圆复习总结与经典题型

合集下载

关于圆的题型归纳和解题技巧

关于圆的题型归纳和解题技巧

关于圆的题型归纳和解题技巧
一、题型归纳
1、求圆的半径和面积:
有时会给出圆的弦或者其他部分的参数,通过这些参数可以求出圆的半径和面积;有时可以使用圆的性质,如圆的内接三角形、外接三角形等,来求出圆的半径和面积;有时候还可以使用极坐标系来求解;
2、求圆的直径和周长:
一般来说周长=直径×π,可以利用这个公式求圆的周长;有时可以利用圆的性质,如圆的内接三角形、外接三角形等,来求圆的直径;也可以利用极坐标系来求解;
3、求圆心角:
有时给出的是圆的扇形的面积或者弧长,可以通过求出这个面积或者弧长对应的角度来求出圆心角;有时也给出的是圆弧上一点与圆心的连线,可以利用此线段及其他线段的角度来求出圆心角;
4、求圆的外接矩形或者其他图形:
有时给出的是圆的面积和某种图形的面积,可以计算出圆外接图形的面积,从而求出圆的外接矩形;有时也可以使用圆的性质,如圆的内接三角形、外接三角形等,来求出圆的外接矩形或者其他图形。

二、解题技巧
1、多用圆的性质:
圆的性质是圆的重要组成部分,其中有很多性质都可以用来帮助
解答圆的问题,如圆的内接三角形、外接三角形等;
2、注意圆的关键参数:
在回答圆的问题时,要特别注意特殊参数,如半径、直径等,它们可以使用其他参数来求出;
3、利用极坐标系:
极坐标系是求解圆的一种重要方法,它可以帮助我们简化复杂的问题,使得计算更简单、更快捷;
4、利用其他图形的特殊参数:
有些圆的题目可以利用其他图形的特殊参数来求解,例如外接矩形的长和宽,或者外接三角形的边长等。

关于圆的题型归纳和解题技巧

关于圆的题型归纳和解题技巧

关于圆的题型归纳和解题技巧
一、关于圆形的题型归纳
1. 圆的概念:一种特殊的平面图形,具有圆心、半径和圆周的性质,由起点和终点构成的曲线,其形状和位置完全由圆心和半径控制。

2. 圆的性质:圆的面积等于圆的半径的平方乘以π,即S=πr2;圆的周长等于圆的半径乘以2π,即C=2πr。

3. 圆的分类:根据圆的形状可分为完全圆形,半圆形,四分圆形,椭圆形等。

4. 关于圆的极角:圆的极角为起点和终点之间的夹角;对任意一点在圆上,该点到圆心的距离称为该点的弦长,而连接该点和圆心的射线称为该点的极角,极角单位为度(°)。

5. 关于圆的直径、弦、弧、圆心角:直径是圆的最长的一条线段,其中任意两点到圆心的距离相等;弦是圆的一部分,由圆的两个端点和圆心连接而成的线段;弧是圆的一部分,由圆的两个端点和圆周连接而成的曲线;圆心角是两个弦的夹角,其角度值等于圆周长除以圆的直径所得到的结果。

二、解题技巧
1. 关于圆的题目一般都是关于坐标图形的,因此,解题的步骤就应当是确定坐标,然后根据坐标去求圆的性质,比如求圆心、半径、圆周等。

2. 在求解圆的性质时,可以利用两点定理、勾股定理等几何知
识,先求出圆上的点与点之间的距离,然后求出圆的半径,再根据圆的性质求其他的信息。

3. 在处理相关问题时,要掌握好圆的各项性质,不要忘记极角、直径、弦以及圆心角的概念,以免出现误解圆的基本性质,从而出现差错。

4. 针对求圆面积或圆周长的题目,要熟悉圆的性质,圆面积为πr2,圆周长为2πr,因此,只要计算出圆的半径,就可以得出答案。

(完整版)圆知识点总结与例题讲解

(完整版)圆知识点总结与例题讲解

一、圆的概念与周长1.圆的定义:平面上的一种曲线图形。

2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。

圆心一般用字母O表示。

它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。

半径一般用字母r表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

∆4.圆心确定圆的位置,半径确定圆的大小。

5.直径:通过圆心并且两端都在圆上的线段叫做直径。

直径一般用字母d表示。

6.在同一个圆内,所有的半径都相等,所有的直径都相等。

7.在同一个圆内,有无数条半径,有无数条直径。

8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。

用字母表示为:d=2r r =12d用文字表示为:半径=直径÷2 直径=半径×29.圆的周长:围成圆的曲线的长度叫做圆的周长。

△10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。

我们把圆的周长和直径的比值叫做圆周率,用字母π表示。

圆周率是一个无限不循环小数。

在计算时,取π≈3.14。

世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

☆11.圆的周长公式:C=πd 或C=2πr圆周长=π×直径圆周长=π×半径×212.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

折痕所在的这条直线叫做对称轴。

☆13.有一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

有2条对称轴的图形是:长方形有3条对称轴的图形是:等边三角形有4条对称轴的图形是:正方形有无数条对称轴的图形是:圆、圆环。

△14.圆是轴对称图形,直径所在的直线是圆的对称轴。

例题讲解:一、填空题△1、圆是()图形,()所在的直线是圆的(),圆有()条对称轴。

2、圆的周长是它的直径的()倍多一些,这个倍数是一个固定的数,我们把它叫(),常用字母()表示。

它是一个()小数,取两位小数是()。

中考数学复习《圆》经典题型及测试题(含答案)

中考数学复习《圆》经典题型及测试题(含答案)

中考数学复习《圆》经典题型及测试题(含答案)【专题分析】圆在中考中的常见考点有圆的性质及定理,圆周角定理及其推论,圆心角、圆周角、弧、弦之间的“等推”关系;切线的判定,切线的性质,切线长定理,弧长及扇形面积的计算,求阴影部分的面积等.对圆的考查在中考中以客观题为主,考查题型多样,关于圆的基本性质一般以选择题或填空题的形式进行考查,切线的判定等综合性强的问题一般以解答题的形式进行考查;圆在中考中的比重约为10%~15%.【解题方法】解决圆的有关问题常用的数学思想就是转化思想,方程思想和数形结合思想;常用的数学方法有分类讨论法,设参数法等.【知识结构】【典例精选】如图,⊙O的半径是3,点P是弦AB延长线上的一点,连结OP,若OP =4,∠APO=30°,则弦AB的长为( )A.2 5 B. 5C.213 D. 13【思路点拨】先过点O作OC⊥AP,连结OB,根据OP=4,∠APO=30°,求出OC的值,在Rt△BCO中,根据勾股定理求出BC的值,进而得出AB的值.【解析】如图,过点O作OC⊥AP于点C,连结OB,∵OP=4,∠APO=30°,∴OC=4×sin 30°=2.∵OB=3,∴BC=OB2-OC2=32-22=5,∴AB=2 5.故选A.答案:A规律方法:利用垂径定理进行证明或计算,通常是在半径、圆心距和弦的一半所组成的直角三角形中,利用勾股定理构建方程求出未知线段的长.如图,从一块直径是8 m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是( )A.4 2 m B.5 m C. 30 m D.215 m【思路点拨】首先连结AO,求出AB,然后求出扇形的弧长BC,进而求出扇形围成的圆锥的底面半径,最后应用勾股定理求出圆锥的高即可.【解析】如图,连结AO,∵AB=AC,点O是BC的中点,∴AO⊥BC.又∵∠BAC=90°,∴∠ABO=∠ACO=45°,∴AB=2OB=2×(8÷2)=42(m).∴l BC=90π×42180=22π(m).∴将剪下的扇形围成的圆锥形的半径是22π÷2π=2(m).∴圆锥的高是422-22=30(m).故选C.答案:C规律方法:解决圆锥的相关问题,可以利用圆的周长等于扇形的弧长建立方程,利用方程解决问题.如图,在边长为6的正方形ABCD中,E是AB的中点,以E为圆心、ED 为半径作半圆,交A,B所在的直线于M,N两点,分别以MD,ND为直径作半圆,则阴影部分的面积为( )A.9 5 B.18 5 C.36 5 D.72 5【思路点拨】根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN 的面积-大半圆的面积,MN为半圆的直径,从而可知∠MDN=90°,在Rt△MDN 中,由勾股定理可知MN2=MD2+DN2,从而可得到两个小半圆的面积=大半圆的面积,故此阴影部分的面积=△DMN的面积,在Rt△AED中,ED=AD2+AE2=62+32=35,所以MN=65,然后利用三角形的面积公式求解即可.【解析】根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN的面积-大半圆的面积.∵MN为大半圆的直径,∴∠MDN=90°.在Rt△MDN中,MN2=MD2+DN2,∴两个小半圆的面积和=大半圆的面积.∴阴影部分的面积=△DMN 的面积.在Rt△AED中,ED=AD2+AE2=62+32=35,∴阴影部分的面积=△DMN的面积=12MN·AD=12×65×6=18 5.故选B.答案:B规律方法:求阴影部分的面积,一般是将所求阴影部分进行分割组合,转化为规则图形的和或差.如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,连结CD.(1)求证:∠A=∠BCD.(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.【思路点拨】(1)根据圆周角定理可得∠ADC=90°,根据直角三角形的性质可得∠A+∠ACD=90°,再由∠DCB+∠ACD=90°,可得∠A=∠BCD;(2)当点M是BC的中点时,直线DM与⊙O相切.连结DO,证明∠ODM =90°,进而证得直线DM与⊙O相切.【自主解答】(1)证明:∵AC为直径,∴∠ADC=90°,∴∠A+∠ACD=90°.∵∠ACB=90°,∴∠BCD+∠ACD=90°,∴∠A=∠BCD.(2)解:当点M是BC的中点时,直线DM与⊙O相切.理由如下:如图,连结DO,∵DO=CO,∴∠1=∠2.∵∠BDC=90°,点M是BC的中点,∴DM=CM,∴∠4=∠3.∵∠2+∠4=90°,∴∠1+∠3=90°,∴直线DM与⊙O相切.规律方法:在判定一条直线是圆的切线时,如果这条直线和圆有公共点,常作出经过公共点的半径,证明这条直线与经过公共点的半径垂直,概括为“连半径,证垂直,得切线”.【能力评估检测】一、选择题1.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连结BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为( B )A.40° B.50° C.60° D.20°2.如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为( C )A. 3 B.3 C.2 3 D.43.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为( A )A.25° B.50° C.60° D.30°4.如图,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP 的度数为( B )A.15° B.30° C.60° D.90°5.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心、AB长为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为( D )A.6 B.7 C.8 D.96.如图,已知AB为⊙O的直径,AD切⊙O于点A,EC=CB.则下列结论中不一定正确的是( D )A.BA⊥DA B.OC∥AEC.∠COE=2∠CAE D.OD⊥AC7.如图,菱形ABCD的对角线BD,AC分别为2,23,以B为圆心的弧与AD,DC相切,则阴影部分的面积是( D )A.23-33π B.43-33πC.43-π D.23-π8.如图,正六边形ABCDEF是边长为2 cm的螺母,点P是FA延长线上的点,在A,P之间拉一条长为12 cm的无伸缩性细线,一端固定在点A,握住另一端点P拉直细线,把它全部紧紧缠绕在螺母上(缠绕时螺母不动),则点P运动的路径长为( B )A .13π cmB .14π cmC .15π cmD .16π cm9.如图,在矩形ABCD 中,AB =4,AD =5,AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为( )A. 133B. 92C. 4313 D .2 5 解:如图,连接OE ,OF ,ON ,OG .∵AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,∴∠AEO =∠AFO =∠OFB =∠BGO =90°.∴四边形AFOE ,FBGO 都是正方形.∴AF =BF =AE =BG =2.∴DE =3.∵DM 是⊙O 的切线,∴DN =DE =3,MN =MG . ∴CM =5-2-MN =3-MN .在Rt △DMC 中,DM 2=CD 2+CM 2,∴(3+MN )2=(3-MN )2+42.∴NM =43.∴DM =3+43=133.故选A. 答案:A二、填空题10.在平面直角坐标系中,O 为坐标原点,则直线y =x +2与以O 点为圆心,1为半径的圆的位置关系为 相切.11.如图,圆内接四边形ABCD 两组对边的延长线分别相交于点E ,F ,且∠A =55°,∠E =30°,则∠F =40° .12.如图,正三角形ABC 的边长为2,点A ,B 在半径为2的圆上,点C 在圆内,将正三角形ABC 绕点A 逆时针旋转,当点C 第一次落在圆上时,点C 运动的路线长为 .【解析】设点C 落在圆上的点为C ′,连结OA ,OB ,OC ′,则OA =OB = 2.又∵AB =2,∴OA 2+OB 2=AB 2,∴∠AOB =90°,∴∠OAB =45°,同理∠OAC ′=45°,∴∠BAC ′=90°.∵△ABC 为等边三角形,∴∠CAB =60°,∴∠CAC ′=30°,∴点C 运动的路线长为30π×2180=π3.故答案为π3. 答案:π3 13.如图,在△ABC 中,∠BAC =90°,AB =5 cm ,AC =2 cm ,将△ABC 绕顶点C按顺时针方向旋转45°至△A 1B 1C 的位置,则线段AB 扫过区域(图中的阴影部分)的面积为 cm 2.【解析】在Rt△ABC 中,BC =AC 2+AB 2=29(cm),S 扇形BCB 1=45π×292360=29π8(cm 2),S △CB 1A 1=12×5×2=5(cm 2),S 扇形CAA 1=45π×22360=π2(cm 2),故S 阴影部分=S 扇形BCB 1+S △CB 1A 1-S △ABC -S 扇形CAA 1=29π8+5-5-π2=25π8(cm 2). 答案:25π8三、解答题14.如图,AB 是⊙O 的直径,BC 切⊙O于点B ,OC 平行于弦AD ,过点D 作DE ⊥AB 于点E ,连结AC ,与DE 交于点P .求证:(1)PE =PD ;(2)AC ·PD =AP ·BC .证明:(1)∵AB 是⊙O 的直径,BC 是切线,∴AB ⊥BC ,∵DE ⊥AB ,∴DE ∥BC ,∴△AEP ∽△ABC ,∴EP BC =AE AB .又∵AD ∥OC ,∴∠DAE =∠COB ,∴△AED ∽△OBC ,∴ED BC =AE OB =AE 12AB =2AE AB .∴ED =2EP ,∴PE =PD . (2)∵AB 是⊙O 的直径,BC 是切线,∴AB ⊥BC ,∵DE ⊥AB ,∴DE ∥BC ,∴△AEP ∽△ABC ,∴AP AC =PE BC .∵PE =PD ,∴AP AC =PD BC,∴AC ·PD =AP ·BC . 15.如图,在△OAB 中,OA =OB =10,∠AOB =80°,以点O 为圆心,6为半径的优弧MN 分别交OA ,OB 于点M ,N .(1)点P 在右半弧上(∠BOP 是锐角),将OP 绕点O 逆时针旋转80°得OP ′,求证:AP =BP ′;(2)点T 在左半弧上,若AT 与弧相切,求点T 到OA 的距离;(3)设点Q 在优弧MN 上,当△AOQ 的面积最大时,直接写出∠BOQ 的度数.(1)证明:如图,∵∠AOP=∠AOB+∠BOP=80°+∠BOP,∠BOP′=∠POP′+∠BOP=80°+∠BOP,∴∠AOP=∠BOP′.又∵OA=OB,OP=OP′,∴△AOP≌△BOP′.∴AP=BP′.(2)解:如图,连结OT,过点T作TH⊥OA于点H.∵AT与MN相切,∴∠ATO=90°.∴AT=OA2-OT2=102-62=8.∵12OA·TH=12AT·OT,即12×10×TH=12×8×6,∴TH=245,即点T到OA的距离为245.(3)10°,170°.16.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D.以AB上一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD,BE与劣弧DE所围成的阴影部分的面积(结果保留根号和π).解:(1)直线BC与⊙O相切.理由如下:如图,连结OD,∵OA=OD,∴∠OAD=∠ODA,∵∠BAC的角平分线AD交BC边于点D,∴∠CAD=∠OAD,∴∠CAD=∠ODA,∴OD∥AC,∴∠ODB=∠C=90°,即OD⊥BC.∴直线BC与⊙O相切.(2)①设OA=OD=r,∵在Rt△BDO中,∠B=30°,∴OB=2r,∴在Rt△ACB中,∠B=30°,∴AB=2AC=6,∴3r=6,解得r=2.②∵在Rt△ODB中,∠B=30°,∴∠BOD=60°,∴S扇形ODE=60π×22360=23π,∴阴影部分面积为S△BOD-S扇形ODE=23-23π.11。

