中考数学总复习课时练习题(41课时)课时10.一元二次方程根的判别式及根与系数的关系

合集下载

小专题(二) 一元二次方程根的判别式及根与系数的关系

小专题(二) 一元二次方程根的判别式及根与系数的关系

小专题(二) 一元二次方程根的判别式及根与系数的关系1.(金华中考)一元二次方程x 2-3x -2=0的两根为x 1,x 2,则下列结论正确的是(C )A .x 1=-1,x 2=2B .x 1=1,x 2=-2C .x 1+x 2=3D .x 1x 2=22.(桂林中考)若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是(B )A .k<5B .k<5,且k ≠1C .k ≤5,且k ≠1D .k>53.(玉林中考)关于x 的一元二次方程x 2-4x -m 2=0有两个实数根x 1、x 2,则m 2(1x 1+1x 2)=(D ) A .m 44 B .-m 44C .4D .-44.若关于x 的一元二次方程x 2+mx +m 2-3m +3=0的两根互为倒数,则m 的值等于(B )A .1B .2C .1或2D .05.若m 、n 是方程x 2-2 016x +2 017=0的两根,则(m 2-2 017m +2 017)(n 2-2 017n +2 017)的值是2_017.6.(湘潭中考)已知关于x 的一元二次方程x 2-3x +m =0有两个不相等的实数根x 1、x 2.(1)求m 的值;(2)当x 1=1时,求另一个根x 2的值.解:(1)∵一元二次方程x 2-3x +m =0有两个不相等的实数根,∴b 2-4ac =(-3)2-4×1×m =9-4m>0.∴m<94. (2)根据一元二次方程根与系数的关系x 1+x 2=-b a,得1+x 2=3,∴x 2=2.7.设x 1,x 2是关于x 的方程x 2-4x +k +1=0的两个实数根.请问:是否存在实数k ,使得x 1x 2>x 1+x 2成立?试说明理由.解:不存在.理由如下:∵x 1,x 2是关于x 的方程x 2-4x +k +1=0的两个实数根,则b 2-4ac =(-4)2-4×1×(k +1)≥0,即16-4k -4≥0,解得k ≤3.由根与系数关系,得x 1+x 2=4,x 1x 2=k +1.假设存在实数k ,使得x 1x 2>x 1+x 2,则k +1>4,解得k >3.这与k ≤3相矛盾,∴假设不成立.∴不存在实数k ,使得x 1x 2>x 1+x 2成立.8.已知关于x 的一元二次方程x 2+(2m -3)x +m 2=0有两个实数根x 1,x 2.(1)求实数m 的取值范围;(2)若x 1+x 2=6-x 1x 2,求(x 1-x 2)2+3x 1x 2-5的值.解:(1)Δ=(2m -3)2-4m 2=4m 2-12m +9-4m 2=-12m +9,∵方程有两个实数根,∴Δ≥0.∴-12m +9≥0.∴m ≤34. (2)由题意可得x 1+x 2=-(2m -3)=3-2m ,x 1x 2=m 2,又∵x 1+x 2=6-x 1x 2,∴3-2m =6-m 2.∴m 2-2m -3=0.∴m 1=3,m 2=-1.又∵m ≤34,∴m =-1. ∴x 1+x 2=5,x 1x 2=1.∴(x 1-x 2)2+3x 1x 2-5=(x 1+x 2)2-4x 1x 2+3x 1x 2-5=(x 1+x 2)2-x 1x 2-5=52-1-5=19.9.(鄂州中考)关于x 的方程(k -1)x 2+2kx +2=0.(1)求证:无论k 为何值,方程总有实数根;(2)设x 1,x 2是方程(k -1)x 2+2kx +2=0的两个根,记S =x 2x 1+x 1x 2+x 1+x 2,S 的值能为2吗?若能,求出此时k 的值.若不能,请说明理由.解:(1)证明:①当k -1=0,即k =1时,方程为一元一次方程2x +2=0,x =-1,有一个解; ②当k -1≠0,即k ≠1时,方程为一元二次方程.Δ=(2k)2-4×2(k -1)=4k 2-8k +8=4(k -1)2+4>0,方程有两个不等实根.综合①②,得无论k 为何值,方程总有实数根.(2)根据一元二次方程的两个根分别为x 1和x 2,由一元二次方程根与系数的关系,得x 1+x 2=-2k k -1,x 1x 2=2k -1, 又∵S =x 2x 1+x 1x 2+x 1+x 2, ∴S =x 21+x 22x 1x 2+x 1+x 2 =(x 1+x 2)2-2x 1x 2x 1x 2+x 1+x 2 =(-2k k -1)2-4k -12k -1+-2k k -1=2k 2k -1-2+-2k k -1=2k -2.当S =2时,2k -2=2,解得k =2.。

九级数学一元二次方程根的判别式及根与系数关系探究(一元二次方程)基础练习-4页精选文档

九级数学一元二次方程根的判别式及根与系数关系探究(一元二次方程)基础练习-4页精选文档

九年级数学一元二次方程根的判别式及根与系数关系探究(一元二次方程)基础练习试卷简介:全卷共4个选择题,9个填空题,1个证明题,6个解答题,分值120,测试时间60分钟。

本套试卷在课本的基础上,对题目稍做一定难度的拔高,主要考察了学生对元二次方程根的判别式及根与系数的关系的灵活运用。

各个题目难度类似,但考察方式不同。

学生在做题过程中要立足课本,对题目考虑全面,做到认真细心。

学习建议:本章主要内容是二元一次方程根的判别式及根与系数的关系,不仅是中考重点考察的内容之一,更是整个数学学科的重要内容之一。

本章题目要求同学们在做题时要考虑全面,千万不能粗心马虎,否则很容易遗漏某些条件或忘记舍去不合适的结果。

一、单选题(共4道,每道3分)1.方程x2-kx-1=0的根的情况是()A.方程有两个不相等的实数根B.方程有两个相等的实数根C.方程没有实数根D.根的情况与k的取值有关2.已知方程2x2+4x=3,则下列说中,正确的是()A.方程两根和是-4B.方程两根积是2C.方程两根和是-2D.方程两根积是两根和的2倍3.若一元二次方程ax2+bx+c =0(a≠0)的两根之比为2:3,那么a、b、c间的关系应当是()A.3b2=8acB.C.6b2=25acD.不能确定4.若c为实数,方程x2-3x+c=0的一个根的相反数是方程x2+3x-c=0的一个根,那么方程x2-3x+c=0的根是()A.1,2B.-1,-2C.0,3D.0,-3二、填空题(共9道,每道4分)1.分别以x2+3x-2=0的两根和与两根积为根的一元二次方程是______2.已知关于x的方程ax2+bx+c=0(a>0)有一个正根和一个负根,则这个方程的判别式b2-4ac______0,常数项c______03.已知关于x的方程x2+m2x+m=0的两个实数根是x1、x2,y1、y2是方程y2+5my+7=0的两个实数根,且x1- y1=2,x2- y2=2,则m= ______.4.关于x的方程2x2+(m2–9)x+m+1=0,当m=______时,两根互为倒数;当m=______时,两根互为相反数.5.如果把一元二次方程 x2-3x-1=0的两根各加上1作为一个新一元二次方程的两根,那么这个新一元二次方程是______6.已知a2=1-a,b2=1-b,且a≠b,则(a-1)(b-1)=______7.若p2–3p–5=0,q2-3q–5=0,且p≠q,则______8.设x1、x2是方程3x2+4x–5=0的两根,则______ ;______9.若方程kx2–6x+1=0有两个实数根,则k的取值范围是______三、解答题(共6道,每道11分)1.已知a、b、c为三角形三边长,且方程b(x2-1)-2ax+c(x2+1)=0有两个相等的实数根.试判断此三角形形状,说明理由2.如果关于x的方程kx2-(2k+1)x+(k+2)=0有实数根,求k的取值范围3.已知关于x的方程 3 x2-10 x + k = 0有实数根,求满足下列条件的k 的值:(1)有两个实数根,(2)有两个正数根,(3)有一个正数根和一个负数根4.已知x1,x2是关于x的方程x2-2(m+2)x+2m2-1=0的两个实根,且满足,求m值.5.设x 1,x 2是方程2x 2+4x-3=0的两个根,利用根与系数的关系,求下列各式的值.(1)(x 1+ 1)(x 2+ 1); (2)x 12x 2+ x 1x 22;(3); (4)(x 1-x 2)2.6.已知关于x 的方程x 2+2(m -2)x+m 2+4=0有两个实数根,且这两根的平方和比两根的积大21,求m 值并解此方程四、证明题(共1道,每道6分)1.求证:不论k 取什么实数,方程x 2-(k+6)x+4(k-3)=0一定有两个不相等的实数根九年级数学暑期预习领先班(九年级上、下册知识一网打尽+全面系统、夯实基础) 东区总校:郑州市文化路与黄河路交叉口中孚大厦7楼B 室 电话:65335902 西区总校:郑州市陇海路与桐柏路交叉口凯旋门大厦B 座405室 电话:68856662希望以上资料对你有所帮助,附励志名言3条:1、理想的路总是为有信心的人预备着。

《中考大一轮数学复习》课件 一元二次方程根的判别式及根与系数的关系

《中考大一轮数学复习》课件 一元二次方程根的判别式及根与系数的关系

1 2 3
中考大一轮复习讲义◆ 数学
2
课前预测 你很棒
1. 一元二次方程 x -2x-1=0 的根的情况为( B ) A. 有两个相等的实数根 B. 有两个不相等的实数根 C. 只有一个实数根 D. 没有实数根 2 2. (2014·甘肃省兰州)一元二次方程 ax +bx+c=0(a≠0)有两个不相等的 实数根,下列选项正确的是( B ) 2 2 A. b -4ac=0 B. b -4ac>0 C. b2-4ac<0 D. b2-4ac≥0 3. (2014·广西玉林防城港)x1,x2 是关于 x 的一元二次方程 x2-mx+m-2=0 的两个实数根,是否存在实数 m 使 1 1 + =0 成立?则正确的结论是( x1 x 2
1 2
6
3
热点看台
中考大一轮复习讲义◆ 数学
快速提升
热点一 一元二次方程根的判别式 热点搜索 运用一元二次方程根的判别式b2-4ac时必须把方程先化为一般形式 再判别根的情况,要注意方程中各项系数的符号.如果一元二次方程有实根,那 么应当包括有两个不相等的实数根和有两个相等的实数根两种情况,此时 b2 - 4ac≥0,不要丢掉等号.判别式有以下应用:①不解方程,判定一元二次方程根 的情况;②根据一元二次方程根的情况,确定方程中未知系数的取值范围;③应 用判别式进行有关的证明.
2 2 1 2 1 2
b2-4ac>0⇔两个不等实根
1 2
3
3
夯实基本
中考大一轮复习讲义◆ 数学
知已知彼
基础知识回顾 1. 一元二次方程根的判别式 关于x的一元二次方程ax2+bx+c=0(a≠0)的根的判别式为________. (1)b2 - 4ac>0⇔ 一元二次方程 ax2 + bx + c = 0(a≠0) 有两个 ________ 实数 根,即x1,2=________. (2)b2-4ac=0⇔一元二次方程 ax2+bx+c=0(a≠0)有____________相等 的实数根,即x1=x2=____________. (3)b2-4ac<0⇔一元二次方程ax2+bx+c=0(a≠0)________实数根. 温馨提示 在使用根的判别式解决问题时,如果二次项系数中含有字母,要加上二次 项系数不为零这个限制条件. 2. 一元二次方程根与系数的关系 若关于x的一元二次方程 ax2+bx+c=0(a≠0)有两根分别为x1,x2,那么 x1+x2=________,x1·x2=________. 温馨提示 应用一元二次方程根与系数的关系时,应注意: ①根的判别式b2-4ac≥0. ②二次项系数a≠0,即只有在一元二次方程有根的前提下,才能应用根与 系数的关系. 4

初三上学期一元二次方程韦达定理(根与系数的关系)全面练习题及答案word版本

初三上学期一元二次方程韦达定理(根与系数的关系)全面练习题及答案word版本

韦达定理(根与系数的关系)韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么1212,b cx x x x a a+=-=说明:定理成立的条件0∆≥练习题一、填空:1、如果一元二次方程c bx ax ++2=0)(0≠a 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = .5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = . 6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 . 7、以13+,13-为根的一元二次方程是 . 8、若两数和为3,两数积为-4,则这两数分别为 . 9、以23+和23-为根的一元二次方程是 . 10、若两数和为4,两数积为3,则这两数分别为 .11、已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += .12、若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是 . 13、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,若两根互为倒数,则k = . 14、如果是关于x 的方程02=++n mx x 的根是2-和3,那么n mx x ++2在实数范围内可分解为 .二、已知方程0232=--x x 的两根为1x 、2x ,且1x >2x ,求下列各式的值:(1)2212x x += ;(2)2111x x += ; (3)=-221)(x x = ; (4))1)(1(21++x x = . 三、选择题:1、关于x 的方程p x x --822=0有一个正根,一个负根,则p 的值是( ) (A )0 (B )正数 (C )-8 (D )-42、已知方程122-+x x =0的两根是1x ,2x ,那么=++1221221x x x x ( ) (A )-7 (B) 3 (C ) 7 (D) -3 3、已知方程0322=--x x 的两根为1x ,2x ,那么2111x x +=( ) (A )-31 (B) 31(C )3 (D) -34、下列方程中,两个实数根之和为2的一元二次方程是( ) (A )0322=-+x x (B ) 0322=+-x x (C )0322=--x x (D )0322=++x x5、若方程04)103(422=+--+a x a a x 的两根互为相反数,则a 的值是( ) (A )5或-2 (B) 5 (C ) -2 (D) -5或26、若方程04322=--x x 的两根是1x ,2x ,那么)1)(1(21++x x 的值是( ) (A )-21 (B) -6 (C ) 21 (D) -25 7、分别以方程122--x x =0两根的平方为根的方程是( ) (A )0162=++y y (B ) 0162=+-y y (C )0162=--y y (D )0162=-+y y四、解答题:1、若关于x 的方程02352=++m x x 的一个根是-5,求另一个根及m 的值.2、关于x 的方程04)2(222=++-+m x m x 有两个实数根,且这两根平方和比两根积大21. 求m 的值.3、若关于x 的方程03)2(2=---+m x m x 两根的平方和是9. 求m 的值.4、已知方程032=--m x x 的两根之差的平方是7,求m 的值.5、已知方程0)54(22=+--+m x m m x 的两根互为相反数,求m 的值.6、关于x 的方程0)2()14(322=++--m m x m x 的两实数根之和等于两实数根的倒数和,求m 的值.7、已知方程m x x 322+-=0,若两根之差为-4,求m 的值.8、已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值.答案:。

一元二次方程的根与系数的关系(知识点考点)-九年级数学上册知识点考点(解析版)

一元二次方程的根与系数的关系(知识点考点)-九年级数学上册知识点考点(解析版)

一元二次方程的根与系数的关系(知识点考点一站到底)知识点☀笔记韦达定理:如一元二次方程20(0)ax bx c a ++=≠的两根为12,x x ,则12b x x a +=-,12c x x a⋅= 考点☀梳理考点1:韦达定理必备知识点:如一元二次方程20(0)ax bx c a ++=≠的两根为12,x x ,则12b x x a +=-,12c x x a⋅= 解题指导:适用题型:(1)已知一根求另一根及未知系数;(2)求与方程的根有关的代数式的值;(3)已知两根求作方程;(4)已知两数的和与积,求这两个数;(5)确定根的符号:(12,x x 是方程两根);(6)题目给出两根之间的关系,如两根互为相反数、互为倒数、两根的平方和或平方差是多少、两根是Rt ∆的两直角边求斜边等情况.注意:(1)韦达定理拓展公式 ①x 12+x 22=(x 1+x 2)2−2x 1∙x 2②1x 1+1x 2=x 2+x 1x 1∙x 2x 2x 1+x1x 2=x 12+x 22x 1∙x 2=(x 1+x 2)2−2x 1∙x 2x 1∙x 2③(x 1−x 2)2=(x 1+x 2)2−4x 1∙x 2④|x 1−x 2|=√(x 1+x 2)2−4x 1∙x 2 ;(2)①方程有两正根,则1212000x x x x ∆≥⎧⎪+>⎨⎪⋅>⎩;②方程有两负根,则1212000x x x x ∆≥⎧⎪+<⎨⎪⋅>⎩ ;③方程有一正一负两根,则120x x ∆>⎧⎨⋅<⎩;(3)应用韦达定理时,要确保一元二次方程有根,即一定要判断根的判别式是否非负;求作一元二次方程时,一般把所求作得方程的二次项系数设为1,即以12,x x 为根的一元二次方程为21212()0x x x x x x -++⋅=;求字母系数的值时,需使二次项系数0a ≠,同时满足∆≥0;求代数式的值,常用整体思想,把所求代数式变形成为含有两根之和12x x +,•两根之积12x x ⋅的代数式的形式,整体代入。

2023年中考苏科版数学一轮复习专题讲义与练习-一元二次方程根的判别式和根与系数的关系

2023年中考苏科版数学一轮复习专题讲义与练习-一元二次方程根的判别式和根与系数的关系

2023年中考数学一轮复习专题讲义与练习一元二次方程根的判别式和根与系数的关系[课标要求]1. 理解一元二次方程的根的判别式2. 会根据根的判别式判断数字系数的一元二次方程根的情况.3. 会根据字母系数的一元二次方程根的情况,确定字母的取值范围.4. 一元二次方程根与系数的关系的简单运用.[要点梳理]1. 一元二次方程的ax 2+bx +c =0(a≠0)的根的判别式是△=______2. 一元二次方程的ax 2+bx +c =0(a≠0)的根与系数的关系______[规律总结]1、 判别含字母系数的一元二次方程的一般步骤①把方程化为一般形式,写出根的判别式;②确定判别式的符号;③根据判别式的符号,得出结论.2. 应用根的判别式时应注意二次项系数不为03. 注意结论的正逆两个方面的应用[强化训练]一、选择题1. 关于x 的一元二次方程2(2)10x m x m +-++=有两个相等的实数根,则m 的值是( )A .0B .8C .42±D .0或82. 一元二次方程x 2+6x +10=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根3. 已知2x 2–x –1=0的两根为x 1. x 2,则x 1+x 2为( )A .1B .–1C .12D .12- 4. 如果关于x 的一元二次方程01122=++-x k kx 有两个不相等的实数根,那么k 的取值范围是( )A .k <21B .k <21且k≠0C .-21≤k <21D .-21≤k <21且k≠0 5. 已知函数2y ax bx c =++的图象如图所示,那么关于x 的方程220ax bx c +++=的根的情况是( )A .无实数根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根6. 使一元二次方程x 2+7x +c =0有实根的最大整数c 是( ) A .8 B .10 C .12 D .137. 已知三角形的两边长分别是3和6,第三边长是方程x 2-6x +8=0的根,则这个三角形周长是( )A .13B .11C .11或13D .12或158. 已知关于x 的方程(x +1)2+(x -b )2=2有唯一的实数解,且反比例函数x b y +=1的图象在每个象限内y 随x 的增大而增大,那么反比例函数的关系式为( )A .x y 3-= B .x y 1= C .x y 2= D .x y 2-= 二、填空题9. 若一元二次方程x 2+2x +m =0无实数解,则m 的取值范围是_____。

人教版数学九年级上学期课时练习-《一元二次方程》全章复习与巩固(知识讲解)(人教版)

人教版数学九年级上学期课时练习-《一元二次方程》全章复习与巩固(知识讲解)(人教版)

