狭义相对论习题思考题

合集下载

狭义相对论基础习题解答

狭义相对论基础习题解答

狭义相对论基础习题解答一 选择题1.判断下面几种说法是否正确 ( ) (1) 所有惯性系对物理定律都是等价的。

(2) 在真空中,光速与光的频率和光源的运动无关。

(3) 在任何惯性系中,光在真空中沿任何方向传播的速度都相同。

A. 只有 (1) (2) 正确B. 只有 (1) (3) 正确C. 只有 (2) (3) 正确D. 三种说法都正确解:答案选D 。

2. (1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系中发生于同一时刻、不同地点的两个事件,它们在其它惯性系中是否同时发生?关于上述两个问题的正确答案是:( )A. (1) 同时, (2) 不同时B. (1) 不同时, (2) 同时C. (1) 同时, (2) 同时D. (1)不同时, (2) 不同时 解:答案选A 。

3.在狭义相对论中,下列说法中哪些是正确的?( )(1) 一切运动物体相对于观察者的速度都不能大于真空中的光速.(2) 质量、长度、时间的测量结果都随物体与观察者的相对运动状态而改变 (3) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的.(4) 惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些。

A. (1),(3),(4)B.(1),(2),(4)C.(1),(2),(3)D.(2),(3),(4) 解:同时是相对的。

答案选B 。

4. 一宇宙飞船相对地球以0.8c 的速度飞行,一光脉冲从船尾传到船头。

飞船上的观察者测得飞船长为90m ,地球上的观察者测得光脉冲从船尾发出和到达船头两个事件的空间间隔为 ( )A. 90mB. 54mC. 270mD. 150m 解:x ′=90m, u =0.8c ,8790/(310)310s t -'∆=⨯=⨯2()/1(/)270m x x u t u c ''∆=∆+∆-=。

相对论习题及答案解析

相对论习题及答案解析
第十四章 相对论 一、思考题 1.你你能说明经典力学的相对性原理与狭义相对论的相对性原理之间的异同吗? 2.假设光子在某惯性系中的速度等于 c ,那么是否存在这样一个惯性系,光子在这个惯性系 中的速度不等于 c? 3.在宇宙飞船上,有人拿着一个立方体形物体,若飞船以接近光速的速度背离地球飞行,分 别从地球上和飞船上观察此物体,他们观察到物体的形状是一样吗? 4.两个观察者分别处于惯性系 S 和惯性系 S ′ 内,在这两个惯性系中各有一根分别与 S 和 S ′ 系相对静止的米尺,而且两米尺均沿 xx ′ 轴放置,这两个观察者从测量中发现,在另一个惯 性系中的米尺总比自己惯性系中的米尺要短些,你怎样看待这个问题呢? 5.一民航客机以 200km.h -1 的平均速度相对地面飞行,机上的乘客下机后,是否需要因时间 延缓而对手表进行修正呢?
2
[
]
2
与 X 轴正向夹角 θ 为
θ = arctan
⎛ ∆y tgθ ′ = arctan⎜ ⎜ 2 2 ∆x ⎝ 1−u / c
⎞ ⎟ ⎟ ⎠
3.一观测者测得运动着的米尺长 0.5m ,问此米尺以多大的速度接近观测者? 解:由相对论长度缩短关系 L = L0 1 − (v / c ) 得到
2 2
⎡ ⎤ 1 1 2 −13 3 Aab = m0 c 2 ⎢ − ⎥ = 4.7946m0 c = 3.93×10 J ≈ 2.46 ×10 Kev 2 2 1 − 0.9 ⎦ ⎣ 1 − 0.99
12. 在什么速度下粒子的动量是其非相对论动量的两倍?在什么速度下粒子的动能等于它 的静止能量? 解(1) 由相对论动量公式
代入原方程中,得到
( x − ut ) 2 + y2 = a2 2 1− β

狭义相对论习题、答案与解法(2010.11.22)

狭义相对论习题、答案与解法(2010.11.22)

狭义相对论习题、答案与解答一. 选择题 1. 有下列几种说法:(1) 真空中,光速与光的频率、光源的运动、观察者的运动无关; (2) 在所有惯性系中光在真空中沿任何方向的传播速率都相同; (3) 所有惯性系对物理基本规律都是等价的。

请在以下选择中选出正确的答案(C )A 、 只有(1)、(2)正确;B 、 只有(1)、(3)正确;C 、 只有(2)、(3)正确;D 、 3种说法都不正确。

2.(1)对某观察者来说,发生在某惯性系同一地点、同一时刻两个事件,对于相对该惯性系做匀速直线运动的其他惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系不同地点、同一时刻的两个事件,它们在其他惯性系中是否同时发生?(A )A 、(1)同时,(2)不同时;B 、(1)不同时,(2)同时;C 、(1)同时,(2)同时;D 、(1)不同时,(2)不同时。

参考答案:(1) ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧=∆=∆-∆-∆='∆001222x t c v x c v t t 0='∆t(2) ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧≠'∆='∆-''∆+'∆=∆001222x t c v x cv t t 2221c v x c v t -'∆=∆3.K 系中沿x 轴方向相距3m 远的两处同时发生两事件,在K '系中上述两事件相距5m 远,则两惯性系间的相对速度为(A ) A 、c )54( ; B 、c )53(; C 、c )52(; D 、c )51(。

参考答案:221cv vt x x --=' 221cv t v x x -∆-∆='∆ c c x x c v 54531122=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛'∆∆-=4.两个惯性系K 和K ',沿x x '轴方向作相对运动,相对速度为v ,设在K '系中某点先后发生两个事件,用固定于该系的钟测出两事件的时间间隔为0t ∆,而用固定在K 系的钟测出这两个事件的时间间隔为t ∆。

狭义相对论

狭义相对论

在衰变前,粒子可与地球相遇。 在衰变前,粒子可与地球相遇。
(
) r
r = ct, = 0 两事件用光信号联系 S r < ct, 2 > 0 两事件可用低于光速的信号联系 S r > ct, 2 < 0 两事件不能用光信号联系 S 类时间隔 这种划分是绝对的,与参照系无关。 这种划分是绝对的,与参照系无关。
2
ct
o
y
t > 0⇒t′ > 0 称为绝对将来 t < 0⇒t′ < 0 称为绝对过去 t >0 t <0
−6
变的平均寿命 τ = 2.15×10 s ,当高能宇宙射线质子进入 地球上层大气中时,会形成丰富的 µ 子。设来自太空的宇宙线 地球上层大气中时, 在离地面 6000m 高空产生的 µ 子,可否在衰变前到达地面? 可否在衰变前到达地面? c 已知 µ 子相对于地球的运动速率为 v = 0.995
结论:同时同地两事件,在任何惯性系中仍是同时同地事件 结论:同时同地两事件, 2、同地不时同事件 ′ ′ t2 > t1(∆t′ > 0) x1 = x2,1 ≠ t2 设 t2 > t1(∆t > 0) t 结论:同地不同时两事件, 在其他惯性系中一般为不同地不 结论:同地不同时两事件, 同时事件,但时间顺序不会颠倒,即因果律不变。 同时事件,但时间顺序不会颠倒,即因果律不变。 3、同时不同地事件 ′ ′ t2 < t1(∆t′ < 0) 若 x2 > x1 t =t , x ≠ x
Σ Σ'
∆x' = ∆x 1− β2
v
固有长度 (proper length) )
长度收缩是观测结果, ⑤ 长度收缩是观测结果,但用眼 看,物体并非一定变扁,看到 物体并非一定变扁, 的也不是一个扁形的世界。 的也不是一个扁形的世界。

