高三数学立体几何中的最值问题复习

合集下载

高中数学立体几何中的最值问题专题辅导

高中数学立体几何中的最值问题专题辅导

高中数学立体几何中的最值问题 海红楼 立体几何主要研究空间中点、线、面之间的位置关系,与空间图形有关的线段、角、体积等最值问题常常在试题中出现。

下面举例说明解决这类问题的常用方法。

一、运用变量的相对性求最值例1. 在正四棱锥S-ABCD 中,SO ⊥平面ABCD 于O ,SO=2,底面边长为2,点P 、Q 分别在线段BD 、SC 上移动,则P 、Q 两点的最短距离为( )A. 55B. 552C. 2D. 1解析:如图1,由于点P 、Q 分别在线段BD 、SC 上移动,先让点P 在BD 上固定,Q 在SC 上移动,当OQ 最小时,PQ 最小。

过O 作OQ ⊥SC ,在Rt △SOC 中,552=OQ 中。

又P 在BD 上运动,且当P 运动到点O 时,PQ 最小,等于OQ 的长为552,也就是异面直线BD 和SC 的公垂线段的长。

故选B 。

图1二、定性分析法求最值例2. 已知平面α//平面β,AB 和CD 是夹在平面α、β之间的两条线段。

AB ⊥CD ,AB=3,直线AB 与平面α成30°角,则线段CD 的长的最小值为______。

解析:如图2,过点B 作平面α的垂线,垂足为O ,连结AO ,则∠BAO=30°。

过B 作BE//CD 交平面α于E ,则BE=CD 。

连结AE ,因为AB ⊥CD ,故AB ⊥BE 。

则在Rt △ABE 中,BE=AB ·tan ∠BAE ≥AB ·tan ∠BAO=3·tan30°=3。

故3≥CD 。

图2三、展成平面求最值例3. 如图3-1,四面体A-BCD 的各面都是锐角三角形,且AB=CD=a ,AC=BD=b ,AD=BC=c 。

平面α分别截棱AB 、BC 、CD 、DA 于点P 、Q 、R 、S ,则四边形PQRS 的周长的最小值是( )A. 2aB. 2bC. 2cD. a+b+c图3-1解析:如图3-2,将四面体的侧面展开成平面图形。

2023届高考数学二轮复习提升微专题几何篇第36讲怎样解立体几何中的最值问题含解析

2023届高考数学二轮复习提升微专题几何篇第36讲怎样解立体几何中的最值问题含解析

第36讲怎样解立体几何中的最值问题一、知识与方法解答立体几何中的有关最值或范围问题,通常用函数思想方法.通过设出适当的变量、建立函数关系,转化为求函数的最值(或值域)的问题,解题时要弄清哪些是定值,哪些是变量,变量的取值范围是什么,如何根据题意建立函数关系,如何求函数的最值等.要重视立体几何中通过构造函数模型或几何模型解题的训练,重视空间想象能力以及计算能力的培养.二、典型例题【例1】()1如图3106-,在正三棱柱111ABC A B C -中,各棱的长均为2,M 是1AA 的中点,N 是BC 的中点,点M 在棱柱表面上运动到点N ,应如何运动,才能使点M 运动的路程最短,并求出最短路程;(2) 在正三棱锥P ABC -中,,2AB a PA a ==,过A 作平面分别交平面PBC 于DE .当截面ADE 的周长最小时,ADES=_______,P 到截面ADE 的距离为_______.【分析】求解点在几何体表面上运动路程最短的问题,通常将几何体表面展开成平面图形,化归为平面图形内两点间的距离,有时侯对如何将几何体展开成平面图形可以有不同的展开角度,所以还要分类讨论获得正确的结果.第()2问又把问题引向深入,解决面积和点到截面的距离问题. 【解析】(1)观察图3106-,从点M 运动到点N 的路程最短可能情况有两种:(1)经面1A B 和面1BC 到N ,其最短路程是侧面展开图(图3107-)中的线段MN 的长,由已知条件可求得1,3,AM AN MN ===.(2)经面1A C 和下底面到点N ,其最短路程如展开图(图3-108)中的线段MN 的长.1,120MA NA MAN ∠===.2222cos1204MN AM AN AM AN ∴=+-⋅⋅=+即MN =4 310,+<∴点M 在棱柱表面上运动到点N (2) 将三棱锥的侧棱PA 剪开,当ADE 的周长最小时,其展开图如图3109-所示,ADE 的周长即是展开图中线段AA '的长,易证ABDO PAB .又22PA AB a ==,故2AD AB BD a ===.33,24PD PD PB BD a DE BC a PB =-==⋅=.在ADE 中,DE 上的高AH ==.于是21;2ADESAH DE a =⋅= 从P 向底面作高PO ,则PO ===.于是231312P ABC V a -==. 又22916PDE PBCSPD SPB ==得,3399 .1616A PDE A PBC V V --=== 则313A PDE P ADE ADEV V d S --==⋅=,解得d =. 【例2】(1)如图3110-所示,在圆锥中,母线长为2,底面半径为12.一只虫子从底面圆周上一点A 出发沿圆锥表面爬行一周后又回到A 点,则这只虫子爬行的最短路程是多少?(2) 如图3111-所示.圆台的上底面半径为2?cm ,下底面半径为4?cm ,母线长为6?cm .求轴截面相对顶点,A C 在圆台侧面上的最短距离.【分析】空间图形→平面图形,第(1)问,将圆锥侧面沿母线SA 展开得到扇形,弧所对的弦长即为所求的最短距离.第(2)问,展开圆台侧面,A ,C 两点所成线段长即为所求的最短距离。

高三数学备考冲刺140分问题29立体几何中的最值问题含解析0426238.doc

高三数学备考冲刺140分问题29立体几何中的最值问题含解析0426238.doc

问题29立体几何中的最值问题一、考情分析立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类问题一般可从两个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是直接法,即根据几何体的结构特征或平面几何中的相关结论,直接判断最值. 纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.二、经验分享1.解决立体几何中的最值问题常见方法有:(1)建立函数法是一种常用的最值方法,很多情况下,我们都是把这类动态问题转化成目标函数,最终利用代数方法求目标函数的最值.解题途径很多,在函数建成后,可用一次函数的端点法;二次数的配方法、公试法;有界函数界值法(如三角函数等)及高阶函数的拐点导数法等.(2)公理与定义法通常以公理与定义作依据,直接推理问题的最大值与最小值,一般的公理与定理有:两点之间以线段为最短,分居在两异面直线上的两点的连线段中,以它们的公垂线段为短.球面上任意两点间的连线中以过这两点与球心的平面所得圆的劣弧长为最短等.如果直接建立函数关系求之比较困难,而运用两异面直线公垂线段最短则是解决问题的捷径.(3)解不等式法是解最值问题的常用方法、在立体几何中同样可利用不等式的性质和一些变量的特殊不等关系求解:如最小角定理所建立的不等关系等等.(4)展开体图法是求立体几何最值的一种特殊方法,也是一种常用的方法,它可将几何题表面展开,也可将几何体内部的某些满足条件的部分面展开成平面,这样能使求解问题,变得十分直观,由难化易.(5)变量分析法是我们要透过现象看本质,在几何体中的点、线、面,哪些在动,哪些不动,要分析透彻,明白它们之间的相互关系,从而转化成求某些线段或角等一些量的求解最值总题的方法.除了上述5种常用方法外,还有一些使用并不普遍的特殊方法,可以让我们达到求解最值问题的目的,这就是:列方程法、极限思想法、向量计算法等等其各法的特点与普遍性,大家可以通过实例感受其精彩内涵与思想方法所在.2.决定棱锥体积的量有两个,即底面积和高,当研究其体积的最值问题时,若其中有一个量确定,则只需另一个量的最值;若两个量都不确定,可通过设变量法,将体积表示为变量的函数解析式,利用函数思想确定其最值;将空间问题转化为平面问题是转化思想的重要体现,通过旋转到一个平面内,利用两点之间距离最短求解3.解决几何体体积最值问题的方法(1) 根据条件建立两个变量的和或积为定值,利用基本不等式求体积的最值;通过建立相关函数式,将所求的最值问题转化为函数的最值问题求解,此法应用最为广泛;由图形的特殊位置确定最值,如垂直求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.4.解题时,通常应注意分析题目中所有的条件,首先应该在充分理解题意的基础上,分析是否能用公理与定义直接解决题中问题;如果不能,再看是否可将问题条件转化为函数,若能写出确定的表意函数,则可用建立函数法求解;再不能,则要考虑其中是否存在不等关系,看是否能运用解等不式法求解;还不行则应考虑是否可将其体图展开成平面,这样依次从本文所标定的方法顺序思考,必能找到解题的途径三、题型分析(一) 距离最值问题1.空间中两点间距离的最值问题A C与BD上,求MN的最小值. 【例1】正方体的棱长为1,M、N分别在线段11【分析】方法一,该题可以结合正方体的结构特征,将其转化为两异面直线的距离来求;方法二,可设出变量,构建相应的函数,利用函数的最值求解;方法三,建立空间直角坐标系,利用点的坐标以及距离公式表示出目标函数,然后利用函数方法求解最值.A C与BD是异面直线,所以当MN是两直线的共垂线段时,MN 【解析】方法一(定义转化法)因为直线11取得最小值.取11A C 的中点P ,BD 的中点Q .则线段PQ 就是两异面直线11A C 与BD 的共垂线段.下证明之.在矩形11BDD B 中,PQ 为中位线,所以1//PQ BB ,又因为1BB ⊥平面ABCD ,所以PQ ⊥平面ABCD又因为BD ⊆平面ABCD ,所以PQ BD ⊥.同理可证11PQ A C ⊥,而, ,所以线段PQ 就是两异面直线11A C 与BD 的共垂线段,且1PQ =.由异面直线公垂线段的定义可得,故MN 的最小值为1.方法二:(参数法)如图,取11A C 的中点P ,BD 的中点Q .则线段PQ 就是两异面直线11A C 与BD 的共垂线段.由正方体的棱长为1可得1PQ =.连结AC ,则11//AC A C ,所以BQC ∠为两异面直线11A C 与BD 所成角.在正方形ABCD 中,AC BD ⊥,所以.过点M 作MH AC ⊥,垂足为H ,连结NH ,则//MH PQ ,且. 设PM m =,QN t =,则QH m =.在Rt QNH ∆中,, 在Rt MHN ∆中,.显然,当0m n ==时,2MN 取得最小值1,即MN 的最小值为1.方法三:(向量法)如图,以D 为坐标原点,分别以射线DA 、DC 、1DD 为x 、y 、z 轴建立空间直角坐标系.设DN m =,1A M n =.则,即;,即.所以,故当2m n ==时,2MN 取得最小值1,即MN 的最小值为1.【点评】空间中两点距离的最值,最基本的方法就是利用距离公式建立目标函数,根据目标函数解析式的结构特征求解最值.对于分别在两个不同对象上的点之间距离的最值,可以根据这两个元素之间的关系,借助立体几何中相关的性质、定理等判断并求解相应的最值.如【典例1】中的两点分别在两条异面直线上,显然这两点之间距离的最小值即为两异面直线的公垂线段的长度.另外注意直线和平面的距离,两平面的距离等的灵活运用.【小试牛刀】【湖南省长沙市2019届上学期高三统一检测】设正方体的棱长为,为的中点,为直线上一点,为平面内一点,则,两点间距离的最小值为()A. B. C. D.【答案】B【解析】结合题意,绘制图形结合题意可知OE是三角形中位线,题目计算距离最短,即求OE与两平行线的距离,,所以距离d,结合三角形面积计算公式可得,解得,故选B。

立体几何中线段长度的最值问题

立体几何中线段长度的最值问题

重点辅导Җ㊀北京㊀陶㊀军(特级教师)㊀㊀立体几何中的最值问题是高中数学的难点,这类问题包括求长度㊁角度㊁面积和体积等最值,而有关线段长度的最值问题是最基本的问题,求解这类问题的通法是几何法和向量法,本文进行例析.例1㊀如图1所示,在棱长为2的正方体A B C D GA 1B 1C 1D 1中,E ,F 分别为B C ,C C 1的中点,点P 是侧面B C C 1B 1上一点,A 1P ʊ平面A E F ,则线段A 1P 长度的最小值是.图1分析1㊀因为点A 1是定点,欲求线段A 1P 长度的最小值,所以需确定动点P 的位置.因为直线A 1P 绕点A 1转动时总和平面A E F 保持平行,所以动直线A 1P 形成的平面与侧面B C C 1B 1相交,点P 就在它们的交线l 上.因为交线l 平行于平面A E F ,侧面B C C 1B 1与平面A E F 的交线是E F ,所以l ʊE F .怎样找到交线l 的位置呢?只需先找到点P ,它是侧面B C C 1B 1上的一个点.考虑到E 为B C 的中点,取B 1C 1的中点P 1,可知A 1P 1ʊA E ,则A 1P 1ʊ平面A E F ,而过点P 1且与E F 平行的直线是唯一的,就是交线l ,显然l 过线段B 1B 的中点P 2,点P 的轨迹是线段P 1P 2,所以求线段A 1P 长度的最小值转化为求点A 1到P 1P 2的距离.解法1(几何法)㊀如图2所示,取B 1C 1的中点P 1,因为P 1E ʊA 1A ,且P 1E =A 1A ,所以四边形P 1E A A 1是平行四边形,所以A 1P 1ʊA E .取线段B 1B 的中点P 2,则P 1P 2ʊF E ,又因为A E 与E F 相交于点E ,所以平面A 1P 1P 2ʊ平面A E F ,由于点P 在平面A 1P 1P 2上,又在侧面B C C 1B 1上,故点P 的轨迹是线段P 1P 2.在等腰әA 1P 1P 2中,A 1P 1=A 1P 2=5,P 1P 2=2.取P 1P 2的中点M ,则A 1M ʅP 1P 2,于是A 1M =A 1P 21-P 1M 2=322,所以线段A 1P 长度的最小值是322.图2分析2㊀因为点A 1是定点,线段A 1P 的长度由动点P 的位置决定,确定点P 的位置可以引入坐标,为此考虑建立适当的空间直角坐标系,设出动点P 的坐标,列出长度的表达式,借助函数的思想求A 1P 的最小值.解法2(向量法)㊀如图3所示,以点D 为原点,D A ,D C ,D D 1分别为x ,y ,z 轴建立空间直角坐标系,则A 1(2,0,2),因为点P 是侧面B C C 1B 1上一点,可设点P 的坐标(x ,2,z )(0ɤx ɤ2,0ɤz ɤ2),故|A 1P ң|(x -2)2+4+(z -2)2.图3设平面A E F 的法向量n =(x 0,y 0,z 0),因为A (2,0,0),E (1,2,0),F (0,2,1),A E ң=(-1,2,0),E F ң=(-1,0,1),所以n A E ң=-x 0+2y 0=0,n E F ң=-x 0+z 0=0.{令y 0=1,则x 0=z 0=2,n =(2,1,2).因为A 1P ʊ平面A E F ,所以n 与A 1P ң=(x -2,2,z -2)垂直,故n A 1P ң=2(x -2)+2+2(z -2)=0,化简得x +z =3,因为0ɤz ɤ2,所以0ɤ3-x ɤ2,且0ɤx ɤ2,解得1ɤx ɤ2.把z =3-x 代入|A 1P ң|的表31重点辅导达式,整理得|A 1P ң|=2(x -32)2+92,x ɪ[1,2],故当x =32时,|A 1P ң|取得最小值322.例2㊀如图4所示,在棱长为2的正方体A B C D GA 1B 1C 1D 1中,E 为B C 的中点,点P 在线段D 1E 上,点P 到直线C C 1的距离的最小值为.图4分析1㊀求点P 到直线C C 1的距离的最小值,就是找点P 到直线C C 1的垂线段P Q 长度的最小值.求线段P Q 的长度涉及空间上两个动点长度的距离问题,不易处理.注意到C C 1ʅ平面A B C D ,P Q ʅC C 1,则P Q ʊ平面A B C D .因此,我们可以把P Q 正投影在平面A B C D 上,点P 在平面A B C D 上的正投影H 落在线段D E 上,点Q 在平面A B C D 上的正投影是点C ,于是P Q =H C ,求P Q 的最小值转化为在平面A B C D 上求定点C 与线段D E 上的动点H 之间距离的最小值,就是求定点C 到D E 的距离.解法1(几何法)㊀如图5所示,过点P 作P Q ʅC C 1,Q 为垂足,因为C C 1ʅ平面A B CD ,所以P Q ʊ平面A B C D ,过点P 作PH ʅDE ,H 为垂足,则PH ʅ平面A B C D ,所以PH ʊQ C ,且P Q ʊH C ,Q C ʅH C ,故四边形P Q C H 是矩形,P Q =H C ,在R t әC D E 中,当C H ʅD E 时,C H 长度最小,因为C E =1,C D =2,D E =5,所以C H =1ˑ25=255,故点P 到直线C C 1的距离的最小值为255.图5分析2㊀设点P 到直线C C 1的距离为P Q ,因为P ,Q 分别在线段D 1E 和C C 1上,故可以引入两个变量控制点P ,Q 的位置.设E P ң=λE D 1ң(0ɤλɤ1),C Q ң=μC C 1ң(0ɤμɤ1),根据正方体的特殊性建立适当的空间直角坐标系,利用向量的坐标运算推出点P ,Q 的坐标,进而用λ,μ表示P Q ң,利用P Q ң C C 1ң=0找出λ,μ的关系式,代入P Q 长度的表达式,转化为一元函数求最值.解法2(向量法)㊀如图6所示,以D 为原点,D A ,D C ,D D 1分别为x ,y ,z 轴建立空间直角坐标系,则D 1(0,0,2),E (1,2,0),C 1(0,2,2),C (0,2,0),E D 1ң=(-1,-2,2),由于点P 在线段D 1E 上,可设E P ң=λE D 1ң(0ɤλɤ1),即E P ң=(-λ,-2λ,2λ),由此得点P 的坐标为(,,).图6过点P 作P Q 垂直于C C 1,Q 为垂足,设点Q 的坐标(0,2,m ),P Q ң=(λ-1,2λ,m -2λ),C C 1ң=(0,0,2),因为P Q ңʅC C 1ң,所以P Q ң C C 1ң=0,即2(m -2λ)=0,m =2λ,P Q ң=(λ-1,2λ,0),|P Q ң|=(λ-1)2+(2λ)2+02=5(λ-15)2+45,λɪ[0,1].当λ=15,P Q 取得最小值255.综上所述,利用几何法求线段长度的最值,要点是先用立体几何知识确定动点的轨迹,再用平面几何知识求最值;利用向量法求线段长度的最值,要点是建立适当的坐标系,设出动点坐标,建立线段长度的表达式,借助向量知识把题目中的几何条件合理转化为代数条件,找到动点坐标的关系,把线段长度的表达式转化为一元函数,用函数的思想求最值.(作者单位:北京市怀柔区第一中学)41。

向量法求立体几何中的折叠探索及最值问题 高三数学一轮复习

向量法求立体几何中的折叠探索及最值问题 高三数学一轮复习

巩固训练2 [2024·河南郑州模拟]在底面ABCD为梯形的多面体中.AB∥CD,
BC⊥CD,AB=2CD=2 2,∠CBD=45°,BC=AE=DE,且四边 形BDEN为矩形.
(1)求证:BD⊥AE; (2)线段EN上是否存在点Q,使得直线BE与平面QAD所成的角为60°? 若不存在,请说明理由.若存在,确定点Q的位置并加以证明.
(1)求证:OP⊥平面ABED;
(2)求二面角B-PE-F的正弦值.
题型二 探索性问题
例2 [2024·河北石家庄模拟]如图,四棱锥S-ABCD中,底面ABCD为
矩形且垂直于侧面SAB,O为AB的中点,SA=SB=AB=2,AD= 2.
(1)证明:BD⊥平面SOC;
(2)侧棱SD上是否存在点E,使得平面ABE与平面SCD夹角的余弦值
为1,若存在,求SE的值;若不存在,说明理由.
5
SD

题后师说
(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当 作条件,据此列方程或方程组,把“是否存在”转化为“点的坐标的 方程是否有解,是否有规定范围内的解”等.
(2)对于位置探究型问题,通常借助向量,引进参数,综合已知条件 和结论列出等式,解出参数.
高考大题研究课七 向量法求立体几何中的折叠、探索及最值问题
会用向量法解决立体几何中的折叠、角的存在条件及最值问题,提 高学生空间想象能力、数学运算能力.
关键能力·题型剖析 题型一 折叠问题 例1 [2024·江西景德镇模拟]如图,等腰梯形ABCD中,AD∥BC,AB=BC =CD=12AD=2,现以AC为折痕把△ABC折起,使点B到达点P的位置,且 PA⊥CD.
题型三 最值问题
例3 [2020·新高考Ⅰ卷]如图,四棱锥P-ABCD的底面为正方形, PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.

