一元二次方程根的判别式练习题及答案

合集下载

根的判别式练习题(含答案)

根的判别式练习题(含答案)

根的判别式练习题一.填空题(共9小题)1.方程x2﹣5x﹣1=0的根的判别式的值为.2.若关于x的方程x2﹣mx+m=0有两个相等的实数根,则m的值为.3.已知关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k的值为.4.若关于x的一元二次方程k2x2+(4k﹣1)x+4=0有两个不同的实数根,则k的取值范围是.5.等腰三角形ABC的三条边长分别为4,a,b,若关于x的一元二次方程x2+(a+2)x+6﹣a=0有两个相等的实数根,则△ABC的周长是.6.等腰△ABC中,BC=8,AB、AC的长是关于x的方程x2﹣10x+m=0的两根,则m的值是.7.如果恰好只有一个实数a是方程(k2﹣9)x2﹣2(k+1)x+1=0的根,则k的值为.8.若方程x2+2(1+a)x+3a2+4ab+4b2+2=0有实根,则=9.已知双曲线y=与直线y=﹣x+1没有交点,则b的取值范围是.二.解答题(共5小题)10.已知关于x的一元二次方程.(1)求证:对于任意实数m,该方程总有两个不相等实数根;(2)如果此方程有一个根为0,求m的值.11.已知关于x的方程(k﹣2)x2﹣2x+1=0有两个实数根.(1)求k的取值范围;(2)当k取最大整数时,求此时方程的根.12.已知关于x的一元二次方程2x2﹣3mx+m2+m﹣3=0(m为常数).(1)求证:无论m为何值,方程总有两个不相等的实数根:(2)若x=2是方程的根,则m的值为.13.已知:关于x的一元二次方程x2﹣(3m+1)x+2m2+m=0(1)求证:无论m取何值,这个方程总有实数根;(2)若△ABC的两边的长是这个方程的两个实数根,第三边的长为3,当△ABC为等腰三角形时,求m的值及△ABC的周长.14.已知关于x的方程x2﹣(k+2)x+2k=0.(1)试说明:无论k取什么实数值,方程总有实数根.(2)若等腰△ABC的一边长a为1,另两边长b、c恰好是这个方程的两个实数根,求△ABC的周长?参考答案与试题解析一.填空题(共9小题)1.方程x2﹣5x﹣1=0的根的判别式的值为29.【分析】根据方程的系数结合根的判别式,可得出Δ=29,此题得解.【解答】解:∵a=1,b=﹣5,c=﹣1,∴Δ=b2﹣4ac=(﹣5)2﹣4×1×(﹣1)=29.故答案为:29.【点评】本题考查了根的判别式,牢记根的判别式Δ=b2﹣4ac是解题的关键.2.若关于x的方程x2﹣mx+m=0有两个相等的实数根,则m的值为0或4.【分析】根据方程的系数结合根的判别式Δ=0,即可得出关于m的方程,解之即可求出m的值.【解答】解:∵关于x的方程x2﹣mx+m=0有两个相等的实数根,∴Δ=(﹣m)2﹣4×1×m=0,解得:m1=0,m2=4,∴m的值为0或4.故答案为:0或4.【点评】本题考查了根的判别式,牢记“当Δ=0时,方程有两个相等的实数根”是解题的关键.3.已知关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,则k的值为2.【分析】由关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,即可得判别式Δ=0,继而可求得k的值.【解答】解:∵关于x的一元二次方程x2﹣2x+k=0有两个相等的实数根,∴Δ=b2﹣4ac=(﹣2)2﹣4×1×k=8﹣4k=0,解得:k=2,故答案为:2.【点评】此题考查了一元二次方程判别式的知识.此题比较简单,注意掌握一元二次方程有两个相等的实数根,即可得Δ=0.4.若关于x的一元二次方程k2x2+(4k﹣1)x+4=0有两个不同的实数根,则k的取值范围是且k≠0.【分析】根据一元二次方程的定义及根的判别列出不等式组求解即可.【解答】解:根据题意可知,.解得:且k≠0,故答案为:且k≠0.【点评】本题主要考查一元二次方程的定义及根的判别式,根据题意列出不等式组是解题的关键.5.等腰三角形ABC的三条边长分别为4,a,b,若关于x的一元二次方程x2+(a+2)x+6﹣a=0有两个相等的实数根,则△ABC的周长是10.【分析】根据根的判别式的意义得到Δ=(a+2)2﹣4(6﹣a)=0,进而可由三角形三边关系定理确定等腰三角形的三边长,即可求得其周长.【解答】解:根据题意得Δ=(a+2)2﹣4(6﹣a)=0,解得a1=﹣10(负值舍去),a2=2,在等腰△ABC中,①4为底时,则b=a=2,∵2+2=4,∴不能组成三角形;②4为腰时,b=4,∵2+4>4,∴能组成三角形,∴△ABC的周长=4+4+2=10.综上可知,△ABC的周长是10.故答案为:10.【点评】此题考查了根的判别式、等腰三角形的性质及三角形三边关系定理;在求三角形的周长时,不能盲目的将三边相加,而应在三角形三边关系定理为前提条件下分类讨论,以免造成多解、错解.6.等腰△ABC中,BC=8,AB、AC的长是关于x的方程x2﹣10x+m=0的两根,则m的值是25或16.【分析】等腰△ABC中,BC可能是方程的腰也可能是方程的底边,应分两种情况进行讨论.当BC是底边时,AB=AC,则方程x2﹣10x+m=0有两个相等的实根,即Δ=0,即可得到关于m的方程,求得m的值;当BC是腰时,则方程一定有一个解是x=8,根据一元二次方程的根与系数的关系即可求得另一边,即底边与m的值.【解答】解:在方程x2﹣10x+m=0中,x1+x2=10,当这两边是等腰三角形的腰时,有x1=x2=5,∴x1x2=25=m,当这两边的长有一边为8时,有8+x2=10,∴x2=2,m=x1x2=2×8=16,∴m=25或16.故答案为:25或16.【点评】本题考查了一元二次方程的根与系数的关系及等腰三角形中有两边相等的性质,关键掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.7.如果恰好只有一个实数a是方程(k2﹣9)x2﹣2(k+1)x+1=0的根,则k的值为±3或﹣5.【分析】分原方程是一元一次方程和一元二次方程两种情况讨论即可得到答案.【解答】解:①当原方程是一个一元一次方程时,方程只有一个实数根,则k2﹣9=0,解得k=±3,②如果方程是一元二次方程时,则方程有两个相等的实数根,即Δ=b2﹣4ac=0,即:4(k+1)2﹣4(k2﹣9)=0解得:k=﹣5.故答案为±3或﹣5.【点评】本题考查了根的判别式,同时还考查了分类讨论思想,是一道好题.8.若方程x2+2(1+a)x+3a2+4ab+4b2+2=0有实根,则=﹣.【分析】由二次方程有实根,得到△≥0,即Δ=4(1+a)2﹣4(3a2+4ab+4b2+2)≥0,通过代数式变形可得两个非负数的和小于或等于0,从而得到a,b的方程组,解方程组即可求出它们的比.【解答】解:∵方程有实根,∴△≥0,即Δ=4(1+a)2﹣4(3a2+4ab+4b2+2)≥0,化简得:2a2+4ab+4b2﹣2a+1≤0,∴(a+2b)2+(a﹣1)2≤0,而(a+2b)2+(a﹣1)2≥0,∴a+2b=0,a﹣1=0,解得a=1,b=﹣,所以=﹣.故答案为﹣.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式Δ=b2﹣4ac.当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.同时考查了几个非负数和的性质以及代数式变形的能力.9.已知双曲线y=与直线y=﹣x+1没有交点,则b的取值范围是b>.【分析】根据方程解析式,可以得到=﹣x+1,即可转化为一个一元二次方程,利用判别式求出b的取值范围.【解答】解:因为双曲线y=与直线y=﹣x+1没有交点,即方程=﹣x+1无解,去分母,得x2﹣x+b=0,∴Δ=b2﹣4ac=(﹣1)2﹣4×1×b=1﹣4b<0,解得b>.【点评】考查一元二次方程根的判别式和双曲线与直线的位置关系,同时考查综合应用能力及推理能力.二.解答题(共5小题)10.已知关于x的一元二次方程.(1)求证:对于任意实数m,该方程总有两个不相等实数根;(2)如果此方程有一个根为0,求m的值.【分析】(1)求出Δ=1,即可证明方程总有两个不相等实数根;(2)把x=0代入可得关于m的一元二次方程,即可解得答案.【解答】(1)证明:对关于x的一元二次方程,Δ=[﹣(m﹣1)]2﹣4×(m2﹣2m)=m2﹣2m+1﹣m2+2m=1,∴Δ>0,∴对于任意实数m,一元二次方程总有两个不相等实数根;(2)解:如果此方程有一个根为0,则×02﹣(m﹣1)×0+(m2﹣2m)=0,∴m2﹣2m=0,解得m=0或m=2,答:m的值为0或2.【点评】本题考查一元二次方程根的判别式及解一元二次方程,解题的关键是掌握根的判别式△与根个数的关系以及解一元二次方程的方法步骤,此题难度不大.11.已知关于x的方程(k﹣2)x2﹣2x+1=0有两个实数根.(1)求k的取值范围;(2)当k取最大整数时,求此时方程的根.【分析】(1)根据二次项系数非零及根的判别式Δ≥0列出关于k的不等式组,求解即可.(2)由(1)中k的取值范围得出符合条件的k的值,代入原方程,求解即可.【解答】解:(1)∵关于x的方程(k﹣2)x2﹣2x+1=0有两个实数根,∴,解得k≤3且k≠2.(2)由题意得,k=3,当k=3时,方程为x2﹣2x+1=0,即(x﹣1)2=0,解得x1=x2=1.【点评】本题考查一元二次方程,牢记:一元二次方程ax2+bx+c=0(a≠0)的根的判别式为Δ=b2﹣4ac,当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实根.12.已知关于x的一元二次方程2x2﹣3mx+m2+m﹣3=0(m为常数).(1)求证:无论m为何值,方程总有两个不相等的实数根:(2)若x=2是方程的根,则m的值为.【分析】(1)根据根的判别式求出Δ=(m﹣4)2+8,再根据根的判别式得出答案即可;(2)把x=2代入方程,得出关于m的一元二次方程,再求出方程的解即可.【解答】(1)证明:2x2﹣3mx+m2+m﹣3=0,Δ=(﹣3m)2﹣4×2×(m2+m﹣3)=9m2﹣8m2﹣8m+24=m2﹣8m+24=(m﹣4)2+8,因为不论m为何值,(m﹣4)2≥0,即Δ>0,所以无论m为何值,方程总有两个不相等的实数根:(2)解:把x=2代入方程2x2﹣3mx+m2+m﹣3=0得:2×22﹣3m×2+m2+m﹣3=0,整理得:m2﹣5m+5=0,解得:m=,故答案为:.【点评】本题考查了解一元二次方程,根的判别式,一元二次方程的解等知识点,能熟记根的判别式的内容和一元二次方程的解的定义是解此题的关键.13.已知:关于x的一元二次方程x2﹣(3m+1)x+2m2+m=0(1)求证:无论m取何值,这个方程总有实数根;(2)若△ABC的两边的长是这个方程的两个实数根,第三边的长为3,当△ABC为等腰三角形时,求m的值及△ABC的周长.【分析】(1)根据方程的系数结合根的判别式,即可得出Δ=(m+1)2≥0,由此可证出:无论m取何值,这个方程总有实数根;(2)分3为底边及3为腰长两种情况考虑:①当3为底边时,根据等腰三角形的性质可得出m的值,结合根与系数的关系可求出两根之和,由该值为负值可得出该结论不符合题意;②当3为腰长时,代入x=3可求出m值,再利用根与系数的关系结合三角形的三边关系可求出△ABC的周长.综上即可得出结论.【解答】(1)证明:∵a=1,b=﹣(3m+1),c=2m2+m,∴Δ=[﹣(3m+1)]2﹣4(2m2+m)=m2+2m+1=(m+1)2≥0,∴无论m取何值,这个方程总有实数根;(2)解:设方程的两根为x1,x2.①当3为底边时,则两腰的长是方程的两根,∴Δ=(m+1)2=0,∴m=﹣1,∴x1+x2=3m+1=3×(﹣1)+1=﹣2<0,∴此种情况不合题意,舍去;②当3为腰时,把x=3代入方程x2﹣(3m+1)x+2m2+m=0得:9﹣3(3m+1)+2m2+m=0,解得m1=1,m2=3.当m=1时,x1+x2=3m+1=4,△ABC的周长为7;当m=3时,x1+x2=3m+1=10,此时腰长为3,底为7,∵3+3<7,∴此种情况不合题意,舍去.综上所述:m的值为1,△ABC的周长为7.【点评】本题考查了根的判别式、根与系数的关系、一元二次方程的解、等腰三角形的性质以及三角形三边关系,解题的关键是:(1)牢记“当△≥0时,方程有实数根”;(2)分3为底边及3为腰长两种情况考虑.14.已知关于x的方程x2﹣(k+2)x+2k=0.(1)试说明:无论k取什么实数值,方程总有实数根.(2)若等腰△ABC的一边长a为1,另两边长b、c恰好是这个方程的两个实数根,求△ABC的周长?【分析】(1)把一元二次方程根的判别式转化成完全平方式的形式,得出△≥0可知方程总有实数根;(2)根据等腰三角形的性质分情况讨论求出b,c的长,并根据三角形三边关系检验,综合后求出△ABC的周长.【解答】(1)证明:∵Δ=b2﹣4ac=(k+2)2﹣8k=(k﹣2)2≥0,∴无论k取任意实数值,方程总有实数根;(2)解:分两种情况:①若b=c,∵方程x2﹣(k+2)x+2k=0有两个相等的实数根,∴Δ=b2﹣4ac=(k﹣2)2=0,解得k=2,∴此时方程为x2﹣4x+4=0,解得x1=x2=2,∴△ABC的周长为5;②若b≠c,则b=a=1或c=a=1,即方程有一根为1,∵把x=1代入方程x2﹣(k+2)x+2k=0,得1﹣(k+2)+2k=0,解得k=1,∴此时方程为x2﹣3x+2=0,解得x1=1,x2=2,∴方程另一根为2,∵1、1、2不能构成三角形,∴所求△ABC的周长为5.综上所述,△ABC的周长为5.。

一元二次方程解法判别式练习题(附答案)

一元二次方程解法判别式练习题(附答案)

一元二次方程解法判别式练习题A.2m =±B.2m =C.2m =-D.2m ≠±B.2112y ⎛⎫-= ⎪⎝⎭D.21324y ⎛⎫-= ⎪⎝⎭ 3.关于x 的一元二次方程2(1)320a x x -+-=有实数根,则a 的取值范围是( )A.18a >-B.18a ≥-C. 18a >-且1a ≠D. 18a ≥-且1a ≠4.方程5(3)3(3)x x x +=+的解为( )A.123,35x x ==B.35x = C.123,35x x =-=- D.123,35x x ==- 5.抛物线23(2)5y x =-+的顶点坐标是( ) A.(2,5)- B.(2,5)-- C.(2,5) D.(2,5)-6.将抛物线22(4)1y x =--先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为( )A.221y x =+B.223y x =-C.22(8)1y x =-+D.22(8)3y x =-- 7.二次函数22(2)1y x =+-的图象是( )A. B. C. D. 8.一元二次方程231=25x x -+两实数根的和与积分别是( )9.在同一坐标系中,一次函数2y ax =+与二次函数2y x a =+的图象可能是( ) A. B. C.D. 10.抛物线22212,2,2y x y x y x ==-=的共同性质是( ) A.开口向上B.对称轴是y 轴C.都有最高点D. y 随x 的增大而增大11.若三角形的两边长分别是4和6,第三边的长是方程2560x x -+=的一个根,则这个三角形的周长是( )A.13B.16C.12或13D.11或1612.已知一元二次方程2(3)1x -=的两个解恰好分别是等腰三角形ABC 的底边长和腰长,则ABC △的周长为( )A.10B.10或8C.9D.813.下列一元二次方程中,有两个不相等实数根的是( )A.2690x x ++=B.2x x =C.232x x +=D. 2(1)10x -+=14.已知x 为实数,且满足222(3)2(3)30x x x x +++-=,那么23x x +的值为( )A.1B.3-或1C.3D.1-或315.一种药品原价每盒25元,经过两次降价后每盒16元设两次降价的百分率都为x ,则x 满足()A.16(12)25x +=B.25(12)16x -=C.216(1)25x +=D.225(1)16x -=16.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每名同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意可列出的方程是( )A.(1)210x x +=B.(1)210x x -=C.2(1)210x x -=参考答案1.答案:B方程,故2m =2.答案:B3.答案:D解析:根据一元二次方程的定义和根的判别式的意义得到1a ≠且234(1)(2)0a ∆=--⋅-≥,然后求出两个不等式解集的公共部分即可. 4.答案:D解析:移项得5(3)3(3)0x x x +-+=,将方程等号左边因式分解得(53)(3)0x x -+=,所以530x -=或30x +=,解得123,35x x ==-. 5.答案:C解析:因为23(2)5y x =-+为抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(2,5).故选C.6.答案:A解析:根据抛物线的平移规律“左加右减,上加下减”可得,平移后的抛物线的解析式为22(44)12y x =-+-+,即221y x =+.7.答案:C解析:20a =>,∴抛物线开口方向向上.二次函数的解析式为22(2)1y x =+-,∴顶点坐标为(2,1)--,对称轴为2x =-.故选C.8.答案:B解析:设这个一元二次方程的两个根分别为12,x x ,方程23125x x -=+化为一元二次方程的一般形式为23260x x --=,326a b c ==-=-,,,12122262333b c x x x x a a --∴+=-===-=,=.故选B9.答案:C解析:二次函数的图象开口向上,一次函数的图象与y 轴的交点为(0,2).当0a <时,二次函数的图象顶点在y 轴负半轴上,一次函数的图象经过第一、二、四象限;当0a >时,二次函数的图象顶点在y 轴正半轴上,一次函数的图象经过第一、二、三象限.10.答案:B解析:三条抛物线的开口方向分别为向上、向下、向上,故选项A 错误;三条抛物线的对称轴均为y 轴,故选项B 正确;三条抛物线分别有最低点、最高点、最低点,故选项C 错误;易知选项D 错误.11.答案:A解析:2560x x -+=,(3)(2)0x x ∴--=解得123,2x x ==.三角形的两边长分别是4和6,当3x =时,346+>,能组成三角形,当2x =时,246+=,不能组成三角形,∴这个三角形的第三边长是3,∴这个三角形的周长为46313++=,故选A.12.答案:A解析:解方程2(3)1x -=得124,2x x ==.所以当腰长为4,底边长为2时,其周长为44210++=;当腰长为2,底边长为4时,因为224+=,所以此时不能构成三角形.故选A. 13.答案:B解析:A 、2690x x ++=.264936360∆=-⨯=-=,方程有两个相等实数根;B 、2x x =20x x -=.2(1)41010.∆=--⨯⨯=>方程有两个不相等实数根;C 、232x x +=.2230x x -+=.2(2)41380.∆=--⨯⨯=-<方程无实根;D 、2(1)10x -+=.2(1)1x -=-,则方程无实根;故选:B .14.答案:A解析:设23y x x =+,则原方程可化为2230y y +-=,(3)(1)0y y +-=,解得123,1y y =-=231x x +=时,符合题意;233x x +=-时,2491230b ac ∆=-=-=-<,方程无实数根,不符题意,故选A.15.答案:D解析:一种药品原价每盒25元,两次降价的百分率都为x ,所以第一次降价后的价格用代数式表示为25(1)x -元,第二次降价后的价格用代数式表示为225(1)(1)25(1)x x x --=-元,根据题意可列方程为225(1)16x -=,故选D16.答案:B解析:该组共有x 名同学,则每名同学都要赠送()1x -本,因此可列方程为(1)210x x -=,故选B.。