狭义相对论习题思考题

狭义相对论习题思考题

习题6-1. 设固有长度m 50.20=l 的汽车,以m/s 0.30=v 的速度沿直线行驶,问站在路旁的观察者按相对论计算该汽车长度缩短了多少?解:)(122c v l l -= 2222211)(1cv c v-≈- m cv l l l l 1422001025.121-⨯=⨯=-=∆ 6-2. 在参考系S 中,一粒子沿直线运动,从坐标原点运动到了m 105.18⨯=x 处,经历时间为s 00.1=t ∆,试计算该过程对应的固有时。

解:以粒子为S '系s c v t t 866.0)(122=-∆='∆6-3. 从加速器中以速度c v 8.0=飞出的离子在它的运动方向上又发射出光子。

求这光子相对于加速器的速度。

解:设加速器为S 系,离子为S '系c cv u u v v xx x ='++'=21 6-4. 两个宇宙飞船相对于恒星参考系以0.8c 的速度沿相反方向飞行,求两飞船的相对速度。

解:设宇宙船A 为S 系,速度0.8c ,宇宙船B 为S '系,速度0.8c -根据洛伦兹速度变换公式:''21x x x v uv uv c+=+,有: 20.80.80.81c uc cu c -+=-+0.976u c =6-5. 从S 系观察到有一粒子在01=t 时由m 1001=x 处以速度c v 98.0=沿x 方向运动,s 10后到达2x 点,如在S '系(相对S 系以速度c u 96.0=沿x 方向运动)观察,粒子出发和到达的时空坐标2211,,,x t x t ''''各为多少?(0='=t t 时,S '与S 的原点重合),并算出粒子相对S '系的速度。

解:s c c c ccv x c u t t 62222121110147.1)96.0(110096.00)(1-⨯=-⨯-=--=' s c c cc c cv x c u t t 11.2)96.0(18.996.010)(122222222=-⨯-=--='m cc c cuut x x 14.357)96.0(1096.0100)(1222111=-⨯-=--='m cc c c cuut x x 82222221014.2)96.0(11096.08.9)(1⨯=-⨯-=--=''8220.980.96 1.014100.96110.98x x x v u c cv u cv c --===⨯--⨯m/s 6-6 .一飞船静长0l 以速度u 相对于恒星系作匀速直线飞行,飞船内一小球从尾部运动到头部,宇航员测得小球运动速度为v ,试算出恒星系观察者测得小球的运动时间。

第4章 狭义相对论时空观习题解答

第4章 狭义相对论时空观习题解答

习 题4-1 一辆高速车以0.8c 的速率运动。

地上有一系列的同步钟,当经过地面上的一台钟时,驾驶员注意到它的指针在0=t ,他即刻把自己的钟拨到0'=t 。

行驶了一段距离后,他自己的钟指到6 us 时,驾驶员看地面上另一台钟。

问这个钟的读数是多少? 【解】s)(10)/8.0(16/12220μ=-μ=-∆=∆c c s cu t t所以地面上第二个钟的读数为)(10's t t t μ=∆+=4-2 在某惯性参考系S 中,两事件发生在同一地点而时间间隔为4 s ,另一惯性参考系S′ 以速度c u 6.0=相对于S 系运动,问在S′ 系中测得的两个事件的时间间隔和空间间隔各是多少?【解】已知原时(s)4=∆t ,则测时(s)56.014/1'222=-=-∆=∆s cu t t由洛伦兹坐标变换22/1'c u ut x x --=,得:)(100.9/1/1/1'''8222220221012m c u t u c u ut x c u ut x x x x ⨯=-∆=-----=-=∆4-3 S 系中测得两个事件的时空坐标是x 1=6×104 m ,y 1=z 1=0,t 1=2×10-4 s 和x 2=12×104 m ,y 2=z 2=0,t 2=1×10-4 s 。

如果S′ 系测得这两个事件同时发生,则S′ 系相对于S 系的速度u 是多少?S′ 系测得这两个事件的空间间隔是多少?【解】(m)1064⨯=∆x ,0=∆=∆z y ,(s)1014-⨯-=∆t ,0'=∆t0)('2=∆-∆γ=∆cxu t t 2cxu t ∆=∆⇒ (m/s)105.182⨯-=∆∆=⇒x t c u (m )102.5)('4⨯=∆-∆γ=∆t u x x4-4 一列车和山底隧道静止时等长。

大学物理狭义相对论习题及答案

大学物理狭义相对论习题及答案

1 第5章狭义相对论习题及答案1. 牛顿力学的时空观与相对论的时空观的根本区别是什么?二者有何联系?答:牛顿力学的时空观认为自然界存在着与物质运动无关的绝对空间和时间,这种空间和时间是彼此孤立的;狭义相对论的时空观认为自然界时间和空间的量度具有相对性,时间和空间的概念具有不可分割性,而且它们都与物质运动密切相关。

在远小于光速的低速情况下,狭义相对论的时空观与牛顿力学的时空观趋于一致。

2. 狭义相对论的两个基本原理是什么?答:狭义相对论的两个基本原理是:(1)相对性原理在所有惯性系中,物理定律都具有相同形式;(2)光速不变原理在所有惯性系中,光在真空中的传播速度均为c ,与光源运动与否无关。

3.你是否认为在相对论中,一切都是相对的?有没有绝对性的方面?有那些方面?举例说明。

解在相对论中,不是一切都是相对的,也有绝对性存在的方面。

如,光相对于所有惯性系其速率是不变的,即是绝对的;又如,力学规律,如动量守恒定律、能量守恒定律等在所有惯性系中都是成立的,即相对于不同的惯性系力学规律不会有所不同,此也是绝对的;还有,对同时同地的两事件同时具有绝对性等。

