第10讲 对数与对数函数(教师版) 备战2021年新高考数学考点精讲与达标测试
对数及对数函数要点及解题技巧讲解

的最大值与最小值之差为12,则 a 等于( )
人
A. 2
B.2 或12
教
B
版
C.2 2
D.4 或14
分析:∵a>1 与 0<a<1 时,f(x)的单调性不同,∴最
小值、最大值也不同,故需分类讨论.
第2章 函数
高考数学总复习
解析:当 0<a<1 时,f(x)在[a,2a]上单调递减,由题意
得,logaa-loga2a=12,∴loga2=-12,∴a=14.
人 教
B
当 a>1 时,∴f(x)=logax 在[a,2a]上为增函数,
版
∴loga2a-logaa=12,解得 a=4,故选 D.
答案:D
第2章 函数
(2011·江苏四市联考)已知函数 f(x)=|log2x|,正实 数 m、n 满足 m<n,且 f(m)=f(n),若 f(x)在区间[m2,
高考数学总复习
二、对数函数的图象与性质
定义
y=logax(a>0,a≠1)
人 教
B
版
图象
第2章 函数
高考数学总复习
(1)定义域:(0,+∞) (2)值域:R
(3)过点(1,0),即当 x=1 时,y=0.
人
性质 (4)当 a>1 时,在(0,+∞)是增函数;
教
B
当 0<a<1 时,在(0,+∞)上是减函数.
B
版
(2)原式=llgg23+llgg29·llgg34+llgg38
=llgg23+2llgg23·2llgg32+3llgg32=32llgg23·56llgg32=54.
答案:(1)2
高考数学总复习第二单元函数第10讲对数与对数函数课件

(2)logambn=mn logab.
其中 a>0,且 a≠1,b>0,b≠1,m,n∈R.
2.对数函数 y=logax(a>0,且 a≠1)与 y=loga1x 的图
象关于 x 轴对称.
3.对数函数 y=logax 的底数 a>1 时,a 越大,增长越 慢,图象在 x 轴上方越靠近 x 轴(x>1 时);0<a<1 时,a 越 小,图象在 x 轴下方越靠近 x 轴(x>1).
答案:A
4.当 a>1 时,在同一坐标系中,函数 y=a-x 与 y=logax 的图象大致是( )
解:因为 a>1,所以 0<1a<1,所以函数 y=a-x 单调递 减,y=logax 单调递增,故选 A.
答案:A
5.当 x∈(-1,0)时,f(x)=log2a(x+1)>0,则 a 的取值范
第10讲 对数与对数函数
1.理解对数的概念及其运算性质,知道用换底公式将一 般对数转化为常用对数或自然对数;了解对数在简化运算中 的作用.
2.理解对数函数的概念及其单调性,掌握对数函数图象 经过的特殊点,会画底数为 2,10,12的对数函数的图象.
3.体会对数函数是一种重要的函数模型. 4.了解指数函数与对数函数互为反函数.
则( )
A.a>c>b
B.b>c>a
C.c>b>a
D.c>a>b
解:a=log32<log33=1;c=log23>log22=1, 由对数函数的图象和性质可知,log52<log32, 所以 b<a<c. 答案:D
点评:对数函数值大小比较一般有三种方法: ①单调性法,在同底的情况下直接得到大小关系,若 不是同底,先化为同底; ②“中间量”法,即寻找中间数联系要比较的两个数, 一般是用“0”“1”或其他特殊值进行“比较传递”; ③图象法,根据图象观察得出大小关系.
新高考数学总复习专题三3.4对数与对数函数课件

例2 已知a>0,且a≠1, f(x)=loga|ax2-x|在[3,4)上是增函数,则a的取值范围是()A.a |
1 6
a
1 4
或a
1
B.{a|a>1}
C. a
|
1 8
a
1 4
D.
a
|
1 5
a
1 4
或a
1
解析 令g(x)=|ax2-x|,由题意知g(x)≠0,作出其图象如图.
若a>1,则y=logax在(0,+∞)上单调递增,0<
例1 (1)(202X天津,5,5分)设a=log20.3,b=log1 0.4,c=0.40.3,则a,b,c的大小关系
2
为( )
A.a<b<c B.c<a<b C.b<c<a D.a<c<b
(2)(202X全国乙,12,5分)设a=2ln 1.01,b=ln 1.02,c= 1.04 -1,则 ( )
c= 1 0.04 -1,令g(x)= 1 2x -1-ln(1+x),x∈[0,1),则g'(x)= 1 - 1 =
1 2x 1 x
1 x 1 2x ,而(1+x)2-(1+2x)=x2≥0,∴g(x)在[0,1)上为增函数,∴g(0.02)>
(1 x) 1 2x
g(0)=0,∴c>b.综上,a>c>b,故选B.
A.a<b<c B.b<c<a C.b<a<c D.c<a<b
解析
(1)∵log20.3<log21=0,∴a<0,∵lo
2021年新高考数学总复习讲义:对数函数

第 1 页 共 7 页 2021年新高考数学总复习讲义:对数函数 知识讲解
一、对数
1.定义:一般地,对于指数式b
a N ,我们把“以a 为底N 的对数
b ”记作,即log a b N (0a 且1a ),其中,数a 叫做对数底数,N 叫做真数.
2.对数运算
1)对数的运算性质:
如果0a >,且1,0,0a M N ≠>>,那么:
i. log log log ()a a a M N M N +=⋅;(对数的和等于积的对数)
ii. 推广1212log (...)log log ...log a k a a a k N N N N N N ⋅=+++ iii. log log log a a a M M N N -=;(商的对数等于对数的差) iv. log log (R)a a M M ααα=∈
v. 1log log n a a N N n
= 2)换底公式:log log log a b a N N b =
(,0,,1,0a b a b N >≠>) 3)关于对数的恒等式
log a N a N = log n a a n =
1log log a b b a = log log n m a a m M M n = log log log log a b a b M M N N =
二、对数函数
1.定义:函数log a y x =(0a >且1a ≠)叫做对数函数,其中x 是自变量,函数的定义域是
(0,)+∞,值域为实数集R .
2.对数函数log (0a y x a =>且1a ≠)的图象和性质:。
(新课标)2021版高考数学一轮总复习第二章函数第10讲对数与对数函数导学案新人教A版

第10讲 对数与对数函数【课程要求】1.理解对数的概念,掌握指数与对数的相互转化,会运用指数、对数运算法则进行有关运算.2.掌握对数函数的定义、图象和性质及其应用. 3.掌握以对数函数为载体的复合函数的有关性质.4.了解指数函数y =a x与对数函数y =log a x 互为反函数的关系(a>0且a ≠1).对应学生用书p 25【基础检测】概念辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若MN>0,则log a (MN)=log a M +log a N.( )(2)对数函数y =log a x(a>0且a ≠1)在(0,+∞)上是增函数.( ) (3)函数y =ln 1+x1-x与y =ln (1+x)-ln (1-x)的定义域相同.( )(4)对数函数y =log a x(a>0且a ≠1)的图象过定点(1,0)且过点(a ,1),⎝ ⎛⎭⎪⎫1a ,-1,函数图象只在第一、四象限.( )[答案] (1)× (2)× (3)√ (4)√教材改编2.[必修1p 68T 4]log 29·log 34·log 45·log 52=____________. [解析]原式=2log 23·log 34·log 45·log 52=2·lg 3lg 2·lg 4lg 3·lg 5lg 4·lg 2lg 5=2. [答案]23.[必修1p 82A 组T 6]已知a =2-13,b =log 213,c =log 1213,则a ,b ,c 的大小关系为____________.[解析]∵0<a<1,b<0,c =log 1213=log 23>1,∴c>a>b.[答案]c>a>b4.[必修1p 74A 组T 7]函数y =log 23(2x -1)的定义域是__________.[解析]由log 23(2x -1)≥0,得0<2x -1≤1.∴12<x ≤1. ∴函数y =log 23(2x -1)的定义域是⎝ ⎛⎦⎥⎤12,1. [答案]⎝ ⎛⎦⎥⎤12,1 易错提醒5.已知b>0,log 5b =a ,lg b =c ,5d=10,则下列等式一定成立的是( )A .d =acB .a =cdC .c =adD .d =a +c[解析]由log 5b =a 知b =5a,由lg b =c 知c =lg 5a=a lg 5,由5d=10知d =log 510=lg 10lg 5=1lg 5,∴cd =a lg 5·1lg 5=a ,故选B . [答案]B6.已知a>0,a ≠1,函数y =a x与y =log a (-x)的图象可能是( )[解析]函数y =log a (-x)的图象与y =log a x 的图象关于y 轴对称,符合条件的只有B . [答案]B 【知识要点】 1.对数概念如果a x=N(a>0,且a ≠1),那么数x 叫做以a 为底N 的__对数__,记作x =log a N ,其中a叫做对数的底数,N叫做真数,loga N叫做对数式性质对数式与指数式的互化:a x=N⇔__x=log a N__log a1=0,log a a=1,a log a N=__N__运算法则log a(M·N)=__log a M+log a N__log aMN=__log a M-log a N__log a M n=__n log a M__(n∈R)a>0,且a≠1,M>0,N>0换底公式换底公式:log a b=log c blog c a(a>0,且a≠1,c>0,且c≠1,b>0)函数y=log a x(a>0,且a≠1)图象a>1 0<a<1图象特征在y轴__右侧__,过定点(1,0)当x逐渐增大时,图象是__上升__的当x逐渐增大时,图象是__下降__的性质定义域(0,+∞)值域R单调性 在(0,+∞)上是__增函数__ 在(0,+∞)上是__减函数__函数值 变化 规律当x =1时,__y =0__当x >1时,__y >0____;当0<x <1时,__y <0__ 当x >1时,__y <0__;当0<x <1时,__y >0__指数函数y =a x与对数函数y =log a x 互为反函数,它们的图象关于直线__y =x__对称. 【知识拓展】1.换底公式的两个重要结论 (1)log a b =1log b a;(2)log am b n=n mlog a b.