高数140招之71-立体几何中的最值问题的解题策略

高数140招之71-立体几何中的最值问题的解题策略

一、与线段长有关的最值问题【典例1】在直三棱柱ABC ­A 1B 1C 1中,底面为直角三角形, ∠ACB =90°,AC =6,BC =CC 1=2,P 是BC 1上一动点,如图所示,则CP +PA 1的最小值为________.[解析]PA 1在平面A 1BC 1内,PC 在平面BCC 1内,将其铺平后转化为平面上的问题.铺平平面A 1BC 1,平面BCC 1,如图所示,计算得A 1B =AB 1=210,BC 1=2.又A 1C 1=6,故△A 1BC 1是∠A 1C 1B =90°的直角三角形. 设P 是BC 1上任一点,CP +PA 1≥A 1C ,即当A 1,P ,C 三点共线时,CP +PA 1有最小值. 在△A 1C 1C 中,由余弦定理得A 1C =62+ 2 2-2×6×2×cos 135°=52, 故(CP +PA 1)min =52.【变式练习】1.如图所示,在棱长为1的正方体ABCD ­A 1B 1C 1D 1的面对角线A 1B 上存在一点P ,使得AP +D 1P 取得最小值,则此最小值为()A .2B.6+22C .2+2 D.2+2解析:选D将△A 1AB 与△A 1BD 1放在同一平面内,如图所示.连接AD 1,则AD 1为AP +D 1P 的最小值.因为AA 1=A 1D 1=1,∠AA 1D 1=90°+45°=135°,所以由余弦定理得AD 1=AA 21+A 1D 21-2×AA 1×A 1D 1×cos 135°=2+2. 2.某三棱锥的三视图如图所示,且三个三角形均为直角三角形,则xy 的最大值为________.解析:由三视图知三棱锥如图所示,底面ABC 是直角三角形,AB ⊥BC , PA ⊥平面ABC ,BC =27, PA 2+y 2=102,(27)2+PA 2=x 2, 因此xy =x 102-[x 2- 27 2] =x128-x 2≤x 2+ 128-x 22=64,当且仅当x 2=128-x 2,即x =8时取等号,因此xy 的最大值是64.3.已知直三棱柱ABC ­A 1B 1C 1的侧棱长为6,且底面是边长为2的正三角形,用一平面截此棱柱,与侧棱AA 1,BB 1,CC 1分别交于三点M ,N ,Q ,若△MNQ 为直角三角形,则该直角三角形斜边长的最小值为()A .22B .3C .23D .4解析:选C 如图,不妨设N 在B 处,设AM =h ,CQ =m ,则MB 2=h 2+4,BQ 2=m 2+4,MQ 2=(h -m )2+4,由MB 2=BQ 2+MQ 2,得m 2-hm +2=0.Δ=h 2-8≥0⇒h 2≥8,该直角三角形斜边MB =4+h 2≥23,故该直角三角形斜边长的最小值为23.故选C.二、与面积有关的最值问题【典例2】已知正四面体S ­ABC 的棱长为1,如果一个高为36的长方体能在该正四面体内任意转动,则该长方体的长和宽形成的长方形的面积的最大值为________.解析:如图,易知正四面体S ­ABC 的内切球的球心O 必在高线SH 上,延长AH 交BC 于点D ,则D 为BC 的中点,连接SD ,设内切球切SD 于点E ,连接AO .因为H 是正三角形ABC 的中心,所以AH ∶DH =2∶1.易得Rt △OAH ∽Rt △DSH ,所以OA OH =DSDH=3,可得OA =3OH =SO ,因此SH =4OH ,可得内切球的半径R =OH =14SH .因为正四面体S ­ABC 的棱长为1,所以在Rt △DSH中,DS =SH 2+DH 2= 4R 2+(13×32)2=32,解得R 2=124.要满足一个高为36的长方体能在该正四面体内任意转动,则长方体的体对角线长不超过正四面体内切球的直径,设该长方体的长和宽分别为x ,y ,其长和宽形成的长方形的面积为S ,则4R 2≥(36)2+x 2+y 2,所以x 2+y 2≤112,所以S =xy ≤x 2+y 22≤124,当且仅当x =y =612时等号成立,即该长方体的长和宽形成的长方形的面积的最大值为124. 【变式练习】1.(2018·全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为() A .334B .233C .324D .32【答案】A【解析】如图所示,在正方体ABCD ­A 1B 1C 1D 1中,平面AB 1D 1与棱A 1A ,A 1B 1,A 1D 1所成的角都相等,又正方体的其余棱都分别与A 1A ,A 1B 1,A 1D 1平行,故正方体ABCD ­A 1B 1C 1D 1的每条棱所在直线与平面AB 1D 1所成的角都相等.如图所示,取棱AB ,BB 1,B 1C 1,C 1D 1,D 1D ,DA 的中点E ,F ,G ,H ,M ,N ,则正六边形EFGHMN 所在平面与平面AB 1D 1平行且面积最大,此截面面积为S 正六边形EFGHMN =6×12×22×22×sin 60°=334.故选A.2.已知球O 是正三棱锥A ­BCD 的外接球,BC =3,AB =23,点E 在线段BD 上,且BD =3BE ,过点E 作球O 的截面,则所得截面中面积最小的截面圆的面积是________.【答案】2π【解析】如图,设△BCD 的中心为点O 1,球O 的半径为R ,则A ,O ,O 1三点共线.连接O 1D ,O 1E ,OD ,OE ,则O 1D =3,AO 1=AD 2-O 1D 2=3.在Rt △OO 1D 中,R 2=3+(3-R )2,即R =2,所以OO 1=1.在△O 1DE 中,DE =23BD =2,∠O 1DE =30°,所以由余弦定理得O 1E =3+4-2×3×2× cos 30°=1.所以OE =2.过点E 作圆O 的截面,当截面与OE 垂直时,截面的面积最小,此时截面圆的半径为22-(2)2=2,所以截面圆的面积为2π.3.在长方体ABCD ­A 1B 1C 1D 1中,AB =AD =4,AA 1=2.过点A 1作平面α与AB ,AD 分别交于M ,N 两点,若AA 1与平面α所成的角为45°,则截面A 1MN 面积的最小值是________.【答案】2π【解析】如图,过点A 作AE ⊥MN ,连接A 1E ,因为A 1A ⊥平面ABCD ,所以A 1A ⊥MN ,所以MN ⊥平面A 1AE ,所以A 1E ⊥MN ,平面A 1AE ⊥平面A 1MN ,所以∠AA 1E 为AA 1与平面A 1MN 所成的角,所以∠AA 1E =45°,在Rt △A 1AE 中,因为AA 1=2,所以AE =2,A 1E =22,在Rt △MAN 中,由射影定理得ME ·EN =AE 2=4,由基本不等式得MN =ME +EN ≥2ME ·EN =4,当且仅当ME =EN ,即E 为MN 的中点时等号成立,所以截面A 1MN 面积的最小值为12×4×22=42.三、与体积有关的最值问题【典例3】(2017·全国卷Ⅰ)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为________.【答案】415【解析】如图,连接OD 交BC 于点G ,由题意知,OD ⊥BC .易得OG =36BC ,设OG =x ,则BC =23x ,DG =5-x , S △ABC =12×23x ×3x =33x 2,故所得三棱锥的体积V =13×33x 2× 5-x 2-x 2=3x 2×25-10x =3×25x 4-10x 5.令f (x )=25x 4-10x 5,x ∈(0,52),则f ′(x )=100x 3-50x 4,令f ′(x )>0,即x 4-2x 3<0,得0<x <2; 令f ′(x )<0,得2<x <52,则当x ∈(0,52)时,f (x )≤f (2)=80, ∴V ≤3×80=415.∴所求三棱锥的体积的最大值为415.【变式练习】1.(2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D ­ABC 体积的最大值为()A .123B .183C .243D .543【答案】B【解析】由等边△ABC 的面积为93,可得34AB 2=93,所以AB =6,所以等边△ABC的外接圆的半径为r =33AB =23.设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=16-12=2.所以三棱锥D ­ABC 高的最大值为2+4=6,所以三棱锥D ­ABC 体积的最大值为13×93×6=183.2.已知圆锥的侧面展开图是半径为3的扇形,则该圆锥体积的最大值为________. 【答案】23π【解析】由题意得圆锥的母线长为3,设圆锥的底面半径为r ,高为h ,则h =9-r 2,所以圆锥的体积V =13πr 2h =13πr 29-r 2=13π9r 4-r 6.设f (r )=9r 4-r 6(r >0),则f ′(r )=36r 3-6r 5,令f ′(r )=36r 3-6r 5=6r 3(6-r 2)=0,得r =6,所以当0<r <6时,f ′(r )>0,f (r )单调递增;当r >6时,f ′(r )<0,f (r )单调递减,所以f (r )max =f (6)=108,所以V max =13π×108=23π.3.已知A ,B ,C 是球O 的球面上三点,且AB =AC =3,BC =33,D 为该球面上的动点,球心O 到平面ABC 的距离为球半径的一半,则三棱锥D ­ABC 体积的最大值为________.【答案】274【解析】如图,在△ABC 中, ∵AB =AC =3,BC =33, ∴由余弦定理可得cos A =32+32- 33 22×3×3=-12,∴sin A =32.设△ABC 外接圆O ′的半径为r ,则3332=2r ,得r =3.设球的半径为R ,连接OO ′,BO ′,OB , 则R 2=(R 2)2+32,解得R =23.由图可知,当点D 到平面ABC 的距离为32R 时,三棱锥D ­ABC 的体积最大,∵S △ABC =12×3×3×32=934,∴三棱锥D ­ABC 体积的最大值为13×934×33=274.4.如图,等腰梯形ABCD 中,AB ∥CD ,AD =AB =BC =1,CD =2,E 为CD 的中点,将△ADE 沿AE 折到△APE 的位置.(1)证明:AE ⊥PB ;(2)当四棱锥P ­ABCE 的体积最大时,求二面角A ­PE ­C 的余弦值.解:(1)证明:在等腰梯形ABCD 中,连接BD ,交AE 于点O , ∵AB ∥CE ,AB =CE ,∴四边形ABCE 为平行四边形, ∴AE =BC =AD =DE ,∴△ADE 为等边三角形, ∴在等腰梯形ABCD 中,∠C =∠ADE =π3,BD ⊥BC ,∴BD ⊥AE .如图,翻折后可得OP ⊥AE ,OB ⊥AE ,又OP ⊂平面POB ,OB ⊂平面POB ,OP ∩OB =O ,∴AE ⊥平面POB ,∵PB ⊂平面POB ,∴AE ⊥PB .(2)当四棱锥P ­ABCE 的体积最大时,平面PAE ⊥平面ABCE .又平面PAE ∩平面ABCE =AE ,PO ⊂平面PAE ,PO ⊥AE ,∴OP ⊥平面ABCE .以O 为坐标原点,OE所在的直线为x 轴,OB 所在的直线为y 轴,OP 所在的直线为z轴,建立空间直角坐标系,由题意得,P(0,0,32),E(12,0,0),C(1,32,0),∴PE―→=(12,0,-32),EC―→=(12,32,0),设平面PCE的法向量为n1=(x,y,z),则{·n1=0,·n1=0,)即{12x-32z=0,12x+32y=0,)设x=3,则y=-1,z=1,∴n1=(3,-1,1)为平面PCE的一个法向量,易知平面PAE的一个法向量为n2=(0,1,0),cos n1,n2 =n1·n2|n1||n2|=-11×5=-55.由图知所求二面角A­PE­C为钝角,∴二面角A­PE­C的余弦值为-5 5 .[解题技法]立体几何中的最值问题的解题策略空间几何体中的某些对象,如点、线、面,在约束条件下运动,带动相关的线段长度、体积等发生变化,进而就有了面积与体积的最值问题.定性分析:在空间几何体的变化过程中,通过观察运动点的位置变化,确定其相关量的变化规律,进而发现相关面积或体积的变化规律,求得其最大值或最小值.定量分析:将所求问题转化为某一个相关量的问题,即转化为关于其中一个量的函数,求其最大值或最小值的问题.根据具体情况,有函数法、不等式法、三角函数法等多种方法可供选择.。

高中数学立体几何中的最值问题

高中数学立体几何中的最值问题

高中数学立体几何中的最值问题在高中数学的学习中,立体几何一直是一个重点和难点,而其中的最值问题更是让许多同学感到头疼。

这类问题往往需要我们综合运用空间想象力、几何知识以及数学方法来求解。

接下来,让我们一起深入探讨立体几何中的最值问题。

一、常见类型及解法1、距离最值问题(1)两点间距离最值在立体几何中,求两点间距离的最值,常常需要我们将空间中的两点转化到同一平面内。

例如,在长方体中,求异面直线上两点的最短距离,就需要通过平移将其转化为共面直线,然后利用平面几何中的知识求解。

(2)点到直线距离最值求点到直线的距离最值时,通常要找到点在直线上的投影。

如果直线是某一平面的斜线,那么可以通过作垂线找到投影,再利用勾股定理计算距离。

(3)点到平面距离最值对于点到平面的距离最值,一般可以利用空间向量法。

先求出平面的法向量,然后通过向量的数量积来计算点到平面的距离。

2、面积最值问题(1)三角形面积最值在立体几何中,涉及三角形面积的最值问题,可能需要考虑三角形的边长关系或者角度大小。

例如,已知三角形的两边及其夹角,当夹角为直角时,面积最大。

(2)四边形面积最值对于四边形,如平行四边形,其面积可以表示为底边乘以高。

当底边长度固定时,高取得最大值时面积最大;或者当四边形的对角线相互垂直时,面积等于对角线乘积的一半。

3、体积最值问题(1)柱体体积最值对于柱体,如圆柱、棱柱,其体积等于底面积乘以高。

当底面积不变时,高最大则体积最大;反之,高最小时体积最小。

(2)锥体体积最值锥体体积为三分之一底面积乘以高。

在求解锥体体积最值时,需要关注底面积和高的变化。

二、例题分析例 1:在棱长为 2 的正方体 ABCD A1B1C1D1 中,E、F 分别是棱AB、BC 的中点,求点 A1 到直线 EF 的距离。

解:连接 A1C1、C1F、EF,因为 A1C1 平行于 EF,所以点 A1 到直线 EF 的距离等于点 A1 到直线 C1F 的距离。

最新3. 立体几何中的最值问题资料资料

最新3. 立体几何中的最值问题资料资料

3. 立体几何中的最值问题(一)求解立体几何的最值问题主要应用代数中的有关函数知识或不等式有关知识求解。

解题的关键是恰当地引入参变量(一元或二元),建立目标函数,然后由表达式的特点求最值;求曲面上的两点间距离或多面体中的折线的最短长度问题,可考虑展开后转化为平面上两点间的最短距离问题,然后用通常的解三角形的方法加以解决。

一、面积的最值问题1. 【湖南省怀化市2014届高三第二次模拟考试统一检测】在空间中有一棱长为a 的正四面体,其俯视图的面积的最大值为( )A .2a B .22a C .24D .24a2. (湖北省荆州市2013届高三3月质量检测(Ⅱ)数学(理)试题)在半径为R 的球内有一内接圆柱,设该圆柱底面半径为r ,当圆柱的侧面积最大时,rR 为 ( )A .14B .12C .2D3.(东北三省三校2013年3月高三第一次联合模拟)点A B C D 、、、在同一个球的球面上,AB BC ==2AC =,若四面体ABCD 体积的最大值为23,则这个球的表面积为( )A .1256π3B .8πC .254πD .2516π4 .(河北省武邑中学2013届高三第一次模拟考试数学(理)试题)如图,在三棱锥ABC P -中,PA ⊥底面ABC ,∠ACB = 90,AE ⊥PB 于E ,AF ⊥PC 于F ,若2==AB PA ,∠BPC =θ,则当AEF ∆的面积最大时,θtan 的值为( )A .2B .21 C .2 D .225.(河南省豫东、豫北十所名校2012届高三阶段性测试四理科)已知长方体ABCD -A 1B 1C 1D 1的外接球的表面积为16,则该长方体的表面积的最大值为( )A .32B .36C .48D .646. (湖南省株洲市2008届高三第二次质检)已知三棱锥P —ABC 的四个顶点均在半径为1的球面上,且满足0=⋅,0=⋅,0=⋅,则三棱锥P —ABC 的侧面积的最大值为( )A .2B .1C .21D .417. 设圆柱轴截面的对角线长为定值,为使圆柱的侧面积最大,则轴截面的对角线与底面所成的角为( )A 、6πB 、4πC 、3πD 、125πFEPCBA8. 有一个棱长为a 的正方体骨架,其内放置一气球,使其充气且尽可能地膨胀(仍保持为球的形状),则气球表面积的最大值为( )A 、2a πB 、22a πC 、23a πD 、24a π9. 已知圆锥的母线长为,l 底面半径为R ,如果过圆锥顶点的轴截面面积的最大值是221l ,则( )A 、22≤l R B 、22=l R C 、22≥l R D 、22<l R10、如果过圆锥顶点的面积最大的截面是轴截面,则圆锥的侧面展开图的圆心角的取值范围是( )A 、⎪⎪⎭⎫ ⎝⎛π220,B 、()π20,C 、⎥⎦⎤ ⎝⎛π220, D 、(]π20,11. 圆锥的轴截面为正三角形,母线长为8,圆锥的内接圆柱的高为h ,当内接圆柱的侧面积最大时,h 的值是( )A 、334 B 、4 C 、33 D 、3212. 在正三棱锥P -ABC 中,AB =8,PC =54,动点ABM PC M ∆∈,则面积的最小值为( )A 、524B 、374C 、354D 、5551613. 【2014年呼伦贝尔市高考模拟统一考试(二)】设A 、B 、C 、D 是半径为2的球面上的四点,且满足,,AB AC AD AC AB AD ⊥⊥⊥,ABC ABD ACD S S S ∆∆∆++的最大值是 _______ .14【东北三省三校2014届高三第一次联合模拟】 正四面体ABCD 的棱长为4,E 为棱BC 的中点,过E 作其外接球的截面,则截面面积的最小值为 .答案:1-12 BCCD AABB CCDD 13. 8; 14. 4π3. 立体几何中的最值问题(二)二、体积的最值问题1. (2010全国卷2理数)(9)已知正四棱锥S ABCD -中,SA =,那么当该棱锥的体积最大时,它的高为( )A .1B .C .2D .32. (2010全国卷1文理数)(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB =CD =2,则四面体ABCD 的体积的最大值为( )A B C . D3.【湖北省稳派教育2014届高三上学期强化训练(三)数学(理)试题】在三棱锥ABC P -中,PC PB PA ,,两两垂直,且1,2,3===PC PB PA ,设M 是底面ABC ∆内一点,定义),,()(p n m M f =,其中p n m ,,分别是三棱锥PAB M -,三棱锥PBC M -,三棱锥PCA M -的体积,若),,21()(y x M f =,且81≥+y a x ,则正实数a 的最小值为( )A . 1B .2C .22D .44. 【陕西省西工大附中2014届高三第四次适应性训练】已知一个四面体有五条棱长都等于2,则该四面体的体积最大值为( )A .12B .1C .22 D .25. (北京市朝阳区2013届高三上学期期末考试数学理试题 )在棱长为1的正方体1111ABCD A B C D 中,点1P ,2P 分别是线段AB ,1BD (不包括端点)上的动点,且线段12P P 平行于平面11A ADD ,则四面体121PP AB 的体积的最大值是( ) A .124B .112 C .16D .126.(河南省十所名校2013届高三第三次联考数学(理)试题)四面体ABCD 中,AD 与BC 互相垂直,AD =2BC =4,且AB +BD =AC +CD =2,则四面体ABCD 的体积的最大值是( )A .4B .2C .5 D7.(吉林省实验中学2012届高三第六次模拟理科)已知正四棱锥S ABCD-中,SA=,那么当该棱锥的体积最大时,它的高为()A.1 B C.2 D.38.(四川省成都市新都一中高2008级12月月考)已知一个四面体有五条棱长都等于2,则该四面体的体积最大值为( )A、12B、22C、1D、29. (2009湖南师大附中第五次月考)如图,三棱柱ABC-A1B1C1的侧面A1ABB1⊥BC,且A1C与底面成 45°角,AB=BC=2,则该棱柱体积的最小值为 ()A.34B.33C.4 D. 310.【湖南省衡阳市八中2014届高三上学期第三次月考试卷数学(理)】在三棱锥D-ABC中,已知BC丄AD,BC=2 ,AD=6,AB+BD=AC+CD=10,则三棱锥D一ABC的体积的最大值是__________.11. 【山东省东营市高三4月统一质量检测】已知直角梯形ABCD,AB AD⊥,CD AD⊥,222AB AD CD===,沿AC折叠成三棱锥,当三棱锥体积最大时,三棱锥外接球的体积为.12.【2012高考真题上海理14】如图,AD与BC是四面体ABCD中互相垂直的棱,2=BC,若cAD2=,且aCDACBDAB2=+=+,其中a、c为常数,则四面体ABCD的体积的最大值是。