4.设'S 系相对S 系以速度u 沿着x 正方向运动,今有两事件对S 系来说是同时发生的,问在以下两种情况中,它们对'S 系是否同时发生?(1)两事件发生于S 系的同一地点;(2)两事件发生于S 系的不同地点。

解由洛伦兹变化2()vt t x c g ¢D =D -D 知,第一种情况,0x D =,0t D =,故'S 系中0t ¢D =,即两事件同时发生;第二种情况,0x D ¹,0t D =,故'S 系中0t ¢D ¹,两事件不同时发生。

5-5飞船A 中的观察者测得飞船B 正以0.4c 的速率尾随而来,一地面站测得飞船A 的速率为0.5c ,求:(1)地面站测得飞船B 的速率;(2)飞船B 测得飞船A 的速率。

6.狭义相对论习题思考题.doc

6.狭义相对论习题思考题.doc

V v1l(V x1 + *0.8c=习题6-1.设固有长度/= 2.50m的汽车,以v = 30.0m/s的速度沿直线行驶,问站在路旁的观察者按相对论计算该汽车长度缩短了多少?解:I = I。

』】-(vic,)Q112M = 1.-1 = /()x —二=1.25x10-%2c26-2.在参考系S中,一粒子沿直线运动,从坐标原点运动到了x = 1.5xl08m处,经历时间为山= 1.00s,试计算该过程对应的固有时。

解:以粒了为S'系△t' = &Jl-(U/c2) = 0.866s6-3.从加速器中以速度v = 0.8c、飞出的离了在它的运动方向上又发射出光了。

求这光了相对于加速器的速度。

解:设加速器为S系,离了为S'系6-4.两个宇宙飞船相对于恒星参考系以0.8c的速度沿相反方|何飞行, 求两飞船的相对速度。

解:设宇宙船A为S系,速度0.8c,宇宙船B为S'系,速度-0.8cI根据洛伦兹速度变换公式:*=丛也,有:u = 0.976c6-5.从S系观察到有一粒了在匕=0时由由=100m处以速度 v = 0.98c沿工方向运动,10s后到达方点,如在S'系(相对S系以速度=357.14mw = 0.96c 沿x 方向运动)观察,粒子出发和到达的时空坐标",弘 各 为多少? 0 =尸=0时,S'与S 的原点重合),并算出粒子相对S'系的速度。

—9.8C -0.96CX 挡= 2.14x10 七〃2. v -w 0.98c-0.96c < A1 . inx / v r = ----- =———— -------- =1.014x1()8 m/s1- —v v 1 ------ - x 0.98c c- c-6-6 .一飞船静长"以速度〃相对于恒星系作匀速直线飞行,飞船内一小 球从尾部运动到头部,宇航员测得小球运动速度为八试算出恒星系观察者 测得小球的运动时间。

第18章 狭义相对论 习题解答

第18章 狭义相对论 习题解答

)MeV 2.45MeV
18-11 已知一粒子的动能等于其静止能量的 n 倍,求:(1)粒子的速率,(2)粒子的动量。 解:(1)依题意知: Ek nm0 c ,又∵ Ek m c m0 c ,即
2 2 2
m0c 2 1 v c2
2
m0c 2 nm0 c 2 ,
即: 1
2 2

0.6 3 108 4 1 0.6
2
9 108 m
v 满足什么条件的 18-8 在速度 v 满足什么条件下粒子的动量等于非相对论动量的两倍; 粒子的动能等于它的静止能量。
解:(1)由题意得:
m0 v v 1 c
2
2m0 v
由此得粒子的速度
v
18-3
第 18 章 狭义相对论
2 2 2 解 : 因 为 E M c Ek , 即 ( M M 0 )c 7 M 0 c , 得 M 8M 0 , 又
M
M0 1 2
,其中
v 1 M 8 ,在实验室中观察到它的寿命 ,得到: c 1 2 M0
1 y 方向的长度不变,即: Lx Lx
v2 ,故 , Ly Ly c2 L y L L y y tan Lx Lx v2 Lx 1 2 c
2
解得
2 L 0.5 y v c 1 c 1 0.816c tan 0.866 tan45 Lx Ly 0.5 0.707 m 。 (2)在 S 系中测得米尺长度为 L sin sin 45
其中
v ,由上式解得 c
1 1 2
由此式解出介子运动速度:
1

04--5思考题

04--5思考题

t'2 t'1 =
(t2 t1)
Qx2 = x1
t2 ≠ t1
c 2 1 β
2
(x2 x1)
即也不同时. ∴t'2 ≠ t'1 即也不同时.
若在惯性系K中是同地,不同时(先后) 若在惯性系 中是同地,不同时(先后)发生的两事件 中是同地 ,由"LG",则K'系测则得这两件事的时间间隔和空间 , 系测则得这两件事的时间间隔和空间 间隔: 间隔: x vt
6,在狭义相对论中,下列说法正确的是哪几个? ,在狭义相对论中,下列说法正确的是哪几个? (A)一切物体的速度都不能大于真空中的光速; )一切物体的速度都不能大于真空中的光速; (B)时间,长度,质量是随物体与观察者相对运动状 )时间,长度, 态而改变的; 态而改变的; (C)有一时钟,在一个与它相对运动的观察者看来, )有一时钟,在一个与它相对运动的观察者看来, 比一个与它相对静止的观察者看来走得快一些. 比一个与它相对静止的观察者看来走得快一些. 答案: ( ),( ),(B) 答案:[(A),( )] 解释:( :(C)违背了相对论中的时间延缓的规律. 解释:( )违背了相对论中的时间延缓的规律. 7,甲乙两汽车,静止时一样长,当它们在马路上高速行 ,甲乙两汽车,静止时一样长, 驶时,乙车上的人测得甲车比乙车短了, 驶时,乙车上的人测得甲车比乙车短了,甲车上的人 测得乙车比甲车短了,他们的结论谁正确? 测得乙车比甲车短了,他们的结论谁正确? (A)甲车上的人的结论正确; )甲车上的人的结论正确; (B)乙车上的人的结论正确; )乙车上的人的结论正确; (C)甲车,乙车上的人的结论都正确. )甲车,乙车上的人的结论都正确. 答案: ( ) 解释: 答案:[(C)] 解释: 一切惯性系都是平权的. 一切惯性系都是平权的.任何参照系测量相对它运动的物体 长度均要收缩. 长度均要收缩.