初中数学一元二次方程根的判别式练习解答题

初中数学一元二次方程根的判别式练习解答题

一元二次方程根的判别式解答题测试1、有两个相等的实数根.求证:a2+b2=c2.2、如果a,b,c是三角形的三条边,求证:关于x的方程a2x2+(a2+b2-c2)x+b2=0无解.3、当a,b为何值时,方程x2+2(1+a)x+(3a2+4ab+4b2+2)=0有实数根.4、已知:关于x的方程x2+(a-8)x+12-ab=0,这里a,b是实数,如果对于任意a值,方程永远有实数解,求b的取值范围.5、一元二次方程(m-1)x2+2mx+m+3=0有两个不相等的实数根,求m的最大整数值.6、k为何值时,方程x2+2(k-1)x+ k2+2k-4=0:(1)有两个相等的实数根;(2)没有实数根;(3)有两个不相等的实数根.7、若方程3kx2-6x+8=0没有实数根,求k的最小整数值.8、m是什么实数值时,方程2(m+3)x2+4mx+2m-2=0:(1)有两个不相等的实数根;(2)没有实数根.9、若方程3x2-7x+3k-2=0有两个不相同的实数根,求k的最大整数值.10、若方程(k+2)x2+4x-2=0有实数根,求k的最小整数值.11、设a为有理数,当b为何值时,方程2x2+(a+1)x-(3a2-4a+b)=0的根对于a的任何值均是有理数?12、k为何值时,方程k2x2+2(k+2)x+1=0:(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)没有实数根.13、已知方程(b-x)2-4(a-x)(c-x)=0(a,b,c为实数).求证(1)此方程必有实根;(2)若此方程有两个相等的实数根,则a= b= c.14、若方程(c2+a2)x+2(b2-c2)x+c2-b2=0有两个相等的实数根,且a,b,c是三角形ABC的三边,证明此三角形是等腰三角形.15、有相等的实数根,求证r1=r2或r1+r2=d.16、求证:方程(x-a)(x-a-b)=1有两个实数根,其中一个大于a,另一个小于a.17、已知方程x2+2x+1+m=0没有实数根.求证方程x2+(m-2)x-m-3=0一定有两个不相等的实数根.18、已知 a,b,c是三角形的三边.求证方程a2x2+(a2+c2-b2)x+c2=0无实数根.19、若方程b(x2-4)+4(b-a)x-c(-4+x2)=0的两个根不相等,且a,b,c为△ABC的三边,求证:△ABC不是等边三角形.20、k为何值时,方程4kx+k=x2+4k2+2:(1)有两个不相等的实数根?(2)有两个相等的实数根?(3)无实数根?21、设实数x满足方程(x-2)2+(kx+2)2=4,求k的最大值.22、23、如果方程(3k-4)x2+6(k+2)x+3k+4=0没有实数根,那么方程kx2-2(k-1)x+(k+4)=0有实数根吗?为什么?24、m是什么实数值时,方程2x2+(n+1)x-(3n2-4n+m)=0有有理根?答案1、已知方程有两个相等的实根,得Δ=0,即化简得4m(a2-c2+b2)=0.由于m>0,所以a2-c2+b2=0,即a2+b2=c2.2.提示:Δ=(a2+b2-c2)2-4a2b2=(a2+b2-c2+2ab)(a2+b2-c2-2ab)=[(a+b)2-c2][(a-b)2-c2]=(a+b+c)(a+b-c)(a-b+c)(a-b-c).因为a,b,c是三角形的三条边,所以a+b+c>0,a+b-c>0,a-b+c>0,a-b-c<0,因此Δ<0,所以方程无解.3.当a=1,b=-0.5时,方程有实数根.提示:由方程有实数根得Δ=[2(1+a)]2-4(3a2+4ab+4b2+2)=-4[(1-a)2+(a+2b)2]≥0.又因为(1-a)2≥0,(a+2b)2≥0,故而有(1-a)2+(a+2b)2≥0,所以只有-4[(1-a)2+(a+2b)2]=0,即(1-a)2+(a+2b)2=0.从而得出1-a=0,所以a=1;a+2b=0,解出b=-0.5.4.2≤b≤6.提示:方法一Δ=(a-8)2-4(12-2b)≥0,即a2+4a(b-4)+16≥0.因为对于任意a值上式均大于等于零,且二次项系数大于0.所以关于a的二次三项式中的判别式应小于等于零,即[4(b-4)]2-4×16≤0,即有b2-8b+12≤0,解之2≤b≤6.方法二Δ=(a-8)2-4(12-2b)=a2+4a(b-4)+16={a2+2a[2(b-4)]+[2(b-4)]2}-[2(b-4)]2+16=[a+2(b-4)]2-4[(b-4)2-4]≥0.因此只能(b-4)2-4≤0,由此得-2≤b-4≤2,所以2≤b≤6.5.m的最大整数值为零.提示:由m-1≠0且Δ=(2m)2-46.7.8.9.k的最大整数值为2.10.-4.11.b=1.提示:Δ=(a+1)2+8(3a2-4a+b)=25a2-30a+8b+1.由于25a2-30a+8b+1应为a的完全平方式.所以(-30)2-4×25×(8b+1)=0,所以b=1.12.(1)-1<k<0或k>0;(2)k=-1;(3)k<-1.13.(1)(a-b)2+(b-c)2+(c-a)2≥0,即Δ≥0;(2)a-b=0,b-c=0,c-a=0,则a=b=c.14.提示:Δ=[2(b2-c2)]2-4(c2+a2)(c2-b2)=4(b2-c2)(b2-c2+a2+c2)=4(b+c)(b-c)(b2+a2).由方程有两个相等实根.故而Δ= 0,即4(b+c)(b-c)(b2+a2)=0.因为a,b,c是三角形的三边,所以b+c≠0,a2+b2≠0,只有b-c=0,解出b=c.15.提示:Δ=(-2r1)2-4(r22+r1d-r2d)=0,即4r21-4r22-4r1d+4r2d=0,(r21-r22)-d(r1-r2)=0,(r1-r2)(r1+r2-d)=0,所以r1=r2或r1+r2=d.16.提示:原方程化为x2-(2a+b)x+(a2+ab-1)=0,Δ=[-(2a+b)]2-4(a2+ab-1)=4a2+4ab+b2-4a2-4ab+4=b2+4,即Δ>0.代17.提示:因为方程x2+2x+1+m=0无实根,所以Δ=4-4(1+m)=4-4-4m<0,推知m>0.而方程x2+(m-2)x-(x+3)=0的Δ=(m-2)2+4(m+3)>0.18.提示:Δ=(a2+c2-b2)2-4a2c2=(a2+c2-b2+2ac)(a2+c2-b2-2ac)=[(a+c)2-b2]×[(a-c)2-b2]=(a+c+b)×(a+c-b)×(a-c+b)×(a-c-b).因为a,b,c是三角形的三边,所以a+b+c>0,a+c-b >0,a-c+b>0,a-c-b<0,推知Δ<0.19.提示:原方程化为:(b-c)x2+4(b-a)x-4(b-c)=0,Δ=16(b-a)2+16(b-c)2>0.所以(b-a)与(b-c)不全为0,a,b,c不全相等,因此△ABC不是等边三角形.20.(1)k>2;(2)k=2;(3)k<2.21.k的最大值为0,提示:原方程化为:(k2+1)x2+(4k-4)x+4=0.因为x是实数,所以Δ=(4k-4)2-4×4(k2+1)=16(k2-2k+1-k2-1)=-32k≥0.所以k≤0,即k的最大值是0.22.23.x+(k+4)=0的Δ>0,故而方程有实数根.24.m=1.。

根的判别式练习题(含答案解析)

根的判别式练习题(含答案解析)

根的判别式练习题一.填空题(共8小题)1.若一元二次方程2x2﹣4x+m=0有两个相等的实数根,则m=.2.已知关于x的一元二次方程mx2﹣3x+1=0有两个实数根,则m的取值范围是.3.已知关于x的方程x2+2(m﹣1)x+m2=0有实数根,则m的最大整数值是.4.等腰三角形ABC的三条边长分别为4,a,b,若关于x的一元二次方程x2+(a+2)x+6﹣a=0有两个相等的实数根,则△ABC的周长是.5.等腰三角形三边长分别为a、b、2,且a、b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为.6.定义:如果两个一元二次方程有且只有一个相同的实数根,我们称这两个方程为“友好方程”,如果关于x的一元二次方程x2﹣2x=0与x2+3x+m﹣1=0为“友好方程”,则m 的值.7.若△ABC的一条边BC的长为5,另两边AB、AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根,当k=时,△ABC是等腰三角形;当k=时,△ABC是以BC为斜边的直角三角形.8.若关于x的方程ax2+4x﹣3=0有唯一实数解,则a的值为.二.解答题(共2小题)9.已知关于x的一元二次方程(m﹣1)x2+2x﹣1=0有两个不相等的实数根,求m的取值范围.10.已知关于x的方程mx2+(3m+1)x+3=0.(1)求证:不论m为任何实数,此方程总有实数根;(2)若方程mx2+(3m+1)x+3=0有两个不同的整数根,且m为正整数,求m的值.参考答案与试题解析一.填空题(共8小题)1.若一元二次方程2x2﹣4x+m=0有两个相等的实数根,则m=2.【分析】根据方程的系数结合根的判别式,即可得出Δ=16﹣8m=0,解之即可得出结论.【解答】解:∵一元二次方程2x2﹣4x+m=0有两个相等的实数根,∴Δ=16﹣8m=0,解得:m=2.∴m=2.故答案为:2.【点评】本题考查了根的判别式以及解一元一次方程,牢记“当Δ=0时,方程有两个相等实数根”是解题的关键.2.已知关于x的一元二次方程mx2﹣3x+1=0有两个实数根,则m的取值范围是m≤且m≠0.【分析】根据判别式的意义得到m≠0,b2﹣4ac=(﹣3)2﹣4m≥0,然后解不等式即可.【解答】解:∵关于x的一元二次方程mx2﹣3x+1=0有两个实数根,∴Δ=(﹣3)2﹣4m≥0且m≠0,解得:m≤且m≠0,故答案为:m≤且m≠0.【点评】本题主要考查根的判别式,掌握方程根的情况与判别式的关系是解题的关键.3.已知关于x的方程x2+2(m﹣1)x+m2=0有实数根,则m的最大整数值是0.【分析】根据方程有实数根可知△≥0,据此求出m的取值范围,从而得到m的最大整数值.【解答】解:∵关于x的方程x2+2(m﹣1)x+m2=0有实数根,∴△≥0,∴[2(m﹣1)]2﹣4m2≥0,∴﹣8m+4≥0,解得,m≤,故m的最大整数值是0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.4.等腰三角形ABC的三条边长分别为4,a,b,若关于x的一元二次方程x2+(a+2)x+6﹣a=0有两个相等的实数根,则△ABC的周长是10.【分析】根据根的判别式的意义得到Δ=(a+2)2﹣4(6﹣a)=0,进而可由三角形三边关系定理确定等腰三角形的三边长,即可求得其周长.【解答】解:根据题意得Δ=(a+2)2﹣4(6﹣a)=0,解得a1=﹣10(负值舍去),a2=2,在等腰△ABC中,①4为底时,则b=a=2,∵2+2=4,∴不能组成三角形;②4为腰时,b=4,∵2+4>4,∴能组成三角形,∴△ABC的周长=4+4+2=10.综上可知,△ABC的周长是10.故答案为:10.【点评】此题考查了根的判别式、等腰三角形的性质及三角形三边关系定理;在求三角形的周长时,不能盲目的将三边相加,而应在三角形三边关系定理为前提条件下分类讨论,以免造成多解、错解.5.等腰三角形三边长分别为a、b、2,且a、b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为10.【分析】讨论:当a=2或b=2时,把x=2代入x2﹣6x+n﹣1=0可求出对应的n的值;当a=b时,根据判别式的意义得到Δ=(﹣6)2﹣4×(n﹣1)=0,解得n=10.【解答】解:当a=2或b=2时,把x=2代入x2﹣6x+n﹣1=0得4﹣12+n﹣1=0,解得n=9,此时方程的根为2和4,而2+2=4,故舍去;当a=b时,Δ=(﹣6)2﹣4×(n﹣1)=0,解得n=10,故答案为10.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的两个实数根;当Δ=0时,方程有两个相等的两个实数根;当Δ<0时,方程无实数根.也考查了等腰三角形的性质.6.定义:如果两个一元二次方程有且只有一个相同的实数根,我们称这两个方程为“友好方程”,如果关于x的一元二次方程x2﹣2x=0与x2+3x+m﹣1=0为“友好方程”,则m 的值1或﹣9..【分析】通过解方程x2﹣2x=0,可得出方程的根,分x=0为两方程相同的实数根或x =2为两方程相同的实数根两种情况考虑:①若x=0是两个方程相同的实数根,将x=0代入方程x2+3x+m﹣1=0中求出m的值,将m的值代入原方程解之可得出方程的解,对照后可得出m=1符合题意;②若x=2是两个方程相同的实数根,将x=2代入方程x2+3x+m﹣1=0中求出m的值,将m的值代入原方程解之可得出方程的解,对照后可得出m=2符合题意.综上此题得解.【解答】解:解方程x2﹣2x=0,得:x1=0,x2=2.①若x=0是两个方程相同的实数根.将x=0代入方程x2+3x+m﹣1=0,得:m﹣1=0,∴m=1,此时原方程为x2+3x=0,解得:x1=0,x2=﹣3,符合题意,∴m=1;②若x=2是两个方程相同的实数根.将x=2代入方程x2+3x+m﹣1=0,得:4+6+m﹣1=0,∴m=﹣9,此时原方程为x2+3x﹣10=0,解得:x1=2,x2=﹣5,符合题意,∴m=﹣9.综上所述:m的值为1或﹣9.故答案为:1或﹣9.【点评】本题考查了一元二次方程的解,代入x求出m的值是解题的关键.7.若△ABC的一条边BC的长为5,另两边AB、AC的长是关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0的两个实数根,当k=3或4时,△ABC是等腰三角形;当k=2时,△ABC是以BC为斜边的直角三角形.【分析】(1)此题要分两种情况进行讨论,若AB=BC=5时,把5代入方程即可求出k 的值,若AB=AC时,则Δ=0,列出关于k的方程,解出k的值即可;(2)若△ABC是以BC为斜边的直角三角形,则根据勾股定理,AB2+AC2=25,再根据根与系数的关系求得k的值即可.【解答】解:(1)因为Δ=b2﹣4ac=[﹣(2k+3)]2﹣4×1×(k2+3k+2)=1>0,所以方程总有两个不相等的实数根.若AB=BC=5时,5是方程x2﹣(2k+3)x+k2+3k+2=0的实数根,把x=5代入原方程,得k=3或k=4.∵无论k取何值,Δ>0,∴AB≠AC,故k只能取3或4;(2)根据根与系数的关系:AB+AC=2k+3,AB•AC=k2+3k+2,则AB2+AC2=(AB+AC)2﹣2AB•AC=25,即(2k+3)2﹣2(k2+3k+2)=25,解得k=2或k=﹣5.根据三角形的边长必须是正数,因而两根的和2k+3>0且两根的积k2+3k+2>0,解得k >﹣1,∴k=2.故答案为:3或4;2.【点评】本题主要考查了一元二次方程根与系数的关系和根的判别式,一元二次方程根的情况与判别式△的关系是:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.在解题的过程中注意不要忽视三角形的边长是正数这一条件8.若关于x的方程ax2+4x﹣3=0有唯一实数解,则a的值为0.【分析】根据关于x的方程ax2+4x﹣3=0有唯一实数解,可知是一元一次方程,依此求出a的值.【解答】解:∵关于x的方程ax2+4x﹣3=0有唯一实数解,∴a=0.故答案为:0.【点评】此题主要考查了根的判别式,关键是掌握Δ>0时,方程有两个不相等的实数根,Δ=0时,方程有两个相等的实数根,Δ<0时,方程没有实数根.二.解答题(共2小题)9.已知关于x的一元二次方程(m﹣1)x2+2x﹣1=0有两个不相等的实数根,求m的取值范围.【分析】根据判别式的意义得到Δ=22﹣4(m﹣1)×(﹣1)>0,然后解不等式即可.【解答】解:根据题意得Δ=22﹣4(m﹣1)×(﹣1)>0,解得m>0,且m﹣1≠0,解得:m≠1,所以m>0且m≠1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.也考查了一元二次方程的定义.10.已知关于x的方程mx2+(3m+1)x+3=0.(1)求证:不论m为任何实数,此方程总有实数根;(2)若方程mx2+(3m+1)x+3=0有两个不同的整数根,且m为正整数,求m的值.【分析】(1)分类讨论:当m=0时,方程变形一元一次方程,有一个实数解;当m≠0时,方程为一元二次方程,再进行判别式得到Δ=(3m﹣1)2,易得△≥0,故判别式的意义得到方程有两个实数根,然后综合两种情况得到不论m为任何实数,此方程总有实数根;(2)先利用求根公式得到x1=﹣3,x2=﹣,再利用方程有两个不同的整数根,且m 为正整数和整数的整除性易得m=1.【解答】(1)证明:当m=0时,方程变形为x+3=0,解得x=﹣3;当m≠0时,Δ=(3m+1)2﹣4m•3=9m2﹣6m+1=(3m﹣1)2,∵(3m﹣1)2,≥0,即△≥0,∴此时方程有两个实数根,所以不论m为任何实数,此方程总有实数根;(2)解:根据题意得m≠0且Δ=(3m+1)2﹣4m•3=(3m﹣1)2>0,x=,所以x1=﹣3,x2=﹣,∵方程有两个不同的整数根,且m为正整数,∴m=1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.也考查了一元二次方程的定义.。

一元二次方程根的判别式基础练习30题含详细答案

一元二次方程根的判别式基础练习30题含详细答案
(2)求证:无论m取任何实数,此方程总有两个不相等的实数根;
(3)设该方程的两个实数根为x1,x2,若x12+x22+m(x1+x2)=m2+1,求m的值.
21.已知关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根.
(1)求实数k的取值范围;
(2)若方程的两根x1,x2满足x12+x22=16,求k的值.
【点睛】
此题主要考查一元二次方程根的情况,解题的关键是熟知根的判别式特点.
5.B
【分析】
先根据一元二次方程的解的定义得到α2+2α﹣2015=0,则α2+2α=2015,于是α2+3α+β可化为2015+α+β,再利用根与系数的关系得到α+β=﹣2,然后利用整体代入的方法计算.
【详解】
解:∵α是方程x2+2x﹣2015=0的根,
16.若关于x的一元二次方程kx2-4x+3=0有实数根,则k的取值范围是_____.
三、解答题
17.关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根.
(1)求k的取值范围.
(2)若x1+2x2=3,求|x1﹣x2|的值.
18.已知关于x的方程x2+(2m﹣1)x+m2=0有实数根.
(1)若方程的一个根为1,求m的值;
7.D
【分析】
要判断所给方程是有两个不相等的实数根,只要找出方程的判别式,根据判别式的正负情况即可作出判断.有两个不相等的实数根的方程,即判别式的值大于0的一元二次方程.
【详解】
解:A、x2+1=0中 ,没有实数根,故本选项错误;