专题21.29 《一元二次方程》全章复习与巩固(知识讲解)【学习目标】1.了解一元二次方程及有关概念;2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程;3.掌握依据实际问题建立一元二次方程的数学模型的方法.【知识要点】1. 一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2. 一元二次方程的一般式:3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.特别说明:判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.要点二、一元二次方程的解法1.基本思想 一元二次方程一元一次方程 2.基本解法直接开平方法、配方法、公式法、因式分解法.特别说明:解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解 −−−→降次法,再考虑用公式法.要点三、一元二次方程根的判别式及根与系数的关系1.一元二次方程根的判别式一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即(1)当△>0时,一元二次方程有2个不相等的实数根;(2)当△=0时,一元二次方程有2个相等的实数根;(3)当△<0时,一元二次方程没有实数根.2.一元二次方程的根与系数的关系如果一元二次方程的两个实数根是,那么,. 注意它的使用条件为a ≠0, Δ≥0.特别说明:1.一元二次方程的根的判别式正反都成立.利用其可以解决以下问题:(1)不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题.2. 一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.要点四、列一元二次方程解应用题1.列方程解实际问题的三个重要环节:一是整体地、系统地审题; )0(02≠=++a c bx ax ac b 42-)0(02≠=++a c bx ax ∆ac b 42-=∆)0(02≠=++a c bx ax 21x x ,a b x x -=+21ac x x =21二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.2.利用方程解决实际问题的关键是寻找等量关系.3.解决应用题的一般步骤:审 (审题目,分清已知量、未知量、等量关系等);设 (设未知数,有时会用未知数表示相关的量);列 (根据题目中的等量关系,列出方程);解 (解方程,注意分式方程需检验,将所求量表示清晰);验 (检验方程的解能否保证实际问题有意义);答 (写出答案,切忌答非所问).4.常见应用题型数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.特别说明:列方程解应用题就是先把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.类型一、一元二次方程的有关概念1、已知关于x 的一元二次方程()2320x m x m -+++=.若方程有一个根的平方等于9,求m 的值.【答案】1或-5【分析】根据题意,该方程的根可能是3或3-,分类讨论,把x 的值代入原方程求出m 的值.解:∵方程有一个根的平方等于9,∵这个根可能是3或3-,当3x =,则()93320m m -+++=,解得1m =,当3x =-,则()93320m m ++++=,解得5m =-,综上:m 的值是1或-5.【点拨】本题考查一元二次方程的根,解题的关键是掌握一元二次方程的根的定义. 举一反三:【变式1】如果方程2ax 10x ++=与方程2x a 0x --=有且只有一个公共根,求a 的值.【答案】-2【分析】有且只有一个公共根,建立方程便可求解了.解:∵有且只有一个公共根∴22ax 1x a x x ++=--∴ax 10x a +++=∵当a=-1时两个方程完全相同,故a≠-1,∵()11a x a -+=+∴1x =-当1x =-时,代入第一个方程可得1-a+1=0解得:2a =【点拨】本题考查根与系数的关系,关键在于有一个公共根的理解,从而建立方程,求得根.【变式2】 已知x =1是一元二次方程ax 2+bx -40=0的一个根,且a ≠b ,求2222a b a b --的值.【答案】20【分析】先根据一元二次方程的解得到a+b=40,然后把原式进行化简得到=12(a+b ),再利用整体代入的方法计算;解:把x=1代入方程得a+b -40=0,即a+b=40,所以原式=()()()10222a b a b a b a b +-=+=-() 类型二、一元二次方程的解法2、用适当的方法解下列方程:(1)x 2-x -1=0;(2)3x (x -2)=x -2;(3)x 2-+1=0;(4)(x +8)(x +1)=-12.【答案】(1)112x +=,212x -= (2)x 1=13,x 2=2 (3)x11,x 21 (4)x 1=-4,x 2=-5【分析】(1)利用公式法解答,即可求解;(2)利用因式分解法解答,即可求解;(3)利用配方法解答,即可求解;(4)利用因式分解法解答,即可求解.(1)解:a=1,b=-1,c=-1∵b2-4ac=(-1)2-4×1×(-1)=5∵x即原方程的根为x1,x2(2)解:移项,得3x(x-2)-(x-2)=0,即(3x-1)(x-2)=0,∵x1=13,x2=2.(3)解:配方,得(x)2=1,∵x=±1.∵x11,x2-1.(4)解:原方程可化为x2+9x+20=0,即(x+4)(x+5)=0,∵x1=-4,x2=-5.【点拨】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法是解题的关键.举一反三:【变式1】用指定方法解下列方程:(1)2x2-5x+1=0(公式法);(2)x2-8x+1=0(配方法).【答案】(1)x1,x2(2)x1=x2=4【分析】(1)根据公式法,可得方程的解;(2)根据配方法,可得方程的解.(1)解:∵a=2,b=-5,c=1,∵Δ=b2﹣4ac=(-5)2-4×2×1=17,∵x =∵x 1,x 2 (2)解:移项得281x x -=-,并配方,得2816116x x -+=-+,即(x -4)2=15,两边开平方,得x =∵x 1=x 2=4【点拨】本题考查了解一元二次方程,配方法解一元二次方程的关键是配方,利用公式法解方程要利用根的判别式.【变式2】用适当的方法解方程:∵2(23)250x +-= ∵2670x x ++=(用配方法解)∵2314x x +=. ∵222(3)9x x -=-.【答案】∵ 14x =-,21x =; ∵13x =-23x =- ∵113x =,21x =; ∵13x =,29x =. 【分析】∵利用因式分解法解方程;∵利用配方法得到2(3)2x +=,然后利用直接开平方法解方程;∵先把方程化为一般式,然后利用因式分解法解方程;∵先移项得到()()22(3)330x x x --+-=,然后利用因式分解法解方程.解:∵()()2352350x x +++-=,2350x ++=或2350x +-=,所以14x =-,21x =;∵2692x x ++=,2(3)2x +=,3x +=所以13=-x 23x =-∵23410x x -+=,()()3110x x --=,310x -=或10x -=, 所以113x =,21x =; ∵()()22(3)330x x x --+-=,()()32630x x x ----=,30x -=或2630x x ---=,所以13x =,29x =.【点拨】本题考查了解一元二次方程-因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.类型三、一元二次方程根的判别式的应用3、已知:关于x 的方程x 2﹣(k +2)x +2k =0(1)求证:无论k 取任何实数值,方程总有实数根;(2)若等腰三角形ABC 的一边长a =1,另两边长b ,c 恰好是这个方程的两个根,求∵ABC 的周长.【答案】(1)见分析;(2)5【分析】(1)把一元二次方程根的判别式转化成完全平方式的形式,得出∵≥0,可得方程总有实数根;(2)根据等腰三角形的性质分情况讨论求出b 、c 的长,并根据三角形三边关系检验,综合后求出∵ABC 的周长.(1)解:由题意知:Δ=(k +2)2﹣4•2k =(k ﹣2)2,∵(k ﹣2)2≥0,即∵≥0,∵无论取任何实数值,方程总有实数根;(2)解:当b=c时,Δ=(k﹣2)2=0,则k=2,方程化为x2﹣4x+4=0,解得x1=x2=2,∵∵ABC的周长=2+2+1=5;当b=a=1或c=a=1时,把x=1代入方程得1﹣(k+2)+2k=0,解得k=1,方程化为x2﹣3x+2=0,解得x1=1,x2=2,不符合三角形三边的关系,此情况舍去,∵∵ABC的周长为5.【点拨】本题考查了根的判别式∵=b2-4ac:∵当∵>0时,方程有两个不相等的实数根;∵当∵=0时,方程有两个相等的实数根;∵当∵<0时,方程没有实数根.也考查了等腰三角形的性质以及三角形三边的关系.举一反三:【变式1】已知关于x的一元二次方程x2+x=k.(1)若方程有两个不相等的实数根,求实数k的取值范围;(2)当k=6时,求方程的实数根.【答案】(1)k>﹣14;(2)x1=﹣3,x2=2.【分析】(1)根据判别式的意义得△=12-4×1(-k)=1+4k>0,然后解不等式即可;(2)利用因式分解法解一元二次方程即可.解:(1)∵方程有两个不相等的实数根,∵∵=12﹣4×1(﹣k)=1+4k>0,解得:k>﹣14;(2)把k=6代入原方程得:x2+x=6,整理得:x2+x﹣6=0,分解因式得:(x+3)(x﹣2)=0,解得:x1=﹣3,x2=2.【点拨】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2-4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根;也考查了解一元二次方程.【变式2】已知关于x的方程x2-(3k+1)x+2k2+2k=0,(1)求证:无论k取何实数值,方程总有实数根.(2)若等腰△ABC的一边长为a=6,另两边长b,c恰好是这个方程的两个根,求此三角形的周长.【答案】(1)见分析;(2)16或22【分析】(1)先计算判别式,将结果写成完全平方形式,再根据判别式的意义得出结论.(2)运用求根公式得到方程的两个根,根据等腰三角形性质,将两个根代入计算,分情况讨论求出等腰三角形的周长.解:(1)证明:∆=[-(3k+1)]2-4×1×(2k2+2k)=k2-2k+1=( k-1)2,∵无论k取什么实数值,(k-1)2≥0,∵∆≥0,所以无论k取什么实数值,方程总有实数根;(2)x2-(3k+1)x+2k2+2k=0,因式分解得:(x-2k)( x-k-1)=0,解得:x1=2k,x2=k+1,b,c恰好是这个方程的两个实数根,设b=2k,c=k+1,分三种情况讨论:第一种情况:∵若c为等腰三角形的底边,a、b为腰,则a=b=2k=6,∵k=3,c=k+1,∵c=4,检验:a+b>c,,a+c>b,b+c>a,a-b<c,a-c<b,b-c<a,∵a=b=6,c=4,可以构成等腰三角形,此时等腰三角形的周长为:6+6+4=16;第二种情况:∵若b为等腰三角形的底边,a、c为腰,则a=c=k+1=6,∵k=5,b=2k,∵b=10,检验:a+b >c ,,a+c >b ,b+c >a ,b -a <c ,a -c <b ,b -c <a ,∵a=c=6,b=10,可以构成等腰三角形,此时等腰三角形的周长为:6+6+10=22;第三种情况:∵若a 为等腰三角形的底边,b 、c 为腰,则b=c ,∵即:2k=k+1,解得k=1,∵a=6,b=2,c=2,检验:b+c <a ,∵a=6,b=2,c=2,不能构成等腰三角形;综上,等腰三角形的周长为16或22.【点拨】本题主要考查一元二次方程根的判别式,本题第二问,根据一元二次方程根的情况求参数,分类讨论是解题关键.类型四、一元二次方程的根与系数的关系4、关于x 的一元二次方程()222110x m x m +-+-=有两个不相等的实数根1x ,2x . (1)求实数m 的取值范围;(2)是否存在实数m ,使得22121216x x x x +=+成立?如果存在,求出m 的值:如果不存在,请说明理由.【答案】(1)m <1;(2)m =-1【分析】(1)由方程有两个不相等的实数根,那么∵>0,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围;(2)根据根与系数的关系即可得出x 1+x 2=-2(m -1),x 1•x 2=m 2-1,由条件可得出关于m 的方程,解之即可得出m 的值.解:(1)∵方程x2+2(m -1)x +m 2-1=0有两个不相等的实数根x 1,x 2.∵∵=4(m -1)2-4(m 2-1)=-8m +8>0,∵m<1;(2)∵原方程的两个实数根为x 1、x 2,∵x 1+x 2=-2(m -1),x 1•x 2=m 2-1.∵x 12+x 22=16+x 1x 2∵(x1+x2)2=16+3x1x2,∵4(m-1)2=16+3(m2-1),解得:m1=-1,m2=9,∵m<1,∵m2=9舍去,即m=-1.【点拨】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程有两个不相等的实数根找出根与系数的关系;(2)根据根与系数的关系得出m的值,注意不能忽视判别式应满足的条件.举一反三:【变式1】关于x的一元二次方程x2-(k-3)x-2k+2=0(1)求证:方程总有两个实数根;(2)若方程的两根分别为x1,x2,且x1+x2+x1x2=2,求k的值.【答案】(1)见分析(2)-3【分析】(1)根据方程的系数结合根的判别式可得出Δ=(k+1)2≥0,由此可证出方程总有两个实数根;(2)根据一元二次方程的根与系数的关系可以得到x1+x2=k-3,x1x2=-2k+2,再将它们代入x1+x2+x1x2=2,即可求出k的值.(1)证明:∵Δ=b2-4ac=[-(k-3)]2-4×1×(-2k+2)=k2+2k+1=(k+1)2≥0,∵方程总有两个实数根;(2)解:由根与系数关系得x1+x2=k-3,x1x2=-2k+2,∵x1+x2+x1x2=2,∵k-3+(-2k+2)=2,解得k=-3.【点拨】本题考查了一元二次方程ax2+bx+c=0根的判别式和根与系数的关系的应用,用到的知识点:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根;(4)x1+x2=-ba,x1•x2=ca.【变式2】已知x1,x2是关于x的一元二次方程x2-4mx+4m2-9=0的两实数根.(1)若这个方程有一个根为-1,求m的值;(2)若这个方程的一个根大于-1,另一个根小于-1,求m的取值范围;(3)已知Rt∵ABC的一边长为7,x1,x2恰好是此三角形的另外两边的边长,求m的值.【答案】(1)m的值为1或-2(2)-2<m<1(3)m m=49 24【分析】(1)把x=-1代入方程,列出m的一元二次方程,求出m的值;(2)首先用m表示出方程的两根,然后列出m的不等式组,求出m的取值范围;(3)首先用m表示出方程的两根,分直角∵ABC的斜边长为7或2m+3,根据勾股定理求出m的值.(1)解:∵x1,x2是一元二次方程x2-4mx+4m2-9=0的两实数根,这个方程有一个根为-1,∵将x=-1代入方程x2-4mx+4m2-9=0,得1+4m+4m2-9=0.解得m=1或m=-2.∵m的值为1或-2.(2)解:∵x2-4mx+4m2=9,∵(x-2m)2=9,即x-2m=±3.∵x1=2m+3,x2=2m-3.∵2m+3>2m-3,∵231 231 mm+-⎧⎨--⎩><解得-2<m<1.∵m的取值范围是-2<m<1.(3)解:由(2)可知方程x2-4mx+4m2-9=0的两根分别为2m+3,2m-3.若Rt∵ABC的斜边长为7,则有49=(2m+3)2+(2m-3)2.解得m=∵边长必须是正数,∵m若斜边为2m+3,则(2m+3)2=(2m-3)2+72.解得m=49 24.综上所述,m m=49 24.【点拨】本题主要考查了根的判别式与根与系数的关系的知识,解答本题的关键是熟练掌握根与系数关系以及根的判别式的知识,此题难度一般.类型五、一元二次方程的实际应用5、水果批发市场有一种高档水果,如果每千克盈利(毛利)10元,每天可售出600kg.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20kg.(1)若以每千克能盈利17元的单价出售,求每天的总毛利润为多少元;(2)现市场要保证每天总毛利润为7500元,同时又要使顾客得到实惠,求每千克应涨价多少元;(3)现需按毛利润的10%缴纳各种税费,人工费每日按销售量每千克支出1.5元,水电房租费每日300元.若每天剩下的总纯利润要达到6000元,求每千克应涨价多少元.【答案】(1)每天的总毛利润为7820元;(2)每千克应涨价5元;(3)每千克应涨价15元或203元【分析】(1)设每千克盈利x元,可售y千克,由此求得关于y与x的函数解析式,进一步代入求得答案即可;(2)利用每千克的盈利×销售的千克数=总利润,列出方程解答即可;(3)利用每天总毛利润﹣税费﹣人工费﹣水电房租费=每天总纯利润,列出方程解答即可.(1)解:设每千克盈利x元,可售y千克,设y=kx+b,则当x=10时,y=600,当x=11时,y=600﹣20=580,由题意得,10600 11580k bk b+=⎧⎨+=⎩,解得20800kb=-⎧⎨=⎩.所以销量y与盈利x元之间的关系为y=﹣20x+800,当x=17时,y=460,则每天的毛利润为17×460=7820元;(2)解:设每千克盈利x元,由(1)可得销量为(﹣20x+800)千克,由题意得x(﹣20x+800)=7500,解得:x1=25,x2=15,∵要使得顾客得到实惠,应选x=15,∵每千克应涨价15﹣10=5元;(3)解:设每千克盈利x元,由题意得x(﹣20x+800)﹣10%x(﹣20x+800)﹣1.5(﹣20x+800)﹣300=6000,解得:x1=25,x2503 =,则每千克应涨价25﹣10=15元或503-10203=元.【点拨】此题主要一元二次方程的实际运用,找出题目蕴含的数量关系,理解销售问题中的基本关系是解决问题的关键.举一反三:【变式1】如图所示,有一面积为150m2的的长方形养鸡场,鸡场边靠墙(墙长18米),另三边用竹篱笆围成.如果竹篱笆的长为35m,求鸡场长和宽各是多少?【答案】鸡场的长与宽各为15m,10m.【分析】设养鸡场的宽为xm,则长为(35﹣2x)m,列出一元二次方程计算即可;解:设养鸡场的宽为xm,则长为(35﹣2x)m,由题意得,x(35﹣2x)=150,解这个方程:x1=7.5,x2=10,当养鸡场的宽为x1=7.5 时,养鸡场的长为20m不符合题意,应舍去,当养鸡场的宽为x 2=10m 时,养鸡场的长为15m ,答:鸡场的长与宽各为15m ,10m .【点拨】本题主要考查了一元二次方程的应用,准确计算是解题的关键.【变式2】2020年春节期间,新型冠状病毒肆虐,突如其来的疫情让大多数人不能外出,网络销售成为这个时期最重要的一种销售方式.某乡镇贸易公司因此开设了一家网店,销售当地某种农产品.已知该农产品成本为每千克10元.调查发现,每天销售量()kg y 与销售单价x (元)满足如图所示的函数关系(其中1040x <≤).()1写出y 与x 之间的函数关系式.()2当销售单价x 为多少元时,每天的销售利润可达到6000元?【答案】(1)15750=-+y x ;(2)当销售单价为30元时,每天的销售利润可达到6000元.【分析】(1)设函数解析式为y kx b =+,根据题意:销售单价为10元时,销售量为600kg ,销售单价为40元时,销售量为150kg ,代入熟知求得k 、b 的值即可求得解析式;(2)每天的销售利润等于每千克的销售利润乘以销售量列式求解.解:(1)根据题意:销售单价为10元时,销售量为600kg ,销售单价为40元时,销售量为150kg ,设y 与x 之间的函数关系式为:y kx b =+,则可得:6001015040k b k b =+⎧⎨=+⎩, 解得:15750k b =-⎧⎨=⎩,∵y 与x 之间的函数关系式为:15750=-+y x ;(2)根据题意可知每天的销售利润为:0()1015750600)(x x --+=2609000,x x ∴-+=解得:1230x x ==;答:当销售单价为30元时,每天的销售利润可达到6000元.【点拨】本题主要考查一次函数的实际应用,以及二次函数的实际应用,结合属性结合的思想求出一次函数解析式,以及明确每天的销售利润等于每千克的销售利润乘以销售量是解题的关键.类型六、一元二次方程的几何应用6、已知:如图所示,在ABC 中,90B ∠=︒,5AB cm =,7BC cm =,点P 从点A 开始沿AB 边向点B 以1/cm s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2/cm s 的速度移动.当P 、Q 两点中有一点到达终点,则同时停止运动.(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PBQ △的面积等于24cm(2)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于? (3)PQB △的面积能否等于27cm 请说明理由.【答案】(1)1秒;(2)3秒;(3)不能,理由见分析【分析】(1)设P 、Q 分别从A 、B 两点出发,x 秒后,AP=xcm ,PB=(5-x )cm ,BQ=2xcm ,则∵PBQ 的面积等于12×2x (5-x ),令该式等于4,列出方程求出符合题意的解;(2)利用勾股定理列出方程求解即可;(3)看∵PBQ 的面积能否等于7cm 2,只需令12×2t (5-t )=7,化简该方程后,判断该方程的24b ac -与0的关系,大于或等于0则可以,否则不可以.解:(1)设经过x 秒以后,PBQ △面积为24(0 3.5)cm x <≤,此时=AP xcm ,()5BP x cm =-,2=BQ xcm , 由142BP BQ ⋅=,得()15242x x -⨯=, 整理得:2540x x -+=,解得:1x =或4(x =舍),答:1秒后PBQ △的面积等于24cm ;(2)设经过t 秒后,PQ 的长度等于由222PQ BP BQ =+,即2240(5)(2)t t =-+,解得:t=3或-1(舍),∵3秒后,PQ 的长度为;(3)假设经过t 秒后,PBQ △的面积等于27cm , 即72BQ BP ⨯=,()2572t t -⨯=, 整理得:2570t t -+=,由于24252830b ac -=-=-<,则原方程没有实数根,∵PQB △的面积不能等于27cm .【点拨】本题主要考查一元二次方程的应用,关键在于理解清楚题意,找出等量关系列出方程求解,判断某个三角形的面积是否等于一个值,只需根据题意列出方程,判断该方程是否有解,若有解则存在,否则不存在.举一反三:【变式1】 已知:如图A ,B ,C ,D 为矩形的四个顶点,AB=16cm ,AD=6cm ,动点P ,Q 分别从A ,C 同时出发,点P 以3cm/S 的速度向点B 移动,一直到达点B 为止,点Q 以2cm/S 的速度向点D 移动(1)P ,Q 两点从出发点出发几秒时,四边形PBCQ 面积为33cm²(2)P ,Q 两点从出发点出发几秒时,P ,Q 间的距离是为10cm .【答案】(1)5秒;(2)P,Q两点出发85秒或245秒时,点P和点Q的距离是10cm.【分析】当运动时间为t秒时,PB=(16-3t)cm,CQ=2tcm.(1)利用梯形的面积公式结合四边形PBCQ的面积为33cm2,即可得出关于t的一元一次方程,解之即可得出结论;(2)过点Q作QM∵AB于点M,则PM=|16-5t|cm,QM=6cm,利用勾股定理结合PQ=10cm,即可得出关于t的一元二次方程,解之取其较小值即可得出结论.解:当运动时间为t秒时,PB=(16-3t)cm,CQ=2tcm.(1)依题意,得:12×(16-3t+2t)×6=33,解得:t=5.答:P,Q两点从出发开始到5秒时,四边形PBCQ的面积为33cm2.(2)过点Q作QM∵AB于点M,如图所示.∵PM=PB-CQ=|16-5t|cm,QM=6cm,∵PQ2=PM2+QM2,即102=(16-5t)2+62,解得:t1=85,t2=245.答:P,Q两点出发85秒或245秒时,点P和点Q的距离是10cm.【点拨】本题考查了一元一次方程的应用以及一元二次方程的应用,解题的关键是:(1)根据梯形的面积公式,找出关于t的一元一次方程;(2)利用勾股定理,找出关于t的一元二次方程.【变式2】在矩形ABCD中,AB=6 cm,BC=12 cm,点P从点A沿边AB向点B以1 cm/s 的速度移动;同时点Q从点B沿边BC向点C以2 cm/s的速度移动,设运动时间为t s.问:(1)几秒后∵PBQ的面积等于8 cm2?(2)是否存在t,使∵PDQ的面积等于26 cm2?【答案】(1)2秒或4秒后△PBQ的面积等于8 cm2;(2)不存在t,使∵PDQ的面积等于26 cm2.【分析】(1)设x秒后∵PBQ的面积等于8cm2,用含x的代数式分别表示出PB,QB的长,再利用∵PBQ的面积等于8列式求值即可;(2)假设存在t使得∵PDQ面积为26cm2,根据∵PDQ的面积等于26cm2列式计算即可.解:(1)设x秒后∵PBQ的面积等于8 cm2.∵AP=x,QB=2x.∵PB=6-x.∵(6-x)·2x=8,解得x1=2,x2=4,故2秒或4秒后∵PBQ的面积等于8 cm2.(2)假设存在t使得∵PDQ的面积为26 cm2,则72-6t-t(6-t)-3(12-2t)=26,整理得,t2-6t+10=0,∵Δ=36-4×1×10=-4<0,∵原方程无解,∵不存在t,使∵PDQ的面积等于26 cm2.【点拨】本题考查了一元二次方程的应用,表示出△PBQ的的两条直角边长是解决本题的突破点;用到的知识点为:直角三角形的面积=两直角边积的一半.本题也考查了矩形的性质和割补法求图形的面积.类型七、一元二次方程的拓展应用6、关于x 的一元二次方程260x x k -+=的一个根是2,另一个根2x .(1)若直线AB 经过点()2,0A ,()20,B x ,求直线AB 的解析式;(2)在平面直角坐标系中画出直线AB 的图象,P 是x 轴上一动点,是否存在点P ,使ABP ∆是直角三角形,若存在,直接写出点P 坐标,若不存在,说明理由.【答案】(1)24y x =-+;(2)存在,点P 的坐标为()8,0-或()0,0.【分析】(1)将x=2代入方程求出k=8,根据根与系数的关系求出2x =4,设直线AB 的解析式为y=kx+b (0k ≠),利用待定系数法求出解析式;(2)分情况求解:第一种:AB 是斜边,∵APB =90°,得到点P 与原点O 重合;第二种:设AB 是直角边,点B 为直角顶点,即∵ABP =90°,设P 的坐标为(x ,0),根据222AP BP AB =+, 22222424(2)x x +++=-, 解得x=-8,求出点P 的坐标;第三种:设AB 是直角边,点A 为直角顶点,即∵BAP =90°,由点P 是x 轴上的动点,得到∵BAP >90°,情况不存在.解:(1)当x=2时,方程为22120k -+=,解得k=8,∵2+2x =6,∵一元二次方程为2680x x -+=的另一个根2x =4.设直线AB 的解析式为y=kx+b (0k ≠),∵直线AB 经过点A (2,0),B (0,4),∵204k b b +=⎧⎨=⎩, 解得k=-2,b=4,直线AB 的解析式:y=-2x+4;(2)第一种:AB 是斜边,∵APB =90°,∵∵AOB =90°,∵当点P 与原点O 重合时,∵APB =90°,∵当点P 的坐标为(0,0),∵ABP 是直角三角形.第二种:设AB 是直角边,点B 为直角顶点,即∵ABP =90°,∵线段AB在第一象限,∵这时点P在x轴负半轴.设P的坐标为(x,0),∵A(2,0),B(0,4),∵OA=2,OB=4,OP=-x,∵222224=+=+,BP OP OB x22222=+=+,AB OA OB24222=+=-.AP OA OP x()(2)∵222=+,AP BP AB∵22222x x+++=-,424(2)解得x=-8,∵当点P的坐标为(―8,0),∵ABP是直角三角形.第三种:设AB是直角边,点A为直角顶点,即∵BAP=90°.∵点A在x轴上,点P是x轴上的动点,∵∵BAP>90°,∵∵BAP=90°的情况不存在.∵当点P的坐标为(―8,0)或(0,0)时,∵ABP是直角三角形.【点拨】此题考查待定系数法求函数解析式,一元二次方程的解,一元二次方程根与系数的关系式,直角三角形的性质,勾股定理,分类讨论问题的解题方法是解题的关键.举一反三:【变式1】阅读下面材料:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,它通常用字母d表示,我们可以用公式(1)2n nS na d-=+⨯来计算等差数列的和.(公式中的n表示数的个数,a表示第一个数的值,)例如:3+5+7+9+11+13+15+17+19+21=10×3+10(101)2-×2=120.用上面的知识解决下列问题.(1)计算:2+8+14+20+26+32+38+44+50+56+62+68+74+80+86+92+98+104+110+116(2)某县决定对坡荒地进行退耕还林.从2009年起在坡荒地上植树造林,以后每年植树后坡荒地的实际面积按一定规律减少,下表为2009、2010、2011、2012四年的坡荒地面积的统计数据.问到哪一年,可以将全县所有坡荒地全部种上树木.【答案】(1)1180;(2)到2017年,可以将全县所有的坡荒地全部种上树木.【分析】(1)根据题意,由公式(1)2n nS na d-=+⨯来计算等差数列的和,即可得到答案;(2)根据题意,设再过x年可以将全县所有的坡荒地全部种上树木.列出方程,解方程即可得到答案.解:(1)由题意,得6d=,20n=,2a=,∵(1)2n nS na d-=+⨯,∵20(201)22062S-=⨯+⨯401140=1180=+;(2)解:设再过x年可以将全县所有的坡荒地全部种上树木.根据题意,得1200x+(1)2x x-×400=25200,整理得:(x﹣9)(x+14)=0,∵x=9或x=﹣14(负值舍去).∵2009+9-1=2017;答:到2017年,可以将全县所有的坡荒地全部种上树木.【点拨】本题考查了一元二次方程的应用,解一元二次方程,以及计算等差数列的和公式,解题的关键是熟练掌握题意,正确找出等量关系,列出方程进行解题.【变式2】阅读下列材料,回答问题.关于x 的方程121x x +=的解是1x =;222x x +=的解是2x =;323x x +=的解是3x =;222x x --=(即222x x -+=-)的解是2x =-. (1)请观察上述方程与其解的特征,x 的方程2(0)m x m x m+=≠与上述方程有什么关系?猜想它的解是什么,并利用“方程的解”的概念进行验证.(2)由上述的观察、比较、猜想、验证,可得到以下结论:如果方程的左边是一个未知数倒数的a 倍与这个未知数的1a 的和等于2,那么这个方程的解是x=a.请用这个结论解关于x 的方程:2212(1)x a a x a+=+--. 【答案】(1)普遍形式,x m =.(2)x =【分析】 ∵观察一系列方程的解得出一般性规律,即可得到所求方程的解;∵方程变形后,利用得出的规律即可求出解.解:(1)由已知中,121x x +=的解是1x =, 222x x +=的解是2x =, 33x x +的解是3x =, 222x x --=的解是2x =-. ⋯ 归纳可得方程2m x x m+=的解是x m =, 将x m =代入得: 左边112m m m m=+=+=, 故m 是方程2m x x m +=的解, (2)2212x a x a +=+-可化为:2212x a x a-+=-, 由(1)中结论可得21x a -=,即21x a =+,∴=x【点拨】此题考查了分式方程的解,属于规律型试题,弄清题中的规律是解本题的关键.归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).。