大学物理-狭义相对论习题和解答

大学物理-狭义相对论习题和解答

⎪ ⎪⎪ v第十七章 狭义相对论17—1 设有一宇宙飞船,相对于地球作匀速直线运动,若在地球上测得飞船的长度为其静止长度的一半,问飞船相对地球的速度是多少?[解] 飞船静止长度l 0 为其固有长度,地球上测得其长度为运动长度,由长度收缩公式,有:l = l 0= l 0 2解得: = c 2即: v =c = 0.866c 217—2 宇宙射线与大气相互作用时能产生 介子衰变,此衰变在大气上层放出 粒子,已知 粒子的速率为 v = 0.998c ,在实验室测得静止 粒子的平均寿命为2.2 ⨯10-6 s ,试问在 8000m 高空产生的 粒子能否飞到地面?[解] 地面上观测到的 子平均寿命与固有寿命之间的关系t = t 0子运行距离l = vt = v t 0子能飞到地面。

= 0.998c ⨯ 2.2⨯10- = 1042m17—3 在 S 系中观测到两个事件同时发生在 x 轴上,其间距离为 1m ,在 S ,系中观测这两个事件之间的距离是 2m 。

求在 S ,中测得的这两个事件发生的时间间隔。

[解] 在 S 系中两事件时间间隔∆t = 0, 由 Lorentz 变换x ' = x - ut t ' = t - u x c 2 ⎧ ∆x ' ⎪ 得: =⎨ ⎪∆t ' = ⎩∆t - ∆x ∆x c 2 = - c 2 将∆x ' = 2m , ∆x = 1m 代入上两式,得u = 3 c , 2∆t ' = -5.77 ⨯10-9 s 17—4 远方一颗星体以 0.80c 的速率离开我们,我们接收到它辐射来的闪光按 5 昼夜的周期变化,求固定在这星 1 - ( v )2 c 3 3 1 - ⎪ ⎛ v ⎫2 ⎝ c ⎭1 - ⎪ ⎛ v ⎫2 ⎝ c ⎭ 1 - (u / c )2 1 - (u / c )21 - (u / c )2 1 - (u / c )21 - 0.8021 - 0.99652 1 - (u / c )2 1 - (u / c )2 0 体上的参考系中测得的闪光周期。

18狭义相对论习题精选(解析版)

18狭义相对论习题精选(解析版)

\2探18狭义相对论习题精选(解析版)狭义相对论的两条基本假设 1.经典的相对性原理一速度的合成法则 2.光的传播与经典的速度合成法则存在矛盾,狭义相对论提出的两条基本假设是:相对性 原理与光速不变原理。

3•“事件”概念是理解同时的相对性的基础,“地面上认为同时的两个事件,对于沿着两个事件发生地的连线的观察者来说,更靠前面的那个事件发生在先”要记住这个结论。

二、时间和空间的相对性1.长度的相对性:I =1。

-C )2.例题12cm 2在S 系测得该圆面积为多少?已知 S'系在t = t ‘ = 0时与S 系坐标轴重合,以-0.8c 的速度沿公共轴X - x'运动。

解:在S '系中观测此圆时,与平行方向上的线度将收缩为 R 庄2•时间的相对性:三、狭义相对论的其它三个结论1•相对论速度变换公式:u + V V = --- ' --u +v 1+-^ 2.相对论质量公式:V 2 1 -㈠ c3.质能方程:E =mc4.相对论动能:E K =E-E 02 2=mc -m o c1.S 系中平面上一个静止的圆的面积为而与垂直方向上的线度不变,仍为2R ,所以测得的面积为(椭圆面积)l x =1; =1; =「si n30由S 系测得尺在ox 方向的投影的长度为:(式中a 、b 分别表示椭圆的长半轴和短半轴)2.S 系中记录到两事件空间间隔心x=600m ,时间间隔 A t =8x10^3,而s 系中记录A t '=O ,求s '系相对s 系的速度。

解:设相对速度为V ,在S 系中记录到两事件的时空坐标分别为(x 1,t 1)>(x 2,t 2) ; S 系中记录到两事件的时空坐标分别(x 1, t 1)为及(X 2 ,t 2 )。

得:i t ' =0, i x = 600m, i t = 8x 10」S3. 一根米尺静止在s 系中,和OX 轴成30角,如果S 系中测得该米尺与 ox 轴成45角,s 系相对s 系的速度是多少? s 系中测得米尺长度是多少?解:如图,由题意知,在S '系中米尺在ox '及o 'y '方向上的投影的长度为:设在S 系中测得米尺长为l,则米尺在ox,oy 方向上的投影的长度为:AT7(_!• 1l x =lcos45 I ; =lsi n45即 l^l ;因为尺在o ;方向上的投影长度不变即:I ; =1;S = Tiab =兀」1L 〔v 〕2 —丫 2丿由洛仑兹变换得:=巾 2 -t l )-冷(X 2 -XLc根据题意得:I ; = I 'COS301; =1 si n30 其中 l' = 1m于是有l yl;l xl x =匚』1-匸】 即 I 'si n30" = l 'cos30;|1-⑴=V 2丿Y 2丿^^^^£sin3^^o.7o7mcos45 cos454.宇宙飞船相对于地面以速度V 作匀速直线飞行,某一时该飞船头部的宇航员向飞船尾部发出一个光讯号,经过 A t (飞船上的钟)时间后,被尾部的接收器收到,则飞船的固有长度 是多少? 解:飞船的固有长度就是相对于飞船静止的观察者测得的飞船长度。

章狭义相对论基础习题解答

章狭义相对论基础习题解答

章狭义相对论基础习题解答Revised at 2 pm on December 25, 2020.狭义相对论基础习题解答一选择题1. 判断下面几种说法是否正确( )(1) 所有惯性系对物理定律都是等价的。

(2) 在真空中,光速与光的频率和光源的运动无关。

(3) 在任何惯性系中,光在真空中沿任何方向传播的速度都相同。

A. 只有 (1) (2) 正确B. 只有 (1) (3) 正确C. 只有 (2) (3) 正确D. 三种说法都正确解:答案选D 。

2. (1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系中发生于同一时刻、不同地点的两个事件,它们在其它惯性系中是否同时发生?关于上述两个问题的正确答案是:( )A.(1) 同时, (2) 不同时B. (1) 不同时, (2) 同时C.(1) 同时, (2) 同时D. (1) 不同时, (2) 不同时解:答案选A 。

3.在狭义相对论中,下列说法中哪些是正确的( )(1)一切运动物体相对于观察者的速度都不能大于真空中的光速.(2)质量、长度、时间的测量结果都随物体与观察者的相对运动状态而改变(3)在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的.(4)惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些。

A. (1),(3),(4)B. (1),(2),(4)C. (1),(2),(3)D. (2),(3),(4)解:同时是相对的。

答案选B 。

4. 一宇宙飞船相对地球以的速度飞行,一光脉冲从船尾传到船头。

飞船上的观察者测得飞船长为90m ,地球上的观察者测得光脉冲从船尾发出和到达船头两个事件的空间间隔为 ( )A. 90mB. 54mC. 270mD. 150m 解: x ′=90m, u = c , 8790/(310)310s t -'∆=⨯=⨯()270m x x u t ''∆=∆+∆=。

