅在点(3,1)处取得最大值,则a 的取值范围为 。
六、设计线性规划,探求平面区域的面积问题例6在平面直角坐标系中,不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域的面积是()(A)(B)4 (C) (D)2七、研究线性规划中的整点最优解问题例7、某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件⎪⎩⎪⎨⎧≤≥+-≥-.112,932,22115x y x y x 则1010z x y =+的最大值是(A)80(B) 85 (C) 90 (D)95• • • • • •C• 八、设不等式组所表示的平面区域为,记内的格点(格点即横坐标和纵坐标均为整数的点)个数为(1)求的值及的表达式;(2)记,试比较的大小;若对于一切的正整数,总有成立,求实数的取值范围;(3)设为数列的前项的和,其中,问是否存在正整数,使成立?若存在,求出正整数;若不存在,说明理由。
历年高考数学真题精选22 线性规划
高考数学真题精选(按考点分类)专题22 线性规划(学生版)一.选择题(共14小题)1.(2019•浙江)若实数x ,y 满足约束条件340,340,0,x y x y x y -+⎧⎪--⎨⎪+⎩则32z x y =+的最大值是( )A .1-B .1C .10D .122.(2019•北京)若x ,y 满足||1x y -,且1y -,则3x y +的最大值为( ) A .7-B .1C .5D .73.(2018•北京)设集合{(,)|1A x y x y =-,4ax y +>,2}x ay -,则( ) A .对任意实数a ,(2,1)A ∈ B .对任意实数a ,(2,1)A ∉ C .当且仅当0a <时,(2,1)A ∉D .当且仅当32a时,(2,1)A ∉ 4.(2016•浙江)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影,由区域200340x x y x y -⎧⎪+⎨⎪-+⎩中的点在直线20x y +-=上的投影构成的线段记为AB ,则||(AB =) A.B .4C.D .65.(2016•浙江)若平面区域30230230x y x y x y +-⎧⎪--⎨⎪-+⎩,夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( ) ABCD6.(2016•山东)若变量x ,y 满足22390x y x y x +⎧⎪-⎨⎪⎩,则22x y +的最大值是( )A .4B .9C .10D .127.(2016•北京)已知(2,5)A ,(4,1)B .若点(,)P x y 在线段AB 上,则2x y -的最大值为() A .1-B .3C .7D .88.(2015•福建)变量x ,y 满足约束条件02200x y x y mx y +⎧⎪-+⎨⎪-⎩,若2z x y =-的最大值为2,则实数m 等于( ) A .2-B .1-C .1D .29.(2014•安徽)x ,y 满足约束条件20220220x y x y x y +-⎧⎪--⎨⎪-+⎩,若z y ax =-取得最大值的最优解不唯一,则实数a 的值为( ) A .12或1- B .2或12C .2或1-D .2或110.(2014•福建)已知圆22:()()1C x a y b -+-=,设平面区域70300x y x y y +-⎧⎪Ω=-+⎨⎪⎩,若圆心C ∈Ω,且圆C 与x 轴相切,则22a b +的最大值为( ) A .49B .37C .29D .511.(2013•北京)设关于x ,y 的不等式组210,0,0x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点0(P x ,0)y ,满足0022x y -=,求得m 的取值范围是( )A .4(,)3-∞ B .1(,)3-∞ C .2(,)3-∞-D .5(,)3-∞-12.(2012•新课标)已知正三角形ABC 的顶点(1,1)A ,(1,3)B ,顶点C 在第一象限,若点(,)x y 在ABC ∆内部,则z x y =-+的取值范围是( ) A.(1,2)B .(0,2)C.1-,2)D.(0,1+13.(2011•福建)已知O 是坐标原点,点(1,1)A -,若点(,)M x y 为平面区域212x y x y +⎧⎪⎨⎪⎩,上的一个动点,则OA OM 的取值范围是( ) A .[1-,0]B .[0,1]C .[0,2]D .[1-,2]14.(2010•全国新课标)已知ABCD 的三个顶点为(1,2)A -,(3,4)B ,(4,2)C -,点(,)x y 在ABCD 的内部,则25z x y =-的取值范围是( )A .(14,16)-B .(14,20)-C .(12,18)-D .(12,20)-二.填空题(共6小题)15.(2019•新课标Ⅱ)若变量x ,y 满足约束条件2360,30,20,x y x y y +-⎧⎪+-⎨⎪-⎩则3z x y =-的最大值是 .16.(2014•浙江)当实数x ,y 满足240101x y x y x +-⎧⎪--⎨⎪⎩时,14ax y +恒成立,则实数a 的取值范围是 .17.(2015•新课标Ⅰ)若x ,y 满足约束条件10040x x y x y -⎧⎪-⎨⎪+-⎩.则y x 的最大值为 .18.(2017•北京)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: ()i 男学生人数多于女学生人数; ()ii 女学生人数多于教师人数; ()iii 教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为 . ②该小组人数的最小值为 .19.(2015•北京)如图,ABC ∆及其内部的点组成的集合记为D ,(,)P x y 为D 中任意一点,则23z x y =+的最大值为 .20.(2016•新课标Ⅰ)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.历年高考数学真题精选(按考点分类)专题22 线性规划(教师版)一.选择题(共14小题)1.(2019•浙江)若实数x,y满足约束条件340,340,0,x yx yx y-+⎧⎪--⎨⎪+⎩则32z x y=+的最大值是()A.1-B.1C.10D.12【答案】C【解析】由实数x,y满足约束条件340340x yx yx y-+⎧⎪--⎨⎪+⎩作出可行域如图,联立340340x yx y-+=⎧⎨--=⎩,解得(2,2)A,化目标函数32z x y=+为3122y x z=-+,由图可知,当直线3122y x z=-+过(2,2)A时,直线在y轴上的截距最大,z有最大值:10.故选:C.2.(2019•北京)若x,y满足||1x y-,且1y -,则3x y+的最大值为() A.7-B.1C.5D.7【答案】C【解析】由||11x yy-⎧⎨-⎩作出可行域如图,联立110y x y =-⎧⎨+-=⎩,解得(2,1)A -,令3z x y =+,化为3y x z =-+,由图可知,当直线3y x z =-+过点A 时,z 有最大值为3215⨯-=. 故选:C .3.(2018•北京)设集合{(,)|1A x y x y =-,4ax y +>,2}x ay -,则( ) A .对任意实数a ,(2,1)A ∈ B .对任意实数a ,(2,1)A ∉ C .当且仅当0a <时,(2,1)A ∉ D .当且仅当32a时,(2,1)A ∉ 【答案】D【解析】当1a =-时,集合{(,)|1A x y x y =-,4ax y +>,2}{(,)|1x ay x y x y -=-,4x y -+>,2}x y +,显然(2,1)不满足,4x y -+>,2x y +,所以A 不正确;当4a =,集合{(,)|1A x y x y =-,4ax y +>,2}{(,)|1x ay x y x y -=-,44x y +>,42}x y -,显然(2,1)在可行域内,满足不等式,所以B 不正确;当1a =,集合{(,)|1A x y x y =-,4ax y +>,2}{(,)|1x ay x y x y -=-,4x y +>,2}x y -,显然(2,1)A ∉,所以当且仅当0a <错误,所以C 不正确;故选:D .4.(2016•浙江)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影,由区域200340x x y x y -⎧⎪+⎨⎪-+⎩中的点在直线20x y +-=上的投影构成的线段记为AB ,则||(AB =) A .22B .4 C .32D .6【答案】C【解析】作出不等式组对应的平面区域如图:(阴影部分),区域内的点在直线20x y +-=上的投影构成线段R Q '',即SAB ,而R Q RQ ''=, 由3400x y x y -+=⎧⎨+=⎩得11x y =-⎧⎨=⎩,即(1,1)Q -由20x x y =⎧⎨+=⎩得22x y =⎧⎨=-⎩,即(2,2)R -, 则22||||(12)(12)9932AB QR ==--++=+=, 故选:C .5.(2016•浙江)若平面区域30230230x y x y x y +-⎧⎪--⎨⎪-+⎩,夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( ) A 35B 2C 32D 5【答案】B【解析】作出平面区域如图所示:∴当直线y x b =+分别经过A ,B 时,平行线间的距离相等.联立方程组30230x y x y +-=⎧⎨--=⎩,解得(2,1)A ,联立方程组30230x y x y +-=⎧⎨-+=⎩,解得(1,2)B .两条平行线分别为1y x =-,1y x =+,即10x y --=,10x y -+=.∴平行线间的距离为22d =故选:B .6.(2016•山东)若变量x ,y 满足22390x y x y x +⎧⎪-⎨⎪⎩,则22x y +的最大值是( )A .4B .9C .10D .12【答案】C【解析】由约束条件22390x y x y x +⎧⎪-⎨⎪⎩作出可行域如图,(0,3)A -,(0,2)C ,||||OA OC ∴>,联立2239x y x y +=⎧⎨-=⎩,解得(3,1)B -. 2222||(3(1))10OB =+-=,22x y ∴+的最大值是10.故选:C .7.(2016•北京)已知(2,5)A ,(4,1)B .若点(,)P x y 在线段AB 上,则2x y -的最大值为() A .1- B .3C .7D .8【答案】C【解析】如图(2,5)A ,(4,1)B .若点(,)P x y 在线段AB 上,令2z x y =-,则平行2y x z =-当直线经过B 时截距最小,Z 取得最大值, 可得2x y -的最大值为:2417⨯-=. 故选:C .8.(2015•福建)变量x ,y 满足约束条件02200x y x y mx y +⎧⎪-+⎨⎪-⎩,若2z x y =-的最大值为2,则实数m 等于( ) A .2- B .1- C .1 D .2【答案】C【解析】由约束条件02200x y x y mx y +⎧⎪-+⎨⎪-⎩作出可行域如图,联立220x ymx y-+=⎧⎨-=⎩,解得22(,)2121mAm m--,化目标函数2z x y=-为2y x z=-,由图可知,当直线过A时,直线在y轴上的截距最小,z有最大值为42422212121m mm m m--==---,解得:1m=.故选:C.9.(2014•安徽)x,y满足约束条件20220220x yx yx y+-⎧⎪--⎨⎪-+⎩,若z y ax=-取得最大值的最优解不唯一,则实数a的值为()A.12或1-B.2或12C.2或1-D.2或1【答案】C【解析】由题意作出约束条件20220220x yx yx y+-⎧⎪--⎨⎪-+⎩,平面区域,将z y ax =-化为y ax z =+,z 相当于直线y ax z =+的纵截距, 由题意可得,y ax z =+与22y x =+或与2y x =-平行, 故2a =或1-; 故选:C .10.(2014•福建)已知圆22:()()1C x a y b -+-=,设平面区域70300x y x y y +-⎧⎪Ω=-+⎨⎪⎩,若圆心C ∈Ω,且圆C 与x 轴相切,则22a b +的最大值为( ) A .49 B .37 C .29 D .5【答案】B【解析】作出不等式组对应的平面区域如图: 圆心为(,)a b ,半径为1圆心C ∈Ω,且圆C 与x 轴相切, 1b ∴=,则2221a b a +=+,∴要使22a b +的取得最大值,则只需a 最大即可,由图象可知当圆心C 位于B 点时,a 取值最大, 由170y x y =⎧⎨+-=⎩,解得61x y =⎧⎨=⎩,即(6,1)B ,∴当6a =,1b =时,2236137a b +=+=,即最大值为37,故选:B .11.(2013•北京)设关于x ,y 的不等式组210,0,0x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点0(P x ,0)y ,满足0022x y -=,求得m 的取值范围是( )A .4(,)3-∞ B .1(,)3-∞ C .2(,)3-∞-D .5(,)3-∞-【答案】C【解析】先根据约束条件210,0,0x y x m y m -+>⎧⎪+<⎨⎪->⎩画出可行域,要使可行域存在,必有21m m <-+,要求可行域包含直线112y x =-上的点,只要边界点(,12)m m --在直线112y x =-的上方,且(,)m m -在直线112y x =-的下方, 故得不等式组2111212112m m m m m m ⎧⎪<-+⎪⎪->--⎨⎪⎪<--⎪⎩,解之得:23m <-.故选:C .12.(2012•新课标)已知正三角形ABC 的顶点(1,1)A ,(1,3)B ,顶点C 在第一象限,若点(,)x y 在ABC ∆内部,则z x y =-+的取值范围是( ) A .(13,2) B .(0,2) C .(31-,2) D .(0,13)+【答案】A【解析】设(,)C a b ,(0,0)a b >>由(1,1)A ,(1,3)B ,及ABC ∆为正三角形可得,2AB AC BC === 即2222(1)(1)(1)(3)4a b a b -+-=-+-= 2b ∴=,13a =+(13C +,2)则此时直线AB 的方程1x =,AC 的方程为311)y x -=-, 直线BC 的方程为331)y x -=- 当直线0x y z -+=经过点(1,1)A 时,0z =,经过点(1,3)2B z =,经过点(13C ,2)时,13z =-∴2,13max min z z ==-故选:A .13.