高三数学选择填空难题突破 立体几何中最值问题

高三数学选择填空难题突破 立体几何中最值问题

高三数学选择填空难题突破立体几何中最值问题高三数学选择填空难题突破——立体几何中的最值问题一、方法综述高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题。

此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练。

立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合。

解决此类问题一般可从三个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;三是将几何体平面化,如利用展开图,在平面几何图中直观求解。

二、解题策略类型一:距离最值问题例1:如图,矩形ADFE,矩形CDFG,正方形ABCD两两垂直,且AB=2,若线段DE上存在点P使得GP⊥BP,则边CG长度的最小值为()解:建立空间直角坐标系,设CG长度为a及点P的坐标,求BP与GP的坐标,得到函数关系式,利用函数求其最值。

举一反三:如图,在棱长为1的正方体ABCD-A中,点E、F分别是棱BC、CC'的中点,P是侧面BCC'B内一点,若A'P⊥平面AEF,则线段A'P长度的取值范围是_____。

二、改写后的文章高三数学选择填空难题突破——立体几何中的最值问题一、方法综述高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目。

而几何问题中的最值与范围类问题,不仅可以考查学生的空间想象能力,还可以考查运用运动变化观点处理问题的能力,因此这类问题将是有中等难度的考题。

高考数学一轮复习第7章 第7节 立体几何中的最值、翻折、探索性问题 (2)

高考数学一轮复习第7章 第7节 立体几何中的最值、翻折、探索性问题 (2)

立体几何中的最值、翻折、探索性问题考点一立体几何中的最值问题解决空间图形有关的线段、角、距离、面积、体积等最值问题,一般可以从三方面着手:一是从问题的几何特征入手,充分利用其几何性质去解决;二是利用空间几何体的侧面展开图;三是找出问题中的代数关系,建立目标函数,利用代数方法求目标函数的最值.解题途径很多,在函数建成后,可用一次函数的端点法,二次函数的配方法、公式法,函数有界法(如三角函数等)及高阶函数的拐点导数法等.[典例1](1)如图所示,长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,面对角线B1D1上存在一点P使得A1P+PB最短,则A1P+PB的最小值为()A.5B.2+6 2C.2+2D.2(2)如图所示,P A⊥平面ADE,B,C分别是AE,DE的中点,AE⊥AD,AD=AE=AP=2.若点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.(1)A[如图,把△A1B1D1折起至与平面BDD1B1共面,连接A1B交B1D1于P,则此时的A1P+PB最短,即为A1B的长,在△A1B1B中,由余弦定理求得A1B=5,故选A.](2)[解] 因为P A ⊥平面ADE ,AD ⊂平面ADE ,AB ⊂平面ADE ,所以P A ⊥AD ,P A ⊥AB ,又因为AE ⊥AD ,B 为AE 中点,所以P A ,AD ,AB 两两垂直.以{AB →,AD →,AP →}为正交基底建立空间直角坐标系A -xyz ,则各点的坐标为A (0,0,0),B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).BP→=(-1,0,2),故可设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1).又CB →=(0,-1,0),所以CQ →=CB →+BQ →=(-λ,-1,2λ).又DP→=(0,-2,2), 所以cos 〈CQ→,DP →〉=CQ→·DP →|CQ →||DP →|=1+2λ10λ2+2.设1+2λ=t ,t ∈[1,3], 则cos 2〈CQ→,DP →〉=2t25t2-10t +9=29⎝ ⎛⎭⎪⎪⎫1t -592+209≤910,当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|的最大值为31010. 因为y =cos x 在⎝⎛⎭⎪⎪⎫0,π2上是减函数,所以当λ=25时直线CQ与DP所成角取得最小值.又因为BP=12+22=5,所以BQ=25BP=255.点评:本例(1)属于线段和的最值问题,求解时采用了化空间为平面,化折为直的重要手段;本例(2)属于解决空间角的最值问题,求解时采用了把空间角的余弦三角函数值表示为参数λ的二次函数,利用这个函数的单调性求三角函数值的最值,求解时需要注意的是函数中自变量的取值范围对最值的决定作用.[跟进训练](2020·广州模拟)如图所示,在四面体ABCD中,AD⊥AB,平面ABD⊥平面ABC,AB=BC=22AC,且AD+BC=4.(1)证明:BC⊥平面ABD;(2)设E为棱AC的中点,当四面体ABCD的体积取得最大值时,求二面角C-BD-E 的余弦值.[解](1)证明:因为AD⊥AB,平面ABD⊥平面ABC,平面ABD∩平面ABC=AB,AD⊂平面ABD,所以AD⊥平面ABC,因为BC⊂平面ABC,所以AD⊥BC.因为AB=BC=22AC,所以AB2+BC2=AC2,所以AB⊥BC,因为AD∩AB=A,所以BC⊥平面ABD.(2)设AD =x (0<x <4),则AB =BC =4-x , 四面体ABCD 的体积 V =f (x )=13x ×12(4-x )2=16(x 3-8x 2+16x )(0<x <4). f ′(x )=16(3x 2-16x +16)=16(x -4)(3x -4),当0<x <43时,f ′(x )>0,V =f (x )单调递增; 当43<x <4时,f ′(x )<0,V =f (x )单调递减. 故当AD =x =43时,四面体ABCD 的体积取得最大值.以B 为坐标原点,建立空间直角坐标系B -xyz , 则B (0,0,0),A ⎝ ⎛⎭⎪⎪⎫0,83,0,C ⎝ ⎛⎭⎪⎪⎫83,0,0,D ⎝ ⎛⎭⎪⎪⎫0,83,43,E ⎝ ⎛⎭⎪⎪⎫43,43,0.设平面BCD 的法向量为n =(x ,y ,z ),则⎩⎨⎧n ·BC →=0,n ·BD→=0,,即⎩⎪⎨⎪⎧83x =0,83y +43z =0,令z =-2,得n =(0,1,-2),同理可得平面BDE 的一个法向量为m =(1,-1,2), 则cos 〈m ,n 〉=m·n|m||n|=-55×6=-306.由图可知,二面角C -BD -E 为锐角,故二面角C -BD -E 的余弦值为306.考点二 平面图形的翻折问题三步解决平面图形翻折问题[典例2] (2018·全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. [解] (1)证明:由已知可得BF ⊥PF ,BF ⊥EF , PF ∩EF =F ,PF ,EF ⊂平面PEF , 所以BF ⊥平面PEF . 又BF ⊂平面ABFD , 所以平面PEF ⊥平面ABFD . (2)如图,作PH ⊥EF ,垂足为H . 由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,|BF →|为单位长,建立如图所示的空间直角坐标系H -xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE =3.又PF =1,EF =2, 所以PE ⊥PF . 所以PH =32,EH =32.则H (0,0,0),P ⎝ ⎛⎭⎪⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎪⎫-1,-32,0, DP →=⎝ ⎛⎭⎪⎪⎫1,32,32,HP →=⎝ ⎛⎭⎪⎪⎫0,0,32. 又HP→为平面ABFD 的法向量, 设DP 与平面ABFD 所成的角为θ,则sin θ=|cos 〈HP→,DP →〉|=|HP →·DP →||HP→||DP →|=343=34. 所以DP 与平面ABFD 所成角的正弦值为34.点评:平面图形翻折为空间图形问题重点考查平行、垂直关系,解题关键是看翻折前后线面位置关系的变化,根据翻折的过程找到翻折前后线线位置关系中没有变化的量和发生变化的量,这些不变的和变化的量反映了翻折后的空间图形的结构特征.[跟进训练]如图①,在高为6的等腰梯形ABCD 中,AB ∥CD ,且CD =6,AB =12,将它沿对称轴OO 1折起,使平面ADO 1O ⊥平面BCO 1O ,如图②,点P 为BC 的中点,点E 在线段AB 上(不同于A ,B 两点),连接OE 并延长至点Q ,使AQ ∥OB .图① 图② (1)证明:OD ⊥平面P AQ ;(2)若BE =2AE ,求二面角C -BQ -A 的余弦值. [解] (1)证明:由题设知OA ,OB ,OO 1两两垂直, ∴以O 为坐标原点,OA ,OB ,OO 1所在直线分别为x 轴,y轴,z 轴建立如图所示的空间直角坐标系,设AQ 的长为m ,则O (0,0,0),A (6,0,0),B (0,6,0),C (0,3,6),D (3,0,6),Q (6,m,0).∵点P 为BC 的中点, ∴P ⎝ ⎛⎭⎪⎪⎫0,92,3,∴OD →=(3,0,6),AQ →=(0,m,0),PQ →=⎝ ⎛⎭⎪⎪⎫6,m -92,-3.∵OD →·AQ →=0,OD →·PQ →=0,∴OD→⊥AQ →,OD →⊥PQ →, 即OD ⊥AQ ,OD ⊥PQ ,又AQ ∩PQ =Q , ∴OD ⊥平面P AQ .(2)∵BE =2AE ,AQ ∥OB ,∴AQ =12OB =3,则Q (6,3,0),∴QB→=(-6,3,0),BC →=(0,-3,6).设平面CBQ 的法向量为n 1=(x ,y ,z ), 由⎩⎨⎧n1·QB→=0,n1·BC→=0,得⎩⎪⎨⎪⎧-6x +3y =0,-3y +6z =0,令z =1,则y =2,x =1,n 1=(1,2,1). 易得平面ABQ 的一个法向量为n 2=(0,0,1). 设二面角C -BQ -A 的大小为θ,由图可知,θ为锐角, 则cos θ=⎪⎪⎪⎪⎪⎪⎪⎪n1·n2|n1|·|n2|=66, 即二面角C -BQ -A 的余弦值为66.考点三 立体几何中的探索性问题(1)解决探索性问题的基本方法是假设结论成立或对象存在,然后在这个前提下进行逻辑推理,若能推导出与条件吻合的数据或事实,则说明假设成立,即存在,并可进一步证明;否则不成立,即不存在.(2)在棱上探寻一点满足各种条件时,要明确思路,设点坐标,应用共线向量定理a =λb (b ≠0),利用向量相等,所求点坐标用λ表示,再根据条件代入,注意λ的范围.(3)利用空间向量的坐标运算,可将空间中的探索性问题转化为方程是否有解的问题进行处理.[典例3] (2020·上饶模拟)如图所示,正方形AA 1D 1D 与矩形ABCD 所在平面互相垂直,AB =2AD =2,点E 为AB 的中点.(1)求证:BD 1∥平面A 1DE ;(2)设在线段AB 上存在点M ,使二面角D 1-MC -D 的大小为π6,求此时AM 的长及点E 到平面D 1MC 的距离.[解] (1)证明:连接AD 1,交A 1D 于点O ,∵四边形AA 1D 1D 为正方形, ∴O 是AD 1的中点,∵点E 为AB 的中点,连接OE . ∴EO 为△ABD 1的中位线,∴EO ∥BD 1.又∵BD 1⊄平面A 1DE ,OE ⊂平面A 1DE ,∴BD 1∥平面A 1DE . (2)由题意可得D 1D ⊥平面ABCD ,以点D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则D (0,0,0),C (0,2,0),A 1(1,0,1),D 1(0,0,1),B (1,2,0),E (1,1,0),设M (1,y 0,0)(0≤y 0≤2),∵MC →=(-1,2-y 0,0),D1C →=(0,2,-1), 设平面D 1MC 的一个法向量为n 1=(x ,y ,z ),则⎩⎨⎧n1·MC→=0,n1·D1C→=0,即错误!令y =1,有n 1=(2-y 0,1,2).而平面MCD 的一个法向量为n 2=(0,0,1). 要使二面角D 1-MC -D 的大小为π6,则cos π6=|cos 〈n 1,n 2〉|=|n1·n2||n1|·|n2|=错误!=错误!,解得y 0=2-33(0≤y 0≤2),故AM =2-33,此时n 1=⎝ ⎛⎭⎪⎪⎫33,1,2,D1E →=(1,1,-1).故点E 到平面D 1MC 的距离为d =|n1·D1E →||n1|=1-33433=3-14.点评:求空间距离常用的方法(1)直接法:利用线线垂直、线面垂直、面面垂直等性质定理与判定定理,作出垂线段,再通过解三角形求出距离.(2)间接法:利用等体积法、特殊值法等转化求解.(3)向量法:空间中的距离问题一般都可转化为点到平面的距离问题进行求解. 求点P 到平面α的距离的步骤:①在平面α内取一点A ,确定向量PA→的坐标; ②确定平面α的法向量n ;③代入公式d =|PA →·n||n|求解. [跟进训练] (2020·沈阳模拟)如图,已知直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC =1,AB ⊥AC ,M ,N ,Q 分别是CC 1,BC ,AC 的中点,点P 在直线A 1B 1上运动,且A1P→=λA1B1→(λ∈[0,1]). (1)证明:无论λ取何值,总有AM ⊥平面PNQ ; (2)是否存在点P ,使得平面PMN 与平面ABC 的夹角为60°?若存在,试确定点P 的位置,若不存在,请说明理由.[解] (1)如图,以A 为坐标原点,AB ,AC ,AA 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则A (0,0,0),A 1(0,0,1),B 1(1,0,1),M ⎝⎛⎭⎪⎪⎫0,1,12,N ⎝ ⎛⎭⎪⎪⎫12,12,0,Q ⎝ ⎛⎭⎪⎪⎫0,12,0, 由A1P→=λA1B1→=λ(1,0,0)=(λ,0,0),可得点P (λ,0,1),所以PN →=⎝ ⎛⎭⎪⎪⎫12-λ,12,-1,PQ →=⎝ ⎛⎭⎪⎪⎫-λ,12,-1. 又AM →=⎝⎛⎭⎪⎪⎫0,1,12,所以AM →·PN →=0+12-12=0,AM →·PQ →=0+12-12=0, 所以AM→⊥PN →,AM →⊥PQ →,即AM ⊥PN ,AM ⊥PQ , 又PN ∩PQ =P ,所以AM ⊥平面PNQ ,所以无论λ取何值,总有AM ⊥平面PNQ .(2)设n =(x ,y ,z )是平面PMN 的法向量,NM →=⎝ ⎛⎭⎪⎪⎫-12,12,12,PN →=⎝ ⎛⎭⎪⎪⎫12-λ,12,-1, 则⎩⎨⎧ n ·NM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧ -12x +12y +12z =0,⎝ ⎛⎭⎪⎪⎫12-λx +12y -z =0,得⎩⎪⎨⎪⎧ y =1+2λ3x ,z =2-2λ3x ,令x =3,所以n =(3,1+2λ,2-2λ)是平面PMN 的一个法向量. 取平面ABC 的一个法向量为m =(0,0,1).假设存在符合条件的点P ,则|cos 〈m ,n 〉|=错误!=错误!,化简得4λ2-14λ+1=0,解得λ=7-354或λ=7+354(舍去). 综上,存在点P ,且当A 1P =7-354时,满足平面PMN 与平面ABC 的夹角为60°.。