中考圆的复习资料(经典+全)

中考圆的复习资料(经典+全)

圆的知识点复习知识点1垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

题型1.在直径为1000mm的圆柱形油槽内装入一些油后,截面如图所示,若油面宽AB=800mm,则油的最大深度为 mm.2. 如图,在△ABC中,∠C是直角,AC=12,BC=16,以C为圆心,AC为半径的圆交斜边AB于D,求AD的长。

3. 如图,弦AB垂直于⊙O的直径CD,OA=5,AB=6,求BC长。

CBDA4. 如图所示,在⊙O中,CD是直径,AB是弦,AB⊥CD于M,CD=15cm,OM:OC=3:5,求弦AB的长。

知识点2 圆心角:顶点在圆心的角叫做圆心角。

弦心距:过圆心作弦的垂线,圆心与垂足之间的距离叫弦心距。

定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角度数相等,所对的弦相等。

在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角度数相等,所对的弧相等。

题型1. 如果两条弦相等,那么()A.这两条弦所对的弧相等 B.这两条弦所对的圆心角相等C.这两条弦的弦心距相等 D.以上答案都不对2.下列说法正确的是()A.相等的圆心角所对的弧相等 B.在同圆中,等弧所对的圆心角相等C.相等的弦所对的圆心到弦的距离相等 D.圆心到弦的距离相等,则弦相等3.线段AB是弧AB 所对的弦,AB的垂直平分线CD分别交弧AB、AC于C、D,AD的垂直平分线EF分别交弧AB、AB于E、F,DB的垂直平分线GH分别交弧AB、AB于G、H,则下面结论不正确的是()A.弧AC=弧CB B.弧EC=弧CG C.EF=FH D.弧AE=弧EC4. 弦心距是弦的一半时,弦与直径的比是________,弦所对的圆心角是_____.5. 如图,AB 为⊙O 直径,E 是BC 中点,OE 交BC 于点D ,BD=3,AB=10,则AC=_____.6. 如图,AB 和DE 是⊙O 的直径,弦AC ∥DE ,若弦BE=3,则弦CE=________.7. 如图,已知AB 、CD 为⊙O 的两条弦,弧AD =弧BC , 求证:AB =CD 。

圆的知识点总结及典型例题

圆的知识点总结及典型例题

圆的知识点总结(一)圆的有关性质[知识归纳]1. 圆的有关概念:圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高;圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。

2. 圆的对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有旋转不变性。

3. 圆的确定不在同一条直线上的三点确定一个圆。

4. 垂直于弦的直径垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧;推论1(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

垂径定理及推论1可理解为一个圆和一条直线具备下面五个条件中的任意两个,就可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径);④平分弦所对的优弧;⑤平分弦所对的劣弧。

推论2圆的两条平行弦所夹的弧相等。

5. 圆心角、弧、弦、弦心距之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。

推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆心角或两条弧所对的弦相等;④两条弦的弦心距相等。

圆心角的度数等于它所对的弧的度数。

6. 圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半;推论1同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等;推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径;推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

九年级上册圆题型归纳

九年级上册圆题型归纳

九年级上册圆题型归纳一、圆的基本概念相关(5题)题1:已知圆的半径为5cm,求圆的周长和面积。

解析:圆的周长公式为C = 2π r,面积公式为S=π r^2,其中r = 5cm。

周长C=2π×5 = 10π cm≈ 10×3.14=31.4cm面积S=π×5^2=25π cm^2≈25× 3.14 = 78.5cm^2题2:在圆O中,弦AB的长为8,圆心O到弦AB的距离为3,求圆O的半径。

解析:设圆O的半径为r,圆心O到弦AB的距离为d = 3,弦长AB=8。

根据垂径定理,半弦长、圆心到弦的距离与圆的半径构成直角三角形。

半弦长为(AB)/(2)=(8)/(2) = 4由勾股定理r^2=d^2+<=ft((AB)/(2))^2r=√(3^2)+4^{2}=√(9 + 16)=√(25)=5题3:已知圆O的直径为10,点A在圆O上,求∠ AOB的度数(其中O为圆心,B为圆上另一点且AB为圆的弦)。

解析:因为圆O的直径为10,则半径r = 5。

当AB为直径时,∠ AOB=180^∘;当AB为非直径的弦时,0^∘<∠AOB<180^∘。

由于题目没有更多关于AB弦的信息,所以仅能得出∠ AOB的取值范围是0^∘<∠ AOB≤slant180^∘题4:圆O中,弧AB所对的圆心角为60^∘,半径为6,求弧AB的长。

解析:弧长公式l=(nπ r)/(180)(n为圆心角度数,r为半径)已知n = 60^∘,r=6弧AB的长l=(60π×6)/(180)= 2π题5:判断:相等的圆心角所对的弧相等。

()解析:错误。

在同圆或等圆中,相等的圆心角所对的弧相等。

如果没有同圆或等圆这个前提条件,即使圆心角相等,所对的弧长也不一定相等。

二、与圆的切线相关(5题)题1:直线l与圆O相切于点A,圆O的半径为3,若OA与直线l的夹角为30^∘,求圆心O到直线l的距离。

关于圆的题型归纳和解题技巧

关于圆的题型归纳和解题技巧

关于圆的题型归纳和解题技巧
一、关于圆的题型归纳
1、求圆的周长、面积;
2、求圆的弦长、切线长;
3、求圆的外接矩形面积;
4、求圆的内接正三角形面积;
5、求圆的内切正三角形面积;
6、求扇形的面积;
7、求弧长、圆心角;
8、求圆的关系题;
9、求圆的判断题;
10、求圆外一点与圆的关系;
11、求外切圆与内切圆;
12、求圆的标准方程;
13、求圆的对称性;
14、求圆的有关数据推导;
15、求圆的分析绘图;
16、求圆的位置关系;
17、求圆的等价关系;
18、求圆的数字抽象;
二、关于圆的解题技巧
1、对圆的判断题,可以用圆心、半径、圆周等参数来判断;
2、圆内外的点是成对称的,可利用对称性解题;
3、求外切圆与内切圆时,可以找到相同的弦长、半径最大值最小值;
4、求弧长时,可以用圆心角的正弦余弦公式,通过求出弧长和半径的比值来计算出弧长;
5、求扇形的面积,可以用圆心角的正弦余弦公式求出扇形的三角形面积,再乘上圆心角的度数;
6、求两圆之间的关系时,可以用其半径大小比较,进行判断;
7、圆的位置关系一般利用同心圆或相切圆的方式来进行求解;
8、求圆的数字抽象时,要根据题目中提到的圆的参数,抽取出通用的圆的方程;
9、求圆的等价关系,可以用圆的标准方程,结合圆的圆心和半径,进行求解;
10、求圆的参数关系时,可以根据圆的标准方程来求出圆的参数和面积等;
11、圆的分析绘图时,要把握好图形的特征,找出圆的圆心,半径,角度等关系;
12、求圆的有关数据的推导时,可以用圆的标准方程,结合圆的圆心和半径等求解。

圆知识梳理+题型归纳附答案-(详细知识点归纳+中考真题)

圆知识梳理+题型归纳附答案-(详细知识点归纳+中考真题)

圆【知识点梳理】一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外; 三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点; 四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-; 五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,rd d CBAO即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