(2011•福建)已知O 是坐标原点,点(1,1)A -,若点(,)M x y 为平面区域212x y x y +⎧⎪⎨⎪⎩,上的一个动点,则OA OM 的取值范围是( ) A .[1-,0] B .[0,1] C .[0,2] D .[1-,2]【答案】C【解析】满足约束条件212x y x y +⎧⎪⎨⎪⎩的平面区域如下图所示:将平面区域的三个顶点坐标分别代入平面向量数量积公式 当1x =,1y =时,11110OA OM =-⨯+⨯= 当1x =,2y =时,11121OA OM =-⨯+⨯= 当0x =,2y =时,10122OA OM =-⨯+⨯= 故OA OM 和取值范围为[0,2]14.(2010•全国新课标)已知ABCD 的三个顶点为(1,2)A -,(3,4)B ,(4,2)C -,点(,)x y 在ABCD 的内部,则25z x y =-的取值范围是( )A .(14,16)-B .(14,20)-C .(12,18)-D .(12,20)-【答案】B【解析】由已知条件得(0,4)AB DC D =⇒-, 由25z x y =-得255zy x =-,平移直线当直线经过点(3,4)B 时,5z-最大, 即z 取最小为14-;当直线经过点(0,4)D -时,5z-最小,即z 取最大为20,又由于点(,)x y 在四边形的内部,故(14,20)z ∈-. 如图:故选B .二.填空题(共6小题)15.(2019•新课标Ⅱ)若变量x ,y 满足约束条件2360,30,20,x y x y y +-⎧⎪+-⎨⎪-⎩则3z x y =-的最大值是 .【答案】9【解析】由约束条件2360,30,20,x y x y y +-⎧⎪+-⎨⎪-⎩作出可行域如图:化目标函数3z x y=-为3y x z=-,由图可知,当直线3y x z=-过(3,0)A时,直线在y轴上的截距最小,z有最大值为9.16.(2014•浙江)当实数x,y满足240101x yx yx+-⎧⎪--⎨⎪⎩时,14ax y+恒成立,则实数a的取值范围是.【答案】3 [1,]2【解析】由约束条件作可行域如图,联立1240xx y=⎧⎨+-=⎩,解得3(1,)2C.联立10240x yx y--=⎧⎨+-=⎩,解得(2,1)B.在10x y--=中取0y=得(1,0)A.要使14ax y+恒成立,则103102402140aaaa-⎧⎪⎪+-⎪⎨⎪-⎪+-⎪⎩,解得:312a.∴实数a的取值范围是3 [1,]2.17.(2015•新课标Ⅰ)若x,y满足约束条件1040xx yx y-⎧⎪-⎨⎪+-⎩.则yx的最大值为.【答案】3【解析】作出不等式组对应的平面区域如图:(阴影部分)ABC.设y kx=,则k的几何意义为区域内的点到原点的斜率,由图象知OA的斜率最大,由140xx y=⎧⎨+-=⎩,解得13xy=⎧⎨=⎩,即(1,3)A,331OAk==,即yx的最大值为3.故答案为:3.18.(2017•北京)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:()i男学生人数多于女学生人数;()ii女学生人数多于教师人数;()iii教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为6.②该小组人数的最小值为.【答案】6,12【解析】①设男学生女学生分别为x,y人,若教师人数为4,则424x yyx>⎧⎪>⎨⎪⨯>⎩,即48y x<<<,即x的最大值为7,y的最大值为6,即女学生人数的最大值为6.②设男学生女学生分别为x ,y 人,教师人数为z , 则2x y y z z x >⎧⎪>⎨⎪>⎩,即2z y x z <<< 即z 最小为3才能满足条件, 此时x 最小为5,y 最小为4, 即该小组人数的最小值为12, 故答案为:6,1219.(2015•北京)如图,ABC ∆及其内部的点组成的集合记为D ,(,)P x y 为D 中任意一点,则23z x y =+的最大值为 7 .【答案】7【解析】由23z x y =+,得233z y x =-+,平移直线233z y x =-+,由图象可知当直线233z y x =-+经过点A 时,直线233zy x =-+的截距最大,此时z 最大.即(2,1)A .此时z 的最大值为22317z =⨯+⨯=, 故答案为:7.20.(2016•新课标Ⅰ)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg ,乙材料1kg ,用5个工时;生产一件产品B 需要甲材料0.5kg ,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B 的利润之和的最大值为元.【答案】216000【解析】(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,1.50.51500.39053600x N y Nx yx yx y∈∈⎧⎪+⎪⎨+⎪⎪+⎩,2100900z x y=+.不等式组表示的可行域如图:由题意可得0.39053600x yx y+=⎧⎨+=⎩,解得:60100xy=⎧⎨=⎩,(60,100)A,目标函数2100900z x y=+.经过A时,直线的截距最大,目标函数取得最大值:210060900100216000⨯+⨯=元.。
高三数学线性规划试题答案及解析
高三数学线性规划试题答案及解析1.,满足约束条件,若取得最大值的最优解不唯一,则实数的值为()A.或B.或C.或D.或【答案】D.【解析】如图,画出线性约束条件所表示的可行域,坐出直线,因此要使线性目标函数取得最大值的最优解不唯一,直线的斜率,要与直线或的斜率相等,∴或.【考点】线性规划.2.已知最小值是5,则z的最大值是()A.10B.12C.14D.15【答案】A【解析】首先作出不等式组所表示的平面区域,如图中黄色区域,则直线-2x+y+c=0必过点B(2,-1),从而c=5,进而就可作出不等式组所表示的平面区域,如图部的蓝色区域:故知只有当直线经过点C(3,1)时,z取最大值为:,故选A.【考点】线性规划.3.执行如图1所示的程序框图,如果输入的,则输出的的最大值为()A.B.C.D.【答案】C【解析】该程序执行以下运算:已知,求的最大值.作出表示的区域如图所示,由图可知,当时,最大,最大值为.选C.【考点】程序框图与线性规划.4.执行如图1所示的程序框图,如果输入的,则输出的的最大值为()A.B.C.D.【答案】C【解析】该程序执行以下运算:已知,求的最大值.作出表示的区域如图所示,由图可知,当时,最大,最大值为.选C.【考点】程序框图与线性规划.5.设变量满足约束条件则目标函数的最小值为()A.2B.3C.4D.5【答案】B【解析】作出可行域:oyxA(1,1)由图可知,当直线过点时,目标函数取最小值为3,选B.【考点】线性规划6.已知x,y满足条件,则目标函数的最大值为 .【答案】【解析】画出可行域,如下图所示,将目标函数变形为,当取到最大值时,直线的纵截距最大,故将直线向上平移到过点C时,目标函数取到最大值,,得,故.【考点】线性规划.7.若变量满足约束条件,则的最大值为_________.【答案】【解析】作出不等式组表示的区域如下,则根据线性规划的知识可得目标函数在点处取得最大值,故填.【考点】线性规划8.设x,y满足约束条件,则z=(x+1)2+y2的最大值为()A.80B.4C.25D.【答案】A【解析】作出不等式组表示的平面区域,如图中阴影部分所示.(x+1)2+y2可看作点(x,y)到点P(-1,0)的距离的平方,由图可知可行域内的点A到点P(-1,0)的距离最大.解方程=(3+1)2+82=80.组,得A点的坐标为(3,8),代入z=(x+1)2+y2,得zmax9.已知实数满足,则目标函数的取值范围是.【答案】【解析】可行域表示一个三角形ABC,其中当直线过点A时取最大值4,过点B时取最小值2,因此的取值范围是.【考点】线性规划求取值范围10.设变量满足,则的最大值和最小值分别为()A.1,-1B.2,-2C.1,-2D.2,-1【答案】B【解析】由约束条件,作出可行域如图,设,则,平移直线,当经过点时,取得最大值,当经过点时,取得最小值,故选.【考点】线性规划.11.(2011•浙江)设实数x、y满足不等式组,若x、y为整数,则3x+4y的最小值是()A.14B.16C.17D.19【答案】B【解析】依题意作出可行性区域如图,目标函数z=3x+4y在点(4,1)处取到最小值z=16.故选B.12.若点(x,y)位于曲线y = |x|与y = 2所围成的封闭区域, 则2x-y的最小值为A.-6B.-2C.0D.2【答案】A【解析】的图像围成一个三角形区域,3个顶点的坐标分别是 (0,0),(-2,2),(2,2). 且当取点(-2,2)时,2x – y =" -" 6取最小值。
高中数学线性规划各类习题精选100题
高中数学线性规划各类习题精选7学校:___________姓名:___________班级:___________考号:___________一、单选题1.设x y ,满足约束条件04312x y x x y ≥⎧⎪≥⎨⎪+≤⎩,则2x y -的最小值是( )A .-4B .127C .0D .6 2.定义,m a x {,},a a ba b b a b≥⎧=⎨<⎩,设实数x ,y 满足约束条件22x y ⎧≤⎪⎨≤⎪⎩,则m a x {4,3z x y x y=+-的取值范围是( ) A .[7,10]- B .[8,10]- C .[6,8]- D .[7,8]-3.若x y ,满足约束条件221{21x y x y x y +≥≥-≤且向量()3,2a =, ()b x y =,,则•a b 的取值范围是( )A .5,44⎡⎤⎢⎥⎣⎦B .7,52⎡⎤⎢⎥⎣⎦C .7,42⎡⎤⎢⎥⎣⎦D .5,54⎡⎤⎢⎥⎣⎦4.实数x ,y 满足2x a y x x y ≥⎧⎪≥⎨⎪+≤⎩(1a <),且2z x y =+的最大值是最小值的4倍,则a的值是( ) A .211 B .14 C .12 D .1125.已知变量x ,y 满足约束条件,则 的最大值为( )A .B .C .1D .26.设,x y 满足约束条件220840x y x y x y -+≥⎧⎪--≤⎪⎨≥⎪⎪≥⎩,若目标函数11(0,0)z x y a b a b =+>>的最大值为2,则a b +的最小值为( )A .92B .14C .29D .47.设y x ,满足不等式组⎪⎩⎪⎨⎧≥--≤--≤-+02301206y x y x y x ,若y ax z +=的最大值为42+a ,最小值为1+a ,则实数a 的取值范围为( )A .]2,1[-B .]1,2[-C .]2,3[--D .]1,3[-8.已知x ,y 满足,则使目标函数z=y ﹣x 取得最小值﹣4的最优解为( )A .(2,﹣2)B .(﹣4,0)C .(4,0)D .(7,3)9.已知变量y x ,满足以下条件:,,11y xx y R x y y ≤⎧⎪∈+≤⎨⎪≥-⎩,z ax y =+,若z 的最大值为3,则实数a 的值为( )A .2或5B .-4或2C .2D .5 10.不等式表示的平面区域(用阴影表示)是( )A .B .C .D .11.已知 是不等式组的表示的平面区域内的一点, ,为坐标原点,则的最大值( )A .2B .3C .5D .612.已知实数x ,y 满足条件若目标函数的最小值为5,其最大值为( )A .10B .12C .14D .1513.已知(),P x y 为区域22400y x x a -≤⎧≤≤⎨⎩内的任意一点,当该区域的面积为2时,2z x y=+的最大值是( )A .5B .0C .2D .14.若A 为不等式组表示的平面区域,则当从连续变化到时,动直线扫过A 中的那部分区域的面积为( )A .34 B .1 C .74D .2 15.过平面区域内一点 作圆 的两条切线,切点分别为,记 ,则当 最小时 的值为( ) A .B .C .D .16.若变量满足约束条件且的最大值为,最小值为,则的值是( ) (A )(B )(C )(D )17.设变量x ,y 满足约束条件则目标函数z =3x -y 的最大值为( )A .-4B .0C .D .418.已知实数m , n 满足不等式组,则关于x 的方程()23260x m n x mn -++=的两根之和的最大值和最小值分别是( )A .7, 4-B .8, 8-C .4, 7-D .6, 6-19.实数x ,y 满足不等式组则的取值范围是( )A .B .C .D .20.已知变量满足: 的最大值为( )A .B .C .2D .421.若y x ,满足⎪⎩⎪⎨⎧≥≤+≤-010x y x y x 则y x z 2+=的最大值为( )A .0B .1C .23D .2 22.若实数,x y 满足不等式组⎪⎩⎪⎨⎧≥+-≤--≥-+,01,032,033my x y x y x 且x y +的最大值为9,则实数m =( )A .1B .-1C .2D .-2 23.若两个正数b a ,满足24a b +<,则222-+=a b z 的取值范围是( )A .{}|11z z -≤≤B .{}|11z z -≥≥或z C .{}|11z z -<< D .{}|11z z ->>或z24.(题文)已知实数满足,若目标函数的最大值为,最小值为,则实数的取值范围是( )A .B .C .D .25.如果实数x ,y 满足约束条件⎪⎩⎪⎨⎧≤++≥+≥+-010101y x y y x ,则y x -2的最大值为( )A .1B .2C .2-D .3-26.如果实数,满足约束条件,则的最大值为( )A .B .C .D .27.设 , 满足约束条件 ,若目标函数( )的最大值为 ,则的图象向右平移后的表达式为( )A .B .C .D .28.在平面直角坐标系中,不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩,表示的平面区域的面积是( )A..4 C..229.已知正数,x y 满足20350x y x y -≤⎧⎨-+≥⎩,则2z x y =--的最小值为( )A .2B .0C .-2D .-430.已知实数x 、y 满足,如果目标函数的最小值为-1,则实数m =( ). A .6B .5C .4D .331.