一元二次方程根的判别式练习题

一元二次方程根的判别式练习题

一元二次方程根的判别式练习题(一)填空1.方程x2+2x—1+m=0有两个相等实数根,则m=____.5.若关于x的一元二次方程mx2+3x—4=0有实数根,则m的值为____.6.方程4mx2—mx+1=0有两个相等的实数根,则 m为____.9.若m是非负整数且一元二次方程(1-m2)x2+2(1-m)x—1=0有两个实数根,则m的值为____.10.若关于x的二次方程kx2+1=x-x2有实数根,则k的取值范围是____.13.二次方程(k2—1)x2-6(3k—1)x+72=0有两个实数根,则k为___.14.若一元二次方程(1—3k)x2+4x-2=0有实数根,则k的取值范围是____.19.当m>4时,关于x的方程(m—5)x2-2(m+2)x+m=0的实数根的个数为[ ].A.2个; B.1个; C.0个; D.不确定.22.若一元二次方程(1—2k)x2+8x=6没有实数根,那么k的最小整数值是 [ ].A.2; B.0; C.1;D.3.23.若一元二次方程(1-2k)x2+12x-10=0有实数根,那么k的最大整数值是[ ].A.1; B.2; C.-1; D.0..27.若方程k(x2—2x+1)-2x2+x=0有实数根,则[ ].28.若方程(a—2)x2+(-2a+1)x+a=0有实数根,则 [ ].29.若m为有理数,且方程2x2+(m+1)x-(3m2—4m+n)=0的根为有理数,则n的值为 [ ].A.4; B.1; C.-2; D.—6.(.38.m是什么实数值时,方程2(m+3)x2+4mx+2m-2=0:(1)有两个不相等的实数根; (2)没有实数根.42.k为何值时,方程k2x2+2(k+2)x+1=0:(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)没有实数根.43.已知方程(b—x)2—4(a—x)(c-x)=0(a,b,c为实数).求证(1)此方程必有实根;(2)若此方程有两个相等的实数根,则a= b= c.(一)填空1.26.169.m=013.任意实数14.k≤119.A 22.A 23.B 27.C 28.B 29.B42.(1)—1<k<0或k>0;(2)k=-1;(3)k<—1.43.(1)(a-b)2+(b—c)2+(c-a)2≥0,即Δ≥0;(2)a-b=0,b-c=0,c—a=0,则a=b=c.。

一元二次方程的根的判别式练习题

一元二次方程的根的判别式练习题

一元二次方程的根的判别式一、新课预习关于x的一元二次方程ax2+bx+c=0(a≠0)的根的判别式及求根公式.(1)b2-4ac>0⇔方程有_______个_________的实数根,x=_______________.(2)b2-4ac=0⇔方程有________个________的实数根,x1=x2=______________.(3)b2-4ac<0⇔方程__________实数根.二、例变讲练例1 方程3x2-2x-1=0的根的判别式为b2-4ac=16,此方程有两个__________的实数根.变1 下列关于x的一元二次方程中,有两个不相等的实数根的方程是( )A.x2+4=0 B.4x2-4x+1=0 C.x2+x+3=0 D.x2+2x-1=0例2 已知关于x的方程x2-3x+2-m2=0.(1)求方程的根的判别式(用含m的代数式表示);(2)说明不论m取何值,方程总有两个不相等的实数根.变2 已知关于x的一元二次方程x2+(m-3)x-3m=0.求证:无论实数m取何值,方程总有两个实数根.例3 若一元二次方程x2+2x-m=0有实数解,则m的取值范围是______________.变3 已知关于x的方程x2-2x+m=0没有实数根,则m的取值范围是__________.例4 若关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是_______________.变4 若关于x的一元二次方程(k-1)x2+4x+1=0有实数根,则k的取值范围是__________三、课堂训练一级1. 若关于x的方程x2-4x-c=0的根的判别式Δ=4,则c=_________.2. 下列方程中有两个不相等的实数根的方程是( )A.(x-1)2=0 B.x2+2x-19=0 C.x2+4=0 D.x2+x+1=03. 如果关于x的一元二次方程x2+4x-m=0没有实数根,那么m的取值范围是_________.4. 若关于x的方程x2-x-k=0有两个相等的实数根,则k=______,方程的两根为x=x=_____________5. 若关于x的方程x2+x-94a=0有两个不相等的实数根,则实数a的取值范围是__________.6. 已知关于x的一元二次方程(m-1)x2-2x+1=0有实数根,则m的取值范围是( ) A.m≤2 B.m≥2C.m≤2且m≠1 D.m≥-2且m≠17. 若关于x的一元二次方程(k-1)x2-4x-5=0没有实数根,则k的取值范围是_________.8. 求证:不论m为任何实数,关于x的一元二次方程x2+(4m+1)x+2m-1=0总有两个不相等的实数根.四、能力提升9. 已知关于x的一元二次方程x2-(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求出以此两根为边长的直角三角形的周长.10. 等腰三角形的边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,求n的值.第7课时 一元二次方程的根的判别式一、新课预习关于x 的一元二次方程ax 2+bx +c =0(a≠0)的根的判别式及求根公式.(1)b 2-4ac >0⇔方程有_______个_________的实数根,x =_______________. 两,不相等,-b±b2-4ac 2a(2)b 2-4ac =0⇔方程有________个________的实数根,x 1=x 2=______________.(3)b 2-4ac <0⇔方程__________实数根.两,相等,-b 2a,无 二、例变讲练例1 方程3x 2-2x -1=0的根的判别式为b2-4ac =16,此方程有两个__________的实数根.不相等变1 下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A .x 2+4=0B .4x 2-4x +1=0C .x 2+x +3=0D .x 2+2x -1=0 D例2 已知关于x 的方程x 2-3x +2-m 2=0.(1)求方程的根的判别式(用含m 的代数式表示);解:b 2-4ac =4m 2+1;(2)说明不论m 取何值,方程总有两个不相等的实数根.解:b 2-4ac =4m 2+1≥1>0,∴无论m 取何值,方程总有两个不相等的实数根.变2 已知关于x 的一元二次方程x 2+(m -3)x -3m =0.求证:无论实数m 取何值,方程总有两个实数根.解:Δ=(m -3)2-4×(-3m)=m 2-6m +9+12m=m 2+6m +9=(m +3)2,∵无论实数m 取何值,总有(m +3)2≥0,即Δ≥0,∴无论实数m 取何值,方程总有两个实数根.例3 若一元二次方程x 2+2x -m =0有实数解,则m 的取值范围是______________.m≥-1变3 已知关于x 的方程x 2-2x +m =0没有实数根,则m 的取值范围是__________. m>1例4 若关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根,则k 的取值范围是_______________.k>-1且k≠0变4 若关于x 的一元二次方程(k -1)x 2+4x +1=0有实数根,则k 的取值范围是__________,k≤5且k≠1三、课堂训练一级1. 若关于x 的方程x 2-4x -c =0的根的判别式Δ=4,则c =_________.-32. 下列方程中有两个不相等的实数根的方程是( )A .(x -1)2=0B .x 2+2x -19=0C .x 2+4=0D .x 2+x +1=0B 3. 如果关于x 的一元二次方程x 2+4x -m =0没有实数根,那么m 的取值范围是_________.m<-44. 若关于x 的方程x 2-x -k =0有两个相等的实数根,则k=______,方程的两根为 x =x=_____________-14, x 1=x 2=125. 若关于x 的方程x 2+x -94a =0有两个不相等的实数根,则实数a 的取值范围是__________.a>-196. 已知关于x 的一元二次方程(m -1)x 2-2x +1=0有实数根,则m 的取值范围是( )A .m≤2B .m≥2C .m≤2且m≠1D .m≥-2且m≠1C7. 若关于x 的一元二次方程(k -1)x2-4x -5=0没有实数根,则k 的取值范围是_________.k <158. 求证:不论m 为任何实数,关于x 的一元二次方程x 2+(4m +1)x +2m -1=0总有两个不相等的实数根.证明:根据题意得:Δ=(4m +1)2-4(2m -1)=16m 2+8m +1-8m +4=16m 2+5,∵m2≥0,∴16m 2+5>0,即Δ>0,∴不论m 为任何实数,原方程总有两个不相等的实数根.四、能力提升9. 已知关于x 的一元二次方程x 2-(m +2)x +2m =0.(1)求证:不论m 为何值,该方程总有两个实数根;证明:Δ=[-(m +2)]2-4×1×2m =m 2-4m +4=(m -2)2.∵(m -2)2≥0,即Δ≥0,∴不论m 为何值,该方程总有两个实数根.(2)若此方程的一个根是1,请求出方程的另一个根,并求出以此两根为边长的直角三角形的周长.解:将x =1代入原方程,得:1-(m +2)+2m =0,∴m =1,∴方程的另一个根为2×11=2. 当1,2为直角边长时,斜边长=12+22=5,∴围成直角三角形的周长=1+2+5=3+5;当2为斜边长时,另一直角边长=22-12=3,∴围成直角三角形的周长=1+2+3=3+ 3.综上所述:以此两根为边长的直角三角形的周长为3+5或3+ 3.10. 等腰三角形的边长分别为a ,b ,2,且a ,b 是关于x 的一元二次方程x 2-6x +n -1=0的两根,求n 的值.解:∵三角形是等腰三角形,∴①a =2或b =2,②a =b 两种情况,①当a =2或b =2时,∵a ,b 是关于x 的一元二次方程x2-6x +n -1=0的两根,∴x =2,把x =2代入x 2-6x +n -1=0得22-6×2+n -1=0,解得:n =9,当n =9时,方程的两根是2和4,而2,4,2不能组成三角形,故n =9不合题意,②当a =b 时,方程x2-6x +n -1=0有两个相等的实数根,∴Δ=(-6)2-4(n -1)=0,解得:n =10,综上所述:n =10.。

根判别式含参数一元二次方程专项练习60题(有答案)

根判别式含参数一元二次方程专项练习60题(有答案)