其中a>0且a ≠1,b>0且b ≠1,m ,n ∈R . 2.对数函数的图象与底数大小的比较如图,作直线y =1,则该直线与四个函数图象交点的横坐标为相应的底数,故0<c<d<1<a<b.由此我们可得到以下规律:在第一象限内从左到右底数逐渐增大.对应学生用书p 26对数的运算1 (1)计算:log 89×log 2732=________. [解析]根据换底公式,log 89=lg 9lg 8=2lg 33lg 2,所以log 2732=lg 32lg 27=5lg 23lg 3, 所以log 89×log 2732=2lg 33lg 2×5lg 23lg 3=109.[答案]109(2)计算:()1-log 632+log 62·log 618log 64=________.[解析]原式=1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+(1-log 63)(1+log 63)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.[答案]1(3)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是(参考数据:lg 3≈0.48)( )A .1033B .1053C .1073D .1093[解析]由题意,lg M N =lg 33611080=lg 3361-lg 1080=361lg 3-80lg 10≈361×0.48-80×1=93.28. 又lg 1033=33,lg 1053=53,lg 1073=73,lg 1093=93, 故与M N 最接近的是1093.故选D . [答案]D[小结]对数运算的一般思路(1)拆:首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后利用对数运算性质化简合并.(2)合:将对数式化为同底数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.1.设2a =5b=m ,且1a +1b=2,则m 等于( )A .10B .10C .20D .100[解析]由已知,得a =log 2m ,b =log 5m ,则1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2. 解得m =10. [答案]A2.已知函数f(x)=⎩⎪⎨⎪⎧log 2x ,x >0,3-x +1,x ≤0,则f(f(1))+f ⎝ ⎛⎭⎪⎫log 312的值是__________.[解析]因为f(1)=log 21=0,所以f(f(1))=f(0)=2. 因为log 312<0,所以f ⎝ ⎛⎭⎪⎫log 312=3-log 312+1=3log 32+1=2+1=3. 所以f(f(1))+f ⎝ ⎛⎭⎪⎫log 312=2+3=5.[答案]53.求值:2log 323-log 3427-31+log 32=________.[解析]2log 323-log 3427-31+log 32=2(log 32-1)-(log 34-3)-3log 36 =2log 32-2-2log 32+3-6 =-5. [答案]-5对数函数的图象及应用例2 (1)函数f(x)=log a |x|+1(0<a <1)的图象大致为( )[解析]由函数f(x)的解析式可确定该函数为偶函数,图象关于y 轴对称.设g(x)=log a |x|,先画出x>0时,g(x)的图象,然后根据g(x)的图象关于y 轴对称画出x<0时g(x)的图象,最后由函数g(x)的图象向上整体平移一个单位即得f(x)的图象,结合图象知选A .[答案]A(2)已知函数f(x)=⎩⎪⎨⎪⎧log 2x ,x>0,3x ,x ≤0,且关于x 的方程f(x)+x -a =0有且只有一个实根,则实数a 的取值范围是________.[解析]如图,在同一坐标系中分别作出y =f(x)与y =-x +a 的图象,其中a 表示直线在y 轴上的截距.由图可知,当a>1时,直线y =-x +a 与y =log 2x 只有一个交点.[答案] (1,+∞)[小结](1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想求解.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.4.已知函数y =⎝ ⎛⎭⎪⎫12x的图象与函数y =log a x(a>0,a ≠1)的图象交于点P(x 0,y 0),如果x 0≥2,那么a 的取值范围是( )A .[2,+∞)B .[4,+∞)C .[8,+∞)D .[16,+∞)[解析]由已知中两函数的图象交于点P(x 0,y 0),由指数函数的性质可知,若x 0≥2,则0<y 0≤14,即0<log a x 0≤14,由于x 0≥2,所以a>1且4a ≥x 0≥2,解得a ≥16.[答案]D5.当0<x ≤12时,4x<log a x ,则a 的取值范围是( )A .⎝ ⎛⎭⎪⎫0,22B .⎝ ⎛⎭⎪⎫22,1 C .(1,2) D .(2,2)[解析]由题意得,当0<a<1时,要使得4x <log a x ⎝ ⎛⎭⎪⎫0<x ≤12,即当0<x ≤12时,函数y =4x的图象在函数y =log a x 图象的下方.又当x =12时,412=2,即函数y =4x的图象过点⎝ ⎛⎭⎪⎫12,2.把点⎝ ⎛⎭⎪⎫12,2代入y =log a x ,得a =22.若函数y =4x的图象在函数y =log a x 图象的下方,则需22<a<1(如图所示). 当a>1时,不符合题意,舍去. 所以实数a 的取值范围是⎝ ⎛⎭⎪⎫22,1. [答案]B对数函数的性质及其应用3 (1)设a =log 412,b =log 515,c =log 618,则( )A .a>b>cB .b>c>aC .a>c>bD .c>b>a[解析]a =1+log 43,b =1+log 53,c =1+log 63, ∵log 43>log 53>log 63,∴a>b>c. [答案]A(2)若函数f(x)=log 2(x 2-ax -3a)在区间(-∞,-2]上是减函数,则实数a 的取值范围是( )A .(-∞,4)B .(-4,4]C .(-∞,-4)∪[-2,+∞)D .[-4,4)[解析]由题意得x 2-ax -3a>0在区间(-∞,-2]上恒成立且函数y =x 2-ax -3a 在(-∞,-2]上单调递减,则a 2≥-2且(-2)2-(-2)a -3a>0,解得实数a 的取值范围是[-4,4),故选D .[答案]D(3)若函数f(x)=log a ⎝ ⎛⎭⎪⎫x 2+32x (a>0,a ≠1)在区间⎝ ⎛⎭⎪⎫12,+∞内恒有f(x)>0,则f(x)的单调递增区间为( )A .(0,+∞)B .(2,+∞)C .(1,+∞)D .⎝ ⎛⎭⎪⎫12,+∞[解析]令M =x 2+32x ,当x ∈⎝ ⎛⎭⎪⎫12,+∞时,M ∈(1,+∞),f(x)>0,所以a>1,所以函数y =log a M 为增函数,又M =⎝ ⎛⎭⎪⎫x +342-916,因此M 的单调递增区间为⎝ ⎛⎭⎪⎫-34,+∞. 又x 2+32x>0,所以x>0或x<-32,所以函数f(x)的单调递增区间为(0,+∞). [答案]A[小结](1)在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a 的取值对函数增减性的影响,及真数必须为正的限制条件.(2)对数函数性质的应用多用在复合函数的单调性上,即求形如y =log a f(x)的复合函数的单调区间,其一般步骤为:①求定义域,即满足f(x)>0的x 的取值集合;②将复合函数分解成基本初等函数y =log a u 及u =f(x);③分别确定这两个函数的单调区间;④若这两个函数同增或同减,则y =log a f(x)为增函数,若一增一减,则y =log a f(x)为减函数,即“同增异减”.4 已知函数f(x)=3-2log 2x ,g(x)=log 2x. (1)当x ∈[1,4]时,求函数h(x)=[f(x)+1]·g(x)的值域;(2)如果对任意的x ∈[1,4],不等式f(x 2)·f(x)>k ·g(x)恒成立,求实数k 的取值范围.[解析] (1)h(x)=(4-2log 2x)·log 2x =-2(log 2x -1)2+2, 因为x ∈[1,4],所以log 2x ∈[0,2], 故函数h(x)的值域为[0,2].(2)由f(x 2)·f(x)>k ·g(x),得(3-4log 2x)(3-log 2x)>k ·log 2x , 令t =log 2x ,因为x ∈[1,4],所以t =log 2x ∈[0,2], 所以(3-4t)(3-t)>k ·t 对一切t ∈[0,2]恒成立, ①当t =0时,k ∈R ;②当t ∈(0,2]时,k <(3-4t )(3-t )t 恒成立,即k <4t +9t-15,因为4t +9t ≥12,当且仅当4t =9t ,即t =32时取等号,所以4t +9t-15的最小值为-3.综上,实数k 的取值范围是(-∞,-3).[小结]1.无论题型如何变化,都是围绕对数函数的单调性,变换不同的角度来应用.例3(1)是对数函数单调性的直接应用,利用单调性来比较大小、解不等式;例3(2),(3)是对数函数单调性的迁移应用,根据单调性来求参数的范围,所以弄清对数函数的单调性是解题的关键,并注意有时需对底数字母参数进行讨论.2.与对数型函数有关的恒成立问题多与其定义域和值域有关.对于函数y =log a f (x )(a >0,且a ≠1),若定义域为R ,则f (x )>0在R 上恒成立;若值域为R ,则f (x )能取遍所有正实数.6.若实数a ,b ,c 满足log a 2<log b 2<log c 2,则下列关系中不可能成立的是( )A .a<b<cB .b<a<cC .c<b<aD .a<c<b[解析]由log a 2<log b 2<log c 2的大小关系,可知a ,b ,c 有如下四种可能:①1<c<b<a ;②0<a<1<c<b ;③0<b<a<1<c ;④0<c<b<a<1.对照选项可知A 中关系不可能成立.[答案]A7.已知不等式log x (2x 2+1)<log x (3x)<0成立,则实数x 的取值范围是__________.[解析]原不等式⇔⎩⎪⎨⎪⎧0<x<1,2x 2+1>3x>1①或⎩⎪⎨⎪⎧x>1,2x 2+1<3x<1②,解不等式组①得13<x<12,不等式组②无解,所以实数x 的取值范围是⎝ ⎛⎭⎪⎫13,12.[答案]⎝ ⎛⎭⎪⎫13,12 8.已知函数f(x)=log a x +b(a>0,a ≠1)的定义域、值域都是[1,2],则a +b =________. [解析]当0<a<1时,易知函数f(x)为减函数,由题意有⎩⎪⎨⎪⎧f (1)=b =2,f (2)=log a 2+b =1,解得a =12,b =2,符合题意,此时a +b =52;当a>1时,易知函数f(x)为增函数,由题意有⎩⎪⎨⎪⎧f (1)=b =1,f (2)=log a 2+b =2,解得a =2,b =1,符合题意,此时a +b =3.综上可得:a +b 的值为52或3.[答案]52或3对应学生用书p27(2019·全国卷Ⅱ理)若a>b,则( )A.ln(a-b)>0B.3a<3bC.a3-b3>0D.|a|>|b|[解析]取a=2,b=1,满足a>b,但ln(a-b)=0,则A错,排除A;由9=32>31=3,知B错,排除B;取a=1,b=-2,满足a>b,但|1|<|-2|,则D错,排除D;因为幂函数y=x3是增函数,a>b,所以a3>b3,即a3-b3>0,C正确.故选C.[答案]C11。