设,x y 满足约束条件()0,230,,,230.x x y a y m x x y ≥⎧⎪+-≥=+⎨⎪+-≤⎩()1,2b =,且a ∥b ,则m 的最小值为( ) A 、1 B 、2 C 、12 D 、1332.已知实数,x y 满足约束条件00220y x y x y ≥⎧⎪-≥⎨⎪--≥⎩,则11y z x -=+的取值范围是( )A .11,3⎡⎤-⎢⎥⎣⎦B .11,23⎡⎤-⎢⎥⎣⎦C .1,2⎡⎫-+∞⎪⎢⎣⎭D .1,12⎡⎫-⎪⎢⎣⎭33.设变量,x y 满足约束条件211y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2x y +的最大值为( )A .95 B .25- C .0 D .5334.若实数x ,y 满足不等式024010x y x y x y +≥⎧⎪+-≤⎨⎪--≤⎩,且x y +的最大值为( )A .1B .2C .3D .435.已知实数满足:,,则的取值范围是A .B .C .D .36.若实数x ,y 满足不等式024010x y x y x my +≥⎧⎪+-≤⎨⎪--≤⎩,且x y +的最大值为3,则实数m =( )A .-1B .12C .1D .2 37.若点),(y x P 满足线性约束条件⎪⎩⎪⎨⎧≥≥+-≤-002303y y x y x ,点)3,3(A ,O 为坐标原点,则⋅的最大值为( )A .0B .3C .-6D .638.设变量,x y 满足约束条件⎪⎩⎪⎨⎧≤--≥-≥+3213y x y x y x ,则目标函数23z x y =+的最小值为( )A .6B .7C .8D .9 39.如果直线12:220,:840l x y l x y -+=--=与x 轴正半轴,y 轴正半轴围成的四边形封闭区域(含边界)中的点,使函数()0,0z abx y a b =+>>的最大值为8, 求a b +的最小值( )A 、4B 、3C 、2D 、040.设变量,x y 满足约束条件:3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则目标函数1ax y z x ++=的取值范围是[3,5],则a =( )A .4B .3C .2D .141.已知不等式组210210x y x x y -+≥⎧⎪≤⎨⎪+-≥⎩表示的平面区域为D ,若函数|1|y x m =-+的图象上存在区域D 上的点,则实数m 的取值范围是( ) A .1[0,]2 B .1[2,]2- C .3[1,]2- D .[2,1]- 42.已知点集}0222|),{(22≤---+=y x y x y x M ,}022|),{(22≥+--=y x y x y x N ,则N M 所构成平面区域的面积为( )A .πB .π2C .π3D .π443.若实数x ,y 满足不等式组024010x y x y x my +≥⎧⎪+-≤⎨⎪--≤⎩,且x+y 的最大值为3,则实数m=( )A .-1B .12C .1D .2 44.若实数x ,y 满足不等式组,且x+y 的最大值为( )A .1B .2C .3D .445.设x ,y 满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数)0,0(>>+=b a by ax z 的值是最大值为12,则ba 32+的最小值为( ) A .38 B .625 C .311 D .446.设O 是坐标原点,点A (-1,1),若点M (,x y )为平面区域⎪⎩⎪⎨⎧≤≤≥+212y x y x 上的一个动点,则OA OM ⋅的取值范围为 ( )A .[]0,1-B .[]1,0C .[]2,0D .[]2,1-47.已知变量y x ,满足约束条件⎪⎩⎪⎨⎧≤-≥+≤112y x y x y ,则y x z +=3的最大值为( )A .12B .11C .3D .-1 48.在直角坐标系内,满足不等式的点的集合(用阴影表示)正确的是( )A .B .C .D .49.设x ,y 满足10x y y x y +≤⎧⎪≤⎨⎪≥⎩,则4z x y =+的最大值是( )A .3B .4C .5D .650. 若,x y 满足约束条件5315153x y y x x y +⎧⎪+⎨⎪-⎩≤≤≤,则35x y +的取值范围是( )A .[13,15]-B .[13,17]-C .[11,15]-D .[11,17]-51.设的最大值为( )A .80B .C .25D .52.已知0a >,不等式组00(2)x y y a x ≥⎧⎪≤⎨⎪≥-⎩表示的平面区域的面积为1,则a 的值为( )A .14 B .12C .1D .2 53.不等式2350x y --≥表示的平面区域是( )A .B .C .D .54.设x ,y 满足约束条件 ,若目标函数(0,0)z ax by a b =+>>的最大值为12,则的最小值为 ( ). A .4 B . C . D .55.已知实数,x y 满足1000x y x y x +-≤⎧⎪-≤⎨⎪≥⎩,则2x y -的最大值为(A )12-(B )0 (C )1 (D )1256.若实数y x ,满足不等式组⎪⎩⎪⎨⎧≥-+≤-≤-020102y x y x ,则目标函数y x t 2-=的最大值为( )A . 1-B .0C .1D .257.若实数x ,y 满足4024020+-⎧⎪--⎨⎪-+⎩x y x y x y ………,则目标函数23=+z x y 的最大值为( )A .11B .24C .36D .49⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x 23a b +3831162558.已知 , 满足约束条件则目标函数 的最大值为( )A .1B .3C .D .59.已知实数,x y 满足不等式组2010220x y x y -≤⎧⎪-≤⎨⎪+-≥⎩,,,则z x y =+的取值范围为( )A .[]1,2-B .[]13,C .[]1,3-D .[]2,460.设变量x ,y 满足约束条件00220x x y x y ≥⎧⎪-≥⎨⎪--≤⎩则z =3x -2y 的最大值为A .4B .2C .0D .661.已知实数x 、y 满足约束条件1,1,2 2.x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩则目标函数25y z x +-=的最大值为A .3B .4C .3-D .-1262.不在不等式623<+y x 所表示的平面区域内的点是( ) A .)0,0( B .)1,1( C .)2,0( D .)0,2(二、填空题63.设不等式组2000x y x y +-≤⎧⎪≥⎨⎪≥⎩表示的平面区域为D ,在区域D 内随机取一点P ,则点P 落在圆221x y +=内的概率为 .64.已知,x y 满足14210x x y x y ≥⎧⎪+≤⎨⎪--≤⎩,则2z x y =+的最大值为 .65.已知方程220x ax b ++=(,)a R b R ∈∈,其一根在区间(0,1)内,另一根在区间(1,2)内,则31b a --的取值范围为 . 66.设x ,y 满足, ,若 ,则m 的最大值为 .67.设x ,y 满足约束条件则z =x +4y 的最大值为________.68.直线01-22=-+a y ax 与不等式组2040220x y x y x y -+-≤⎧⎪+-≤⎨⎪-+≤⎩表示的区域没有..公共点,则a 的取值范围是 .69.已知变量x ,y 满足⎪⎩⎪⎨⎧≥≤-+≤+-104034x y x y x , xy y x 22+的取值范围为 .70.设变量x ,y 满足则x +2y的最大值为 71.已知变量x 、y 满足约束条件 则的取值范围是 .72.已知实数对(x ,y )满足210x y x y ≤⎧⎪≥⎨⎪-≥⎩,则2x y +的最小值是 .73.设变量y x ,满足约束条件⎪⎩⎪⎨⎧≤≥+≤-,2,2,1y y x y x 则目标函数22y x z +=的取值范围是 .74.已知实数y x ,则 22222)(y x y y x +++的取值范围为 . 75.若实数满足则的取值范围是 .76.已知0m >,实数,x y 满足⎪⎩⎪⎨⎧≤+≥≥,,0,0m y x y x 若2z x y =+的最大值为2,则实数m =______.77.设2z x y =-+,实数,x y 满足2,{1, 2.x x y x y k ≤-≥-+≥若z 的最大值是0,则实数k =_______, z 的最小值是_______.78.给出平面区域如图所示,其中若使目标函数仅在点处取得最大值,则的取值范围是________.79.设实数x ,y 满足约束条件202x y y x -≥⎧⎪⎨≥-⎪⎩,则2z x y =+的最大值为 . 80.设,x y 满足约束条件1{10 1x y x x y +≤+≥-≤,则目标函数2y z x =-的取值范围为___________. 81.设实数,x y 满足,102,1,x y y x x ≤⎧⎪≤-⎨⎪≥⎩向量2,x y m =-()a ,1,1=-()b .若// a b ,则实数m 的最大值为 .82.已知实数x ,y 满足220,220,130,x y x y x y --≥⎧⎪-+≤⎨⎪+-≤⎩则z xy =的最大值为 .83.已知变量,x y 满足240{2 20x y x x y -+≥≤+-≥,则32x y x +++的取值范围是 . 84.设x ,y 满足约束条件1210,0≤+⎧⎪≥-⎨⎪≥≥⎩y x y x x y ,若目标函数()0,0z abx y a b =+>>的最大值为35, 则a b +的最小值为 .85.若x y ,满足约束条件1020,220,x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,,则2z x y =+的最大值为____________.86.若,x y 满足约束条件:1020,220,x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,,则3x y +的最大值为___ ____.87.已知x 、y 满足,则 的最大值是___________ .88.已知变量,x y 满足约束条件13,1,x y y x y +≥⎧⎪≤⎨⎪-≤⎩,若z kx y =+的最大值为5,且k 为负整数,则k =____________.89.已知不等式表示的平面区域为 ,若直线 与平面区域 有公共点,则 的范围是_________90.已知实数y x ,满足⎪⎩⎪⎨⎧≤≥+≥+-1002x y x y x 则y x z +=2的最小值为__________.91.若点(2,1)和(4,3)在直线230x y a -+= 的两侧,则a 的取值范围是____________.92.设变量x ,y 满足约束条件3{ 1 1x y x y y +≤-≥-≥,则2z x y =-的最小值为93.设变量y x ,满足约束条件22024010x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则y x z 23+-=的最大值为 .94.已知实数 满足,则的取值范围是__________.95.已知变量x ,y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数33z x y =-+的最大值是 .96.已知实数x ,y 满足约束条件则 的最大值等于______.97.设1,m >在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数5z x y =+的最大值为4,则m 的值为 ,目标函数y x z -=2的最小值为________.三、解答题98.画出不等式组⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x 表示的平面区域99.(本小题12分)已知⎪⎩⎪⎨⎧≤--≥-+≥+-0520402y x y x y x , 求(Ⅰ)12++=x y z 的取值范围; (Ⅱ)251022+-+=y y x z 的最小值.100.(本小题12分)已知y x ,满足不等式组⎪⎩⎪⎨⎧≤--≥-+≥+-0520402y x y x y x ,求(1)y x z 2+=的最大值;(2)251022+-+=y y x z 的最小值.参考答案1.A【解析】试题分析:作出x y ,满足约束条件下的平面区域,如图所示,由图当目标函数2z x y =-经过点(0,4)A 时取得最小值,且min 044z =-=-,故选A .考点:简单的线性规划问题.2.A .【解析】试题分析:若4320x y x y x y +≥-⇒+≥:4z x y =+,如下图所示,画出不等式组所表示的可行域,∴当2x y ==时,m a x 10z =,当2x =-,1y =时,m i n 7z =-;若432x y x y x y+<-⇒+<: 3z x y =-,画出不等式所表示的可行域,∴当2x =,2y =-时,max 8z =,当2x =-,1y =时,min 7z =-,综上,z 的取值范围是[7,10]-,故选A .考点:线性规划的运用.3.D【解析】试题分析:∵向量()3,2a =, ()b x y =,,∴·32a b x y =+,设z=3x+2y , 作出不等式组对于的平面区域如图:由z=3x+2y ,则322z y x =-+,平移直线322z y x =-+,由图象可知当直线322z y x =-+, 经过点B 时,直线322z y x =-+的截距最大,此时z 最大,由{ 21x yx y =-=,解得1{ 1x y ==,即B (1,1),此时zmax=3×1+2×1=5, 经过点A 时,直线322z y x =-+的截距最小,此时z 最小, 由{ 221x y x y =+=,解得14{ 14x y ==,即A 11,44⎛⎫ ⎪⎝⎭,此时zmin=3×14+2×14=54,则54≤z≤5 考点:简单线性规划4.B【解析】试题分析:在直角坐标系中作出可行域如下图所示,当目标函数y x z +=2经过可行域中的点)1,1(B 时有最大值3,当目标函数y x z +=2经过可行域中的点),(a a A 时有最小值a 3,由a 343⨯=得41=a ,故选B .考点:线性规划.5.C【解析】试题分析:画出可行域如下图所示,由图可知,目标函数在点 取得最大值为 .考点:线性规划.6.A【解析】试题分析:作出可行域如图, ()2201,4840x y A x y -+=⎧⇒⎨--=⎩,当目标函数11(0,0)z x y a b a b=+>>过点()1,4A 时纵截距最大,此时z 最大.