一元二次方程的根与系数的关系-九年级数学人教版(上)(原卷版+解析版)

一元二次方程的根与系数的关系-九年级数学人教版(上)(原卷版+解析版)

第二十一章一元二次方程*21.2.4一元二次方程的根与系数的关系一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是A.x1≠x2B.x1+x2>0C.x1•x2>0 D.x1<0,x2<02.已知关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1,x2.若+=4m,则m的值是A.2 B.﹣1C.2或﹣1 D.不存在3.一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为A.﹣2 B.1C.2 D.04.已知关于x的一元二次方程kx2−2x+1=0有实数根,则k的取值范围是A.k<1 B.k≤1C.k≤1且k≠0 D.k<1且k≠05.已知α,β是关于x的一元二次方程x2+ (2m+3)x+m2=0的两个不相等的实数根,且满足= −1,则m 的值是A.3或−1 B.3C.−1 D.−3 或16.关于x的方程的两根互为相反数,则k的值是A.2 B.±2C.−2 D.−3二、填空题:请将答案填在题中横线上.7.一元二次方程的两根为,则的值为__________.8.设、是一元二次方程的两个根,且,则__________,__________.9.方程的两个根为、,则的值等于__________.10.若是一元二次方程x²−6x−2=0的两个实数根,则=__________.11.已知方程x2−mx−3m=0的两根是x1、x2,若x1+x2=1,则x1x2=__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.12.已知关于的一元二次方程.(1)试证明:无论取何值此方程总有两个实数根;(2)若原方程的两根,满足,求的值.13.已知关于x的一元二次方程x2+(m−1)x−2m2+m=0(m为实数)有两个实数根x1,x2.(1)当m为何值时,方程有两个不相等的实数根;(2)若x12+x22=2,求m的值.第二十一章一元二次方程*21.2.4一元二次方程的根与系数的关系一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是A.x1≠x2B.x1+x2>0C.x1•x2>0 D.x1<0,x2<0【答案】AC、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1•x2=﹣2,结论C错误;D、∵x1•x2=﹣2,∴x1,x2异号,结论D错误.故选A.【名师点睛】本题考查了根的判别式以及根与系数的关系,牢记“当 >0时,方程有两个不相等的实数根”是解题的关键.2.已知关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1,x2.若+=4m,则m的值是A.2 B.﹣1C.2或﹣1 D.不存在【答案】A∴x1+x2=,x1x2=,∵=4m,∴=4m,∴m=2或﹣1,∵m>﹣1,∴m=2,故选A.【名师点睛】本题考查了根与系数的关系、一元二次方程的定义以及根的判别式,解题的关键是:(1)根据二次项系数非零及根的判别式 >0,找出关于m的不等式组;(2)牢记两根之和等于﹣、两根之积等于.3.一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为A.﹣2 B.1C.2 D.0【答案】D【解析】∵一元二次方程x2﹣2x=0的两根分别为x1和x2,∴x1x2=0.故选D.【名师点睛】本题考查了根与系数的关系,牢记两根之积等于是解题的关键.4.已知关于x 的一元二次方程kx 2−2x +1=0有实数根,则k 的取值范围是 A .k <1B .k ≤1C .k ≤1且k ≠0D .k <1且k ≠0【答案】C【名师点睛】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.5.已知α,β是关于x 的一元二次方程x 2+ (2m +3)x +m 2=0的两个不相等的实数根,且满足= −1,则m的值是A .3或 −1B .3C .−1D .−3 或 1【答案】B【解析】∵α、β是关于x 的一元二次方程x 2+(2m +3)x +m 2=0的两个不相等的实数根; ∴α+β=−2m −3,α⋅β=m 2, ∴==223m m --=−1, ∴m 2−2m −3=0, 解得m =3或m =−1.∵一元二次方程x 2+(2m +3)x +m 2=0有两个不相等的实数根, ∴∆=(2m +3)2−4×1×m 2=12m +9>0, ∴m >−,∴m =−1不合题意舍去, ∴m =3.【名师点睛】此题考查了一元二次方程根与系数的关系、根的判别式等知识点,根据根与系数的关系结合=1,找出关于m的方程是解题的关键.6.关于x的方程的两根互为相反数,则k的值是A.2 B.±2C.−2 D.−3【答案】C【名师点睛】本题主要考查一元二次方程根与系数的关系,熟记公式是解决本题的关键.二、填空题:请将答案填在题中横线上.7.一元二次方程的两根为,则的值为__________.【答案】2【解析】由题意得:+2=0,=2,∴=−2,=4,∴=−2+4=2,故答案为:2.【名师点睛】本题考查了一元二次方程根的意义,一元二次方程根与系数的关系等,熟练掌握相关内容是解题的关键.8.设、是一元二次方程的两个根,且,则__________,__________.【答案】,【名师点睛】本题考查了根与系数的关系:若、是一元二次方程ax2+bx+c=0(a≠0)的两根时,=−,=.9.方程的两个根为、,则的值等于__________.【答案】3【解析】根据题意得,,所以===3.故答案为3.【名师点睛】本题考查了根与系数的关系:若、是一元二次方程(a≠0)的两根时,,.10.若是一元二次方程x²−6x−2=0的两个实数根,则=__________.【答案】6【解析】∵x1+x2=﹣,∴x1+x2=6.故答案为:6.【名师点睛】本题考查了一元二次方程的根与系数的关系,一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则x1+x2=﹣,x1•x2=.11.已知方程x2−mx−3m=0的两根是x1、x2,若x1+x2=1,则x1x2=__________.【答案】−3【解析】∵,∴.【名师点睛】本题主要考查的是一元二次方程的根与系数的关系,属于基础题型.理解根与系数的关系的公式是解决这个问题的关键.三、解答题:解答应写出文字说明、证明过程或演算步骤.12.已知关于的一元二次方程.(1)试证明:无论取何值此方程总有两个实数根;(2)若原方程的两根,满足,求的值.【答案】(1)证明见解析;(2)−2.【名师点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当 ≥0时,方程有两个实数根”;(2)根据根与系数的关系结合x12+x22−x1x2=3p2+1,求出p值.13.已知关于x的一元二次方程x2+(m−1)x−2m2+m=0(m为实数)有两个实数根x1,x2.(1)当m为何值时,方程有两个不相等的实数根;(2)若x12+x22=2,求m的值.【答案】(1);(2),.【名师点睛】本题是常见的根的判别式、根与系数关系的结合试题.把求未知系数m的问题转化为解方程问题是解决本题的关键.。

2018年 初三数学中考专题复习 一元二次方程-一元二次方程的根的判别式 综合练习题 含答案

2018年 初三数学中考专题复习 一元二次方程-一元二次方程的根的判别式 综合练习题 含答案

2019年 初三数学中考专题复习 一元二次方程-一元二次方程的根的判别式综合练习题1.对于任意实数k ,关于x 的方程x 2-2(k +1)x -k 2+2k -1=0的根的情况为( )A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法确定2.一元二次方程x 2-2x +3=0根的情况是( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根3. 若关于x 的一元二次方程x 2+(2k -1)x +k 2-1=0有实数根,则k 的取值范围是( )A .k ≥54B .k >54C .k <54D .k ≤544.若关于x 的方程x 2+2x +a =0不存在实数根,则a 的取值范围是( )A .a <1B .a >1C .a ≤1D .a ≥15. 关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根,则k 的取值范围是( )A .k >-1B .k≥-1C .k≠0D .k >-1且k≠06.若关于x 的一元二次方程kx 2-4x +3=0有实数根,则k 的非负整数值是( )A .1B .0,1C .1,2D .1,2,37.若关于x 的一元二次方程(a -1)x 2-2x +2=0有实数根,则整数a 的最大值为( )A .-1B .0C .1D .28. 关于x 的方程mx 2-5-mx -1=0有两个实数解,则m 的取值范围是( )A .m ≥-53B .0<m ≤5C .-53≤m ≤5且m ≠0D .0<m ≤5且m ≠09. 关于x 的方程mx 2+x -m +1=0,有以下三个结论:①当m =0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m 取何值,方程都有一个负数解.其中正确的是_______.(填序号)10. 已知关于x 的一元二次方程kx 2-2k +1x +1=0有两个不相等的实数根,则k 的取值范围为___________________________.11. 若x =1是一元二次方程x 2+2x +m =0的一个根,则m 的值为____.12. 已知一个一元二次方程的二次项的系数为1,它的两个根是33和-23,求这个一元二次方程.13. 关于x 的一元二次方程x 2-3x -k =0有两个不相等的实数根.(1)求k 的取值范围;(2)若k 为负整数,求出方程的根.14. 已知关于x 的方程(k -1)x 2-(k -1)x +14=0有两个相等的实数根,求k 的值. 参考答案:1---8 CADBD ABC9. ①③10. -12≤k <12且k ≠011. -312. 解:设这个一元一次方程为x 2+bx +c =0,将x 1=33和x 2=-23分别代入,解方程组得b =-3,c =-18,所以这个一元二次方程是x 2-3x -18=013. 解:(1) ∵方程x 2-3x -k =0有两个不相等的实数根,∴(-3)2-4(-k)>0,解得k >-94(2) 若k 是负整数,则k 只能为-1或-2.当k =-1时,原方程为x 2-3x +1=0,解得x 1=3+52,x 2=3-52;如果k =-2,原方程x 2-3x +2=0,解得x 1=1,x 2=214. 解:△=0,∴[-(k -1)]2-4(k -1)14=0,整理得k 2-3k +2=0,即(k -1)(k -2)=0,解得k =1(不符合一元二次方程定义,舍去)或k =2,∴k =2。

初中数学一元二次方程根与系数关系专项复习题(附答案详解)

初中数学一元二次方程根与系数关系专项复习题(附答案详解)