狭义相对论 习题解

狭义相对论 习题解

七、狭义相对论一、选择题1、下列几种说法(1)所有惯性系对物理基本规律都是等价的。

(2)在真空中光的速度与光的频率、光源的运动无关。

(3)在任何惯性系中,光在真空中沿任何方向的传播速度都相同。

其中哪些说法是正确的? (A ) (1)、(2) (B ) (1)、(3) (C ) (2)、(3) (D ) (1)、(2)、(3)2、一光子火箭相对于地球以0.96c 的速度飞行,火箭长100m,一光脉冲从火箭尾部传到头部,地球上的观察者看到光脉冲经过的空间距离是 (A)54.88; (B)700; (C)714.3; (D)14.33、K 系和K '系是坐标轴相互平行的两个惯性系,K '系相对于K 系沿OX 轴正方向向右匀速直线运动,一根刚性尺静止在K '系中,与X O ''轴成ο30角,今在K 系中观测得该尺与OX 轴成ο45,则K '系相对于K 系的速度是 (A )c32 (B )c 31 (C )c 32 (D )c 314、一火箭的固有长度为L ,相对于地面作匀速直线运动的速度为1v ,火箭上有一个人从火箭的后端向火箭前端上的一个靶子发射一颗相对于火箭的速度为2v 的子弹,在火箭上测得子弹从射出到击中靶的时间是 (A )21v v L + (B )2v L (C )12v v L - (D )211)/(1c v v L-5、两个惯性系S 和S ',沿x(x ')轴方向作相对运动,相对速度为u ,设在S '系中某点现后发生的两个事件,用固定在该系的钟测出两件事的时间间隔为0τ,而用固定在S 系中的钟测出这两件事的时间间隔为τ。

又在S '系x '轴上放置一固有长度为0l 的细杆,从S 系测得此杆的长度为l ,则(A)τ<0τ, l <0l (B)τ<0τ, l >0l (C)τ>0τ, l >0l(D)τ>0τ, l <0l6、边长为a 正方形薄板静止于惯性系K 的XOY 平面内,且两边分别与X 、Y 轴平形,今有惯性系K '以0.8c (c 为真空光速)的速度相对于K 系沿X 轴作匀速直线运动,则从K '系测得薄板的面积为 (A )2a (B )0.62a (C )0.82a(D )2a /0.6 7、(1)对于观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说它们是否同时发生?(2)在某一惯性系中发生于同一时刻、不同地点的两个事件,它们在其它惯性系中是否同时发生? 关于上述两个问题正确答案是 (A )(1)同时,(2)不同时 (B )(1)同时,(2)同时 (C )(1)不同时,(2)不同时 (D )(1)不同时,(2)同时 8、把一个静止质量为0m 的粒子,由静止加速到v=0.6c (c 为真空中的光速)需作的功为 (A )0.1820c m (B )0.2520c m (C )0.3620c m (D )1.2520c m9、质子在加速器中被加速,当其动能为静止能量的4倍时,其质量为静止质量的( )倍 (A )5 (B )6 (C )3 (D )810、在参照系S 中,有两个静止质量都是0m 的粒子A 和B ,分别以速度v 沿同一直线相向运动,相碰后合在一起成为一个粒子,则其静止质量M的值为(A )20m(B )20)/(12c v m - (C )20)/(12c v m -(D )20)/(12c v m - (c 为真空中光速)11、宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过Δt (飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为 (A)c ·Δt (B) v ·Δt(C)c ·Δt 2)/(1c v - (D) c ·Δt/2)/(1c v -12、根据相对论力学,动能为1/4Mev 的电子,其运动速度约等于 (A)0.1c (B)0.5c (C)0.75c(D)0.85c (c 表示真空中的光速,电子的能量Mev c m 5.020=)二、填空题1、有一速度为u 的宇宙飞船沿X 轴的正方向飞行,飞船头尾各有一个脉冲光源在工作,处于船尾的观测者测得光源发出的光脉冲的传播速度大小为 ,处于船头的观测者测得光源发出的光脉冲的传播速度大小为2、一列高速火车以速度u 驶过车站时,固定在站台的两只机械手在车厢上同时划出两个痕迹,静止在站台上的观察者同时测出两痕迹之间的距离为1m ,则车厢上的观察者应测出两痕迹之间的距离为 。

章狭义相对论基础习题解答

章狭义相对论基础习题解答

20章狭义相对论基础习题解答(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--狭义相对论基础习题解答一选择题1. 判断下面几种说法是否正确 ( )(1) 所有惯性系对物理定律都是等价的。

(2) 在真空中,光速与光的频率和光源的运动无关。

(3) 在任何惯性系中,光在真空中沿任何方向传播的速度都相同。

A. 只有 (1) (2) 正确B. 只有 (1) (3) 正确C. 只有 (2) (3) 正确D. 三种说法都正确解:答案选D 。

2. (1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同时发生(2)在某惯性系中发生于同一时刻、不同地点的两个事件,它们在其它惯性系中是否同时发生关于上述两个问题的正确答案是:( )A. (1) 同时, (2) 不同时B. (1) 不同时, (2) 同时C. (1) 同时, (2) 同时D. (1) 不同时, (2) 不同时解:答案选A 。

3.在狭义相对论中,下列说法中哪些是正确的( )(1)一切运动物体相对于观察者的速度都不能大于真空中的光速.(2)质量、长度、时间的测量结果都随物体与观察者的相对运动状态而改变(3)在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的.(4)惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些。

A. (1),(3),(4)B. (1),(2),(4)C. (1),(2),(3)D. (2),(3),(4)解:同时是相对的。

答案选B 。

4. 一宇宙飞船相对地球以的速度飞行,一光脉冲从船尾传到船头。

飞船上的观察者测得飞船长为90m,地球上的观察者测得光脉冲从船尾发出和到达船头两个事件的空间间隔为 ( )1A. 90mB. 54mC. 270mD. 150m 解:x ′=90m, u = c , 8790/(310)310s t -'∆=⨯=⨯ 2()/1(/)270m x x u t u c ''∆=∆+∆-=。

狭义相对论习题和答案

狭义相对论习题和答案

狭义相对论习题和答案(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--作业6 狭义相对论基础研究:惯性系中的物理规律;惯性系间物理规律的变换。

揭示:时间、空间和运动的关系.知识点一:爱因斯坦相对性原理和光速不变1.相对性原理:物理规律对所有惯性系都是一样的,不存在任何一个特殊 (如“绝对静止”)惯性系。