一元二次方程专项练习60题1.已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当时,求m的值.2.关于x的方程2x2﹣(a2﹣4)x﹣a+1=0,(1)若方程的一根为0,求实数a的值;(2)若方程的两根互为相反数,求实数a的值.3.已知关于x的方程x2﹣(k+1)x+k+2=0的两个实数根分别为x1和x2,且x12+x22=6,求k的值?4.已知关于x的方程kx2+2(k+1)x﹣3=0.(1)请你为k选取一个合适的整数,使方程有两个有理根,并求出这两个根;(2)若k满足不等式16k+3>0,试讨论方程实数根的情况.5.已知方程2(m+1)x2+4mx+3m=2,根据下列条件之一求m的值.(1)方程有两个相等的实数根;(2)方程有两个相反的实数根;(3)方程的一个根为0.6.已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足+=﹣1,求m 的值.7.已知x1,x2是关于x的一元二次方程x2﹣(2m+3)x+m2=0的两个不相等的实数根,且满足,求m 的值.8.已知关于x的一元二次方程x2+2(2一m)x+3﹣6m=0.(1)求证:无论m取何实数,方程总有实数根;(2)若方程的两个实数根x l和x2满足x l+x2=m,求m的值.9.已知关于x的一元二次方程x2﹣(8+k)x+8k=0(1)求证:无论k取任何实数,方程总有实数根;(2)若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长.10.已知关于x的一元二次方程x2﹣2(1﹣m)x+m2=0的两根为x1,x2.(1)求m的取值范围;(2)若x12+12m+x22=10,求m的值.11.已知:关于x的一元二次方程kx2+(2k+1)x+k﹣2=0的两个实数根是x1和x2.(1)求k的取值范围;(2)若x12=11﹣x22,求k的值.12.已知关于x的一元二次方程x2+5x﹣m=0有两个实数根(1)求m的取值范围;(2)若x=﹣1是方程的一个根,求m的取值及方程的另一个根.13.已知关于x的一元二次方程x2﹣(m+2)x+m﹣2=0.(1)求证:无论m取何值时,方程总有两个不相等的实数根.(2)若方程的两实数根之积等于m2+9m﹣11,求的值.14.一元二次方程x2+kx﹣(k﹣1)=0的两根分别为x1,x2.且x12﹣x22=0,求k值.15.在正实数范围内,只存在一个数是关于x的方程的解,求实数k的取值范围.16.关于x的方程4kx2+4(k+2)x+k=0有两个不相等的实数根.(1)求k的取值范围.(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由.17.已知关于x的二次方程a2x2+2ax+1=﹣3x的两个实数根的积为1,且关于x的二次方程x2+2(a+n)x﹣a2=4﹣18.关于的方程2x3+(2﹣m)x2﹣(m+2)x﹣2=0有三个实数根分别为α、β、x0,其中根x0与m无关.(1)如(α+β)x0=﹣3,求实数m的值.(2)如α<a<b<β,试比较:与的大小,并说明你的理由.19.已知x1,x2是关于x的一元二次方程x2+(3a﹣1)x+2a2﹣1=0的两个实数根,其满足(3x1﹣x2)(x1﹣3x2)=﹣80.求实数a的所有可能值.20.已知关于x的方程x2+(2m﹣3)x+m2+6=0的两根x1,x2的积是两根和的两倍,①求m的值;②求作以为两根的一元二次方程.21.已知关于x的方程x2﹣(2k﹣3)x+k2+1=0.问:(1)当k为何值时,此方程有实数根;(2)若此方程的两实数根x1、x2,满足|x1|+|x2|=3,求k的值.22.已知,关于x的方程x2﹣2mx=﹣m2+2x的两个实数根x1、x2满足|x1|=x2,求实数m的值.23.设m为整数,且4<m<40,方程x2﹣2(2m﹣3)x+4m2﹣14m+8=0有两个整数根,求m的值.24.已知关于x的方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.25.已知关于x的一元二次方程x2﹣mx+2m﹣1=0的两个实数根的平方和为23,求m的值.26.已知关于x的方程x2+2(m﹣2)x+m2+4=0有两个实数根,且这两根的平方和比两根的积大21,求m的值.27.已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当(x1+x2)•(x1﹣x2)=0时,求m的值.(友情提示:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则:,)28.关于x的方程有两个不相等的实数根.(1)求k的取值范围;229.已知x1、x2是方程4x2﹣(3m﹣5)x﹣6m2=0的两根,且,求m的值.30.已知关于x的方程k有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两实根为x1和x2(x1≠x2),那么是否存在实数k,使成立?若存在,请求出k的值;若不存在,请说明理由.31.已知:关于x的方程x2+kx+k﹣1=0(1)求证:方程一定有两个实数根;(2)设x1,x2是方程的两个实数根,且(x1+x2)(x1﹣x2)=0,求k的值.32.设关于x的二次方程(a2+1)x2﹣4ax+2=0的两根为x1,x2,若2x1x2=x1﹣3x2,试求a的值.33.已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根x1,x2,(1)求a的取值范围;(2)若5x1+2x1x2=2a﹣5x2;求a的值.34.已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0.(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根;(2)当Rt△ABC的斜边长a=,且两条直角边b和c恰好是这个方程的两个根时,求△ABC的周长.35.一元二次方程8x2﹣(m﹣1)x+m﹣7=0,(1)m为何实数时,方程的两个根互为相反数?(2)m为何实数时,方程的一个根为零?(3)是否存在实数m,使方程的两个根互为倒数?36.已知一元二次方程kx2+x+1=0(1)当它有两个实数根时,求k的取值范围;(2)问:k为何值时,原方程的两实数根的平方和为3?37.关于x的方程为x2+(m+2)x+2m﹣1=0.(1)证明:方程有两个不相等的实数根.(2)是否存在实数m,使方程的两个实数根互为相反数?若存在,求出m的值及两个实数根;若不存在,请说明理由.38.已知:关于的方程x2﹣kx﹣2=0.(1)求证:无论k为何值时,方程有两个不相等的实数根.(2)设方程的两根为x1,x2,若2(x1+x2)>x1x2,求k的取值范围.39.已知:关于x的方程x2﹣2(m+1)x+m2﹣3=0.(1)当m为何值时,方程总有两个实数根?(2)设方程的两实根分别为x1、x2,当x12+x22﹣x1x2=78时,求m的值.40.已知x1,x2是关于x的方程x2﹣(2m+3)x+m2=0的两个实数根,且=1时求m的值.41.已知关于x的方程x2+(m+2)x+2m﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程有一根为2,求m的值,并求出此时方程的另一根.42.关于x的一元二次方程x2﹣mx+2m﹣1=0的两个实数根分别是x1、x2,且x12+x22=7.求(x1﹣x2)2的值.43.已知方程x2+2(k﹣2)x+k2+4=0有两个实数根,且这两个实数根的平方和比两根的积大21,求k的值和方程的两个根.44.若关于x的一元二次方程4kx2+4(k+2)x+k=0有两个不相等的实数根,是否存在实数k,使方程的两个实数根之和等于0?若存在,求出k的值;若不存在,请说明理由.46.已知x1、x2是方程x2﹣2mx+3m=0的两根,且满足(x1+2)(x2+2)=22﹣m2,求m的值.47.已知关于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.(1)求证:无论k为何值时,该方程总有实数根;(2)若两个实数根平方和等于5,求k的值.48.若关于x的方程x2+(m+1)x+m+4=0两实数根的平方和是2,求m的值.49.m为何值时,方程2x2+(m2﹣2m﹣15)x+m=0两根互为相反数?50.已知△ABC的两边AB、AC的长度是关于x的一元二次方程x2﹣(2k+2)x+k2+2k=0的两个根,第三边长为10,问k为何值时,△ABC是等腰三角形?并求出这个等腰三角形的周长.51.已知关于x的一元二次方程x2﹣2(k﹣1)x+k2=0(1)当k取什么值时,原方程有实数根;(2)对k选取一个合适的数,使方程有两个实数根,并求出这两个实数根的平方和.52.已知x1,x2是关于x的方程x2+(2a﹣1)x+a2=0的两个实数根,(1)当a取何值时,方程两根互为倒数?(2)如果方程的两个实数根x1、x2满足|x1|=x2,求a的值.53.已知关于x的方程(1)若方程有两个相等的实数根,求m的值,并求出此时方程的根;(2)是否存在正数m,使方程的两个实数根的平方和等于224.若存在,求出满足条件的m的值;若不存在,请说明理由.54.已知一元二次方程8x2﹣(2m+1)x+m﹣7=0,根据下列条件,分别求出m的值:(1)两根互为倒数;(2)两根互为相反数;(3)有一根为零;(4)有一根为1.55.已知关于x的一元二次方程(a﹣1)x2﹣(2a﹣3)x+a=0有实数根.(1)求a的取值范围;(2)设x1,x2是一元二次方程(a﹣1)x2﹣(2a﹣3)x+a=0的两个根,且x12+x22=9,求a的值.56.已知一元二次方程8y2﹣(m+1)y+m﹣5=0.(1)m为何值时,方程的一个根为零?(2)m为何值时,方程的两个根互为相反数?57.已知一元二次方程(m+1)x2﹣x+m2﹣3m﹣3=0有一个根是1,求m的值及方程的另一个根.58.若关于x的方程(a2﹣3)x2﹣2(a﹣2)x+1=0的两个实数根互为倒数,求a的值.59.已知△ABC的一边为5,另外两边恰是方程x2﹣6x+m=0的两个根.(1)求实数m的取值范围.(2)当m取最大值时,求△ABC的面积.60.已知等腰三角形的一边长a=1,另两边b、c恰是方程x2﹣(k+2)x+2k=0的两根,求△ABC的周长..参考答案:1.解:(1)根据题意得△=(2m﹣1)2﹣4m2≥0,解得m≤;(2)根据题意得x1+x2=﹣(2m﹣1),x1•x2=m2,∵,∴(x1+x2)2﹣2x1•x2=7,∴(2m﹣1)2﹣2m2=7,整理得m2﹣2m﹣3=0,解得m1=3,m2=﹣1,∵m≤,∴m=﹣12.解:(1)把x=0代入原方程得﹣a+1=0,解得a=1;(2)设方程两个为x1,x2,根据题意得x1+x2==0,解得a=±2,当a=﹣2时,原方程化为2x2+3=0,此方程无实数解,∴a=23.解:由根与系数的关系可得:x1+x2=k+1,x1•x2=k+2,又知x12+x22=(x1+x2)2﹣2x1•x2=(k+1)2﹣2(k+2)=6解得:k=±3.∵△=b2﹣4ac=(k+1)2﹣4(k+2)=k2﹣2k﹣7≥0,∴k=﹣34.解:(1)比如:取k=3,原方程化为3x2+8x﹣3=0.…(1分)即:(3x﹣1)(x+3)=0,解得:x1=﹣3,x2=;…(2分)(2)由16+k>0,解得k>﹣.…(3分)∵当k=0时,原方程化为2x﹣3=0;解得:x=,∴当k=0时,方程有一个实数根…(4分)∵当k>﹣且k≠0时,方程kx2+2(k+1)x﹣3=0为一元二次方程,∴△=[2(k+1)]2﹣4×k×(﹣3)=4k2+8k+4+12k=4k2+20k+4=[(2k)2+2×2k×1+1]+(16k+3)=(2k+1)2+16k+3,…(5分)∵(2k+1)2≥0,16k+3>0,∴△=(2k+1)2+16k+3>0.…(6分)∴当k>﹣且k≠0时,一元二次方程kx2+2(k+1)x ﹣3=0有两个不等的实数根5.解:(1)∵△=16m2﹣8(m+1)(3m﹣2)=﹣8m2﹣8m+16,而方程有两个相等的实数根,∴△=0,即﹣8m2﹣8m+16=0,求得m1=﹣2,m2=1;(2)因为方程有两个相等的实数根,所以两根之和为0且△≥0,则﹣=0,求得m=0;(3)∵方程有一根为0,∴3m﹣2=0,∴m=.6.解:根据条件知:α+β=﹣(2m+3),αβ=m2,.∴+==﹣1,∴=﹣1,即:m2﹣2m﹣3=0,解得:m=3或﹣1,当m=3时,方程为x2+9x+9=0,此方程有两个不相等的实数根,当m=﹣1时,方程为x2+x+1=0,此方程无实根,不合题意,舍去,∴m=37.解:根据题意得△=(2m+3)2﹣4m2>0,解得m >﹣;根据根与系数的关系得x1+x2=2m+3,则2m+3=m2,整理得m2﹣2m﹣3=0,即(m﹣3)(m+1)=0,解得m1=3,m2=﹣1,则m=38.(1)证明:方程根的判别式△=[2(2﹣m)]2﹣4×1×(3﹣6m)=4(4﹣4m+m2)﹣4(3﹣6m)=4(4﹣4m+m2﹣3+6m)=4(1+2m+m2)=4(m+1)2(4分)∵无论m为何实数,4(m+1)2≥0恒成立,即△≥0恒成立.(5分)∴无论m取何实数,方程总有实数根;(6分)(2)解:由根与系数关系得x1+x2=﹣2(2﹣m)(7分)由题知x1+x2=m,∴m=﹣2(2﹣m)(8分)解得m=4.9.解:(1)∵△=(8+k)2﹣4×8k=(k﹣8)2,∵(k﹣8)2,≥0,∴△≥0,∴无论k取任何实数,方程总有实数根;(2)解方程x2﹣(8+k)x+8k=0得x1=k,x2=8,①当腰长为5时,则k=5,∴周长=5+5+8=18;②当底边为5时,∴x1=x2,∴k=8,∴周长=8+8+5=2110.解:(1)△=[2(1﹣m)]2﹣4m2=4﹣8m,∵方程有两根,∴△≥0,即4﹣8m≥0,∴m≤.(2)∵x1+x2=2(1﹣m),x1•x2=m2,且x12+12m+x22=10,∴m2+2m﹣3=0,解得m1=﹣3,m2=1,又∵m≤,∴m=﹣311.解:(1)∵方程有两个实数根,∴k≠0且△=(2k+1)2﹣4k(k﹣2)≥0,解得:k≥﹣且k≠0,∴k 的取值范围:k≥﹣且k≠0.(2)∵一元二次方程kx2+(2k+1)x+k﹣2=0的两个实数根是x1和x2,∴x1+x 2=﹣,x 1x2=,∵x12=11﹣x22,∴x12+x22=11,∴(x1+x2)2﹣2x1x2=11,∴﹣2()=11,.解得:k=﹣或k=1,∵k≥﹣且k≠0,∴k=112.解:(1)∵方程x2+5x﹣m=0有两个实数根,∴△=25+4m≥0,解得:m≥﹣;(2)将x=﹣1代入方程得:1﹣5﹣m=0,即m=﹣4,∴方程为x2+5x+4=0,设另一根为a,∴﹣1+a=﹣5,即a=﹣4,则m的值为﹣4,方程另一根为﹣413.解:(1)由题意得:△=[﹣(m+2)]2﹣4(m﹣2)=m2+12,∵无论m取何值时,m2≥0,∴m2+12≥12>0即△>0恒成立,∴无论m取何值时,方程总有两个不相等的实数根.(2)设方程两根为x1,x2,由韦达定理得:x1•x2=m﹣2,由题意得:m﹣2=m2+9m﹣11,解得:m1=﹣9,m2=1,∴14.解:∵x12﹣x22=0,∴(x1+x2)(x1﹣x2)=0,∴x1+x2=0或x1﹣x2=0,当x1+x2=0,则x1+x2=﹣k=0,解得k=0,原方程变形为x2+1=0,此方程没有实数根,当x1﹣x2=0,则△=k2﹣4(k﹣1)=0,解得k1=k2=2,∴k的值为215.解:原方程可化为2x2﹣3x﹣(k+3)=0,①(1)当△=0时,,满足条件;(2)若x=1是方程①的根,得2×12﹣3×1﹣(k+3)=0,k=﹣4;此时方程①的另一个根为,故原方程也只有一根;(3)当方程①有异号实根时,,得k>﹣3,此时原方程也只有一个正实数根;(4)当方程①有一个根为0时,k=﹣3,另一个根为,此时原方程也只有一个正实根.综上所述,满足条件的k的取值范围是或k=﹣4或k≥﹣316.解:(1)由△=[4(k+2)]2﹣4×4k•k>0,∴k>﹣1又∵4k≠0,∴k的取值范围是k>﹣1,且k≠0;(2)不存在符合条件的实数k理由:设方程4kx2+4(k+2)x+k=0的两根分别为x1、x2,由根与系数关系有:x1+x2=﹣,x 1•x 2=,又==﹣=0,∴k=﹣2,由(1)知,k=﹣2时,△<0,原方程无实解,∴不存在符合条件的k的值17.解:∵关于x的二次方程a2x2+2ax+1=﹣3x∴a2x2+2ax+3x+1=0,∵关于x的二次方程a2x2+2ax+1=﹣3x的两个实数根的积为1,∴=1,∴a=±1,∵12a+9≥0,∴a=1∴关于x的二次方程x2+2(a+n)x﹣a2=4﹣6a﹣2n可化简为:x2+2(1+n)x+(1+2n)=0∴x1=﹣1,x2=﹣1﹣2n,...∵关于x 的二次方程x 2+2(a+n )x ﹣a 2=4﹣6a ﹣2n 有小于2的正实根, ∴0<﹣1﹣2n <2, ∴n 的整数值为﹣118.解:(1)由2x 3+(2﹣m )x 2﹣(m+2)x ﹣2=0得(x+1)(2x 2﹣mx ﹣2)=0,∴x 0=﹣1,(2分) α、β是方程2x 2﹣mx ﹣2=0的根∴, ∵(α+β)x 0=﹣3,所以m=6(4分)(2)设T=﹣=(5分)∵a <b ,∴b ﹣a >0,又a 2+1>0,b 2+1>0,∴>0(6分)设f (x )=2x 2mx ﹣2,所以α、β是f (x )=2x 2mx ﹣2与x 轴的两个交点, ∵α<a <b <β ∴,即∴ma+mb >2a 2+2b 2﹣4(8分)∴4﹣4ab+ma+mb >2(a ﹣b )2>0(9分) ∴T >0,即>19.解:∵x 1,x 2是关于x 的一元二次方程x 2+(3a ﹣1)x+2a 2﹣1=0的两个实数根,∴△≥0,即(3a ﹣1)2﹣4(2a 2﹣1)=a 2﹣6a+5≥0 所以a ≥5或a ≤1.…(3分) ∴x 1+x 2=﹣(3a ﹣1),x 1•x 2=2a 2﹣1,∵(3x 1﹣x 2)(x 1﹣3x 2)=﹣80,即3(x 12+x 22)﹣10x 1x 2=﹣80,∴3(x 1+x 2)2﹣16x 1x 2=﹣80, ∴3(3a ﹣1)2﹣16(2a 2﹣1)=﹣80, 整理得,5a 2+18a ﹣99=0,∴(5a+33)(a ﹣3)=0,解得a=3或a=﹣,当a=3时,△=9﹣6×3+5=﹣4<0,故舍去, 当a=﹣时,△=(﹣)2﹣6×(﹣)+6=()2+6×+6>0,∴实数a 的值为﹣20.解:(1)∵原方程有两实根∴△=(2m ﹣3)2﹣4(m 2+6)=﹣12m ﹣15≥0得①…(3分)∵x 1+x 2=﹣(2m ﹣3)x 1x 2=m 2+6…(4分) 又∵x 1x 2=2(x 1+x 2),∴m 2+6=﹣2(2m ﹣3)整理得m 2+4m=0解得m=0或m=﹣4…(6分) 由①知m=﹣4…(7分) (2)∵…(9分),…(11分)由韦达定理得所求方程为…21.解:(1)若方程有实数根,则△=(2k ﹣3)2﹣4(k 2+1)≥0, ∴k ≤,∴当k ≤,时,此方程有实数根;(2)∵此方程的两实数根x 1、x 2,满足|x 1|+|x 2|=3,..∴(|x 1|+|x 2|)2=9, ∴x 12+x 22+2|x 1x 2|=9,∴(x 1+x 2)2﹣2x 1x 2+2|x 1x 2|=9, 而x 1+x 2=2k ﹣3,x 1x 2=k 2+1,∴(2k ﹣3)2﹣2(k 2+1)+2(k 2+1)=9, ∴2k ﹣3=3或﹣3,∴k=0或3,k=3不合题意,舍去; ∴k=022.解:方程整理为x 2﹣2(m+1)x+m 2=0,∵关于x 的方程x 2﹣2mx=﹣m 2+2x 的两个实数根x 1、x 2, ∴△=4(m+1)2﹣4m 2≥0,解得m ≥﹣; ∵|x 1|=x 2,∴x 1=x 2或x 1=﹣x 2,当x 1=x 2,则△=0,所以m=﹣,当x 1=﹣x 2,即x 1+x 2=2(m+1)=0,解得m=﹣1,而m ≥﹣,所以m=﹣1舍去, ∴m 的值为﹣23.解:∵a=1,b=﹣2(2m ﹣3),c=4m 2﹣14m+8, ∴△=b 2﹣4ac=4(2m ﹣3)2﹣4(4m 2﹣14m+8)=4(2m+1).∵方程有两个整数根,∴△=4(2m+1)是一个完全平方数, 所以2m+1也是一个完全平方数. ∵4<m <40, ∴9<2m+1<81,∴2m+1=16,25,36,49或64, ∵m 为整数, ∴m=12或24. 代入已知方程,得x=16,26或x=38,52. 综上所述m 为12,或2424.解:(1)方程(k ﹣1)x 2+(2k ﹣3)x+k+1=0有两个不相等的实数根x 1,x 2, 可得k ﹣1≠0,∴k ≠1且△=﹣12k+13>0, 可解得且k ≠1;(2)假设存在两根的值互为相反数,设为 x 1,x 2, ∵x 1+x 2=0, ∴, ∴,又∵且k ≠1 ∴k 不存在25.解:设关于x 的一元二次方程x 2﹣mx+2m ﹣1=0的两个实数根分别为x 1,x 2,则:x 1+x 2=m ,x 1•x 2=2m ﹣1,∵关于x 的一元二次方程x 2﹣mx+2m ﹣1=0的两个实数根的平方和为23,∴x 12+x 22=(x 1+x 2)2﹣2x 1•x 2=m 2﹣2(2m ﹣1)=m 2﹣4m+2=23,解得:m 1=7,m 2=﹣3,当m=7时,△=m 2﹣4(2m ﹣1)=﹣3<0(舍去), 当m=﹣3时,△=m 2﹣4(2m ﹣1)=37>0, ∴m=﹣326.解:设x 的方程x 2+2(m ﹣2)x+m 2+4=0有两个实数根为x 1,x 2,∴x 1+x 2=2(2﹣m ),x 1x 2=m 2+4, ∵这两根的平方和比两根的积大21, ∴x 12+x 22﹣x 1x 2=21,即:(x1+x2)2﹣3x1x2=21,∴4(m﹣2)2﹣3(m2+4)=21,解得:m=17或m=﹣1,∵△=4(m﹣2)2﹣4(m2+4)≥0,解得:m≤0.故m=17舍去,∴m=﹣127.解:∵x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2,∴△=(2m﹣1)2﹣4m2=1﹣4m≥0,解得:m≤;(2)∵x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2,∴x1+x2=1﹣2m,x1x2=m2,∴(x1+x2)•(x1﹣x2)=0,当1﹣2m=0时,1﹣2m=0,解得m=(不合题意).当x1=x2时,(x1+x2)2﹣4x1x2=4m2﹣4m+1﹣4m2=0,解得:m=.故m的值为:28.解:(1)依题意得△=(k+2)2﹣4k•>0,解之得k>﹣1,又∵k≠0,∴k的取值范围是k>﹣1,且k≠0;(2)设方程的两个实数根分别为x1,x2,则x1+x2=k+1,x1•x2=k+2,∴x12+x22=(x1+x2)2﹣2x1x2=6,即(k+1)2﹣2(k+2)=6,解得:k=±3,当k=3时,△=16﹣4×5<0,∴k=3(舍去);当k=﹣3时,△=4﹣4×(﹣1)>0,∴k=﹣329.解:∵a=4,b=5﹣3m,c=﹣6m2,∴△=(5﹣3m)2+4×4×6m2=(5﹣3m)2+96m2,∵5﹣3m=0与m=0不能同时成立.△=(5﹣3m)2+96m2>0则:x1x2≤0,又∵,∴,又∵,,∴,∴,解得:m1=1,m2=530.解:(1)由>0,解得k>﹣1,又∵k≠0,∴k的取值范围是k>﹣1且k≠0;(2)不存在符合条件的实数k,理由如下:∵,,又,.∴,解得经检验k=﹣是方程的解.由(1)知,当时,△<0,故原方程无实根∴不存在符合条件的k的值31.(1)证明:△=k2﹣4(k﹣1)=k2﹣4k+4=(k﹣2)2,∵(k﹣2)2≥0,即△≥0,∴方程一定有两个实数根;(2)根据题意得x1+x2=﹣k,x1•x2=k﹣1,∵(x1+x2)(x1﹣x2)=0,∴x1+x2=0或x1﹣x2=0,当x1+x2=0,则﹣k=0,解得k=0,当x1﹣x2=0,则△=0,即(k﹣2)2=0,解得k=2,∴k的值为0或232.解:∵关于x的二次方程(a2+1)x2﹣4ax+2=0的两根为x1,x2,∴①,②∵2x1x2=x1﹣3x2,∴2x1x2+(x1+x2)=2(x1﹣x2),平方得4(x1x2)2+4x1x2(x1+x2)=3(x1+x2)2﹣16x1x2,将式①、②代入后,解得a=3,a=﹣1,当a=3时,原方程可化为10x2﹣12x+2=0,△=122﹣4×10×2=64>0,原方程成立;当a=﹣1时,原方程可化为2x2+4x+2=0,△=42﹣4×2×2=0,原方程成立.∴a=3或a=﹣133.解:(1)根据题意得a﹣1≠0且△=4﹣4(a﹣1)>0,解得a<2且a≠1;(2)根据题意得x 1+x2=,x1•x2=,∵5x1+2x1x2=2a﹣5x2,∴5(x1+x2)+2x1x2=2a,∴+=2a,整理得a2﹣a﹣6=0,解得a1=3,a2=﹣2,∵a<2且a≠1,∴a=﹣234.解:(1)关于x的一元二次方程x2﹣(2k+1)x+4k ﹣3=0,△=(2k+1)2﹣4(4k﹣3)=4k2﹣12k+13=4+4>0恒成立,故无论k取什么实数值,该方程总有两个不相等的实数根;(2)根据勾股定理得:b2+c2=a2=31①因为两条直角边b和c恰好是这个方程的两个根,则b+c=2k+1②,bc=4k﹣3③,因为(b+c)2﹣2bc=b2+c2=31,即(2k+1)2﹣2(4k﹣3)=31,整理得:4k2+4k+1﹣8k+6﹣31=0,即k2﹣k﹣6=0,解得:k1=3,k2=﹣2(舍去),则b+c=2k+1=7,又因为a=,则△ABC的周长=a+b+c=+7.35.解:(1)∵一元二次方程8x2﹣(m﹣1)x+m﹣7=0的两个根互为相反数,.∴x1+x2==0,解得m=1;(2)∵一元二次方程8x2﹣(m﹣1)x+m﹣7=0的一个根为零,∴x1•x2==0,解得m=7;(3)设存在实数m,使方程8x2﹣(m﹣1)x+m﹣7=0的两个根互为倒数,则x1•x2==1,解得m=15;则原方程为4x2﹣7x+4=0,△=49﹣4×4×4=﹣15<0,所以原方程无解,这与存在实数m,使方程8x2﹣(m﹣1)x+m﹣7=0有两个根相矛盾.故不存在这样的实数m36.解:(1)∵方程有两个实数根,∴△=1﹣4k≥0且k≠0.故k≤且k≠0.(2)设方程的两根分别是x1和x2,则:x1+x2=﹣,x1x2=,x12+x22=(x1+x2)2﹣2x 1x2,=﹣=3,整理得:3k2+2k﹣1=0,(3k﹣1)(k+1)=0,∴k1=,k 2=﹣1.∵k ≤且k≠0,∴k=(舍去).故k=﹣1 37.(1)证明:△=(m+2)2﹣4(2m﹣1)=m2﹣4m+8=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,∴方程有两个不相等的实数根.(2)存在实数m,使方程的两个实数根互为相反数.由题知:x1+x2=﹣(m+2)=0,解得:m=﹣2,将m=﹣2代入x2+(m+2)x+2m﹣1=0,解得:x=,∴m的值为﹣2,方程的根为x=38.解:(1)证明:由方程x2﹣kx﹣2=0知a=1,b=﹣k,c=﹣2,∴△=b2﹣4ac=(﹣k)2﹣4×1×(﹣2)=k2+8>0,∴无论k为何值时,方程有两个不相等的实数根;(2)∵方程x2﹣kx﹣2=0.的两根为x1,x2,∴x1+x2=k,x1x2=﹣2,又∵2(x1+x2)>x1x2,∴2k>﹣2,即k>﹣139.解:(1)∵△≥0时,一元二次方程总有两个实数根,△=[2(m+1)]2﹣4×1×(m2﹣3)=8m+16≥0,m≥﹣2,所以m≥﹣2时,方程总有两个实数根.(2)∵x12+x22﹣x1x2=78,∴(x1+x2)2﹣3x1x2=78,∵x1+x2=﹣,x1•x2=,.。

一元二次方程之判别式专项练习60题(有答案)ok

一元二次方程之判别式专项练习60题(有答案)ok

一元二次方程之判别式专项练习60题(有答案)ok1.1) 对于方程2x-5x-a=0,根据一元二次方程的求根公式,判别式为Δ=25+8a,要使方程有两个不相等的实数根,即Δ>0,所以25+8a>0,解得a>-25/8,所以a的取值范围为a>-25/8.2) 当方程的两个根互为倒数时,根据一元二次方程的求根公式,有x1x2=-a/2,又因为x1x2=1/x1,所以x1^2=-a/2,代入原方程得2x-5x-2x1^2=0,解得x1=±√(5/2),代入x1x2=-a/2得a=5.2.1) 将方程展开得x^2-5x+6-p=0,根据一元二次方程的求根公式,判别式为Δ=25-24+4p=1+4p,要使方程有两个不相等的实数根,即Δ>0,所以1+4p>0,解得p>-1/4,所以p的取值范围为p>-1/4.2) 当p=2时,代入方程得(x-3)(x-2)=2,展开得x^2-5x+4=0,根据一元二次方程的求根公式,解得x1=1,x2=4.3.将方程化简得2kx+k-2=0,由于方程有两个相等的实数根,所以判别式Δ=0,解得k=1,代入方程得3x-1=0,解得x=1/3.4.1) 将方程化简得x^2+(4-a)x+3=0,根据一元二次方程的求根公式,判别式为Δ=(4-a)^2-12,要使方程有实数根,即Δ≥0,所以(4-a)^2-12≥0,解得a∈(-∞,4-2√3]∪[4+2√3,+∞)。