关于圆的题型归纳和解题技巧

关于圆的题型归纳和解题技巧

关于圆的题型归纳和解题技巧
一、圆的题型归纳
1. 直线与圆的位置关系:直线与圆可以相切、相交、外切、内切。

2. 圆的性质:取点到圆心的距离相等;圆两点到圆心的连线,长度相等,角度相等;圆周上的点,到圆心两条连线的比值相等。

3. 圆心角:圆心角及其扇形的面积,与圆上两点的距离有关。

4. 关于圆的全等:两个半径相等的圆,它们的圆心角两端的线段的角度也相等;重心相等的圆,它们的圆心角也是相等的。

5. 关于圆的切线:圆上的点到圆心连线,为切线;圆上两点连线为切线;任一点到圆心的连线与任一点到圆上另外一点的连线的夹角为切线。

二、解题技巧
1. 图形分析法:根据题意绘制出合理的几何图形,对圆形的部分应尽量详细地描绘出来,综合分析各个部分的相互关系,以此判断圆形的计算结果。

2. 数字分析法:根据数据来分析圆形的特性,比如圆的半径是给定的,那么可以根据圆的性质和圆心角来推算其他参数的值;又如圆心角的角度是已知的,则可以推算出其它参数的值。

3. 结论法:圆周上的点,所到圆心的连线的比值都是相同的;圆心角的扇形面积和它的的圆心角的角度有关。

这些基本性质可以在解题中灵活地运用,通过比较不同扇形的面积来判断其可行的解,从
而推断出解题的具体值。

中考数学圆题型大归纳

中考数学圆题型大归纳

中考数学圆题型大归纳
中考数学中关于圆的题型涵盖了很多内容,主要涉及圆的性质、圆的面积与周长、相交定理等方面。

下面对中考数学中常见的圆题型进行大归纳:
一、圆的性质题型:
1. 圆的基本概念:圆的半径、直径、周长、面积等概念的理解和计算;
2. 圆心角与弧度的关系:圆心角的大小和对应弧的关系,以及圆心角的计算;
3. 圆内接四边形:正方形、矩形、菱形等图形的性质及相关计算;
4. 圆的切线与切点:切线的性质、切线与半径的关系,以及切点的判定方法。

二、圆的面积与周长题型:
1. 圆的面积计算:根据圆的半径或直径计算圆的面积;
2. 圆的周长计算:根据圆的半径或直径计算圆的周长;
3. 圆与多边形的面积比较:圆与正方形、正三角形等图形的面积比较和计算;
4. 圆的面积与周长的关系:圆的面积与周长的计算及应用。

三、圆的相交定理题型:
1. 同弧的圆周角:同弧的圆周角的性质和计算方法;
2. 圆的相交性质:相交弧的关系、相交角的计算等;
3. 圆的切线定理:圆的切线与切点的性质、切线长度的计算方法;
4. 圆的交点的计算:两个圆的交点的计算和判定方法。

以上是中考数学中关于圆的题型的大致分类和内容归纳,希望对你的学习有所帮助。

在备考中考数学的过程中,重点理解圆的基本性质和计算方法,灵活运用各种定理和公式,多做相关的练习题目,扎实掌握圆的相关知识,相信你一定能在考试中取得优异的成绩。

祝你学业有成,考试顺利!。

2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)

2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)