2.光速不变原理:任何惯性系中,光在真空中的速率都相等。

( A )1(基础训练1)、宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过t (飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为(c 表示真空中光速)(A) c ·t (B) v ·t (C) 2/1(v /)c t c ∆⋅-(D) 2)/(1c t c v -⋅⋅∆【解答】飞船的固有长度为飞船上的宇航员测得的长度,即为c ·t 。

知识点二:洛伦兹变换由牛顿的绝对时空观伽利略变换,由爱因斯坦相对论时空观洛仑兹变换。

(1)在相对论中,时、空密切联系在一起(在x 的式子中含有t ,t 式中含x)。

(2)当u << c 时,洛仑兹变换 伽利略变换。

(3)若u c, x 式等将无意义xxx v cv vv v 21'--= 1(自测与提高5)、地面上的观察者测得两艘宇宙飞船相对于地面以速度 v = 逆向飞行.其中一艘飞船测得另一艘飞船速度的大小v ′=_0.994c _. 【解答】2222()220.9'0.994()1/10.91v v v c v c v v c v c --⨯====-++-知识点三:时间膨胀(1)固有时间0t ∆:相对事件发生地静止的参照系中所观测的时间。

(2)运动时间t ∆:相对事件发生地运动的参照系中所观测的时间。

201⎪⎭⎫ ⎝⎛-∆=∆c v t t (B )1(基础训练2)、在某地发生两件事,静止位于该地的甲测得时间间隔为4 s ,若相对于甲作匀速直线运动的乙测得时间间隔为5 s ,则乙相对于甲的运动速度是(c 表示真空中光速)(A) (4/5) c . (B) (3/5) c . (C) (2/5) c . (D) (1/5) c . 【解答】()2220024311551/t v t v c c c t v c ∆⎛⎫⎛⎫⎛⎫∆⇒=-⇒=-= ⎪ ⎪ ⎪∆⎝⎭⎝⎭⎝⎭-2(自测与提高12)、飞船A 以的速度相对地球向正东飞行,飞船B 以的速度相对地球向正西方向飞行.当两飞船即将相遇时A 飞船在自己的天窗处相隔2s 发射两颗信号弹.在B 飞船的观测者测得两颗信号弹相隔的时间间隔为多少 【解答】以地面为K 系,飞船A 为K ˊ系,以正东为x 轴正向;则飞船B 相对于飞船A 的相对速度220.60.8 1.4'0.9460.810.80.61(0.6)1B A B A B v v c c v c c v cc v c c----====-+⨯---' 6.17()t s ∆===知识点四:长度收缩(1)固有长度0l :相对物体静止的参照系测得物体的长度。

章狭义相对论基础习题解答

章狭义相对论基础习题解答

20章狭义相对论基础习题解答(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--狭义相对论基础习题解答一选择题1. 判断下面几种说法是否正确 ( )(1) 所有惯性系对物理定律都是等价的。

(2) 在真空中,光速与光的频率和光源的运动无关。

(3) 在任何惯性系中,光在真空中沿任何方向传播的速度都相同。

A. 只有 (1) (2) 正确B. 只有 (1) (3) 正确C. 只有 (2) (3) 正确D. 三种说法都正确解:答案选D 。

2. (1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同时发生(2)在某惯性系中发生于同一时刻、不同地点的两个事件,它们在其它惯性系中是否同时发生关于上述两个问题的正确答案是:( )A. (1) 同时, (2) 不同时B. (1) 不同时, (2) 同时C. (1) 同时, (2) 同时D. (1) 不同时, (2) 不同时解:答案选A 。

3.在狭义相对论中,下列说法中哪些是正确的( )(1)一切运动物体相对于观察者的速度都不能大于真空中的光速.(2)质量、长度、时间的测量结果都随物体与观察者的相对运动状态而改变(3)在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的.(4)惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些。

A. (1),(3),(4)B. (1),(2),(4)C. (1),(2),(3)D. (2),(3),(4)解:同时是相对的。

答案选B 。

4. 一宇宙飞船相对地球以的速度飞行,一光脉冲从船尾传到船头。

飞船上的观察者测得飞船长为90m,地球上的观察者测得光脉冲从船尾发出和到达船头两个事件的空间间隔为 ( )1A. 90mB. 54mC. 270mD. 150m 解:x ′=90m, u = c , 8790/(310)310s t -'∆=⨯=⨯ 2()/1(/)270m x x u t u c ''∆=∆+∆-=。

第04章(狭义相对论)习题答案

第04章(狭义相对论)习题答案

1 1 - ( u / c ) 2
(SI) ]
解:由题意,车厢上的观察者测得的这两个痕迹之间的距离为固有长度 L 0 ,而地面上 的观察者测看来,这两个痕迹是随车厢一起运动的,测得长度会发生相对论长度收缩,则
L 0 =
1 1 u 2 c 2
4-5 在惯性系 S 中,有两事件发生于同一地点,且第二事件比第一事件晚发生Dt =2s;而 在另一惯性系 S'中,观测第二事件比第一事件晚发生Dt¢=3s.那么在 S'系中发生两事件 8 的地点之间的距离是多少?[6.72×10 m] 解: 设两惯性系的相对运动速度为 u , 由题意, S 系中测得的两事件的时间间隔 Dt = 2 s 为固有时间,根据相对论时间膨胀效应, S ¢ 系测得的时间间隔
¢= Dt
Dt 1 u c 2
2
即: 3 =
2 1 u c 2
2
解得: u =
5 c 3
则 S ¢ 系中发生的这两事件的地点之间的距离 L 为:
L = u Dt =
5 8 c ´ 3 » 6.71´ 10 m 3
4-6
一体积为 V0,质量为 m0 的立方体沿其一棱的方向相对于观察者 A 以速度 v 运动.观
t 0
1 u 2 c 2
则 5 =
4 1 u 2 c 2
解得: u =
3 c 5
4-2
-6 m 子是一种基本粒子,在相对于 m 子静止的坐标系中测得其寿命为 t 0 =2×10 s.如
果 m 子相对于地球的速度为v = 0.988c (c 为真空中光速),则在地球坐标系中测出的 m 子的 寿命是多长?[1.29×10 5 s] 解:由题意, m 子的固有寿命为 t 0 = 2 ´10 s ,根据相对论时间膨胀效应,对于地面 参考系运动的 m 子的寿命为: t=