即()142,0,0a b a b+=>>.()1141419552222a b a b a b a b b a ⎛⎫⎛⎫⎛⎫∴+=++=++≥= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当4b a a b =,即322a b ==时取''''=.故选A . 考点:1线性规划;2基本不等式.7.B【解析】试题分析:由z ax y =+得,y ax z =-+,直线y ax z =-+是斜率为,a y -轴上的截距为z 的直线,作出不等式组对应的平面区域如图:则()()1,1,2,4,A B z ax y =+的最大值为24a +,最小值为1a +∴直线z ax y =+过点B 时,取得最大值为24a +,经过点A 时取得最小值为1a +,若0a =,则y z =此时满足条件,若0a >则目标函数斜率0k a =-<,要使目标函数在A 处取得最小值,在B 处取得最大值,则目标函数的斜率满足1BC a k -≥=-,即01a <≤,若0a <,则目标函数斜率0k a =->要使目标函数在A 处取得最小值,在B 处取得最大值,则目标函数的斜率满足2AC a k -≤=,即20a -≤<,综上21a -≤≤;故选B .考点:简单的线性规划8.C【解析】试题分析:由题意作出其平面区域将z=y-x 化为y=x+z ,z 相当于直线y=x+z 的纵截距,则由平面区域可知,使目标函数z=y-x 取得最小值-4的最优解为(4,0);考点:简单线性规划问题9.B【解析】试题解析:当直线y ax z +=平移到点()1,1--B 时有最大值,此时应满足431-=⇒=--a a ;当直线y ax z +=平移到点()1,2-B 时有最大值,此时应满足2312=⇒=-a a .考点:线性规划的应用.10.B【解析】试题分析:可用特殊值法.代入点可知满足不等式,故点所在区域即为所求.考点:二元一次不等式表示平面区域.11.D【解析】试题分析:由题意可知,,令目标函数 ,作出不等式组表示的平面区域,如图所示,由图知,当目标函数 经过点 时取得最大值,最大值为 ,故选D .考点:简单的线性规划问题.12.A【解析】试题分析:依题意知,不等式表示的平面区域如图所示的三角型ABC 及其内部且A (2,2)、C (2,4-c ).目标函数可看作是直线在y 轴上的截距,显然当直线过点C 时,截距最小及z 最小,所以解得,此时B (3,1),且直线过点B 时截距最大,即z 最大,最大值为.故选A .考点:线性规划求最值.【方法点睛】线性规划求最值和值域问题的步骤:(1)先作出不等式组表示的平面区域;(2)将线性目标函数看作是动直线在y 轴上的截距;(3)结合图形看出截距的可能范围即目标函数z 的值域;(4)总结结果.另外,常考非线性目标函数的最值和值域问题,仍然是考查几何意义,利用数形结合求解.例如目标函数为可看作是可行域内的点(x ,y )与点(0,0)两点间的距离的平方;可看作是可行域内的点(x ,y )与原点(0,0)连线的斜率等等. 13.A 【解析】试题分析:由约束条件作出可行域,求出使可行域面积为2的a 值,化目标函数为直线方程的斜截式,数形结合可得最优解,求出最优解的坐标,代入目标函数得答案.2240{0y x x a-≤≤≤作出可行域如图, 由图可得22A a a B a a -(,),(,),1421122OAB S a a a B ∆=⨯⨯=∴=∴,,(,),目标函数可化为122z y x =-+,∴当122zy x =-+,过A 点时,z 最大,z=1+2×2=5,故选A .考点:简单的线性规划14.C【解析】试题分析:如图,不等式组表示的平面区域是△AOB,动直线x+y=a(即y=-x+a)在y轴上的截距从-2变化到1.知△ADC是斜边为3的等腰直角三角形,△EOC是直角边为1等腰直角三角形,所以区域的面积13173112224 ADC EOCS S S∆∆=-=⨯⨯-⨯⨯=考点:二元一次不等式(组)与平面区域视频15.C【解析】试题分析:因为,所以在中,,因为,而函数在上是减函数,所以当最小时最大,因为为增函数则此时最大。
高三数学线性规划试题答案及解析
高三数学线性规划试题答案及解析1.设满足则()A.有最小值2,最大值3B.有最小值2,无最大值C.有最大值3,无最小值D.既无最小值,也无最大值.【答案】B【解析】不等式组所表示的平面区域如下图所示:由得,当变化时,它表示一组斜率为-1的平行直线,在轴上的截距为,截距越大越大,截距越小越小,由图可知当直线经过点时在轴上的截距最小,截距不存在最大值;所以,有最小值2,无最大值.故选B.【考点】线性规划.2.设变量满足,则的最大值是 .【答案】3【解析】由约束条件画出可行域如图所示,则目标函数在点取得最大值,代入得,故的最大值为.【考点】线性规划.3.已知满足约束条件,当目标函数在该约束条件下取到最小值时,的最小值为()A.5B.4C.D.2【答案】B【解析】画出可行域(如图所示),由于,所以,经过直线与直线的交点时,取得最小值,即,代人得,,所以,时,,选B.【考点】简单线性规划的应用,二次函数的图象和性质.4.若变量、满足约束条件,则的最大值等于()A.B.C.D.【答案】C【解析】作出不等式组所表示的可行域如下图所示,直线交直线于点,作直线,则为直线在轴上的截距,当直线经过可行域上的点时,直线在轴上的截距最大,此时取最大值,即,故选C.【考点】本题考查线性规划中线性目标函数的最值,属于中等题.5.已知x,y满足条件,则目标函数的最大值为 .【答案】【解析】画出可行域,如下图所示,将目标函数变形为,当取到最大值时,直线的纵截距最大,故将直线向上平移到过点C时,目标函数取到最大值,,得,故.【考点】线性规划.6.若实数x,y满足,则的取值范围是________.【答案】[1,5]【解析】由题可知=,即为求不等式组所表示的平面区域内的点与点(0,-1)的连线斜率k的取值范围,由图可知k∈[1,5],即的取值范围是[1,5].7.已知,若恒成立, 则的取值范围是 .【答案】【解析】要使不等式成立,则有,即,设,则.作出不等式组对应的平面区域如图,平移直线,由图象可知当直线经过点B时,直线的截距最小,此时最大,由,解得,代入得,所以要使恒成立,则的取值范围是,即,【考点】线性规划.8.若变量满足约束条件则的最小值为。
高三数学线性规划试题
高三数学线性规划试题1.在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线OM斜率的最小值为()A.2B.1C.D.【答案】C【解析】不等式组为如图所表示的阴影区域.由图可知当M与C重合时,直线OM 斜率最小.解不等式组得C(3,-1),∴直线OM斜率的最小值为2.已知点满足,则的最小值是.【答案】【解析】根据线性规划的知识画出不等式的可行域如图所示,则目标函数在交点处取得最小值为,故填.【考点】线性规划3.设实数满足则的最大值等于________.【答案】2 【解析】实数满足所以x,y 的可行域如图所示.的最大值即为目标函数在y 轴的截距最小.即过点A (2,0),所以的最大值为2. 【考点】1.线性规划.2.截距最大对应的目标函数的最小值. 4. 已知满足不等式设,则的最大值与最小值的差为( )A .4B .3C .2D .1【答案】A【解析】作出不等式组所表示的区域,,由图可知,在点取得最小值,在点取得最大值,故的最大值与最小值的差为.【考点】线性规划.5. 已知实数x ,y 满足若z =ax +y 的最大值为3a +9,最小值为3a -3,则实数a 的取值范围为__________. 【答案】[-1,1]【解析】作出可行域如图中阴影部分所示,则z 在点A 处取得最大值,在点C 处取得最小值.又k BC =-1,k AB =1,∴-1≤-a≤1,即-1≤a≤1.6. 某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1kg 、B 原料2kg ;生产乙产品1桶需耗A 原料2kg ,B 原料1kg.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12kg.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是多少? 【答案】2800元【解析】设公司每天生产甲种产品x 桶,乙种产品y 桶,公司共可获得利润为z 元/天,则由已知,得z=300x+400y,且画可行域如图所示,目标函数z=300x+400y可变形为y=-x+,这是随z变化的一簇平行直线,解方程组∴即A(4,4),∴z=1200+1600=2800(元).max故公司每天生产甲产品4桶、生产乙产品4桶时,可获得最大利润为2800元.7.设变量x.y满足约束条件则目标函数的最大值和最小值分别为()A.3,一11B.-3,一11C.11,—3D.11,3【答案】A【解析】线性约束条件表示三角形及其内部,当目标函数经过点时,取最小值,经过点时取最大值.【考点】线性规划求最值8.若关于的不等式组表示的平面区域是一个三角形,则的取值范围是.【答案】.【解析】当时,,因此根据图象可知,要使得不等式组所表示的平面区域是一个三角形,那么的取值范围是.【考点】线性规划.9.已知x,y满足则z=2x+4y的最小值为().A.5B.-5C.6D.-6【答案】D【解析】画出线性约束条件下的平面区域.由,得点P(3,-3).此时z=2x+4y达到最小值,最小值为-6.10.已知实数满足约束条件,则的最小值是____________.【答案】【解析】因为实数满足约束条件,x,y的可行域如图为三角形ABC围成的区域.又因为目标函数.所以要求z的最小值即为求出的最小值,即过原点直线的斜率的最小值.通过图形可知过点A的最小,由题意得A(3,1).所以z的最小值为.故填.【考点】1.线性规划问题.2.构造的思想.3数形结合的思想.11.已知O是坐标原点,点M的坐标为(2,1),若点N(x,y)为平面区域上的一个动点,则的最大值是________.【答案】3【解析】=2x+y,设z=2x+y,则y=-2x+z,不等式组对应的区域为BCD.平移直线y=-2x+z,由图可知当直线y=-2x+z经过点C时,直线y=-2x+z的截距最大,此时z最大,由,解得,即C(1,1),代入z=2x+y得z=2x+y=3,所以的最大值为3. 12.已知实数,满足约束条件则的最大值为.【答案】【解析】解线性规划问题,不仅要正确确定可行域,本题是直角三角形及其内部,而且要挖出目标函数的几何意义,本题中可理解为坐标原点到可行域中点的距离的平方.要求目标函数最大值,就是求的最小值,即坐标原点到直线的距离的平方,为.【考点】线性规划求最值13.若变量满足线性约束条件,则的最大值为________.【答案】5【解析】由约束条件,得如下图所示的三角形区域,由得直线过点时,取得最大值为5.【考点】线性规划.14.已知变量x,y满足约束条件则z=4x·2y的最大值为。
高考数学一轮复习《线性规划》复习练习题(含答案)
高考数学一轮复习《线性规划》复习练习题(含答案)一、单选题1.若x ,y 满足1010330x y x y x y +-⎧⎪--⎨⎪-+⎩,则4z x y =-的最小值为( )A .-6B .-5C .-4D .12.已知x ,y 满足不等式组240,3260,20,x y x y x y --≤⎧⎪--≤⎨⎪++≥⎩则23z x y =+的取值范围为( )A .32,5⎡⎫-+∞⎪⎢⎣⎭B .325,52⎡⎤--⎢⎥⎣⎦C .[)6,-+∞D .5,2⎡⎫-+∞⎪⎢⎣⎭3.设变量,x y 满足约束条件100240x y x y x y --≤⎧⎪+≥⎨⎪+-≥⎩,则2z x y =-的最大值为( )A .0B .32C .3D .44.已知实数,x y 满足2030330x y x y x y -+≥⎧⎪+-≤⎨⎪--≥⎩,则目标函数2z x y =+的最大值为( )A .112B .5C .52D .35.若实数x ,y 满足约束条件110x y x y x +≥⎧⎪-≤⎨⎪≥⎩,则2z x y =+的最小值是( )A .-1B .0C .1D .26.若,x y 满足约束条件310x y x y x +≤⎧⎪-≤-⎨⎪≥⎩,则2z x y =+的最小值为( )A .1B .2C .3D .47.不等式44x y +<表示的区域在直线440x y +-=的( ) A .左上方B .左下方C .右上方D .右下方8.已知实数x ,y 满足210,10,2,x y x y x -+≥⎧⎪+-≥⎨⎪<⎩,则z =2x -y 的最小值是( )A .5B .52C .0D .-19.若实数x ,y 满足约束条件23023020x y x y x ++≥⎧⎪--≤⎨⎪+≥⎩,则3z x y =-的最大值是( )A .6-B .2C .4D .610.已知动点(),P m n 在不等式组400x y x y y +≤⎧⎪-≥⎨⎪≥⎩ 表示的平面区域内部及其边界上运动,则35n z m -=-的最小值( ) A .4 B .13C .53D .311.甲、乙两艘轮船都要在某个泊位停靠6个小时,假定它们在一昼夜的时间中随机到达,若两船有一艘在停泊位时,另一艘船就必须等待,则这两艘轮船停靠泊位时都不需要等待的概率为( ) A .1116B .916C .716D .51612.若实数,x y 满足约束条件10210y x y x y ≤⎧⎪-≤⎨⎪++≥⎩,则z )A .1BCD二、填空题13.已知x ,y 满足约束条件1000x y x y y +-≤⎧⎪-≥⎨⎪≥⎩则2z x y =-的最大值为_________.14.已知x 、y 满足2025020x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,则21x y z x ++=+的最小值是__________.15.在等差数列{}n a 中,125024a a a ≤≥-≤,,,则4a 的取值范围是______. 16.若实数,x y 满足约束条件102310y x x x y ≥⎧⎪+≥⎨⎪+-≤⎩,则目标函数3z x y =+的取值范围是__________ .三、解答题17.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙两个项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.(1)设投资人用x 万元、y 万元分别投资甲、乙两个项目,列出满足题意的不等关系式,并画出不等式组确定的平面区域图形;(2)求投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?18.