初中数学一元二次方程根与系数关系专项复习题(附答案详解)1.已知关于x 的一元二次方程2210ax x --=有两个不相等的实数根,则二次项系数a 的取值范围是( ) A .1a >-B .2a >-C .1a >且0a ≠D .1a >-且0a ≠2.若关于x 的一元二次方程x 2-2x+k=0有两个不相等的实数根,那么k 的取值范围是( )A .k <1B .k≠0C .k >1D .k <03.一元二次方程ax 2+x ﹣2=0有两个不相等实数根,则a 的取值范围是( ) A .a 18<B .a= 18-C .a 18>-且a≠0 D .a 18> 且a≠0 4.下列方程中,两根是﹣2和﹣3的方程是( ) A .x 2﹣5x+6=0 B .x 2﹣5x ﹣6=0 C .x 2+5x ﹣6=0 D .x 2+5x+6=05.关于x 的一元二次方程260x mx +-=的一个根是3,则另一个根是( ) A .-1B .1C .-2D .26.已知方程x 2+2x-1=0,则此方程( )A .无实数根B .两根之和为2C .两根之积为-1D .有一个根为21+7.已知方程x 2﹣4x +k =0有一个根是﹣1,则该方程的另一根是( ) A .1B .0C .﹣5D .58.已知关于x 的一元二次方程x 2-6x +k +1=0的两个实数根是x 1,x 2,且x +x =24,则k 的值是(). A .8B .-7C .6D .59.关于x 的方程的022=+-a ax x 两个根的平方和5是,则a 的值是( )A .-1或5B . 1C .5D .-110.已知一元二次方程2310x x -+=的两根是1x 、2x ,则12x x +的值是( ) A .3B .1C .3-D .1-11.若方程25320x x --=的两个实数根为,m n ,则11m n+的值为__________. 12.若方程x 2+(m+1)x ﹣2n=0的两根分别为2和﹣5,则m=_____,n=_____. 13.已知a ,b 是一元二次方程220180x x --=的两个实数根,则22________a a b--=;14.方程2x2+4x﹣1=0的两根为x1,x2,则x1+x2=____.15.若关于x的方程的两根互为倒数,则= .16.如果一元二次方程2x2﹣5x+m=0有两个实数根,那么实数m的取值范围为_____.17.写出一个二次项系数为2,一个根比1大,另一个根比1小的一元二次方程__________.18.若-2是一元二次方程x2―2x―a=0的一个根,则a的值为____.19.若关于的方程有两个相等的实数根,则k的值为▲ . 20.如果方程x2﹣2x+m=0的两实根为a,b,且a,b,1可以作为一个三角形的三边之长,则实数m的取值范围是___________________.21.已知关于的方程.(1)若该方程有两个不相等的实数根,求实数的取值范围;(2)若该方程的一个根为1,求的值及该方程的另一根.22.已知关于x的一元二次方程x2+(2m+3)x+m2=0有两个不相等的实数根,(1)求m的取值范围(2)若α,β是方程的两个实数根,且满足11αβ+=﹣1,求m的值.23.阅读材料:材料1 若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2则x1+x2=﹣ba,x1x2=ca.材料2 已知实数m,n满足m2﹣m﹣1=0,n2﹣n﹣1=0,且m≠n,求n mm n+的值.解:由题知m,n是方程x2﹣x﹣1=0的两个不相等的实数根,根据材料1得m+n=1,mn =﹣1,所以222()2121n m m n m n mn m n mn mn ++-++===-=﹣3. 根据上述材料解决以下问题:(1)材料理解:一元二次方程5x 2+10x ﹣1=0的两个根为x 1,x 2,则x 1+x 2= ,x 1x 2= .(2)类比探究:已知实数m ,n 满足7m 2﹣7m ﹣1=0,7n 2﹣7n ﹣1=0,且m ≠n ,求m 2n +mn 2的值:(3)思维拓展:已知实数s 、t 分别满足19s 2+99s +1=0,t 2+99t +19=0,且st ≠1.求41st s t++的值.24.已知关于x 的一元二次方程(k ﹣1)x 2+(2k+1)x+k =0. (1)依据k 的取值讨论方程解的情况.(2)若方程有一根为x =﹣2,求k 的值及方程的另一根.25.已知关于x 的方程230x x a ++=①的两个实数根的倒数和等于3,且关于x 的方程2(1)320k x x a -+-=②有实数根,又k 为正整数,求代数式2216k k k -+-的值.26.已知关于的一元二次方程x 2-4x +k +1=0(1)若=-1是方程的一个根,求k 值和方程的另一根;(2)设x 1,x 2是关于x 的方程x 2-4x +k +1=0的两个实数根,是否存在实数k ,使得x 1x 2>x 1+x 2成立?请说明理由.27.已知关于x 的一元二次方程2104x x m -+=有两个实数根. ()1若m 为正整数,求此方程的根.()2设此方程的两个实数根为a 、b ,若2221y ab b b =-++,求y 的取值范围.28.已知关于x 的一元二次方程x 2+(4m+1)x+2m-1=O . (1)求证:不论m 为任何实数,方程总有两个不相等的实数根; (2)若方程两根为x 1、x 2,且满足12111+?=2x x ,求m 的值.29.关于的一元二次方程(1)求证:方程有两个不相等的实数根; (2)为何整数时,此方程的两个根都为正整数.30.已知关于x的一元二次方程01)1(22=-+++k x k kx 有两个实数根,求k 的取值范围.参考答案1.D【解析】【分析】由关于x的一元二次方程ax2-2x-1=0有两个不相等的实数根,即可得判别式△>0且二次项系数a≠0,继而可求得a的范围.【详解】∵一元二次方程ax2-2x-1=0有两个不相等的实数根,∴△=(-2)2-4×a×(-1)>0,且a≠0,解得:a>-1且a≠0,故选D.【点睛】此题考查了一元二次方程根的判别式的知识.此题比较简单,注意掌握一元二次方程有两个不相等的实数根,即可得△>0.2.A【解析】∵关于x的一元二次方程x2−2x+k=0有两个不相等的实数根,∴△=(−2)2−4k>0,解得:k<1.故选:A.3.C【解析】【分析】根据已知得出b2-4ac=12-4a•(-2)>0,求出即可.【详解】∵一元二次方程ax2+x-2=0有两个不相等实数根,∴b2-4ac=12-4a•(-2)>0,解得:a>-18且a≠0,故选:C.【点睛】本题考查了根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)的根的判别式是b 2-4ac ,当b 2-4ac >0时,方程有两个不相等的实数根,当b 2-4ac=0时,方程有两个相等的实数根,当b 2-4ac <0时,方程没有实数根. 4.D . 【解析】试题分析:设两根是﹣2和﹣3的方程为:x 2+ax+b=0,根据根与系数的关系,可得(﹣2)+(﹣3)=﹣a=5,(﹣2)×(﹣3)=b=6,故方程为:x 2+5x+6=0.故选D . 考点:根与系数的关系. 5.C 【解析】 【分析】设该一元二次方程的另一根为t ,则根据根与系数的关系得到36t =-,由此易求t 的值. 【详解】解:设关于x 的一元二次方程260x mx +-=的另一个根为t ,则36t =-, 解得2t =-. 故选:C . 【点睛】本题考查了根与系数的关系.若二次项系数为1,常用以下关系:1x ,2x 是方程20x px q ++=的两根时,12x x p +=-,12x x q =,反过来可得12()p x x =-+,12q x x =,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数. 6.C . 【解析】试题解析:A 、△=22-4×1×(-1)=8>0,则该方程有两个不相等的实数根.故本选项错误; B 、设该方程的两根分别是α、β,则α+β=-2.即两根之和为2,故本选项错误; C 、设该方程的两根分别是α、β,则αβ=-1.即两根之积为-1,故本选项正确;D 、根据求根公式1=-±1-+1-.故本选项错误; 故选C .考点:1.根与系数的关系;2.根的判别式.【解析】 【分析】利用根与系数的关系,即可求出. 【详解】设该方程的另一根为m , 利用根与系数的关系:12b x x a+=- 得:m ﹣1=4, 解得:m =5. 故选:D . 【点睛】本题考查一元二次方程的解的定义以及根数系数的关系,熟练掌握相关知识点是解题关键. 8.D 【解析】 【分析】根据一元二次方程根与系数的关系,即韦达定理进行作答. 【详解】 由韦达定理,即,x 1·x 2=.而x +x =24=()2-2 x 1·x 2=36-2(k +1),解出k =5.所以,答案选D. 【点睛】本题考查了一元二次方程根与系数的关系,即韦达定理的运用,熟练掌握一元二次方程根与系数的关系,即韦达定理是本题解题关键. 9.D 【解析】试题分析:设,αβ是方程022=+-a ax x 的两个根,则,2a a αβαβ+==,又225αβ+=,所以22()245a a αβαβ+-=-=,解得a =-1或5,当a=-1时,9=V >0,当a=5时,16=-V <0,所以a=5不合题意舍去,所以选:D . 考点:根与系数的关系.【解析】 【分析】根据根与系数的关系得到x 1+x 2=3,即可得出答案. 【详解】解:∵x 1、x 2是一元二次方程x 2−3x+1=0的两个根, ∴x 1+x 2=3, 故选A.. 【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a. 11.32-【解析】 【分析】因为方程25320x x --=的两个实数根为m 、n ,所以32,55m n mn +==-,而11m n +=m nnm +,将所得的式子代入计算即可. 【详解】解:∵方程25320x x --=的两个实数根为m 、n ,∴32,55m n mn +==-, ∴11m n +=m n n m +=3525-=32-.故答案为32-.【点睛】本题考查的是一元二次方程的根与系数的关系,对于此类题目,一般的思路和方法是先写出两根之和与两根之积,再将所求的式子变形成两根和与积的形式,整体代入求解. 12. 2 5【解析】∵方程x 2+(m+1)x ﹣2n=0的两根分别为2和﹣5,∴由一元二次方程“根与系数的关系”可得:2+(﹣5)=﹣(m+1),2×(﹣5)=﹣2n,解得:m=2,n=5.故答案为2,5.13.2017【解析】【分析】先根据一元二次方程解的定义得到a2=a+2018,所以a2-2a-b化简为-(a+b)+2018,再利用根与系数的关系得到a+b=1,然后利用整体代入的方法计算.【详解】∵a为方程x2-x-2018=0的根,∴a2-a-2018=0,即a2=a+2018,∴a2-2a-b=a+2018-2a-b=-(a+b)+2018,∵a、b是一元二次方程x2-x-2018=0的两个实数根,∴a+b=1,所以原式=-1+2018=2017.故答案是:2017.【点睛】考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-ba,x1x2=ca.也考查了一元二次方程解的定义.14.﹣2 【解析】试题解析:根据一元二次方程根与系数的关系可得:x1+x2=4-=-2 2.15.-1.【解析】试题分析:设已知方程的两根分别为m,n,由题意得:m与n互为倒数,即mn=1,由方程有解,得到,解得:,又mn=,∴=1,解得:=1(舍去)或=-1,则=-1.故应填为:-1.考点:根与系数的关系.点评:此题要求熟练掌握一元二次方程ax 2+bx+c=0(a ≠0),当b 2-4ac≥0时,方程有解,然后利用韦达定理得出,.16.m≤258【解析】 【分析】此题根据方程有实数根,可得25420,m -⨯≥解这个不等式即可得出答案. 【详解】解:关于x 的一元二次方程2250x x m -+=有两个实数根,由一元二次方程根的判别式,得25420,m -⨯≥解得:25.8m ≤ 故答案为:25.8m ≤ 【点睛】一元二次方程根的判别式:△>0时,一元二次方程有两个不等实根; △=0时,一元二次方程有两个相等实根; △<0时,一元二次方程没有实根; △≥0时,方程有实数根.17.2240x x -=(答案不唯一) 【解析】 【分析】根据题意可设一根为2,另一根为0,再计算出2+0=2,2×0=0,然后根据根与系数的关系写出新方程,再把二次项系数化为2即可. 【详解】解:设一根为2,另一根为0, ∵2+0=2,2×0=0,∴以2和0为根的一元二次方程可为x 2-2x=0, 当二次项系数为2时,方程变形为2x 2-4x=0. 故答案为2240x x -=. 【点睛】本题考查了根与系数的关系:若x 1,x 2是方程ax 2+bx+c=0的两根时,12bx x a +=-,12c x x a=. 18.8【解析】解析:把x=-2代入方程得:4+4-a=0, 解得:a=8.考点:一元二次方程的解. 19.8 【解析】若一元二次方程有两个相等的实数根,则根的判别式△=b 2-4ac=0,建立关于k 的等式,求出k 的值.解:由题意知方程有两相等的实根, ∴△=b 2-4ac=36-4k-4=0, 解得k=8. 20.34<m≤1. 【解析】 【分析】若一元二次方程有两根,则根的判别式△=b 2-4ac≥0,建立关于m 的不等式,求出m 的取值范围.再根据根与系数的关系和三角形中三边的关系来再确定m 的取值范围,最后综合所有情况得出结论. 【详解】∵方程x 2-2x+m=0的两实根为a ,b , ∴有△=4-4m≥0, 解得:m≤1,由根与系数的关系知:a+b=2,a•b=m , 若a ,b ,1可以作为一个三角形的三边之长, 则必有a+b >1与|a-b|<1同时成立,故只需(a-b )2<1即可, 化简得:(a+b )2-4ab <1,把a+b=2,a•b=m 代入得:4-4m <1, 解得:m >34, ∴34<m≤1, 故本题答案为:34<m≤1. 【点睛】主要考查一元二次方程的根的判别式与根的关系和一元二次方程根与系数的关系、三角形中三边的关系. 21.(1);(2)的值是,该方程的另一根为.【解析】试题分析:(1)利用根的判别式列出不等式求解即可; (2)利用根与系数的关系列出有关的方程(组)求解即可.试题解析:(1)∵b 2﹣4ac=22﹣4×1×(a ﹣2)=12﹣4a >0, 解得:a <3, ∴a 的取值范围是a <3;(2)设方程的另一根为x 1,由根与系数的关系得:111x 21x 2a +=-⎧⎨⋅=-⎩,解得:11x 3a =-⎧⎨=-⎩, 则a 的值是﹣1,该方程的另一根为﹣3.22.(1)m >﹣34;(2)m =3. 【解析】 【分析】(1)根据方程有两个相等的实数根可知△>0,求出m 的取值范围即可; (2)根据根与系数的关系得出α+β与αβ的值,代入代数式进行计算即可. 【详解】(1)∵关于x 的一元二次方程x 2+(2m +3)x +m 2=0有两个不相等的实数根,∴△>0,即△=(2m +3)2﹣4m 2>0,解得m >﹣34; (2)∵α,β是方程的两个实数根, ∴α+β=﹣(2m +3),αβ=m 2. ∵211(23)1m mαβαβαβ+-++===-, ∴﹣(2m +3)=﹣m 2,解得m 1=3,m 2=﹣1(舍弃). ∴m =3. 【点睛】考查的是根与系数的关系,熟知x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=﹣b a ,x 1x 2=ca是解答此题的关键. 23.(1)-2,-15;(2)﹣17;(3)﹣15.【解析】 【分析】(1)直接利用根与系数的关系求解;(2)把m 、n 可看作方程7x 2﹣7x ﹣1=0,利用根与系数的关系得到m +n =1,mn =﹣17,再利用因式分解的方法得到m 2n +mn 2=mn (m +n ),然后利用整体的方法计算;(3)先把t 2+99t +19=0变形为19•(1t )2+99•1t +1=0,则把实数s 和1t可看作方程19x 2+99x +1=0的两根,利用根与系数的关系得到s +1t =﹣9919,s •1t =119,然后41st s t ++变形为s +4•s t +1t,再利用整体代入的方法计算. 【详解】解:(1)x 1+x 2=﹣105=﹣2,x 1x 2=﹣15;故答案为﹣2;﹣15;(2)∵7m 2﹣7m ﹣1=0,7n 2﹣7n ﹣1=0,且m ≠n , ∴m 、n 可看作方程7x 2﹣7x ﹣1=0, ∴m +n =1,mn =﹣17,∴m2n+mn2=mn(m+n)=﹣17×1=﹣17;(3)把t2+99t+19=0变形为19•(1t)2+99•1t+1=0,实数s和1t可看作方程19x2+99x+1=0的两根,∴s+1t=﹣9919,s•1t=119,∴41st st++=s+4•st+1t=﹣9919+4×119=﹣15.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣ba,x1x2=ca.也考查了解一元二次方程.24.(1)k>﹣18且k≠1时,原方程有两个不相等的实数根;k=﹣18时,原方程有两个相等的实数根;k<﹣18时,原方程没有实数根;(2)k=6,方程的另一根为﹣35.【解析】【分析】(1)根据方程的系数可得出根的判别式△=8k+1,进而可得出方程解得情况;(2)将x=﹣2代入原方程可求出k值,再利用两根之和等于ba-及方程的一根为x=﹣2,可求出方程的另一根.【详解】解:(1)a=k﹣1,b=2k+1,c=k,∵△=b2﹣4ac=(2k+1)2﹣4×(k﹣1)×k=8k+1,∴当k>﹣18且k≠1时,原方程有两个不相等的实数根;当k=﹣18时,原方程有两个相等的实数根;当k<﹣18时,原方程没有实数根.(2)将x=﹣2代入原方程,得:(k﹣1)×(﹣2)2+(2k+1)×(﹣2)+k=0,解得:k=6,∴原方程为5x2+13x+6=0,∴方程的另一根为x =﹣135﹣(﹣2)=﹣35. 【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根”;(2)代入x=-2求出k 值. 25.0. 【解析】 【分析】由于关于x 的方程x 2+3x +a =0的两个实数根的倒数和等于3,利用根与系数的关系可以得到关于a 的方程求出a ,又由于关于x 的方程(k -1)x 2+3x -2a =0有实数根,分两种情况讨论,该方程可能是一次方程、有可能是一元二次方程,又k 为正整数,利用判别式可以求出k ,最后代入所求代数式计算即可求解. 【详解】解:设方程①的两个实数根分别为x 1、x 2则12123940x x x x a a +-⎧⎪⎨⎪-≥⎩V=== , 由条件,知12121211x x x x x x ++==3, 即33a -=,且94a ≤, 故a =-1,则方程②为(k -1)x 2+3x +2=0,Ⅰ.当k -1=0时,k =1,x =23-,则22106k k k -=+-.Ⅱ.当k -1≠0时,∆=9-8(k -1)=17-6-8k ≥0,则178k ≤, 又k 是正整数,且k≠1,则k =2,但使2216k k k -+-无意义.综上,代数式2216k k k -+-的值为0【点睛】本题综合考查了根的判别式和根与系数的关系,在解方程时一定要注意所求k 的值与方程判别式的关系.要注意该方程可能是一次方程、有可能是一元二次方程, 26.(1)k=" -6" ,方程的另一根是5. (2)不存在.理由见解析. 【解析】试题分析:(1)把已知的根代入原方程,求出k ,然后根据根与系数的关系,求得另一根; (2)根据一元二次方程的跟的判别式求出k 的范围,然后再根据根与系数的关系表示出x 1+x 2=4,x 1·x 2=k +1,根据已知的不等式求出k 的范围,从判断是否存在. 试题解析:(1)k="-6" ,方程的另一根是5. ( 2 ) 不存在.理由:由题意得Δ=16-4(k +1)≥0,解得k≤3. ∵x 1,x 2是一元二次方程的两个实数根, ∴x 1+x 2=4,x 1x 2=k +1, 由x 1x 2>x 1+x 2得k +1>4, ∴k >3,∴不存在实数k 使得x 1x 2>x 1+x 2成立.考点:一元二次方程根的判别式,根与系数的关系 27.()11m =,1212x x ==.()724y ≤. 【解析】 【分析】(1)根据方程的系数结合根的判别式,即可得出114m 1m 04=-⨯=-≥V ,由此吉可求得m 的取值范围,根据m 为正整数,可得出m 的值,将m 代入原方程求出x 的值即可; (2)根据根与系数的关系以及一元二次方程根的定义可得1ab m 4=,21b b m 04-+=,由此可得3y m 14=+,根据m 的取值范围进行求解即可. 【详解】()1∵一元二次方程21x x m 04-+=有两个实数根,∴114m 1m 04=-⨯=-≥V , ∴m 1≤.∵m 为正整数, ∴m 1=,当m 1=时,此方程为21x x 04-+=, ∴此方程的根为121x x 2==; ()2∵此方程的两个实数根为a 、b ,∴1ab m 4=,21b b m 04-+=, ∴()22113y ab 2b 2b 1ab 2b b 1m 2m 1m 1444⎛⎫=-++=--+=--+=+ ⎪⎝⎭, ∵()4m y 13=-, 又∵m 1≤, ∴()4m y 113=-≤, ∴y 的取值范围为7y 4≤. 【点睛】本题考查了一元二次方程根的判别式、根与系数的关系、一元二次方程的根等,综合性较强,正确理解题意,熟练运用相关知识是解题的关键. 28.(1)相交线;(2)m=110-. 【解析】 【分析】(1)要证明方程总有两个不相等的实数根,那么只要证明△>0即可; (2)首先利用根与系数的关系可以得到x 1+x 2,x 1x 2,接着利用根与系数的关系得到关于m 的方程,解方程即可解决问题. 【详解】(1)证明:因为一元二次方程x 2+(4m+1)x+2m-1=O 的根的判别式 △=(4m+1)2-4(2m-1)=16m 2+8m+1-8m+4=16m 2+5.因为不论m 取何值时,m 2≥0,所以16m 2+5总大于0,即不论m 为任何实数,方程总有两个不相等的实数根;(2)因为方程两根为x 1、x 2,所以x 1+x 2=-(4m+1),x 1x 2=2m -1, 因为12111+=,2x x 所以121212x x x x +=,所以()411212m m -+=-,所以m=110-.【点睛】本题考查了一元二次方程根的判别式及根与系数的关系,掌握(1) △>0,方程有两个不相等的实数根;(2) △=0,方程有两个相等的实数根;(3) △<0,方程没有实数根,是解答本题的关键. 29.(1)证明见解析;(2)2或3. 【解析】试题分析:(1)表示出根的判别式,得到根的判别式大于0,进而确定出方程总有两个不相等的实数根;(2)由(1)得到方程有两个不相等的实数根,利用求根公式表示出方程的两根:x 1=,x 2=1,要使原方程的根是整数,必须使得x 1==1+为正整数,则m-1=1或2,进而得出符合条件的m 的值.解:(1)∵△=b 2-4ac=(-2m )2-4(m-1)(m+1)=4>0, ∴方程有两个不相等的实数根; (2)由求根公式,得x=, ∴x 1==,x 2==1;∵m 为整数,且方程的两个根均为正整数, ∴x 1==1+,必为正整数,∴m-1=1或2, ∴m=2或m=3.考点:根的判别式;一元二次方程的定义. 30.k≥-13且k≠0. 【解析】试题分析:若一元二次方程有两不等实数根,则根的判别式△=b 2-4ac≥0,建立关于k 的不等式,求出k 的取值范围.还要注意二次项系数不为0. 试题解析:∵a=k ,b=2(k+1),c=k-1,∴△=[2(k+1)]2-4×k×(k-1)=12k+4≥0,解得:k≥-13,∵原方程是一元二次方程,∴k≠0.所以:k的取值范围为:k≥-13且k≠0.考点:根的判别式.。