2) 当a=4-2√3时,代入方程得x^2+(4-4+2√3)x+3=0,解得x1=√3-1,x2=-(√3+1)。

5.1) 将方程化简得4x^2-4mx+m^2-4m+1=0,根据一元二次方程的求根公式,判别式为Δ=16m-4m^2,要使方程有两个不相等的实数根,即Δ>0,所以m∈(-∞,0)∪(1,4]。

2) 当m=4时,代入方程得4x^2-16x+17=0,根据一元二次方程的求根公式,解得x1=(4-√3)/2,x2=(4+√3)/2.6.1) 将方程化简得4x^2-3x-m=0,由于方程有两个不相等的实数根,所以判别式Δ=9+16m>0,解得m>-9/16,所以m的最小整数值为-1.2) 当m=-1时,代入方程得4x^2-3x+1=0,根据一元二次方程的求根公式,解得x1=1/4,x2=1.7.根据一元二次方程的求根公式,判别式Δ=25-12m,要使判别式为1,即Δ=1,解得m=2或m=1/3.当m=2时,代入方程得2x^2-10x+3=0,根据一元二次方程的求根公式,解得x1=(5-√13)/2,x2=(5+√13)/2.当m=1/3时,代入方程得x^2-5/3x+1=0,根据一元二次方程的求根公式,解得x1=(5-√5)/6,x2=(5+√5)/6.8.删除此段落。

一元二次方程之判别式专项练习60题有答案

一元二次方程之判别式专项练习60题有答案

一元二次方程判别式专项练习60题(有答案)1.已知关于x的一元二次方程2x2﹣5x﹣a=0(1)如果此方程有两个不相等的实数根,求a的取值范围.(2)当a为何值时,方程的两个根互为倒数,求出此时方程的解.2.已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.(1)求证:方程有两个不相等的实数根;(2)当p=2时,求该方程的根.3.已知关于x的方程x2+2kx+(k﹣2)2=x有两个相等的实数根,求k的值与方程的根.4.若关于x的方程 x2+4x﹣a+3=0有实数根.(1)求a的取值范围;(2)若a为符合条件的最小整数,求此时方程的根.5.已知关于x的方程.(1)如果此方程有两个不相等的实数根,求m的取值范围;(2)在(1)中,若m为符合条件的最大整数,求此时方程的根.6.已知关于x的方程x2+3x﹣m=8有两个不相等的实数根.(1)求m的最小整数值是多少?(2)将(1)中求出的m值,代入方程x2+3x﹣m=8中解出x的值.7.已知关于x的一元二次方程mx2﹣5x+3=0的判别式为1,求m的值及该方程的根.8.已知关于x的方程kx2﹣2x+1=0有两个实数根x1、x2.(1)求k的取值范围;(2)是否存在k使(x1+1)(x2+1)=k﹣1成立?如果存在,求出k的值;如果不存在,请说明理由.9.已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0(1)判断方程根的情况;(2)k为何值时,方程有两个相等的实数根,并求出此时方程的根.10.若关于x的一元二次方程有两个不相等的实数根.(1)求k的取值范围;(2)为k选取一个符合要求的值,并求出此方程的根.11.已知关于x的一元二次方程 x2+2mx+(m+2)(m﹣1)=0(m为常数).(1)如果方程有两个不相等的实数根,求m的取值范围;(2)如果方程有两个相等的实数根,求m的值;如果方程没有实数根,求m的取值范围.12.当k取什么值时,关于x的一元二次方程(1)有两个不相等的实数根?(2)没有实数根?13.已知关于x的方程是ax2﹣3(a﹣1)x﹣9=0.(1)证明:不论a取何值,总有一个根是x=3;(2)当a≠0时,利用求根公式求出它的另一个根.14.若k是一个整数,已知关于x 的一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,则k最大可以取多少?为什么?15.已知关于x的方程x2+(m+2)x+2m﹣1=0.(1)求证:方程有两个不相等的实数根.(2)当m=﹣2时,方程的两根互为相反数吗?并求出此时方程的解.16.已知关于x的方程x2+2x+k﹣1=0,(1)若方程有一个根是1,求k的值;(2)若方程没有实数根,求实数k的取值范围.17.已知关于x的方程x2+(m﹣2)x﹣9=0(1)求证:无论m取什么实数,这个方程总有两个不相等的实数根;(2)若这个方程两个根α,β满足2α+β=m+1,求m的值.18.已知p为质数,使二次方程x2﹣2px+p2﹣5p﹣1=0的两根都是整数,求出p的所有可能值.19.m是什么实数时,方程x2﹣4|x|+5=m有4个互不相等的实数根?20.设关于x的方程x2﹣4x+(y﹣1)|x﹣2|+2﹣2y=0恰有两个实数根,求y的负整数值.21.已知关于x的方程x2+2mx+m+2=0.(1)方程两根都是正数时,求m的取值范围;(2)方程一个根大于1,另一个根小于1,求m的取值范围.22.已知关于x的一元二次方程x2﹣2mx+m2﹣2m=0.(1)当m=1时,求方程的根.(2)试判断方程根的情况.23.已知a、b、c是三角形的三条边长,且关于x的方程(c﹣b)x2+2(b﹣a)x+(a﹣b)=0有两个相等的实数根,试判断三角形的形状.24.已知关于x的一元二次方程x2﹣mx+m﹣2=0,求证:无论m取何值,该方程总有两个不相等的实数根.25.已知关于x的一元二次方程x2﹣(m﹣1)x+m+2=0.(1)若方程有两个相等的实数根,求m的值;(2)若方程的两实数根之积等于m2﹣9m+2,求的值.26.关于x的方程x2﹣2x+k﹣1=0有两个不相等的实数根.(1)求k的取值范围;(2)若k﹣1是方程x2﹣2x+k﹣1=0的一个解,求k的值.27.已知关于x的方程x2+2x+m﹣1=0(1)若1是方程的一个根,求m的值;(2)若方程有两个不相等的实数根,求m的取值范围.28.若关于x的一元二次方程(k﹣2)2x2+(2k+1)x+1=0有两个不相等的实数根,求k的取值范围.29.已知关于x的方程x2+(3k﹣2)x﹣6k=0,(1)求证:无论k取何实数值,方程总有实数根;(2)若等腰三角形ABC的一边a=6,另两边长b,c恰好是这个方程的两个根,求△ABC的周长.30.已知一元二次方程x2﹣5x+k=0.(1)当k=6时,解这个方程;(2)若方程x2﹣5x+k=0有两个不相等的实数根,求k的取值范围;(3)设此方程的两个实数根分别为x1,x2,且2x1﹣x2=2,求k的值.31.已知关于x的方程x2﹣(m+1)x+m=0(1)求证:不论m取何实数,方程都有实数根;(2)为m选取一数,使方程有两个不相等的整数根,并求出这两个实数根.32.已知关于x的方程x2﹣2x+2k﹣3=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为符合条件的最大整数,求此时方程的根.33.已知关于x的方程(k+1)x2+(3k﹣1)x+2k﹣2=0.(1)讨论此方程根的情况;(2)若方程有两个整数根,求正整数k的值.34.关于x的一元二次方程x2﹣x+p﹣1=0有两个实数根x1、x2.(1)求p的取值范围;(2)若,求p的值.35.实数k取何值时,一元二次方程x2﹣(2k﹣3)x+2k﹣4=0(1)有两个正根;(2)有两个异号根,且正根的绝对值较大;(3)一个根大于3,一个根小于3.36.已知关于x的方程x2+(2k+1)x+k2+2=0有两个不相等的实数根.①求k的取值范围;②试判断直线y=(2k﹣3)x﹣4k+7能否通过点A(﹣2,5),并说明理由.37.已知关于x的一元二次方程x2﹣mx﹣2=0.(1)若﹣1是方程的一个根,求m的值和方程的另一个根.(2)对于任意实数m,判断方程根的情况,并说明理由.38.证明:无论m为何值,关于x的方程x2﹣2mx﹣2m﹣4=0总有两个不相等的实数根.39.已知关于x的一元二次方程x2﹣(m﹣1)x+m+2=0,若方程有两个相等的实数根,求m的值.40.已知关于x的一元二次方程x2﹣kx﹣2=0.(1)求证:无论k取何值,方程有两个不相等的实数根;(2)设方程的两个实数根分别为x1,x2,且满足x1+x2=x1•x2,求k的值.41.已知方程m2x2+(2m+1)x+1=0有实数根,求m的取值范围.42.已知关于x的一元二次方程x2﹣2x+m=0有两个实数根.(1)求m的范围;(2)若方程两个实数根为x1、x2,且x1+3x2=8,求m的值.43.如果关于x的一元二次方程(1﹣m)x2﹣2x﹣1=0有两个不相等的实数根,当m在它的取值范围内取最大整数时,求的值.44.若关于x的一元二次方程x2+2kx+(k2+2k﹣5)=0有两个实数根,分别是x1,x2.(1)求k的取值范围;(2)若有x1+x2=x1x2,则k的值是多少.45.已知关于x的方程k2x2+(2k﹣1)x+1=0有两个实数根x1、x2(1)求k的取值范围;(2)是否存在k的值,可以使得这两根的倒数和等于0?如果存在,请求出k,若不存在,请说明理由.46.已知关于x的方程x2﹣(k+1)x+k=0.(1)求证:无论k取什么实数值,这个方程总有实根.(2)若等腰△ABC的一腰长a=4,另两边b、c恰好是这个方程的两根,求△ABC的周长.47.已知x2+(2k+1)x+k2﹣2=0是关于x的一元二次方程方程.(1)方程有两根不相等的实数根,求k的取值范围.(2)方程有一根为1,求k的取值.(3)方程的两根两根互为倒数,求k的取值.48.已知关于x的方程(k﹣1)x2+2x﹣5=0有两个不相等的实数根,求:①k的取值范围.②当k为最小整数时求原方程的解.49.已知关于x的方程(m﹣1)x2﹣(2m﹣1)x+2=0.(1)求证:无论m取任何实数,方程总有实数根;(2)若方程只有整数根,求整数m的值.50.已知关于x的方程2x2+kx﹣1=0.(1)小明同学说:“无论k为何实数,方程总有实数根.”你认为他说的有道理吗?(2)若方程的一个根是﹣1,求另一根及k的值.51.已知关于x的一元二次方程.(1)m取什么值时,方程有两个实数根?(2)设此方程的两个实数根为a、b,若y=ab﹣2b2+2b+1,求y的取值范围.52.已知关于x的一元二次方程x2+(2k+1)x+k2﹣2=0有实根(1)求k的取值范围(2)若方程的两实根的平方和等于11,求k的值.53.如果一元二方程x2+mx+2m﹣n=0有一个根为2,且根的判别式为0,求m、n的值.54.已知,关于x的一元二次方程:ax2+4x﹣1=0,(1)当a取什么值时,方程有实数根?(2)设x1,x2为方程两根,y=x1+x2﹣x1•x2,试比较y与0的大小.55.已知关于x的一元二次方程x2﹣mx﹣2=0(1)x=2是方程的一个根,求m的值和方程的另一个根.(2)对于任意实数m,判断方程的根的情况,并说明理由.56.已知关于x的方程.(1)若方程只有一个根,求k的值并求出此时方程的根;(2)若方程有两个相等的实数根,求k的值.57.已知关于x的方程4x2+4(k﹣1)x+k2=0和2x2﹣(4k+1)x+2k2﹣1=0,它们都有实数根,试求实数k的取值范围.58.已知关于x的一元二次方程kx2+2(k+4)x+(k﹣4)=0(1)若方程有实数根,求k的取值范围(2)若等腰三角形ABC的边长a=3,另两边b和c恰好是这个方程的两个根,求△ABC的周长.59.已知关于2x2+kx﹣1=0.(1)求证:该方程一定有两个不相等的实数根.(2)若已知该方程的一个根是﹣1,请求出另一个根.60.已知12<m<40,且关于x的二次方程x2﹣2(m+1)x+m2=0有两个整数根,求整数m.一元二次方程判别式专项练习60题参考答案:1.(1)∵方程有两个不相等的实数根,∴△=(﹣5)2﹣4×2×(﹣a)>0,解得a >﹣,即a的取值范围为a >﹣;(2)根据题意得=1,解得a=﹣2,方程化为2x2﹣5x+2=0,变形为(2x﹣1)(x﹣2)=0,解得x1=,x2=2.2.(1)证明:方程整理为x2﹣5x+6﹣p2=0,△=(﹣5)2﹣4×1×(6﹣p2)=1+4p2,∵4p2≥0,∴△>0,∴这个方程总有两个不相等的实数根;(2)解:当p=2时,方程变形为x2﹣5x+2=0,△=1+4×4=17,∴x=,∴x1=,x2=.3.方程整理得x2+(2k﹣1)x+(k﹣2)2=0①,由题意得(2k﹣1)2﹣4(k﹣2)2=0,解得.将代入①得,解得4.(1)△=42﹣4(3﹣a)=4+4a.∵该方程有实数根,∴4+4a≥0.解得a≥﹣1.(2)当a为符合条件的最小整数时,a=﹣1.此时方程化为x2+4x+4=0,方程的根为x1=x2=﹣2 5.(1)∵该方程有两个不相等的实数根,∴△=32﹣4×1×=9﹣3m>0.解得m<3.∴m的取值范围是m<3;(2)∵m<3,∴符合条件的最大整数是m=2.2解得x==.∴方程的根为x1=,x2=.故答案为:m<3,x1=,x2=6.(1)化为一般形式得:x2+3x﹣m﹣8=0△=9+4(m+8)>0,解得m >﹣,∴m的最小整数值m=﹣10.(2)把m=﹣10代入原方程得x2+3x+10=8,即x2+3x+2=0解得:x1=﹣1,x2=﹣27.∵△=(﹣5)2﹣4×m×3=25﹣12m,∴由题意得:25﹣12m=1,∴m=2,当m=2时,方程为2x2﹣5x+3=0,两根为x1=1,x2=.答:m的值为2,方程的根为1和.8.(1)根据题意得k≠0且△≥0,即4﹣4k≥0,解得k ≤1,所以k的取值范围为k≤1且k≠0;(2)存在,k=﹣1.理由如下:根据题意得x1+x2=,x1•x2=,∵(x1+1)(x2+1)=k﹣1,∴x1•x2+x1+x2+1=k﹣1,即++1=k﹣1,化为整式方程得k2﹣2k﹣3=0,∴(k﹣3)(k+1)=0,∴k1=3,k2=﹣1,∵k≤1且k≠0;∴k=﹣19.①∵△=(2k+1)2﹣4×1×4(k ﹣)=4k2+4k+1﹣16k+8=4k2﹣12k+9=(2k﹣3)2≥0,∴该方程有两个实根;②若方程有两个相等的实数根,则△=b2﹣4ac=0,∴(2k﹣3)2=0,解得:k=,∴k=时,方程有两个相等的实数根;x2﹣(2×+1)x+4(﹣)=0x2﹣4x+4=0,解得:x=2;∴方程两根均为2.10.(1)根据题意得k≠0且△=(k+2)2﹣4k ×=4k+4>0,解得k>﹣1且k≠0;(2)取k=1,方程化为x2+3x+=0,△=4k+4=8,∴x==,∴x1=,x2=11.△=(2m)2﹣4(m+2)(m﹣1)=4m2﹣4m2﹣4m+8=﹣4m+8.(1分)(1)因为方程有两个不相等的实数根,所以﹣4m+8>0,所以m<2.(2分)(2)因为方程有两个相等的实数根,所以﹣4m+8=0,所以m=2.(2分)因为方程没有实数根,所以﹣4m+8<0,所以m>212.(1)根据题题意得k≠0且△=(k﹣2)2﹣4k •>0,解得k<1且k≠0;(2)根据题意得k≠0且△=(k﹣2)2﹣4k •<0,解得k>113.(1)证明,将x=3代入方程,得左边=9a﹣9(a﹣1)﹣9=9﹣9=0=右边,所以,方程总有一个根是x=3;(2)当a≠0时,△=9(a﹣1)2+4×9=9(a+1)2,所以,x1==3,x2==﹣,即方程的另一个根是x=﹣.14.∵一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,∴1﹣k≠0,且△>0,即22﹣4×(1﹣k)×(﹣1)>0,解得k<2,又∵k是整数,∴k的取值范围为:k<2且k≠1的整数,∴k最大可以取0.15.(1)证明:△=(m+2)2﹣4(2m﹣1)=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,即△>0,∴方程有两个不相等的实数根;(2)解:当m=﹣2时,方程变形为x2﹣5=0,解得x1=,x2=﹣,∴方程的两根互为相反数16.(1)∵x=1是方程x2+2x+k﹣1=0的一个根,∴12+2×1+k﹣1=0,解得,k=﹣2;(2)∵方程没有实数根,∴b2﹣4ac<0,即22﹣4(k﹣1)<0,解得k>217.(1)证明:方程的根的判别式△=(m﹣2)2﹣4×1×(﹣9)=(m﹣2)2+36∵无论m取何实效(m﹣2)2+36>0恒成立∴这个方程总有两个不相等的实数根(2)解由根与系数的关系.得α+β=2﹣m则2α+β=α+α+β=α+2﹣m∵2α+β=m+1,∴α+2﹣m=m+1,则α=2m﹣1∵α是方程的根,∴α2+(m﹣2)α﹣9=0则(2m﹣1)2+(m﹣2)(2m﹣1)﹣9=0整理,得2m2﹣3m一2=0解,得m1=2,m2=﹣.18.∵已知的整系数二次方程有整数根,∴△=4p2﹣4(p2﹣5p﹣1)=4(5p+1)为完全平方数,从而,5p+1为完全平方数设5p+1=n2,注意到p≥2,故n≥4,且n为整数∴5p=(n+1)(n﹣1),则n+1,n﹣1中至少有一个是5的倍数,即n=5k±1(k为正整数)∴5p+1=25k2±10k+1,p=k(5k±2),由p是质数,5k±2>1,∴k=1,p=3或7当p=3时,已知方程变为x2﹣6x﹣7=0,解得x1=﹣1,x2=7;当p=7时,已知方程变为x2﹣14x+13=0,解得x1=1,x2=13 所以p=3或p=7.19.∵△=b2﹣4ac=16﹣4(5﹣m)=4m﹣4>0∴m>1当x≥0时,方程是x2﹣4x+5﹣m=0,方程有两个不同的根,则两个的积一定大于0,即5﹣m>0,则m<5∴1<m<5当x<0时,方程是x2+4x+5﹣m=0,方程有两个不同的根,则两个根的积一定大于0,即5﹣m>0,则m<5则1<m<5∴1<m<5时,方程x2﹣4|x|+5=m有4个互不相等的实数根20.原式可变形为:|x﹣2| 2+(y﹣1)|x﹣2|﹣2﹣2y=0,(|x﹣2|﹣2)[|x﹣2|+(1+y)]=0,则|x﹣2|=2或|x﹣2|=﹣(y+1),故2=﹣(y+1),则y=﹣3,当|x﹣2|=2,且1+y>0时,则y>﹣1,故y的负整数值为:﹣321.(1)根据题意,m 应当满足条件…(3分)即∴﹣2<m≤﹣1…(7分)(2)根据题意,m 应当满足条件…(10分),即∴m<﹣122.(1)当m=1时,原方程变为:x2﹣2x﹣1=0解得:;(2)△=b2﹣4ac=(﹣2m)2﹣4×(m2﹣2m)=8m,当m>0时,原方程有两个不相等的实数根;当m=0时,原方程有两个相等的实数根;m<0时,原方程没有实数根23.由已知条件△=4(b﹣a)2﹣4(c﹣b)(a﹣b)=4(a ﹣b)(a﹣c)=0,∴a=b或a=c,∵c﹣b≠0则c≠b,∴这个三角形是等腰三角形24.△=m2﹣4(m﹣2)=m2﹣4m+8=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,即△>0,∴无论m取何值,该方程总有两个不相等的实数根.25.(1)∵方程有两个相等的实数根,∴(m﹣1)2﹣4(m+2)=0,∴m2﹣2m+1﹣4m﹣8=0,m2﹣6m﹣7=0,∴m=7或﹣1;(2)∵方程的两实数根之积等于m2﹣9m+2,∴m2﹣9m+2=m+2,∴m2﹣10m=0,∴m=0或m=10,当m=0时,方程为:x2+x+2=0,方程没有实数根,舍去;∴m=10,∴=426.(1)由题意,知(﹣2)2﹣4(k﹣1)>0,解得k<2,即k 的取值范围为k<2.(2)由题意,得(k﹣1)2﹣2(k﹣1)+k﹣1=0即k2﹣3k+2=0解得k1=1,k2=2(舍去)∴k的值为127.(1)把x=1代入方程,得1+2+m﹣1=0,所以m=﹣2;(2)∵方程有两个不相等的实数根,∴△>0,即22﹣4(m﹣1)>0,解得m<2.所以m的取值范围为m<228.∵关于x的一元二次方程(k﹣2)2x2+(2k+1)x+1=0有两个不相等的实数根,∴,解得k >.所以k的取值范围是k >且k≠2.29.(1)证明:∵△=b2﹣4ac=(3k﹣2)2﹣4•(﹣6k)=9k2﹣12k+4+24k=9k2+12k+4=(3k+2)2≥0∴无论k取何值,方程总有实数根.(2)解:①若a=6为底边,则b,c为腰长,则b=c,则△=0.∴(3k+2)2=0,解得:k=﹣.此时原方程化为x2﹣4x+4=0∴x1=x2=2,即b=c=2.此时△ABC三边为6,2,2不能构成三角形,故舍去;②若a=b为腰,则b,c中一边为腰,不妨设b=a=6代入方程:62+6(3k﹣2)﹣6k=0∴k=﹣2则原方程化为x2﹣8x+12=0(x﹣2)(x﹣6)=0∴x1=2,x2=6即b=6,c=2此时△ABC三边为6,6,2能构成三角形,综上所述:△ABC三边为6,6,2.∴周长为6+6+2=14.30.(1)k=6,方程变为x2﹣5x+6=0,即(x﹣2)(x﹣3)=0,∴x1=2,x2=3;(2)根据题意△=(﹣5)2﹣4k>0,解得k <;(3)根据题意得x1+x2=5,x1,•x2=k,而2x1﹣x2=2,∴x1=,∴x2=,∴k=×=31.(1)∵△=[﹣(m﹣1)]2﹣4m=m2+2m+1﹣4m=(m﹣1)2,又∵不论m取何实数,总有(m﹣1)2≥0,∴△≥0,∴不论m取何实数,方程都有实数根.(2)∵由求根公式得=∴x1=m,x2=1,∴只要m取整数(不等于1),则方程的解就都为整数且不相等.如取m=2,则原方程有两个不相等的整数根,分别是x1=2,x2=1.32.(1)△=(﹣2)2﹣4(2k﹣3)=8(2﹣k).∵该方程有两个不相等的实数根,∴8(2﹣k)>0,解得k<2.(2)当k为符合条件的最大整数时,k=1.此时方程化为x2﹣2x﹣1=0,方程的根为x==1±.即此时方程的根为x1=1+,x2=1﹣.33.(1)当k=﹣1时,方程﹣4x﹣4=0为一元一次方程,此方程有一个实数根;当k≠﹣1时,方程(k+1)x2+(3k﹣1)x+2k﹣2=0是一元二次方程,△=(3k﹣1)2﹣4(k+1)(2k﹣2)=(k﹣3)2.∵(k﹣3)2≥0,即△≥0,∴k为除﹣1外的任意实数时,此方程总有两个实数根.综上,无论k取任意实数,方程总有实数根;(2)∵方程(k+1)x2+(3k﹣1)x+2k﹣2=0中a=k+1,b=3k ﹣1,c=2k﹣2,∴x=,∴x1=﹣1,x2=﹣2,∵方程的两个根是整数根,且k为正整数,∴当k=1时,方程的两根为﹣1,0;当k=3时,方程的两根为﹣1,﹣1.∴k=1,334.(1)∵方程x2﹣x+p﹣1=0有两个实数根x1、x2,∴△≥0,即12﹣4×1×(p﹣1)≥0,解得p ≤,∴p的取值范围为p ≤;(2)∵方程x2﹣x+p﹣1=0有两个实数根x1、x2,∴x12﹣x1+p﹣1=0,x22﹣x2+p﹣1=0,∴x12﹣x1=﹣p+1=0,x22﹣x2=﹣p+1,∴(﹣p+1﹣2)(﹣p+1﹣2)=9,∴(p+1)2=9,∴p1=2,p2=﹣4,∵p ≤,∴p=﹣435.(1)设方程的两个正根为x1、x2,则:△=(2k﹣3)2﹣4(2k﹣4)≥0 ①,x1+x2=2k﹣3>0,x1x2=2k﹣4>0 ②,解①,得:k为任意实数,解②,得:k>2,所以k的取值范围是k>2;(2)设方程的两个根为x1、x2,则:△=(2k﹣3)2﹣4(2k﹣4)>0 ①,x1+x2=2k﹣3>0,x1x2=2k﹣4<0 ②,解①,得:k ≠,解②,得:<k<2,所以k 的取值范围是<k<2;(2)设方程的两个根为x1、x2,则:△=(2k﹣3)2﹣4(2k﹣4)>0 ①,(x1﹣3)(x2﹣3)<0 ②,解①,得:k ≠,由②,得:x1x2﹣3(x1+x2)+9<0,又x1+x2=2k﹣3>0,x1x2=2k﹣4,代入整理,得﹣4k+14<0,解得k >.则k >.36.(1)∵关于x的方程x2+(2k+1)x+k2+2=0有两个不相等的实数根,∴△=b2﹣4ac>0∴(2k+1)2﹣4(k2+2)>0∴4k2+4k+1﹣4k2﹣8>0,∴4k>7,解得,k >;(2)假设直线y=(2k﹣3)x﹣4k+7能否通过点A(﹣2,5),∴5=(2k﹣3)×(﹣2)﹣4k+7,即﹣8=﹣8k,解得k=1<;又由(1)知,k >;∴k=1不符合题意,即直线y=(2k﹣3)x﹣4k+7不通过点A(﹣2,5)37.(1)把x=﹣1代入原方程得:1+m﹣2=0,解得:m=1,∴原方程为x2﹣x﹣2=0.解得:x=﹣1或2,∴方程另一个根是2;(2)∵△=b2﹣4ac=m2+8>0,∴对任意实数m方程都有两个不相等的实数根.38.∵△=(﹣2m)2﹣4×1×(﹣2m﹣4)=4(m2+2m)+16=4(m2+2m+1﹣1)+16=4(m+1)2+12>0,∴关于x的方程x2﹣2mx﹣2m﹣4=0总有两个不相等的实数根.39.∵关于x的一元二次方程x2﹣(m﹣1)x+m+2=0有两个相等的实数根,∴△=b2﹣4ac=0,即:(m﹣1)2﹣4(m+2)=0,解得:m=7或m=﹣1,∴m的值为7或﹣140.1)证明:∵a=1,b=﹣k,c=﹣2∴△=b2﹣4ac=(﹣k)2﹣4×1×(﹣2)=k2+8,∵k2>0,∴△>0,∴无论k取何值,方程有两个不相等的实数根.(2)解:∵,;又∵x1+x2=x1•x2∴k=﹣2.41.当m2=0,即m=0,方程变为:x+1=0,有解;当m2≠0,即m≠0,原方程要有实数根,则△≥0,即△=(2m+1)2﹣4m2=4m+1≥0,解得m ≥﹣,则m的范围是m ≥﹣且m≠0;所以,m的取值范围为m ≥﹣42.(1)△=4﹣4m,∵有两个实数根,∴4﹣4m≥0,∴m≤1;(2)∵,解得,,∴m=x1x2=﹣343.∵一元二次方程有两个不相等的实数根,∴△=4+4(1﹣m)=8﹣4m>0,且1﹣m≠0,∴m<2,且m ≠1.当m=0时,无意义,故m≠0,则m的最大整数值为﹣1,所以=4×1+1=5.答:=5.44.(1)∵方程x2+2kx+(k2+2k﹣5)=0有两个实数根,∴△≥0,即4k2﹣4( k2+2k﹣5 )≥0,∴﹣8k+20≥0∴k ≤;(2)∵x1+x2=﹣2k,x1x2=k2+2k﹣5,而x1+x2=x1x2,∴﹣2k=k2+2k﹣5,即k2+4k﹣5=0解得k1=﹣5,k2=1,又∵k ≤,∴k=﹣5或145.(1)(2k﹣1)2﹣4k2×1≥0,解得:k ≤,且:k2≠0,∴k≠0,∴k ≤且k≠0;(2)不存在,∵方程有两个的实数根,∴x1+x2=﹣,x1x2=,∴==﹣=﹣2k+1=0,k=,∵k ≤且k≠0;∴不存在46.(1)∵△=[﹣(k+1)]2﹣4k=k2+2k+1﹣4k=(k﹣1)2≥0,∴无论k取什么实数值,这个方程总有实根;(2)∵等腰△ABC的一边长a=4,∴另两边b、c中必有一个数为4,把4代入关于x的方程x2﹣(k+1)x+k=0中得,∴16﹣4(k+1)+k=0,解得:k=4,所以b+c=k+1=5∴△ABC的周长=4+5=9.47.(1)∵方程有两根不相等的实数根,∴△=(2k+1)2﹣4×1×(k2﹣2)>0,∴k >﹣;(2)把x=1代入原方程得1+(2k+1)+k2﹣2=0,整理得k2+2k=0,解得k=0或﹣2;(3)设两实数根为:x1,x2,由根与系数的关系:x1x2=k2﹣2=1,解得k=±48.①由题意得,22﹣4(k﹣1)•(﹣5)>0.解得,.且k﹣1≠0,即k≠1故且k≠1.(2)k的最小整数是k=2.则原方程为x2+2x﹣5=0故此时方程的解为:,49.(1)证明:∵△=[﹣(2m﹣1)]2﹣4×(m﹣1)×2=4m2﹣12m+9=(2m﹣3)2≥0,∴无论m取任何实数,方程总有实数根;(2)x==,x1==2,x2==,∵方程只有整数根,∴m﹣1=±1,解得:m=0或250.(1)有道理,△=k2﹣4×2×(﹣1)=k2+8,∴k2≥0,∴k2+8>0,∴无论k为何实数,方程总有实数根;(2)∵方程的一个根是﹣1,∴2×(﹣1)2﹣k﹣1=0,解得:k=1,把k=1代入方程2x2+kx﹣1=0得方程2x2+x﹣1=0,解得:x1=﹣1,x2=,故另一根是,k的值是151.(1)∵△≥0,方程有两个实数根,∴12﹣4×1×m≥0,解得m≤1,∴当m≤1时,方程有两个实数根;(2)∵方程的两个实数根为a、b,∴b2﹣b+m=0,ab=m,∴y=m﹣2(b2﹣b)+1=m﹣2×(﹣m)+1=m+1,∵m≤1,∴y ≤+1,即y ≤.52.(1)∵关于x的一元二次方程x2+(2k+1)x+k2﹣2=0有实根,∴△=(2k+1)2﹣4×1×(k2﹣2)≥0,解得:;(2)设方程x2+(2k+1)x+k2﹣2=0设其两根为x1,x2,得x1+x2=﹣(2k+1),x1•x2=k2﹣2,∵x12+x22=11,∴(x1+x2)2﹣2x1x2=11,∴(2k+1)2﹣2(k2﹣2)=11,解得k=1或﹣3;∵k ≥﹣,∴k=1.53.∵一元二方程x2+mx+2m﹣n=0有一个根为2,∴4+4m﹣n=0①,又∵根的判别式为0,∴△=m2﹣4×(2m﹣n)=0,即m2﹣8m+4n=0②,由①得:n=4+4m,把n=4+4m代入②得:m2+8m+16﹣0,解得m=﹣4,代入①得:n=﹣12,所以m=﹣4,n=﹣12.54.(1)∵方程有实数根,∴△≥0,即16+4a≥0,解得a≥﹣4.由于ax2+4x﹣1=0是关于x的一元二次方程,可知a≠0,∴a≥﹣4且a≠0.(2)∵ax2+4x﹣1=0是关于x的一元二次方程,∴x1+x2=﹣,x1•x2=﹣,∴y=﹣+=﹣.当﹣4≤a<0时,y=﹣+=﹣>0;当a>0时,y=﹣+=﹣<0.55.(1)将x=2代入方程得:4﹣2m﹣2=0,解得:m=1,方程为x2﹣x﹣2=0,即(x﹣2)(x+1)=0,解得:x=2或x=﹣1,则方程的另一根为﹣1;(2)∵△=m2+8≥8>0,∴方程有两个不相等的实数根.56.(1)∵方程只有一个根,∴此方程是一元一次方程,即k ﹣=0,∴k=;代入原方程得﹣x=1,解得x=﹣;(2)∵方程有两个相等的实数根,∴,∴k1=0,k2=﹣6.57.∵两个一元二次方程都有实数根,∴,解得﹣≤k ≤.58.(1)∵关于x的一元二次方程kx2+2(k+4)x+(k﹣4)=0方程有实数根,∴b2﹣4ac=[2(k+4)]2﹣4k(k﹣4)≥0,解得:k ≥﹣且k≠0;(2)①若a=3为底边,则b,c为腰长,则b=c,则△=0.∴b2﹣4ac=[2(k+4)]2﹣4k(k﹣4)=0,解得:k=﹣.此时原方程化为x2﹣4x+4=0∴x1=x2=2,即b=c=2.此时△ABC三边为3,2,2能构成三角形,∴△ABC的周长为:3+2+2=8;②若a=b为腰,则b,c中一边为腰,不妨设b=a=3代入方程:kx2+2(k+4)x+(k﹣4)=0得:k×32+2(k+4)×3+(k﹣4)=0∴解得:k=﹣,∵x1×x2=bc====3c,∴c=,∴△ABC的周长为:3+3+=.59.(1)证明:∵△=k2﹣4×2×(﹣1)=k2+4>0,∴该方程一定有两个不相等的实数根;(2)解:设另一个根为x1,根据根与系数的关系可得:x1•x2=﹣,∵一个根是﹣1,∴x1•(﹣1)=﹣,解得:x1=60.∵一元二次方程x2﹣2(m+1)x+m2=0有两个整数根,由求根公式∴△=b2﹣4ac=4(m+1)2﹣4m2=8m+4≥0,∴,∵12<m<40,,∵一元二次方程x2﹣2(m+1)x+m2=0有两个整数根,∴2m+1必须是完全平方数,∴m=24。