2023年数学高考复习真题演练(2021-2022年高考真题)10 对数与对数函数 (含详解)

专题10 对数与对数函数【考点预测】 1.对数式的运算(1)对数的定义:一般地,如果(0x a N a =>且1)a ≠,那么数x 叫做以a 为底N 的对数,记作log a x N =,读作以a 为底N 的对数,其中a 叫做对数的底数,N 叫做真数.(2)常见对数:①一般对数:以(0a a >且1)a ≠为底,记为log N a ,读作以a 为底N 的对数;②常用对数:以10为底,记为lg N ; ③自然对数:以e 为底,记为ln N ; (3) 对数的性质和运算法则:①1log 0a =;log 1a a =;其中0a >且1a ≠;②log Na a N =(其中0a >且1a ≠,0N >); ③对数换底公式:log log log c a c bb a=; ④log ()log log a a a MN M N =+; ⑤log log log aa a MM N N=-; ⑥log log (m na a nb b m m=,)n R ∈; ⑦log a b a b =和log b a a b =; ⑧1log log a b b a=; 2.对数函数的定义及图像(1)对数函数的定义:函数 log a y x =(0a >且1)a ≠叫做对数函数. 对数函数的图象【方法技巧与总结】 1.对数函数常用技巧在同一坐标系内,当1a >时,随a 的增大,对数函数的图象愈靠近x 轴;当01a <<时,对数函数的图象随a 的增大而远离x 轴.(见下图)【题型归纳目录】题型一:对数运算及对数方程、对数不等式 题型二:对数函数的图像题型三:对数函数的性质(单调性、最值(值域)) 题型四:对数函数中的恒成立问题 题型五:对数函数的综合问题 【典例例题】题型一:对数运算及对数方程、对数不等式例1.(2022·全国·高三专题练习)(1)计算331log 2327lg 50lg 2+++; (2)已知()23log log lg 1x ⎡⎤=⎣⎦,求实数x 的值; (3)若185a =,18log 9b =,用a ,b ,表示36log 45. 例2.(2022·全国·高三专题练习)(1)求23151log log 8log 2725⋅⋅的值. (2)已知9log 5=a ,37b =,试用a ,b 表示21log 35例3.(2022·全国·高三专题练习)(1)已知a ,b ,c 均为正数,且3a =4b =6c ,求证:212ab c+=;(2)若60a =3,60b =5,求12(1)12a bb ---的值.例4.(2022·全国·模拟预测)若e 4a =,e 25b =,则( ) A .a +b =100B .b -a =ea 增大a 增大C .28ln 2ab <D .ln6b a ->例5.(2022·全国·模拟预测)已知实数x ,y 满足0x >,0y >,1x ≠,1y ≠,y x x y =,log 4y xx y+=,则x y +=( ) A .2 B .4 C .6 D .8例6.(2022·北京昌平·二模)已知函数2()42(0)f x ax ax a =-+<,则关于x 的不等式2()log f x x >的解集是( )A .(,4)-∞B .(0,1)C .(0,4)D .(4,)+∞例7.(2022·全国·江西师大附中模拟预测(文))已知函数()122log ,1,1,1,x x f x x x >⎧⎪=⎨⎪-≤⎩则不等式()(1)f x f x <-的解集为______.例8.(2022·辽宁·东北育才学校二模)若函数()f x 满足:(1)1x ∀,()20,x ∈+∞且12x x ≠,都有()()21210f x f x x x -<-;(2)()()1122x f f x f x x ⎛⎫=- ⎪⎝⎭,则()f x =___________.(写出满足这些条件的一个函数即可)例9.(2022·全国·高三专题练习)设函数()log m f x x =(0m >且1m ≠)的图像经过点()3,1.(1)解关于x 的方程()()22(1)10f x m f x m +-+-=;(2)不等式()()10f x a f x +⋅->⎡⎤⎡⎤⎣⎦⎣⎦的解集是1,93⎛⎫⎪⎝⎭,试求实数a 的值.【方法技巧与总结】对数的有关运算问题要注意公式的顺用、逆用、变形用等.对数方程或对数不等式问题是要将其化为同底,利用对数单调性去掉对数符号,转化为不含对数的问题,但这里必须注意对数的真数为正.题型二:对数函数的图像例10.(2022·山东潍坊·二模)已知函数()()log a f x x b =-(0a >且1a ≠)的图像如图所示,则以下说法正确的是( )A .0a b +<B .1ab <- C .01b a << D .log 0a b >例11.(2022·江苏省高邮中学高三阶段练习)函数log (3)1(0a y x a =+->且1)a ≠的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则11+m n的最小值为( ) A .3-B .1C . 3+D .2+(多选题)例12.(2022·福建·莆田二中模拟预测)已知函数()()log a g x x k =+(0a >且1a ≠)的图象如下所示.函数()()1x x f x k a a -=--的图象上有两个不同的点()11,A x y ,()22,B x y ,则( )A .1a >,2k >B .()f x 在R 上是奇函数C .()f x 在R 上是单调递增函数D .当0x ≥时,()()22f x f x ≤例13.(2022·全国·高三专题练习)已知223,20(){1ln ,021x x x f x x x -+-≤<=≤≤+,若()()g x f x ax a =--的图象与x 轴有3个不同的交点,则实数a 的取值范围为______.【方法技巧与总结】研究和讨论题中所涉及的函数图像是解决有关函数问题最重要的思路和方法.图像问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型三:对数函数的性质(单调性、最值(值域))例14.(2022·陕西·榆林市第十中学高二期中(文))函数()22log 43y x x =+-的一个单调增区间是( )A .3,2⎛⎫-∞ ⎪⎝⎭B .3,2∞⎡⎫+⎪⎢⎣⎭C .31,2⎛⎫- ⎪⎝⎭D .3,42⎡⎫⎪⎢⎣⎭例15.(2022·天津·南开中学二模)已知函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调函数,则实数a 的取值范围为( ) A .11,42⎡⎫⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .1,12⎛⎫ ⎪⎝⎭例16.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则( ) Ab a <<B.b a <Ca b <D.a b <<例17.(2022·全国·高三专题练习(理))函数f (x )=log ax (0<a <1)在[a 2,a ]上的最大值是( ) A .0 B .1C .2D .a 例18.(2022·重庆·模拟预测)若函数()2()log 341a f x x ax =-+-有最小值,则实数a 的取值范围是( )A.⎫⎪⎪⎝⎭B.C.⎛ ⎝⎭D.)+∞【方法技巧与总结】研究和讨论题中所涉及的函数性质是解决有关函数问题最重要的思路和方法.性质问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型四:对数函数中的恒成立问题例19.(2022·北京·高三专题练习)若不等式2log 0a x x -<在10,2⎛⎫ ⎪⎝⎭内恒成立,则a 的取值范围是( ) A .1116a ≤< B .1116a << C .1016a <≤D .1016a <<例20.(2022·江苏·高三专题练习)已知函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤⎥⎝⎦,若不等式()()log 4log 2x a x a t t ⋅<-在[]1,2x ∈上恒成立,则t 的取值范围是( ) A .2,25⎛⎫ ⎪⎝⎭B .2,5⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .()0,2例21.(2022·浙江·高三阶段练习)已知函数()29x f x x+=,()2log g x x a =+,若存在[]13,4x ∈,任意[]24,8x ∈,使得()()12f x g x ≥,则实数a 的取值范围是___________. 例22.(2022·全国·高三专题练习)已知函数()ln f x x x =-,已知实数0a >,若2()e ln 0x f x a a ++≥在()0+∞,上恒成立,求实数a 的取值范围. 例23.(2022·全国·高三专题练习)已知函数()log (0,1)x a f x a x a a =+>≠在[1,2]上的最大值与最小值之和为6log 2a +. (1)求实数a 的值;(2)对于任意的[2,)x ∈+∞,不等式()10kf x -≥恒成立,求实数k 的取值范围.例24.(2022·陕西安康·高三期末(文))已知函数()()()2log 2log 30,1a a f x x x a a =++>≠.(1)若()32f =,求a 的值;(2)若对任意的[]8,12x ∈,()6f x >恒成立,求a 的取值范围.例25.(2022·上海·高三专题练习)已知2()32log f x x =-,2()log g x x =. (1)当[]1,4x ∈时,求函数[]()1()y f x g x =+⋅的值域;(2)对任意12,2n n x +⎡⎤∈⎣⎦,其中常数n N ∈,不等式()2()f x f kg x ⋅>恒成立,求实数k的取值范围.