若变量x ,y 满足约束条件240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩(1)画出不等式组表示的平面区域; (2)求目标函数z =y +x 的最大值和最小值.19.已知点(),P x y 在圆()2211x y +-=上运动,(1)求12y x --的取值范围; (2)求2x +y 的取值范围.20.已知圆C :222440x y x y +-+-=,直线l :30mx y m -+-=()m R ∈与圆C 相交于A 、B 两点.(1)已知点(,)x y 在圆C 上,求34x y +的取值范围: (2)若O 为坐标原点,且2AB OC =,求实数m 的值.21.已知命题p :0x ∃∈R ,()()2011(0)m x a a ++≤>,命题q :x ∀,y 满足+1002x y x y -≤⎧⎪≥⎨⎪≤⎩,m .(1)若q 为真命题,求m 的取值范围.(2)判断p ⌝是q 的必要非充分条件,求a 的范围22.2021年6月17日9时22分,我国“神舟十二号”载人飞船发射升空,展开为期三个月的空间站研究工作,某研究所计划利用“神舟十二号”飞船进行新产品搭载试验,计划搭载若干件新产品,A B 、要根据产品的研制成本、产品重量、搭载试验费用和预计收益来决定具体安排,通过调查,搭载每件产品有关数据如表:(1)试用搭载,A B 产品的件数,x y 表示收益z (万元);(2)怎样分配,A B 产品的件数才能使本次搭载实验的利润最大,最大利润是多少?23.设函数(),()x f x e g x ax b ==+,其中, a b R ∈.(Ⅰ)若1,1a b ==-,当1x ≥时,求证:()()ln f x g x x ≥;(Ⅱ)若不等式()()f x g x ≥在[1,)+∞上恒成立,求()2223a e b -+的最小值.24.对于函数()f x 和()g x ,设集合(){}0,R A x f x x ==∈,(){}0,R B x g x x ==∈,若存在1x A ∈,2x B ∈,使得12(0)x x k k -≤≥,则称函数()f x 与()g x “具有性质()M k ”.(1)判断函数()sin f x x =与()cos g x x =是否“具有性质1()2M ”,并说明理由;(2)若函数1()22x f x x -=+-与2()(2)24g x x m x m =+--+“具有性质(2)M ”,求实数m 的最大值和最小值;(3)设0a >且1a ≠,1b >,若函数1()log x bf x a x=-+与()log x b g x a x=-+“具有性质(1)M ”,求1212x x -的取值范围。
高中数学线性规划练习题及讲解
高中数学线性规划练习题及讲解线性规划是高中数学中的一个重要概念,它涉及到资源的最优分配问题。
以下是一些线性规划的练习题,以及对这些题目的简要讲解。
### 练习题1:资源分配问题某工厂生产两种产品A和B,每生产一件产品A需要3小时的机器时间和2小时的人工时间,每生产一件产品B需要2小时的机器时间和4小时的人工时间。
工厂每天有机器时间100小时和人工时间80小时。
如果产品A的利润是每件50元,产品B的利润是每件80元,工厂应该如何安排生产以获得最大利润?### 解题思路:1. 首先,确定目标函数,即利润最大化。
设生产产品A的数量为x,产品B的数量为y。
2. 目标函数为:\( P = 50x + 80y \)。
3. 根据资源限制,列出约束条件:- 机器时间:\( 3x + 2y \leq 100 \)- 人工时间:\( 2x + 4y \leq 80 \)- 非负条件:\( x \geq 0, y \geq 0 \)4. 画出可行域,找到可行域的顶点。
5. 计算每个顶点的目标函数值,选择最大的一个。
### 练习题2:成本最小化问题一家公司需要生产两种产品,产品1和产品2。
产品1的原材料成本是每单位10元,产品2的原材料成本是每单位15元。
公司每月有原材料预算3000元。
如果公司希望生产的产品总价值达到最大,应该如何分配生产?### 解题思路:1. 设产品1生产x单位,产品2生产y单位。
2. 目标函数为产品总价值最大化,但题目要求成本最小化,所以实际上是求成本最小化条件下的产品组合。
3. 约束条件为原材料成本:\( 10x + 15y \leq 3000 \)4. 非负条件:\( x \geq 0, y \geq 0 \)5. 画出可行域,找到顶点。
6. 根据实际情况,可能需要考虑产品1和产品2的市场价格,以确定最大价值。
### 练习题3:运输问题一个农场有三种作物A、B和C,需要运输到三个市场X、Y和Z。
高三数学线性规划试题
高三数学线性规划试题1.设变量x,y满足约束条件,则目标函数z=x2+y2的取值范围是()A.B.C.( 1 , 16 )D.【答案】B【解析】作出可行域如图中阴影部分所示,由表示原点与可行域内任意一点距离的平方,由图可知,当此距离为原点到直线时最小,= =,为点(4,0)时,z取最大值,z的最大值为16,所以目标函数z=x2+y2的取值范围是(,16),故选B.【考点】简单线性规划解法,点到直线距离公式2.实数x,y满足,如果目标函数Z=x-y的最小值为-2,则实数m的值为()A.5B.6C.7D.8【答案】D【解析】当目标函数过A点时,函数取得最小值,代入目标函数,解得.故选C.【考点】线性规划3.若变量、满足约束条件,且的最大值和最小值分别为和,则()A.B.C.D.【答案】C【解析】作出不等式组所表示的可行域如下图中的阴影部分所表示,直线交直线于点,交直线于点,作直线,则为直线在轴上的截距,当直线经过可行域上的点时,直线在轴上的截距最大,此时取最大值,即;当直线经过可行域上的点时,此时直线在轴上的截距最小,此时取最小值,即.因此,,故选C.【考点】本题考查线性规划中线性目标函数的最值,属于中等题.4.若、满足和,则的取值范围是________.【答案】【解析】不等式组表示的平面区域如图中,令,解方程组得,解方程组得,平移直线经过点使得取得最大值,即,当直线经过点使得取得最小值,即,故的取值范围是.【考点】不等式组表示的平面区域,求目标函数的最值,容易题.5.在平面直角坐标系中,不等式组所表示的平面区域是,不等式组所表示的平面区域是. 从区域中随机取一点,则P为区域内的点的概率是_____.【答案】【解析】在同一坐标作出不等式组所表示的平面区域,与不等式组所表示的平面区域,由图可知,的面积为,与重叠的面积为,故从区域中随机取一点,则P为区域内的点的概率为.【考点】几何概率.6.已知实数满足则的最小值为_____ .【答案】【解析】作出可行域如图中阴影部分,将化为,作出直线并平移,使之经过可行域,易知经过点时,纵截距最小,此时。
高三数学线性规划试题答案及解析
高三数学线性规划试题答案及解析1.设变量满足约束条件则目标函数的最小值为()A.2B.3C.4D.5【答案】B【解析】根据约束条件画出可行域如下图所示由得:当变化时,它表示一组平行直线,在轴上的截距是,截距越小越小,由图可知,当直线经过点截距最小,从而最小,所以故选B.【考点】线性规划.2.若变量满足约束条件则的最小值为________【答案】1【解析】依题意如图可得目标函数过点A时截距最大.即.【考点】线性规划.3.由不等式组确定的平面区域记为,不等式组,确定的平面区域记为,在中随机取一点,则该点恰好在内的概率为()A.B.C.D.【答案】D【解析】依题意,不等式组表示的平面区域如图,易求得,,,,由几何概型公式知,该点落在内的概率为,故选D.【考点】不等式组表示的平面区域,面积型的几何概型,中等题.4.若变量x,y满足约束条件,则z=2x+y-4的最大值为()A.-4B.-1C.1D.5【答案】C【解析】画出不等式组表示的平面区域(如图中的阴影部分所示)及直线2x+y=0,平移该直线,当平移到经过该平面区域内的点(2,1)(该点是直线x+y-3=0与y=1的交点)时,相应直线在y轴上的截距最大,此时z=2x+y-4取得最大值,最大值为z=2×2+1-4=1,因此选C.max5.已知α,β是三次函数f(x)=x3+ax2+2bx(a,b∈R)的两个极值点,且α∈(0,1),β∈(1,2),求动点(a,b)所在的区域面积S.【答案】【解析】解:由函数f(x)=x3+ax2+2bx(a,b∈R)可得,f′(x)=x2+ax+2b,由题意知α,β是方程x2+ax+2b=0的两个根,且α∈(0,1),β∈(1,2),因此得到可行域即,画出可行域如图.∴动点(a,b)所在的区域面积S=.6.若不等式组表示的平面区域是一个钝角三角形,则实数的取值范围()A.B.C.D.【答案】B【解析】不等式组表示的平面区域如图由图可知:故选【考点】线性规划.7.设变量满足,则的最大值和最小值分别为()A.1,-1B.2,-2C.1,-2D.2,-1【解析】由约束条件,作出可行域如图,设,则,平移直线,当经过点时,取得最大值,当经过点时,取得最小值,故选.【考点】线性规划.8. (2014·孝感模拟)已知实数x,y满足若z=x2+y2,则z的最大值为________.【答案】13【解析】画出可行域,z=x2+y2=()2,表示可行域内的点(x,y)和原点(0,0)距离的平方,可知点=13.B(2,3)是最优解,zmax9.已知,满足约束条件,且的最小值为6,则常数.【答案】-3【解析】画出可行域及直线,如图所示.平移直线,当其经过直线的交点时,,所以,.【考点】简单线性规划的应用.10.设变量x,y满足约束条件:,则z=x﹣3y的最小值()A.﹣2B.﹣4C.﹣6D.﹣8【解析】根据题意,画出可行域与目标函数线如图所示,由图可知目标函数在点(﹣2,2)取最小值﹣8故选D.11.若,满足约束条件,则的最大值是( )A.B.C.D.【答案】(C)【解析】,满足约束条件如图所示. 目标函数化为.所以z的最大值即为目标函数的直线在y轴的截距最小.所以过点A最小为1.故选(C).【考点】1.线性规划的知识.2.数学结合的数学思想.12.原点和点(2,﹣1)在直线x+y﹣a=0的两侧,则实数a的取值范围是()A.0≤a≤1B.0<a<1C.a=0或a=1D.a<0或a>1【答案】B【解析】∵原点和点(2,﹣1)在直线x+y﹣a=0两侧,∴(0+0﹣a)(2﹣1﹣a)<0,即a(a﹣1)<0,解得0<a<1,故选:B.13.点在不等式组表示的平面区域内,到原点的距离的最大值为,则的值为.【答案】3.【解析】由题意,不等式组表示的平面区域如下图:当点在点时,到原点的距离最大为5,则,解得.【考点】1.线性规划求参数范围.14.已知为坐标原点,两点的坐标均满足不等式组设与的夹角为,则的最大值为()A.B.C.D.【答案】C【解析】画出可行域,如图所示,当点A,B分别与点重合时,向量与的夹角最大,且是锐角,,则,又,故当时,取到最大值为.【考点】1、二元一次不等式表示的平面区域;2、向量的夹角;3、同角三角函数基本关系式. 15.设关于x,y的不等式组表示的平面区域内存在点,满足.求得m的取值范围是()A.(-∞,)B.(-∞,)C.(-∞,)D.(-∞,)【答案】C【解析】作出不等式组表示的平面区域(如图)若存在满足条件的点在平面区域内,则只需点A(-m,m)在直线x-2y-2=0的下方,即-m-2m-2>016.若、满足约束条件,则的取值范围是()A.B.C.D.【答案】D【解析】作出不等式组所表示的平面区域如下图所示,作直线,则为直线在轴上的截距,当直线经过可行域上的点时,此时直线在轴上的截距最小,此时取最小值,即,当直线经过可行域上的点,此时直线在轴上的截距最大,此时取最大值,即,因此的取值范围是,故选D.【考点】线性规划17.已知实数满足,则的取值范围是______.【答案】【解析】不等式组所表示的区域如下图:,其中即为的斜率,由图像计算得,观察可知,令,则,故是的增函数,因此,没有最大值,所以的取值范围是.【考点】1、线性规划;2、函数的单调性与值域;3、数形结合的思想.18.实数、满足则=的取值范围是( )A.[-1,0]B.-∞,0]C.[-1,+∞D.[-1,1【答案】D【解析】作出满足不等式组约束条件的平面区域,如下图所示:∵表示区域内点与点连线的斜率,又∵当,时,,直线与平行时,,∴的取值范围为,故选D.【考点】1、简单的线性规划;2、直线斜率.19.已知变量、满足条件,则的最大值是______.【答案】.【解析】作出不等式组所表示的平面区域如下图的阴影部分所表示,设,联立,解得,即点,作直线,则为直线在轴上的截距,当直线经过可行域上的点时,直线在轴上的截距最大,此时取最大值,即.【考点】线性规划20.设满足约束条件,则的最大值为_____________.【答案】【解析】画出对应的平面区域,直线,如图所示.令则平移直线,当直线经过点时,;当直线经过点时,,所以的最大值为.【考点】简单线性规划的应用21.设实数x,y满足则点(x,y)在圆面x2+y2≤内部的概率为() A.B.C.D.【答案】B=2.x2+y2≤恰好【解析】不等式组表示的可行域是边长为的正方形,所以S正在正方形的内部,且圆的面积为πr2=π,所以点(x,y)在圆面x2+y2≤内部的概率为=.22.已知正数a,b,c满足:5c-3a≤b≤4c-a,cln b≥a+cln c,则的取值范围是________.【答案】[e,7]【解析】由题意知作出可行域(如图所示).由得a=,b= c.=7.此时max由得a=,b=.==e.所以∈[e,7].此时min23.设实数x,y满足约束条件,若目标函数()的最大值为8,则的最小值为 .【答案】4【解析】约束条件所表示的区域如图所示:目标函数在处取得最大值,所以,即,所以,当且仅当时取等号.【考点】线性规划.24.设变量满足约束条件,则的最大值为_________.【答案】6【解析】不等式组表示的平面区域如图所示,当目标函数对应的直线过点时;的值最大,即.【考点】线性规划.25.已知点在不等式表示的平面区域上运动,则的最大值是 .【答案】【解析】如下图所示,不等式组所表示的可行域如下图中的阴影部分表示,在直线方程,令,解得,得点的坐标为,作直线,其中可视为直线在轴上的截距,当直线经过区域中的点时,直线在轴上的截距最大,此时取最大值,即.【考点】线性规划26.设平面区域是由双曲线的两条渐近线和抛物线的准线所围成的三角形(含边界与内部).若点,则目标函数的最大值为.【答案】【解析】约束条件为画出可行域,的最大值在点(2,1)处取得最大值为3..【考点】双曲线和抛物线的基础知识、线性规划.27.已知实数满足,若该不等式组所表示的平面区域是一个面积为的直角三角形,则的值是 ( )A.B.-2C.2D.