20章狭义相对论基础习题解答讲述

20章狭义相对论基础习题解答讲述

狭义相对论基础习题解答一选择题1. 判断下面几种说法是否正确( )(1) 所有惯性系对物理定律都是等价的。

(2) 在真空中,光速与光的频率和光源的运动无关。

(3) 在任何惯性系中,光在真空中沿任何方向传播的速度都相同。

A. 只有 (1) (2) 正确B. 只有 (1) (3) 正确C. 只有 (2) (3) 正确D. 三种说法都正确解:答案选D 。

2. (1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系中发生于同一时刻、不同地点的两个事件,它们在其它惯性系中是否同时发生?关于上述两个问题的正确答案是:( )A.(1) 同时, (2) 不同时B. (1) 不同时, (2) 同时C.(1) 同时, (2) 同时D. (1) 不同时, (2) 不同时解:答案选A 。

3.在狭义相对论中,下列说法中哪些是正确的?( )(1)一切运动物体相对于观察者的速度都不能大于真空中的光速.(2)质量、长度、时间的测量结果都随物体与观察者的相对运动状态而改变(3)在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的.(4) 惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些。

A. (1),(3),(4)B. (1),(2),(4)C. (1),(2),(3)D. (2),(3),(4) 解:同时是相对的。

答案选B 。

4. 一宇宙飞船相对地球以0.8c 的速度飞行,一光脉冲从船尾传到船头。

飞船上的观察者测得飞船长为90m ,地球上的观察者测得光脉冲从船尾发出和到达船头两个事件的空间间隔为( )A. 90mB. 54mC. 270mD. 150m解: x ′=90m, u =0.8 c , 8790/(310)310s t -'∆=⨯=⨯2()/1(/)270m x x u t u c ''∆=∆+∆-=。

06狭义相对论习题点评

06狭义相对论习题点评

07 狭义相对论----习题点评一、选择题1. 下列几种说法下列几种说法::(1) 所有惯性系对物理基本规律都是等价的所有惯性系对物理基本规律都是等价的。

(2) 在真空中在真空中,,光的速率与光的频率光的速率与光的频率、、光源的运动状态无关动状态无关。

(3) 在任何惯性系中在任何惯性系中,,光在真空中沿任何方向的传播速度都相同传播速度都相同。

其中哪些说法是正确的其中哪些说法是正确的??[ ] (A) 只有(1)、(2)是正确的;(B) 只有(1)、(3)是正确的;(C) 只有(2)、(3)是正确的;(D) 三种说法都是正确的三种说法都是正确的。

D2.K 系与K’系是坐标轴相互平行的两个惯性系系是坐标轴相互平行的两个惯性系,,K’系相对于K 系沿ox 轴正方向匀速运动轴正方向匀速运动。

一根刚性尺静止在K’系中,与o’x’轴成30度角度角。

今在K 系中观察得该尺与ox 轴成45度角度角。

则K’系相对于K 系的速度u 是:O′y ′0x 00/y y x x l l l l γ== 30tan 45tan 00γγ==即x y x y l ll l u ⇒=00x y x yK K x y l l x y l l ′′ 系中测得的是静长,设系中和方向的分量分别为和方向的分量分别为CV e M 5.020=c m 3. 根据相对论力学根据相对论力学,,动能为0.25 MeV 的电子的电子,,其运动速度约等于[ ] ( c 表示真空中光速, 电子的静止能量)222003230.752k E m c m c u c =+=⇒=⇒=C4.一物体静止质量为一物体静止质量为mm0,当该物体以速率当该物体以速率vv运动时(v(v接近光速接近光速接近光速c),c),c),该物体的动能该物体的动能该物体的动能::202222021c m c vcm c m mc E k −−=−=C5.两个惯性系S 和S’,沿x (x’)方向作相对速度为u 运动,设在S’系中某点发生的两个事件系中某点发生的两个事件,,用固定在S’系中的钟测出的时间间隔为的钟测出的时间间隔为ττ0,而用固定在S 系中的钟测出的时间间隔为的时间间隔为ττ,又在S’系中x’轴上放置一固有长度为l 0的细杆的细杆,,从S 系中测得的长度是l ,则[ ]00001l l l l γγτγτττ=>=⇒>=⇒<B二、填空题1. 一列高速火车以速度u 驶过车站时驶过车站时,,停在站台上的观察者观察到固定在站台上相距1m 的两只机械手在车厢上同时划出两个痕迹上同时划出两个痕迹,,则车厢上的观察者应测出这两个痕迹之间的距离为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题66-1.设固有长度m 50.20=l 的汽车,以m/s 0.30=v 的速度沿直线行驶,问站在路旁的观察者按相对论计算该汽车长度缩短了多少?解:l l =2112x =-+L22112u c ≈-,2140021 1.25102ul l l l m c-∆=-=⨯=⨯。

6-2.在参考系S 中,一粒子沿直线运动,从坐标原点运动到了m 105.18⨯=x 处,经历时间为s 00.1=t ∆,试计算该过程对应的固有时。

解:以粒子为S '系,利用t '∆=∆0.866t s '∆==。

6-3.从加速器中以速度c v 8.0=飞出的离子在它的运动方向上又发射出光子。

求这光子相对于加速器的速度。

解:设加速器为S 系,离子为S '系,利用:21x x xv u v uv c'+='+, 则:220.80.811x x x v u c c v c uv c c c c'++==='⨯++ 。

6-4 1000m 的高空大气层中产生了一个π介子,以速度0.8v c =飞向地球,假定该π介子在其自身的静止参照系中的寿命等于其平均寿命62.410s -×,试分别从下面两个角度,即地面上观测者相对π介子静止系中的观测者来判断该π介子能否到达地球表面。

解:(1)地面上的观察者认为时间膨胀:有t ∆=,∴66410t sa -∆==⨯由860.83104109601000l v t m m -=∆=⋅⨯⋅⨯=<,∴到达不了地球;(2)π介子静止系中的观测者认为长度收缩:有l l =600l m == 而682.4100.8310576600s v t m m -=∆=⨯⋅⋅⨯=<,∴到达不了地球。

6-5 长度01m l =的米尺静止于'S 系中,与x ′轴的夹角'θ=30°,'S 系相对S 系沿x 轴运动,在S 系中观测者测得米尺与x 轴夹角为=θ45°。

试求:(1)'S 系和S 系的相对运动速度。

(2)S 系中测得的米尺长度。

解:(1)米尺相对S '静止,它在,x y ''轴上的投影分别为:0cos 0.866m x L L θ''==,0sin 0.5m y L L θ''==。

米尺相对S 沿x 方向运动,设速度为v ,对S 系中的观察者测得米尺在x 方向收缩,而y方向的长度不变,即:x L L =,y y L L '=故:tan y y xxL L L L L θ''===。