【方法技巧与总结】(1)利用数形结合思想,结合对数函数的图像求解;(2)分离自变量与参变量,利用等价转化思想,转化为函数的最值问题.(3)涉及不等式恒成立问题,将给定不等式等价转化,借助同构思想构造函数,利用导数探求函数单调性、最值是解决问题的关键.题型五:对数函数的综合问题例26.(2022·河北·张家口市第一中学高三阶段练习)已知定义域为()0,∞+的单调递增函数()f x 满足:()0,x ∀∈+∞,有()()ln 1f f x x -=,则方程()242f x x x =-+-的解的个数为( )A .3B .2C .1D .0例27.(2022·四川雅安·三模(文))设()f x 是定义在R 上的偶函数,对任意R x ∈,都有()()4f x f x +=,且当[]2,0x ∈-时,()163xf x ⎛⎫=- ⎪⎝⎭.若在区间(]2,6-内关于x 的方程()()()log 201a f x x a -+=>恰有3个不同的实数根,则a 的取值范围是( ).A .()1,2B .()2,+∞C .(D .)2例28.(2022·广西柳州·高一期中)已知0a b >>,且1a b +=,则( )A.sin sin a b > B .11a b> C .22a b +>D .lg lg 0a b +=例29.(2022·河北保定·二模)已知函数2332xxy =-在()0,∞+上先增后减,函数3443xxy =-在()0,∞+上先增后减.若()231log log x =()321log log 0x a =>,()()242422log log log log x x b ==,()()343433log log log log 0x x c ==>,则( ) A .a c <B .b a <C .c a <D .a b <例30.(2022·广东·三模)已知,R a b ∈,e 是自然对数的底,若e ln b b a a +=+,则a b的取值可以是( ) A .1B .2C .3D .4例31.(2022·全国·高三专题练习)已知0x 是函数()22e ln 2x f x x x -=+-的零点,则020e ln xx -+=_______.【过关测试】一、单选题 1.(2022·辽宁辽阳·二模)区块链作为一种新型的技术,被应用于许多领域.在区块链技术中,某个密码的长度设定为512B ,则密码一共有5122种可能,为了破解该密码,在最坏的情况下,需要进行5122次运算.现在有一台计算机,每秒能进行142.510⨯次运算,那么在最坏的情况下,这台计算机破译该密码所需的时间大约为(参考数据lg20.3≈ 1.58≈)( ) A .1393.1610s ⨯ B .1391.5810s ⨯ C .1401.5810s ⨯D .1403.1610s ⨯2.(2022·山东·肥城市教学研究中心模拟预测)已知1log 3m p =,9p n =,其中0m >且1m ≠,0n >且1n ≠,若20m n -=,则p 的值为( ) A .3log 2B .2log 3C .2D .33.(2022·河南安阳·模拟预测(文))已知正实数x ,y ,z 满足(34zx y ==,则( ) A .111x y z+=B .111y z x+= C .112x y z += D .112x z y+=4.(2022·河南·南阳中学高三阶段练习(文))已知函数()()()ln 22ln 33f x x x =++-,则()f x ( )A .是奇函数,且在0,1上单调递增B .是奇函数,且在0,1上单调递减C .是偶函数,且在0,1上单调递增D .是偶函数,且在0,1上单调递减5.(2022·全国·高三专题练习)函数()log (1)2a f x x =-+的图象恒过定点 A .(2,2)B .(2,1)C .(3,2)D .(2,0)6.(2022·安徽六安·一模(文))设函数()2f x =()()2ln 41g x ax x =-+,若对任意的1R x ∈,都存在实数2x ,使得()()12f x g x =成立,则实数a 的取值范围为( ) A .(],4-∞B .(]0,4C .[]0,4D .(]0,27.(2022·湖北·荆门市龙泉中学二模)设0a >且1a ≠,sin cos a x x x >+对(0,)4x π∈恒成立,则a 的取值范围是( ) A .(0,)4πB .(0,]4πC .(,1)(1,)42ππ⋃D .[,1)4π8.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则( )A b a <<B .b a <C a b <D .a b <<二、多选题9.(2022·重庆市天星桥中学一模)已知0,0a b >>,且1a b +=,则下列结论正确的是( ) A .11a b+的最小值是4 B .1ab ab+的最小值是2C .22a b +的最小值是D .22log log a b +的最小值是2-10.(2022·广东汕头·二模)设a ,b ,c 都是正数,且469a b c ==,则下列结论正确的是( ) A .2ab bc ac +=B .ab bc ac +=C .4949b b a c ⋅=⋅D .121c b a=-11.(2022·河北·高三阶段练习)下列函数中,存在实数a ,使函数()f x 为奇函数的是( )A .()(lg f x x =B .()2f x x ax =+C .()21xaf x e =-- D .()()2ln 2xx f x x e a =+-12.(2022·江苏·南京师大附中高三开学考试)当102x <≤时,4log xa x ≤,则a 的值可以为( )AB C D三、填空题13.(2022·天津·二模)已知()4log 41log x y +=+2x y +的最小值为__________.14.(2022·全国·高三专题练习)已知23e ln 3x x x -+=,则3e ln x x -+=__________.15.(2022·河南·模拟预测(文))已知函数()241,1log ,1x x f x x x ⎧-≤=⎨>⎩,若1()2f a <≤,则实数a的取值范围为___________.16.(2022·河南·开封高中模拟预测(文))已知函数()y f x =为奇函数,且对定义域内的任意x 都有()()11f x f x +=--.当()1,2x ∈时,()21log f x x =-.给出以下4个结论: ①函数()y f x =的图象关于点()(),0k k ∈Z 成中心对称;②函数()y f x =是以2为周期的周期函数;③当()0,1x ∈时,()()2log 21f x x =--; ④函数()y f x =在()(),1k k k +∈Z 上单调递减. 其中所有正确结论的序号为______. 四、解答题17.(2022·北京·高三专题练习)已知函数()log (0),1)a f x x a a =>≠且,设1a >,函数log a y x =的定义域为[m ,n ] (m <n ),值域为[0,1],定义“区间[m ,n ]的长度等于n -m ”,若区间[m ,n ]长度的最小值...为5,6求实数a 的值;18.(2022·全国·高三专题练习(理))已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1. (1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明; (3)当a >1时,求使f (x )>0的x 的解集.19.(2022·北京·高三专题练习)已知函数()log (0)1)a f x x a a =>≠且,作出|()|y f x =的大致图像并写出它的单调性;20.(2022·全国·高三专题练习)已知函数()()44log 3log 4f x x x =-⋅.当1,164x ⎡⎤∈⎢⎥⎣⎦时,求该函数的值域;21.(2022·全国·高三专题练习)已知:函数()0.51log 1axf x x -=-在其定义域上是奇函数,a 为常数. (1)求a 的值.(2)证明:()f x 在()1,+∞上是增函数.(3)若对于[]3,4上的每一个x 的值,不等式()12xf x m ⎛⎫>+ ⎪⎝⎭恒成立,求实数m 的取值范围.22.(2022·北京东城·高三期末)曲线ln y x =在点(,ln )A t t 处的切线l 交x 轴于点M . (1)当t e =时,求切线l 的方程;(2)O为坐标原点,记AMO的面积为S,求面积S以t为自变量的函数解析式,写出其定义域,并求单调增区间.专题10 对数与对数函数【考点预测】 1.对数式的运算(1)对数的定义:一般地,如果(0x a N a =>且1)a ≠,那么数x 叫做以a 为底N 的对数,记作log a x N =,读作以a 为底N 的对数,其中a 叫做对数的底数,N 叫做真数.(2)常见对数:①一般对数:以(0a a >且1)a ≠为底,记为log N a ,读作以a 为底N 的对数;②常用对数:以10为底,记为lg N ; ③自然对数:以e 为底,记为ln N ; (3) 对数的性质和运算法则:①1log 0a =;log 1a a =;其中0a >且1a ≠;②log Na a N =(其中0a >且1a ≠,0N >); ③对数换底公式:log log log c a c bb a=; ④log ()log log a a a MN M N =+; ⑤log log log aa a MM N N=-; ⑥log log (m na a nb b m m=,)n R ∈; ⑦log a b a b =和log b a a b =; ⑧1log log a b b a=; 2.对数函数的定义及图像(1)对数函数的定义:函数 log a y x =(0a >且1)a ≠叫做对数函数. 对数函数的图象【方法技巧与总结】 1.对数函数常用技巧在同一坐标系内,当1a >时,随a 的增大,对数函数的图象愈靠近x 轴;当01a <<时,对数函数的图象随a 的增大而远离x 轴.(见下图)【题型归纳目录】题型一:对数运算及对数方程、对数不等式 题型二:对数函数的图像题型三:对数函数的性质(单调性、最值(值域)) 题型四:对数函数中的恒成立问题 题型五:对数函数的综合问题 【典例例题】题型一:对数运算及对数方程、对数不等式例1.(2022·全国·高三专题练习)(1)计算331log 2327lg 50lg 2+++; (2)已知()23log log lg 1x ⎡⎤=⎣⎦,求实数x 的值; (3)若185a =,18log 9b =,用a ,b ,表示36log 45. 【答案】(1)7;(2)109;(3)2a bb+-. 【解析】(1)利用对数恒等式和对数的运算法则计算即可; (2)利用指对互化可得实数x 的值;(3)先求出a ,再利用换底公式结合对数的运算法则求得结果.