【答案】A【解析】实数满足所表示的区域如上图,当直线与直线垂直时,此时,直线方程变为,与轴交点坐标为,与直线交点的纵坐标为,而三角形面积,解得,当直线与轴或与直线时,求出的值不符合.【考点】二元一次不等式所表示的区域.28.已知是由不等式组所确定的平面区域,则圆在区域内的弧长为________.【答案】【解析】作出可行域及圆如图所示,图中阴影部分所在圆心角所对的弧长即为所求.易知图中两直线的斜率分别是,得,,得得弧长 (为圆半径).【考点】1.线性规划;2.两角和的正切公式;3.弧长公式.29.不等式组表示的平面区域的面积是 .【答案】【解析】不等式组表示的可行域如图所示,故面积为.【考点】考查线性规划.30.设x,y满足约束条件,则z=2x-3y的最小值是()A.B.-6C.D.【答案】B【解析】画出不等式组表示的平面区域可知,平面区域为三角形,当目标函数表示的直线经过点(3,4)时,取得最小值,所以的最小值为,故选B.【考点】本小题考查线性规划的基础知识,难度不大,线性规划知识在高考中一般以小题的形式出现,是高考的重点内容之一,几乎年年必考.31.已知点在不等式组表示的平面区域上运动,则的取值范围是( )A.B.C.D.【答案】C【解析】做出线性约束条件下的可行域,可行域为由直线围成的三角形,三角形的三个顶点分别为,结合可行域可知的最大值为2,最小值为-1,所以范围是【考点】线性规划问题点评:线性规划问题求最值的题目取得最值的位置一般位于可行域的顶点或边界值处32.设x,y满足约束条件,若目标函数的最小值为2,则ab的最大值()A.1B.C.D.【答案】D【解析】因为目标函数,故,,由目标函数的最小值为2,则,即,则,故的最大值为.选C.【考点】简单线性规划点评:本题考查的知识点是简单线性规划,基本不等式,是不等式的综合应用,难度中档.33.若变量满足约束条件,则的最大值为A.B.C.D.【答案】C【解析】先根据约束条件画出可行域,再利用几何意义求最值,z=2x-y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最小值即可解:画出可行域(如下图),L:z=2x-y,由图可知,当直线l经过点A(2,1)时, z最大,且最大值为z=2×1-1=3.故答max【考点】线性规划点评:本小题主要考查线性规划知识、作图、识图能力及计算能力,以及利用几何意义求最值,属于基础题34. x,y满足约束条件,目标函数z=ax+2y仅在点(1,0)处取得最小值,则a的取值范围是_________.【答案】(-4,2)【解析】解:可行域为△ABC,如图,=-1,a<2.当a<0时,当a=0时,显然成立.当a>0时,直线ax+2y-z=0的斜率k=->kAC=2,a>-4.综合得-4<a<2,故答案为(-4,2)k=-<kAB【考点】线性规划点评:借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定35.若实数,满足条件则的最大值为()A.B.C.D.【答案】A【解析】根据约束条件画出可行域,可行域为一个等腰梯形,画出目标函数,通过平移可知在点处取到最大值,最大值为9.【考点】本小题主要考查利用线性规划知识求最值.点评:解决线性规划问题的前提是正确画出可行域,其次要注意适当转化.36.设变量满足约束条件,线性目标函数的最大值为,则实数的取值范围是。
精编30题:高考数学根据线性规划求最值或范围专题集训含答案
精编高考数学30题根据线性规划求最值或范围专题集训含答案例题详解若x ,y 满足约束条件⎪⎩⎪⎨⎧≥≤-+≥-0020y y x y x 则z=3x-4y 的最小值为________。
解:由题,画出可行域如图目标函数为z=3x-4y ,则直线443z x y -=纵截距越大,值越小 由图可知:在A(1,1)处取最小值,故z min =3×4-4×1=-1巩固练习1、(2023全国乙卷)若x ,y 满足约束条件⎪⎩⎪⎨⎧≥+≤+-≤-739213y x y x y x ,则z=2x-y 的最大值为______。
答案:82、(2023全国甲卷)若x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≤+-≥+3233321y x y x y x ,设z=3x+2y 的最大值为_________。
答案:153、(2022全国乙卷)若x ,y 满足约束条件⎪⎩⎪⎨⎧≥≤+≥+0422y y x y x ,则z=2x-y 的最大值是______。
答案:84、(2022浙江)若实数x ,y 满足约束条件⎪⎩⎪⎨⎧≤--≤-+≥-0207202y x y x x ,则z=3x+4y 的最大值是_____。
答案:185、(2021浙江)若实数x ,y 满足约束条件⎪⎩⎪⎨⎧≤--≤-≥+0132001y x y x x ,则z=x-21y 的最小值是______。
答案:23-6、(2020全国Ⅰ卷)若x ,y 满足约束条件⎪⎩⎪⎨⎧≥+≥--≤-+0101022y y x y x ,则z=x+7y 的最大值为________。
答案:17、(2020新课标Ⅱ)若x ,y 满足约束条件⎪⎩⎪⎨⎧≤--≥--≥+1211y x y x y x ,则z=x+2y 的最大值是______。
答案:88、(2020新课标Ⅲ)若x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥-≥+1020x y x y x ,则z=3x+2y 的最大值为________。
高三数学线性规划试题答案及解析
高三数学线性规划试题答案及解析1.已知不等式组表示的平面区域的面积等于,则的值为()﹙A﹚(B)﹙C﹚(D)【答案】D【解析】由题意,要使不等式组表示平面区域存在,需要,不等式组表示的区域如下图中的阴影部分,面积,解得,故选D.【考点】1.线性规划求参数的取值.2.曲线f(x)=(其中e为自然对数的底数)在点(0,1)处的切线与直线y=-x+3和x轴所围成的区域为D(包含边界),点P(x,y)为区域D内的动点,则z=x-3y的最大值为()A.3B.4C.-1D.2【答案】A【解析】,切线的斜率k==1,切线方程为y=x+1,区域D如图所示,目标函数z=x-3y过点(3,0)时,z的值最大,最大值为3-3×0=3,故选A.【考点】线性规划.3.已知满足不等式设,则的最大值与最小值的差为()A.4B.3C.2D.1【答案】A【解析】作出不等式组所表示的区域,,由图可知,在点取得最小值,在点取得最大值,故的最大值与最小值的差为.【考点】线性规划.4.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1kg、B原料2kg;生产乙产品1桶需耗A原料2kg,B原料1kg.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12kg.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是多少?【答案】2800元【解析】设公司每天生产甲种产品x桶,乙种产品y桶,公司共可获得利润为z元/天,则由已知,得z=300x+400y,且画可行域如图所示,目标函数z=300x+400y可变形为y=-x+,这是随z变化的一簇平行直线,解方程组∴即A(4,4),∴z=1200+1600=2800(元).max故公司每天生产甲产品4桶、生产乙产品4桶时,可获得最大利润为2800元.5.若直线y=2x上存在点(x,y)满足约束条件则实数m的最大值为________.【答案】1【解析】可行域如下:所以,若直线y=2x上存在点(x,y)满足约束条件则3-m≥2m,即m≤1.6.已知实数x,y满足不等式组则2x-y+3的最小值是()A.3B.4C.6D.9【解析】已知不等式组表示的平面区域如图所示.设z=2x-y,则z为直线2x-y-z=0在y轴的截距的相反数,结合图形可知在点A处z最小,A(1,1),故z的最小值为1,所以2x-y+3的最小值是4.7.不等式组所表示的平面区域是面积为1的直角三角形,则z=x-2y的最大值是().A.-5B.-2C.-1D.1【答案】C【解析】如图,由题意知,直线x+y-4=0与直线y=kx垂直,所以k=1,满足平面区域的面积为1,所以当直线x-2y=0平行移动经过点A(1,1)时,z达到最大值-1.8.已知实数x,y满足则目标函数z=x-y的最小值为().A.-2B.5C.6D.7【答案】A【解析】由z=x-y,得y=x-z.作出不等式对应的平面区域BCD,平移直线y=x-z,由平移可知,当直线y=x-z经过点C时,直线的截距最大,此时z最小.由解得即C(3,5),代入z=x-y得最小值为z=3-5=-2.9.设变量x、y满足约束条件且不等式x+2y≤14恒成立,则实数a的取值范围是【答案】[8,10]【解析】不等式组表示的平面区域如图中阴影部分所示,显然a≥8,否则可行域无意义.由图可知x+2y在点(6,a-6)处取得最大值2a-6,由2a-6≤14得,a≤10,故8≤a≤10.10.曲线y=在点M(π,0)处的切线与两坐标轴围成的三角形区域为D(包含三角形内部与边界).若点P(x,y)是区域D内的任意一点,则x+4y的最大值为.【答案】4【解析】,,,所以曲线在点处的切线方程为:,即:,它与两坐标轴所围成的三角形区域如下图所示:令,将其变形为,当变化时,它表示一组斜率为,在轴上的截距为的平行直线,并且该截距越在,就越大,由图可知,当直线经过时,截距最大,所以=,故答案为:4.【考点】1、导数的几何意义;2、求导公式;3、线必规划.11.已知实数,满足约束条件则的最大值为.【答案】【解析】解线性规划问题,不仅要正确确定可行域,本题是直角三角形及其内部,而且要挖出目标函数的几何意义,本题中可理解为坐标原点到可行域中点的距离的平方.要求目标函数最大值,就是求的最小值,即坐标原点到直线的距离的平方,为.【考点】线性规划求最值12.若不等式组表示的平面区域是三角形,则实数的取值范围是.【答案】【解析】画出表示的可行域,表示过的一组直线,如果能构成三角形,如图,那直线不与已知直线平行,夹在如图粗线直接,由逆时针旋转到之间的直线,能构成三角形,,.【考点】线性规划.13.若变量x,y满足约束条件则的最大值为A.4B.3C.2D.1【答案】A【解析】由画出可行域及直线.平移直线,当其经过点时,取到最大值4,选A.【考点】简单线性规划的应用14.若实数x,y满足,如果目标函数的最小值为,则实数m=______.【答案】8【解析】画出可行域如下图:可得直线与直线的交点使目标函数取得最小值,故解,得,代入得故答案为8.【考点】简单线性规划15.雾霾大气严重影响人们生活,某科技公司拟投资开发新型节能环保产品,策划部制定投资计划时,不仅要考虑可能获得的盈利,而且还要考虑可能出现的亏损,经过市场调查,公司打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和60%,可能的最大亏损率分别为20%和10%,投资人计划投资金额不超过10万元要求确保可能的资金亏损不超过1.6万元.(1)若投资人用万元投资甲项目,万元投资乙项目,试写出、所满足的条件,并在直角坐标系内做出表示、范围的图形;(2)根据(1)的规划,投资公司对甲、乙两个项目投资多少万元,才能是可能的盈利最大?【答案】(1)如图;(2)用6万元投资甲项目,4万元投资乙项目.【解析】(1)根据已知条件列出不等式组,再在平面直角坐标系中画出对应的可行域,注意边界上的点也满足条件;(2)主要是利用可行域求解线性目标函数的最大值即得投资公司获得的最大利润,图解法解决含有实际背景的线性规划问题的基本步骤是:①列出约束条件,确定目标函数;②画出不等式(组)表示的平面区域;③作平行直线系使之与可行域有交点,求得最优解;④写出目标函数的最值,并下结论.试题解析:(1)由题意,上述不等式组表示的平面区域如图中阴影部分(含边界),根据(1)的规划和题设条件,可知目标函数为,作直线,并作平行于直线与可行域相交,当平行直线经过直线与的交点时,其截距最大,解方程组,解得,即,此时(万元),当,时,取得最大值.即投资人用6万元投资甲项目,4万元投资乙项目,才能确保亏损不超过1.6万元,使可能的利润最大.【考点】用线性规划解决实际问题,投资利润最大问题.16.设变量x、y满足则目标函数z=2x+y的最小值为()A.6B.4C.2D.【答案】C.【解析】由题意可得,在点B处取得最小值,所以z=2.【考点】线性规划.17.设实数满足约束条件,若目标函数的最大值为8,则a+b的最小值为_____________.【答案】4【解析】满足约束条件的平面区域如图,由,得,由,知,所以,当直线经过点时,取得最大值,这时,即,所以≥,当且仅当时,上式等号成立.所以的最小值为【考点】简单线性规划的应用18.已知实数、满足,则函数的取值范围是 .【答案】(2,5)【解析】作出不等式组表示的区域如图所示,设P(x,y),显然.从图可知,当点P在点C,D时,取最大值5;当点P在点A时,取最小值2.但要区域中应去掉A、C、D三点,所以其范围为(2,5).【考点】线性规划.19.某营养师要为某个儿童预订午餐和晚餐,已知一个单位的午餐含个单位的碳水化合物,个单位的蛋白质和个单位的维生素;一个单位的晚餐含个单位的碳水化合物,个单位的蛋白质和个单位的维生素.另外,该儿童这两餐需要的营养中至少含个单位的碳水化合物,个单位的蛋白质和个单位的维生素.如果一个单位的午餐、晚餐的费用分别是元和元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?【答案】应当为该儿童预订个单位的午餐和个单位的晚餐,就可满足要求.【解析】先根据条件列举出、所满足的约束条件,并确定目标函数,然后作出可行域,利用目标函数所代表的直线进行平移,根据的几何意义确定最优解,从而解决实际问题.试题解析:设需要预订满足要求的午餐和晚餐分别为个单位和个单位,所花的费用为元,则依题意得:,且、满足:,即,画出可行域如图所示:让目标函数表示的直线在可行域上平移,由此可知在处取得最小值.因此,应当为该儿童预订个单位的午餐和个单位的晚餐,就可满足要求.【考点】线性规划20.已知x,y满足,则的取值范围是__________.【答案】【解析】由满足的条件作图如下,又由,可看成两点间的斜率,由图可知过点时,有最大值;过点时,有最小值,则范围为.【考点】简单的线性规划21.设z=2x+y,其中x,y满足,若z的最大值为6,则z的最小值为_________.【答案】【解析】根据题意画出可行域,其中,经过平移图中虚线方程可知,当目标函数过点时,所以,此时,,当目标函数过点时,.【考点】线性规划.22.设,其中满足约束条件,若的最小值,则k的值为___ .【答案】1.【解析】由题意若的最小值为1,则直线通过直线和直线的交点,则有,解得.【考点】线性规划.23.若实数、,满足,则的取值范围是【答案】【解析】,令,如图画出可行域,的取值范围为可行域上任一点,与连线的斜率的取值范围,,故.【考点】线性规划.24.已设变量满足约束条件,则目标函数的最大值为( ) A.11B.10C.9D.【答案】B【解析】不等式表示的平面区域如图所示为三角形及其内部,根据中的几何意义,由图可知,当直线经过点时,最大,解方程得,所以,选B.【考点】简单的线性规划.25.已知满足约束条件,且恒成立,则的取值范围为。