初中数学一元二次方程根与系数关系专项复习题1(附答案详解)

初中数学一元二次方程根与系数关系专项复习题1(附答案详解)

初中数学一元二次方程根与系数关系专项复习题1(附答案详解)1.若方程x2﹣(m2﹣4)x+m=0的两个根互为相反数,则m等于()A.﹣2 B.2 C.±2 D.42.下列方程中,两个实数根的和为4的是()A.x2-4x+5=0 B.x2+4x-l=0 C.x2-8x+4=0 D.x2-4x-1=0 3.已知x为实数,且满足(x2+3x)2+2(x2+3x)-3=0,那么x2+3x的值为( ) A.1 B.-3或1 C.3 D.-1或34.已知一个直角三角形的两条直角边的长恰好是方程22870-+=x x的两个根,则这个直角三角形的斜边长是()A.3B.3 C.6 D.95.已知a≥2,m2-2am+2=0,n2-2an+2=0,m≠n,则(m-1)2+(n-1)2的最小值是()A.6 B.3 C.-3 D.06.一元二次方程x2﹣x﹣1=0和2x2﹣6x+5=0,这两个方程的所有实数根之和为()A.4 B.﹣4 C.﹣6 D.17.若关于x的一元二次方程(x–2)(x–3)=m有实数根x1、x2,且x1<x2,则下列结论中错误的是A.当m=0时,x1=2,x2=3B.m>–1 4C.当m>0时,2<x1<x2<3D.二次函数y=(x–x1)(x–x2)+m的图象与x轴交点的坐标为(2,0)和(3,0)8.关于x的方程ax2+bx+c=0,若满足a-b+c=0,。

则方程().A.必有一根为1 B.必有两相等实根C.必有一根为-1 D.没有实数根。

9.若是方程的两个根,且,则的值为()A .或2 B.1或C.D.110.已知关于x的一元二次方程ax2+bx+c=0(a≠0).有下列命题:①若a+b+c=0,则b2-4ac≥0;②若一元二次方程ax2+bx+c=0的两根为-1和2,则2a+c=0;③若一元二次方程ax2+c=0有两个不相等的实数根,则一元二次方程ax2+bx+c=0必有两个不相等的实数根.其中真命题的个数是()11.在目前的八年级数学下册第二章《一元二次方程》中新增了一节选学内容,其中有这样的知识点:如果方程的两根是、,那么=,=,则若关于x 的方程的两个实数根满足关系式,则k 的值为_____________________12.已知关于x 的方程x 2+3x+a =0有一个根为﹣2,则另一个根为_____. 13.已知x 1,x 2是一元二次方程x 2﹣2x ﹣1=0的两根,则1211+x x =__. 14.若是一元二次方程的两个根,则的值是 .15.已知方程x 2﹣4x ﹣1=0的两个根分别为x 1,x 2,则x 1•x 2=__________;16.关于x 的一元二次方程x 2+kx -12=0的一个根为-2,则另一个根是______________. 17.直线与双曲线交于和两点,则的值为 .18.x 1、x 2为方程x 2-3x-2=0的两根,则以x 1+1、x 2+1为两根的一元二次方程为________19.若x 1,x 2是方程x 2+3x ﹣4=0的两实数根,那么2112x x x x +的值为________. 20.设x 1,x 2是一元二次方程x 2﹣3x ﹣2=0的两个实数根,则x 1+x 2=_____. 21.关于x 的一元二次方程x 2﹣(2m ﹣1)x+m 2+1=0。