【详解】(1)原式=()23lg 510lg25lg51lg26lg5lg26lg107++⨯+=+++=++=+=;(2)因为()23log log lg 1x ⎡⎤=⎣⎦,所以()3log lg 2x =,所以2lg 39x ==,所以x =109;a 增大a 增大(3)因为185a =,所以18log 5a =,所以()()()181818183618181818log 59log 45log 5log 9log 45log 36log 182log 18log 189⨯+====⨯+÷1818181818log 5log 9log 18log 18log 92a bb++=+--.例2.(2022·全国·高三专题练习)(1)求23151log log 8log 2725⋅⋅的值. (2)已知9log 5=a ,37b =,试用a ,b 表示21log 35 【答案】(1)18;(2)21a bb ++. 【解析】 【分析】(1)首先根据题意得到原式()()()2352log 53log 23log 3=-⋅⋅-,再利用换底公式化简即可得到答案.(2)首先根据题意得到3log 7b =,3log 52=a ,再利用换底公式化简即可得到答案. 【详解】(1)原式()()()1233232355log 5log 2log 32log 53log 23log 3--=⋅⋅=-⋅⋅-lg5lg 2lg31818lg 2lg3lg5=⋅⋅⋅=(2)由37b =得到3log 7b =, 由9log 5=a ,得到31log 52=a ,即3log 52=a . 33321333log 35log 5log 72log 35log 21log 7log 31a bb ++===++.【点睛】本题主要考查对数的换底公式,同时考查指数、对数的互化公式,属于中档题.例3.(2022·全国·高三专题练习)(1)已知a ,b ,c 均为正数,且3a =4b =6c ,求证:212a b c+=;(2)若60a =3,60b =5,求12(1)12a bb ---的值. 【答案】(1)详见解析;(2)2. 【解析】【分析】(1)设3461a b c k ===>,应用指对数的互化有346log ,log ,log a k b k c k ===,进而应用换底公式及对数的运算性质分别求21a b +、2c,即可证结论;(2)应用指对数互化有6060log 3,log 5a b ==,应用对数的运算性质求12(1)a bb ---,进而可求12(1)12a b b ---的值.【详解】(1)设346a b c k ===,则1k >. ∴346log ,log ,log a k b k c k ===,∴3421212log 3log 4log 9log 4log 362log 6log log k k k k k k a b k k+=+=+=+==, 而6222log 6log k c k==, ∴212a b c+=. (2)由题设知:6060log 3,log 5a b ==,得606011log 5log 12b -=-=,60606011log 3log 5log 4a b --=--=, ∴60121260log 42log 21log 22(1)2log 122a b b --===-, 则121log 22(1)12122a b b ---==.例4.(2022·全国·模拟预测)若e 4a =,e 25b =,则( ) A .a +b =100 B .b -a =e C .28ln 2ab < D .ln6b a ->【答案】D 【解析】 【分析】利用指数和对数互化,得到a ,b 后逐项判断. 【详解】对于A ,由e 4a =,e 25b =,得ln 4a =,ln 25b =,所以ln 4ln 25ln100a b +=+=,故A 错误;对于B ,25ln 25ln 4ln4b a -=-=,故B 错误; 对于C ,2ln 4ln 252ln 2ln168ln 2ab =⨯>⨯=,故C 错误;对于D ,25ln 25ln 4lnln 64b a -=-=>,故D 正确. 故选:D .例5.(2022·全国·模拟预测)已知实数x ,y 满足0x >,0y >,1x ≠,1y ≠,y x x y =,log 4y xx y+=,则x y +=( ) A .2 B .4 C .6 D .8【答案】C 【解析】 【分析】 根据y x x y =得到lg lg x xy y =,再利用换底公式得到2x y=,利用lg 2lg x y =,即2x y =,求出4x =,2y =,所以6x y +=.【详解】由y x x y =,得lg lg y x x y =,lg lg x xy y=. 由log 4y x x y +=,lg log lg y x x y =,所以lg 4lg x x y y+=, 所以4x xy y +=,解得:2x y=,则lg 2lg x y =,即2x y =, 所以4x =,2y =,所以6x y +=, 故选:C.例6.(2022·北京昌平·二模)已知函数2()42(0)f x ax ax a =-+<,则关于x 的不等式2()log f x x >的解集是( )A .(,4)-∞B .(0,1)C .(0,4)D .(4,)+∞【答案】C 【解析】 【分析】由二次函数的性质判断()f x 区间单调性,根据解析式知()f x 恒过(4,2)且(0)2f =,进而确定区间值域,再由对数函数性质求2log y x =的对应区间值域,即可得不等式解集. 【详解】由题设,()f x 对称轴为2x =且图象开口向下,则()f x 在(0,2)上递增,(2,)+∞上递减, 由2()42(4)2f x ax ax ax x =-+=-+,即()f x 恒过(4,2)且(0)2f =, 所以(0,4)上()2f x >,(4,)+∞上()2f x ,而2log y x =在(0,)+∞上递增,且(0,4)上2y <,(4,)+∞上2y >,所以2()log f x x >的解集为(0,4). 故选:C例7.(2022·全国·江西师大附中模拟预测(文))已知函数()122log ,1,1,1,x x f x x x >⎧⎪=⎨⎪-≤⎩则不等式()(1)f x f x <-的解集为______.【答案】12x x ⎧⎫>⎨⎬⎩⎭【解析】 【分析】 分1x ≤、12x <≤和2x >,依次解不等式,再取并集即可.【详解】当1x ≤时,不等式()(1)f x f x <-为2211(1)x x -<--,解得112x <≤; 当12x <≤时,不等式()(1)f x f x <-为212log 1(1)x x <--,易知21122log log 10,1(1)0x x <=--≥,解得12x <≤;当2x >时,不等式()(1)f x f x <-为1122log log (1)x x <-,解得2x >;综上,解集为:12x x ⎧⎫>⎨⎬⎩⎭.故答案为:12x x ⎧⎫>⎨⎬⎩⎭.例8.(2022·辽宁·东北育才学校二模)若函数()f x 满足:(1)1x ∀,()20,x ∈+∞且12x x ≠,都有()()21210f x f x x x -<-;(2)()()1122x f f x f x x ⎛⎫=- ⎪⎝⎭,则()f x =___________.(写出满足这些条件的一个函数即可) 【答案】12log x,(log a x ,(0<a <1)都对)【解析】 【分析】满足第一个条件,表示函数是单调递减函数,第二个条件正好是符合对数的运算性质; 【详解】对于条件①,不妨设12x x <,则210x x ->,∵()()21210f x f x x x -<-,∴()()210f x f x -<∴12()()f x f x >,∴()f x 为()0,+∞上的单调递增函数,对于条件②,刚好符合对数的运算性质,故这样的函数可以是一个单调递减的对数函数. 故答案为:12log x.(log ax ,(0<a <1)都对)例9.(2022·全国·高三专题练习)设函数()log m f x x =(0m >且1m ≠)的图像经过点()3,1.(1)解关于x 的方程()()22(1)10f x m f x m +-+-=;(2)不等式()()10f x a f x +⋅->⎡⎤⎡⎤⎣⎦⎣⎦的解集是1,93⎛⎫⎪⎝⎭,试求实数a 的值. 【答案】(1)9x =或181x =;(2)2a =. 【解析】 【分析】(1)根据给定条件求出m 值,并代入方程,再解方程即得.(2)由给定解集借助对数函数单调性求出()f x 范围,换元借助一元二次不等式即可得解. 【详解】(1)由已知得()31f =,即log 31m =,则3m =,于是得()3log f x x =, 方程222()(1)()10()2()80f x m f x m f x f x +-+-=⇔+-=, 从而得()2f x =或()4f x =-,即3log 2x =或3log 4x =-,9x =或181x =, 所以原方程的根为9x =或181x =; (2)依题意,函数()3log f x x =中,1,93x ⎛⎫∈ ⎪⎝⎭,从而得()3log 1,2x ∈-.又()()()()3310log 1log 0f x a f x x x a +⋅->⇔+⋅-<⎡⎤⎡⎤⎣⎦⎣⎦,令3log x t =, 即一元二次不等式()()10t t a +⋅-<的解集为()1,2-,因此有-1,2是关于t 的方程()()10t t a +⋅-=的两根,则2a =, 所以实数a 的值为2.【方法技巧与总结】对数的有关运算问题要注意公式的顺用、逆用、变形用等.对数方程或对数不等式问题是要将其化为同底,利用对数单调性去掉对数符号,转化为不含对数的问题,但这里必须注意对数的真数为正.题型二:对数函数的图像例10.(2022·山东潍坊·二模)已知函数()()log a f x x b =-(0a >且1a ≠)的图像如图所示,则以下说法正确的是( )A .0a b +<B .1ab <-C .01b a <<D .log 0a b >【答案】C 【解析】 【分析】结合函数()f x 的图象可得1a >和10b -<<,然后逐项分析即可求出结果. 【详解】由图象可知()f x 在定义域内单调递增,所以1a >,令()()log 0a f x x b =-=,即1x b =+,所以函数()f x 的零点为1b +,结合函数图象可知011b <+<,所以10b -<<,因此0a b +>,故A 错误;0-<<a ab ,又因为1a >,所以1a -<-,因此1ab <-不一定成立,故B 错误;因为10b a a a -<<,即11b a a <<,且101a<<,所以01b a <<,故C 正确; 因为01b <<,所以log log 1a a b <,即log 0a b <,故D 错误, 故选:C.例11.