立体几何最值问题-高考数学一题多解

立体几何最值问题-高考数学一题多解

立体几何最值问题-高考数学一题多解一、攻关方略事物的空间形成,总是表现为不同维数且遵循由低维到高维的发展规律,所谓升维策略,就是把维数、抽象水平较低的或局部的问题转化为维数、抽象水平较高或整体性较强的整体间的关系问题,通过对整体性质或关系的考虑,使原问题获得解决的策略,如平面图形通过翻折或旋转成为空间图形就是二维向三维的转化与变换.在解题时,考虑把高维空间的问题转化为低维空间的问题,这种处理问题的方法叫降维法,也可称之为降维策略,如将立体几何问题转化为平面几何问题.实际上,许多立体几何问题如求空间角、空间距离等,通常总是转化为平面内的问题,通过计算来解决的,当然将空间角、空间距离转变为平面角、平面上点线距离这一步是需要证明的.在立体几何学习中经常碰到几何体中有变角或变动的线段,此时必须根据题意列出沟通已知量与变量之间的关系,运用函数与方程的思想来处理,立体几何中由于动点的变化引起的最值,通常建立关于与动点相关的角度的目标函数,转化为函数最值问题求解.若在空间图形中建立空间直角坐标系,利用向量坐标法,结合条件得到方程(组),则可用解方程(组)求出结果,利用函数与方程的思想方法还可以解空间图形中涉及线面关系、面面关系的探究性问题.真可谓:翻折旋转二维升三,空间问题降维处理.点动角变牵动图形,立几最值函数搞定.1.如图所示,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,DBC △、ECA △、FAB 分别是以BC 、CA 、AB 为底边的等腰三角形,沿虚线剪开后,分别以BC 、CA 、AB 为折痕折起DBC △、ECA △、FAB ,使得D 、E 、F 重合,得到三棱锥.当ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为______.【针对训练】2.点P 在ABC 所在平面α外,PA α⊥,PB PC ==,3tan 2PBC ∠=,则点A 到平面PBC 的距离的最大值是______.3.如图所示,在ABC 中,2AB BC ==,120ABC ∠=︒.若平面ABC 外的点P 和线段AC 上的点D ,满足PD DA =,PB BA =,则四面体P BCD -的体积的最大值是______.4.已知底面边长为2的正三棱锥-P ABC ,其表面展开图是123PP P ,如图所示,求123PP P 的各边长及此三棱锥的体积V .5.已知球的直径4SC =,A 、B 是该球面上的两点,30ASC BSC ∠=∠=︒,则三棱锥S ABC -的体积的最大值为______.(2021全国新高考Ⅰ卷19)6.已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?(2022新高考1卷)7.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且333l ≤≤)A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27](2022年全国乙卷(文数)第12题)8.已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A .13B .12C D .2(2022年全国乙卷(文数)第18题)9.如图,四面体ABCD 中,AD CD ⊥,AD CD =,ADB BDC ∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2AB BD ==,60ACB ∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC -的体积.10.如图,已知平面四边形ABCD ,AB=BC=3,CD=1,ADC=90°.沿直线AC 将ACD 翻折成ACD '△,直线AC 与BD '所成角的余弦的最大值是________.11.已知四边形ABCD ,2AB BD DA ===,BC CD ==ABD △沿BD 折起,使二面角A BD C --的大小在5,66ππ⎡⎤⎢⎥⎣⎦内,则直线AB 与CD 所成角的余弦值取值范围是()A .08⎡⎢⎣⎦,B .08⎡⎢⎣⎦,C .01⎡⎫⎪⎢⎪⎣⎦⎣⎭ D .88⎢⎣⎦,参考答案:1.3【分析】先求得所求三棱锥体积的表达式,然后利用导数或基本不等式求得体积的最大值.【详解】解法一:由题意可知,折起后所得三棱锥为正三棱锥,当ABC 的边长变化时,设ABC 的边长为()0a a >cm ,则ABC 的面积为24a .DBC △的高为56a -,则正三棱锥的高为=∴2503->,∴0a <<.∴所得三棱锥的体积213412V a =⨯=.令45253t a a =-,则34100t a =',由0t '=,得a =此时所得三棱锥的体积最大,为3.解法二:如图所示,连接OD 交BC 于点G ,由题意知,OD BC ⊥,OG 是等边三角形ABC 内切圆半径,21π1sin 3232BC BC OG ⨯⨯=⨯⨯,解得OG =,∴OG 的长度与BC 的长度成正比.设OG x =,则BC =,5DG x =-,2132ABC S x =⨯=△,则所得三棱锥的体积2213V =⨯=令()452510f x x x =-,50,2x ⎛⎫∈ ⎪⎝⎭.则()3410050f x x x '=-,令()0f x '≥,即4320x x -≤,得02x <≤.则当50,2x ⎛⎫∈ ⎪⎝⎭时,()()280f x f =≤,∴V ≤.∴所求三棱锥的体积的最大值为3.解法三:如图所示,连接OE 交AC 于点H ,连接AO 、OC ,设OH x =.则AC =,5EH x =-,三棱锥D ABC -2ABC S = ,D ABC V -=2≤=,当且仅当104x x =-,即2x =时取等号.∴所求三棱锥的体积的最大值为3.【点睛】本题为平面图形折叠成空间图形,当折叠终止时,几何体是一个正三棱锥,这个正三棱锥底面边长是一个变元,从而导致三棱锥体积的变化,特别要提醒的是,在折叠问题中,必须注意到折叠过程中哪些要素在变化,哪些要素始终保持不变,其中不变要素见核心要素.根据平面图形的性质,寻找不变的数量关系以及直线与直线平行和垂直的位置关系,是解决折叠问题的突破口,因此折叠问题要通过变图、想图、构图、用图的过程,积极思考,体会解题程序方向性,直击问题的本质,折叠问题既要看清平面转化为空间的过程,又要了解三维空间图形问题的平面化处理,两者是互通的.在建立体积表达式的函数模型之后,结合函数思想求最值,通常用导数法,也可考虑运用基本不等式的方法.策略一:以动正三角形AEC 的边长为变元建立函数关系式,运用导数法求其最大值.策略二:以动正三角形ABC 的中心到边的距离为变元建立函数关系式,运用导数法求其最大值.策略三:以动正三角形ABC 的中心到边的距离为变元建立函数关系式,运用基本不等式求最大值,注意等号成立的条件.2【分析】法一,取BC 的中点D ,连接AD 、PD ,设ADP θ∠=,用θ的正余弦表示AD ,PD ,再利用等体积法求解作答.法二,作PD BC ⊥于点D ,连接AD ,作AF PD ⊥于点F ,证明AF ⊥平面PBC ,再利用均值不等式求解作答.【详解】解法一,取BC 的中点D ,连接AD 、PD ,如图,因PB PC =,则PD BC ⊥,而3tan2PBC ∠=,有sin PBC ∠=则有sin PD PB PBC =⋅∠=PA ⊥平面ABC ,,AD BC ⊂平面ABC ,则PA AD ⊥,PA BC ⊥,又,,PA PD P PA PD ⋂=⊂平面PAD ,因此BC ⊥平面PAD ,AD ⊂平面PAD ,则AD BC ⊥,在Rt PAD △中,令(0,)2ADP πθ∠=∈,sin ,cos PA PD AD PD θθ==,设点A 到平面PBC 的距离为h ,11,22PBC ABC S BC PD S BC AD =⋅=⋅ ,由A PBC P ABC V V --=得:1133PBC ABC S h S PA ⋅=⋅ ,即1122BC PD h BC AD PA ⋅⋅=⋅⋅,于是得cos sin 2AD PA PD PD h PD PD θθθ⋅⋅==,当且仅当22=πθ,即4πθ=时取等号,所以点A 到平面PBC解法二,在PBC 中,作PD BC ⊥于点D ,连接AD ,作AF PD ⊥于点F,如图,PA ⊥平面ABC ,BC ⊂平面ABC ,则PA BC ⊥,又,,PA PD P PA PD ⋂=⊂平面PAD ,因此BC ⊥平面PAD ,而BC ⊂平面PBC ,则有平面PAD ⊥平面PBC ,又平面PAD ⋂平面PBC PD =,AF ⊂平面PAD ,因此AF ⊥平面PBC ,即AF 就是点A 到平面PBC 的距离,而3tan 2PBC ∠=,有sin PBD ∠=sin PD PB PBD =⋅∠=,在Rt PAD △中,22211()1222PA AD PD PA AD AF PD PD PD PD +⋅=≤==当且仅当3PA AD ==时取等号,所以点A 到平面PBC3.12##0.5【分析】先求得四面体P BCD -体积的表达式,利用基本不等式或函数的单调性求得体积的最大值.【详解】解法一:由2AB BC ==,120ABC ∠=︒,可得AC =要求四面体P BCD -的体积,关键是寻找底面三角形BCD 的面积BCD S △和点P 到平面BCD 的距离h ,易知2h ≤.设AD x =,则DP x =,DC x =,()12sin 3022DBC xS x =⨯⨯⨯︒=△,其中(0,x ∈,且h x ≤.∴2111366622P BCDBCD x x x x V S h h x -⎛⎫-+=⨯=≤≤= ⎪ ⎪⎝⎭△.当且仅当x x =,即x =P BCD -的体积的最大值是12.解法二:设PD AD x ==,∵PB PA =,PBD ABD ≌△△,1133P BCD BCD V S h -=⨯=△(h 为三棱锥P BCD -的高).当平面PBD ⊥平面BDC 时,使四面体PBCD 的体积较大.作PH BD ⊥,垂足为H ,则PH ⊥平面BCD ,sin sin h PH PD PDB x ADB ==⋅∠=⋅∠.此时,()211sin sin sin 662P BCDx x V ADB ADB ADB -=⋅∠≤∠=∠⎝⎭,当且仅当x =1sin 2P BCD V ADB -=∠,当90ADB ∠=︒,即AD BD ⊥时,P BCD V -最大值为12.解法三:∵13P BCD BCD V S h -=⨯△(h 为三棱锥P BCD -的高),在ABC 中,2AB BC ==,120ABC ∠=︒,则AC =30BAC BCA ∠=∠=︒,设(0PD DA x x ==<<,则DC x =-,1sin 22BCD xS BC CD BCA =⨯⋅∠=△.在ABD △中,由余弦定理,有2222cos BD AD AB AD AB BAC =+-⋅∠.代入整理得BD =PBD △中,由余弦定理,有222cos 2PB BD PD PBD PB BD+-∠=⋅,代值整理得cos PBD ∠∴sin PBD ∠=.过P 作PM BD ⊥,垂足为M ,则PM 为四面体P BCD -的高.∴sin h PM PB PBM ==∠故111336P BCDBCD V S h -===△,t =,∵0x <<12t ≤<,∴224x t -=-.2141466P BCDt V t t t--⎛⎫=⨯=- ⎪⎝⎭在[)1,2t ∈上单调递减.∴当1t =,即x =P BCD -的体积最大为1411612P BCD V --=⨯=.4.1213234PP PP P P ===,3【分析】由12APB CBP ≌△△,分析可得123PP P 是边长为4的正三角形,再由13P ABC ABC S PO V -=⋅ 结合题干数据求解即可.【详解】由题图可知1P 、B 、2P 三点共线,∴12APBCBP ≌△△.∵60ABC ∠=︒,∴1260ABP CBP ∠=∠=︒,1APB △和2CBP △都是正三角形.∴124PP =.同理可知其他两边长也是4,∴123PP P 是边长为4的正三角形.折叠后是棱长为2的正四面体-P ABC ,如图所示.设顶点P 在底面内的投影为O ,连结BO 并延长,交AC 于点D ,则D 为AC 的中点,O 为ABC 的重心,PO ⊥底面ABC .AO AB ==,PO ==.故133P ABC ABC V S PO -=⋅=△.5.2【分析】过AB 作与SC 垂直的截面ABM .通过13S ABC ABM V SC S -=⋅△,分析即得解.【详解】过AB 作平面ABM SC ⊥且SC 平面ABM M =,如图所示,由题意知SAC 、SBC △均为直角三角形.∵4SC =,30ASC BSC ∠=∠=︒,故SAC SBC ≅ ,∴SA =,2CA =,∴SA ACAM BM SC⋅==.∴2141sin 2sin 2332S ABCABM V SC S AMB AMB -=⋅=⨯⨯∠=∠≤△.∴三棱锥S ABC -体积的最大值为2.故答案为:26.(1)证明见解析;(2)112B D =【分析】(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案;【详解】(1)[方法一]:几何法因为1111,//BF AB AB AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,过E 作AB 的平行线分别与AG BC ,交于其中点,M N ,连接11,AM BN ,因为E ,F 分别为AC 和1CC 的中点,所以N 是BC 的中点,易证1Rt Rt BCF B BN ≅ ,则1CBF BBN ∠=∠.又因为1190BBN BNB ∠+∠=︒,所以1190CBF BNB BF BN ∠+∠=︒⊥,.又因为111111,BF AB BN AB B ⊥= ,所以BF ⊥平面11A MNB .又因为ED ⊂平面11A MNB ,所以BF DE ⊥.[方法二]【最优解】:向量法因为三棱柱111ABC A B C -是直三棱柱,1BB ∴⊥底面ABC ,1B B AB ∴⊥11//A B AB ,11BF A B ⊥,BF AB ∴⊥,又1BB BF B ⋂=,AB ∴⊥平面11BCC B .所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.()()()0,0,0,2,0,0,0,2,0,B A C ∴()()()1110,0,2,2,0,2,0,2,2B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤).因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥.[方法三]:因为11BF A B ⊥,11//A B AB ,所以BF AB ⊥,故110BF A B ⋅= ,0BF AB ⋅=,所以()11BF ED BF EB BB B D ⋅=⋅++ ()11=BF B D BF EB BB ⋅+⋅+ 1BF EB BF BB =⋅+⋅ 11122BF BA BC BF BB ⎛⎫=--+⋅ ⎪⎝⎭11122BF BA BF BC BF BB =-⋅-⋅+⋅ 112BF BC BF BB =-⋅+⋅111cos cos 2BF BC FBC BF BB FBB =-⋅∠+⋅∠1=2202-⨯⨯,所以BF ED ⊥.(2)[方法一]【最优解】:向量法设平面DFE 的法向量为(),,m x y z =,因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩ ,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =,设平面11BCC B 与平面DEF 的二面角的平面角为θ,则cos m BA m BA θ⋅=⋅==当12a =时,2224a a -+取最小值为272,此时cos θ=所以()minsin θ=112B D =.[方法二]:几何法如图所示,延长EF 交11A C 的延长线于点S ,联结DS 交11B C 于点T ,则平面DFE 平面11B BCC FT =.作1BH FT ⊥,垂足为H ,因为1DB ⊥平面11BB C C ,联结DH ,则1D H B ∠为平面11BB C C 与平面DFE 所成二面角的平面角.设1,B D t =[0,2],t ∈1B T s =,过1C 作111//CG AB 交DS 于点G .由111113C S C G SA A D ==得11(2)3C G t =-.又1111B D BT C G C T=,即12(2)3t s s t =--,所以31t s t =+.又111B H BT C F FT =,即11B H =,所以1B H =所以DH ==则11sin B D DHB DH∠===所以,当12t =时,()1min 3sin 3DHB ∠=.[方法三]:投影法如图,联结1,FB FN,DEF 在平面11BB C C 的投影为1BN F ,记面11BB C C 与面DFE 所成的二面角的平面角为θ,则1cos B NF DEFS S θ=.设1(02)BD t t =≤≤,在1Rt DB F中,DF ==在Rt ECF中,EF =D 作1B N 的平行线交EN 于点Q .在Rt DEQ △中,DE ==在DEF 中,由余弦定理得222cos 2DF EF DE DFE DF EF+-∠=⋅=,sin DFE ∠1sin 2DFE S DF EF DFE =⋅∠ =13,2B NF S = 1cos B NF DFES S θ==,sin θ,当12t =,即112B D =,面11BB C C与面DFE 所成的二面角的正弦值最小,最小值为3.【整体点评】第一问,方法一为常规方法,不过这道题常规方法较为复杂,方法二建立合适的空间直角坐标系,借助空间向量求解是最简单,也是最优解;方法三利用空间向量加减法则及数量积的定义运算进行证明不常用,不过这道题用这种方法过程也很简单,可以开拓学生的思维.第二问:方法一建立空间直角坐标系,利用空间向量求出二面角的平面角是最常规的方法,也是最优方法;方法二:利用空间线面关系找到,面11BB C C 与面DFE 所成的二面角,并求出其正弦值的最小值,不是很容易找到;方法三:利用面DFE 在面11BB C C 上的投影三角形的面积与DFE △面积之比即为面11BB C C 与面DFE 所成的二面角的余弦值,求出余弦值的最小值,进而求出二面角的正弦值最小,非常好的方法,开阔学生的思维.7.C【分析】设正四棱锥的高为h ,根据题意求出正四棱锥的底面边长与高的关系,再利用导数求解即可.【详解】设球体的半径为R ,由题知:34363R ππ=,所以球的半径3R =.设正四棱锥的底面边长为2a ,高为h ,则222222l h a h =+=+,22232(3)a h =+-,所以26h l =,2222a l h =-所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭,设()641=936x f x x ⎛⎫- ⎪⎝⎭,3x ≤≤,所以()5233112449696x x f x x x ⎛⎫⎛⎫-'=-= ⎪⎝⎭⎝⎭,当3x ≤≤()0f x ¢>,()f x 为增函数,当x <≤()0f x '<,()f x 为减函数,所以当l =时,正四棱锥的体积V 取最大值,最大值为643,又3l =时,274V =,l =814V =,所以正四棱锥的体积V 的最小值为274,所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,.故选:C 8.C【分析】令四棱锥底面四边形外接圆半径为r ,用r 表示四棱锥的高及底面四边形面积最大值,再借助导数求解作答.【详解】设该四棱锥底面四边形为ABCD ,平面ABCD 截球O 所得小圆半径为r ,则球心O到平面ABCD 的距离h =设四边形ABCD 对角线,AC BD 的夹角为α,则1sin 2ABCD S AC BD α=⋅,于是得该四棱锥的体积:12sin 22sin 36623ABCD V S h BD r r rπα=⋅=⋅≤⋅⋅=当且仅当对角线,AC BD 是截面小圆互相垂直的两条直径,即四边形ABCD 为正方形时取等号,令2(0,1)r x =∈,有23r =23(),(0,1)f x x x x =-∈,求导得:22()233()3f x x x x x '=-=-,当203x <<时,()0f x '>,当213x <<时,()0f x '<,因此函数()f x 在2(0,)3上单调递增,在2(,1)3上单调递减,当23x =时,23max 224()(()3327f x =-=,从而当223r =时,max 222(333r =⨯⨯max V =,此时3h ==,故选:C9.(1)证明见解析;【分析】(1)利用线面垂直的判定定理可得AC ⊥平面BED ,然后根据面面垂直的判定定理可得平面BED ⊥平面ACD ;(2)首先判断出三角形AFC 的面积最小时F 点的位置,然后求得F 到平面ABC 的距离,从而求得三棱锥F ABC -的体积或利用等积法及锥体的体积公式即得.【详解】(1)AD CD = ,ADB BDC ∠=∠,BD BD =,ADB CDB ∴≅ ,AB BC ∴=,又E 为AC 的中点.AC BE ∴⊥,AD CD = ,E 为AC 的中点.AC DE ∴⊥,又BE DE E = ,BE ⊂平面BED ,DE ⊂平面BED ,AC ∴⊥平面BED ,又AC ⊂ 平面ACD ,∴平面BED ⊥平面ACD ;(2)方法一:依题意2AB BD BC ===,60ACB ∠=︒,三角形ABC 是等边三角形,所以2,1,AC AE CE BE ====由于,AD CD AD CD =⊥,所以三角形ACD 是等腰直角三角形,所以1DE =,所以222DE BE BD +=,即DE BE ⊥,由于AC BE E ⋂=,,AC BE ⊂平面ABC ,所以DE ⊥平面ABC ,由于ADB CDB ≅△△,所以FBA FBC ∠=∠,由于BF BFFBA FBC AB CB =⎧⎪∠=∠⎨⎪=⎩,所以FBA FBC ≅ ,所以AF CF =,所以EF AC ⊥,由于12AFC S AC EF =⋅⋅ ,所以当EF 最短时,三角形AFC 的面积最小,过E 作EF BD ⊥,垂足为F ,在Rt BED △中,1122BE DE BD EF ⋅⋅=⋅⋅,解得2EF =,所以13,222DF BF DF ===-=,所以34BF BD =,过F 作FH BE ⊥,垂足为H ,则//FH DE ,又DE ⊥平面ABC ,所以FH ⊥平面ABC ,且34FH BF DE BD ==,所以34FH =,所以111323324F ABC ABC V S FH -=⋅⋅=⨯⨯=方法二:AB BC = ,60ACB ∠=︒,2AB =ABC ∴ 是边长为2的等边三角形,BE ∴=连接EF ,由于ADB CDB ≅△△,所以FBA FBC ∠=∠,由于BF BFFBA FBC AB CB =⎧⎪∠=∠⎨⎪=⎩,所以FBA FBC ≅ ,所以AF CF =,所以EF AC ⊥,由于12AFC S AC EF =⋅⋅ ,所以当EF 最短时,三角形AFC 的面积最小,即EF BD ⊥时,AFC △的面积最小,,,2AD CD AD CD AC ⊥== ,E 为AC 的中点,∴1DE =,222DE BE BD +=,BE ED ∴⊥,在Rt BED △中,1122BE DE BD EF ⋅⋅=⋅⋅,解得2EF =,∴32BF ,113222BEF S BF EF ∴=⋅=⋅11233F ABC A BEF C BEF BEF V V V S AC ---∴=+=⋅=⋅= .10.6【分析】取AC 中点O ,连接OB ,过点O 作Oz ⊥平面ABC ,以点O 为原点建立空间直角坐标系,设二面角D AC B '--的大小为α,把直线A C 与BD '所成角的余弦表示为α的函数,求出函数最大值作答.【详解】在ACD 中,90ADC ∠= ,1,CD AD ==则AC =,过D 作DH AC ⊥于H ,连接D H ',如图,显然D H AC '⊥,ACD 绕直线AC 旋转过程中,线段DH 绕点H 在垂直于直线AC 的平面γ内旋转到D H ',取AC 中点O ,连接OB ,因3AB BC ==,有OB AC ⊥,OB =,,663CD ADD H DH CH OH AC⋅'=====,过点O 作Oz ⊥平面ABC ,以点O 为原点,射线,,OB OA Oz 分别为,,x y z 轴非负半轴,建立空间直角坐标系,则A ,B ,(0,2C -,显然有//Oz 平面γ,设二面角D AC B '--的大小为[0,]απ∈,有(,,sin )636D αα'-,则有(,sin )6236BD αα=--' ,CA的方向向量为(0,1,0)n = ,设直线AC 与BD '所成的角为θ,于是得||cos |cos ,|||||n BD n BD n BD θ'⋅'=〈〉=='因[0,]απ∈,则1cos 1α-≤≤,于是得cos 6θ=,当且仅当cos 1α=取等号,所以直线AC 与BD '11.A【分析】取BD 中点O ,连接AO ,CO ,以O 为原点建立空间直角坐标系,利用二面角A BD C --的大小θ的正余弦表示,AB CD的坐标,利用空间向量建立函数关系求解作答.【详解】取BD 中点O ,连接AO ,CO ,而AB =BD =DA =2,BC =CD,则CO ⊥BD ,AO ⊥BD ,且CO =1,AOAOC ∠是二面角A BD C --的平面角,令5[,]66AOC ππθ∠=∈,显然有BD ⊥平面AOC ,BD ⊂平面BCD ,则平面AOC ⊥平面BCD ,在平面AOC 内过O 作Oz OC ⊥,而平面AOC I 平面BCD OC =,因此Oz ⊥平面BCD ,即射线,,OC OD Oz 两两垂直,以O 为原点,射线,,OC OD Oz 分别为,,x y z轴非负半轴,建立空间直角坐标系,如图,则(0,1,0),(1,0,0),(0,1,0)B C D -,)A θθ,,1,),(1,1,0)BA CD θθ==-,设直线AB 与CD 所成的角为α,则||cos |cos ,|||||AB CD AB CD AB CD α⋅=〈〉==,由5[,66ππθ∈得:cos [,]22θ∈,15122θ-≤≤,则5|1|[0,2θ∈,于是得cos[0,]α∈,8.所以直线AB与CD 所成角的余弦值取值范围是[0,]8故选:A答案第18页,共18页。