沪教版(上海)八年级上册数学17.3一元二次方程根的判别式同步练习(含答案)

沪教版(上海)八年级上册数学17.3一元二次方程根的判别式同步练习(含答案)

沪教版(上海)八年级上册数学17.3一元二次方程根的判别式同步练习(含答案)17.3 一元二次方程根的判别式同步练习1.一元二次方程x 2-4x +5=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根2.下列一元二次方程有两个相等实数根的是( )A .x 2+3=0B .x 2+2x =0C .(x +1)2=0D .(x +3)(x -1)=03.一元二次方程4x 2+1=4x 的根的情况是( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根4.方程2x 2-x -1=0的根的判别式的值为________.5.一元二次方程12x 2=2x -1的根的情况是__________________. 6.不解方程,判别下列方程根的情况.(1)x 2+2x -3=0;(2)5x 2=-2(x -10);(3)8x 2+(m +1)x +m -7=0.7.若关于x 的一元二次方程x 2-3x +m =0有两个不相等的实数根,则实数m 的取值范围为( )A .m>94B .m<94C .m =94D .m<-948.若关于x 的一元二次方程4x 2-4x +c =0有两个相等的实数根,则c 的值是( )A .-1B .1C .-4D .49.如果关于x 的一元二次方程x 2+4x -m =0没有实数根,那么m 的取值范围是________.10.已知关于x 的一元二次方程x 2+4x +m =0.(1)当m 的值为17时,请利用根的判别式判断此方程的解的情况;(2)请你为m 选取一个合适的整数,使得到的方程有两个不相等的实数根,并说明你的理由.11.已知关于x 的方程x 2-2(m +1)x +m 2=0.(1)当m 取何值时,方程有两个实数根?(2)请你为m 选取一个合适的整数,使方程有两个不相等的实数根,并求出这两个实数根.12.已知关于x 的方程x 2+ax +a -2=0.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.13.若a 满足不等式组2a -1≤1,1-a 2>2,则关于x 的方程(a -2)x 2-(2a -1)x +a +12=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .以上三种情况都有可能14.若关于x 的一元二次方程(m -2)x 2+2x +1=0有实数根,则m 的取值范围是( )A .m≤3B .m <3C .m <3且m≠2D .m≤3且m≠215.有两个一元二次方程M :ax 2+bx +c =0;N :cx 2+bx +a =0,其中ac≠0,a≠c.下列四个结论中,错误的是( )A .如果方程M 有两个相等的实数根,那么方程N 也有两个相等的实数根B .如果方程M 的两根符号相同,那么方程N 的两根符号也相同C .如果5是方程M 的一个根,那么15是方程N 的一个根 D .如果方程M 和方程N 有一个相同的根,那么这个根必是x =116.若关于x 的方程kx 2-4x -23=0有实数根,则k 的取值范围是________. 17.若关于x 的一元二次方程x 2+mx +n =0有两个相等的实数根,则2m 3-8mn +2017的值为________.18.已知关于x 的一元二次方程x 2-(2k +1)x +k 2+k =0.(1)求证:方程有两个不相等的实数根;(2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根,第三边BC 的长为5.当△ABC 是等腰三角形时,求k 的值.19.若方程x 2-4|x|+5=m 有4个互不相等的实数根,则m 应满足______________.20.已知关于x 的一元二次方程mx 2-(m +2)x +2=0.(1)求证:不论m 为何值时,方程总有实数根;(2)当m 为何整数时,方程有两个不相等的正整数根?参考答案1.D [解析] ∵b 2-4ac =(-4)2-4×5=-4<0,∴方程没有实数根.故选D .2.C [解析] 计算根的判别式的值,再根据判别式的意义可对A ,B ,C 三项进行判断.由于D 项的两根可直接得到,所以显然D 项不符合题意.其中选项C 的判别式值为0.故选C .3.C [解析] 原方程可化为4x 2-4x +1=0,∵Δ=(-4)2-4×4×1=0,∴方程有两个相等的实数根.故选C .4.9 [解析] Δ=(-1)2-4×2×(-1)=9.5.有两个相等的实数根 [解析] 将原方程化为一般形式得12x 2-2x +1=0,因为Δ=(-2)2-4×12×1=0,所以原方程有两个相等的实数根.6.解:(1)因为Δ=b 2-4ac =4+12=16>0,所以方程有两不相等的实数根.(2)原方程可化为5x 2+2x -20=0,因为Δ=b 2-4ac =4+4×5×20=404>0,所以方程有两不相等的实数根.(3)因为Δ=(m +1)2-4×8(m -7)=(m -15)2≥0,所以方程有实数根.7.B [解析] 根据题意,得Δ=(-3)2-4m >0,解得m <94.故选B . 8.B [解析] ∵一元二次方程4x 2-4x +c =0有两个相等的实数根,∴Δ=(-4)2-4×4c =0,解得c =1.故选B .9.m <-410.解:(1)当m =17时,方程为x 2+4x +17=0.∵a =1,b =4,c =17,∴b 2-4ac =42-417=4(4-17)<0,∴此方程没有实数解.(2)要使方程有两个不相等的实数根,故方程根的判别式Δ=16-4m >0,可得m <4.又m 为整数,故m 的值可以为3,2,1,…11.解:(1)由题意知Δ=b 2-4ac =[-2(m +1)]2-4m 2=[-2(m +1)+2m][-2(m +1)-2m]=-2(-4m -2)=8m +4≥0,解得m≥-12. ∴当m≥-12时,方程有两个实数根. (2)答案不唯一,如选取m =0,方程为x 2-2x =0,解得x 1=0,x 2=2.12.解:(1)当x =1时,方程为1+a +a -2=0,得a =12.此时方程为x 2+12x -32=0,(x -1)(2x +3)=0,∴x 1=1,x 2=-32,∴方程的另一根为-32. (2)证明:Δ=a 2-4(a -2)=a 2-4a +8=a 2-4a +4+4=(a -2)2+4.∵(a -2)2≥0,∴(a -2)2+4>0,∴Δ>0,∴不论a 取何实数,该方程都有两个不相等的实数根.13.C [解析] 解不等式组2a -1≤1,1-a 2>2,得a <-3,∵Δ=(2a -1)2-4(a -2)(a +12)=2a +5,∵a <-3,∴Δ=2a +5<0,∴方程(a -2)x 2-(2a -1)x +a +12 =0没有实数根. 14.D [解析] 因为关于x 的一元二次方程(m -2)x 2+2x +1=0有实数根,所以m -2≠0且Δ≥0,即22-4×(m -2)×1≥0,解得m≤3,故m 的取值范围是m≤3且m≠2.15.D [解析] A 选项,如果方程M 有两个相等的实数根,那么Δ=b 2-4ac =0,所以方程N 也有两个相等的实数根,结论正确,不符合题意;B 选项,如果方程M 的两根符号相同,那么Δ=b 2-4ac≥0,-b +b 2-4ac 2a ·-b -b 2-4ac 2a >0,即c a >0,所以a 与c 符号相同,a c >0,又-b +b 2-4ac 2c ·-b -b 2-4ac 2c =a c ,所以方程N 的两根符号也相同,结论正确,不符合题意;C 选项,如果5是方程M 的一个根,那么25a +5b +c =0,两边同时除以25,得125c +15b +a =0,所以15是方程N 的一个根,结论正确,不符合题意; D 选项,如果方程M 和方程N 有一个相同的根,那么ax 2+bx +c =cx 2+bx +a ,(a -c)x 2=a -c ,由a≠c ,得x 2=1,x =±1,结论错误,符合题意.故选D .16.k≥-6 [解析] k =0时,-4x -23=0,解得x =-16,符合题意;当k≠0时,方程kx 2-4x -23=0是一元二次方程,根据题意可得Δ=16-4k×(-23)≥0,解得k≥-6,k≠0,综上k≥-6.17.2017 [解析] ∵一元二次方程x 2+mx +n =0有两个相等的实数根,∴Δ=m 2-4n =0,∴2m 3-8mn +2017=2m(m 2-4n)+2017=2017.18.解:(1)证明:∵在关于x 的一元二次方程x 2-(2k +1)x +k 2+k =0中,a =1,b =-(2k +1),c =k 2+k ,∴Δ=b 2-4ac =[-(2k +1)]2-4×1×(k 2+k)=1>0,∴方程有两个不相等的实数根.(2)∵x 2-(2k +1)x +k 2+k =0,∴(x -k)[x -(k +1)]=0,∴方程的两个不相等的实数根为x 1=k ,x 2=k +1.∵△ABC 的两边AB ,AC 的长是方程的两个实数根,第三边BC 的长为5,∴有两种情况:第一种情况:x 1=k =5,此时k =5,满足三角形构成条件;第二种情况:x 2=k +1=5,此时k =4,满足三角形构成条件.综上所述,k 的值为4或5.19.m >1且m <5 [解析] 设y =|x|,则原方程为:y 2-4y +5=m.∵方程x 2-4|x|+5=m 有4个互不相等的实数根,∴方程y 2-4y +5=m 有2个互不相等的正实数根.设y 1与y 2是方程y 2-4y +5=m 的两个根,∴Δ=b 2-4ac =16-4(5-m)=4m -4>0,y 1·y 2=5-m >0,∴m>1且m <5.20.解:(1)证明:Δ=(m +2)2-8m=m 2-4m +4=(m -2)2.∵不论m 为何值时,都有(m -2)2≥0,∴Δ≥0,∴方程总有实数根.(2)解方程,得x =m +2±(m -2)22m =m +2±(m -2)2m , x 1=2m,x 2=1. ∵方程有两个不相等的正整数根,∴m =1或m =2(不合题意),∴m =1.。