(2022·江苏省高邮中学高三阶段练习)函数log (3)1(0a y x a =+->且1)a ≠的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则11+m n的最小值为( ) A.3-B .1C . 3+D .2+【答案】C 【解析】 【分析】由对数函数的性质,可得()2,1A --,可得21m n +=,再根据基本不等式“1”的用法,即可求出结果.【详解】解:因为函数log (3)1(0a y x a =+->且1)a ≠的图象恒过定点()2,1A --,所以210m n --+=,即21m n +=, 所以()1111223n m m n m n m n m n⎛⎫+=++=++ ⎪⎝⎭, 又0mn >,所以0,0n mm n>>所以2333n m m n ++≥=,当且仅当2n m m n =,即1n =时取等号.故选:C.(多选题)例12.(2022·福建·莆田二中模拟预测)已知函数()()log a g x x k =+(0a >且1a ≠)的图象如下所示.函数()()1x xf x k a a -=--的图象上有两个不同的点()11,A x y ,()22,B x y ,则( )A .1a >,2k >B .()f x 在R 上是奇函数C .()f x 在R 上是单调递增函数D .当0x ≥时,()()22f x f x ≤【答案】BCD 【解析】 【分析】对于A 结合对数型函数图像相关知识求解;对于B 运用定义法判断()f x 是否在R 上是奇函数;对于C 运用定义法判断函数单调性;对于D 通过作差法并对式子变形即可判断. 【详解】对于A ,由图像可知,函数()()log a g x x k =+(0a >且1a ≠)在()2,-+∞上单调递增,所以1a >,因为()g x 经过()1,0-,所以()()1log 10a g k -=-+=,所以01a k =-+,2k =,故A 错误.对于B ,()x x f x a a -=-,定义域R 关于原点对称,()()x xf x a a f x --=-=-,所以()f x 在R 上是奇函数,故B 正确.对于C ,对于()x xf x a a -=-,由题意不妨令1212,,x x x R x R >∈∈,则()()()()()121212121212121212111x x x x x x x x x x x x x x x x a a a a a f x f x a a a a a a a a ++++--⎛⎫⎛⎫-=---=-+=⎪ ⎪⎝⎭⎝⎭,因为1212,,x x x R x R >∈∈,1a >,所以12121210,0,0x x x x x x a a a a +++>>->,即()()12f x f x >,所以()f x 在R 上是单调递增函数,故C 正确.对于D ,()()()()()()()()()2222222x x x x x x x x x x x x x x a a a a a a a a a a a a a x f a f x --------=---=---+--=-()()()()22322221111112x x x x x x xx xxxa a a a a a a a a aa----+-⎛⎫⎛⎫--=⎪-==⎪⎝⎭⎝⎭,因为1a >,0x ≥,所以()3210,010,xxxa a a +≥>->,所以()()23101x x xa a a-+-≤,当且仅当0x =时等号成立,即当0x ≥时,()()22f x f x ≤成立,故D 正确.故选:BCD例13.(2022·全国·高三专题练习)已知223,20(){1ln ,021x x x f x x x -+-≤<=≤≤+,若()()g x f x ax a =--的图象与x 轴有3个不同的交点,则实数a 的取值范围为______. 【答案】ln 31[,)3e【解析】 【分析】由分段函数解析式,结合导数研究|()|f x 的性质,再将问题转化为|()|f x 与(1)y a x =+有3个不同交点,应用数形结合的思想有(1)y a x =+与|()|f x 在02x ≤≤上至少有2个交点,最后由导数求它们相切或(1)y a x =+过(2,ln 3)时参数a 的值,即可知a 的取值范围. 【详解】由题设,20x -≤<上239()2()48f x x =--+,故值域为[14,0]-且单调递增;02x ≤≤上()f x '=101x -<+,故()f x 值域为[ln 3,0]-且单调递减; ∴|()|f x 在20x -≤<上值域为[0,14]且单调递减;在02x ≤≤上值域为[0,ln 3]且单调递增; 要使()g x 与x 轴有3个不同的交点,即|()|f x 与(1)y a x =+有3个不同交点,它们的图象如下:∴由图知:要使函数图象有3个交点,则(1)y a x =+与|()|f x 在02x ≤≤上至少有2个交点, 由02x ≤≤,1()|()|ln1g x f x x ==-+,则1()|()|1g x f x x '==+,此时,若|()|f x 与(1)y a x =+相切时,切点为(,(1))m a m +, ∴111ln (1)1a m a m m ⎧=⎪⎪+⎨⎪-=+⎪+⎩,可得1e a =,当(1)y a x =+过(2,ln 3)时,有3ln3a =,得ln 33a =, ∴ln 313ea ≤<. 故答案为:ln 31[,)3e【点睛】关键点点睛:根据已知研究|()|f x 的性质,并将问题转化为|()|f x 与(1)y a x =+的交点问题,应用导数的几何意义、数形结合的思想求参数范围.【方法技巧与总结】研究和讨论题中所涉及的函数图像是解决有关函数问题最重要的思路和方法.图像问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型三:对数函数的性质(单调性、最值(值域))例14.(2022·陕西·榆林市第十中学高二期中(文))函数()22log 43y x x =+-的一个单调增区间是( ) A .3,2⎛⎫-∞ ⎪⎝⎭B .3,2∞⎡⎫+⎪⎢⎣⎭C .31,2⎛⎫- ⎪⎝⎭D .3,42⎡⎫⎪⎢⎣⎭【答案】C 【解析】【分析】先求出函数的定义域,再利用复合函数单调性法则“同增异减”即可求解.【详解】函数()22log 43y x x=+-的定义域为()1,4-.要求函数()22log 43y x x =+-的一个单调增区间,只需求243y x x =+-的增区间,只需32x <. 所以312x -<<. 所以函数()22log 43y x x =+-的一个单调增区间是31,2⎛⎫- ⎪⎝⎭. 故选:C例15.(2022·天津·南开中学二模)已知函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调函数,则实数a 的取值范围为( ) A .11,42⎡⎫⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .1,12⎛⎫ ⎪⎝⎭【答案】B 【解析】 【分析】分函数()f x 在R 上的单调递减和单调递增求解. 【详解】当函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调递减函数,所以01112514a aa ⎧⎪<<⎪⎪≥⎨⎪⎪-≥-⎪⎩,解得1142a ≤≤,因为0a >且1a ≠,所以当1x ≤时,()f x 不可能是增函数,所以函数()f x 在R 上不可能是增函数,综上:实数a 的取值范围为11,42⎡⎤⎢⎥⎣⎦,故选:B例16.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则( ) Ab a << B.b a < Ca b < D.a b <<【答案】A 【解析】 【分析】对33log log 4log log 3a b a b -=-利用换底公式等价变形,得333311log log log log -<-b a b a,结合1y x x=-的单调性判断b a <,同理利用换底公式得343411log log log log b a b a ->-,即34log log b a >,再根据对数运算性质得4log log log a =>3log y x =单调性,b >解. 【详解】由33log log 4log log 3a b a b -=-可得333343111log log log log log log b a a b a a-=-<-, 因为1y x x=-在(,0),(0,)-∞+∞上单调递增,且3log a ,3log (0,)b ∈+∞,所以33log log b a <,即b a <, 其次,343411log log log log b a b a->-,所以34log log b a >,又因为4log log log a =>3log y x =单调递增,所以由3log log b >b >b a <. 故选:A例17.(2022·全国·高三专题练习(理))函数f (x )=log ax (0<a <1)在[a 2,a ]上的最大值是( ) A .0 B .1 C .2 D .a【答案】C 【解析】【分析】根据对数函数的单调性可求出结果. 【详解】∵0<a <1,∴f (x )=log ax 在[a 2,a ]上是减函数, ∴f (x )max =f (a 2)=log aa 2=2. 故选:C例18.(2022·重庆·模拟预测)若函数()2()log 341a f x x ax =-+-有最小值,则实数a 的取值范围是( )A .⎫⎪⎪⎝⎭B .C .⎛ ⎝⎭D .)+∞【答案】A 【解析】 【分析】根据对数函数的性质可得()()0,11,a ∈+∞且23410x ax -+->,则0∆>,即可求出a 的大致范围,再令23410x ax -+-=的根为1x 、2x 且12x x <,()2341u x x ax =-+-,log a y u =,对a 分两种情况讨论,结合二次函数、对数函数的单调性判断即可; 【详解】解:依题意()()0,11,a ∈+∞且23410x ax -+->,所以216120a ∆=->,解得a >a <()1,a ⎫∈+∞⎪⎪⎝⎭,令23410x ax -+-=的根为1x 、2x 且12x x <,()2341u x x ax =-+-,log a y u =,若()1,a ∈+∞,则log a y u =在定义域上单调递增,()2341u x x ax =-+-在12,3a x ⎛⎫ ⎪⎝⎭上单调递增,在22,3a x ⎛⎫⎪⎝⎭上单调递减,根据复合函数的单调性可知,()2()log 341a f x x ax =-+-在12,3a x ⎛⎫ ⎪⎝⎭上单调递增,在22,3a x ⎛⎫ ⎪⎝⎭上单调递减,函数不存在最小值,故舍去;若a ⎫∈⎪⎪⎝⎭,则log a y u =在定义域上单调递减,()2341u x x ax =-+-在12,3a x ⎛⎫⎪⎝⎭上单调递增,在22,3a x ⎛⎫ ⎪⎝⎭上单调递减,根据复合函数的单调性可知,()2()log 341a f x x ax =-+-在12,3a x ⎛⎫⎪⎝⎭上单调递减,在22,3a x ⎛⎫ ⎪⎝⎭上单调递增,所以函数在23a x =取得最小值,所以a ⎫∈⎪⎪⎝⎭; 故选:A【方法技巧与总结】研究和讨论题中所涉及的函数性质是解决有关函数问题最重要的思路和方法.