2024年中考数学复习重难点题型训练—圆的相关证明与计算(含答案解析)类型一基本性质有关的1.(2022·湖南省郴州市)如图,在△ABC中,AB=AC.以AB为直径的⊙O与线段BC交于点D,过点D作DE⊥AC,垂足为E,ED的延长线与AB的延长线交于点P.(1)求证:直线PE是⊙O的切线;(2)若⊙O的半径为6,∠P=30°,求CE的长.【答案】(1)连接OD,根据AB=AC,OB=OD,得∠ACB=∠ODB,从而OD//AC,由DE⊥AC,即可得PE⊥OD,故PE是⊙O的切线;(2)连接AD,连接OD,由DE⊥AC,∠P=30°,得∠PAE=60°,又AB=AC,可得△ABC 是等边三角形,即可得BC=AB=12,∠C=60°,而AB是⊙O的直径,得∠ADB=90°,可得BD=CD=12BC=6,在Rt△CDE中,即得CE的长是3.本题考查圆的综合应用,涉及圆的切线,等腰三角形性质及应用,含特殊角的直角三角形三边关系等,解题的关键是判定△ABC是等边三角形.2.(2022·辽宁省盘锦市)如图,△ABC内接于⊙O,∠ABC=45°,连接AO并延长交⊙O于点D,连接BD,过点C作CE//AD与BA的延长线交于点E.(1)求证:CE与⊙O相切;(2)若AD=4,∠D=60°,求线段AB,BC的长.【答案】(1)连接OC,根据圆周角定理得∠AOC=90°,再根据AD//EC,可得∠OCE=90°,从而证明结论;(2)过点A作AF⊥EC交EC于F,由AD是圆O的直径,得∠ABD=90°,又AD=4,60°,即得AB=3BD=23,根据∠ABC=45°,知△ABF是等腰直角三角形,AF=BF=2AB= 6,又△AOC是等腰直角三角形,OA=OC=2,得AC=22,故CF=AC2−AF2=2,从而BC=BF+CF=6+2.本题主要考查了圆周角定理,切线的判定与性质,含30°角的直角三角形的性质等知识,作辅助线构造特殊的直角三角形是解题的关键.3.(2021·山东临沂市·中考真题)如图,已知在⊙O中,==,OC与AD相交于点AB BC CDE.求证:(1)AD∥BC(2)四边形BCDE为菱形.【答案】(1)见解析;(2)见解析【分析】(1)连接BD ,根据圆周角定理可得∠ADB=∠CBD ,根据平行线的判定可得结论;(2)证明△DEF ≌△BCF ,得到DE=BC ,证明四边形BCDE 为平行四边形,再根据 BCCD =得到BC=CD ,从而证明菱形.【详解】解:(1)连接BD ,∵ AB BCCD ==,∴∠ADB=∠CBD ,∴AD ∥BC ;(2)连接CD ,∵AD ∥BC ,∴∠EDF=∠CBF ,∵ BCCD =,∴BC=CD ,∴BF=DF ,又∠DFE=∠BFC ,∴△DEF ≌△BCF (ASA ),∴DE=BC ,∴四边形BCDE 是平行四边形,又BC=CD ,∴四边形BCDE 是菱形.【点睛】本题考查了垂径定理,圆周角定理,弧、弦、圆心角的关系,全等三角形的判定和性质,菱形的判定,解题的关键是合理运用垂径定理得到BF=DF .4.(2021·四川南充市·中考真题)如图,A ,B 是O 上两点,且AB OA =,连接OB 并延长到点C ,使BC OB =,连接AC .(1)求证:AC 是O 的切线.(2)点D ,E 分别是AC ,OA 的中点,DE 所在直线交O 于点F ,G ,4OA =,求GF 的长.【答案】(1)见解析;(2)【分析】(1)先证得△AOB 为等边三角形,从而得出∠OAB=60°,利用三角形外角的性质得出∠C=∠CAB=30°,由此可得∠OAC=90°即可得出结论;(2)过O 作OM ⊥DF 于M ,DN ⊥OC 于N ,利用勾股定理得出AC=30°的直角三角形的性质得出DN ,再根据垂径定理和勾股定理即可求出GF 的长.【详解】(1)证明:∵AB=OA ,OA=OB∴AB=OA=OB∴△AOB 为等边三角形∴∠OAB=60°,∠OBA=60°∵BC=OB∴BC=AB∴∠C=∠CAB又∵∠OBA=60°=∠C+∠CAB∴∠C=∠CAB=30°∴∠OAC=∠OAB+∠CAB=90°∴AC 是⊙O 的切线;(2)∵OA=4∴OB=AB=BC=4∴OC=8∴AC=∵D 、E 分别为AC 、OA 的中点,∴OE//BC ,DC=过O 作OM ⊥DF 于M ,DN ⊥OC 于N则四边形OMDN 为矩形∴DN=OM在Rt △CDN 中,∠C=30°,∴DN=12DC=∴OM=3连接OG ,∵OM ⊥GF∴GF=2MG=222OG OM -=()22243-=213【点睛】本题考查了切线的判定、垂径定理、等边三角形的性质和判定,熟练掌握相关的知识是解题的关键.5.(2021·安徽中考真题)如图,圆O 中两条互相垂直的弦AB ,CD 交于点E .(1)M 是CD 的中点,OM =3,CD =12,求圆O 的半径长;(2)点F 在CD 上,且CE =EF ,求证:AF BD ⊥.【答案】(1)35;(2)见解析.【分析】(1)根据M 是CD 的中点,OM 与圆O 直径共线可得OM CD ⊥,OM 平分CD ,则有6MC =,利用勾股定理可求得半径的长;(2)连接AC ,延长AF 交BD 于G ,根据CE EF =,AE FC ⊥,可得AF AC =,12∠=∠,利用圆周角定理可得2D ∠=∠,可得1D ∠=∠,利用直角三角形的两锐角互余,可证得90AGB ∠=︒,即有AF BD ⊥.【详解】(1)解:连接OC ,∵M 是CD 的中点,OM 与圆O 直径共线∴OM CD ⊥,OM 平分CD ,90OMC ∴∠=︒12CD = 6MC ∴=.在Rt OMC △中.OC ===∴圆O 的半径为(2)证明:连接AC ,延长AF 交BD 于G .CE EF = ,AE FC⊥AF AC∴=又CE EF= 12∠∠∴= BCBC = 2D∴∠=∠1D∴∠=∠中在Rt BED∠+∠=︒90D B∴∠+∠=︒B190AGB∴∠=︒90∴⊥AF BD【点睛】本题考查了垂径定理,圆周角定理,直角三角形的两锐角互余,勾股定理等知识点,熟练应用相关知识点是解题的关键.∠是 AD所对的圆周角,6.(2021·浙江中考真题)如图,已知AB是⊙O的直径,ACD∠=︒.30ACD∠的度数;(1)求DABAB=,求DF的(2)过点D作DE AB⊥,垂足为E,DE的延长线交⊙O于点F.若4长.【答案】(1)60︒;(2)23【分析】(1)连结BD ,根据圆周角性质,得B ACD ∠=∠;根据直径所对圆周角为直角、直角三角形两锐角互余的性质计算,即可得到答案;(2)根据含30°角的直角三角形性质,得12AD AB =;根据垂径定理、特殊角度三角函数的性质计算,即可得到答案.【详解】(1)连结BD ,30ACD ∠=︒30B ACD \Ð=Ð=°AB Q 是O 的直径,90ADB ∴∠=︒,9060DAB B ∴∠=︒-∠=︒(2)90ADB ∠=︒ ,30B ∠=︒,4AB =∴122AD AB ==60DAB ∠=︒ ,DE AB ⊥,且AB 是直径sin 60EF DE AD︒∴===2DF DE =∴=.【点睛】本题考查了圆、含30°角的直角三角形、三角函数的知识;解题的关键是熟练掌握圆周角、垂径定理、含30°角的直角三角形、三角函数、直角三角形两锐角互余的性质,从而完成求解.7.(2021·湖南中考真题)如图,ABC 是O 的内接三角形,AC 是O 的直径,点D 是 BC的中点,//DE BC 交AC 的延长线于点E .(1)求证:直线DE 与O 相切;(2)若O 的直径是10,45A ∠=︒,求CE 的长.【答案】(1)见解析;(2)5CE =.【分析】(1)连接OD ,由点D 是 BC的中点得OD ⊥BC ,由DE//BC 得OD ⊥DE ,由OD 是半径可得DE 是切线;(2)证明△ODE 是等腰直角三角形,可求出OE 的长,从而可求得结论.【详解】解:(1)连接OD 交BC 于点F ,如图,∵点D 是 BC的中点,∴OD ⊥BC ,∵DE//BC∴OD ⊥DE∵OD 是O 的半径∴直线DE 与O 相切;(2)∵AC 是O 的直径,且AB=10,∴∠ABC=90°,152OC OA AB ===∵OD ⊥BC∴∠OFC=90°∴OD//AB 45BAC ∠=︒∴45DOE ∠=︒∵90ODE ∠=︒∴45OED ∠=∴5DE OD OC ===由勾股定理得,OE =∴5CE OE OC =-=.【点睛】此题主要考查了切线的判定与性质的综合运用,熟练掌握切线的判定与性质是解答此题的关键.8.(2021·湖南张家界市·中考真题)如图,在Rt AOB 中,90∠=︒ABO ,30OAB ∠=︒,以点O 为圆心,OB 为半径的圆交BO 的延长线于点C ,过点C 作OA 的平行线,交O 于点D ,连接AD .(1)求证:AD 为O 的切线;(2)若2OB =,求弧CD 的长.【答案】(1)见解析;(2)23π【分析】(1)连接OB ,先根据直角三角形的性质得到∠AOB=60°,再运用平行线的性质结合已知条件可得60AOD ∠=︒,再证明AOB AOD △≌△可得90ADO ABO ∠=∠=︒即可;(2)先求出∠COD ,然后再运用弧长公式计算即可.【详解】(1)证明:连接OD∵30OAB ∠=︒,90B ∠=︒∴60AOB ∠=︒又∵//CD AO∴60C AOB ∠=∠=︒∴2120BOD C ∠=∠=︒∴60AOD ∠=︒又∵,OB OD AO AO==∴()AOB AOD SAS ≌∴90ADO ABO ∠=∠=︒又∵点D 在O 上∴AD 是O 的切线;(2)∵120BOD ∠=︒∴60COD ∠=︒∴602223603l ππ=⨯⨯=.【点睛】本题主要考查了圆的切线的证明、弧长公式等知识点,掌握圆的切线的证明方法成为解答本题的关键.9.(2020•齐齐哈尔)如图,AB 为⊙O 的直径,C 、D 为⊙O 上的两个点,AC=CD =DB ,连接AD ,过点D 作DE ⊥AC 交AC 的延长线于点E .(1)求证:DE 是⊙O 的切线.(2)若直径AB =6,求AD 的长.【分析】(1)连接OD ,根据已知条件得到∠BOD =13×180°=60°,根据等腰三角形的性质得到∠ADO=∠DAB=30°,得到∠EDA=60°,求得OD⊥DE,于是得到结论;(2)连接BD,根据圆周角定理得到∠ADB=90°,解直角三角形即可得到结论.【解析】(1)证明:连接OD,=CD =DB ,∵AC∴∠BOD=13×180°=60°,=DB ,∵CD∴∠EAD=∠DAB=12∠BOD=30°,∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EAD+∠EDA=90°,∴∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DAB=30°,AB=6,∴BD=12AB=3,∴AD=62−32=33.10.(2020•深圳)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.【分析】(1)证明:连接AC、OC,如图,根据切线的性质得到OC⊥CD,则可判断OC∥AD,所以∠OCB=∠E,然后证明∠B=∠E,从而得到结论;(2)利用圆周角定理得到∠ACB=90°,则利用勾股定理可计算出AC=8,再根据等腰三角形的性质得到CE=BC=6,然后利用面积法求出CD的长.【解析】(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∴CD⊥AD,∴OC∥AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC=102−62=8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵12CD•AE=12AC•CE,∴CD=6×810=245.11.(2020•陕西)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长.【分析】(1)连接OC,由切线的性质可得∠OCE=90°,由圆周角定理可得∠AOC=90°,可得结论;(2)过点A作AF⊥EC交EC于F,由锐角三角函数可求AD=83,可证四边形OAFC是正方形,可得CF=AF=43,由锐角三角函数可求EF=12,即可求解.【解析】证明:(1)连接OC,∵CE与⊙O相切于点C,∴∠OCE=90°,∵∠ABC=45°,∴∠AOC=90°,∵∠AOC+∠OCE=180°,∴∴AD∥EC(2)如图,过点A作AF⊥EC交EC于F,∵∠BAC=75°,∠ABC=45°,∴∠ACB=60°,∴∠D=∠ACB=60°,∴sin∠ADB=AB AD==83,∴AD=∴OA=OC=43,∵AF⊥EC,∠OCE=90°,∠AOC=90°,∴四边形OAFC是矩形,又∵OA=OC,∴四边形OAFC是正方形,∴CF=AF=43,∵∠BAD=90°﹣∠D=30°,∴∠EAF=180°﹣90°﹣30°=60°,∵tan∠EAF=EF AF=3,∴EF=3AF=12,∴CE=CF+EF=12+43.类型二与三角形全等、相似有关的12.(2022·辽宁省营口市)如图,在△ABC中,AB=AC,以AB为直径作⊙O与AC交于点E,过点A作⊙O的切线交BC的延长线于点D.(1)求证:∠D=∠EBC;(2)若CD=2BC,AE=3,求⊙O的半径.【答案】(1)根据切线的性质可得∠DAO=90°,从而可得∠D+∠ABD=90°,根据直径所对的圆周角是直角可得∠BEC=90°,从而可得∠ACB+∠EBC=90°,然后利用等腰三角形的性质可得∠ACB=∠ABC,从而利用等角的余角相等即可解答;(2)根据已知可得BD=3BC,然后利用(1)的结论可得△DAB∽△BEC,从而利用相似三角形的性质可得AB=3EC,然后根据AB=AC,进行计算即可解答.本题考查了圆周角定理,等腰三角形的性质,切线的性质,相似三角形的判定与性质,熟练掌握切线的性质,以及相似三角形的判定与性质是解题的关键.13.(2022·北部湾)如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E,延长BA交⊙O于点F.(1)求证:DE是⊙O的切线(2)若AE DE=23,AF=10,求⊙O的半径.【答案】(1)证明:连接OD;∵OD=OC,∴∠C=∠ODC,∵AB=AC,∴∠B=∠C,∴∠B=∠ODC,∴OD∥AB,∴∠ODE=∠DEB;∵DE⊥AB,∴∠DEB=90°,∴∠ODE=90°,即DE⊥OD,∴DE是⊙O的切线(2)解:连接CF,由(1)知OD⊥DE,∵DE⊥AB,∴OD∥AB,∵OA=OC,∴BD=CD,即OD是△ABC的中位线,∵AC是⊙O的直径,∴∠CFA=90°,∵DE⊥AB,∴∠BED=90°,∴∠CFA=∠BED=90°,∴DE∥CF,∴BE=EF,即DE是△FBC的中位线,∴CF=2DE,∵AE DE=23,∴设AE=2x,DE=3k,CF=6k,∵AF=10,∴BE=EF=AE+AF=2k+10,∴AC=BA=EF+AE=4k+10,在Rt△ACF中,由勾股定理,得AC2=AF2+CF2,即(4k+10)2=102+(6k)2,解得:k=4,∴AC=4k+10=4×4+10=26,∴OA=13,即⊙O的半径为13.【知识点】平行线的判定与性质;等腰三角形的性质;圆周角定理;切线的判定;三角形的中位线定理【解析】【分析】(1)连接OD ,根据等腰三角形的性质可得∠C=∠ODC ,∠B=∠C ,则∠B=∠ODC ,推出OD ∥AB ,由平行线的性质可得∠ODE=∠DEB=90°,即DE ⊥OD ,据此证明;(2)连接CF ,由(1)知OD ⊥DE ,则OD ∥AB ,易得OD 是△ABC 的中位线,根据圆周角定理可得∠CFA=90°,根据垂直的概念可得∠BED=90°,则DE ∥CF ,推出DE 是△FBC的中位线,得CF=2DE ,设AE=2x ,DE=3k ,CF=6k ,则BE=EF=2k+10,AC=BA=4k+10,根据勾股定理可得k 的值,然后求出AC 、OA ,据此可得半径.14.(2021·江苏无锡市·中考真题)如图,四边形ABCD 内接于O ,AC 是O 的直径,AC 与BD 交于点E ,PB 切O 于点B .(1)求证:PBA OBC ∠=∠;(2)若20PBA Ð=°,40ACD ∠=︒,求证:OAB CDE V V ∽.【答案】(1)见详解;(2)见详解【分析】(1)由圆周角定理的推论,可知∠ABC=90°,由切线的性质可知∠OBP=90°,进而即可得到结论;(2)先推出20OCB OBC ∠=∠=︒,从而得∠AOB=40°,继而得∠OAB=70°,再推出∠CDE=70°,进而即可得到结论.【详解】证明:(1)∵AC 是O 的直径,∴∠ABC=90°,∵PB 切O 于点B ,∴∠OBP=90°,∴90PBA ABO OBC ABO ∠+∠=∠+∠=︒,∴PBA OBC ∠=∠;(2)∵20PBA Ð=°,PBA OBC ∠=∠,∴20OBC ∠=︒,∵OB=OC ,∴20OCB OBC ∠=∠=︒,∴∠AOB=20°+20°=40°,∵OB=OA ,∴∠OAB=∠OBA=(180°-40°)÷2=70°,∴∠ADB=12∠AOB=20°,∵AC 是O 的直径,∴∠ADC=90°,∴∠CDE=90°-20°=70°,∴∠CDE=∠OAB ,∵40ACD ∠=︒,∴40ACD AOB ∠=∠=︒,∴OAB CDE V V ∽.【点睛】本题主要考查圆的性质以及相似三角形的判定定理,掌握圆周角定理的推论,相似三角形的判定定理,切线的性质定理,是解题的关键.15.(2020•衢州)如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,AB =10,AC =6,连结OC ,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.【分析】(1)利用垂径定理以及圆周角定理解决问题即可.(2)证明△AEC∽△BCA,推出CE AC=AC AB,求出EC即可解决问题.【解析】(1)证明:∵AE=DE,OC是半径,=CD ,∴AC∴∠CAD=∠CBA.(2)解:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴CE AC=AC AB,∴CE6=610,∴CE=3.6,∵OC=12AB=5,∴OE=OC﹣EC=5﹣3.6=1.4.16.(2020•铜仁市)如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D 是直径AB延长线上一点,且∠BCE=∠BCD.(1)求证:CD是⊙O的切线;(2)若AD=8,BE CE=12,求CD的长.【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据余角的性质得到∠A=∠ECB,求得∠A=∠BCD,根据等腰三角形的性质得到∠A=∠ACO,等量代换得到∠ACO=∠BCD,求得∠DCO=90°,于是得到结论;(2)设BC=k,AC=2k,根据相似三角形的性质即可得到结论.