完整版)一元二次方程的根的判别式练习题

完整版)一元二次方程的根的判别式练习题

完整版)一元二次方程的根的判别式练习题1.方程2x+3x-k=0的根的判别式为b^2-4ac,即(3+2)^2-4(2)(-k)=k+13,当k>-13时,方程有实根。

2.关于x的方程kx+(2k+1)x-k+1=0可以化简为(3k+1)x-k+1=0,根的判别式为(2k+1)^2-4(k)(-k+1)=8k^2+8k+1,当k 不等于0时,方程有实根。

3.方程x+2x+m=0有两个相等实数根,即b^2-4ac=0,即4-4m=0,解得m=1.4.关于x的方程(k+1)x-2kx+(k+4)=0可以化简为(x-k)(x+k+4)=0,根的情况为一个实根为-k,一个实根为k+4.5.当m=-1时,关于x的方程3x-2(3m+1)x+3m-1=0化简为3x+7x-1=0,有两个不相等的实数根。

6.将2x(ax-4)-x+6=0化简为2ax^2-(8+a)x+6=0,根的判别式为(8+a)^2-4(2a)(6)=a^2+16a-23,要使方程没有实数根,根的判别式小于0,即a的最小整数值为-15.7.方程mx^2+(2m-1)x-2=0的根的判别式为(2m-1)^2-4(m)(-2)=16m+1,解得m=1或m=-1/4,但由于题目中要求判别式的值等于4,所以m=-1/4.8.将(x-α)(x-β)+cx=0展开化简得x^2-(α+β)x+αβ+cx=0,根据韦达定理,α+β=-c,αβ=c,所以方程的两个根为α和β。

9.1) 当a>0时,判别式为4a^4-4a^3,即a^3>1时有两个实数根,否则无实数根。

2) 判别式为4k^2-4(k^2+4),即-16,所以方程无实数根。

10.将方程x+2(m+1)x+3m+4mn+4n+2=0化简为x+(2m+2)x+(3m+4mn+2)=0,根的判别式为(2m+2)^2-4(3m+4mn+2)=4(m-n+1)^2-8,要使方程有实数根,根的判别式大于等于0,即(m-n+1)^2>=2,解得m-n=-1+sqrt(2),即m=n-1+sqrt(2)。

一元二次方程根的判别式及根系关系练习

一元二次方程根的判别式及根系关系练习

1、方程0232=+-x kx 有两个相等的实数根,则k 。

2、若关于x 的方程0342=+-x kx 有实数根,则k 的非负整数值是 。

3、关于x 的方程()0191322
=-+--m x m mx 有两个实数根,则m 的范围是 。

4、已知k>0且方程11232-=++k x kx 有两个相等的实数根,则k= 。

5、当 k 不小于4
1-时,方程()()01222=+---k x k x k 根的情况是 。

6、如果关于x 的方程()()01222=+---m x m x m 只有一个实数根,那么方程
()()0422=-++-m x m mx 的根的情况是 。

7、求证:不论m 为任何实数,关于x 的方程x 2
-2mx+6m -10=0总有两个不相等的实数根.
8、m 取什么值时,方程()01222=-++x x m 有两个不相等的实数根?
9、如果方程0422=--mx x 的两根为21,x x ,且
2112
1=+x x ,求实数 m 的值。

10、关于x 的方程()06322
2=++-+m x m x 的两实根之积是两实根之和的2倍,求m 的值。

11、已知方程()()2
21k x x =--,k 为实数,且k ≠0,不解方程证明: (1)这个方程有两个不相等的实数根;
(2)一个根大于1,另一个根小于1。

12、已知βα、是方程01522=++x x 的二根,求
的值。

α
ββα+
13、已知方程()02122
2=-+++k x k x 的两实根的平方和等于11,求k 的。

一元二次方程概念、解法、根的判别式(含答案)

一元二次方程概念、解法、根的判别式(含答案)

学生做题前请先回答以下问题问题1:关于一元二次方程的定义中,思考次序为________,________,________.问题2:解一元二次方程的思路是设法将其转化成__________处理.主要解法有:____________,____________,____________,____________等.问题3:想一想一元二次方程的四种解法中,每种解法对应的一元二次方程的特征是什么?一元二次方程概念、解法、根的判别式一、单选题(共15道,每道6分)1.下列方程:①;②;③;④;⑤;⑥(a,b,c是常数);⑦;⑧.其中属于一元二次方程的有( )个.A.2B.3C.4D.5答案:A解题思路:试题难度:三颗星知识点:一元二次方程的定义2.方程的二次项、一次项系数和常数项分别是( )A.3,5,2B.C.3,-5,-2D.答案:D解题思路:试题难度:三颗星知识点:一元二次方程的一般形式3.若方程是关于x的一元二次方程,则( )A.m=±2B.m=2C.m=-2D.m=3答案:B解题思路:试题难度:三颗星知识点:一元二次方程的定义4.关于x的一元二次方程的一个根是0,则实数a的值为( )A.-1B.0C.1D.-1或1答案:A解题思路:试题难度:三颗星知识点:一元二次方程的解5.用配方法解关于x的方程,此方程可变形为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:配方法6.若一元二次方程的两个根分别是m+1与2m-4,则的值为( )A. B.4C.36D.答案:B解题思路:试题难度:三颗星知识点:直接开平方法7.已知关于x的一元二次方程有两个不相等的实数根,则m的取值范围是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:根的判别式8.若关于x的方程有实数根,则整数a的最大值是( )A.6B.7C.8D.9答案:C解题思路:试题难度:三颗星知识点:根的判别式9.用公式法解方程,下列代入公式正确的是( )A. B.C. D.答案:D试题难度:三颗星知识点:公式法10.用公式法解方程,下列代入公式正确的是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:公式法11.一元二次方程的解是( )A. B.C. D.解题思路:试题难度:三颗星知识点:分解因式法12.方程的解为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:分解因式法13.三角形的两边长分别为2和6,第三边是方程的一个根,则第三边的长为( )A.7B.3C.7或3D.无法确定答案:A解题思路:试题难度:三颗星知识点:分解因式法14.一元二次方程的解为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:分解因式法15.对于高次方程,可以采用换元法,设将方程降次,先求出y的值,再来求解x的值,则原方程根的个数有( )A.0个B.2个C.3个D.4个答案:B解题思路:试题难度:三颗星知识点:分解因式法。