高中线性规划练习含详细解答
线性规划练习1. “截距”型考题在线性约束条件下,求形如(,)z ax by a b R =+∈的线性目标函数的最值问题,通常转化为求直线在y 轴上的截距的取值. 结合图形易知,目标函数的最值一般在可行域的顶点处取得.掌握此规律可以有效避免因画图太草而造成的视觉误差.1.【2019年高考·广东卷 理5】已知变量,x y 满足约束条件241y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )2. (2019年高考·辽宁卷 理8)设变量,x y 满足-100+20015x y x y y ≤⎧⎪≤≤⎨⎪≤≤⎩,则2+3x y 的最大值为A .20B .35C .45D .553.(2019年高考·全国大纲卷 理13) 若,x y 满足约束条件1030330x y x y x y -+≥⎧⎪⎪+-≤⎨⎪+-≥⎪⎩,则3z x y =-的最小值为 。
4.【2019年高考·陕西卷 理14】 设函数ln ,0()21,0x x f x x x >⎧=⎨--≤⎩,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成的封闭区域,则2z x y =-在D 上的最大值为 .5.【2019年高考·江西卷 理8】某农户计划种植黄瓜和韭菜,种植面积不超过50计,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表为使一年的种植总利润(总利润=总销售收入 总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为( )A .50,0B .30,20C .20,30D .0,506. (2019年高考·四川卷 理9 ) 某公司生产甲、乙两种桶装产品. 已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克. 每桶甲产品的利润是300元,每桶乙产品的利润是400元. 公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克. 通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )A 、1800元B 、2400元C 、2800元D 、3100元7. (2019年高考·安徽卷 理11) 若,x y 满足约束条件:02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩;则x y -的取值范围为_____.8.(2019年高考·山东卷 理5)的约束条件2441x y x y +≤⎧⎨-≥-⎩,则目标函数z=3x-y 的取值范围是A . [32-,6]B .[32-,-1]C .[-1,6]D .[-6,32] 9.(2019年高考·新课标卷 理14) 设,x y 满足约束条件:,013x y x y x y ≥⎧⎪-≥-⎨⎪+≤⎩;则2z x y =-的取值范围为 .2 . “距离”型考题10.【2019年高考·福建卷 理8】 设不等式组x 1x-2y+30y x ≥⎧⎪≥⎨⎪≥⎩所表示的平面区域是1Ω,平面区域是2Ω与1Ω关于直线3490x y --=对称,对于1Ω中的任意一点A 与2Ω中的任意一点B, ||AB 的最小值等于( )A.285 B.4 C. 125D.2 11.( 2019年高考·北京卷 理2) 设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是A 4πB22π- C 6π D44π- 3. “斜率”型考题12.【2019年高考·福建卷 理8】 若实数x 、y 满足10,0x y x -+≤⎧⎨>⎩则y x 的取值范围是 ( )A.(0,1)B.(]0,1C.(1,+∞)D.[)1,+∞13.(2019年高考·江苏卷 14)已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则b a的取值范围是 .4. “平面区域的面积”型考题14.【2019年高考·重庆卷 理10】设平面点集{}221(,)()()0,(,)(1)(1)1A x y y x yB x y x y x ⎧⎫=--≥=-+-≤⎨⎬⎩⎭,则AB 所表示的平面图形的面积为A 34π B 35π C 47π D2π 15.(2019年高考·江苏卷 理10)在平面直角坐标系xOy ,已知平面区域{(,)|1,A x y x y =+≤且0,0}x y ≥≥,则平面区域{(,)|(,)}B x y x y x y A =+-∈的面积为 ( )A .2B .1C .12D .1416.(2019年高考·安徽卷 理15) 若A 为不等式组02x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x y a +=扫过A 中的那部分区域的面积为 . 17.(2009年高考·安徽卷 理7) 若不等式组03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域被直线43y kx =+分为面积相等的两部分,则k 的值是(A )73(B ) 37(C )43(D ) 34高18.(2019年高考·浙江卷 理17)若0,0≥≥b a ,且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a ,b为坐标点(,)P a b 所形成的平面区域的面积等于__________.5. “求约束条件中的参数”型考题规律方法:当参数在线性规划问题的约束条件中时,作可行域,要注意应用“过定点的直线系”知识,使直线“初步稳定”,再结合题中的条件进行全方面分析才能准确获得答案.19.(2009年高考·福建卷 文9)在平面直角坐标系中,若不等式组101010x y x ax y +-≥⎧⎪-≤⎨⎪-+≥⎩(α为常数)所表示的平面区域内的面积等于2,则a 的值为A. - 5B. 1C. 2D. 320.【2019年高考·福建卷 理9】若直线x y 2=上存在点),(y x 满足约束条件⎪⎩⎪⎨⎧≥≤--≤-+m x y x y x 03203,则实数m 的最大值为( ) A .21 B .1 C .23 D .221.(2019年高考·山东卷 理12)设二元一次不等式组2190802140x y x y x y ⎧+-⎪-+⎨⎪+-⎩,,≥≥≤所表示的平面区域为M ,使函数(01)x y a a a =>≠,的图象过区域M 的a 的取值范围是( )A .[1,3]B .[2,10] C .[2,9] D .[10,9]22.(2019年高考·北京卷 理7)设不等式组 110330530x y x y x y 9+-≥⎧⎪-+≥⎨⎪-+≤⎩表示的平面区域为D ,若指数函数y=x a 的图像上存在区域D 上的点,则a 的取值范围是A (1,3]B [2,3]C (1,2]D [ 3,+∞]23.(2019年高考·浙江卷 理17)设m 为实数,若{250(,)300x y x y x mx y -+≥⎧⎪-≥⎨⎪+≥⎩}22{(,)|25}x y x y ⊆+≤,则m 的取值范围是___________.24.(2019年高考·浙江卷 理7) 若实数x ,y 满足不等式组330,230,10,x y x y x my +-≥⎧⎪--≤⎨⎪-+≥⎩且x y +的最大值为9,则实数m =( )A 2-B 1-C 1D 26. “求目标函数中的参数”型考题规律方法:目标函数中含有参数时,要根据问题的意义,转化成“直线的斜率”、“点到直线的距离”等模型进行讨论与研究. 25.(2009年高考·陕西卷 理11)若x ,y满足约束条件1122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,目标函数2z ax y =+仅在点(1,0)处取得最小值,则a 的取值范围是 ( )A .(1-,2)B .(4-,2)C .(4,0]-D . (2,4)- 26.(2019年高考·湖南卷 理7)设m >1,在约束条件下,⎪⎩⎪⎨⎧≤+≤≥1y x mx y xy 目标函数z=x+my 的最大值小于2,则m 的取值范围为 A .)21,1(+B .),21(+∞+C .(1,3)D .),3(+∞7. 其它型考题27. (2009年高考·山东卷 理12) 设x ,y满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数(0,0)z ax by a b =+>> 的值是最大值为12,则23a b+的最小值为( )A.625 B. 38 C. 311D. 4 28. (2019年高考·安徽卷 理13)设,x y 满足约束条件2208400 , 0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数()0,0z abx y a b =+>> 的最大值为8,则a b +的最小值为________.线性规划问题 答案解析1. “截距”型考题在线性约束条件下,求形如(,)z ax by a b R =+∈的线性目标函数的最值问题,通常转化为求直线在y 轴上的截距的取值. 结合图形易知,目标函数的最值一般在可行域的顶点处取得.掌握此规律可以有效避免因画图太草而造成的视觉误差.1、选B 【解析】约束条件对应ABC ∆内的区域(含边界),其中53(2,2),(3,2),(,)22A B C 画出可行域,结合图形和z的几何意义易得3[8,11]z x y =+∈2、选D ; 【解析】作出可行域如图中阴影部分所示,由图知目标函数过点()5,15A 时,2+3x y 的最大值为55,故选D.3、答案:1-【解析】利用不等式组,作出可行域,可知区域表示的为三角形,当目标函数过点(3,0)时,目标函数最大,当目标函数过点(0,1)时最小为1-.] 4、答案2; 【解析】当x > 0时,()xx f 1'=,()11'=f ,∴曲线在点(1,0)处的切线为1-=x y ,则根据题意可画出可行域D 如右图:目标函数z x y 2121-=, ∴当0=x ,1-=y 时,z 取得最大值25、选B ;【解析】本题考查线性规划知识在实际问题中的应用,同时考查了数学建模的思想方法以及实践能力. 设黄瓜和韭菜的种植面积分别为x 、y 亩,总利润为z 万元, 则目标函数为(0.554 1.2)(0.360.9)0.9z x x y y x y =⨯-+⨯-=+. 线性约束条件为50,1.20.954,0,0.x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩即50,43180,0,0.x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩作出不等式组表示的可行域,易求得点()()()0,50,30,20, 0,45A B C . 平移直线0.9z x y =+,可知当直线0.9z x y =+,经过点()30,20B ,即30,20x y ==时 z 取得最大值,且max 48z =(万元). 故选B. 点评:解答线性规划应用题的一般步骤可归纳为:(1)审题——仔细阅读,明确有哪些限制条件,目标函数是什么? (2)转化——设元.写出约束条件和目标函数;(3)求解——关键是明确目标函数所表示的直线与可行域边界直线斜率间的关系;(4)作答——就应用题提出的问题作出回答.6、答案C 【解析]】 设公司每天生产甲种产品X 桶,乙种产品Y 桶,公司共可获得利润为Z 元/天,则由已知,得 Z=300X+400Y ,且⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00122122Y X Y X Y X,画可行域如图所示,目标函数Z=300X+400Y 可变形为Y=400z x 43+- 这是随Z 变化的一族平行直线,解方程组⎩⎨⎧=+=+12y 2x 12y x 2 ,⎩⎨⎧==∴4y 4x ,即A (4,4)280016001200max =+=∴Z7、答案[3,0]-; 【解析】约束条件对应ABC ∆内的区域(含边界),其中3(0,3),(0,),(1,1)2A B C ,画出可行域,结合图形和t 的几何意义易得[3,0]t x y =-∈-8、选A ; 【解析】 作出可行域和直线l :03=-y x ,将直线l 平移至点)0,2(处有最大值,点)3,21(处有最小值,即623≤≤-z . ∴应选A.9、答案[-3,3];【解析】约束条件对应区域为四边形OABC 内及边界,其中(0,0),(0,1),(1,2),(3,0)O A B C ,则2[3,3]z x y =-∈-2 . “距离”型考题10、选B ;【命题意图】本题考查不等式中的线性规划以及两个图形间最小距离的求解、基本公式(点到直线的距离公式等)的应用,考查了转化与化归能力。
高三数学线性规划试题答案及解析