【解析】(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠ABC=∠ABC+∠CAB=90°,∴∠A=∠ECB,∵∠BCE=∠BCD,∴∠A=∠BCD,∵OC=OA,∴∠A=∠ACO,∴∠ACO=∠BCD,∴∠ACO+∠BCO=∠BCO+∠BCD=90°,∴∠DCO=90°,∴CD是⊙O的切线;(2)解:∵∠A=∠BCE,∴tanA=BC AC=tan∠BCE=BE CE=12,设BC=k,AC=2k,∵∠D=∠D,∠A=∠BCD,∴△ACD∽△CBD,∴BC AC=CD AD=12,∵AD=8,∴CD=4.17.(2020•衡阳)如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,过点A和点D的圆,圆心O在线段AB上,⊙O交AB于点E,交AC于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若AD=8,AE=10,求BD的长.【分析】(1)连接OD,根据平行线判定推出OD∥AC,推出OD⊥BC,根据切线的判定推出即可;(2)连接DE,根据圆周角定理得到∠ADE=90°,根据相似三角形的性质得到AC=325,根据勾股定理得到CD=AD2−AC2==根据相似三角形的性质即可得到结论.【解析】(1)BC与⊙O相切,理由:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∵OD为半径,∴BC是⊙O切线;(2)连接DE,∵AE是⊙O的直径,∴∠ADE=90°,∵∠C=90°,∴∠ADE=∠C,∵∠EAD=∠DAC,∴△ADE∽△ACD,∴AE AD=AD AC,108=8AC,∴AC=325,∴CD=AD2−AC2==245,∵OD⊥BC,AC⊥BC,∴△OBD∽△ABC,∴OD AC=BD BC,∴5325=BD BD+245,∴BD=1207.18.(2020•遵义)如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交BC 于点D,过点D作DE∥BC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度.【分析】(1)连接OD,由等腰三角形的性质及角平分线的性质得出∠ADO=∠DAE,从而OD∥AE,由DE∥BC得∠E=90°,由两直线平行,同旁内角互补得出∠ODE=90°,由切线的判定定理得出答案;(2)先由直径所对的圆周角是直角得出∠ADB=90°,再由OF=1,BF=2得出OB的值,进而得出AF和BA的值,然后证明△DBF∽△ABD,由相似三角形的性质得比例式,从而求得BD2的值,求算术平方根即可得出BD的值.【解析】(1)连接OD,如图:∵OA=OD,∴∠OAD=∠ADO,∵AD平分∠CAB,∴∠DAE=∠OAD,∴∠ADO=∠DAE,∴OD∥AE,∵DE∥BC,∴∠E=90°,∴∠ODE=180°﹣∠E=90°,∴DE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ADB=90°,∵OF=1,BF=2,∴OB=3,∴AF=4,BA=6.∵DF⊥AB,∴∠DFB=90°,∴∠ADB=∠DFB,又∵∠DBF=∠ABD,∴△DBF∽△ABD,∴BD BA=BF BD,∴BD2=BF•BA=2×6=12.∴BD=23.19.(2019•陕西)如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO 并延长,与⊙O交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.(1)求证:DC∥AP;(2)求AC的长.【分析】(1)根据切线的性质得到∠OAP=90°,根据圆周角定理得到∠BCD=90°,根据平行线的性质和判定定理即可得到结论;(2)根据勾股定理和相似三角形的判定和性质定理即可得到结论.【解析】(1)证明:∵AP是⊙O的切线,∴∠OAP=90°,∵BD是⊙O的直径,∴∠BCD=90°,∵OA∥CB,∴∠AOP=∠DBC,∴∠BDC=∠APO,∴DC∥AP;(2)解:∵AO∥BC,OD=OB,∴延长AO交DC于点E,则AE⊥DC,OE=12BC,CE=12CD,在Rt△AOP中,OP=62+82=10,由(1)知,△AOP∽△CBD,∴DB OP=BC OA=DC AP,即1210=BC6=DC8,∴BC=365,DC=485,∴OE=185,CE=245,在Rt△AEC中,AC=AE2+CE2==20(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC 是O 的切线:(2)若2,33OA BE OD ==,求DA 的长.【答案】(1)见解析;(2)910【分析】(1)连接OC ,根据圆周角定理得到∠ACB=90°,根据等量代换得到∠DCO=90°,即可证明DC 是圆O 的切线;(2)根据已知得到OA=2DA ,证明△DCO ∽△DEB ,得到DO CO DB EB =,可得DA=310EB ,即可求出DA 的长.【详解】解:(1)如图,连接OC ,由题意可知:∠ACB 是直径AB 所对的圆周角,∴∠ACB=90°,∵OC ,OB 是圆O 的半径,∴OC=OB ,∴∠OCB=∠ABC ,又∵∠DCA=∠ABC ,∴∠DCA=∠OCB ,∴∠DCO=∠DCA+∠ACO=∠OCB+∠ACO=∠ACB=90°,∴OC ⊥DC ,又∵OC 是圆O 的半径,∴DC 是圆O 的切线;(2)∵23OA OD =,∴23OA OA DA =+,化简得OA=2DA ,由(1)知,∠DCO=90°,∵BE ⊥DC ,即∠DEB=90°,∴∠DCO=∠DEB ,∴OC ∥BE ,∴△DCO ∽△DEB ,∴DO CO DB EB =,即33255DA OA DA DA DA OA OB DA EB+===++,∴DA=310EB ,∵BE=3,∴DA=310EB=3931010⨯=,经检验:DA=910是分式方程的解,∴DA=910.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,切线的判定,正确的作出辅助线,证明切线,得到相似三角形是解题的关键.21.(2021·江苏扬州市·中考真题)如图,四边形ABCD 中,//AD BC ,90BAD ∠=︒,CB CD =,连接BD ,以点B 为圆心,BA 长为半径作B ,交BD 于点E .(1)试判断CD 与B 的位置关系,并说明理由;(2)若AB =,60BCD ∠=︒,求图中阴影部分的面积.【答案】(1)相切,理由见解析;(2)π-【分析】(1)过点B 作BF ⊥CD ,证明△ABD ≌△FBD ,得到BF=BA ,即可证明CD 与圆B 相切;(2)先证明△BCD 是等边三角形,根据三线合一得到∠ABD=30°,求出AD ,再利用S △ABD -S 扇形ABE 求出阴影部分面积.【详解】解:(1)过点B 作BF ⊥CD ,∵AD ∥BC ,∴∠ADB=∠CBD ,∵CB=CD ,∴∠CBD=∠CDB ,∴∠ADB=∠CDB ,又BD=BD ,∠BAD=∠BFD=90°,∴△ABD ≌△FBD (AAS ),∴BF=BA ,则点F 在圆B 上,∴CD 与圆B 相切;(2)∵∠BCD=60°,CB=CD ,∴△BCD 是等边三角形,∴∠CBD=60°∵BF ⊥CD ,∴∠ABD=∠DBF=∠CBF=30°,∴∠ABF=60°,∵AB=BF=,∴AD=DF=tan30AB ⋅︒=2,∴阴影部分的面积=S △ABD -S 扇形ABE=(230122360π⨯⨯⨯-=π-.【点睛】本题考查了切线的判定,全等三角形的判定和性质,等边三角形的判定和性质,扇形面积,三角函数的定义,题目的综合性较强,难度不小,解题的关键是正确做出辅助线.22.(2020•上海)如图,△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长线交边AC 于点D.(1)求证:∠BAC=2∠ABD;(2)当△BCD是等腰三角形时,求∠BCD的大小;(3)当AD=2,CD=3时,求边BC的长.【分析】(1)连接OA.利用垂径定理以及等腰三角形的性质解决问题即可.(2)分三种情形:①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD.②若CD=CB,则∠CBD=∠CDB=3∠ABD.③若DB=DC,则D与A重合,这种情形不存在.分别利用三角形内角和定理构建方程求解即可.(3)如图3中,作AE∥BC交BD的延长线于E.则AE BC=AD DC=23,推出AO OH=AE BH=43,设OB=OA=4a,OH=3a,根据BH2=AB2﹣AH2=OB2﹣OH2,构建方程求出a即可解决问题.【解析】(1)证明:连接OA.A∵AB=AC,=AC ,∴AB∴OA⊥BC,∴∠BAO=∠CAO,∵OA=OB,∴∠ABD=∠BAO,∴∠BAC=2∠BAD.(2)解:如图2中,延长AO交BC于H.①若BD=CB,则∠C=∠BDC=∠ABD+∠BAC=3∠ABD,∵AB=AC,∴∠ABC=∠C,∴∠DBC=2∠ABD,∵∠DBC+∠C+∠BDC=180°,∴8∠ABD=180°,∴∠C=3∠ABD=67.5°.②若CD=CB,则∠CBD=∠CDB=3∠ABD,∴∠C =4∠ABD ,∵∠DBC+∠C+∠CDB =180°,∴10∠ABD =180°,∴∠BCD =4∠ABD =72°.③若DB =DC ,则D 与A 重合,这种情形不存在.综上所述,∠C 的值为67.5°或72°.(3)如图3中,作AE ∥BC 交BD 的延长线于E .则AE BC =AD DC =23,∴AO OH =AE BH =43,设OB =OA =4a ,OH =3a ,∵BH 2=AB 2﹣AH 2=OB 2﹣OH 2,∴25﹣49a 2=16a 2﹣9a 2,∴a 2=2556,∴BH =∴BC =2BH =23.(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC是O的切线:(2)若2,33OA BEOD==,求DA的长.【答案】(1)见解析;(2)9 10【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据等量代换得到∠DCO=90°,即可证明DC是圆O的切线;(2)根据已知得到OA=2DA,证明△DCO∽△DEB,得到DO CODB EB=,可得DA=310EB,即可求出DA的长.【详解】解:(1)如图,连接OC,由题意可知:∠ACB是直径AB所对的圆周角,∴∠ACB=90°,∵OC,OB是圆O的半径,∴OC=OB,∴∠OCB=∠ABC,又∵∠DCA=∠ABC,∴∠DCA=∠OCB,∴∠DCO=∠DCA+∠ACO=∠OCB+∠ACO=∠ACB=90°,∴OC⊥DC,又∵OC 是圆O 的半径,∴DC 是圆O 的切线;(2)∵23OA OD =,∴23OA OA DA =+,化简得OA=2DA ,由(1)知,∠DCO=90°,∵BE ⊥DC ,即∠DEB=90°,∴∠DCO=∠DEB ,∴OC ∥BE ,∴△DCO ∽△DEB ,∴DO CO DB EB =,即33255DA OA DA DA DA OA OB DA EB +===++,∴DA=310EB ,∵BE=3,∴DA=310EB=3931010⨯=,经检验:DA=910是分式方程的解,∴DA=910.【点睛】本题考查了圆周角定理,相似三角形的判定和性质,切线的判定,正确的作出辅助线,证明切线,得到相似三角形是解题的关键.类型三与锐角三角函数有关24.(2022·辽宁省铁岭市)如图,△ABC内接于⊙O,AC是⊙O的直径,过OA上的点P作PD⊥AC,交CB的延长线于点D,交AB于点E,点F为DE的中点,连接BF.(1)求证:BF与⊙O相切;(2)若AP=OP,cosA=45,AP=4,求BF的长.【答案】(1)连接OB,根据直径所对的圆周角是直角可得∠ABC=90°,从而可得∠ABD=90°,进而利用直角三角形三角形斜边上的中线可得BF=EF=12AD,然后利用等腰三角形的性质可得∠FEB=∠FBE,从而可得∠FBE=∠AEP,最后根据垂直定义可得∠EPA=90°,从而可得∠A+∠AEP=90°,再利用等腰三角形的性质可得∠A=∠OBA,从而可得∠OBA+∠FBE= 90°,进而可得∠OBF=90°,即可解答;(2)在Rt△AEP中,利用锐角三角函数的定义求出AE的长,从而利用勾股定理求出PE的长,然后利用同角的余角相等可得∠AEP=∠C,从而可证△APE∽△DPC,进而利用相似三角形的性质可求出DP的长,最后求出DE的长,即可解答.本题考查了解直角三角形,切线的判定与性质,圆周角定理,三角形的外接圆与外心,直线与圆的位置关系,熟练掌握解直角三角形,以及切线的判定与性质是解题的关键.25.(2022·四川省广安市)如图,AB为⊙O的直径,D、E是⊙O上的两点,延长AB至点C,连接CD ,∠BDC =∠BAD .(1)求证:CD 是⊙O 的切线.(2)若tan∠BED =23,AC =9,求⊙O 的半径.【答案】(1)连接OD ,由圆周角定理得出∠ADB =90°,证出OD ⊥CD ,由切线的判定可得出结论;(2)证明△BDC∽△DAC ,由相似三角形的性质得出CD AC =BC CD =BD DA =23,由比例线段求出CD 和BC 的长,可求出AB 的长,则可得出答案.本题考查了切线的判定,相似三角形的判定与性质,锐角三角函数的定义,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.26.(2021·山东菏泽市·中考真题)如图,在O 中,AB 是直径,弦CD AB ⊥,垂足为H ,E 为 BC上一点,F 为弦DC 延长线上一点,连接FE 并延长交直径AB 的延长线于点G ,连接AE 交CD 于点P ,若FE FP =.(1)求证:FE 是O 的切线;(2)若O 的半径为8,3sin 5F =,求BG 的长.【答案】(1)见解析;(2)=2BG 【分析】(1)连接OE ,证明OE ⊥EF 即可;(2)由3sin 5F =证得4sin 5G =,运用正弦的概念可得结论.【详解】解:(1)证明:连接OE ,如图,∵OA=OE∴∠OAE=∠OEA .∵EF=PF ,∴∠EPF=∠PEF∵∠APH=∠EPF ,∴∠APH=∠EPF ,∴∠AEF=∠APH .∵CD ⊥AB ,∴∠AHC=90°.∴∠OAE+∠APH=90°.∴∠OEA+∠AEF=90°∴∠OEF=90°∴OE ⊥EF .∵OE 是O 的半径∴EF 是圆的切线,(2)∵CD ⊥AB∴FHG ∆是直角三角形∵3sin 5F =∴35GH FG =设3GH x =,则5FG x=由勾股定理得,4FH x=由(1)得,OEG ∆是直角三角形∴4sin 5OE FH x G OG FG x===∴45OE OG =,即45OE OE BG =+∵8OE =∴8485BG =+解得,2BG =【点睛】此题主要考查了圆的切线的判定,勾股定理和解直角三角形等知识,熟练掌握切线的判定是解答此题的关键.27.(2022·黔东南)(1)请在图中作出△ABC 的外接圆⊙O (尺规作图,保留作图痕迹,不写作法);的中点,过点B的(2)如图,⊙O是△ABC的外接圆,AE是⊙O的直径,点B是CE切线与AC的延长线交于点D.①求证:BD⊥AD;②若AC=6,tan∠ABC=34,求⊙O的半径.【答案】(1)解:如下图所示(2)解:①如下图所示,连接OC、OB∵BD是⊙O的切线∴OB⊥BD对应的圆周角,∠COE是CE 对应的圆心角∵∠CAE是CE∴∠COE=2∠CAE的中点∵点B是CE∴∠COE=2∠BOE∴∠CAE=∠BOE∴∠CAE=∠BOE∴AD//OB∴BD⊥AD②如下图所示,连接CE对应的圆周角∵∠ABC与∠AEC是AC∴∠ABC=∠AEC∵AE是⊙O的直径∴∠ACE=90°∴tan∠AEC=AC CE=34∴CE=8∵AE2=CE2+AC2∴AE=10∴⊙O的半径为5.【知识点】圆周角定理;三角形的外接圆与外心;切线的性质;解直角三角形;作图-线段垂直平分线【解析】【解答】(1)∵△ABC的外接圆⊙O的圆心为任意两边的垂直平分线的交点,半径为交点到任意顶点的距离,∴做AB、AC的垂直平分线交于点O,以OB为半径,以O为圆心做圆即可得到△ABC 的外接圆;【分析】(1)利用尺规作图分别作出AC,AB的垂直平分线,两垂直平分线交于点O,然后以点O为圆心,OB的长为半径画圆即可.(2)①连接OC,OB,利用切线的性质可证得OB⊥BD,利用圆周角定理可证得∠COE=2∠CAE,由点B是弧CE的中点,可推出∠CAE=∠BOE,利用平行线的判定定理可证得AD∥OB,由此可证得结论;②连接CE,利用同弧所对的圆周角相等,可证得∠ABC=∠AEC,利用直径所对的圆周角是直角,可推出∠ACE=90°;再利用解直角三角形求出CE的长,利用勾股定理求出AE的长.28.(2022·鄂州)如图,△ABC内接于⊙O,P是⊙O的直径AB延长线上一点,∠PCB=∠OAC,过点O作BC的平行线交PC的延长线于点D.(1)试判断PC与⊙O的位置关系,并说明理由;(2)若PC=4,tanA=12,求△OCD的面积.【答案】(1)解:PC与⊙O相切,理由如下:∵AB是圆O的直径,∴∠ACB=90°,∴∠OCB+∠OCA=90°,∵OA=OC,∴∠OCA=∠OAC,∵∠PCB=∠OAC,∴∠PCB=∠OCA,∴∠PCB+∠OCB=∠OCA+∠OCB=90°,即∠PCO=90°,∴PC与⊙O相切(2)解:∵∠ACB=90°,tanA=12,∴BC AC=12,∵∠PCB=∠OAC,∠P=∠P,∴△PBC∽△PCA,∴PC PA=PB PC=BC CA=12,∴PA=8,PB=2,∴AB=6,∴OC=OB=3,∴OP=5,∵BC∥OD,∴△PBC∽△POD,∴PB OP=PC PD,即25=4PD,∴PD=10,∴CD=6,∴S△OCD=12OC⋅CD=9【知识点】等腰三角形的性质;圆周角定理;切线的判定;相似三角形的判定与性质;锐角三角函数的定义【解析】【分析】(1)由圆周角定理得∠ACB=90°,根据等腰三角形的性质可得∠OCA=∠OAC,结合∠PCB=∠OAC得PCB=∠OCA,结合∠OCB+∠OCA=90°可得∠PCO=90°,据此证明;(2)根据三角函数的概念可得BC AC=12,易证△PBC∽△PCA,根据相似三角形的性质可得PA、PB,然后求出AB、OP,证明△PBC∽△POD,根据相似三角形的性质可得PD,由PD-PC=CD可得CD,然后根据三角形的面积公式进行计算.29.(2022·毕节)如图,在△ABC中,∠ACB=90∘,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC的延长线于点F.(1)求证:BF=BD;(2)若CF=1,tan∠EDB=2,求⊙O直径.【答案】(1)证明:连接OE,如下图所示:∵AC为圆O的切线,∴∠AEO=90°,∵AC⊥BC,∴∠ACB=90°,∴OE∥BC,∴∠F=∠DEO,又∵OD=OE,∴∠ODE=∠DEO,∴∠F=∠ODE,∴BD=BF.(2)解:连接BE,如下图所示:由(1)中证明过程可知:∠EDB=∠F,。