空间几何体中最值问题的常用求法

空间几何体中最值问题的常用求法

ʏ廖子宜立体几何中的最值问题主要与空间图形的距离㊁角㊁面积㊁体积有关,是高考命题的热点㊂此类问题涉及知识面较广,灵活性较大,常用的求法有:二次函数性质法㊁基本不等式法㊁射影法㊁两点之间线段最短法㊁垂线段最短法㊁三角函数性质法等㊂一㊁二次函数性质法例1 如图1,一个圆锥的底面半径为2c m ,高为6c m ,其中有一个高为x c m 的内接圆柱㊂当x 取何值时,圆柱的侧面积最大?图1解:依题意得S 圆柱侧=2πr x =2π2-x 3x =4πx -2π3x 2,x ɪ(0,6)㊂当x =-4π2-2π3=3时,这个二次函数有最大值6π,故当圆柱的高为3c m 时,圆柱的侧面积最大,其最大值为6πc m 2㊂评注:二次函数y =a x 2+b x +c (a ʂ0),当a >0时,有最小值;当a <0时,有最大值㊂二㊁基本不等式法例2 已知圆柱的轴截面的周长L 为定值,则圆柱侧面积的最大值是㊂解:设圆柱的底面直径和高分别为d ,h ,则d +h =L 2,所以S 圆柱侧=πd h ɤπd +h 22=πL216(当且仅当d =h 时取等号)㊂故圆柱侧面积的最大值为πL216㊂评注:基本不等式为:a ,b ɪR +,a +b ȡ2a b ,当且仅当a =b 时等号成立㊂基本不等式逆用为:a ,b ɪR +,a b ɤa +b 22,当且仅当a =b 时等号成立㊂三㊁射影法例3 如图2,棱长为1的正方体A B C D -A 1B 1C 1D 1中,若G ,E 分别是B B 1,C 1D 1的中点,点F 是正方形A D D 1A 1的中心,则四边形B GEF 在正方体侧面及底面共6个面内的射影图形的面积的最大值是㊂图2解:显然,四边形B G E F 在前后侧面上的射影图形的面积相等㊂易知点E 在前面平面上的射影是A 1B 1的中点E 1,点F 在前面平面上的射影是A A 1的中点F 1,可得四边形B G E 1F 1的面积为12㊂同理可得,四边形B G E F 在左右侧面上的射影图形的面积相等且等于18;在上下底面上的射影图形的面积相等且等于38㊂故四边形B G E F 在前后侧面上的射影图形的面积最大,其最大值为12㊂评注:解题的关键是找到四边形B G E F 四个顶点在各个面上的射影点的位置,再根据正方体的性质计算其面积㊂四㊁两点之间线段最短法例4 如图3所示,已知圆柱的高为80c m ,底面半径为10c m ,轴截面上有P ,Q 两点,且P A =40c m ,B 1Q =30c m ,若一只蚂蚁沿着侧面从P 点爬到Q 点,则蚂蚁爬过的最短路径长为㊂91知识结构与拓展高一数学 2023年4月Copyright ©博看网. All Rights Reserved.图3解:将圆柱侧面沿母线A A 1展开,得到如图4所示的矩形㊂图4易得A 1B 1=10π㊂过点Q 作Q S ʅA A 1于点S ,在R tәP Q S 中,P S =80-40-30=10,Q S =A 1B 1=10π,所以P Q =P S 2+Q S 2=10π2+1,即蚂蚁爬过的最短路径长是10π2+1cm ㊂评注:求几何体表面上两点间的最小距离,可将几何体沿着某棱(母线)剪开后展开,画出其侧面展开图,把求曲线长问题转化为求平面上的线段长问题㊂五㊁垂线段最短法例5 如图5,在棱长为2的正方体A B C D -A 1B 1C 1D 1中,E 为B C 的中点,点P 在线段D 1E 上,则点P 到直线C C 1的距离的最小值为㊂图5解:过E 作E E 1ʅ底面A 1B 1C 1D 1交B 1C 1于E 1,过P 作P H ʅD 1E 1于H ㊂连接C 1H ,作P P 1ʅC C 1于P 1㊂易知四边形P P 1C 1H 是矩形,点P 在线段E D 1上运动,点P 到直线C C 1的距离是C 1H ㊂当C 1H 为R t әC 1D 1E 1的底边D 1E 1上的高时,C 1H 最小,记高为h ㊂依题意得C 1D 1=2,C 1E 1=1,所以D 1E 1=5㊂由12C 1D 1㊃C 1E 1=12D 1E 1㊃h ,可得h =255㊂故点P 到直线C C 1的距离的最小值为255㊂评注:当点P 在D 1E 上移动时(不含端点),四边形P P 1C 1H 一定是矩形;当点P 与D 1或E 重合时,点P 到直线C C 1的距离的最小值为C 1D 1或CE ,此时显然不是最小值㊂六㊁三角函数性质法例6 如图6所示,边长A C =3,B C =4,A B =5的三角形简易遮阳棚,其A ,B 是地面上南北方向两个定点,正西方向射出的太阳光线与地面成30ʎ角,当遮阳棚A B C 与地面的夹角等于时,才能保证所遮影面A B D 的面积最大㊂图6解:易知әA B C 为直角三角形㊂在平面A B C 内,由C 向A B 引垂线,垂足为Q ,则D Q 为C D 在地面上的射影,且A B ʅ平面C QD ㊂因为太阳光与地面成30ʎ角,所以øC D Q =30ʎ㊂在әC D Q 中,C Q =125,由正弦定理得C Q s i n 30ʎ=Q D s i nøQ C D ,所以Q D =245s i nøQ C D ㊂为使面A B D 的面积最大,需Q D 最大即可,只有当øQ C D =90ʎ时才可达到最大,从而øC Q D =60ʎ㊂故当遮阳棚A B C 与地面成60ʎ角时,才能保证所遮影面A B D 面积最大㊂评注:正弦函数y =s i n x 在0,π2上单调递增,在π2,π上单调递减㊂作者单位:福建省泉州市外国语学校(责任编辑 郭正华)2 知识结构与拓展 高一数学 2023年4月Copyright ©博看网. All Rights Reserved.。

高三数学立体几何中的最值问题四则

高三数学立体几何中的最值问题四则

立体几何中的最值问题四则1. 用配方法求距离的最值例1. 如图1,正方形ABCD 、ABEF 边长都是1,且平面ABCD 、ABEF 互相垂直,点M 在AC 上移动,点N 在BF 上移动,若CM BN a a ==<<()02。

试求当a 为何值时,MN 的值最小。

图1分析:此题的解题关键是想用含a 的代数式表示距离,再用配方法求最值。

解:过M 作MH AB ⊥,垂足为H ,连结NH ,如图1所示。

在正方形ABCD 中,AB CB ⊥, 所以BC MH //,因为平面AC ⊥平面AE ,所以MH ⊥平面AE ,即MH NH ⊥。

因为CM BN a AB CB BE =====,1,所以AC BF ==2 即AM a =-2, MH AH a BH a ==-=12222,, 由余弦定理求得NH a =22。

所以MN MH NH =+22=-+=-+=-+<<()()()()12222212212022222a a a a a a当a =22时,MN =22,即M 、N 分别移到AC 、BF 的中点时,MN 的值最小,最小值为222. 结合实际找最值位置例2. 在一X 硬纸上,抠去一个半径为3的圆洞,然后把此洞套在一个底面边长为4,高为6的正三棱锥A —BCD 上,并使纸面与锥面平行,则能穿过这X 纸面的棱锥的高的最大值是________。

图2解:如图2所示,假设硬纸上的圆洞刚好卡在B'C'D'处。

设正三棱锥A BCD -的顶点A 在平面BCD 上的射影为A',在平面B'C'D'上的射影为O 。

连结BA'、B'O 并延长分别交CD 、C'D'于E 、E'点,则平面B C D '''//平面BCD ,所以B E BE BC BC''''=, B E B O BE BA ''''==3232,, 即B O BA B C BC ''''=。

SXB096高考数学必修_立体几何中的最值问题

SXB096高考数学必修_立体几何中的最值问题

立体几何中的最值问题在立体几何中,计算几何体的最值往往有两种方法:一是利用二次函数、一次函数等及重要不等式,二是利用化归转化思想将立体最值转化为平面最值.另外,解决几何体的相切相接问题的关健,是注意两个几何体之间的等量关系.本文举两例说明在立体几何中的最值问题的求解策略.1.利用均值定理求最值例1.已知球的半径为R ,在球内作一个内接圆柱,这个圆柱底面半径与高为何值时,它的侧面积最大?侧面积的最大值是多少?解:下图为轴截面,令圆柱的高为h ,底面半径为r ,侧面积为S ,则(2h )2+r 2=R 2, 即h =222rR -∵S =2πrh =4πr ·22r R -=4π)(222r R r -⋅≤4π2)(2222r R r -+=2πR 2, 取等号时,内接圆柱底面半径为22R ,高为2R 点评: 本题所考查知识点为截面性质、三棱柱侧面积以及用均值定理求最值的综合知识. 2.利用二次函数求最值例2.如图,边长均为a 的正方形ABCD 、ABEF 所在的平面所成的角为)20(πθθ<<。

点M 在AC 上,点N 在BF 上,若AM=FN ,(1)求证:MN//面BCE ; (2)求证:MN ⊥AB; (3)求MN 的最小值.解析:(1)如图,作MG//AB 交BC 于G , NH//AB 交BE 于H, MP//BC 交AB 于P, 连PN, GH , 易证MG//NH,且MG=NH, 故MGNH 为平行四边形,所以MN//GH , 故MN//面BCE ; (2)易证AB ⊥面MNP, 故MN ⊥AB ; (3)MPN ∠即为面ABCD 与ABEF 所成二面角的平面角,即θ=∠MPN ,设AP=x , 则BP=a -x , NP=a -x ,所以:θcos )(2)(22x a x x a x MN ---+=22)cos 1(21)2)(cos 1(2a a x θθ-+-+=,故当2ax =时,MN有最小值a )cos 1(21θ-. 3.利用三角函数的有界性求最值例3. 如图1所示,边长AC =3,BC =4,AB =5的三角形简易遮阳棚,其A 、B 是地面上南北方向两个定点,正西方向射出的太阳光线与地面成30°角,试问:遮阳棚ABC 与地面成多大角度时,才能保证所遮影面ABD 面积最大?解析: 易知,ΔABC 为直角三角形,由C 点引AB 的垂线,垂足为Q ,则应有DQ 为CQ 在地面上的斜射影,且AB 垂直于平面CQD ,如图2所示.因太阳光与地面成30°角,所以∠CDQ =30°,又知在ΔCQD 中,CQ =512,由正弦定理,有 ︒30sin CQ =QCDQD ∠sin ,即 QD =56sin ∠QCD. 为使面ABD 的面积最大,需QD 最大,这只有当∠QCD =90°时才可达到,从而∠CQD =60°. 故当遮阳棚ABC 与地面成60°角时,才能保证所遮影面ABD 面积最大.点评: 有关几何体求最值问题,可以先由几何性质判断出取得最值时的情形,然后再去求最值.本题利用了正弦函数的有界性求最值4. 利用几何体的性质求最值例4. 正三棱锥A-BCD ,底面边长为a ,侧棱为2a ,过点B 作与侧棱AC 、AD 相交的截面,在这样的截面三角形中,求(1)周长的最小值;(2)周长为最小时截面积的值,(3)用这周长最小时的截面截得的小三棱锥的体积与三棱锥体积之比.解析:(1)沿侧棱AB 把正三棱锥的侧面剪开展成平面图.如图1,当周长最小时,EF 在直线BB ′上,∵ΔABE ≌ΔB ′AF ,∴AE =AF ,AC =AD ,∴B ′B ∥CD ,∴∠1=∠2=∠3,∴BE =BC =a ,同理B ′F =B ′D =a.∵ΔFDB ′∽ΔADB ′,∴B D DF '=B A B D '',a DF=a a 2=21,∴DF =21a,AF =23a.又∵ΔAEF ∽ΔACD ,∴BB ′=a+43a+a =411a,∴截面三角形的周长的最小值为411a. (2)如图2,∵ΔBEF 等腰,取EF 中点G ,连BG ,则BG ⊥EF.∴BG =22EG BE -=22)83(a a -=855a ∴S ΔBEF =21·EF ·BG =21·43a ·855a =64553a 2.(3)∵V A-BCD =V B-ACD ,而三棱锥B —AEF ,三棱锥B —ACD 的两个高相同,所以它们体积之比于它们的两底面积之比,即CAD B AEF B V V --=ACD AEF S S △△=22CD EF =169 评析 把曲面上的最短路线问题利用展开图转化为平面上两点间距离的问题,从而使问题得到解决,这是求曲面上最短路线的一种常用方法.本题中的四面体,其中任何一个面都可以做为底面,因而它可有四个底面和与之对应的四条高,在解决有关三棱锥体积题时,需要灵活运用这个性质.。

专题07 立体几何中的最值问题(解析版)

专题07 立体几何中的最值问题(解析版)