高三数学线性规划试题答案及解析1.已知满足约束条件,当目标函数在该约束条件下取到最小值时,的最小值为()A.5B.4C.D.2【答案】B【解析】画出可行域(如图所示),由于,所以,经过直线与直线的交点时,取得最小值,即,代人得,,所以,时,,选B.【考点】简单线性规划的应用,二次函数的图象和性质.2.若、满足,且的最小值为,则的值为()A.2B.C.D.【答案】D【解析】若,没有最小值,不合题意;若,则不等式组表示的平面区域如图阴影部分,由图可知,直线在点处取得最小值,所以,解得.故选D.【考点】不等式组表示的平面区域,求目标函数的最小值,容易题.3.若变量x,y满足约束条件,则z=2x+y-4的最大值为()A.-4B.-1C.1D.5【答案】C【解析】画出不等式组表示的平面区域(如图中的阴影部分所示)及直线2x+y=0,平移该直线,当平移到经过该平面区域内的点(2,1)(该点是直线x+y-3=0与y=1的交点)时,相应直线在y 轴上的截距最大,此时z=2x+y-4取得最大值,最大值为z=2×2+1-4=1,因此选C.max4.(3分)(2011•重庆)设m,k为整数,方程mx2﹣kx+2=0在区间(0,1)内有两个不同的根,则m+k的最小值为()A.﹣8B.8C.12D.13【答案】D【解析】将一元二次方程的根的分布转化为确定相应的二次函数的图象来处理,根据图象可得到关于m和k的不等式组,此时不妨考虑利用不等式所表示的平面区域来解决,但须注意这不是线性规划问题,同时注意取整点.解:设f(x)=mx2﹣kx+2,由f(0)=2,易知f(x)的图象恒过定点(0,2),因此要使已知方程在区间(0,1)内两个不同的根,即f(x)的图象在区间(0,1)内与x轴有两个不同的交点即由题意可以得到:必有,即,在直角坐标系mok中作出满足不等式平面区域,如图所示,设z=m+k,则直线m+k﹣z=0经过图中的阴影中的整点(6,7)时,=13.z=m+k取得最小值,即zmin故选D.点评:此题考查了二次函数与二次方程之间的联系,解答要注意几个关键点:(1)将一元二次方程根的分布转化一元二次函数的图象与x轴的交点来处理;(2)将根据不等式组求两个变量的最值问题处理为规划问题;(3)作出不等式表示的平面区域时注意各个不等式表示的公共区域;(4)不可忽视求得最优解是整点.5.变量x,y满足约束条件,则目标函数z=3x-y的取值范围是()A.[-,6]B.[-,-1]C.[-1,6]D.[-6,]【答案】A【解析】作出不等式组表示的可行域,如图阴影部分所示,作直线3x-y=0,并向上、下平移,由图可得,当直线过点A时,z=3x-y取最大值;当直线过点B时,z=3x-y取最小值.由,解得A(2,0);由,解得B(,3).∴zmax =3×2-0=6,zmin=3×-3=-.∴z=3x-y的取值范围是[-,6].6.已知x,y,满足,x≥1,则的最大值为.【答案】【解析】因为,又因为构成一个三角形ABC及其内部的可行域,其中而表示可行域内的点到定点连线的斜率,其范围为,所以当时,取最大值为【考点】线性规划,函数最值7.已知点与点在直线的两侧,且,则的取值范围是()A.B.C.D.【答案】A【解析】由已知,,画出可行域,如图所示.表示可行域内的点与定点连线的斜率,观察图形可知的斜率最大为,故选.【考点】简单线性规划的应用,直线的斜率计算公式.8.给定区域:,令点集在上取得最大值或最小值的点,则中的点共确定______个不同的三角形.【答案】25【解析】把给定的区域:画成线性区域如图:,则满足条件的点在直线上有5个,在直线上有2个,能组成不同三角形的个数为.【考点】线性规划、组合问题.9.已知平面直角坐标系xOy上的区域D由不等式组给定. 若为D上的动点,点A的坐标为,则的最大值为()A.3B.4C.D.【答案】B【解析】画出区域D如图所示,则为图中阴影部分对应的四边形上及其内部的点,又,所以当目标线过点时,,故选B.【考点】线性规划10.设是定义在上的增函数,且对于任意的都有恒成立.如果实数满足不等式,那么的取值范围是【答案】(9,49)【解析】是定义在上的增函数,且对于任意的都有恒成立.所以可得函数为奇函数.由可得,..满足m,n如图所示.令.所以的取值范围表示以原点O为圆心,半径平方的范围,即过点A,B两点分别为最小值,最大值,即9和49.【考点】1.线性规划的问题.2.函数的单调性.3.函数的奇偶性.4.恒成立的问题.11.设变量x,y满足约束条件,则目标函数z=2y-3x的最大值为( ) A.-3B.2C.4D.5【答案】C【解析】满足约束条件的可行域如图所示.因为函数z=2y-3x,所以zA =-3,zB=2,zC=4,即目标函数z=2y-3x的最大值为4,故选C. [【考点】线性规划.12.如图,已知可行域为及其内部,若目标函数当且仅当在点处取得最大值,则的取值范围是______.【答案】【解析】根据线性规划的知识,可知目标函数的最优解都是在可行域的端点,所以根据题意,故填【考点】线性规划13.设实数x、y满足,则的最大值是_____________.【答案】9【解析】由可行域知,当时,【考点】线性规划14.若点(x,y)位于曲线y=|x|与y=2所围成的封闭区域,则2x-y的最小值是()A.-6B.-2C.0D.2【答案】A【解析】曲线y =|x|与y =2所围成的封闭区域如图阴影部分所示,当直线l :y =2x 向左平移时,(2x -y)的值在逐渐变小,当l 通过点A(-2,2)时,(2x -y)min =-6.15. 已知x,y 满足条件则的取值范围是( )A .[,9]B .(-∞,)∪(9,+∞)C .(0,9)D .[-9,-]【答案】A【解析】画出不等式组表示的平面区域(如图),其中A(4,1),B(-1,-6),C(-3,2).表示区域内的点与点(-4,-7)连线的斜率.由图可知,连线与直线BD 重合时,倾斜角最小且为锐角;连线与直线CD 重合时,倾斜角最大且为锐角.k BD =,k CD =9,所以的取值范围为[,9].16. 已知正数a ,b ,c 满足:5c -3a≤b≤4c -a ,cln b≥a +cln c ,则的取值范围是________. 【答案】[e,7] 【解析】由题意知作出可行域(如图所示).由得a =,b = c. 此时max=7. 由得a =,b =.此时==e.所以∈[e,7].min17.已知,满足约束条件,若的最小值为,则()A.B.C.D.【答案】A【解析】先根据约束条件画出可行域,设,将最值转化为轴上的截距,当直线经过点B时,最小,由得:,代入直线得,故选A.【考点】简单线性规划.18.已知实数、满足约束条件,则的取值范围是()A.B.C.D.【答案】D【解析】作出不等式组所表示的可行域如下图的阴影部分所示,联立得点,联立得点,作直线,则为直线在轴上截距的倍,当直线经过可行域上点时,此时直线在轴上的截距最小,此时取最小值,即;当直线经过可行域上的点时,此时直线在轴上的截距最大,此时取最大值,即,故的取值范围是,故选D.【考点】简单的线性规划问题19.设变量满足约束条件,则的最大值为( )A.6B.3C.D.1【答案】A【解析】这是线性规划的应用.目标函数是线性约束条件所确定的三角形区域内一点与原点的连线的斜率.先画出三条直线所围成的三角形区域,可知,直线与直线的交点坐标(1,6)代入计算得.【考点】线性规划的应用.20.已知是由不等式组所确定的平面区域,则圆在区域内的弧长为________.【答案】【解析】作出可行域及圆如图所示,图中阴影部分所在圆心角所对的弧长即为所求.易知图中两直线的斜率分别是,得,,得得弧长 (为圆半径).【考点】1.线性规划;2.两角和的正切公式;3.弧长公式.21.设变量x,y满足约束条件其中k(I)当k=1时,的最大值为______;(II)若的最大值为1,则实数k的取值范围是_____.【答案】1,.【解析】目标函数的可行域如图所示:不妨设(由可行域可知,),即,它表示一条开口向上的抛物线,且a的值越大,抛物线的开口就越小. (I)当时,由图象可知当抛物线图象经过点时,有最大值1; (II)表示一条经过点且斜率为k的直线及直线下方的区域,结合(I)可知,当抛物线经过点A时,有最大值1.从而可知,要使有最大值1,抛物线在变化过程中必先经过可行域内的点A,考虑临界状态,即直线与抛物线相切于点,此时,切线斜率,从而有k的取值范围是.【考点】线性规划.22.设满足约束条件,则的最大值为____________.【答案】6【解析】如图所示,在线性规划区域内,斜率为的直线经过该区域并取最大值时,该直线应过点,因此的最大值为6.【考点】线性规划的目标函数最值23.已知实数x,y满足且不等式axy恒成立,则实数a的最小值是.【答案】.【解析】由画出如图所示平面区域,因为区域中,恒成立得恒成立, 令则,函数在上是减函数,在上是增函数所以函数最大值为要使恒成立只要,所以的最小值是.【考点】线性规划,不等式及函数极值.24.已知x,y满足,则的最小值是()A.0B.C.D.2【答案】B【解析】因为,x,y满足,所以,,画出可行域,表示A(-1,-1)到可行域内的点距离的平方,所以,其最小值为A到直线=0的距离的平方,=。
高三数学线性规划试题答案及解析
高三数学线性规划试题答案及解析1.已知实数满足约束条件,则的最小值是()A.B.C.D.【答案】A【解析】作出可行域如图中阴影部分所示,作出直线:,平移直线,由图知,当直线:过点A时,z取最小值,解得A(,),故=-14,故选A.考点: 简单线性规划2.不等式组的解集为D,有下面四个命题:,,,其中的真命题是()A.B.C.D.【答案】B【解析】画出可行域,如图所示,设,则,当直线过点时,取到最小值,,故的取值范围为,所以正确的命题是,选B.【考点】1、线性规划;2、存在量词和全称量词.3.设x,y满足约束条件,则z=(x+1)2+y2的最大值为()A.80B.4C.25D.【答案】A【解析】作出不等式组表示的平面区域,如图中阴影部分所示.(x+1)2+y2可看作点(x,y)到点P(-1,0)的距离的平方,由图可知可行域内的点A到点P(-1,0)的距离最大.解方程组,得A点的坐标为(3,8),代入z=(x+1)2+y2,得z=(3+1)2+82=80.max4.已知实数满足则的最小值为_____ .【答案】【解析】作出可行域如图中阴影部分,将化为,作出直线并平移,使之经过可行域,易知经过点时,纵截距最小,此时。
【考点】线性规划问题。
5.已知,满足约束条件,且的最小值为6,则常数.【答案】-3【解析】画出可行域及直线,如图所示.平移直线,当其经过直线的交点时,,所以,.【考点】简单线性规划的应用.6.若,满足约束条件,则的最大值是( )A.B.C.D.【答案】(C)【解析】,满足约束条件如图所示. 目标函数化为.所以z的最大值即为目标函数的直线在y轴的截距最小.所以过点A最小为1.故选(C).【考点】1.线性规划的知识.2.数学结合的数学思想.7.曲线在点处的切线分别为,设及直线x-2y+2=0围成的区域为D(包括边界).设点P(x,y)是区域D内任意一点,则x+2y的最大值为________.【答案】【解析】因为,,,所以,切线得到斜率分别为,它们的方程分别为.画出区域、直线(如图所示);平移直线,当其经过点时,【考点】导数的几何意义,直线方程,简单线性规划.8.点在不等式组表示的平面区域内,到原点的距离的最大值为,则的值为.【答案】3.【解析】由题意,不等式组表示的平面区域如下图:当点在点时,到原点的距离最大为5,则,解得.【考点】1.线性规划求参数范围.9.已知实数满足,,则z的取值范围是()A.B.C.D.【答案】C【解析】画出约束条件限定的可行域为如图阴影区域,令,则,先画出直线,再平移直线,当经过A,B时,代入,可知,,故选C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2017·5)设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪
-+≥⎨⎪+≥⎩
,则2z x y =+的最小值是( )
A .15-
B .9-
C .1
D .9
(2014·9)设x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪
-+≤⎨⎪--≥⎩
,则2z x y =-的最大值为( )
A .10
B .8
C .3
D .2
(2013·9)已知0a >,x ,y 满足约束条件13(3)x x y y a x ≥⎧⎪
+≤⎨⎪≥-⎩
,若2z x y =+的最小值为1,则a =( )
A .
14
B .
12
C .1
D .2
二、填空题
(2015·14)若x ,y 满足约束条件1020+220x y x y x y -+≥⎧⎪
-≤⎨⎪-≤⎩
,则z x y =+的最大值为_______.
(2014·14)设x ,y 满足约束条件⎪⎪⎩⎪⎪⎨
⎧≥≥≤+-≥-003
1y x y x y x ,则2z x y =-的取值范围为 . (2011·13)若变量x , y 满足约束条件32969
x y x y ≤+≤⎧⎨≤-≤⎩,则
2z x y =+的最小值为 .
(2017·5)A 【解析】根据约束条件2330233030x y x y y +-≤⎧⎪
-+≥⎨⎪+≥⎩
画出可行域(图中阴影部分), 作直线:20l x y +=,平移
直线l ,将直线平移到点A 处Z 最小,点A 的坐标为()6,3--,将点A 的坐标代到目标函数2Z x y =+, 可得15Z =-,即min 15Z =-.
解法二:直接求法
对于封闭的可行域,我们可以直接求三条直线的交点,代入目标函数中,三个数种选其最小的 为最小值即可,点A 的坐标为()6,3--,点B 的坐标为()6,3-,点C 的坐标为()0,1,所求值分 别为15-﹑9﹑1,故min 15Z =-,max 9Z =.
(2014·9)B 解析:作出x ,y 满足约束条件70
310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩
所表示的平
面区域为如图阴影部分,做出目标函数l 0:y =2x ,∵y =2x -z ,∴当y =2x -z 的截距最小时,z 取最大值.
当y =2x -z 经过C 点时,z 取最大值.由310
70x y x y -+=⎧⎨
+-=⎩得C (5,2),此时z 取最大值为2×5-2=8.
(2013·9)B 解析:由题意作出1
3(3)x x y y a x ≥⎧⎪
+≤⎨⎪≥-⎩
所表示的区域如图阴影部
分所
示,当目标函数表示的直线经过点A 时,取得最小值,而点A 的坐
标为(1,
-2a ),所以2-2a =1,解得1
2
a =. 故选B.
二、填空题
l 0
l 1 3x-y-5=0
y
x
o 1
2 x-3y+1=0
l 2
x+y-7=0
5
2
C
A B
A (1, -2a )
l
A
y = -3
2x +3y -3=0
2x -3y +3=0
x
O
y
C
B
(2015·14)
3
2
解析:画出可行域,如图所示,将目标函数变形为y =-x +z ,当z 取到最大时,直线y = -x + z 的纵截距最大,故将直线尽可能地向上平移到1(1,)2D ,则z =x +y 的最大值为32
.
(2014·14)[3,3]-
解析:画出可行域,易知当直线2Z x y =-经过点(1,2)时,Z 取最小值-3;当直线2Z x y =-经过点(3,0)时,Z 取最大值3. 故2Z x y =-的取值范围为[3,3]-.
(2011·13)-6】解析:画出可行域如图,当直线2z x y =+过23
9
x y x y +=⎧⎨
-=⎩的交点(4,-5)时,min 6z =-.。