初三数学九上圆所有知识点总结和常考题型练习题

初三数学九上圆所有知识点总结和常考题型练习题

圆知识点一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②AB CD⊥③CE DE=④弧BC=弧BD⑤弧AC=弧AD中任意2个条件推出其他3个结论。

推论2:圆的两条平行弦所夹的弧相等。

即:在⊙O中,∵AB∥CD∴弧AC=弧BD五、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。

此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,即:①AOB DOE∠=∠;②AB DE=;③OC OF=;④弧BA=弧BD六、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。

九上圆的题型分类 知识点+例题+练习(非常好 分类全面)

九上圆的题型分类 知识点+例题+练习(非常好 分类全面)

教学内容圆的题型分类教学目标巩固圆的相关题型重点垂径定理、切线性质的运用难点垂径定理、切线性质的运用教学过程圆中辅助线1、有关弦的问题,常做其弦心距,构造直角三角形2、有关直径问题,常做直径所对的圆周角3、直线与圆相切的问题,常连结过切点的半径,得到垂直关系;或选圆周角,找出等角关系【类型1】:圆的基本性质的综合应用1.如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧上,AB=8,BC=3,则DP=【变式练习】2.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC 的长为【类型2】:圆的相切和圆中位置关系的问题题型一:连半径,证垂直例1、如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD 的外接圆.(1)求证:AC是⊙O的切线;(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.例2、如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.【课堂练习】1、如图,△ABC中,∠ACB=90°,D为AB上一点,以CD为直径的⊙O交BC于点E,连接AE 交CD于点P,交⊙O于点F,连接DF,∠CAE=∠ADF.(1)判断AB与⊙O的位置关系,并说明理由;3、如图,AB是⊙O直径,D为⊙O上一点,AT平分∠BAD交⊙O于点T,过T作AD的垂线交AD的延长线于点C.(1)求证:CT为⊙O的切线;(2)若⊙O半径为2,CT=,求AD的长.4、如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O 是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)当BD=6,AB=10时,求⊙O的半径.5、如图,四边形ABCD是菱形,对角线BD上有一点O,以O为圆心,OD长为半径的圆记为⊙O。

中考数学圆知识点总结5篇

中考数学圆知识点总结5篇

中考数学圆知识点总结5篇篇1一、圆的定义圆是由所有到定点距离等于定长的点组成的封闭曲线,这个定点称为圆心,定长称为半径。

圆有无数条对称轴,对称轴经过圆心。

圆具有旋转对称性,任意绕圆心旋转一定的角度都可能与原来的圆重合。

二、圆的性质1. 圆心距性质:任意两个圆的圆心距离等于两圆半径之和的,两圆外离;任意两个圆的圆心距离等于两圆半径之差的,两圆内含;任意两个圆的圆心距离小于两圆半径之和但大于两圆半径之差的,两圆相交。

2. 切线性质:圆的切线垂直于经过切点的半径。

切线长定理:从圆外一点引圆的两条切线,它们的切线长相等。

3. 圆的幂性质:如果两条弦与同一条直径垂直,那么这两条弦所对的直径段相等。

4. 圆锥曲线性质:以圆锥的底面直径为长轴,以圆锥的高为短轴的椭圆,叫做圆锥椭圆。

圆锥椭圆的两焦点是圆锥的底面圆心和顶点。

双曲线类似。

三、圆的应用1. 在建筑设计中,可以利用圆的旋转对称性,设计出美观大方的建筑外观。

如圆形广场、圆形剧场等。

2. 在机械制造中,许多零部件都是圆形或环形的设计,如轴承、齿轮等。

这些零部件的精确制造和安装对于整个机械的性能和稳定性至关重要。

3. 在电子科技领域,许多电子元件和电路板都是基于圆形或环形的布局设计,如电容、电感等。

这些元件的形状和布局对于电子设备的功能和性能有着重要影响。

4. 在生物学和医学领域,许多生物体的结构和器官都是圆形或近似的圆形设计,如人体的大脑、心脏等。

对于这些结构和器官的研究和理解,有助于我们更好地认识生命的奥秘。

四、圆的解题技巧1. 圆的题目中,常常会出现一些隐含的条件,如切线的性质、圆的幂性质等。

我们需要认真分析题目中的条件,找出这些隐含的条件,并加以利用。

2. 对于一些复杂的题目,我们可以利用几何软件进行辅助分析,如使用CAD软件进行绘图分析,可以帮助我们更好地理解题意和解题思路。

3. 在解题过程中,我们需要注重几何语言的准确性和规范性,避免出现混淆概念、计算错误等问题。

中考圆的常见题型总结

中考圆的常见题型总结

中考圆的常见题型总结中考圆的常见题型总结圆是中考数学中的一个重要概念,掌握圆的性质和相关题型能有效提高数学成绩。

下面将对中考圆的常见题型进行总结。

常见题型一:圆的基本性质题1. 求圆的面积和周长:圆的面积公式为:S = πr²圆的周长公式为:C = 2πr2. 求圆心角的度数:圆心角所对的弧与圆周所对的角相等,所以可以用圆心角的度数去表示弧的度数。

常见题型二:圆的位置关系题1. 判断关系:a. 外切圆和内切圆的位置关系:两个相切的圆,内切圆的圆心在外切圆的圆心的同一直线上。

b. 相交关系:两个相交的圆在两个交点的位置关系,可以根据边长和半径等关系进行求解。

c. 同圆关系:两个同圆的圆是重合的,即它们的半径相等。

d. 不交相离:两个完全不相交的圆,它们的位置关系为不交相离。

2. 判断位置:判断一个点在圆的内部、外部还是圆上,可以通过求这个点到圆心的距离是否等于圆的半径来判断。

常见题型三:弧和扇形的性质题1. 弧段公式:已知圆的半径和弧长,可以用弧长公式计算圆心角的度数。

2. 扇形面积公式:已知扇形中心角的度数和半径,可以用扇形面积公式计算扇形的面积:S = (θ/360°)πr²常见题型四:切线和切点的性质题1. 切线的定义:切线是与圆只有一个交点的直线。

2. 切点的性质:切点与切线垂直,切点到圆心的距离等于半径。

常见题型五:菱形和正方形的圆内接问题1. 菱形的性质:菱形的四个角都是直角,因此可以通过对角线的性质判断是否为菱形。

2. 正方形的性质:正方形是一种特殊的菱形,它的四条边相等且四个角都是直角。

常见题型六:圆锥、圆台和球的性质题1. 圆锥的性质:圆锥是一个底面是圆而侧面是圆锥曲线的立体。

求圆锥的体积公式为:V = (1/3)πr²h求圆锥的侧面积公式为:S = πrl2. 圆台的性质:圆台是一个底面是圆而顶面平行于底面的立体。

求圆台的体积公式为:V = (1/3)π(R² + r² + Rr)h求圆台的侧面积公式为:S = π(R + r)l3. 球的性质:求球的体积公式为:V = (4/3)πr³求球的表面积公式为:S = 4πr²以上是中考圆的常见题型总结,通过对这些题目的分析和解答,可以有效提高对圆的理解和掌握,并且能够在中考数学中灵活运用。