第三篇 立体几何专题07 立体几何中的最值问题常见考点考点一 最大值问题典例1.如图,在ABC 中,1AC BC ==,120ACB ∠=︒,O 为ABC 的外心,PO ⊥平面ABC ,且PO =(1)求证://BO 平面PAC ;(2)设平面PAO 面PBC l =,若点M 在线段PC (不含端点)上运动,当直线l 与平面ABM 所成角取最大值时,求二面角A BM O --的正弦值. 【答案】(1)证明见解析【解析】 (1)如图,连接OC ,交AB 于点D ,O 为ABC 的外心,所以OA OB OC ==,又因为1AC BC ==,所以OAC OBC ≅△△, 所以1602ACO BCO ACB ∠=∠=∠=︒,故OAC 和OBC 都为等边三角形,可得1OA AC CB BO ====, 即四边形OACB 为菱形,所以OB//AC ; 又AC ⊂平面PAC 、OB ⊄平面PAC , 所以//BO 平面PAC , (2)因为//BC AO ,BC ⊄平面POA ,AO ⊂平面POA ,所以//BC 平面POA , 因为BC ⊂平面PBC ,平面PAO 平面PBC l =,所以//BC l .如图,以点D 为原点,分别以DA ,DC 所在的直线为x ,y 轴,过点D 垂直于面ACBO 的直线为z 轴建立空间直角坐标系,则B ⎛⎫ ⎪ ⎪⎝⎭,10,,02C ⎛⎫ ⎪⎝⎭,A ⎫⎪⎪⎝⎭,10,2P ⎛- ⎝⎭,10,,02O ⎛⎫- ⎪⎝⎭ 所以31,02BC ⎛⎫= ⎪ ⎪⎝⎭,(3,0,0)BA =,0,1,PC ⎛=⎝⎭,312BP ⎛=- ⎝⎭.因为点M 在线段PC 不含端点)上运动,所以//PM PC ,设PM PC λ=,所以31)2BM BP PM λλ⎛⎫=+=-- ⎪ ⎪⎝⎭,设平面ABM 的法向量为()1111,,n x y z =,则)11111103211022n BA x nBM x y z λλ⎧⋅==⎪⎨-⋅=++-=⎪⎩可得:10x =,令12y =可得1121z λλ-⎫=⎪-⎝⎭,所以1120,2,1n λλ⎛⎫-⎫= ⎪⎪ ⎪-⎝⎭⎝⎭, 所以直线l 与平面ABM 所成角α的正弦值为:1111sin cos ,24n n BC n BC BCα⋅===≤,即当12λ=时直线l 与平面ABM 所成角取最大值.此时1(0,2,0)n =,所以1,022OB ⎛⎫=- ⎪ ⎪⎝⎭,324BM ⎛⎫= ⎪ ⎪⎝⎭,设平面OBM 的法向量为()2222,,n x y z =,则222222310223024OB n x y BM n x z ⎧⋅=-+=⎪⎪⎨⎪⋅=+=⎪⎩,令21x =,2y 2z =所以2(1,3,n =,所以12121223cos ,22n n n n nn ⋅===⨯, 设二面角A BMO --的平面角为θ,则cos θ=,所以sin θ=变式1-1.如图,在正三棱柱111ABC A B C -中,12AB AA ==,点D 在边BC 上,E 为11B C 的中点.(1)如果D 为BC 的中点,求证:平面1BA E ∥平面1C DA ;(2)设锐二面角11/B AC D --的平面角为α,CD CB λ=,1,12λ⎡⎤∈⎢⎥⎣⎦,当λ取何值时,cos α取得最大值?【答案】(1)证明见解析 (2)1λ= 【解析】 【分析】(1)利用几何法证明,若要证明面面平行,只要证明其中一个平面中的两条相交直线平行于另一个平面即可;(2)建立如图所示空间直角坐标系,利用法向量来求二面角的大小即可得解.(1)证明:在正三棱柱111ABC A B C -中,因为D ,E 分别为BC ,11B C 的中点,所以1EC BD ∥, 所以四边形1BDC E 为平行四边形,所以1BE DC ∥, 又因为BE ⊄平面1C DA ,1DC ⊂平面1C DA , 所以BE ∥平面1C DA ,同理可证1//A E 平面1C DA ,1A EBE E =,1A E ,BE ⊂平面1BA E ,所以平面1BA E ∥平面1C DA ;(2)以A 为坐标原点,AC 方向为y 轴正方向,建立如图所示的空间直角坐标系,则()0,0,0A,)B ,()0,2,0C,)1B ,()10,2,2C ,所以()3,1,0CB =-,()13,1,2AB =,()10,2,2AC =,()0,2,0AC =,设平面11AB C 的法向量为(),,m x y z =,则110,0,m AB m AC ⎧⋅=⎪⎨⋅=⎪⎩即20,220.y z y z ++=+=⎪⎩令z =y =1x =,所以(1,3,m =, 由CD CB λ=,1,12λ⎡⎤∈⎢⎥⎣⎦,得()3,2,0AD CB AC λλλ=+=-,设平面1C DA 的法向量为(),,n a b c =,10,0,n AD n AC ⎧⋅=⎪⎨⋅=⎪⎩即()20,220a bb c λ+-=+=⎪⎩令c =b =2a λλ-=,所以2n λλ-⎛=⎝, 由1,12λ⎡⎤∈⎢⎥⎣⎦,得[]23,1λλ-∈--, 因为锐二面角11B AC D --的平面角为()cos 0αα>,所以26cos 7m n m n λα-+⋅==⋅⨯, 令26t λλ-=+,则[]3,5t ∈,故26t λλ-=-, 所以cos α==令111,53t μ⎡⎤=∈⎢⎥⎣⎦,则()242121f μμμ=-+在11,53⎡⎤⎢⎥⎣⎦上单调递增,所以cos α=11,53⎡⎤⎢⎥⎣⎦上单调递减,当15μ=,此时1λ=,即点D 与点B 重合时,cos α取得最大值.变式1-2.如图,在四棱锥S ABCD -中,底面ABCD 是直角梯形,侧棱SA ⊥底面ABCD ,AB 垂直于AD 和BC ,2SA AB BC ===,1AD =,M 是棱SB 的中点.(1)求证://AM 平面SCD ;(2)求平面SCD 与平面SAB的夹角的余弦值;(3)设点N 是线段CD 上的动点,MN 与平面SAB 所成的角为θ,求sin θ的最大值. 【答案】(1)证明见解析【解析】 【分析】(1)建立空间直角坐标系,利用向量法证得//AM 平面SCD. (2)利用向量法求得平面SCD 与平面SAB 所成的角的余弦值.(3)设出N 点的坐标,求得sin θ的表达式,结合二次函数的性质求得sin θ的最大值. (1)SA ⊥底面ABCD ,所以,SA A S B A A D ⊥⊥,由于AB AD ⊥,所以,,SA AB AD 两两垂直,以点A 为坐标原点,建立如图所示的空间直角坐标系, 则(0,0,0)A ,(2,2,0)C ,(1,0,0)D ,(0,0,2)S ,(0,1,1)M ,(0,1,1)AM ∴=,(1,0,2)SD =-,(1,2,0)CD =--.设平面SCD 的法向量为(,,)n x y z =,则0SD n CD n ⎧⋅=⎪⎨⋅=⎪⎩,2020x z x y -=⎧∴⎨--=⎩, 令1z =,得(2,1,1)n =-是平面SCD 的一个法向量.0AM n ⋅=,AM n ∴⊥,A ∉平面SCD ,//AM ∴平面SCD .(2)平面SAB 的一个法向量为1(1,0,0)n =, 设平面SCD 与平面SAB 的夹角为ϕ,则112cos 6n n n n ϕ⋅===⨯⋅∴平面SCD 与平面SAB(3)由题可设(,22,0)(12)N x x x -≤≤, 则(,23,1)MN x x =--.平面SAB 的一个法向量为1(1,0,0)n =,11sin 5nMN M n Nθ⋅∴====⋅,∴当135x =,即53x =时,sin θ变式1-3.如图,在正四棱锥S ABCD -中,点O ,E 分别是BD,BC 中点,点F 是SE 上的一点.(1)证明:OF BC ⊥;(2)若四棱锥S ABCD -的所有棱长为OF 与平面SDE 所成角的正弦值的最大值. 【答案】(1)证明见解析 【解析】 【分析】(1)作出辅助线,证明线面垂直,进而证明线线垂直;(2)建立空间直角坐标系,利用空间向量进行求解.(1)如图,连接SO和OE,-是正四棱锥,所以SO⊥平面ABCD,因为S ABCD⊥又因为BC⊂平面ABCD,所以SO BC⊥,因为ABCD是正方形,所以DC BC又因为点O,E分别是BD,BC中点,所以OE∥DC,⊥所以OE BC⋂=,OE、SO⊂平面SOE,又因为OE SO O所以BC⊥平面SOE,⊥.因为OF⊂平面SOE,所以OF BC(2)易知OB,OC,OS两两相互垂直,如图,以点O为原点,OB,OC,OS为x,y,z轴建立空间直角坐标系,因为四棱锥S ABCD -的所有棱长为4BD =,2SO =, 所以()0,0,0O ,()0,0,2S ,()2,0,0D -,()1,1,0E , 设()01SF SE λλ=<<,得(),,22F λλλ-,则()2,0,2SD =--,()3,1,0DE =,(),,22OF λλλ=-设平面SDE 的法向量为(),,n x y z =,则22030n SD x z n DE x y ⎧⋅=--=⎪⎨⋅=+=⎪⎩,解得3z x y x =-⎧⎨=-⎩,取1x =,得()1,3,1n =--, 设直线OF 与平面SDE 所成角为θ,则sin cos ,11n OF n OF n OFθ⋅===⋅)01λ=<<,当82263λ-=-=⨯时,2684λλ-+取得最小值43,此时sin θ.考点二 最小值问题典例2.如图,在梯形ABCD 中,//AB CD ,1===AD DC CB ,120BCD ∠=︒,四边形BFED 为矩形,1BF =,平面BFED ⊥平面ABCD .(1)求证:AD ⊥平面BDEF ;(2)点P 在线段EF 上运动,设平面P AB 与平面ADE 所成的夹角为θ,试求θ的最小值. 【答案】(1)证明见解析(2)3π【解析】 【分析】(1)由已知条件可得AD BD ⊥,再由平面BFED ⊥平面ABCD ,可得DE ⊥平面ADB ,则DE AD ⊥,然后由线面垂直的判定定理可证得结论,(2)由于AD BD ⊥,DE AD ⊥,DE DB ⊥,所以建立直线DA ,DB ,DE 为x 轴,y 轴,z 轴的如图所示的空间直角坐标系,令(0EP λλ=≤≤,然后利用空间向量求解即可 (1)证明,在梯形ABCD 中,∥//AB CD ,1===AD DC CB ,120BCD ∠=︒, ∥30CDB CBD ∠=∠=︒,120ADC DCB ∠=∠=︒, ∥90ADB ∠=︒,∥AD BD ⊥.又∥平面BFED ⊥平面ABCD ,平面BFED ⋂平面ABCD BD =,DE DB ⊥, ∥DE ⊥平面ADB ,∥DE AD ⊥. 又∥BD DE D ⋂=,∥AD ⊥平面BDEF . (2)由(1)可知AD BD ⊥,DE AD ⊥,DE DB ⊥.可建立直线DA ,DB ,DE 为x 轴,y 轴,z 轴的如图所示的空间直角坐标系,令(0EP λλ=≤≤,则()0,0,0D ,()1,0,0A,()B ,()0,,1P λ,∥()AB =-,()0,BP λ=设()1,,n x y z =为平面PAB 的法向量,由1100n AB n BP ⎧⋅=⎪⎨⋅=⎪⎩,得(00x y z λ⎧-=⎪⎨+=⎪⎩,取1y =,()13,1,n λ=∥()20,1,0n =是平面ADE 的一个法向量,∥1212cos3n n n n θ⋅===∥0λ≤≤∥当λ=cos θ有最大值12,∥θ的最小值为3π变式2-1.如图,在ABC 中,1AB =,BC =4B π=,将ABC 绕边AB 翻转至ABP △,使面ABP⊥面ABC ,D 是BC 的中点.(1)求二面角P BC A --的平面角的余弦值;(2)设Q 是线段PA 上的动点,当PC 与DQ 所成角取得最小值时,求线段AQ 的长度.【答案】【解析】 【分析】(1)延长BA ,过点P 作PE BA ⊥,垂足为E ,过点E 作EF BC ⊥,垂足为F ,连接PF ,则PFE ∠是二面角P BC A --的平面角,再解三角形即得解;(2)连接EC ,以E 为原点,由题得EC EB ⊥,以EB 为x 轴,EC 为y 轴,EP 为z 轴,建立空间直角坐标系,利用向量法求出当λ=25时,PC 与DQ 所成的角最小,即得解. (1) 解:由题得21821cos 455,AC AC =+-⨯⨯=∴=所以cos 0BAC ∠=<,所以BAC ∠是钝角.延长BA ,过点P 作PE BA ⊥,垂足为E ,过点E 作EF BC ⊥,垂足为F ,连接PF , 则PFE ∠是二面角P BC A --的平面角.由题得cos 452PE BE ===, 所以2cos 452EF =⨯=所以tanPFE ∠==cos PFE ∠=.所以二面角P BC A -- (2)解:连接EC ,以E 为原点,由题得EC EB ⊥,以EB 为x 轴,EC 为y 轴,EP 为z 轴,建立空间直角坐标系,由题得(2,0,0),(1,0,0),(0,0,0),(0,2,0),B A E C 设(,,),Q x y z(1,0,2),[0,1],AQ AP λλλ→→==-∈即(1,,)(,0,2),(1,0,2)x y z Q λλλλ-=-∴-,因为(1,1,0),(,1,2),(0,2,2),D DQ PC λλ→→=--=-所以cos ,DQ PC =令2222(12)2(12)(2-5)(),[0,1],()51(51)f f λλλλλλλλ++'=∈∴=++,令2()0,[0,1],.5f λλλ'=∈∴=2[0,)5λ∈时,()0,f λ'>函数单调递增,2(,1)5λ∈时,()0f λ'<,函数单调递减.所以当λ=25时,()f λ取最大值,此时PC 与DQ 所成的角最小,2||||5AQ AP =变式2-2.如图,四棱锥S ABCD -的底面为矩形,SD ⊥底面ABCD ,设平面SAD 与平面SBC 的交线为m .(1)证明://m BC ,且m ⊥平面SDC ;(2)已知2SD AD DC ===,R 为m 上的点求SB 与平面RCD 所成角的余弦值的最小值.【答案】(1)证明见解析;(2 【解析】 【分析】(1)先由//BC AD 证明//BC 平面SAD ,再由线面平行推线线平行,可得//m BC ; 由SD BC ⊥,BC DC ⊥可得BC ⊥平面SDC ,再由//m BC ,即得证;(2)建立空间直角坐标系,计算平面RCD 的法向量,表示SB 与平面RCD 所成角,计算最值即得解 【详解】(1)由题意,四棱锥S ABCD -的底面为矩形,可知//BC AD , 又BC ⊄平面SAD ,AD ⊂平面SAD 所以//BC 平面SAD又m 为平面SAD 与平面SBC 的交线,且BC ⊂平面SBC ,故//m BC 因为SD ⊥底面ABCD ,BC ⊂平面ABCD ,所以SD BC ⊥, 又BC DC ⊥,且SD DC D =, 所以BC ⊥平面SDC , 又//m BC ,所以m ⊥平面SDC (2)由(1)可知,DS ,DA ,DC 两两互相垂直,以D 为坐标原点,DA ,,DC DS 的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系D xyz -()0,0,0D ,()0,0,2S ,()2,2,0B ,()0,2,0C ,因为点R 在平面SAD 内的m 上,且//m AD ,所以可设(),0,2R a ()2,2,2SB =-,()0,2,0DC =,(),0,2DR a =设平面RCD 的法向量为(),,n x y z =,则2020n DR ax z n DC y ⎧⋅=+=⎪⎨⋅==⎪⎩即200ax z y +=⎧⎨=⎩可取()2,0,n a =- 设SB 与平面RCD 所成角为θ则3sin cos 233n SB n SB πθθ⋅⎛⎫=-=== ⎪⎝⎭ 因为2414aa ≤+当且仅当2a =时等号成立 所以sin θ≤,cos θ≥所以SB 与平面RCD变式2-3.如图,在梯形ABCD 中,//AB CD ,1===AD DC CB ,120BCD ∠=︒,四边形BFED 为矩形,平面BFED ⊥平面ABCD ,1BF =.(1)求证:BD ⊥平面AED ,AD ⊥平面BDEF ;(2)点P 在线段EF 上运动,设平面PAB 与平面ADE 所成锐二面角为θ,试求θ的最小值.【答案】(1)证明见解析;(2)3π.【解析】 【分析】(1)根据已知条件转化垂直关系,利用线面垂直的判断定理,即可证明;(2)分别以直线CA ,CB ,CE 为x 轴、y 轴、z 轴建立空间直角坐标系,令(0EP λλ=≤≤,然后写出各点坐标,求出平面PAB 和平面ADE 的法向量,由法向量夹角与二面角的关系求得cos θ(为λ的函数),由函数知识可得最小值.【详解】解:(1)证明,在梯形ABCD 中,∥//AB CD ,1===AD DC CB ,120BCD ∠=︒,∥30CDB CBD ∠=∠=︒,120ADC DCB ∠=∠=︒,∥90ADB ∠=︒,∥AD BD ⊥.∥平面BFED ⊥平面ABCD ,平面BFED ⋂平面ABCD BD =,DE ⊂平面BFED ,DE DB ⊥, 又∥AD DE D ⋂=,∥BD ⊥平面ADE .又四边形BDEF 是矩形,∥ED BD ⊥,∥ED ⊥平面ABCD ,∥ED AD ⊥, ∥ED BD D =,∥AD ⊥平面BDEF .(2)由(1)可建立直线DA ,DB ,DE 为x 轴,y 轴,z 轴的如图所示的空间直角坐标系,令(0EP λλ=≤≤,则()0,0,0D ,()1,0,0A ,()B ,()0,,1P λ,∥()AB =-,()0,BP λ=.设()1,,n x y z =为平面PAB 的法向量,由1100n AB n BP ⎧⋅=⎪⎨⋅=⎪⎩,得(00x y z λ⎧-=⎪⎨+=⎪⎩,取1y =,则()13,1,n λ=.∥()20,1,0n =是平面ADE 的一个法向量,∥1212cos 3n n n n θ⋅===∥0λ≤≤∥当λ=cos θ有最大值12,∥θ的最小值为3π.巩固练习练习一 最大值问题1.如图所示,在三棱柱111ABC A B C -中,AB BC =,点1A 在平面ABC的射影为线段AC 的中点,侧面11AAC C 是菱形,过点1,,B B D 的平面α与棱11A C 交于点E .(1)证明:四边形1BB ED 为矩形;(2)求1CB 与平面11ABB A 所成角的正弦值的最大值. 【答案】(1)证明见解析 (2)23【解析】 【分析】(1)由已知线面平行的判定定理得到1//B B 平面11A ACC ,在运用面面平行的判定与性质得四边形1BB ED 为平行四边形.运用线面垂直判定定理可得BD ⊥平面11ACC A ,从而得出结论.(2) 以DB ,AC ,1A D 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系D xyz -,依题意得BD =,分别求解平面11ABB A 的法向量和1CB 的方向向量,运用线面角的向量求解方法得到答案. (1)取11A C 中点为E ,连接1B E ,DE .在三棱柱111ABC A B C -中,侧面11A ABB 为平行四边形,所以11//B B A A , 因为1B B ⊄平面11A ACC ,1A A ⊂平面11A ACC ,所以1//B B 平面11A ACC . 因为1B B ⊂平面1BB D ,且平面1BB D ⋂平面11A ACC DE =,所以1//B B DE .因为在三棱柱111ABC A B C -中,平面//ABC 平面111A B C ,平面1BB D ⋂平面ABC BD =, 平面1BB D ⋂平面1111A B C B E =,所以1//BD B E ,所以四边形1BB ED 为平行四边形. 在∥ABC 中,因为AB BC =,D 是AC 的中点,所以BD AC ⊥. 由题可知1A D ⊥平面ABC ,所以1A D BD ⊥,1A D AC ⊥, 因为1AC A D D ⋂=,所以BD ⊥平面11ACC A , 所以BD DE ⊥,所以四边形1BB ED 为矩形. (2)由(1)知DB ,AC ,1A D 两两垂直,以DB ,AC ,1A D 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系D xyz -.设1AD =,BD a =,在1AA D △中,12AA AD =,190A DA ∠=︒,所以1A D ,所以(0,0,0)D ,(0,1,0)A -,(1A ,(,0,0)B a ,则(1AA =,(,1,0)AB a =.因为(E ,所以(1DB DE DB a =+=,即(1B a .因为(0,1,0)C,所以(1CB a =.设平面11ABB A 的法向量为(,,)n x y z =,则10,0,n AA n AB ⎧⋅=⎪⎨⋅=⎪⎩即0,0,y ax y ⎧=⎪⎨+=⎪⎩所以,.y x ⎧=⎪⎨=⎪⎩令z a =,则y =,x =()3,,n a =-.设1CB 与平面11ABB A 所成角为θ,则111sin cos ,3n CB n CB n CB θ⋅===23=≤=, 当且仅当2294a a =,即a =时等号成立.故1CB 与平面11ABB A 所成角的正弦值最大为23.2.如图,在矩形ABCD 中,M 、N 分别是线段AB 、CD 的中点,2AD =,4AB =,将ADM △沿DM 翻折,在翻折过程中A 点记为P 点.(1)从ADM △翻折至NDM 的过程中,求点P 运动的轨迹长度; (2)翻折过程中,二面角P −BC −D 的平面角为θ,求tan θ的最大值. 【答案】 (2)12【解析】 【分析】(1)取DM 的中点E ,则从ADM △翻折至NDM 的过程中,点P 运动的轨迹是以点E 为圆心,AE 为半径的半圆,由此可求得点P 运动的轨迹长度.(2)由(1)得,连接AN ,并延长交BC 延长线于F ,过P 作PO EF ⊥,再过点O 作OG BC ⊥,则PGO ∠就是二面角P −BC −D 的平面角θ,设(),0PEO ααπ∠=≤≤,sin PO PE αα==,,3cos OF OG αα==-,可得tan PO PGO OG ∠==k =,运用辅助角公式和正弦函数的性质可求得最大值. (1)解:取DM 的中点E ,则从ADM △翻折至NDM 的过程中,点P 运动的轨迹是以点E 为圆心,AE 为半径的半圆,因为2AD =,4AB =,所以AE =P .(2)解:由(1)得,连接AN ,并延长交BC 延长线于F ,AN DM ⊥,折起后,有DM ⊥面PEN ,过P 作PO EF ⊥,则PO ⊥面DMBC ,再过点O 作OG BC ⊥,则PGO ∠就是二面角P −BC −D 的平面角θ,设(),0PEO ααπ∠=≤≤, sin PO PE αα==,,3cos OF AF AE OE OG ααα=--===-,tan PO PGO OG ∠==cos 3k k k αα=⇒+=)3k αβ+=,所以11-≤≤,解得1122k -≤≤. 所以tan θ的最大值为12.3.在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是直角梯形,其中//AD BC ,AB AD ⊥,122AB AD BC ===,E 为棱BC 上的点,且14BE BC =.(1)求证:DE ⊥平面PAC ;(2)若二面角A PC D --的平面角的正切值为12,求PA 的长;(3)在(2)的条件下,若Q 为线段PC 上一点,求BQ 与面PCD 所成角为θ,求sin θ的最大值.【答案】(1)证明见解析(2)4【解析】【分析】(1)如图建系,设AP a =,求出DE 、AC 、AP 的坐标,计算0DE AC ⋅=,0DE AP ⋅=,可证明DE AC ⊥,DE AP ⊥,由线面垂直的判定定理即可求证;(2)设二面角A PC D --的平面角为α,由图知α为锐角,则1tan2α=,所以cos α=,分别求出平面PCD 和平面PAC 的一个法向量,利用空间向量夹角公式列方程求出a 的值即可求解;(3)设()=2,4,4PQ PC λλλλ=-,则()22,4,44BQ BP PQ λλλ=+=--,由(2)知平面PCD 的一个法向量11,1,2n ⎛⎫=-- ⎪⎝⎭,利用空间向量夹角公式将s sin ,co BQ n θ=表示为关于λ的函数,结合二次函数的性质即可求解.(1)因为PA ⊥平面ABCD ,,AB AD ⊂面ABCD ,所以PA AB ⊥,PA AD ⊥,因为AB AD ⊥,所以,,AB AD AP 两两垂直,如图以A 为原点,分别以,,AB AD AP 所在的直线为,,x y z 轴建立空间直角坐标系,设AP a =,则()0,0,0A ,()2,0,0B ,()2,4,0C ,()0,2,0D ,()0,0,P a ,()2,1,0E所以()2,1,0DE =-,()2,4,0AC =,()0,0,AP a =,因为221400DE AC ⋅=⨯-⨯+=,0DE AP ⋅=,所以DE AC ⊥,DE AP ⊥,即DE AC ⊥,DE AP ⊥,因为AC AP A =,所以DE ⊥平面PAC(2)由(1)知:DE ⊥平面PAC ,取平面PAC 的法向量()2,1,0DE =-,因为()2,4,PC a =-,()2,2,0CD =--,设平面PCD 的一个法向量为(),,n x y z =,由240220PC n x y az CD n x y ⎧⋅=+-=⎨⋅=--=⎩,取1x =,则1y =-,2z a =-,所以21,1,n a ⎛⎫=-- ⎪⎝⎭, 设二面角A PC D --的平面角为α,且α为锐角,则1tan 2α=,所以cos5α=所以cos ,5DE nDE n DE n ⋅===⨯⨯整理可得:3,解得:4a =,所以PA 的长为4. (3) 由(2)知PA 的长为4,即4a =,因为Q 为线段PC 上一点,所以//PQ PC ,设()=2,4,4PQ PC λλλλ=-,所以()()()2,0,42,4,422,4,44PQ BQ BP λλλλλλ=-+-=--+=,平面PCD 的一个法向量11,1,2n ⎛⎫=-- ⎪⎝⎭, 则(c sin os 2,BQ n BQ nBQ n θ==⋅=⨯=,当105299λ-=-=⨯= 所以sin θ== 综上所述:sin θ.4.如图,在直角三角形AOB 中,30OAB ∠=︒,斜边4AB =,直角三角形AOC 可以通过AOB 以直线AO 为轴旋转得到,且二面角B AO C --是直二面角,动点D 在斜边AB 上.(1)求证:平面COD ⊥平面AOB ;(2)当D 为AB 的中点时,求异面直线AO 与CD 所成角的正切值;(3)求CD 与平面AOB 所成角的正切值的最大值.【答案】(1)证明见解析【解析】【分析】(1)证明BOC ∠为二面角C AO B --的平面角,然后证明CO ⊥平面AOB ,得证面面垂直; (2)取OB 中点E .连接,CE DE ,证明异面直线AO 与CD 所成角为CDE ∠(或其补角),在EDC △中计算其正切值;(3)证明CDO ∠是CD 与平面AOB 所成角,求出OD 的最小值即O 到AB 的距离即可得结论.(1)证明:因为CO AO ⊥,BO AO ⊥,所以BOC ∠为二面角C AO B --的平面角,即90COB ∠=︒,CO BO ⊥, 又AO BO O =,,AO BO ⊂平面AOB ,所以CO ⊥平面AOB ,因为CO ⊂平面COD ,所以平面COD ⊥平面AOB ;(2)解:取OB 中点E .连接,CE DE ,如图,因为D 是AB 中点,所以//AO DE ,所以异面直线AO 与CD 所成角为CDE ∠(或其补角), 由已知CO AO ⊥,BO AO ⊥,BO CO O =,,BO CO ⊂平面BOC ,所以AO ⊥平面BOC , 而CE ⊂平面BOC ,所以AO CE ⊥,所以DE CE ⊥,又4AB =,30OAB ∠=︒,所以2OB OC ==,AO =DE 1OE =,CE ==,tan CE ADE DE ∠===(3)由(1)知CO ⊥平面AOB ,所以CDO ∠是CD 与平面AOB 所成角,又OD ⊂平面AOB ,则CO DO ⊥,2tan CO CDO OD OD∠==,直角AOB 中,O 到AB 上点的距离的最小值为AB 边上的高即OA OB h AB ⨯===,所以tan CDO ∠=练习二 最小值问题5.如图,ABCD 为正方形,PDCE 为直角梯形,90PDC ∠=,平面ABCD ⊥平面PDCE ,且22PD AD EC ===.(1)若PE 和DC 延长交于点F ,求证://BF 平面PAC ;(2)若Q 为EC 边上的动点,求直线BQ 与平面PDB 所成角正弦值的最小值.【答案】(1)见解析(2【解析】【详解】试题分析:(1)先根据三角形中位线性质得C 为DF 中点,再根据ABFC 为平行四边形得//BF AC ,最后根据线面平行判定定理得结论,(2)利用空间向量求线面角,关键求出平面法向量:先建立空间直角坐标系,设立各点坐标,利用方程组求出平面法向量,根据向量数量积求出直线方向向量与平面法向量夹角的余弦值,最后根据线面角与两向量夹角之间关系求线面角正弦值,再根据自变量取值范围求最小值.试题解析:(1)证明:在梯形PDCE 中,PD =2EC ,C ∴为DF 中点,CF CD AB ∴==,且AB//CF ,ABFC ∴为平行四边形,//,BF AC AC ∴⊂面PAC ,BF ⊄面PAC ,∴BF ∥平面P AC .(2)方法一:令点Q 在面PBD 上的射影为O ,QBO ∠直线BQ 与平面PDB 所成角.EC ∥PD ,所以EC 平行于平面PBD ,因为ABCD 为正方形,所以AC BD ⊥,又因为PD ∥平面ABCD ,所以PD ∥AC ,所以AC ∥平面PBD ,所以点C 到面PBD 因为EC 平行于平面PBD ,所以点Q 到PBD 的距离OQ =令()01CQ k k =≤≤,所以BQ =sin OQ QBO BQ ∠==≥= 方法二:建立如图所示的空间直角坐标系O-xyz ,可知平面PDB 的一个法向量为()2,2,0AC =-,()2,2,0B ,()()0,2,01Q t t ≤≤,()2,0,BQ t ∴=-,令直线BQ 与平面PDB 所成角为α,sin 8BQ ACBQ AC α⋅∴==. 6.如图,在梯形ABCD 中,//AB CD ,1AD DC BC ===,60ABC ∠=︒,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,1CF =,设点M 在线段EF 上运动.(1)证明:BC AM ⊥;(2)设平面MAB 与平面FCB 所成锐二面角为θ,求θ的最小值.【答案】(1)证明见解析;(2)3π. 【解析】(1)由平面几何知识,余弦定理可得BC AC ⊥.,再由面面垂直、线面垂直的性质可得证; (2)由(1)可建立分别以直线CA ,CB ,CF 为x 轴,y 轴,z 轴的如图所示的空间直角坐标系,令(0FM λλ=≤≤,由二面角的向量求解方法可表示cos θ=由二次函数的性质可求得最值.【详解】(1)证明:在梯形ABCD 中,因为//AB CD ,1===AD DC CB ,60ABC ∠=︒,所以2AB =,所以2222cos603AC AB BC AB BC =+-⋅⋅︒=,所以222AB AC BC =+,所以BC AC ⊥.因为平面ACFE ⊥平面ABCD ,平面ACFE ⋂平面ABCD AC =,因为BC ⊂平面ABCD ,所以BC ⊥平面ACFE .所以BC ⊥AM ;(2)解:由(1)可建立分别以直线CA ,CB ,CF 为x 轴,y 轴,z 轴的如图所示的空间直角坐标系,令(0FM λλ=≤≤,则()0,0,0C ,)A ,()0,1,0B ,(),0,1M λ.∥()AB =,(),1,1BM λ=-. 设(),,n x y z =为平面MAB 的一个法向量,由00n AB n BM ⎧⋅=⎨⋅=⎩得0,0,y x y z λ⎧+=⎪⎨-+=⎪⎩,取1x =,则()1,3,n λ=, ∥()1,0,0m =是平面FCB 的一个法向量,∥||cos 1n m n m θ⋅==+∥0λ≤≤∥当λ=cos θ有最大值12,θ的最小值为3π.【点睛】向量法求二面角的步骤:建、设、求、算、取.1、建:建立空间直角坐标系.以三条互相垂直的垂线的交点为原点,没有三垂线时需做辅助线;建立右手直角坐标系,让尽量多的点落在坐标轴上。