性质问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型四:对数函数中的恒成立问题例19.(2022·北京·高三专题练习)若不等式2log 0a x x -<在10,2⎛⎫ ⎪⎝⎭内恒成立,则a 的取值范围是( ) A .1116a ≤< B .1116a << C .1016a <≤D .1016a <<【答案】A 【解析】 【分析】根据对数函数的图象与性质,分1a >和01a <<两种情况分类讨论,结合函数的单调性,列出不等式,即可求解. 【详解】当1a >时,由1(0,)2x ∈,可得log 0a x <,则log 0a x ->,又由20x >,此时不等式2log 0a x x -<不成立,不合题意;当01a <<时,函数log a y x =在1(0,)2上单调递减,此时函数log a y x =-在1(0,)2上单调递增,又由2yx 在1(0,)2上单调递增,要使得不等式2log 0a x x -<在1(0,)2内恒成立,可得211()log 022a -≤,解得1116a ≤<.故选:A.例20.(2022·江苏·高三专题练习)已知函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤⎥⎝⎦,若不等式()()log 4log 2x a x a t t ⋅<-在[]1,2x ∈上恒成立,则t 的取值范围是( ) A .2,25⎛⎫ ⎪⎝⎭B .2,5⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .()0,2【答案】A 【解析】根据题意,先求得12a =,把不等式()()1122log 4log 2x x t t ⋅<-在[]1,2x ∈上恒成立,转化为402042x xx x t t t t ⎧⋅>⎪->⎨⎪⋅>-⎩在[]1,2x ∈上恒成立,结合指数幂的运算性质,即可求解. 【详解】由题意,函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤⎥⎝⎦,可得函数y 的最大值为116,当0a =时,函数2414x y -+⎛⎫= ⎪⎝⎭显然不存在最大值;当0a >时,函数22414ax x y -+⎛⎫= ⎪⎝⎭在1,x a ⎛⎫∈-∞ ⎪⎝⎭上单调递增,在1,x a ⎛⎫∈+∞ ⎪⎝⎭上单调递减,当1x a =时,函数y 有最大值,即12411416a a -+⎛⎫= ⎪⎝⎭,解得12a =; 当0a <时,22414ax x y -+⎛⎫= ⎪⎝⎭在1,x a ⎛⎫∈-∞ ⎪⎝⎭上单调递减,在1,x a ⎛⎫∈+∞ ⎪⎝⎭上单调递增,此时函数y 无最大值,所以()()1122log 4log 2x xt t ⋅<-在[]1,2x ∈上恒成立, 即402042x xx x t t t t ⎧⋅>⎪->⎨⎪⋅>-⎩在[]1,2x ∈上恒成立, 由40x t ⋅>在[]1,2x ∈上恒成立,可得0t >;由20x t ->在[]1,2x ∈上恒成立,即2x t <在[]1,2上恒成立,可得2t <; 由42x x t t ⋅>-在[]1,2x ∈上恒成立,即2114122x x x xt >=++在[]1,2上恒成立,令()122xxf x =+,可得函数()f x 在[]1,2上单调递增,所以()()min512f x f ==,即25t >, 综上可得225t <<,即实数t 的取值范围是2,25⎛⎫⎪⎝⎭.故选:A. 例21.(2022·浙江·高三阶段练习)已知函数()29x f x x+=,()2log g x x a =+,若存在[]13,4x ∈,任意[]24,8x ∈,使得()()12f x g x ≥,则实数a 的取值范围是___________. 【答案】13,4∞⎛⎤- ⎥⎝⎦【解析】 【分析】将问题转化为在对应区间上max max ()()f x g x ≥,结合对勾函数、对数函数的性质求()f x 、()g x 的区间最值,即可求a 的范围. 【详解】若()f x 在[3,4]上的最大值max ()f x ,()g x 在[4,8]上的最大值max ()g x , 由题设,只需max max ()()f x g x ≥即可.在[3,4]上,9()6f x x x =+≥=当且仅当3x =时等号成立, 由对勾函数的性质:()f x 在[3,4]上递增,故max 25()4f x =. 在[4,8]上,()g x 单调递增,则max ()3g x a =+, 所以2534a ≥+,可得134a ≤.故答案为:13,4∞⎛⎤- ⎥⎝⎦.例22.(2022·全国·高三专题练习)已知函数()ln f x x x =-,已知实数0a >,若2()e ln 0x f x a a ++≥在()0+∞,上恒成立,求实数a 的取值范围. 【答案】12ea ≥. 【解析】 【分析】把不等式作等价变形,构造函数()ln g x x x =+,借助其单调性可得2e x a x ≥,分离参数构造函数并求出最大值作答. 【详解】函数()ln f x x x =-定义域为(0,)+∞,则(0,)∀∈+∞x :222()e ln 0e ln l 2n e ln ln x x x f x a a a a x a a x x x x++≥⇔+≥⇔+≥+++22e e )n ln(l x x a a x x ⇔≥++,令()ln g x x x =+,函数()g x 在(0,)+∞上单调递增,则有原不等式等价于()()2e xg a g x ≥22e e x xx a x a ⇔≥⇔≥, 令2()e x x h x =,0x >,求导得:212()exx h x -'=,当102x <<时,()0h x '>,当12x >时,()0h x '<, 因此,函数()h x 在1(0,)2上单调递增,在1(,)2+∞上单调递减,当12x =时,max 11()()22eh x h ==,则12ea ≥, 所以实数a 的取值范围是12ea ≥. 【点睛】关键点睛:涉及不等式恒成立问题,将给定不等式等价转化,借助同构思想构造函数,利用导数探求函数单调性、最值是解决问题的关键.例23.(2022·全国·高三专题练习)已知函数()log (0,1)xa f x a x a a =+>≠在[1,2]上的最大值与最小值之和为6log 2a +. (1)求实数a 的值;(2)对于任意的[2,)x ∈+∞,不等式()10kf x -≥恒成立,求实数k 的取值范围. 【答案】(1)2;(2)1,5⎡⎫+∞⎪⎢⎣⎭【解析】 【分析】(1)根据指对数函数的单调性得函数()log (0,1)xa f x a x a a =+>≠在[1,2]上是单调函数,进而得260+-=a a ,解方程得2a =;(2)根据题意,将问题转化为对于任意的[2,)x ∈+∞,1()k f x ≥恒成立,进而求函数的最值即可. 【详解】解:(1)因为函数,log (0,1)xa y a y x a a ==>≠在[1,2]上的单调性相同, 所以函数()log (0,1)xa f x a x a a =+>≠在[1,2]上是单调函数,所以函数()f x 在[1,2]上的最大值与最小值之和为2log 26log 2a a a a ++=+,所以260+-=a a ,解得2a =和3a =-(舍) 所以实数a 的值为2.(2)由(1)得2()2log x f x x =+,因为对于任意的[2,)x ∈+∞,不等式()10kf x -≥恒成立,所以对于任意的[2,)x ∈+∞,1()k f x ≥恒成立, 当[2,)x ∈+∞时,2()2log x f x x =+为单调递增函数, 所以()()25f x f ≥=,所以11()5f x ≤,即15k ≥ 所以实数k 的取值范围1,5⎡⎫+∞⎪⎢⎣⎭【点睛】本题考查指对数函数的性质,不等式恒成立求参数范围,考查运算求解能力,回归转化思想,是中档题.本题第二问解题的关键在于根据题意,将问题转化为任意的[2,)x ∈+∞,1()k f x ≥恒成立求解.例24.(2022·陕西安康·高三期末(文))已知函数()()()2log 2log 30,1a a f x x x a a =++>≠. (1)若()32f =,求a 的值;(2)若对任意的[]8,12x ∈,()6f x >恒成立,求a 的取值范围.【答案】(1)13a =;(2)()1,11,82⎛⎫⋃ ⎪⎝⎭. 【解析】 【分析】(1)由()32f =可求得log 3a 的值,进而可求得实数a 的值;(2)由()6f x >可得出log 3a x <-或log 1>a x ,分01a <<、1a >两种情况讨论,可得出关于实数a 的不等式,由此可解得实数a 的取值范围. (1)解:因为()32f =,所以()2log 32log 332a a ++=,所以()2log 310a +=,所以log 31a =-,解得13a =.(2)解:由()6f x >,得()2log 2log 30a a x x +->,即()()log 3log 10a a x x +->,即log 3a x <-或log 1>a x .当01a <<时,log 12log log 8a a a x ≤≤,则log 83a <-或log 121a >,因为log 12log 10a a <=,则log 121a >不成立,由log 83a <-可得318a ⎛⎫< ⎪⎝⎭,得112a <<;当1a >时,log 8log log 12a a a x ≤≤,则log 123a <-或log 81a >,因为log 12log 10a a >=,则log 123a <-不成立,所以log 81a >,解得18a <<. 综上,a 的取值范围是()1,11,82⎛⎫⋃ ⎪⎝⎭.例25.(2022·上海·高三专题练习)已知2()32log f x x =-,2()log g x x =. (1)当[]1,4x ∈时,求函数[]()1()y f x g x =+⋅的值域;。
高考数学复习考点知识讲解课件09 对数与对数函数

2
大小关系是(
)
A.a<b<c B.c<a<b
C.a<c<b D.b<c<a
答案: (2)B
解析:
1 x
(2)函数y=( ) 与y=log 1 的图象关于直线y=x对称,则0
2
2
1 < log 1 0.2,∴a<b.