高二数学圆与方程知识点总结与经典题型

高二数学圆与方程知识点总结与经典题型

圆与方程教学目标1.会用定义推导圆的标准方程;掌握圆的标准方程的特点,会根据已知条件求圆的标准方程.2.正确理解圆的方程的形式及特点,会在不同条件下求圆的一般方程,以及由一般式求圆心和半径.3.能准确判断点与圆的位置关系.类型一求圆的标准方程(基础)例1.求下列圆的标准方程.(1)圆心在y轴上,半径为5,且过点(3,-4);(2)求过点A(1,-1),B(-1,1)且圆心在直线x+y-2=0上的圆的标准方程.(3)求经过点A(1,-1),B(-1,1)面积最小的圆的标准方程.类型二点与圆的位置关系的判断(基础)例2-1.已知两点P1(4,9)和P2(6,3).(1)求以P1P2为直径的圆C的方程;(2)试判断点M(6,9)、N(3,3)、Q(5,3)是在圆C上,在圆C内,还是在圆C外?(基础)例2-2.已知点A(1,2)不在圆C:(x-a)2+(y+a)2=2a2的内部,求实数a的取值范围.类型三利用圆的定义与标准方程求最值(提升)例3.已知x,y∈R,且圆C:(x-1)2+(y+2)2=4,(1)求(x+2)2+(y-2)2的最大值与最小值.(2)求yx-4的最大值与最小值.类型四圆的一般方程的定义(基础)例4.判断方程x2+y2-4mx+2my+20m-20=0能否表示圆,若能表示圆,求出圆心和半径.类型五求圆的一般方程(基础)例5.已知∈ABC的三个顶点为A(1,4),B(-2,3),C(4,-5),求∈ABC的外接圆方程、圆心坐标和外接圆半径.类型六求动点的轨迹方程(提升)例6.已知Rt∈ABC中,A(-1,0),B(3,0).求:(1)直角顶点C的轨迹方程;(2)直角边BC的中点M的轨迹方程.知识点一圆的定义及圆的标准方程1.圆的定义平面内到定点的距离等于定长的点的集合叫做圆.其中定点是圆的圆心;定长是圆的半径. 2.圆的标准方程设圆心坐标为(a,b),半径为r,则圆的标准方程为(x-a)2+(y-b)2=r2.特别地,当圆心在坐标原点时,圆的标准方程为x2+y2=r2.知识点二点与圆的位置关系点与圆有三种位置关系,即点在圆外、点在圆上、点在圆内,判断点与圆的位置关系有两种方法:(1)几何法:将所给的点M与圆心C的距离跟半径r比较:若|CM|=r,则点M在圆上;若|CM|>r,则点M在圆外;若|CM|<r,则点M在圆内.(2)代数法:可利用圆C的标准方程(x-a)2+(y-b)2=r2来确定:点M (m ,n )在圆C 上∈(m -a )2+(n -b )2=r 2;点M (m ,n )在圆C 外∈(m -a )2+(n -b )2>r 2;点M (m ,n )在圆C 内∈(m -a )2+(n -b )2<r 2.知识点三 圆的一般方程的定义1.当D 2+E 2-4F >0时,方程x 2+y 2+Dx +Ey +F =0叫做圆的一般方程,其圆心为⎪⎭⎫ ⎝⎛--22E D ,,半径为2422F E D -+. 2.当D 2+E 2-4F =0时,方程x 2+y 2+Dx +Ey +F =0表示点⎪⎭⎫ ⎝⎛--22E D ,. 3.当D 2+E 2-4F<0时,方程x 2+y 2+Dx +Ey +F =0不表示任何图形.知识点四 由圆的一般方程判断点与圆的位置关系已知点M (x 0,y 0)和圆的方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0).则其位置关系如下表: 位置关系代数关系 点M 在圆外x 2+y 2+Dx +Ey +F >0 点M 在圆上x 2+y 2+Dx +Ey +F =0 点M 在圆内x 2+y 2+Dx +Ey +F <0【拓展】有关圆的最值问题,常借助于图形性质,利用数形结合求解.一般地,①形如k =y -b x -a的最值问题可转化为求动直线斜率的最值问题; ②形如t =ax +by 的最值问题转化为动直线截距的最值问题;③形如(x -a )2+(y -b )2的最值问题转化为圆上一动点到定点(a ,b )的最值问题.类型一 求圆的标准方程(基础)【变式1】已知∈ABC 的三个顶点坐标分别为A (0,5),B (1,-2),C (-3,-4),求该三角形的外接圆的方程.类型二 点与圆的位置关系的判断(基础)【变式2】点P (5a +1,12a )在圆(x -1)2+y 2=1的内部,则a 的取值范围是( )A .-1<a <1B .a <113C .-15<a <15D .-113<a <113类型三 利用圆的定义与标准方程求最值(基础)【变式3】已知圆C :(x -3)2+(y -4)2=1,点A (0,-1),B (0,1),设P 是圆C 上的动点,令d =|P A |2+|PB |2,求d 的最大值及最小值.类型四 圆的一般方程的定义(基础)【变式4】若方程x 2+y 2+2mx -2y +m 2+5m =0表示圆,求:(1)实数m 的取值范围;(2)圆心坐标和半径.类型五 求圆的一般方程(基础)【变式5】已知一圆过P (4,-2),Q (-1,3)两点,且在y 轴上截得的线段长为43,求圆的方程.类型六 求动点的轨迹方程(提升)【变式6-1】已知线段AB 的端点B 的坐标是(5,3),端点A 在圆(x -1)2+y 2=2上运动,求线段AB 的中点M 的轨迹.(基础)【变式6-2】求到点O (0,0)的距离是到点A (3,0)的距离的21的点的轨迹方程.总结优化1.已知圆的圆心在x 轴上,半径长为5,且截y 轴所得的线段长为8,求该圆的标准方程. 标准方程 圆的方程一般方程 (x -a )2+(y -b )2=r 2(r >0) x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)(基础)1.当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,5为半径的圆的方程为( )A .x 2+y 2-2x +4y =0B .x 2+y 2+2x +4y =0C .x 2+y 2+2x -4y =0D .x 2+y 2-2x -4y =0(基础)2.圆(x +2)2+y 2=5关于原点(0,0)对称的圆的方程为( )A .(x -2)2+y 2=5B .x 2+(y -3)2=5C .(x +2)2+(y +2)2=5D .x 2+(y +2)2=5(基础)3.圆(x -1)2+(y -1)2=1上的点到直线x -y =2的距离的最大值是( )A .2B .1+2C .2+22 D .1+22 (基础)4.已知方程x 2+y 2-2x +2k +3=0表示圆,则k 的取值范围是( )A .(-∞,-1)B .(3,+∞)C .(-∞,-1)∪(3,+∞)D .⎪⎭⎫ ⎝⎛∞+-,23 (提升)5.若实数x ,y 满足(x +5)2+(y -12)2=142,则x 2+y 2的最小值为________. (提升)6.如果直线l 将圆(x -1)2+(y -2)2=5平分且不通过第四象限,那么l 的斜率的取值范围是__________.(基础)7.已知点P是圆C:x2+y2+4x+ay-5=0上任意一点,P点关于直线2x+y-1=0的对称点也在圆C上,则实数a=________.(基础)8.已知圆C过点A(4,7),B(-3,6),且圆心C在直线l:2x+y-5=0上,求圆C 的方程.(提升)9.设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM,ON为两边作平行四边形MONP,求点P的轨迹.(基础)10.方程|x |-1=()211--y 所表示的曲线是( ) A .一个圆 B .两个圆 C .半个圆 D .两个半圆(基础)11.已知两点A (-1,0),B (0,2),点P 是圆(x -1)2+y 2=1上任意一点,则△P AB 面积的最大值与最小值分别是( )A .2,12(4-5)B .12(4+5),12(4-5) C .5,4- 5 D .12(5+2),12(5-2)(基础)12.若直线l :ax +by +1=0始终平分圆M :x 2+y 2+4x +2y +1=0的周长,则(a -2)2+(b -2)2的最小值为( )A . 5B .5C .2 5D .10(提升)13.若圆x 2+y 2-4x +2y +m =0与y 轴交于A 、B 两点,且∠ACB =90°(其中C 为已知圆的圆心),则实数m 等于________.(提升)14.已知平面上两点A (-2,0),B (2,0),在圆C :(x -1)2+(y +1)2=4上取一点P ,求使|P A |2+|PB |2取得最小值时点P 的坐标,取得最大值时点P 的坐标,并求出最大、最小值.(提升)15.在平面直角坐标系xOy 中,设二次函数f (x )=x 2+2x +b (x ∈R )的图象与两坐标轴有三个交点,经过这三个交点的圆记为C.(1)求实数b的取值范围;(2)求圆C的方程;(3)问圆C是否经过某定点(其坐标与b无关)?请证明你的结论.11。

高中圆的题型总结

高中圆的题型总结

高中圆的题型总结一、圆的定义与性质总结:1.圆的定义:一个平面上所有与给定点(中心)距离相等的点的集合称为圆。

2.圆的基本性质总结:3.(1)圆心到圆上任意一点的距离都相等,即半径相等。

4.(2)圆内接四边形的对角互补,即两个对角和为180度。

5.(3)切线的性质:切线与过切点的半径垂直,且过切点的半径是唯一一条与切线垂直的线段。

二、圆的标准方程总结1.圆的标准方程为$(x-a)^{2}+(y-b)^{2}=r^{2}$,其中(a,b)为圆心坐标,r为半径。

2.根据已知条件,可以求出圆的标准方程。

三、圆与直线的位置关系题型总结:1.当圆心到直线的距离小于半径时,直线与圆相交。

2.当圆心到直线的距离等于半径时,直线与圆相切。

3.当圆心到直线的距离大于半径时,直线与圆相离。

四、圆与圆的位置关系题型总结:1.当两圆的圆心距大于两圆半径之和时,两圆外离。

2.当两圆的圆心距等于两圆半径之和时,两圆外切。

3.当两圆的圆心距小于两圆半径之和且大于两圆半径之差时,两圆相交。

4.当两圆的圆心距等于两圆半径之差时,两圆内切。

5.当两圆的圆心距小于两圆半径之差时,两圆内含。

五、圆的切线的性质与判定总结:1.切线的性质:切线与过切点的半径垂直,且过切点的半径是唯一一条与切线垂直的线段。

2.切线的判定:如果一条直线过圆上一点,且该点到直线的垂线段的中点在圆上,则该直线为圆的切线。

六、圆的弧长的计算题总结:1.弧长的计算公式为$l=|\alpha|\cdot r$,其中$\alpha$为弧所对的中心角(单位为弧度),r为半径。

2.如果弧所对的中心角不是特殊角,可以通过计算得到弧长。

七、圆的面积的计算总结:1.圆的面积公式为$S=\pi r^{2}$。

2.如果已知圆的半径或直径,可以直接代入公式计算面积。

(完整版)中考复习--圆专题(所有知识点和题型汇总,全)

(完整版)中考复习--圆专题(所有知识点和题型汇总,全)

《圆》题型分类资料一.圆的有关概念:1.下列说法:①直径是弦②弦是直径③半圆是弧,但弧不一定是半圆④长度相等的两条弧是等弧,正确的命题有()A. 1 个B.2 个C.3 个D.4 个2.下列命题是假命题的是()A.直径是圆最长的弦B.长度相等的弧是等弧C.在同圆或等圆中,相等的圆心角所对的弧也相等D.如果三角形一边的中线等于这条边的一半,那么这个三角形是直角三角形。