高考数学复习压抽题专项突破—立体几何中最值问题

高考数学复习压抽题专项突破—立体几何中最值问题

高考数学复习压抽题专项突破—立体几何中最值问题一.方法综述高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力。

最值问题一般涉及到距离、面积、体积、角度等四个方面。

此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类问题一般可从三个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;三是将几何体平面化,如利用展开图,在平面几何图中直观求解.二.解题策略类型一空间角的最值问题【例1】(2020·浙江高三期末)如图,四边形ABCD ,4AB BD DA ===,BC CD ==现将ABD ∆沿BD 折起,当二面角A BD C --的大小在2[,]33ππ时,直线AB 和CD 所成角为α,则cos α的最大值为()A .2268B .6224C .2268+D .2264+【答案】C【解析】取BD 中点O ,连结AO ,CO ,∵AB =BD =DA =4.BC =CD =CO ⊥BD ,AO ⊥BD ,且CO =2,AO =,∴∠AOC 是二面角A ﹣BD ﹣C 的平面角,以O 为原点,OC 为x 轴,OD 为y 轴,过点O 作平面BCD 的垂线为z 轴,建立空间直角坐标系,B (0,﹣2,0),C (2,0,0),D (0,2,0),设二面角A ﹣BD ﹣C 的平面角为θ,则2,33ππθ⎡⎤∈⎢⎥⎣⎦,连AO 、BO ,则∠AOC =θ,A(0θθ,),∴()2BA θθ= ,,()220CD =- ,,,设AB 、CD 的夹角为α,则cosαAB CD AB CD ⋅==⋅ ,∵2,33ππθ⎡⎤∈⎢⎥⎣⎦,∴cos 1122θ⎡⎤∈-⎢⎥⎣⎦,,∴|1θ|∈[0,1+32].∴cos α的最大值为2268.故选:C.【指点迷津】空间的角的问题,只要便于建立坐标系均可建立坐标系,然后利用公式求解.解本题要注意,空间两直线所成的角是不超过90度的.几何问题还可结合图形分析何时取得最大值.【举一反三】[来1.(2020·广东高考模拟)在正方体1111ABCD A B C D -中,E 是侧面11ADD A 内的动点,且1B E //平面1BDC ,则直线1B E 与直线AB 所成角的正弦值的最小值是()A .13B .33C .12D .22【答案】B【解析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z轴,建立空间直角坐标系,设正方体1111ABCD A B C D -中棱长为1,设E(a,0,c),0a 1≤≤,0c 1≤≤,1B (1,1,1),B(1,1,0),D(0,0,0),1C (0,1,1),()1B E a 1,1,c 1=--- ,DB (1,= 1,0),1DC (0,=1,1),设平面1DBC 的法向量n (x,= y ,z),则1n DB 0n DC 0x y y z⎧⋅=+=⎪⎨⋅=+=⎪⎩,取x 1=,得()n 1,1,1=- ,1B E // 平面1BDC ,1B E n a 11c 10∴⋅=-++-=,解得a c 1+=,()222a c a c 2ac 12ac ∴+=+-=-,2a c 1ac 24+⎛⎫≤= ⎪⎝⎭,设直线1B E 与直线AB 所成角为θ,AB (0,= 1,0),11AB B E cosθAB B E⋅∴==⋅ 2a c 1ac 24+⎛⎫≤= ⎪⎝⎭,322ac 2∴-≥,1222ac 3∴≤-,sinθ∴==3==≥=.∴直线1B E 与直线AB 所成角的正弦值的最小值是33.故选B .2.(2020·河南高三月考(理))如图,在菱形ABCD 中,∠ABC =60°,E ,F 分别是边AB ,CD 的中点,现将△ABC 沿着对角线AC 翻折,则直线EF 与平面ACD 所成角的正切值最大值为()AB.3C.3D .2【答案】D【解析】如图,以AC 的中点O 为坐标原点,建立空间直角坐标系,设二面角B AC D --为θ,可证BOD ∠=θ,设棱形的边长为4,则()0,2,0A -,(),0,B θθ,),Eθθ-,()0,2,0C,()D,)F)FE θθ∴=-- ,易知平面ACD 的法向量()0,0,1n = 设直线EF 与平面ACD 所成角为α,则()()()222222231cos 3sin 3sin sin 106cos 253cos 3cos 143sin n FE n FE θθθαθθθθ⎛⎫⋅- ⎪==== ⎪---++⋅⎝⎭令()2153x f x x-=-,()1,1x ∈-,()()()()()22231331033535x x x x f x x x ---+'==--则()0f x '>时113x -<<即()f x 在11,3⎛⎫- ⎪⎝⎭上单调递增;()0f x '<时113x <<即()f x 在1,13⎛⎫ ⎪⎝⎭上单调递减;()max 1239f x f ⎛⎫∴== ⎪⎝⎭,()2max 1sin 3α∴=则()2max 2cos 3α=()222max sin 1tan cos 2ααα∴==,()max 2tan 2α∴=,故选:D 3.AB 是圆锥 S O 的直径,SB 是它的一条母线,E 、F 是SB 的两个三等分点(E 点靠近S 点),C 点在圆O 上运动(不与A 、B 两点重合),则二面角 --E AC F 的平面角为α则tan α的最大值是_______.【解析】设圆锥的高为,,h BC a =如图所示,二面角E AC B --的平面角为1,EDN α=∠,二面角F AC B --的平面角为2FGH α=∠,则1221233tan ,tan 25536h h h h a a a a αα====,设1222tan t,tan 55h h t a a αα====,所以12223335555tan tan()221211555t t t t t t t t ααα-=-===≤+⨯++.所以tan max α==.类型二空间距离的最值问题【例2】(2020银川一中模拟)正方体1111ABCD A B C D 的棱长为1,M 、N 分别在线段11A C 与BD 上,MN 的最小值为【答案】1【解析】分析:方法一,该题可以结合正方体的结构特征,将其转化为两异面直线的距离来求;方法二,可设出变量,构建相应的函数,利用函数的最值求解;方法三,建立空间直角坐标系,利用点的坐标以及距离公式表示出目标函数,然后利用函数方法求解最值.方法一(定义转化法)因为直线11A C 与BD 是异面直线,所以当MN 是两直线的共垂线段时,MN 取得最小值。

【高考数学专题】立体几何中的翻折问题与最值问题 专题 高三一轮复习备考

【高考数学专题】立体几何中的翻折问题与最值问题  专题  高三一轮复习备考

立体几何中的翻折问题与最值问题一知识点导学1.解决折叠问题注意什么?折叠问题是立体几何的一个重要内容,是空间几何问题与平面几何问题相互转化的集中体现,处理这类问题的关键就是抓住折叠前后图形的特征关系。

解答折叠问题在于画好折叠前后的平面图形和立体图形,并弄清折叠前后哪些量和位置关系发生了变化,哪些量和位置关系没有发生变化,这些未发生变化的已知条件就是我们分析问题和解决问题的依据。

2立体几何常见的最值问题有哪些?如何解决?空间图形最值问题有线段、角、距离、面积、体积等最值问题,通常应注意分析题目中所有的条件,首先应该在充分理解题意的基础上,分析是否能用公理与定义直接解决题中问题;如果不能,再看是否可将问题条件转化为函数,若能写出确定的表意函数,则可用建立函数法求解;再不能,则要考虑其中是否存在不等关系,看是否能运用解等不式法求解;还不行则应考虑是否可将其体图展开成平面,这样依次顺序思考,基本可以找到解题的途径.3如何解决涉及几何体切接问题最值计算?求解与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径等.通过作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.这样才能进一步将空间问题转化为平面内的问题;4解决折叠问题的步骤有哪些?二.考点典例考点一:面积、体积最值问题空间几何体的侧面积、表面积、截面面积、体积等最值问题,往往是几何体中有关几何元素如顶点、侧棱、侧面、截面等在运动变化过程中,达到某个特殊位置时所具有的度量性质。

因此,在解决此类问题时,要注意分析这些几何元素运动变化与所求量的联系,建立两者之间的数量关系。

实例演练1(2021•湖南模拟)如图所示,圆形纸片的圆心为O,半径为6cm,该纸片上的等边三角形ABC的中心为O,D,E,F为圆O上的点,DBC∆分别是∆,FAB∆,ECA以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起DBC ∆,ECA ∆,FAB ∆,使得D ,E ,F 重合,得到三棱锥.则当ABC ∆的边长变化时,三棱锥的表面积S 的取值范围是( )A .(0,36)πB .(0,C .(0,45-D .(0,解:设三棱锥的底面边长为a ,则0a <<连接OD ,交BC 于点G ,则6OD =,OG ,6DG =,∴2,侧面积为213(6)92S a a =⨯⨯=,∴三棱锥的表面积9S a =,0a <<9(0S a ∴=∈,,∴当ABC ∆的边长变化时,三棱锥的表面积S 的取值范围是(0,.故选:D .实例演练2(2021•宜宾模拟)已知三棱锥A BCD -的各个顶点都在球O 的表面上,AD ⊥平面BCD ,BD CD ⊥,3BD =,CD =E 是线段CD 上一点,且3CD CE =.若球O 的表面积为40π,则过点E 作球O 的截面,所得截面圆面积的最小值为( )A .4πB .6πC .8πD .10π解:依题意,AD ,BD ,CD 两两互相垂直,取BC 中点M ,连接MD ,由对称性可知,球心O 在M 点正上方,且OM ⊥平面BCD ,OA OB OC OD R ====,3BD =,CD =6BC ∴=,则3BM CM DM ===,设球O 的半径为R ,则2440R ππ=,解得R由22222222()OM BM R OB AD OM DM R OA⎧+==⎨-+==⎩,解得12OM AD =⎧⎨=⎩,OM ⊥平面BCD ,OM ME ∴⊥,又13CE CD =cos CD BCD BC ∠==,∴在CEM ∆中,由余弦定理有2222cos 3ME CE MC CE MC BCD =+-⋅⋅∠=,故ME =,在OME ∆中,2OE =,要使过E 作圆O 的截面面积最小,则此时截面与OE垂直,设此时截面圆半径为r ,则r ==∴26min S r ππ==.故选:B .实例演练3.(2021•河南模拟)现有一批大小不同的球体原材料,某工厂要加工出一个四棱锥零件,要求零件底面ABCD 为正方形,2AB =,侧面PAD ∆为等边三角形,线段BC 的中点为E ,若1PE =,则所需球体原材料的最小体积为( )A B .283π C .9π D 解:所需原材料体积最小的球体即为四棱锥P ABCD -的外接球,如图,设F 为AD 中点,G 为正方形ABCD 中心,PAD ∆为边长为2的等边三角形,PF ∴,又1PE =,2EF =,60PEF ∴∠=︒1PE EB EC ===,E ∴是PBC ∆的外心,过E 作面PBC 的垂线与过G 与面ABCD 的垂线交于O ,则O 为四棱锥P ABCD -外接球的球心.906030OEG OEP FEP ∠=∠-∠=︒-︒=︒,又1GE =,∴在直角三角形OGE 中求出OG =,又直角OAG ∆中,AG ,OA ∴=,即球半径R =,得343V R π==球.由于此时四棱锥P ABCD -在球心同侧,不是最小球,可让四棱锥下移到面ABCD 过球心时,即球半径12R AC =时,原材料最省,此时343V π=⨯=球.故选:A .实例演练4(20211,O 为底面圆心,OA ,OB 为底面半径,且23AOB π∠=,M 是母线PA 的中点.则在此圆锥侧面上,从M 到B 的路径中,最短路径的长度为( )A B 1 C D 1解:由题意,在底面半径为1O 是底面圆心,P 为圆锥顶点,圆锥的侧面展开图是半圆,如图,A ,B 是底面圆周上的两点,23AOB π∠=,所以在展开图中,3APB π∠=2=,M 为母线PA 的中点,所以1PM =,所以从B 到M 的最短路径的长是BM A .考点2:角的最值问题立体几何中的角有异面直线所成角、线面角和二面角的平面角三种。