2
0.2 log1 0.2
1
又c=ab=( )
2
2
0.2
log
0.2
1
1
1
=( ) 2
1
t
5
2
解析:设logba=t,则t>1,因为t+ = ,
2
b
2
b
a
2b
所以t=2,则a=b .又a =b ,所以b =b ,即2b=b2,
又a>b>1,解得b=2,a=4.
4.计算:(1)lg 25+lg 2·lg 50+(lg 2)2;
解析:(1)原式=(lg 2)2+(1+lg 5)lg 2+lg 52=(lg 2+lg 5+1)lg 2+2lg 5=(1+
高考数学复习考点知识讲解课件
第六节 对数与对数函数
必备知识—基础落实
微专题
关键能力—考点突破
·最新考纲·
1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转
化成自然对数或常用对数;了解对数在简化运算中的作用.
2.理解对数函数的概念及单调性,掌握对数函数图象通过的特殊点,
1
会画底数为2,10, 的对数函数的图象.
2
3.体会对数函数是一类重要的函数模型.
4.了解指数函数y=ax(a>0,且a≠1)与对数函数y=logax(a>0,且
对数与对数函数-高考数学复习课件

故有ቊ
解得1< a ≤3.
6 − 2≥0,
(2)(2024·河南郑州模拟)设函数 f ( x )=ln| x +3|+ln| x -3|,则
f ( x )( A
)
A. 是偶函数,且在(-∞,-3)上单调递减
B. 是奇函数,且在(-3,3)上单调递减
C. 是奇函数,且在(3,+∞)上单调递增
因为0< a < b ,所以ln a <0,ln b >0,
所以0< a <1, b >1,
所以-ln a =ln b , 所以ln a +ln b =ln( ab )=0,
1
所以 ab =1,则 b = ,
2
所以 a +2 b = a + .
2
令 g ( x )= x + (0< x <1),
a >1
0< a <1
图象
定义域
(0,+∞)
值域
性质
R
过定点 (1,0)
,即 x = 1
时, y = 0
a >1
0< a <1
当 x >1时, y >0 ;
当0< x <1时, y <0
性质
在(0,+∞)上是 增
数
函
当 x >1时, y <0 ;
当0< x <1时, y >0
在(0,+∞)上是 减
内容索引
必备知识
自主梳理
关键能力
重点探究
课时作业
巩固提升
必备知识 自主梳理
[知识梳理]
知识点一 对数与对数运算
1. 对数的概念
如果 ax = N ( a >0,且 a ≠1),那么数 x 叫做以 a 为底 N 的对数,记作
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则函数的定义域为: ,即函数图象只出现在 轴右侧;
值域为: 即函数图象只出现在 轴上方;
在区间 上递减的曲线,在区间 上递增的曲线.
分析 、 、 、 四个答案,只有 满足要求
故选: .
【跟踪训练2-2】(2019•衡水二模)如图,已知过原点 的直线与函数 的图象交于 , 两点,分别过 , 作 轴的平行线与函数 图象交于 , 两点,若 轴,则四边形 的面积为.
【解答】解:由 ,
, .
.
故答案为:2,2.
【名师指导】
对数运算的一般思路
(1)拆:首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后利用对数运算性质化简合并.
(2)合:将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.
A.1B.4C.5D.7
【分析】利用指数对数运算性质即可得出.
【解答】解:原式
.
故选: .
【跟踪训练2-1】(2020春•兴宁区校级期末)计算: .
【分析】进行对数的运算即可.
【解答】解:原式 .
故答案为:0.
【跟踪训练2-2】(2020•温州模拟)著实数 , 满足 ,则 , .
【分析】由 ,可得 , .即可得出 .
运算法则
loga(M·N)=logaM+logaN
a>0,且a≠1,M>0,N>0
loga =logaM-logaN
logaMn=nlogaM(n∈R)
换底公式
logab= (a>0,且a≠1,c>0,且c≠1,b>0)
2.对数函数y=logax(a>0,且a≠1)的图象与性质
底数
a>1
0<a<1
图
第10讲对数与对数函数
思维导图
知识梳理
1.对数
概念
如果ax=N(a>0,且a≠1),那么数x叫做以a为底数N的对数,记作x=logaN,其中a叫做对数的底数,N叫做真数,logaN叫做对数式
性质
对数式与指数式的互化:ax=N⇔x=logaN(a>0,且a≠1)
loga1=0,logaa=1,alogaN=N(a>0,且a≠1)
综上, .
故选: .
【例3-2】(2019•陆良县一模)已知函数 ,则使得 的 的取值范围是
A. B.
C. D.
【分析】判断函数 是定义域 上的偶函数,且在 时单调递增,
把不等式 转化为 ,求出解集即可.
【解答】解: 函数 为定义域 上的偶函数,
且在 时,函数单调递增,
等解:设 , , , , , , , ,
则 , ,
又 , ,即 , ,
为正方形, ;
可得 ,
解得 .
故答案为:2.
【跟踪训练2-1】(2020•怀柔区一模)函数 的图象是
A. B.
C. D.
【分析】要想判断函数 的图象,我们可以先将函数的解析式进行化简,观察到函数的解析式中,含有绝对值符号,故可化为分段函数的形式,再根据基本初等函数的性质,对其进行分析,找出符合函数性质的图象.
题型2对数函数的图象及应用
【例2-1】(2020春•吉林期末)函数 的图象是
A. B.
C. D.
【分析】本题研究一个对数型函数的图象特征,函数 的图象可由函数 的图象x轴下方的部分翻折到x轴上部而得到,故首先要研究清楚函数 的图象,由图象特征选出正确选项
【解答】解:由于函数 的图象可由函数 的图象左移一个单位而得到,函数 的图象与x轴的交点是 ,
(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.
题型3对数函数的性质及应用
【例3-1】(2020•新课标Ⅲ)已知 , .设 , , ,则
A. B. C. D.
【分析】根据 ,可得 ,然后由 和 ,得到 ,再确定 , , 的大小关系.
【解答】解: , ;
, , , ;
, , , ,
则点 、 纵坐标分别为 、 .
因为 、 在过点 的直线上,所以 ,
点 、 坐标分别为 , , , .
由于 平行于 轴知
,
即得 ,
.
代入 得 .
由于 知 ,
.
考虑 解得 .
于是点 的坐标为 , 即 ,
, , , , , .
梯形 的面积为 .
故答案为: .
【名师指导】
对数函数图象的识别及应用方法
(1)在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.
题型归纳
题型1对数式的化简与求值
【例1-1】(2020•枣庄模拟)已知 ,若 , ,则
A. B.2C. D.4
【分析】对 两边取以 为底的对数得 ,同理 ,代入 ,即可求出 的值.
【解答】解:对 两边取以 为底的对数,得 ,即 ,
同理有: ,
代入 ,得 ,
因为 ,所以 ,
所以 , ,
故选: .
【例1-2】(2019秋•巢湖市期末)计算:
象
性
质
定义域:(0,+∞)
值域:R
图象过定点(1,0),即恒有loga1=0
当x>1时,恒有y>0;
当0<x<1时,恒有y<0
当x>1时,恒有y<0;
当0<x<1时,恒有y>0
在(0,+∞)上是增函数
在(0,+∞)上是减函数
核心素养分析
幂函数、指数函数与对数函数是最基本的、应用最广泛的函数,是进一步研究数学的基础。本讲的学习,可以帮助学生学会用函数图象和代数运算的方法研究这些函数的性质;理解这些函数中所蕴含的运算规律;运用这些函数建立模型,解决简单的实际问题,体会这些函数在解决实际问题中的作用。
故函数 的图象与x轴的交点是 ,即函数 的图象与x轴的公共点是 ,
考察四个选项中的图象只有 选项符合题意
故选: .
【例2-2】(2020•九江三模)如图所示,正方形 的四个顶点在函数 , , 的图象上,则 .
【分析】设出各点坐标,根据 平行于 轴得到 ,再结合 平行于 轴得到 ,可得 , ,再结合边长相等即可得到结论.
即 ,
解得 ;
使得 的 的取值范围是 , .
故选: .
【例3-3】(2019秋•静宁县校级月考)已知函数 .
(1)若 的定义域为 ,求 的取值范围;
【分析】设出 、 的坐标,求出 、 的斜率相等利用三点共线得出 、 的坐标之间的关系.再根据 平行 轴, 、 纵坐标相等,推出横坐标的关系,结合之前得出 、 的坐标之间的关系即可求出 的坐标,从而解出 、 、 的坐标,最后利用梯形的面积公式求解即可.
【解答】解:设点 、 的横坐标分别为 、 由题设知, , .