初中数学一元二次方程根与系数的关系练习题含答案

初中数学一元二次方程根与系数的关系练习题含答案

初中数学一元二次方程根与系数的关系练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,那么这个一元二次方程是()A.x2+3x+4=0B.x2+4x−3=0C.x2−4x+3=0D.x2+3x−4=02. 一元二次方程x2−2x+b=0的两根分别为x1,x2,则x1+x2等于( )A.−2B.bC.2D.−b3. 若x1,x2是一元二次方程2x2−7x+5=0的两根,则x1+x2−x1x2的值是()A.1B.6C.−1D.−64. 若关于x的一元二次方程kx2−3x+1=0的两根之积为4,则这个方程的两根之和为( )A.3 4B.−34C.12D.−125. 下列方程中两个实数根的和等于2的方程是()A.2x2−4x+3=0B.2x2−2x−3=0C.2y2+4y−3=0D.2t2−4t−3=06. 王刚同学在解关于x的方程x2−3x+c=0时,误将−3x看作+3x,结果解得x1=1,x2=−4,则原方程的解为()A.x1=−1,x2=−4B.x1=1,x2=4C.x1=−1,x2=4D.x1=2,x2=37. 已知x1,x2是方程x2=2x+1的两个根,则1x1+1x2的值为()A.−12B.2 C.12D.−28. x1,x2是关于x的一元二次方程x2−mx+m−2=0的两个实数根,是否存在实数m使1x1+1x2=0成立?则正确的结论是()9. 设方程x2−4x−1=0的两个根为x1与x2,则x1x2的值是()A.−4B.−1C.1D.010. 若2,3是方程x2+px+q=0的两实根,则x2−px+q可以分解为()A.(x−2)(x−3)B.(x+1)(x−6)C.(x+1)(x+5)D.(x+2)(x+3)11. 设x1,x2是方程5x2−3x−2=0的两个实数根,则1x1+1x2的值为________.12. 若关于x的方程x2+3x+k=0的一个根是1,则另一个根是________.13. 一元二次方程x2−4x+2=0的两根分别为x1,x2,则x12−4x1+2x1x2的值为________.14. 已知α,β是一元二次方程x2+x−2=0的两个实数根,则α+β−αβ的值是________.15. 如果m,n是两个不相等的实数,且满足m2−m=3,n2−n=3,那么代数式2n2−mn+2m+2009=________.16. 一元二次方程x2−4x+2=0的两根为x1,x2,则x12−4x1+2x1x2的值为________.17. 若m,n是方程x2+3x−2019=0的两个实数根,则m2+4m+n的值为________.18. 设方程x2+3x−4=0的两个实数根为x1,x2,求1x1+1x2=________.19. 试写出一个以−1,−3为两根的一元二次方程________.20. 已知,α、β是关于x的一元二次方程x2+4x−1=0的两个实数根,则α+β的值是________.21. 已知关于x的方程x2+5x−c=0一根为2,求另一根及c的值.x1+x2+12√x1x2.(1)当a≥0时,求y的取值范围;(2)当a<0时,比较y与−a2+3a−9的大小,并说明理由.23. 已知x1、x2是方程x2+6x+3=0的两实数根,求x2x1+x1x2的值.24. 已知a,b是关于x的方程x2+2x−3=0的两个实数根.求a+b与ab的值.25. 已知实数a,b是方程x2−x−1=0的两根,求ba +ab的值.26. 已知x1,x2是一元二次方程x2−3x−1=0的两根,不解方程求下列各式的值.(1)x12+x22;(2)1x1+1x2.27. 已知方程x2+4x−2=0的两个实数根分别为x1,x2,试求:(1)x12+x22;(2)1x12+1x22.28. 在一元二次方程x2−2ax+b=0中,若a2−b>0,则称a是该方程的中点值.(1)方程x2−8x+3=0的中点值是________;(2)已知x2−mx+n=0的中点值是3,其中一个根是2,求mn的值.29. 关于r的一元二次方程x2−4x−k−3=0的两个实数根是x1,x2(1)已知k=2(2)若x=3x试求上的值30. 已知关于x的一元二次方程x2−(2m−2)x+(m2−2m)=0的两实数根分别为x1,x2.(1)求x1−x2的值;(2)若x12+x22=10,求m的值.31. 阅读材料:已知实数m,n满足m2−m−1=0,n2−n−1=0,求nm +mn的值.解:由题知m,n是方程x2−x−1=0的两个不相等的实数根,根据根与系数关系得m+n=1,mn=−1,所以nm +mn=m2+n2mn=(m+n)2−2mnmn=1+2−1=−3.根据上述材料解决以下问题:(1)一元二次方程5x2+10x−1=0的两个根为x1,x2,则x1+x2=_______,x1x2=_______;(2)类比探究:已知m,n满足7m2−7m−1=0,7n2−7n−1=0,求m2n+mn2的值;(3)思维拓展:已知p,q满足p2=9p−6,3q2=9q−2,求p2+9q2的值.32. 已知x1,x2是一元二次方程x2−2x−3=0的两个实数根,则x1+x2=________.33. 阅读材料:如果x1,x2是一元二次方程ax2+bx+c=0的两根,那么有x1+x2=−ba ,x1x2=ca.这是一元二次方程根与系数的关系,我们利用它可以用来解题,例x1,x2是方程x2+6x−3=0的两根,求x12+x22的值.解法可以这样:∵x1+x2=−6,x1x2=−3,则x12+x22=(x1+x2)2−2x1x2=(−6)2−2×(−3)=42.请你根据以上解法解答下题:已知x1,x2是方程x2−4x+2=0的两根,求:(1)1x1+1x2的值;(2)(x1−x2)2的值.34. 已知关于x的方程x2+x+a−1=0有一个根是1,求a的值及方程的另一个根.35. 设一元二次方程x2−6x+3=0的两根为x1和x2,求x2x1+x1x2的值.36. 若x1,x2是方程x2+2x−2007=0的两个根,试求下列各式的值:(1)x12+x22;(2)1x1+1x2;(3)(x1−5)(x2−5);(4)|x1−x2|.37. 先阅读,再回答问题:如果x1、x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,那么x1+x2,x1x2与系数a、b、c的关系是:x1+x2=−ba ,x1x2=ca,例如:若x1、x2是方程2x2−x−1=0的两个根,则x1+x2=−ba =−−12=12,x1x2=c a =−12=−12.若x1、x2是方程2x2+x−3=0的两个根.(1)求x1+x2,x1x2;(2)求x2x1+x1x2的值.38. 阅读材料:如果x1,x2是一元二次方程ax2+bx+c=0的两根,那么有x1+x2=−ba ,x1x2=ca.这是一元二次方程根与系数的关系,我们利用它可以用来解题,例x1,x2是方程x2+6x−3=0的两根,求x12+x22的值.解法可以这样:∵x1+x2=−6,x1x2=−3,则x12+x22=(x1+x2)2−2x1x2=(−6)2−2×(−3)= 42.请你根据以上解法解答下题:已知x1,x2是方程x2+x−1=0的两根,求:(1)1x1+1x2的值;(2)(x1−x2)2的值.(3)试求x22−x12的值.39. 已知关于x的一元二次方程ax2+bx+c=0的两根分别为x、x,有如下结论:3x2−x−2019=0的两根分别为x1、x2,求(x1+2)(x2+2)的值.40. 韦达定理:若一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1、x2,则x1+x2=−ba ,x1⋅x2=ca,阅读下面应用韦达定理的过程:若一元二次方程−2x2+4x+1=0的两根分别为x1、x2,求x12+x22的值.解:该一元二次方程的△=b2−4ac=42−4×(−2)×1=24>0由韦达定理可得,x1+x2=−ba =−4−2=2,x1⋅x2=ca=1−2=−12x12+x22=(x1+x2)2−2x1x2=22−2×(−1 2 )=5然后解答下列问题:(1)设一元二次方程2x2+3x−1=0的两根分别为x1,x2,不解方程,求x12+x22的值;(2)若关于x的一元二次方程(k−1)x2+(k2−1)x+(k−1)2=0的两根分别为α,β,且α2+β2=4,求k的值.参考答案与试题解析初中数学一元二次方程根与系数的关系练习题含答案一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 1.【答案】 C【考点】根与系数的关系 【解析】由根与系数的关系求得p ,q 的值. 【解答】解:方程两根分别为x 1=3,x 2=1,则x 1+x 2=−p =3+1=4,x 1x 2=q =3 ∴ p =−4,q =3,∴ 原方程为x 2−4x +3=0. 故选C . 2. 【答案】 C【考点】根与系数的关系 【解析】根据“一元二次方程x 2−2x +b =0的两根分别为x 1和x 2”,结合根与系数的关系,即可得到答案. 【解答】解:根据题意得: x 1+x 2=−−21=2.故选C . 3.【答案】 A【考点】根与系数的关系 【解析】首先利用韦达定理计算,再代入求值即可. 【解答】解:由题可知, x 1+x 2=72,x 1x 2=52, 所以x 1+x 2−x 1x 2=72−52=1. 故选A .【答案】C【考点】根与系数的关系【解析】设出两根,利用根已悉数的关系,构造方程,解出即可. 【解答】解:设两根分别为x1,x2,由根与系数的关系可知,x1+x2=3k ,x1x2=1k=4,∴k=14,∴x1+x2=3k=3×4=12.故选C.5.【答案】D【考点】根与系数的关系【解析】利用判别式对A进行判断;根据根与系数的关系对B、C、D进行判断.【解答】解:A、△=(−4)2−4×2×3<0,方程没有实数解,所以A选项错误;B、两个实数根的和等于1,所以B选项错误;C、两个实数根的和等于−2,所以C选项错误;D、两个实数根的和等于2,所以D选项正确.故选D.6.【答案】C【考点】根与系数的关系【解析】利用根与系数的关系求得c的值;然后利用因式分解法解原方程即可.【解答】依题意得关于x的方程x2+3x+c=0的两根是:x1=1,x2=−4.则c=1×(−4)=−4,则原方程为x2−3x−4=0,整理,得(x+1)(x−4)=0,解得x1=−1,x2=4.7.【答案】D根与系数的关系【解析】先把方程化为一般式得x2−2x−1=0,根据根与系数的关系得到x1+x2=−2,x1⋅x2=−1,再把原式通分得x1+x2x1x2,然后利用整体思想进行计算.【解答】解:方程化为一般式得x2−2x−1=0,根据题意得x1+x2=2,x1⋅x2=−1,∴原式=x1+x2x1x2=2−1=−2.故选D.8.【答案】A【考点】根与系数的关系【解析】先由一元二次方程根与系数的关系得出,x1+x2=m,x1x2=m−2.假设存在实数m使1x1+1x2=0成立,则x1+x2⋅=0,求出m=0,再用判别式进行检验即可.【解答】解:∵x1,x2是关于x的一元二次方程x2−mx+m−2=0的两个实数根,∴x1+x2=m,x1x2=m−2.假设存在实数m使1x1+1x2=0成立,则x1+x2x1x2=0,∴mm−2=0,∴m=0.当m=0时,方程x2−mx+m−2=0即为x2−2=0,此时Δ=8>0,∴m=0符合题意.故选A.9.【答案】B【考点】根与系数的关系【解析】关于x的一元二次方程ax2+bx+c=0(a≠0)根与系数的关系为:x1+x2=−ba,x1⋅x2=ca.【解答】解:a=1,c=−1,所以x1⋅x2=ca =−11=−1.【答案】 D【考点】根与系数的关系 【解析】本题考查了根与系数的关系这一知识点. 【解答】解:根据根与系数的关系可得p =−(2+3)=−5,q =2×3=6. 因此x 2+5x +6=(x +2)(x +3). 故选D .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 11. 【答案】−32【考点】根与系数的关系 【解析】根据根与系数的关系得到x 1+x 2、x 1x 2的值,然后将所求的代数式进行变形并代入计算即可. 【解答】解:∵ 方程x 1,x 2是方程5x 2−3x −2=0的两个实数根, ∴ x 1+x 2=35,x 1x 2=−25, ∴1x 1+1x 2=x 1+x 2x 1x 2=35−25=−32.故答案为:−32. 12.【答案】 −4【考点】根与系数的关系 【解析】设方程的两根分别为x 1,x 2,则由根与系数关系得,x 1+x 2=−3,由x 1=1可得x 2=−4. 【解答】解:根据题意,设方程的两根分别为x 1,x 2,令x 1=1, 则由根与系数关系得,x 1+x 2=−3, ∵ x 1=1, ∴ x 2=−4. 故答案为:−4. 13.【答案】 2【解析】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于−b,两根之积a .根据根与系数的关系及一元二次方程的解可得出x12−4x1=−2,x1x2=2,将等于ca其代入所求式子中即可求出结论.【解答】解:根据题意得,x12−4x1=−2,x1x2=2,x12−4x1+2x1x2=−2+4=2.故答案为:2.14.【答案】1【考点】根与系数的关系【解析】据根与系数的关系α+β=−1,αβ=−2,求出α+β和αβ的值,再把要求的式子进行整理,即可得出答案.【解答】解:∵α,β是方程x2+x−2=0的两个实数根,∴α+β=−1,αβ=−2,∴α+β−αβ=−1+2=1.故答案为:1.15.【答案】2020【考点】根与系数的关系【解析】由于m,n是两个不相等的实数,且满足m2−m=3,n2−n=3,可知m,n是x2−x−3=0的两个不相等的实数根.则根据根与系数的关系可知:m+n=2,mn=−3,又n2=n+3,利用它们可以化简2n2−mn+2m+2015=2(n+3)−mn+2m+2015=2n+6−mn+2m+2015=2(m+n)−mn+2021,然后就可以求出所求的代数式的值.【解答】解:由题意可知:m,n是两个不相等的实数,且满足m2−m=3,n2−n=3,所以m,n是x2−x−3=0的两个不相等的实数根,则根据根与系数的关系可知:m+n=1,mn=−3,又n2=n+3,则2n2−mn+2m+2009=2(n+3)−mn+2m+2009=2n+6−mn+2m+2009=2(m+n)−mn+2015=2×1−(−3)+2015=2+3+2015=2020.故答案为:2020.16.【答案】2【考点】根与系数的关系【解析】根据根与系数的关系及一元二次方程的解可得出x12−4x1=−2、x1x2=2,将其代入x12−4x1+2x1x2中即可求出结论.【解答】∵一元二次方程x2−4x+2=0的两根为x1、x2,∴x12−4x1=−2,x1x2=2,∴x12−4x1+2x1x2=−2+2×2=2.17.【答案】2016【考点】根与系数的关系【解析】此题暂无解析【解答】解:∵m,n是方程x2+3x−2019=0的两个根,∴m2+3m=2019,m+n=−3,∴m2+4m+n=m2+3m+(m+n)=2019−3=2016.故答案为:2016.18.【答案】34【考点】根与系数的关系【解析】根据根与系数的关系得到x1+x2=−3,x1⋅x2=−4,再变形1x1+1x2得到x1+x2x1x2,然后利用代入法计算即可.【解答】解:∵一元二次方程x2+3x−4=0的两根是x1,x2,∴x1+x2=−3,x1⋅x2=−4,∴1x1+1x2=x1+x2x1x2=−3−4=34.故答案为:34.19.【答案】x 2+4x +3=0 【考点】根与系数的关系 【解析】根据根与系数的关系:两根之和=−ba,两根之积=ca,首先写出两根之和,再写出两根之积,可直接得到方程. 【解答】解:∵ −1+(−3)=−4,(−1)×(−3)=3, ∴ 方程为:x 2+4x +3=0, 故答案为:x 2+4x +3=0. 20.【答案】 −4【考点】根与系数的关系 【解析】 此题暂无解析 【解答】 此题暂无解答三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 ) 21.【答案】解:设另一根为x 1,则{x 1+2=−5,2x 1=−c,解得{x 1=−7,c =14,∴ 另一根为−7,c 的值为14. 【考点】根与系数的关系 【解析】 暂无 【解答】解:设另一根为x 1,则{x 1+2=−5,2x 1=−c,解得{x 1=−7,c =14,∴ 另一根为−7,c 的值为14. 22. 【答案】解:(1)14x 2+(a −2)x +a 2=0,∵ △=(a −2)2−4×14×a 2≥0,∴ a ≤1,根据题意得x 1+x 2=−4(a −2),x 1x 2=4a 2, ∵ 0≤a ≤1,∴ y =−4(a −2)+a =−3a +8∴5≤y≤8;(2)当a<0时,y=−4(a−2)−a=−5a+8,y−(−a2+3a−9)=−5a+8+a2−3a+9=(a−4)2+1,∵(a−4)2+1>0,∴y>−a2+3a−9.【考点】根与系数的关系【解析】(1)先把方程化为一般式得到14x2+(a−2)x+a2=0,再利用判别式得到a≤1,根据根与系数的关系得到y=−4(a−2)+a=−3a+8,然后计算当0≤a≤1时对应的y的范围;(2)当a<0时,y=−4(a−2)−a=−5a+8,然后利用求差法比较大小.【解答】解:(1)14x2+(a−2)x+a2=0,∵△=(a−2)2−4×14×a2≥0,∴a≤1,根据题意得x1+x2=−4(a−2),x1x2=4a2,∵0≤a≤1,∴y=−4(a−2)+a=−3a+8∴5≤y≤8;(2)当a<0时,y=−4(a−2)−a=−5a+8,y−(−a2+3a−9)=−5a+8+a2−3a+9=(a−4)2+1,∵(a−4)2+1>0,∴y>−a2+3a−9.23.【答案】解:∵x1、x2是方程x2+6x+3=0的两实数根,∴由韦达定理,知x1+x2=−6,x1⋅x2=3,∴x2x1+x1x2=x1⋅x2˙=(−6)2−2×33=10,即x2x1+x1x2的值是10.【考点】根与系数的关系【解析】利用根与系数的关系求得x1+x2=−6,x1⋅x2=3,然后将其代入整理后的所求的代数式求值.【解答】解:∵x1、x2是方程x2+6x+3=0的两实数根,∴由韦达定理,知x1+x2=−6,x1⋅x2=3,∴x2x1+x1x2=x1⋅x2˙=(−6)2−2×33=10,即x2x1+x1x2的值是10.24.【答案】解:a+b=−21=−2,ab=−31=−3.【考点】根与系数的关系【解析】此题暂无解析【解答】解:a+b=−21=−2,ab=−31=−3.25.【答案】解:∵实数a,b是方程x2−x−1=0的两根,∴a+b=1,ab=−1,∴ba +ab=b2+a2ab=(a+b)2−2abab=−3.【考点】根与系数的关系【解析】根据根与系数的关系得到a+b=1,ab=−1,再利用完全平方公式变形得到ba +ab=b2+a2 ab =(a+b)2−2abab,然后利用整体代入的方法进行计算.【解答】解:∵实数a,b是方程x2−x−1=0的两根,∴a+b=1,ab=−1,∴ba +ab=b2+a2ab=(a+b)2−2abab=−3.26.【答案】解:(1)∵x1,x2是一元二次方程x2−3x−1=0的两根,∴x1+x2=3,x1x2=−1,∴x12+x22=(x1+x2)2−2x1x2=32−2×(−1)=11.(2)1x1+1x2=x1+x2x1x2=3−1=−3.【考点】根与系数的关系【解析】无无【解答】解:(1)∵x1,x2是一元二次方程x2−3x−1=0的两根,∴x1+x2=3,x1x2=−1,∴x12+x22=(x1+x2)2−2x1x2=32−2×(−1)=11.(2)1x 1+1x 2=x 1+x 2x 1x 2=3−1=−3.27.【答案】解:(1)∵ x 1,x 2是x 2+4x −2=0的两个实数根, ∴ x 1+x 2=−4,x 1x 2=−2, x 12+x 22=(x 1+x 2)2−2x 1x 2 =(−4)2−2×(−2) =16+4 =20.(2)由(1)得,x 1+x 2=−4,x 1x 2=−2, 1x 12+1x 22 =x 12+x 22x 12x 22=20(−2)2=5.【考点】根与系数的关系 【解析】(1)将原式变形为(x 1+x 2)2−2x 1x 2,然后代入计算即可; (2)将原式变形为含有x 1+x 2和x 1x 2,然后代入计算即可. 【解答】解:(1)∵ x 1,x 2是x 2+4x −2=0的两个实数根, ∴ x 1+x 2=−4,x 1x 2=−2, x 12+x 22=(x 1+x 2)2−2x 1x 2 =(−4)2−2×(−2) =16+4 =20.(2)由(1)得,x 1+x 2=−4,x 1x 2=−2, 112+122 =x 12+x 22x 12x 22=202=5. 28. 【答案】 4(2)∵ m2=3,∴ m=6,把x=2代入x2−mx+n=0得4−6×2+n=0,解得n=8,∴ mn=6×8=48.【考点】根与系数的关系【解析】此题暂无解析【解答】解:(1)在方程x2−8x+3=0中,a=4,b=3,∴a2−b=42−3=13>0,符合题意,∴ a=4是该方程的中点值.故答案为:4.(2)∵m=3,2∴ m=6,把x=2代入x2−mx+n=0得4−6×2+n=0,解得n=8,∴ mn=6×8=48.29.【答案】(1)−1;(2)k=−6.【考点】根与系数的关系【解析】(1)当k=2时,方程为:x2−4x−2−3=0,即x2−4x−5=0,所以可得:x1+x2= 4,x1×x2=−5,代入即可求得代数式的值;(2)先求得x2=1,x1=3,再代入求得答案.【解答】解:(1)当k=2时,方程为:x2−4x−2−3=0,即x2−4x−5=0,所以可得:x1+x2=4,x1×x2=−5,所以x1+x2+x1×x2=4−5=−1;(2)x1+x2=4,x1=3x2,即3x2+x2=4,解得:x2=1,所以x1=3,即:x1x2=−k−3=3,解得:k=−6.30.【答案】解:(1)∵x1,x2是方程x2−(2m−2)x+(m2−2m)=0的两实数根,x1+x2=2m−2,x1x2=m2−2m.(x1−x2)2=x12+x22−2x1x2=(x1+x2)2−2x1x2−2x1x2=(x1+x2)2−41x1x2=(2m−2)2−4(m2−2m)=4m2−8m+4−4m2+8m=4.x1−x2=±2,即x1−x2的值为2或−2.(2)∵x12+x22=10,∴(x1+x2)2−2x1x2=10,∴(2m−2)2−2(m2−2m)=10,4m2−8m+4−2m2+4m=10,m2−2m−3=0,∴m1=3, m2=−1即m的值为3或−1.【考点】根与系数的关系【解析】(1)根据方程根的个数结合根的判别式,可得出关于m的一元一次不等式,解不等式即可得出结论;(2)根据方程的解析式结合根与系数的关系找出x1+x2=−2,x1⋅x2=2m,再结合完全平方公式可得出x12+x22=(x1+x2)2−2x1⋅x2,代入数据即可得出关于关于m的一元一次方程,解方程即可求出m的值,经验值m=−1符合题意,此题得解.【解答】解:(1)∵x1,x2是方程x2−(2m−2)x+(m2−2m)=0的两实数根,x1+x2=2m−2,x1x2=m2−2m.(x1−x2)2=x12+x22−2x1x2=(x1+x2)2−2x1x2−2x1x2=(x1+x2)2−41x1x2=(2m−2)2−4(m2−2m)=4m2−8m+4−4m2+8m=4.x1−x2=±2,即x1−x2的值为2或−2.(2)∵x12+x22=10,∴(x1+x2)2−2x1x2=10,∴(2m−2)2−2(m2−2m)=10,4m2−8m+4−2m2+4m=10,m2−2m−3=0,∴m1=3, m2=−1即m的值为3或−1.【答案】−2;−15(2)∵7m2−7m−1=0,7n2−7n−1=0,∴m,n可看作方程7x2−7x−1=0的两个根,∴m+n=1,mn=−17,∴m2n+mn2=mn(m+n)=−17×1=−17.(3)∵p,q满足p2=9p−6,3q2=9q−2,∴9q2=27q−6,即(3q)2=9⋅(3q)−6,∴p,3q可看作方程x2−9x+6=0的两个根,∴p+3q=9,p⋅(3q)=6,∴原式=(p+3q)2−6pq=92−6×2=69 .【考点】根与系数的关系【解析】(1)直接利用根与系数的关系求解;(2)把m、n可看作方程7x2−7x−1=0,利用根与系数的关系得到m+n=1,mn=−17,再利用因式分解的方法得到m2n+mn2=mn(m+n),然后利用整体的方法计算;(3)把p、3q可看作方程x2−9x+6=0的两个根,利用根与系数的关系得到p+3q=9,p⋅(3q)=6,再利用配方法得到p2+9q2=(p+3q)2−6pq,然后利用整体的方法计算;【解答】解:(1)x1+x2=−105=−2,x1x2=−15.故答案为:−2;−15.(2)∵7m2−7m−1=0,7n2−7n−1=0,∴m,n可看作方程7x2−7x−1=0的两个根,∴m+n=1,mn=−17,∴m2n+mn2=mn(m+n)=−17×1=−17.(3)∵p,q满足p2=9p−6,3q2=9q−2,∴9q2=27q−6,即(3q)2=9⋅(3q)−6,∴p,3q可看作方程x2−9x+6=0的两个根,∴p+3q=9,p⋅(3q)=6,∴原式=(p+3q)2−6pq=92−6×2=69 .32.【答案】【考点】根与系数的关系【解析】本题考查一元二次方程根与系数的关系.关于一元二次方程ax2+bx+c=0(a≠0),当方程有两根据x1、x2,则x1+x2=−ba ,x1⋅x2=ca.据此求解即可.【解答】解:x1+x2=−ba =−−21=2.故答案为:2.33.【答案】解:(1)∵x1+x2=4,x1x2=2,∴1x1+1x2=x1+x2x1x2=42=2.(2)(x1−x2)2=(x1+x2)2−4x1x2=42−4×2=8.【考点】根与系数的关系【解析】根据一元二次方程ax2+bx+c=0的根与系数关系即韦达定理可得x1+x2−ba=4,x1x2=ca=2,把代数式变形成与两根之和和两根之积有关的式子,代入两根之和与两根之积,求得代数式的值.【解答】解:(1)∵x1+x2=4,x1x2=2,∴1x1+1x2=x1+x2x1x2=42=2.(2)(x1−x2)2=(x1+x2)2−4x1x2=42−4×2=8.34.【答案】解:将x=1代入方程x2+x+a−1=0得1+1+a−1=0,解得a=−1,方程为x2+x−2=0,解得x1=−2,x2=1.所以另一个根为−2.【考点】根与系数的关系【解析】将x=1代入方程x2+x+a−1=0可得a的值,再将a的值代回方程,解方程得出另一个根.【解答】解:将x=1代入方程x2+x+a−1=0得1+1+a−1=0,解得a=−1,方程为x2+x−2=0,解得x1=−2,x2=1.所以另一个根为−2.解:根据题意得x 1+x 2=6,x 1x 2=3, 所以x 2x 1+x 1x 2=x 12+x 22x 1x 2=(x 1+x 2)2−2x 1x 2x 1x 2=62−2×33=10.【考点】根与系数的关系 【解析】根据根与系数的关系得到x 1+x 2=6,x 1x 2=3,再利用通分和完全平方公式把x 2x 1+x 1x 2变形为(x 1+x 2)2−2x 1x 2x 1x 2,然后利用整体代入的方法计算.【解答】解:根据题意得x 1+x 2=6,x 1x 2=3, 所以x 2x 1+x 1x 2=x 12+x 22x 1x 2=(x 1+x 2)2−2x 1x 2x 1x 2=62−2×33=10.36.【答案】解:∵ x 1,x 2是方程x 2+2x −2007=0的两个根,∴ x 1+x 2=−2,x 1⋅x 2=−2007.(1)x 12+x 22=(x 1+x 2)2−2x 1⋅x 2=(−2)2−2×(−2007)=4018;(2)1x 1+1x 2=x 1+x 2⋅=−2−2007=22007;(3)(x 1−5)(x 2−5)=x 1⋅x 2−5(x 1+x 2)+25=−2007−5×(−2)+25=−1972; (4)|x 1−x 2|=√(x 1−x 2)2=√(x 1+x 2)2−4x 1⋅x 2=√(−2)2−4×(−2007)=4√502.【考点】根与系数的关系 【解析】由一元二次方程根与系数的关系可得x 1+x 2=−2,x 1⋅x 2=−2007.(1)将x 12+x 22变形为(x 1+x 2)2−2x 1⋅x 2,再代入计算即可求得结果; (2)将1x 1+1x 2变形为x 1+x 2⋅,再代入计算即可求得结果;(3)将(x 1−5)(x 2−5)变形为x 1⋅x 2−5(x 1+x 2)+25,再代入计算即可求得结果; (4)将|x 1−x 2|变形为√(x 1+x 2)2−4x 1⋅x 2,再代入计算即可求得结果. 【解答】解:∵ x 1,x 2是方程x 2+2x −2007=0的两个根,∴ x 1+x 2=−2,x 1⋅x 2=−2007.(1)x 12+x 22=(x 1+x 2)2−2x 1⋅x 2=(−2)2−2×(−2007)=4018;(2)1x 1+1x 2=x 1+x 2⋅=−2−2007=22007;(3)(x 1−5)(x 2−5)=x 1⋅x 2−5(x 1+x 2)+25=−2007−5×(−2)+25=−1972; (4)|x 1−x 2|=√(x 1−x 2)2=√(x 1+x 2)2−4x 1⋅x 2=√(−2)2−4×(−2007)=4√502.解:(1)∵ x 1、x 2是方程2x 2+x −3=0的两个根, ∴ x 1+x 2=−12,x 1⋅x 2=−32; (2)原式=(x 1+x 2)2−2x 1x 2x 1x 2=(−12)2−2×(−32)−32 =−136.【考点】根与系数的关系 【解析】(1)直接利用根与系数的关系解答即可;(2)通分变形后,整体代入(1)中的数值得出答案即可. 【解答】 解:(1)∵ x 1、x 2是方程2x 2+x −3=0的两个根, ∴ x 1+x 2=−12,x 1⋅x 2=−32; (2)原式=(x 1+x 2)2−2x 1x 2x 1x 2=(−12)2−2×(−32)−32 =−136.38.【答案】解:(1)∵ x 1,x 2是方程x 2+x −1=0的两根, ∴ x 1+x 2=−1,x 1x 2=−1, 则1x 1+1x 2=x 1+x 2x 1x 2=−1−1=1;(2)(x 1−x 2)2=(x 1+x 2)2−4x 1x 2=1+4=5;(3)x 22−x 12=(x 2−x 1)(x 2+x 1)当x 1<x 2时,x 22−x 12=√5×(−1)=−√5, 当x 1>x 2时,x 22−x 12=−√5×(−1)=√5.【考点】根与系数的关系 【解析】(1)由根与系数的关系可得x 1+x 2=−1,x 1x 2=−1,将其代入到1x 1+1x 2=x 1+x 2x 1x 2即可得;(2)将x 1+x 2=−1,x 1x 2=−1代入到(x 1−x 2)2=(x 1+x 2)2−4x 1x 2即可得;(3)根据x 22−x 12=−(x 12−x 22),结合(2)中结果即可得.【解答】解:(1)∵ x 1,x 2是方程x 2+x −1=0的两根, ∴ x 1+x 2=−1,x 1x 2=−1, 则1x 1+1x 2=x 1+x 2x 1x 2=−1−1=1;(2)(x 1−x 2)2=(x 1+x 2)2−4x 1x 2=1+4=5;(3)x 22−x 12=(x 2−x 1)(x 2+x 1)当x 1<x 2时,x 22−x 12=√5×(−1)=−√5, 当x 1>x 2时,x 22−x 12=−√5×(−1)=√5.39. 【答案】由一元二次方程的根与系数的关系得到x 1+x 2=13,x 1⋅x 2=−673, (x 1+2)(x 2+2)=x 1⋅x 2+2(x 1+x 2)+4 =−673+2×13+4 =−66813.【考点】根与系数的关系 【解析】根据一元二次方程的根与系数的关系得到x 1+x 2=13,x 1⋅x 2=−673,再将(x 1+2)(x 2+2)变形为x 1⋅x 2+2(x 1+x 2)+4代入计算即可求解. 【解答】由一元二次方程的根与系数的关系得到x 1+x 2=13,x 1⋅x 2=−673, (x 1+2)(x 2+2)=x 1⋅x 2+2(x 1+x 2)+4 =−673+2×13+4 =−66813.40.【答案】 解:(1)∵ 一元二次方程的△=b 2−4ac =32−4×2×(−1)=17>0, 由根与系数的关系得:x 1+x 2=−32,x 1⋅x 2=−12,∴ x 12+x 22=(x 1+x 2)2−2x 1x 2=(−32)2−2×(−12)=134;(2)由根与系数的关系知:α+β=k 2−1k−1=−k −1,αβ=(k−1)2k−1=k −1,α2+β2=((α+β)2−2αβ=(k +1)2−2(k −1)=k 2+3 ∴ k 2+3=4, ∴ k =±1, ∵ k −1≠0 ∴ k ≠1, ∴ k =−1,将k =−1代入原方程:−2x 2+4=0, △=32>0,∴ k =−1成立, ∴ k 的值为−1. 【考点】根与系数的关系 【解析】(1)先根据根与系数的关系得到x 1+x 2=−32,x 1⋅x 2=−12,再利用完全平方公式变形得到x 12+x 22=(x 1+x 2)2−2x 1x 2,然后利用整体代入的方法计算即可;(2)根据一元二次方程(k −1)x 2+(k 2−1)x +(k −1)2=0的两根分别为α,β,求出两根之积和两根之和的关于k 的表达式,再将α2+β2=4变形,将表达式代入变形后的等式,解方程即可.【解答】 解:(1)∵ 一元二次方程的△=b 2−4ac =32−4×2×(−1)=17>0, 由根与系数的关系得:x 1+x 2=−32,x 1⋅x 2=−12,∴ x 12+x 22=(x 1+x 2)2−2x 1x 2=(−32)2−2×(−12)=134;(2)由根与系数的关系知:α+β=k 2−1k−1=−k −1,αβ=(k−1)2k−1=k −1,α2+β2=((α+β)2−2αβ=(k +1)2−2(k −1)=k 2+3 ∴ k 2+3=4, ∴ k =±1, ∵ k −1≠0∴ k ≠1, ∴ k =−1,将k =−1代入原方程:−2x 2+4=0, △=32>0,∴ k =−1成立, ∴ k 的值为−1.。

初中数学复习《一元二次方程根的判别式的参数问题》中考模似练习(含答案解析)

初中数学复习《一元二次方程根的判别式的参数问题》中考模似练习(含答案解析)

9.(2023•工业园区一模)已知关于 x 的一元二次方程 x2﹣2mx+2m﹣1=0. (1)若该方程有一个根是 x=2,求 m 的值; (2)求证:无论 m 取什么值,该方程总有两个实数根. 【分析】(1)直接把 x=2 代入到原方程中得到关于 m 的方程,解方程即可得到答案; (2)根据一元二次方程根的判别式进行求解即可. 【解答】解:(1)∵关于 x 的一元二次方程 x2﹣2mx+2m﹣1=0 的一个根为 x=2, ∴22﹣4m+2m﹣1=0, ∴;
4.(2023•东城区校级一模)关于x的一元二次方程x2﹣(k+3)x+2k+1=0根的情
况是( )
A.无实根
B.有实根
C.有两个不相等实根 D.有两个相等实根 【分析】利用根的判别式得到Δ=(k﹣1)2+4,根据非负数的性质可得Δ>0,以
此即可判断.
【解答】解:∵x2﹣(k+3)x+2k+1=0,
∴k≤2且k≠0.
故选:D.
6.(2023•西城区一模)若关于 x 的方程 mx2+3x﹣1=0 有两个不相等的实数根,则实数 m 的取值范围是( )
A.m>﹣
B.m≥﹣
C.m>﹣ 且 m≠0 D.m≥﹣ 且 m≠0
【分析】根据一元二次方程的定义和根的判别式与一元二次方程根的关系列出不等式组, 解答即可.
【解答】(1)证明:∵关于x的一元二次方程x2﹣(2k+2)x+2k+1=0, ∴Δ=[﹣(2k+2)]2﹣4×1×(2k+1) =4k2+8k+4﹣8k﹣4 =4k2≥0, ∴无论k为何值,方程总有两个实数根.
(2)解:∵关于 x 的一元二次方程 x2﹣(2k+2)x+2k+1=0,