立体几何中最值问题-高考数学大题精做之解答题题型全覆盖高端精品

立体几何中最值问题-高考数学大题精做之解答题题型全覆盖高端精品

高考数学大题精做之解答题题型全覆盖高端精品第三篇立体几何专题05立体几何中最值问题类型对应典例利用侧面展开图求最值典例1利用目标函数求最值典例2利用基本不等式求最值典例3【典例1】如图,AB 是圆柱的直径,PA 是圆柱的母线,3AB =,PA =,点C 是圆柱底面圆周上的点.(1)求三棱锥P ABC -体积的最大值;(2)若1AC =,D 是线段PB 上靠近点P 的三等分点,点E 是线段PA 上的动点,求CE ED +的最小值.【典例2】已知梯形ABCD 中,AD ∥BC ,∠ABC =∠BAD =2,AB=BC=2AD=4,E 、F 分别是AB 、CD 上的点,EF ∥BC ,AE =x ,G 是BC 的中点.沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF .(1)若以F 、B 、C 、D 为顶点的三棱锥的体积记为()f x ,求()f x 的最大值;(2)当()f x 取得最大值时,求二面角D-BF-C 的余弦值.【典例3】如图,在长方体ABCD -A 1B 1C 1D 1中,E ,H 分别是棱A 1B 1,D 1C 1上的点(点E 与B 1不重合),且EH ∥A 1D 1.过EH 的平面与棱BB 1,CC 1相交,交点分别为F ,G .(I )证明:AD ∥平面EFGH ;(II )设AB=2AA 1="2"a .在长方体ABCD -A 1B 1C 1D 1内随机选取一点.记该点取自几何体A 1ABFE-D 1DCGH 内的概率为p ,当点E ,F 分别在棱A 1B 1上运动且满足EF=a 时,求p 的最小值.1.如图,正方体1111ABCD A B C D -的棱长为a ,E F 、分别为AB BC 、上的点,且AE BF x ==.(1)当x 为何值时,三棱锥1B BEF -的体积最大?(2)求异面直线1A E 与1B F 所成的角的取值范围.2.如图,△ABC 内接于圆O ,AB 是圆O 的直径,四边形DCBE 为平行四边形,DC ⊥平面ABC ,2,AB EB ==.(1)求证:DE ⊥平面ADC ;(2)设AC x =,(x)V 表示三棱锥B ACE -的体积,求函数(x)V 的解析式及最大值.3.如图,在三棱锥P ABC -中,AB BC =,AP PC =,60ABC ∠=︒,AP PC ⊥,直线BP 与平面ABC 成30°角,D 为AC 的中点,PQ PC λ=,(0,1)λ∈.(Ⅰ)若PB PC >,求证:平面ABC ⊥平面PAC ;(Ⅱ)若PC PB <,求直线BQ 与平面PAB 所成角的正弦值的取值范围.4.已知三棱锥P ABC -(如图1)的平面展开图(如图2)中,四边形ABCD的正方形,△ABE 和△BCF 均为正三角形,在三棱锥P ABC -中:(I)证明:平面PAC ⊥平面ABC ;(Ⅱ)求二面角A PC B --的余弦值;(Ⅲ)若点M 在棱PC 上,满足CM CP λ=,12[,33λ∈,点N 在棱BP 上,且BM AN ⊥,求BN BP的取值范围.。

第17讲 立体几何的最值问题 讲义——浙江省临安中学2022届高三数学二轮复习专题

第17讲 立体几何的最值问题 讲义——浙江省临安中学2022届高三数学二轮复习专题

第17讲 立体几何的最值问题 一、学习目标1. 会将空间问题转化为平面问题;2. 会用传统法和坐标法处理空间角与距离问题;3. 体会旋转问题的等价转化.二、典例分析例1.(1)如图,在直三棱柱111C B A ABC -中,底面为直角三角形,︒=∠90ABC ,6=AC ,21==CC BC ,P 是1BC 上一动点,则1PA CP +的最小值是_______.(2)如图1,在棱长为1的正方体1111ABCD A B C D -中,F E ,分别为棱1111,D C D A 的中点,N 线段1B C 的中点,若M P ,分别是EF B D ,1上的动点,则PN PM +的最小值是______.【答案】(1)25; (2)B. 变式:1.在长方体1111ABCD A B C D -中,2AB =,11BC AA ==,点P 为对角线1AC 上的动点,点Q 为底面ABCD 上的动点(点P ,Q 可以重合),则1B P PQ +的最小值为( )A 2B 3C .32D .2 【答案】C例2.(1)如图,在正方体1111ABCD A B C D -中,O 是AC 中点,点P 在线段11A C 上,若直线OP 与平面11A BC 所成的角为θ,则sin θ的取值范围是( )A .233⎣⎦B .11,32⎡⎤⎢⎥⎣⎦C .33⎣⎦D .11,43⎡⎤⎢⎥⎣⎦(2)如图,在矩形ABCD 中,AB a =,2BC a =,点E 为AD 的中点,将A BE ∆'的位置,在翻折过程中,A '不在平面BCDE 内时,记二面角A DC B '--的平面角为α,则当α最大时,cos α的值为__________.【答案】(1)A , (2)255. 变式:1.如图,点M N 、分别是正四面体ABCD 棱AB CD 、上的点,设BM x =,直线MN 与直线BC 所成的角为θ,则( )A .当2ND CN =时,θ随着x 的增大而增大B .当2ND CN =时,θ随着x 的增大而减小C .当2CN ND =时,θ随着x 的增大而减小D .当2CN ND =时,θ随着x 的增大而增大【答案】D2.已知平行四边形ABCD 中,1AB =,2AD =,60A ∠=︒,沿对角线BD 将ABD △折起到PBD △的位置,使得平面PBD ⊥平面BCD ,如图,若M ,N 均是线段PD 的三等分点,点Q 是线段MN 上(包含端点)的动点,则二面角Q BC D --的正弦值的取值范围为( )A .12,23⎡⎤⎢⎥⎣⎦B .1419,219⎡⎢⎣⎦C .2419,319⎡⎢⎣⎦D .11,32⎡⎤⎢⎥⎣⎦【答案】B例3.(1)如图,在ABC ∆中,2AB BC ==,120.ABC ∠=︒若平面ABC 外的点P 和线段AC 上的点D ,满足PD DA =,PB BA =,则四面体PBCD 的体积的最大值是______(2)矩形ABCD 中,AB =1,AD =3,现将△ABD 绕BD 翻折至A BD '的位置,当三棱锥A BCD '-的体积最大时,直线A B '和直线CD 所成角的余弦值为___________.【答案】(1)14, (2)14.变式:1.已知直角梯形ABCD ,AB AD ⊥,CD AD ⊥,222AB AD CD ===,沿AC 折叠成三棱锥,当三棱锥体积最大时,D ,B 两点间的距离是 . 【答案】3例4.(1)如图,三棱锥A BCD -的底面BCD 在平面α内,所有棱均相等,E 是棱AC 的中点,若三棱锥A BCD -绕棱CD 旋转,设直线BE 与平面α所成的角为θ,则cos θ的取值范围为( )A .3,16⎡⎤⎢⎥⎣⎦B .5,16⎡⎤⎢⎥⎣⎦C .110,6⎡⎤⎢⎥⎣⎦D .330,6⎡⎤⎢⎥⎣⎦(2)已知正四面体ABCD 的棱长为2,棱AD 与平面α所成的角]2,3[ππθ∈,且顶点A 在平面α内,点D C B ,,均在平面α外,则棱BC 的中点E 到α的距离的取值范围是________.【答案】(1)A , (2)322223d +≤≤-. 变式:1.如图,正四面体ABCD 的棱CD 在平面α上,E 为棱BC 的中点.当正四面体ABCD 绕CD 旋转时,直线AE 与平面α所成最大角的正弦值为_______.【答案】3362.长方体1111ABCD A B C D -中,已知2AB AD ==,13AA =,棱AD 在平面α内,则长方体在平面α内的射影所构成的图形面积的取值范围是 .【答案】4213S ≤≤三、课外作业1.在直三棱柱111C B A ABC -中,若090=∠ACB ,2=AC ,11==CC BC ,P 是1BC 上一动点,则PC P A +1的最小值是( )A .22B .5C .3D .2 【答案】B2.如图,在三棱锥S ABC -中,SA ⊥平面ABC ,4AB BC ==,90ABC ∠=︒,侧棱SB 与平面ABC 所成的角为45︒,M 为AC 的中点,N 是侧棱SC 上一动点,当BMN △的面积最小时,异面直线SB 与MN 所成角的余弦值为( ) A .16B .23C .66D .36【答案】D3.正方体ABCD -A 1B 1C 1D 1的棱长为1,点M ,N 分别是棱BC ,CC 1的中点,动点P 在正方形BCC 1B 1(包括边界)内运动,且P A 1∥平面AMN ,则P A 1的长度范围为( )A. 5[1,]2 B 325[,]42 C. 323[,]32D.3[1,]2【答案】B4.如图,棱长为2的正方体1111AB CD A B C D --的顶点A 在平面α上,棱1AA 与平面α.所成角60,点1A 在平面α上的射影为O ,正方体1111ABCD A B C D -绕直线1AA 旋转,则当1A O 与1BC 所成角最小时,侧面11ABB A 在平面α上的投影面积为( )A.23B.62-C.62+D.2【答案】D5.如图,设ABC Rt ∆中,︒=∠90A ,1=AB ,3=AC ,D 是线段AC (不包括端点)上一点,将ABD ∆沿BD 翻折至平面BD A ',使平面⊥BD A '平面ABC ,当A 在平面ABC 的射影H 到平面'ABA 的距离最大时,AD 的长度为( )A. 42B.32C.43D.33【答案】A6.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E 、F 分别为AB 、BC 的中点.设异面直线EM 与AF 所成的角为θ,则cos θ的最大值为________.【答案】257.设正四面体ABCD 的棱长为1,棱AB //平面α,E 、F 分别是AD 、BC 的中点, 当正四面体ABCD 以AB 为轴旋转时,则线段EF 在平面α上的射影11E F 的长度的范围是_____________. 【答案】1222][,8.如图,在长方体ABCD ﹣A 'B 'C 'D '中,点P ,Q 分别是棱BC ,CD 上的动点,BC =4,CD =3,'23CC =,直线'CC 与平面'PQC 所成的角为30°,则△'PQC 的面积的最小值是__________.【答案】99.如图,平面ABC ⊥α,D 为线段AB 的中点,2=AB ,︒=∠60CDB ,P 为平面α内的动点,且点P 到直线CD 的距离为3,则APB ∠的最大值为________.10.如图,正方体1111D C B A ABCD -在平面α上方,点O 是线段11C A 的中点,直线OA 与平面α所成角为3π.当正方体1111D C B A ABCD -绕着OA 旋转一周时,平面DC D C 11与平面α所成角的正弦值的最小值为_______.【答案】126103-11.如图,在矩形ABCD 中,2,4,AB BC E ==是边AD 的中点,将ABE △沿直线BE 折成A BE ∠',使得二面角A BE C '--的平面角为锐角,点F 在线段AB '上运动(包括端点),当直线CF 与平面A BE '所成角最大时,FBE 在底面ABCD 内的射影面积为___________.【答案】3512.如图,长方形ABCD 中,15AB =1AD =,点E 在线段AB (端点除外)上,现将ADE 沿DE 折起为A DE '.设ADE α∠=,二面角A DE C '--的大小为β,若π2αβ+=,则四棱锥A BCDE '-体积的最大值为_________.1【答案】4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

突破立体几何之《立体几何中的最值问题》 考点动向
高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题.此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练.
例1如图6-1,在直三棱柱111ABC A B C -中,底面为直角三角形,
1906ACB AC BC CC ∠==== ,,.
P 是1BC 上一动点,则1CP PA +的最小值
为 .
解析 考虑将立体几何问题通过图形变换,转化为平面几何问题解答.
解 连结1A B ,沿1BC 将1CBC △展开与
11A BC △在同一个平面内,如图6-2所示,连1AC ,则1AC 的长度就是所求的最小值.通过计
算可得1190AC C ∠=︒,又145BC C ∠=︒故11135AC C ∠=︒,
由余弦定理可求得1AC =.
例2 如图6-3,在四棱锥P ABCD -中,
PA ⊥底面A B C D ,DAB ∠为直角,
2A B C D A D C D A B ==,∥,E F ,分别为
PC CD ,的中点.
(I )试证:CD ⊥平面BEF ;
(II )设PA k AB =
,且二面角E BD C --的平面角大于30︒,求k 的取值范围.
解析 对(I ),可以借助线面垂直的判定定理,或者借助平面的法向量及直线的方向
A
1
A 1
1
图6-1
A
C P
B
1
A
1
C
1
B
图6-2
C C
图6-3
向量解答;对(II ),关键是确定出所求二面角的平面角.
解法1(I )证:由已知DF AB ∥且DAB ∠为直角, 故ABFD 是矩形,从而CD BF ⊥.又PA ⊥底面
ABC D ,CD AD ⊥,故由三垂线定理知CD PD ⊥.
在PDC △中,E ,F 分别为PC ,CD 的中点,故
EF PD ∥,从而CD EF ⊥,由此得CD ⊥面BEF .
(II )连接AC 交BF 于G ,易知G 为AC 的中点,
连接EG ,则在PAC △中易知EG PA ∥.又因PA ⊥底面ABCD ,故EG ⊥底面ABCD . 在底面ABCD 中,过G 作GH BD ⊥,垂足为H ,连接EH ,由三垂线定理知EH BD ⊥,从而EHG ∠为二面角E BD C --的平面角. 设
AB a =,则在PAC
△中,有
11
22
EG PA ka =
=.以下计算GH ,考虑底面的平面图(如图6-5),连接GD ,因
11
22BD S BD GH GB DF =
= △G , 故GB DF
GH BD = .在ABD △中,因AB a =,
2AD a =
,得BD =.
而11
22
GB FB AD a =
==,DF AB =,
从而得GB AB GH BD ===
.因此1
tan ka
EG EHG GH ===.
故0k >知EHG ∠是锐角,故要使30EHG >

,必须
tan 3023
>=
, 解之得,k
的取值范围为15
k >
. 解法2(I )如图6-6,以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴建立空间直角坐标系,设AB a =,则易知点A ,B ,C ,D ,F 的坐标分别为()000A ,,,()00B a ,,,()220C a a ,,,()020D a ,,,()20F a a ,,.
C
图6-4
图6-5
A
从而(200)(020)DC a BF a ==
,,,,,,0DC BF = ,故DC BF ⊥ .
设PA b =,则(00)P b ,,,而E 为PC 中
点,故
2b E a a ⎛
⎫ ⎪

⎭,,,从而
02b B E a ⎛⎫
= ⎪⎝⎭ ,,.0DC BE = ,故
D C B E

.由此得CD BEF ⊥面. (II )设E 在xOy 平面上的投影为G ,过G 作GH BD ⊥垂足为H ,由三垂线定理知
EH BD ⊥.从而EHG ∠为二面角E BD C --的平面角.由PA k AB = 得(00)P ka ,,,
2ka E a a ⎛
⎫ ⎪⎝⎭
,,,(0)G a a ,,.设(0)H x y ,,,则(0)(20)GH x a y a BD a a =--=- ,,,,,,
由0GH BD =
得()2()0a x a a y a --+-=,即2x y a -=-. ①
又因(0)BH x a y =- ,,,且BH 与BD
的方向相同,故2x a y
a a
-=-, 即22x y a +=. ②
由①②解得3455x a y a ==,
,从而21055GH a a GH ⎛⎫=--= ⎪⎝⎭
,,,.
tan ka EG EHG GH
=== .
由0k >知EHG ∠是锐角,由30EHG ∠>︒,得t a n t a n30E H G >
︒,
>
. 故k
的取值范围为k >. [规律小结]
立体几何中的最值与范围,需要首先确定最值或范围的主体,确定题目中描述的相关变动的量,根据必要,可确定是利用几何方法解答,还是转化为代数(特别是函数)问题解答.其中的几何方法,往往是进行翻折变换,这时可以想象实际情形,认为几何体是利用硬纸等折
图6-6
成的,可以动手翻折的,在平时做练习时,不妨多动手试试,培养自己的空间想象能力,在考试时就可以不动手,动脑想就可以了.特别注意变动的过程,抓住变动的起始与终了等特殊环节.
考点误区分析
(1)这类问题容易成为难点,关键是学生的空间想象能力缺乏,或者对问题的转化方向不明确.因此,要注意常见的转化方向,如化立体几何问题为平面几何问题,或化立体几何问题为代数问题等,根据题目特征进行转化.
(2)对题目所描述的情形没有清醒的认识也是造成错解的主要原因,注意产生量的变化的主要原因是什么,相关的数量和位置关系都做怎样的变化,抓住问题的关键,才能顺利解决问题.
同步训练
1.如图6-7,在直三棱柱111ABC A B C -中,
AB BC ==12BB =, 90=∠ABC ,,E F
分别为111,AA C B 的中点,沿棱柱的表面从E 到F 两点的最短路径的长度为 .
2.有两个相同的直三棱柱,高为
a
2
,底面三角形的三边长分别为)0(5,4,3>a a a a .用它们拼成
一个三棱柱或四棱柱,在所有可能的情形中,全面积最小的是一个四棱柱,则a 的取值范围是__________.
3.如图6-8,正四面体ABCD 的棱长为1,棱AB ∥平面α,则正四面体上的所有点在平面α内的射影构成的图形面积的取值范围是 .
[参考答案]
1.[解析]分别将111A B C △沿11A B 折到平面11ABB A 上;将111A B C △沿11AC 折到平面11ACC A 上;将11BCC B 沿1BB 折到平面11ABB A 上;
将11BCC B 沿1CC 折到平面11ACC A
A
图6-7
1A 1
E
图6-8
上,比较其中EF 长即可.
[答案]
2
2.[解析]可知,全面积最小的是四棱柱面积为2
2428a +,全面积最小的是三棱柱面积为21248a +,解2212482428a a +>+即可.
[答案]3
150<
<a . 3.[解析]当CD 所在的直线与平面α平行时,所求射影面积最大,为
1122
AB CD ⨯=;
当CD 所在的直线与平面α垂直时,所求射影面积最小,可求得为
4

[答案]1[]42
.。

相关文档
最新文档