把ο45θ=及,yL L ''0.50.866=,故 :0.816v c = (2)在S 系中测得米尺长度为0.707m sin 45y L L ==︒。

6-6 一门宽为a ,今有一固有长度0l (0l >a )的水平细杆,在门外贴近门的平面内沿其长度方向匀速运动。

若站在门外的观察者认为此杆的两端可同时被拉进此门,则该杆相对于门的运动速率u 至少为多少?解:门外观测者测得杆长为运动长度,l l =,当1a ≤时,可认为能被拉进门,则:a l ≤解得杆的运动速率至少为:u =6-7 两个惯性系中的观察者O 和O '以0.6c (c 表示真空中光速)的相对速度相互接近,如果O 测得两者的初始距离是20m ,则O '测得两者经过多少时间相遇?解: O 测得相遇时间为t ∆:0200.6L t v c∆==O ' 测得的是固有时t '∆:∴ tt γ∆'∆==88.8910s -=⨯,或者,O '测得长度收缩:00.8LL L L L t v'===∆=n 8080.80.8208.8910s 0.60.6310L t c -⨯'∆===⨯⨯⨯6-8 一宇航员要到离地球为5光年的星球去旅行.如果宇航员希望把这路程缩短为3光年,则他所乘的火箭相对于地球的速度是多少? 解:335l l '====n∴ 45v c ==6-9.两个宇宙飞船相对于恒星参考系以0.8c 的速度沿相反方向飞行,求两飞船的相对速度。

解:设宇宙船A 为S 系,测得恒星的速度为0.8x v c =,宇宙船B 为S '系,测得恒星的速度为'0.8xv c =-,两个飞船的相对速度为u , 根据洛伦兹速度变换公式:''21x x x v uv uv c+=+,有:20.80.80.81c uc cu c -+=-+得:0.976u c = 。

6-10.从S 系观察到有一粒子在01=t 时由m 1001=x 处以速度c v 98.0=沿x 方向运动,s 10后到达2x 点,如在S '系(相对S 系以速度c u 96.0=沿x 方向运动)观察,粒子出发和到达的时空坐标2211,,,x t x t ''''各为多少?(0='=t t 时,S '与S 的原点重合),并算出粒子相对S '系的速度。

解:利用洛仑兹变换:2u t xt -'=,x '=,0.28==,有:1122610.960100 1.14710u ct x t s ---⨯'===⨯;222220.96109.8 2.11u c t x ct s --⨯'===; m c c c cu ut x x 14.357)96.0(1096.0100)(1222111=-⨯-=--=';m c c c c c u ut x x 82222221014.2)96.0(11096.08.9)(1⨯=-⨯-=--=';'8220.980.96 1.014100.96110.98x x x v u c c v u cv c c c--===⨯--⨯m/s 。

6-11.一飞船静长0l ,以速度u 相对于恒星系作匀速直线飞行,飞船内一小球从尾部运动到头部,宇航员测得小球运动速度为v ,试算出恒星系观察者测得小球的运动时间。

解:设恒星系为S 系,飞船为S '系,由题意:vl t 0='∆,∴)(1)1()(1)1()(12220222222cu v v c ul c u t x c u t c u x c u t t -+=-'∆'∆+'∆=-'∆+'∆=∆。

6-12.一个静止的0K 介子能衰变成一个+π介子和一个-π介子,这两个π介子的速率均为c 85.0.现有一个以速率c 90.0相对于实验室运动的0K 介子发生上述衰变。

以实验室为参考系,两个π介子可能有的最大速率和最小速率是多少?解:以实验室为S 系,运动的0K 介子为S '系,利用21x x xv u v uv c'+='+,有: 最大速度:max 220.850.90.9920.90.8511x x x v u c c v c uv c c c c'++==='⨯++ , 最小速度 min22(0.85)0.90.2130.9(0.85)11x x x v u c c v c uv c c c c'+-+==='⨯-++ 。

6-13.一个电子从静止开始加速到c 1.0,需对它做多少功?,若速度从c 9.0增加到c 99.0又要做多少功?解:由相对论动能:220k E m c m c =-:(1)26101)0.51101)k E m c =-=⨯ 2.57MeV =;(2)220k E m c =60.5110=⨯ 2.44MeV = 。

6-14.一静止电子(静止能量为MeV 51.0)被1.3MeV 的电势差加速,然后以恒定速度运动。

求:(1)电子在达到最终速度后飞越m 4.8的距离需要多少时间?(2)在电子的静止系中测量,此段距离是多少?解:(1)∵MeV c m 51.020=,MeV E k 3.1= ∴MeV E c m mc k 81.1202=+=,考虑到:2201c v m m -=,202m c mc =,可求得:810.96 2.8810v c m s -==⨯⋅ , 那么,s v l t 881092.21088.24.8-⨯=⨯==; (2)由l '=,有8.4 2.37l m '==。

6-15.有两个中子A 和B ,沿同一直线相向运动,在实验室中测得每个中子的速率为c β.试证明相对中子A 静止的参考系中测得的中子B 的总能量为:202211c m E ββ-+=,其中0m 为中子的静质量。

证明:设中子A 为S 系,实验室为S '系,中子B 相对于中子A 速度为:22121ββ+='++'=c v c u u v v x x x ,代入2E m c =,有:22220211E m c ββ+===- 。

6-16.一电子在电场中从静止开始加速,电子的静止质量为kg 1011.931-⨯. (1)问电子应通过多大的电势差才能使其质量增加%4.0? (2)此时电子的速率是多少?解:(1)由220k E m c m c =-,且eU E k =,004.00=-m m m , 有:222000.004eU mc m c m c =-=,∴2030.004 2.0510m c U V e==⨯;(2)∵01.004m m =0m m=,可求得:17107.2-⋅⨯=s m v 。

6-17.已知一粒子的动能等于其静止能量的n 倍,求:(1)粒子的速率,(2)粒子的动量。

解:(1)依题意知:20c nm E k =,又∵220k E m c m c =-,22200m c nm c =,有:22211(1)v c n -=+整理得:1)2(++=n n n c v ;(2)由420222c m c P E +=,而:20)1(c m n E +=,得:)2(0+=n n c m P 。

6-18.太阳的辐射能来源于内部一系列核反应,其中之一是氢核(H 11)和氘核(H 21)聚变为氦核(He 32),同时放出γ光子,反应方程为:γ+→+He H H 322111已知氢、氘和He 3的原子质量依次为u 007825.1、2.014102u 和3.016029u . 原子质量单位kg 1066.1u 127-⨯=. 试估算γ光子的能量。

解: 1.007825 2.014102 3.016029m u u u ∆=+-290.0058980.97910u kg -==⨯根据质能方程:29822190.97910(310) 5.5MeV 1.610E mc --⨯⨯⨯∆=∆==⨯。

相关文档
最新文档