考点04 一元二次方程根的判别式以及根与系数的关系(解析版)

考点04 一元二次方程根的判别式以及根与系数的关系(解析版)

考点四一元二次方程根的判别式以及根与系数的关系知识点整合一、一元二次方程根的判别式及根与系数关系1.根的判别式一元二次方程2(0)0ax bx c a ++=≠是否有实数根,由24b ac -的符号来确定,我们把24b ac -叫做一元二次方程根的判别式.2.一元二次方程根的情况与判别式的关系(1)当240b ac ->时,方程2(0)0ax bx c a ++=≠有两个不相等的实数根;(2)当240b ac -=时,方程2(0)0ax bx c a ++=≠有1个(两个相等的)实数根;(3)当240b ac -<时,方程2(0)0ax bx c a ++=≠没有实数根.3.根与系数关系对于一元二次方程20ax bx c ++=(其中,,a b c 为常数,0a ≠),设其两根分别为1x ,2x ,则12b x x a +=-,12c x x a=.典例引领1.已知关于x 的一元二次方程()()22110x m x m m -+++=.(1)求证:无论m 取何值,方程总有两个不相等的实数根:(2)若该方程的一个根为1,求m 的值及另一个根.【答案】(1)证明见解析(2)当0m =时,方程的另一个根为0x =;当1m =时,方程的另一个根为2x =【分析】本题主要考查了一元二次方程根的判别式,解一元二次方程,一元二次方程的定义,熟练掌握一元二次方程的相关知识是解题的关键.(1)只需要证明()()221410m m m ∆=-+-+>⎡⎤⎣⎦恒成立即可;(2)把1x =代入原方程得到20m m -=,解方程求出m 的值,进而根据m 的值解方程求出方程的另一根即可.【详解】(1)证明:由题意得,()()22141m m m ∆=-+-+⎡⎤⎣⎦依题意有:215x -+=,21x k -⋅=,解得26x =,6k =-,故k 的值为6-,方程的另一个根为6x =.9.求证:对于任意实数m ,关于x 的方程22220x mx m -+-=总有两个不相等的实数根.【答案】见解析【分析】本题主要考查了一元二次方程()200ax bx c a ++=≠的根情况,判断其根的情况,完全取决于24b ac ∆=-的符号,当0> 时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根.【详解】解:()24422m m =--△2488m m =-+()2414m =-+.()210m -≥,∴()241440m =-+≥>△.∴对于任意实数m ,关于x 的方程22220x mx m -+-=总有两个不相等的实数根.10.已知关于x 的一元二次方程()2320x m x m ++++=.(1)求证:不论实数m 取何值,方程总有实数根;(2)当m 取何值时,方程有两个相等的实数根?【答案】(1)见详解(2)1m =-【分析】本题考查了一元二次方程根的判别式,熟记“24b ac ∆=-”是解题关键.(1)方程有实数根时240b ac ∆=-≥,由此即可求解.(2)方程有两个相等的实数根即240b ac ∆=-=,由此即可求解.【详解】(1)证明:()()2243412b ac m m ∆=-=+-⨯⨯+26948m m m =++--221m m =++()21m =+(2)由题意得,222229k k ⨯+-=,整理得,245k k -=,根据()223122023342023k k k k -+=-+,计算求解即可.【详解】(1)解:∵2229x kx k +-=,∴22290x kx k -+-=,∴()()222419360k k ∆=--⨯⨯-=>,∴此方程有两个不相等的实数根;(2)解:由题意得,222229k k ⨯+-=,整理得,245k k -=,∴()2231220233420231520232038k k k k -+=-+=+=,∴23122023k k -+的值为2038.13.已知关于x 的方程22220x mx m ++-=.(1)试说明:无论m 取何值,方程总有两个不相等的实数根;(2)若方程有一个根为3,求22122043m m ++的值.【答案】(1)证明见解析(2)2029【分析】本题主要考查了一元二次方程根的判别式,一元二次方程的解,代数式求值;(1)根据一元二次方程根的判别式,进行证明即可;(2)根据方程有一个根为3,得出267m m +=-,然后整体代入求值即可.解题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.【详解】(1)证明:∵()()2222241244880m m m m ∆=-⨯⨯-=-+=>,∴无论m 取何值,方程总有两个不相等的实数根;(2)解:∵方程有一个根为3,∴223620m m ++-=,整理,得:267m m +=-,∴22122043m m ++()2262043m m =++()272043=⨯-+142043=-+2029=.14.已知关于x 的一元二次方程210x mx m -+-=.(1)若该方程有一个根是2,求该方程的另一个根;(2)求证:该方程总有两个实数根.【答案】(1)1(2)见解析【分析】本题主要考查了一元二次方程的解和根的判别式,(1)直接把2x =代入到原方程中得到关于m 的方程,再解方程即可得到答案;(2)根据一元二次方程根的判别式进行证明.掌握对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=->,则方程有两个不相等的实数根,若240b ac ∆=-=,则方程有两个相等的实数根,若24<0b ac ∆=-,则方程没有实数根;理解一元二次方程的解是使方程左右两边相等的未知数的值,是解决问题的关键.【详解】(1)解:当2x =时,4210m m -+-=3m ∴=,则原方程为:2320x x -+=,即:()()210x x --=,11x ∴=,22x =,∴另一个根1,(2)证明:()()2Δ411m m =--⨯⨯-244m m =-+()220m =-≥,∴该方程总有两个实数根;15.已知关于x 的一元二次方程()()25230x m x m +---=(1)求证:该方程总有两个实数根(2)如果该方程的两个实数根的差为4,求m 的值(2)“凤凰”方程必定有一个根是______;(3)已知方程20x mx n ++=是“凤凰”方程,且有两个相等的实数根,求mn 的值.【答案】(1)2230x x +-=(2)1(3)mn 2=-【分析】(1)本题主要考查一元二次方程根的情况,通过观察可以发现1x =是方程的根,直接写出一个根为1一元二次方程即可.(2)本题主要考查通过代数式观察,可以发现1x =是一元二次方程的一个根,直接求解即可.(3)本题主要考查由一元二次方程根的情况,推导出240b ac ∆=-=,可以得到一个方程,再由凤凰方程,又可以得到一个10m n ++=的方程,然后去求,m 和n 即可,最后求出mn 的值.【详解】(1)由题可知,要写出一个一元二次方程,并且满足一个根是1x =;即为:2230x x +-=.(2)关于x 的一元二次方程()200ax bx c a ++=≠,且满足0a b c ++=;∴1x =时,0a b c ++=;故凤凰”方程必定有一个根是1x =.(3)20x mx n ++= 是“凤凰”方程;10m n ∴++=,即1n m =--;方程20x mx n ++=有两个相等的实数根;240m n ∴∆=-=.将1n m =--代入,得()2410m m ---=;解得:2,1m n =-∴=;()212mn ∴=-⨯=-.19.已知关于x 的一元二次方程()23220x k x k ++++=.(1)求证:方程有两个实数根;(2)若方程的两个根分别为1x ,2x ,且1212217x x x x ++=,求k 的值.【答案】(1)见解析【分析】本题考查了一元二次方程根的判别式的意义,根与系数的关系,解一元二次方程;(1)求出0∆>即可证明;(2)根据根与系数的关系得出1221k x k x -=++,123x x +=,结合已知等式得出关于k 的一元二次方程,解方程可得答案.【详解】(1)证明:∵()()()2222234194444452140k k k k k k k ∆=---++=+--=-+=-+>,∴无论k 取何值,方程总有两个不相等的实数根;(2)解:∵方程22310x x k k ++--=有两个实数根1x ,2x ,∴1221k x k x -=++,123x x +=,又∵()()12113++=x x ,∴121213x x x x +++=,∴23131k k -+++=+,解得:12k =,21k =-.5.已知关于x 的一元二次方程220x x k ++=.(1)若方程有两个不相等的实数根,求k 的取值范围;(2)若m 是方程的根,且222m m +=,求k 的值.【答案】(1)1k <(2)2k =-【分析】本题主要考查了一元二次方程根的判别式与一元二次方程的解的含义,理解原理的应用是解本题的关键;(1)根据方程有两个不相等的实数根,可得240b ac ∆=->,求出k 的取值范围即可;(2)先由方程解的含义可得22m m k +=-,结合222m m +=即可求解.【详解】(1)解:∵关于x 的一元二次方程220x x k ++=有两个不相等的实数根,∴24440b ac k ∆=-=->,解得:1k <;(2)∵m 是方程220x x k ++=的根,∴220m m k ++=即22m m k +=-,∵222m m +=,∴2k -=,解得:2k =-.6.已知关于x 的一元二次方程2210(0)nx x n -+=≠有实数根.(1)求n 的取值范围;(2)当n 取最大值时,求方程2210(0)nx x n -+=≠的根.【答案】(1)1n ≤且0n ≠(2)121x x ==【分析】本题主要考查了一元二次方程的根的判别式以及解一元二次方程.(1)根据题意,可得240b ac ∆=-≥,即440n -≥,解不等式,并根据一元二次方程的定义确定n 的取值范围即可;(2)结合n 的取值范围确定n 的最大值,然后利用配方法解该方程即可.【详解】(1)解:根据题意,一元二次方程2210(0)nx x n -+=≠有实数根,则224(2)41440b ac n n ∆=-=--⨯⨯=-≥,解得1n ≤,又∵0n ≠,∴n 的取值范围是1n ≤且0n ≠;(2)由1n ≤且0n ≠得,n 的最大值为1,把1n =代入原方程得2210x x -+=,∴2(1)0x -=,解得121x x ==.7.己知一元二次方程2410x x m -+-=.(1)若方程有两个不相等的实数根,求实数m 的取值范围;(2)若方程有两个相等的实数根,求实数m 以及此时方程的根.【答案】(1)5m <(2)5m =,122x x ==【分析】本题考查了根的判别式,牢记“①当0∆>时,方程有两个不相等的实数根;②当Δ0=时,方程有两个相等的实数根;③当Δ0<时,方程无实数根.”(1)由方程有两个不相等的实数根结合根的判别式,即可得出关于m 的一元一次不等式,解之即可得出结论;(2)由方程有两个相等的实数根结合根的判别式,即可得出关于m 的一元一次方程,解之即可得出结论.【详解】(1)解:2(4)4(1)m ∆=---,方程有两个不相等的实数根,∴0∆>,解得5m <.(2) 方程有两个相等的实数根,∴Δ0=,即164(1)0m --=解得5m =(1)若所捂的部分为【详解】(1)解:∵方程有实数解是1x 和2x ,∴()22410k ∆=--≥,解得2k ≤,故k 的取值范围是2k ≤;(2)∵一元二次方程2210x x k ++-=的实数解是1x 和2x ,∴122x x +=-,121x x k ⋅=-,则()121221x x x x k +-=---,∵12121x x x x +-<-∴()211k ---<-,解得0k >,又由(1)知2k ≤,∴02k <≤,∵k 为整数,∴k 的值为1或2.13.已知关于x 的一元二次方程250x ax a ++-=.(1)若该方程的一个根为3,求a 的值及该方程的另一个根;(2)求证:不论a 为何值,该方程总有两个不相等的实数根.【答案】(1)方程的另一根为2-;(2)见解析【分析】本题主要考查一元二次方程根的判别式及根与系数的关系,(1)将方程的根代入可求得a 的值,再根据根与系数的关系可求得另一个根;(2)用a 表示出其判别式,利用配方可化为平方的形式,可判断判别式的符号,可得出结论;掌握一元二次方程根的判别式与根的个数的关系及根与系数的关系是解题的关键.【详解】(1)解:将3x =代入方程250x ax a ++-=可得:9350a a ++-=,解得1a =-;∴方程为260x x --=,设另一根为x ,则36x =-,。

浙教版备考2023年中考数学一轮复习21一元二次方程根的判别式和根与系数的关系附答案教师版

浙教版备考2023年中考数学一轮复习21一元二次方程根的判别式和根与系数的关系附答案教师版

浙教版备考2023年中考数学一轮复习21一元二次方程根的判别式和根与系数的关系附答案教师版一、单选题(每题3分,共30分)(共10题;共30分)1.(3分)若方程2+B+=0有两个相等的实数解,则下列方程中无实数解的是()A.2+B+=3B.2+B+=2C.2+B+=1D.2+B+=−1【答案】D2.(3分)关于x的一元二次方程2+4+2=0的两实数根1,2,则(12+2)(22+2)的值是()A.8B.32C.8或32D.16或40【答案】B3.(3分)已知,是一元二次方程2+3−2=0的两根,则2+5+2的值是()A.-5B.-4C.1D.0【答案】B4.(3分)已知实数a、b满足2=2−2,2=2−2,且≠,则+的值()A.0B.−4C.4D.−2【答案】B5.(3分)关于x的一元二次方程B2+2−1=0有两个不相等的实数根,则k的取值范围是()A.>−1B.>1C.≠1D.>−1且≠0【答案】D6.(3分)已知关于x的一元二次方程x2+mx+3=0有两个实数根x1=1,x2=n,则代数式(m+n)2022的值为()A.1B.0C.32022D.72022【答案】A7.(3分)方程2+=5+6的两个实数根的和与积分别是()A.-5,6B.-4,6C.4,-6D.-1,6【答案】C8.(3分)方程2x2+x-4=0的解的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.有一个实数根【答案】A9.(3分)已知关于x的一元二次方程(+1)2+2B+(+1)=0(其中p,q为常数)有两个相等的实数根,则下列结论中,错误..的是().A.1可能是方程2+B+=0的根B.-1可能是方程2+B+=0的根C.0可能是方程2+B+=0的根D.1和-1都是方程2+B+=0的根【答案】D10.(3分)一个盒子里有完全相同的三个小球,球上分别标上数字−1,1,2.随机摸出一个小球(不放回),将其数字记为,再随机摸出另一个小球,将其数字记为,则关于的方程2+B+=0有实数根的概率是()A.12B.13C.23D.56【答案】A二、填空题(每题4分,共24分)(共6题;共24分)11.(4分)如果关于x的一元二次方程2+(2−3p+6=0的一个根为3,那么此方程的另一个根为.【答案】212.(4分)关于x的一元二次方程2−(2+1)+2−2=0有实数根,则k的取值范围是.【答案】≥−9413.(4分)若一元二次方程2−(2+3)+2=0有两个不相等的实数根1,2,且1+2=12,则的值是.【答案】314.(4分)设1,2是方程2−2−5=0的两个实数根,则12+22的值为.【答案】1415.(4分)已知关于x的一元二次方程B2+2+2−=0有两个相等的实数根,1+则的值等于.【答案】216.(4分)对于一元二次方程B2+B+=0(≠0),有下列说法:①若++=0,则2−4B≥0;②若方程B2+=0有两个不相等的实根,则方程B2+B+=0必有两个不相等的实根;③若是方程B2+B+=0的一个根,则一定有B++1=0成立;④若0是一元二次方程B2+B+=0的根,则2−4B=(2B0+p2.其中说法正确的有(填序号).【答案】①②④三、解答题(共8题,共66分)(共8题;共66分)17.(6分)已知关于x的一元二次方程2+3+−2=0的两个实数根分别为1,2,若(1+1)(2+ 1)=−1,求k的值.【答案】解:∵方程2+3+−2=0的两个实数根分别为1,2,∴1+2=-3,12=k-2,∵(1+1)(2+1)=−1,∴12+(1+2)+1=−1,∴−2+(−3)+1=−1,解得k=3,当k=3时,根的判别式大于0,方程有两个不相等的实数根;即k的值是3.18.(6分)已知关于的一元二次方程2−6−=0(为常数).设,为方程的两个实数根,且+ 2=14,试求出方程的两个实数根和的值.【答案】解:∵,为方程2−6−=0的两个实数根,∴+=6,∵+2=14,解得:=−2,=8.将=−2代入2−6−=0中,得:4−(−12)−=0,解得:=16.19.(8分)已知方程2−(+1)+=0.(1)(4分)判断此方程是否有实数根,有几个实数根?(2)(4分)设此方程的两实数根为1、2,且11+12=23,求m的值.【答案】(1)解:由题意得=2−4B=[−(+1)]2−4=2+2+1−4=(−1)2,∴当=1时,=0,此时方程有两个相等的实数根,当≠1时,>0,此时方程有两个不相等的实数根,∴此方程有实数根,当=1时,此时方程有两个相等的实数根,当≠1时,此时方程有两个不相等的实数根;(2)解:∵方程2−(+1)+=0的两实数根为1、2,∴1+2=+1,12=,∵11+12=23,∴1+212=23,∴3(1+2)=212,∴3+3=2,∴=−3.20.(8分)已知关于的方程2−(−2)−24=0(1)(4分)求证:无论取什么实数,这个方程总有两个相异的实数根;(2)(4分)若这个方程的两个实数根1、2满足|2|−|1|=2,求的值及相应的1、2.【答案】(1)证明:由题意得,在一元二次方程中,=1,=−(−2),=−24,∴=2−4B=[−(−2)]2−4×1×(−24)∴=2−4+4+2=22−4+4=2(−2)2+2,∵2(−2)2+2≥2,即2(−2)2+2>0,∴无论取什么实数,方程总有两个相异的实数根.(2)解:据题意得,=1,=−(−2),=−24,1+2=−=−2,1·2==−24≤0,∵方程总有两个不相等的实数根,∴1、2异号或有一个为0,由|2|−|1|=2,①当1≥0、2<0时,−2−1=2,即−(−2)=2,解得=0,此时,方程为2+2=0,解得1=0,2=−2;②当1≤0,2>0时,2+1=−2=2,解得=4,此时,方程为2−2−4=0,解得1=1+5,2=1−5,21.(9分)阅读材料,解答问题:材料1为了解方程(2)2−132+36=0,如果我们把2看作一个整体,然后设=2,则原方程可化为2−13+36=0,经过运算,原方程的解为1,2=±2,3,4=±3.我们把以上这种解决问题的方法通常叫做换元法.材料2已知实数m,n满足2−−1=0,2−−1=0,且≠,显然m,n是方程2−−1=0的两个不相等的实数根,由书达定理可知+=1,B=−1.根据上述材料,解决以下问题:(1)(2分)直接应用:方程4−52+6=0的解为;(2)(3分)间接应用:已知实数a,b满足:24−72+1=0,24−72+1=0且≠,求4+4的值;(3)(4分)拓展应用:已知实数m,n满足:14+12=7,2−=7且>0,求14+2的值.【答案】(1)1=2,2=−2,3=3,4=−3(2)解:∵≠,∴2≠2或2=2(=−p①当2≠2时,令2=,2=,∴≠则22−7+1=0,22−7+1=0,∴,是方程22−7+1=0的两个不相等的实数根,∴+=72B=12,此时4+4=2+2=(+p2454;②当2=2(=−p时,2=此时4+4=24=2=综上:4+4=454或(3)解:令12=,−=,则2+−7=0,2+−7=0,∵>0,∴12≠−即≠,∴,是方程∴+=−1B=−7,故14+2=2+2=(+p2−2B=15.22.(9分)阅读理解:【材料一】若三个非零实数x,y,z中有一个数的平方等于另外两个数的积,则称三个实数x,y,z构成“友好数”.【材料二】若关于x的一元二次方程B2+B+=0(a≠0)的两根分别为1,2,则有:1+2=−,1⋅2=.问题解决:(1)(2分)实数4,6,9可以构成“友好数”吗?请说明理由;(2)(3分)若1(,1),2(−1,2),3(+1,3)三点均在函数=(k为常数且≠0)的图象上,且这三点的纵坐标1,2,3构成“友好数”,求实数t的值;(3)(4分)设三个实数1,2,3是“友好数”且满足0<1<3<2,其中1,2是关于x的一元二次方程B2+B+=0(≠0)的两个根,3是抛物线=B2+B+o≠0)与x轴的一个交点的横坐标.①++的值等于;②设=,=2+B2,求y关于x的函数关系式.【答案】(1)解:∵62=4×9,∴4,6,9可以构成“友好数”;(2)解:∵y1,y2,y3构成“友好数”,∴有三种可能:①12=23,由题得12=23,即t2=(t﹣1)(t+1),无解.②22=13,由题得22=13,即(t﹣1)2=t(t+1),解得=13.③32=12,由题得32=12,即(t+1)2=t(t﹣1),解得=−13.∴满足条件的=13或=−13;(3)解:①0②由①得a+b+c=0,两边同除以a,得1++=0,∴=−−1,∴=2+B2=()2+=()2−−1=2−−1,即函数关系式为:=2−−1.23.(10分)定义,若关于x的一元二次方程B2+B+=0(≠0)的两个实数根为1,2(1≤2),分别以1,2为横坐标和纵坐标得到点o1,2),则称点M为该一元二次方程的的衍生点.(1)(3分)若方程为2−3=0,写出该方程的的衍生点M的坐标.(2)(3分)若关于x的一元二次方程2−(5+1)+5=1的衍生点为M,过点M向x轴和y轴作垂线,两条垂线与坐标轴恰好围成一个正方形,求m的值.(3)(4分)是否存在b,c,使得不论k(≠0)为何值,关于x的方程2+B+=0的衍生点M始终在直线=B+2(+3)的图象上,若有请求出b,c的值,若没有说明理由.【答案】(1)解:∵2−3=0,∴x(x-3)=0,解得:1=0,2=3,故方程x2-3x=0的衍生点为M(0,3).(2)解:∵2−(5+1)+5=1整理得:2−(5+1)+5−1=0,设方程的两根分别为1、2,且1≤2,由于过点M向两坐标轴作垂线,两条垂线与x轴y轴恰好围成一个正方形,当1=2时,∴△=2−4B=[−(5+1)]2−4×1×(5−1)=0,整理得:52−2+1=0,此时方程无解,当1<2时,则1+2=0,∴5+1=0,解得=−15.(3)解:存在.理由如下:∵直线=B+2(+3)=o+2)+6∴直线过定点o−2,6),∴x2+bx+c=0两个根为1=−2,2=6,∴∴−2+6=−,−2×6=,∴=−4,=−12.24.(10分)如图,四边形ACDE是证明勾股定理时用到的一个图形,a、b、c是RtΔABC和RtΔBED 的边长,已知A=2,这时我们把关于x的形如B2+2B+=0二次方程称为“勾系一元二次方程”.请解决下列问题:(1)(3分)写出一个“勾系一元二次方程”;(2)(3分)求证:关于x的“勾系一元二次方程”B2+2B+=0,必有实数根;(3)(4分)若x=-1是“勾系一元二次方程”B2+2B+=0的一个根,且四边形ACDE的周长是62,求ΔABC的面积.【答案】(1)解:当a=3,b=4,c=5时,勾系一元二次方程为32+52+4=0(2)解:依题意得△=(2)2-4ab=2c2-4ab,∵a2+b2=c2,∴2c2-4ab=2(a2+b2)-4ab=2(a-b)2≥0,即△≥0,故方程必有实数根;(3)解:把x=-1代入得a+b=2c∵四边形ACDE的周长是62,即2(a+b)+2c=62,故得到c=2,∴a2+b2=4,a+b=22∵(a+b)2=a2+b2+2ab∴ab=2,故ΔABC的面积为12ab=1.。