3.下列命题正确的是()A.三点确定一个圆B.长度相等的两条弧是等弧C.一个三角形有且只有一个外接圆D.一个圆只有一个外接三角形4.下列说法正确的是( )A.相等的圆周角所对的弧相等B.圆周角等于圆心角的一半C.长度相等的弧所对的圆周角相等5.下面四个图中的角,为圆心角的是( )D.直径所对的圆周角等于90°A.B.C.D.二.和圆有关的角:1.如图1,点O 是△ABC 的内心,∠A=50 ,则∠BOC=图1 图22.如图2,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=58°,则∠BCD 的度数为( )A.116°B.64°C. 58°D.32°3.如图3,点O 为优弧AB 所在圆的圆心,∠AOC=108°,点D 在AB 的延长线上,BD=BC,则∠D 的度数为ADOO1 2CDC图 3图 44.如图 4,AB 、AC 是⊙O 的两条切线,切点分别为 B 、C ,D 是优弧 BC 上的一点,已知∠BAC =80°,那么∠BDC =度.5. 如图 5,在⊙O 中, BC 是直径,弦 BA ,CD 的延长线相交于点 P ,若∠P =50°,则∠AOD =.PCBAOBC图 5 图 66. 如图 6,A ,B ,C ,是⊙O 上的三个点,若∠AOC =110°,则∠ABC =°.7. 圆的内接四边形 ABCD 中,∠A :∠B :∠C =2:3:7,则∠D 的度数为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.关于圆的常见辅助线:《圆》题型分类资料一. 圆的有关概念:1.下列说法:①直径是弦 ②弦是直径 ③半圆是弧,但弧不一定是半圆 ④长度相等的两条弧是等弧,正确的命题有( )A . 1个B .2个C .3个D .4个 2.下列命题是假命题的是( )A .直径是圆最长的弦B .长度相等的弧是等弧C .在同圆或等圆中,相等的圆心角所对的弧也相等D .如果三角形一边的中线等于这条边的一半,那么这个三角形是直角三角形。

3.下列命题正确的是 ( )A .三点确定一个圆B .长度相等的两条弧是等弧C .一个三角形有且只有一个外接圆D .一个圆只有一个外接三角形 4.下列说法正确的是( )A .相等的圆周角所对的弧相等B .圆周角等于圆心角的一半 C.长度相等的弧所对的圆周角相等 D .直径所对的圆周角等于90° 5.下面四个图中的角,为圆心角的是( )A .B .C .D . 二.和圆有关的角:1. 如图1,点O是△ABC的内心,∠A=50 ,则∠BOC=_________A图1 图2 图3 图42.如图2,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数为( )A.116°B.64°C. 58°D.32°3. 如图3,点O为优弧AB所在圆的圆心,∠AOC=108°,点D在AB的延长线上,BD=BC,则∠D的度数为4. 如图4,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧BC上的一点,已知∠BAC=80°,那么∠BDC=_________度.5. 如图5,在⊙O中,BC是直径,弦BA,CD的延长线相交于点P,若∠P=50°,则∠AOD =.A图5 图6 图7 图8 6. 如图6,A ,B ,C ,是⊙O 上的三个点,若∠AOC =110°,则∠ABC = °. 7.圆的内接四边形ABCD 中,∠A :∠B :∠C =2:3:7,则∠D 的度数为 。

8. 若⊙O 的弦AB 所对的劣弧是优弧的13,则∠AOB = .9.如图7,AB 是⊙O 的直径,C 、D 、E 都是⊙O 上的点,则∠1+∠2=________ 10.如图8,△ABC 是O 的内接三角形,点C 是优弧AB 上一点(点C 不与A ,B 重合),设OAB α∠=,C β∠= (1)当35α=时,求β的度数;(2)猜想α与β之间的关系为11.已知:如图1,四边形ABCD 内接于⊙O ,延长BC 至E ,求证:∠A +∠B C D=180°,∠DCE =∠A ;如图2,若点C 在⊙O 外,且A 、C 两点分别在直线BD 的两侧,试确定∠A +∠BCD 与180°的大小关系;如图3,若点C 在⊙O 内,且A 、C 两点分别在直线BD 的两侧,试确定∠A +∠BCD 与180°的大小关系。

图1 图2 图 312.如图,四边形ABCD 是O 的内接四边形,四边形ABCO 是菱形(1)求证:AB BC =; (2)求D ∠的度数13.(1)如图O 的直径,AC 是弦,直线EF和O 相切于点C ,AD FE ⊥,垂足为D ,求证CAD BAC ∠=∠;(2)如图(2),若把直线EF 向上移动,使得EF 与O 相交于G ,C 两点(点C 在G的右侧),连结AC ,AG ,若题中其他条件不变,这时图中是否存在与∠CAD 相等的角?若存在,找出一个这样的角,并证明;若不存在,说明理由。

三.和圆有关的位置关系: (一)点和圆的位置关系:1.已知⊙O 的半径为4,A 为线段PO 的中点,当OP =10时,点A 与⊙O 的位置关系为( )A .在圆上B .在圆外C .在圆内D .不确定2. 如图,在R t △ABC 中∠ACB =90°,AC =6,AB =10,CD 是斜边AB 上的中线,以AC 为直径作⊙O ,设线段CD 的中点为P ,则点P 与⊙O 的位置关系是点P ( )。

A . 在⊙O 内B . 在⊙O 上C . 在⊙O 外D . 无法确定 3.如图1,已知O 的半径为5,点O 到弦AB 的距离为3,则O 上到弦AB 所在直线的 图1 距离为2的点有( )备用图A .1个B .2个C .3个D .4个4.变式训练:如图1,已知⊙O 的半径为5,点O 到弦AB 的距离为3,则⊙O 上到弦AB 所在直线的距离为1的点有( )A .1个B .2个C .3个D .4个5. Rt △ABC 中,∠C =90°,AC =2,BC =4,如果以点A 为圆心,AC 为半径作⊙A ,那么斜边中点D 与⊙O 的位置关系是( )A .点D 在⊙A 外B .点D 在⊙A 上C .点D 在⊙A 内 D .无法确定(二)直线和圆的位置关系:1.如图,在RT △ABC 中,∠C =90°,∠B =30°,BC =34cm ,以点C 为圆心,以32cm 的长为半径,则⊙C 与AB 的位置关系是 ;2.如图,已知AB 是⊙O 的一条直径,延长AB 至C 点,使得AC =3BC ,CD 与⊙O 相切,切点为D .若CD =3,则线段BC 的长度等于__________.3.如图Rt △ABC 中∠C =90°,∠A =30°,在AC 边上取点O 画圆使⊙O 经过A 、B 两点,下列结论中:①AO =2CO ; ②AO =BC ; ③以O 为圆心,以OC 为半径的圆与AB 相切;④延长BC 交⊙O 于 点D ,则A 、B 、D 是⊙O 的三等分点,正确的序号是 4.如图,AB 是⊙O 的直径,⊙O 交BC 的中点于D ,DE ⊥AC 于E ,连接AD ,则下列结论:①AD ⊥BC ;②∠EDA =∠B ;③AD =AO ;④AB =AC ;⑤DE 是⊙O 切线.正确的是_______________.5. 如图,∠AOB =30°,M 为OB 边上一点,以M 为圆心、2为半径作⊙M . 若点M 在OB 边上运动,则当OM = 时,⊙M 与OA 相切;当OM 满足 时,⊙M 与OA 相交;当OM 满足 时,⊙M 与OA 相离.6. 在Rt △ABC 中,∠C =90°,AC =3cm ,BC =4cm ,以C 为圆心,r 为半径的圆与AB 有何位置关系?为什么?(1)r =2cm ;(2)r =2.4cm ;(3)r =3cm7. 已知:如图,在△ABC 中,D 是AB 边上一点,圆O 过D 、B 、C 三点, ∠DOC =2∠ACD =90︒。

(1) 求证:直线AC 是圆O 的切线;(2) 如果∠ACB =75︒,圆O 的半径为2,求BD 的长。

8. 如图,点A 、B 、C 分别是⊙O 上的点,⊙B =60°,AC =3,CD 是⊙O 的直径,P是CD 延长线上的一点,且AP =AC . (1)求证:AP 是⊙O 的切线;(2)求PD 的长.9.如图,四边形ABCD 是等腰梯形,AD ∥BC ,BC =2,以线段BC 的中点O 为圆心,以OB 为半径作圆,连结OA 交⊙O 于点M 。

若点E 是线段AD,OA =2,求证:直线AD的中点,AE =与⊙O 相切。

10. 如图,已知四边形OABC 是菱形,∠O 的60°,点M 是边OA 的中点.以点O 为圆心,r 为半径作⊙O 分别交OA ,OC 于点D ,E ,连接BM 。

若BM⌒DE. 求证:直线BC 与⊙O 相切.11. 如图,在正方形ABCD 中,E 是AB 边上任意一点,∠ECF =45°,CF 交AD 于点F ,将PE△CBE 绕点C 顺时针旋转到△CDP ,点P 恰好在AD 的延长线上. (1)求证:EF =PF ;(2)直线EF 与以C 为圆心,CD 为半径的圆相切吗?为什么? 12. 如图,已知AB 是O 的直径,点D 在O 上,C 是O 外一点.若AD//OC ,直线BC与O 相交,判断直线CD 与O 的位置关系,并说明理由.13. 如图,□ABCD 中,O 为AB 边上一点,连接OD ,OC ,以O 为圆心,OB 为半径画圆,分别交OD ,OC 于点P ,Q .若OB =4,OD =6,∠ADO=∠A ,⌒PQ =2π,判断直线DC 与⊙O 的位置关系,并说明理由.14. 如图,□ABCD 中,O 为BC 边上一点,OD 平分∠ADC ,以O 为圆心,OC 为半径画圆,交OD 于点E ,若AB =6.□ABCD 的面积是,弧EC =π,判断直线AB 与⊙O 的位置关系,并说明理由.15. 已知四边形ABCD 内接于⊙O ,∠ADC =90°,∠DCB <90°,对角线AC 平分∠DCB ,延长DA ,CB 相交于点E . (1)如图1,EB =AD ,求证:△ABE 是等腰直角三角形;16.已知直线PA 交⊙O 于A 、B ,AE 是⊙O 的直径,点C 为⊙O 上一点,且AC 平分∠PAE ,过点C 作CD ⊥PA ,垂足为D .(1)求证:CD 是⊙O 的切线;(2)若DC +DA =6,⊙O 的直径为10,求AB 的长度.17.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过点C 点的切线互相垂直,垂足为D ,AD 交⊙O 于点E . (1)求证:AC 平分∠DAB ;A(2)若∠B =60°,CD=,求AE 的长。

18.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,H 是AC 的中点,且OH =1,∠A =30º. (1)求劣弧AC ⌒的长;(2)若∠ABD =120º,BD =1,求证:CD 是⊙O 的切线.19.如图,⊙O 是△ABC 的外接圆,AC 是直径,过点O 作OD ⊥AB 于点D ,延长DO 交⊙O 于点P ,过点P 作PE⊥AC 于点E ,作射线DE 交BC 的延长线于F 点,连接PF 。

(1)若∠POC =60°,AC =12,求劣弧PC 的长;(结果保留π)(2)求证:OD =OE ;(3) PF 是⊙O 的切线。

四.和圆有关的计算:(一)有关弦长、半径、弦心距等的计算:1.半径为5的圆中有两条平行弦,长度分别为4和6,则这两条弦之间的距离是 .2.如图1,点P 是半径为5的⊙O 内的一点,且OP =3,设AB 是过点P 的⊙O 内的弦,且AB ⊥OP ,则弦AB 长是 ;图1 图23.在直角坐标系中,一条弧经过网格点A、B 、C ,其中点B 的坐标为(4,4),则该圆弧所在圆的圆心的坐标为 ;4.如图,⊙O 的直径为20 cm ,弦AB =16 cm ,AB OD ⊥,垂足为D .则AB 沿射线OD 方向平移 cm 时可与⊙O 相切.5.已知,如图,⊙O 是△ABC 的内切圆,切点分别为D 、E 、F ,若AB =7,AC =8,BC =9,求AD 、BE 、CF 的长。

相关文档
最新文档