中考总复习:一元二次方程、分式方程的解法及应用--知识讲解(基础)

中考总复习:一元二次方程、分式方程的解法及应用--知识讲解(基础)

中考总复习:一元二次方程、分式方程的解法及应用—知识讲解(基础)【考纲要求】1.理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程;2. 会解分式方程,解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想. 【知识网络】【考点梳理】考点一、一元二次方程 1.一元二次方程的定义只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程.它的一般形式为20ax bx c ++=(a ≠0). 2.一元二次方程的解法(1)直接开平方法:把方程变成2x m =的形式,当m >0时,方程的解为x m =m =0时,方程的解1,20x =;当m <0时,方程没有实数解.(2)配方法:通过配方把一元二次方程20ax bx c ++=变形为222424b b ac x a a -⎛⎫+= ⎪⎝⎭的形式,再利用直接开平方法求得方程的解.(3)公式法:对于一元二次方程20ax bx c ++=,当240b ac -≥时,它的解为242b b acx a-±-=.(4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解. 要点诠释:直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一般方法.3.一元二次方程根的判别式一元二次方程根的判别式为ac 4b 2-=∆. △>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根; △<0⇔方程没有实数根.上述由左边可推出右边,反过来也可由右边推出左边. 要点诠释:△≥0⇔方程有实数根. 4.一元二次方程根与系数的关系如果一元二次方程0c bx ax 2=++(a ≠0)的两个根是21x x 、,那么ac x x a b x x 2121=⋅-=+,.考点二、分式方程 1.分式方程的定义分母中含有未知数的有理方程,叫做分式方程. 要点诠释:(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量.(2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程.2.分式方程的解法去分母法,换元法. 3.解分式方程的一般步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程; (2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公 分母等于零的根是原方程的增根.口诀:“一化二解三检验”. 要点诠释:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.考点三、一元二次方程、分式方程的应用 1.应用问题中常用的数量关系及题型 (1)数字问题(包括日历中的数字规律)关键会表示一个两位数或三位数,对于日历中的数字问题关键是弄清日历中的数字规律. (2)体积变化问题关键是寻找其中的不变量作为等量关系. (3)打折销售问题其中的几个关系式:利润=售价-成本价(进价),利润率=利润成本价×100%.明确这几个关系式是解决这类问题的关键. (4)关于两个或多个未知量的问题重点是寻找到多个等量关系,能够设出未知数,并且能够根据所设的未知数列出方程. (5)行程问题对于相遇问题和追及问题是列方程解应用题的重点问题,也是易出错的问题,一定要分析其中的特点,同向而行一般是追及问题,相向而行一般是相遇问题.注意:追及和相遇的综合题目,要分析出哪一部分是追及,哪一部分是相遇. (6)和、差、倍、分问题 增长量=原有量×增长率; 现有量=原有量+增长量; 现有量=原有量-降低量.2.解应用题的步骤(1)分析题意,找到题中未知数和题给条件的相等关系; (2)设未知数,并用所设的未知数的代数式表示其余的未知数; (3)找出相等关系,并用它列出方程; (4)解方程求出题中未知数的值;(5)检验所求的答数是否符合题意,并做答.要点诠释:方程的思想,转化(化归)思想,整体代入,消元思想,分解降次思想,配方思想,数形结合的思想用数学表达式表示与数量有关的语句的数学思想.注意:①设列必须统一,即设的未知量要与方程中出现的未知量相同;②未知数设出后不要漏棹单位;③列方程时,两边单位要统一;④求出解后要双检,既检验是否适合方程,还要检验是否符合题意. 【典型例题】类型一、一元二次方程1.用配方法解一元二次方程:2213x x += 【思路点拨】把二次项系数化为1,常数项右移,方程两边都加上一次项系数一半的平方,再用直接开平方法解出未知数的值. 【答案与解析】移项,得2231x x -=-二次项系数化为1,得23122x x -=- 配方22233132424x x ⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭231416x ⎛⎫-= ⎪⎝⎭ 由此可得3144x -=± 11x =,212x =【总结升华】用配方法解一元二次方程的一般步骤: ①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程 无实数解.举一反三:【变式】用配方法解方程x 2-7x-1=0. 【答案】将方程变形为x 2-7x=1,两边加一次项系数的一半的平方,得x 2-7x+=1+,所以有=1+.直接开平方,得x-=或x-=-.所以原方程的根为 x=7+532或x=7-532.2.已知关于x 的一元二次方程mx 2﹣(m+2)x+2=0.(1)证明:不论m 为何值时,方程总有实数根; (2)m 为何整数时,方程有两个不相等的正整数根. 【思路点拨】判别式大于0,二次项系数不等于0.【答案与解析】(1)证明:△=(m+2)2﹣8m =m 2﹣4m+4=(m ﹣2)2,∵不论m 为何值时,(m ﹣2)2≥0, ∴△≥0,∴方程总有实数根; (2)解:解方程得,x=,x 1=2m,x 2=1, ∵方程有两个不相等的正整数根, ∴m=1或2,∵m=2不合题意, ∴m=1.【总结升华】(1)注意隐含条件m ≠0;(2)注意整数根的限制条件的应用,求出m 的值,要验证m 的值是否符合题意.举一反三:【变式】已知关于x 的方程2(2)210x m x m +++-=.(1)求证方程有两个不相等的实数根.(2)当m 为何值时,方程的两根互为相反数?并求出此时方程的解. 【答案】(1)证明:因为△=)12(4)2(2--+m m =4)2(2+-m所以无论m 取何值时, △>0,所以方程有两个不相等的实数根. (2)解:因为方程的两根互为相反数,所以021=+x x ,根据方程的根与系数的关系得02=+m ,解得2-=m ,所以原方程可化为052=-x ,解得51=x ,52-=x .类型二、分式方程3.解分式方程:=﹣.【思路点拨】先去分母将分式方程化为整式方程,求出整式方程的解,再进行检验. 【答案与解析】解:方程两边同乘以(2x+1)(2x ﹣1),得 x+1=3(2x-1)-2(2x+1) x+1=2x-5, 解得x=6.检验:x=6是原方程的根. 故原方程的解为:x=6.【总结升华】首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根. 举一反三:【变式1】解分式方程:21233x x x -+=--. 【答案】方程两边同乘以3x -,得22(3)1x x -+-=. 2261x x -+-=. 5x =.经检验:5x =是原方程的解,所以原方程的解是5x =.【变式2】方程22123=-+--xx x 的解是x= . 【答案】0x =.4.若解分式方程2111(1)x m x x x x x++-=++产生增根,则m 的值是( ) A.B.C.D.【思路点拨】先把原方程化为整式方程,再把可能的增根分别代入整式方程即可求出m 的值. 【答案】D ;【解析】由题意得增根是:化简原方程为:把代入解得2m =-或1,故选择D.【总结升华】分式方程产生的增根,是使分母为零的未知数的值. 举一反三:【变式】若关于x 的方程2332+-=--x mx x 无解,则m 的值是 . 【答案】1.类型三、一元二次方程、分式方程的应用5.轮船在一次航行中顺流航行80千米,逆流航行42千米,共用了7小时;在另一次航行中,用相同的时间,顺流航行40千米,逆流航行70千米.求这艘轮船在静水中的速度和水流速度.【思路点拨】在航行问题中的等量关系是“顺流速度=静水速度+水流速度; 逆流速度=静水速度-水流速度”,两次航行提供了两个等量关系. 【答案与解析】设船在静水中的速度为x 千米/小时,水流速度为y 千米/小时由题意,得解得:经检验:是原方程的根x y x y ==⎧⎨⎩==⎧⎨⎩173173 答:水流速度为3千米/小时,船在静水中的速度为17千米/小时. 【总结升华】流水问题公式:顺流速度=静水速度+水流速度; 逆流速度=静水速度-水流速度; 静水速度=(顺流速度+逆流速度)÷2;水流速度=(顺流速度-逆流速度)÷2.举一反三:【变式】甲、乙两班同学参加“绿化祖国”活动,已知乙班每小时比甲班多种2棵树,甲班种60棵所用的时间与乙班种66棵树所用的时间相等,求甲、乙两班每小时各种多少棵树? 【答案】设甲班每小时种x 棵树,则乙班每小时种(x+2)棵树, 由题意得:答:甲班每小时种树20棵,乙班每小时种树22棵.6.某服装厂生产一批西服,原来每件的成本价是500元,销售价为625元,经市场预测,该产品销售价第一个月将降低20%,第二个月比第一个月提高6%,为了使两个月后的销售利润达到原来水平,该产品的成本价平均每月应降低百分之几?【思路点拨】设该产品的成本价平均每月降低率为x ,那么两个月后的销售价格为625(1-20%)(1+6%),两个月后的成本价为500(1-x )2,然后根据已知条件即可列出方程,解方程即可求出结果. 【答案与解析】设该产品的成本价平均每月应降低的百分数为x . 625(1-20%)(1+6%)-500(1-x )2=625-500 整理,得500(1-x )2=405,(1-x )2=0.81. 1-x=±0.9,x=1±0.9, x 1=1.9(舍去),x 2=0.1=10%.答:该产品的成本价平均每月应降低10%. 【总结升华】题目中该产品的成本价在不断变化,销售价也在不断变化,•要求变化后的销售利润不变,即利润仍要达到125元,•关键在于计算和表达变动后的销售价和成本价.中考总复习:一元二次方程、分式方程的解法及应用—巩固练习(基础)【巩固练习】 一、选择题1. 用配方法解方程2250x x --=时,原方程应变形为( )A .()216x +=B .()216x -= C .()229x += D .()229x -=2.关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( ) A .1 B .12C .13D .253.关于x 的一元二次方程kx 2+2x+1=0有两个不相等的实数根,则k 的取值范围是( ) A .k >﹣1 B .k≥﹣1 C .k≠0 D .k <1且k≠04.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于( )A .1B .2C .1或2D .05.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( ).A .213014000x x +-=B .2653500x x +-= C .213014000x x --= D .2653500x x --=6.甲、乙两地相距S 千米,某人从甲地出发,以v 千米/小时的速度步行,走了a 小时后改乘汽车,又过b 小时到达乙地,则汽车的速度( ) A. B. C. D.二、填空题 7.方程﹣=0的解是 .8.如果方程ax 2+2x +1=0有两个不等实根,则实数a 的取值范围是___ ___.9.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 __ .10.当m 为 时,关于x 的一元二次方程02142=-+-m x x 有两个相等的实数根;此时这两个实数根是 .11.如果分式方程1+x x =1+x m 无解, 则 m = . 12.已知关于x 的方程 x 1 - 1-x m= m 有实数根,则 m 的取值范围是 .三、解答题 13. (1)解方程:x x x x 4143412+-=---; (2)解方程:x x x x221103+++=.14.一列火车从车站开出,预计行程450千米,当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地,求这列火车的速度.15.已知关于x 的方程x 2+(2m ﹣1)x+m 2=0有实数根, (1)求m 的取值范围;(2)若方程的一个根为1,求m 的值;(3)设α、β是方程的两个实数根,是否存在实数m 使得α2+β2﹣αβ=6成立?如果存在,请求出来,若不存在,请说明理由.16.如图,利用一面墙,用80米长的篱笆围成一个矩形场地(1)怎样围才能使矩形场地的面积为750平方米? (2)能否使所围的矩形场地面积为810平方米,为什么? 【答案与解析】 一、选择题 1.【答案】B ;【解析】根据配方法的步骤可知在方程两边同时加上一次项系数一半的平方,整理即可得到B 项是正确的.2.【答案】C ;【解析】∵22127x x += ∴221212)22(21)7x x x x m m +-=--=(, 解得m=5(此时不满足根的判别式舍去)或m=-1.原方程化为230x x +-=,212()x x -=21212()411213.x x x x +-=+=3.【答案】D ;【解析】依题意列方程组,解得k <1且k≠0.故选D . 4.【答案】B ;【解析】有题意2320,10m m m -+=-且≠,解得2m =.5.【答案】B ;【解析】(80+2x )(50+2x )=5400,化简得2653500+-=x x . 6.【答案】B ;【解析】由已知,此人步行的路程为av 千米,所以乘车的路程为千米。

2021年中考数学课时练 课时10一元二次方程根的判别式及根与系数

2021年中考数学课时练 课时10一元二次方程根的判别式及根与系数

2021年中考数学课时练课时10一元二次方程根的判别式及根与系数2021年中考数学课时练-课时10一元二次方程根的判别式及根与系数2022中考数学课堂实践课时10.一元二次方程根的判别式及根与系数的关系【课前热身】一.一元二次方程x2-2x-1=0的根的情况为()a、有两个相等的实根B。

有两个不相等的实根C。

只有一个实根d。

没有实根2.若方程kx2-6x+1=0有两个不相等的实数根,则k的取值范围是____________.3.设x1、x2是方程3x2+4x-5=0的两根,则11??________,. x12+x22=_________________。

X1x24。

方程X 2x2+(m2-9)X+m+1=0,当m=____________________;当m=___________________5.若x1=2?1是二次方程x2+ax+1=0的一个根,则a=____,该方程的另一个根x2=_______.【知识整理】一.一元二次方程(δ)根的判别式:关于x的一元二次方程ax2?bx?c?0?a?0?的根的判别式为_________________.(1)b?4ac>0?一元二次方程ax2?bx?c?0?a?0?有两个____________实数根,即2x1,2?___________。

(2)b?4ac=0?一元二次方程有_______相等的实数根,即x1?x2?__________.2(3)b?4ac<0?一元二次方程AX?bx?C0 a?0?______ 实数根222.一元二次方程根与系数的关系(韦达定理):如果一元二次方程AX关于x?bx?C如果0(a×0)中的两个分别为X1和X2,则2x1?x2?_________,x1?x2?__________.3.易出错知识的识别:(1)在使用根的判别式解决问题时,如果二次项系数中含有字母,要加上二次项系数不为零这个限制条件.(2)在应用一元二次方程的根与系数之间的关系时,我们应注意:① 根B的判别式?4ac?0②二次项系数a?0,即只有在一元二次方程有根的前提下,才能应用根与系数的关系.22022中考数学课堂实践【例题讲解】例1当k是什么值时,方程x2-6x+k-1=0,(1)两根相等;(2)有一根为0;(3)两根互为倒数.y2?4x① 例2如果方程?只有一组实数解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

﹡课时10.一元二次方程根的判别式及根与系数的关系
【课前热身】
1.一元二次方程2210x x --=的根的情况为( )
A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根
D.没有实数根
2. 若方程kx 2-6x +1=0有两个不相等的实数根,则k 的取值范围是 .
3.设x 1、x 2是方程3x 2+4x -5=0的两根,则
=+2
11
1x x ,.x 12+x 22= . 4.关于x 的方程2x 2+(m 2-9)x +m +1=0,当m = 时,两根互为倒数; 当m = 时,两根互为相反数.
5.若x 1 =23-是二次方程x 2+ax +1=0的一个根,则a = ,该方程的另一个根x 2 = .
【考点链接】
1. 一元二次方程根的判别式:
关于x 的一元二次方程()002≠=++a c bx ax 的根的判别式为 . (1)ac b 42->0⇔一元二次方程()002≠=++a c bx ax 有两个 实数根,
即=2,1x .
(2)ac b 42-=0⇔一元二次方程有 相等的实数根,即
==21x x .
(3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根. 2. 一元二次方程根与系数的关系
若关于x 的一元二次方程20(0)ax bx c a ++=≠有两根分别为1x ,2x ,那么
=+21x x ,=⋅21x x .
3.易错知识辨析:
(1)在使用根的判别式解决问题时,如果二次项系数中含有字母,要加上二
次项系数不为零这个限制条件.
(2)应用一元二次方程根与系数的关系时,应注意:
① 根的判别式042≥-ac b ;
② 二次项系数0a ≠,即只有在一元二次方程有根的前提下,才能应用根与系数的关系.
【典例精析】
例1 当k 为何值时,方程2610x x k -+-=,
(1)两根相等;(2)有一根为0;(3)两根为倒数.
例2 下列命题:
① 若0a b c ++=,则240b ac -≥;
② 若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ③ 若23b a c =+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ④ 若240b ac ->,则二次函数的图像与坐标轴的公共点的个数是2或3. 其中正确的是( ) A.只有①②③ B.只有①③④ C.只有①④ D.只有②③④. 例3 菱形ABCD 的一条对角线长为6,边AB 的长是方程01272=+-x x 的一个
根,则菱形ABCD 的周长为 .
【中考演练】
1.设x 1,x 2是方程2x 2+4x -3=0的两个根,则(x 1+1)(x 2+1)= __________,x 12+x 22=_________,
12
11
x x +=__________,(x 1-x 2)2=_______. 2.当c =__________时,关于x 的方程2280x x c ++=有实数根.(填一个符合要
求的数即可)
3. 已知关于x 的方程2(2)20x a x a b -++-=的判别式等于0,且1
2
x =
是方程的根,则a b +的值为 .
4. 已知a b ,是关于x 的方程2(21)(1)0x k x k k -+++=的两个实数根,则22
a b +的最小值是

5.已知α,β是关于x 的一元二次方程22(23)0x m x m +++=的两个不相等的实数根,且满足11
1αβ
+=-,则m 的值是( )
A.3或1-
B.3 C.1 D.3-或1
6.一元二次方程2310x x -+=的两个根分别是12x x ,,则221212x x x x +的值是( ) A.3
B.3-
C.1
3
D.13
-
7.若关于x 的一元二次方程02.2=+-m x x 没有实数根,则实数m 的取值范围是( )
A .m<l
B .m>-1
C .m>l
D .m<-1 8.设关于x 的方程kx 2-(2k +1)x +k =0的两实数根为x 1、x 2,,若,4
171221=+x x x x 求k 的值.
9.已知关于x 的一元二次方程()2120x m x m --++=.
(1)若方程有两个相等的实数根,求m 的值;
(2)若方程的两实数根之积等于292m m -+。

相关文档
最新文档