一元二次方程之判别专项练习60题(有答案)17页 ok

一元二次方程之判别专项练习60题(有答案)17页 ok

一元二次方程判别式专项练习60题(有答案)1.已知关于x的一元二次方程2x2﹣5x﹣a=0(1)如果此方程有两个不相等的实数根,求a的取值范围.(2)当a为何值时,方程的两个根互为倒数,求出此时方程的解.2.已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.(1)求证:方程有两个不相等的实数根;(2)当p=2时,求该方程的根.3.已知关于x的方程x2+2kx+(k﹣2)2=x有两个相等的实数根,求k的值与方程的根.4.若关于x的方程 x2+4x﹣a+3=0有实数根.(1)求a的取值范围;(2)若a为符合条件的最小整数,求此时方程的根.5.已知关于x的方程.(1)如果此方程有两个不相等的实数根,求m的取值范围;(2)在(1)中,若m为符合条件的最大整数,求此时方程的根.6.已知关于x的方程x2+3x﹣m=8有两个不相等的实数根.(1)求m的最小整数值是多少?(2)将(1)中求出的m值,代入方程x2+3x﹣m=8中解出x的值.7.已知关于x的一元二次方程mx2﹣5x+3=0的判别式为1,求m的值及该方程的根.8.已知关于x的方程kx2﹣2x+1=0有两个实数根x1、x2.(1)求k的取值范围;(2)是否存在k使(x1+1)(x2+1)=k﹣1成立?如果存在,求出k的值;如果不存在,请说明理由.9.已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0(1)判断方程根的情况;(2)k为何值时,方程有两个相等的实数根,并求出此时方程的根.10.若关于x的一元二次方程有两个不相等的实数根.(1)求k的取值范围;(2)为k选取一个符合要求的值,并求出此方程的根.11.已知关于x的一元二次方程 x2+2mx+(m+2)(m﹣1)=0(m为常数).(1)如果方程有两个不相等的实数根,求m的取值范围;(2)如果方程有两个相等的实数根,求m的值;如果方程没有实数根,求m的取值范围.12.当k取什么值时,关于x的一元二次方程(1)有两个不相等的实数根?(2)没有实数根?13.已知关于x的方程是ax2﹣3(a﹣1)x﹣9=0.(1)证明:不论a取何值,总有一个根是x=3;(2)当a≠0时,利用求根公式求出它的另一个根.14.若k是一个整数,已知关于x 的一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,则k最大可以取多少?为什么?15.已知关于x的方程x2+(m+2)x+2m﹣1=0.(1)求证:方程有两个不相等的实数根.(2)当m=﹣2时,方程的两根互为相反数吗?并求出此时方程的解.16.已知关于x的方程x2+2x+k﹣1=0,(1)若方程有一个根是1,求k的值;(2)若方程没有实数根,求实数k的取值范围.17.已知关于x的方程x2+(m﹣2)x﹣9=0(1)求证:无论m取什么实数,这个方程总有两个不相等的实数根;(2)若这个方程两个根α,β满足2α+β=m+1,求m的值.18.已知p为质数,使二次方程x2﹣2px+p2﹣5p﹣1=0的两根都是整数,求出p的所有可能值.19.m是什么实数时,方程x2﹣4|x|+5=m有4个互不相等的实数根?20.设关于x的方程x2﹣4x+(y﹣1)|x﹣2|+2﹣2y=0恰有两个实数根,求y的负整数值.21.已知关于x的方程x2+2mx+m+2=0.(1)方程两根都是正数时,求m的取值范围;(2)方程一个根大于1,另一个根小于1,求m的取值范围.22.已知关于x的一元二次方程x2﹣2mx+m2﹣2m=0.(1)当m=1时,求方程的根.(2)试判断方程根的情况.23.已知a、b、c是三角形的三条边长,且关于x的方程(c﹣b)x2+2(b﹣a)x+(a﹣b)=0有两个相等的实数根,试判断三角形的形状.24.已知关于x的一元二次方程x2﹣mx+m﹣2=0,求证:无论m取何值,该方程总有两个不相等的实数根.25.已知关于x的一元二次方程x2﹣(m﹣1)x+m+2=0.(1)若方程有两个相等的实数根,求m的值;(2)若方程的两实数根之积等于m2﹣9m+2,求的值.26.关于x的方程x2﹣2x+k﹣1=0有两个不相等的实数根.(1)求k的取值范围;(2)若k﹣1是方程x2﹣2x+k﹣1=0的一个解,求k的值.27.已知关于x的方程x2+2x+m﹣1=0(1)若1是方程的一个根,求m的值;(2)若方程有两个不相等的实数根,求m的取值范围.28.若关于x的一元二次方程(k﹣2)2x2+(2k+1)x+1=0有两个不相等的实数根,求k的取值范围.29.已知关于x的方程x2+(3k﹣2)x﹣6k=0,(1)求证:无论k取何实数值,方程总有实数根;(2)若等腰三角形ABC的一边a=6,另两边长b,c恰好是这个方程的两个根,求△ABC的周长.30.已知一元二次方程x2﹣5x+k=0.(1)当k=6时,解这个方程;(2)若方程x2﹣5x+k=0有两个不相等的实数根,求k的取值范围;(3)设此方程的两个实数根分别为x1,x2,且2x1﹣x2=2,求k的值.31.已知关于x的方程x2﹣(m+1)x+m=0(1)求证:不论m取何实数,方程都有实数根;(2)为m选取一数,使方程有两个不相等的整数根,并求出这两个实数根.32.已知关于x的方程x2﹣2x+2k﹣3=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为符合条件的最大整数,求此时方程的根.33.已知关于x的方程(k+1)x2+(3k﹣1)x+2k﹣2=0.(1)讨论此方程根的情况;(2)若方程有两个整数根,求正整数k的值.34.关于x的一元二次方程x2﹣x+p﹣1=0有两个实数根x1、x2.(1)求p的取值范围;(2)若,求p的值.35.实数k取何值时,一元二次方程x2﹣(2k﹣3)x+2k﹣4=0(1)有两个正根;(2)有两个异号根,且正根的绝对值较大;(3)一个根大于3,一个根小于3.36.已知关于x的方程x2+(2k+1)x+k2+2=0有两个不相等的实数根.①求k的取值范围;②试判断直线y=(2k﹣3)x﹣4k+7能否通过点A(﹣2,5),并说明理由.37.已知关于x的一元二次方程x2﹣mx﹣2=0.(1)若﹣1是方程的一个根,求m的值和方程的另一个根.(2)对于任意实数m,判断方程根的情况,并说明理由.38.证明:无论m为何值,关于x的方程x2﹣2mx﹣2m﹣4=0总有两个不相等的实数根.39.已知关于x的一元二次方程x2﹣(m﹣1)x+m+2=0,若方程有两个相等的实数根,求m的值.40.已知关于x的一元二次方程x2﹣kx﹣2=0.(1)求证:无论k取何值,方程有两个不相等的实数根;(2)设方程的两个实数根分别为x1,x2,且满足x1+x2=x1•x2,求k的值.41.已知方程m2x2+(2m+1)x+1=0有实数根,求m的取值范围.42.已知关于x的一元二次方程x2﹣2x+m=0有两个实数根.(1)求m的范围;(2)若方程两个实数根为x1、x2,且x1+3x2=8,求m的值.43.如果关于x的一元二次方程(1﹣m)x2﹣2x﹣1=0有两个不相等的实数根,当m在它的取值范围内取最大整数时,求的值.44.若关于x的一元二次方程x2+2kx+(k2+2k﹣5)=0有两个实数根,分别是x1,x2.(1)求k的取值范围;(2)若有x1+x2=x1x2,则k的值是多少.45.已知关于x的方程k2x2+(2k﹣1)x+1=0有两个实数根x1、x2(1)求k的取值范围;(2)是否存在k的值,可以使得这两根的倒数和等于0?如果存在,请求出k,若不存在,请说明理由.46.已知关于x的方程x2﹣(k+1)x+k=0.(1)求证:无论k取什么实数值,这个方程总有实根.(2)若等腰△ABC的一腰长a=4,另两边b、c恰好是这个方程的两根,求△ABC的周长.47.已知x2+(2k+1)x+k2﹣2=0是关于x的一元二次方程方程.(1)方程有两根不相等的实数根,求k的取值范围.(2)方程有一根为1,求k的取值.(3)方程的两根两根互为倒数,求k的取值.48.已知关于x的方程(k﹣1)x2+2x﹣5=0有两个不相等的实数根,求:①k的取值范围.②当k为最小整数时求原方程的解.49.已知关于x的方程(m﹣1)x2﹣(2m﹣1)x+2=0.(1)求证:无论m取任何实数,方程总有实数根;(2)若方程只有整数根,求整数m的值.50.已知关于x的方程2x2+kx﹣1=0.(1)小明同学说:“无论k为何实数,方程总有实数根.”你认为他说的有道理吗?(2)若方程的一个根是﹣1,求另一根及k的值.51.已知关于x的一元二次方程.(1)m取什么值时,方程有两个实数根?(2)设此方程的两个实数根为a、b,若y=ab﹣2b2+2b+1,求y的取值范围.52.已知关于x的一元二次方程x2+(2k+1)x+k2﹣2=0有实根(1)求k的取值范围(2)若方程的两实根的平方和等于11,求k的值.53.如果一元二方程x2+mx+2m﹣n=0有一个根为2,且根的判别式为0,求m、n的值.54.已知,关于x的一元二次方程:ax2+4x﹣1=0,(1)当a取什么值时,方程有实数根?(2)设x1,x2为方程两根,y=x1+x2﹣x1•x2,试比较y与0的大小.55.已知关于x的一元二次方程x2﹣mx﹣2=0(1)x=2是方程的一个根,求m的值和方程的另一个根.(2)对于任意实数m,判断方程的根的情况,并说明理由.56.已知关于x的方程.(1)若方程只有一个根,求k的值并求出此时方程的根;(2)若方程有两个相等的实数根,求k的值.57.已知关于x的方程4x2+4(k﹣1)x+k2=0和2x2﹣(4k+1)x+2k2﹣1=0,它们都有实数根,试求实数k的取值范围.58.已知关于x的一元二次方程kx2+2(k+4)x+(k﹣4)=0(1)若方程有实数根,求k的取值范围(2)若等腰三角形ABC的边长a=3,另两边b和c恰好是这个方程的两个根,求△ABC的周长.59.已知关于2x2+kx﹣1=0.(1)求证:该方程一定有两个不相等的实数根.(2)若已知该方程的一个根是﹣1,请求出另一个根.60.已知12<m<40,且关于x的二次方程x2﹣2(m+1)x+m2=0有两个整数根,求整数m.一元二次方程判别式专项练习60题参考答案:1.(1)∵方程有两个不相等的实数根,∴△=(﹣5)2﹣4×2×(﹣a)>0,解得a>﹣,即a的取值范围为a >﹣;(2)根据题意得=1,解得a=﹣2,方程化为2x2﹣5x+2=0,变形为(2x﹣1)(x﹣2)=0,解得x1=,x2=2.2.(1)证明:方程整理为x2﹣5x+6﹣p2=0,△=(﹣5)2﹣4×1×(6﹣p2)=1+4p2,∵4p2≥0,∴△>0,∴这个方程总有两个不相等的实数根;(2)解:当p=2时,方程变形为x2﹣5x+2=0,△=1+4×4=17,∴x=,∴x1=,x2=.3.方程整理得x2+(2k﹣1)x+(k﹣2)2=0①,由题意得(2k﹣1)2﹣4(k﹣2)2=0,解得.将代入①得,解得4.(1)△=42﹣4(3﹣a)=4+4a.∵该方程有实数根,∴4+4a≥0.解得a≥﹣1.(2)当a为符合条件的最小整数时,a=﹣1.此时方程化为x2+4x+4=0,方程的根为x1=x2=﹣2 5.(1)∵该方程有两个不相等的实数根,∴△=32﹣4×1×=9﹣3m>0.解得m<3.∴m的取值范围是m<3;(2)∵m<3,∴符合条件的最大整数是m=2.2解得x==.∴方程的根为x1=,x2=.故答案为:m<3,x1=,x2=6.(1)化为一般形式得:x2+3x﹣m﹣8=0△=9+4(m+8)>0,解得m>﹣,∴m的最小整数值m=﹣10.(2)把m=﹣10代入原方程得x2+3x+10=8,即x2+3x+2=0解得:x1=﹣1,x2=﹣27.∵△=(﹣5)2﹣4×m×3=25﹣12m,∴由题意得:25﹣12m=1,∴m=2,当m=2时,方程为2x2﹣5x+3=0,两根为x1=1,x2=.答:m的值为2,方程的根为1和.8.(1)根据题意得k≠0且△≥0,即4﹣4k≥0,解得k ≤1,所以k的取值范围为k≤1且k≠0;(2)存在,k=﹣1.理由如下:根据题意得x1+x2=,x1•x2=,∵(x1+1)(x2+1)=k﹣1,∴x1•x2+x1+x2+1=k﹣1,即++1=k﹣1,化为整式方程得k2﹣2k﹣3=0,∴(k﹣3)(k+1)=0,∴k1=3,k2=﹣1,∵k≤1且k≠0;∴k=﹣19.①∵△=(2k+1)2﹣4×1×4(k ﹣)=4k2+4k+1﹣16k+8=4k2﹣12k+9=(2k﹣3)2≥0,∴该方程有两个实根;②若方程有两个相等的实数根,则△=b2﹣4ac=0,∴(2k﹣3)2=0,解得:k=,∴k=时,方程有两个相等的实数根;x2﹣(2×+1)x+4(﹣)=0x2﹣4x+4=0,解得:x=2;∴方程两根均为2.10.(1)根据题意得k≠0且△=(k+2)2﹣4k ×=4k+4>0,解得k>﹣1且k≠0;(2)取k=1,方程化为x2+3x+=0,△=4k+4=8,∴x==,∴x1=,x2=11.△=(2m)2﹣4(m+2)(m﹣1)=4m2﹣4m2﹣4m+8=﹣4m+8.(1分)(1)因为方程有两个不相等的实数根,所以﹣4m+8>0,所以m<2.(2分)(2)因为方程有两个相等的实数根,所以﹣4m+8=0,所以m=2.(2分)因为方程没有实数根,所以﹣4m+8<0,所以m>212.(1)根据题题意得k≠0且△=(k﹣2)2﹣4k •>0,解得k<1且k≠0;(2)根据题意得k≠0且△=(k﹣2)2﹣4k •<0,解得k>113.(1)证明,将x=3代入方程,得左边=9a﹣9(a﹣1)﹣9=9﹣9=0=右边,所以,方程总有一个根是x=3;(2)当a≠0时,△=9(a﹣1)2+4×9=9(a+1)2,所以,x1==3,x2==﹣,即方程的另一个根是x=﹣.14.∵一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,∴1﹣k≠0,且△>0,即22﹣4×(1﹣k)×(﹣1)>0,解得k<2,又∵k是整数,∴k的取值范围为:k<2且k≠1的整数,∴k最大可以取0.15.(1)证明:△=(m+2)2﹣4(2m﹣1)=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,即△>0,∴方程有两个不相等的实数根;(2)解:当m=﹣2时,方程变形为x2﹣5=0,解得x1=,x2=﹣,∴方程的两根互为相反数16.(1)∵x=1是方程x2+2x+k﹣1=0的一个根,∴12+2×1+k﹣1=0,解得,k=﹣2;(2)∵方程没有实数根,∴b2﹣4ac<0,即22﹣4(k﹣1)<0,解得k>217.(1)证明:方程的根的判别式△=(m﹣2)2﹣4×1×(﹣9)=(m﹣2)2+36∵无论m取何实效(m﹣2)2+36>0恒成立∴这个方程总有两个不相等的实数根(2)解由根与系数的关系.得α+β=2﹣m则2α+β=α+α+β=α+2﹣m∵2α+β=m+1,∴α+2﹣m=m+1,则α=2m﹣1∵α是方程的根,∴α2+(m﹣2)α﹣9=0则(2m﹣1)2+(m﹣2)(2m﹣1)﹣9=0整理,得2m2﹣3m一2=0解,得m1=2,m2=﹣.18.∵已知的整系数二次方程有整数根,∴△=4p2﹣4(p2﹣5p﹣1)=4(5p+1)为完全平方数,从而,5p+1为完全平方数设5p+1=n2,注意到p≥2,故n≥4,且n为整数∴5p=(n+1)(n﹣1),则n+1,n﹣1中至少有一个是5的倍数,即n=5k±1(k为正整数)∴5p+1=25k2±10k+1,p=k(5k±2),由p是质数,5k±2>1,∴k=1,p=3或7当p=3时,已知方程变为x2﹣6x﹣7=0,解得x1=﹣1,x2=7;当p=7时,已知方程变为x2﹣14x+13=0,解得x1=1,x2=13 所以p=3或p=7.19.∵△=b2﹣4ac=16﹣4(5﹣m)=4m﹣4>0∴m>1当x≥0时,方程是x2﹣4x+5﹣m=0,方程有两个不同的根,则两个的积一定大于0,即5﹣m>0,则m<5∴1<m<5当x<0时,方程是x2+4x+5﹣m=0,方程有两个不同的根,则两个根的积一定大于0,即5﹣m>0,则m<5则1<m<5∴1<m<5时,方程x2﹣4|x|+5=m有4个互不相等的实数根20.原式可变形为:|x﹣2| 2+(y﹣1)|x﹣2|﹣2﹣2y=0,(|x﹣2|﹣2)[|x﹣2|+(1+y)]=0,则|x﹣2|=2或|x﹣2|=﹣(y+1),故2=﹣(y+1), 则y=﹣3,当|x ﹣2|=2,且1+y >0时, 则y >﹣1,故y 的负整数值为:﹣3 21.(1)根据题意,m应当满足条件…(3分)即∴﹣2<m ≤﹣1…(7分)(2)根据题意,m应当满足条件…(10分),即∴m <﹣122.(1)当m=1时,原方程变为:x 2﹣2x ﹣1=0解得:;(2)△=b 2﹣4ac=(﹣2m )2﹣4×(m 2﹣2m )=8m , 当m >0时,原方程有两个不相等的实数根; 当m=0时,原方程有两个相等的实数根; m <0时,原方程没有实数根23.由已知条件△=4(b ﹣a )2﹣4(c ﹣b )(a ﹣b )=4(a ﹣b )(a ﹣c )=0, ∴a=b 或a=c , ∵c ﹣b ≠0 则c ≠b ,∴这个三角形是等腰三角形 24.△=m 2﹣4(m ﹣2) =m 2﹣4m+8 =(m ﹣2)2+4, ∵(m ﹣2)2≥0,∴(m ﹣2)2+4>0,即△>0,∴无论m 取何值,该方程总有两个不相等的实数根. 25.(1)∵方程有两个相等的实数根, ∴(m ﹣1)2﹣4(m+2)=0, ∴m 2﹣2m+1﹣4m ﹣8=0, m 2﹣6m ﹣7=0, ∴m=7或﹣1;(2)∵方程的两实数根之积等于m 2﹣9m+2, ∴m 2﹣9m+2=m+2,∴m 2﹣10m=0, ∴m=0或m=10,当m=0时,方程为:x 2+x+2=0,方程没有实数根,舍去; ∴m=10, ∴=426.(1)由题意,知(﹣2)2﹣4(k ﹣1)>0, 解得k <2,即k 的取值范围为k <2.(2)由题意,得(k ﹣1)2﹣2(k ﹣1)+k ﹣1=0 即k 2﹣3k+2=0解得k 1=1,k 2=2(舍去) ∴k 的值为127.(1)把x=1代入方程,得1+2+m ﹣1=0,所以m=﹣2; (2)∵方程有两个不相等的实数根, ∴△>0,即22﹣4(m ﹣1)>0, 解得m <2.所以m 的取值范围为m <228.∵关于x 的一元二次方程(k ﹣2)2x 2+(2k+1)x+1=0有两个不相等的实数根, ∴,解得k>.所以k 的取值范围是k>且k ≠2.29.(1)证明:∵△=b 2﹣4ac=(3k ﹣2)2﹣4•(﹣6k )=9k 2﹣12k+4+24k=9k 2+12k+4=(3k+2)2≥0 ∴无论k 取何值,方程总有实数根.(2)解:①若a=6为底边,则b ,c 为腰长,则b=c ,则△=0.∴(3k+2)2=0,解得:k=﹣. 此时原方程化为x 2﹣4x+4=0 ∴x 1=x 2=2,即b=c=2.此时△ABC 三边为6,2,2不能构成三角形,故舍去; ②若a=b 为腰,则b ,c 中一边为腰,不妨设b=a=6 代入方程:62+6(3k ﹣2)﹣6k=0 ∴k=﹣2则原方程化为x 2﹣8x+12=0 (x ﹣2)(x ﹣6)=0 ∴x 1=2,x 2=6 即b=6,c=2此时△ABC 三边为6,6,2能构成三角形, 综上所述:△ABC 三边为6,6,2. ∴周长为6+6+2=14.30.(1)k=6,方程变为x 2﹣5x+6=0,即(x ﹣2)(x ﹣3)=0,∴x 1=2,x 2=3;(2)根据题意△=(﹣5)2﹣4k>0,解得k<;(3)根据题意得x1+x2=5,x1,•x2=k,而2x1﹣x2=2,∴x1=,∴x2=,∴k=×=31.(1)∵△=[﹣(m﹣1)]2﹣4m=m2+2m+1﹣4m=(m﹣1)2,又∵不论m取何实数,总有(m﹣1)2≥0,∴△≥0,∴不论m取何实数,方程都有实数根.(2)∵由求根公式得=∴x1=m,x2=1,∴只要m取整数(不等于1),则方程的解就都为整数且不相等.如取m=2,则原方程有两个不相等的整数根,分别是x1=2,x2=1.32.(1)△=(﹣2)2﹣4(2k﹣3)=8(2﹣k).∵该方程有两个不相等的实数根,∴8(2﹣k)>0,解得k<2.(2)当k为符合条件的最大整数时,k=1.此时方程化为x2﹣2x﹣1=0,方程的根为x==1±.即此时方程的根为x1=1+,x2=1﹣.33.(1)当k=﹣1时,方程﹣4x﹣4=0为一元一次方程,此方程有一个实数根;当k≠﹣1时,方程(k+1)x2+(3k﹣1)x+2k﹣2=0是一元二次方程,△=(3k﹣1)2﹣4(k+1)(2k﹣2)=(k﹣3)2.∵(k﹣3)2≥0,即△≥0,∴k为除﹣1外的任意实数时,此方程总有两个实数根.综上,无论k取任意实数,方程总有实数根;(2)∵方程(k+1)x2+(3k﹣1)x+2k﹣2=0中a=k+1,b=3k ﹣1,c=2k﹣2,∴x=,∴x1=﹣1,x2=﹣2,∵方程的两个根是整数根,且k为正整数,∴当k=1时,方程的两根为﹣1,0;当k=3时,方程的两根为﹣1,﹣1.∴k=1,334.(1)∵方程x2﹣x+p﹣1=0有两个实数根x1、x2,∴△≥0,即12﹣4×1×(p﹣1)≥0,解得p≤,∴p的取值范围为p≤;(2)∵方程x2﹣x+p﹣1=0有两个实数根x1、x2,∴x12﹣x1+p﹣1=0,x22﹣x2+p﹣1=0,∴x12﹣x1=﹣p+1=0,x22﹣x2=﹣p+1,∴(﹣p+1﹣2)(﹣p+1﹣2)=9,∴(p+1)2=9,∴p1=2,p2=﹣4,∵p ≤,∴p=﹣435.(1)设方程的两个正根为x1、x2,则:△=(2k﹣3)2﹣4(2k﹣4)≥0 ①,x1+x2=2k﹣3>0,x1x2=2k﹣4>0 ②,解①,得:k为任意实数,解②,得:k>2,所以k的取值范围是k>2;(2)设方程的两个根为x1、x2,则:△=(2k﹣3)2﹣4(2k﹣4)>0 ①,x1+x2=2k﹣3>0,x1x2=2k﹣4<0 ②,解①,得:k≠,解②,得:<k<2,所以k的取值范围是<k<2;(2)设方程的两个根为x1、x2,则:△=(2k﹣3)2﹣4(2k﹣4)>0 ①,(x1﹣3)(x2﹣3)<0 ②,解①,得:k≠,由②,得:x1x2﹣3(x1+x2)+9<0,又x1+x2=2k﹣3>0,x1x2=2k﹣4,代入整理,得﹣4k+14<0,解得k>.则k >.36.(1)∵关于x的方程x2+(2k+1)x+k2+2=0有两个不相等的实数根,∴△=b2﹣4ac>0∴(2k+1)2﹣4(k2+2)>0∴4k2+4k+1﹣4k2﹣8>0,∴4k>7,解得,k>;(2)假设直线y=(2k﹣3)x﹣4k+7能否通过点A(﹣2,5),∴5=(2k﹣3)×(﹣2)﹣4k+7,即﹣8=﹣8k,解得k=1<;又由(1)知,k>;∴k=1不符合题意,即直线y=(2k﹣3)x﹣4k+7不通过点A(﹣2,5)37.(1)把x=﹣1代入原方程得:1+m﹣2=0,解得:m=1,∴原方程为x2﹣x﹣2=0.解得:x=﹣1或2,∴方程另一个根是2;(2)∵△=b2﹣4ac=m2+8>0,∴对任意实数m方程都有两个不相等的实数根.38.∵△=(﹣2m)2﹣4×1×(﹣2m﹣4)=4(m2+2m)+16=4(m2+2m+1﹣1)+16=4(m+1)2+12>0,∴关于x的方程x2﹣2mx﹣2m﹣4=0总有两个不相等的实数根.39.∵关于x的一元二次方程x2﹣(m﹣1)x+m+2=0有两个相等的实数根,∴△=b2﹣4ac=0,即:(m﹣1)2﹣4(m+2)=0,解得:m=7或m=﹣1,∴m的值为7或﹣140.1)证明:∵a=1,b=﹣k,c=﹣2∴△=b2﹣4ac=(﹣k)2﹣4×1×(﹣2)=k2+8,∵k2>0,∴△>0,∴无论k取何值,方程有两个不相等的实数根.(2)解:∵,;又∵x1+x2=x1•x2∴k=﹣2.41.当m2=0,即m=0,方程变为:x+1=0,有解;当m2≠0,即m≠0,原方程要有实数根,则△≥0,即△=(2m+1)2﹣4m2=4m+1≥0,解得m≥﹣,则m的范围是m≥﹣且m≠0;所以,m的取值范围为m ≥﹣42.(1)△=4﹣4m,∵有两个实数根,∴4﹣4m≥0,∴m≤1;(2)∵,解得,,∴m=x1x2=﹣343.∵一元二次方程有两个不相等的实数根,∴△=4+4(1﹣m)=8﹣4m>0,且1﹣m≠0,∴m<2,且m≠1.当m=0时,无意义,故m≠0,则m的最大整数值为﹣1,所以=4×1+1=5.答:=5.44.(1)∵方程x2+2kx+(k2+2k﹣5)=0有两个实数根,∴△≥0,即4k2﹣4( k2+2k﹣5 )≥0,∴﹣8k+20≥0∴k ≤;(2)∵x1+x2=﹣2k,x1x2=k2+2k﹣5,而x1+x2=x1x2,∴﹣2k=k2+2k﹣5,即k2+4k﹣5=0解得k1=﹣5,k2=1,又∵k≤,∴k=﹣5或145.(1)(2k﹣1)2﹣4k2×1≥0,解得:k≤,且:k2≠0,∴k≠0,∴k ≤且k≠0;(2)不存在,∵方程有两个的实数根,∴x1+x2=﹣,x 1x 2=,∴==﹣=﹣2k+1=0,k=,∵k ≤且k ≠0; ∴不存在46.(1)∵△=[﹣(k+1)]2﹣4k=k 2+2k+1﹣4k=(k ﹣1)2≥0,∴无论k 取什么实数值,这个方程总有实根;(2)∵等腰△ABC 的一边长a=4, ∴另两边b 、c 中必有一个数为4,把4代入关于x 的方程x 2﹣(k+1)x+k=0中得, ∴16﹣4(k+1)+k=0, 解得:k=4, 所以b+c=k+1=5∴△ABC 的周长=4+5=9.47.(1)∵方程有两根不相等的实数根, ∴△=(2k+1)2﹣4×1×(k 2﹣2)>0, ∴k>﹣;(2)把x=1代入原方程得1+(2k+1)+k 2﹣2=0, 整理得k 2+2k=0, 解得k=0或﹣2;(3)设两实数根为:x 1,x 2, 由根与系数的关系:x 1x 2=k 2﹣2=1, 解得k=±48.①由题意得,22﹣4(k ﹣1)•(﹣5)>0.解得,.且k ﹣1≠0,即k ≠1 故且k ≠1.(2)k 的最小整数是k=2.则原方程为x 2+2x ﹣5=0故此时方程的解为:,49.(1)证明:∵△=[﹣(2m ﹣1)]2﹣4×(m ﹣1)×2=4m 2﹣12m+9=(2m ﹣3)2≥0,∴无论m 取任何实数,方程总有实数根;(2)x==,x 1==2,x 2==,∵方程只有整数根,∴m ﹣1=±1, 解得:m=0或2 50.(1)有道理,△=k 2﹣4×2×(﹣1)=k 2+8, ∴k 2≥0, ∴k 2+8>0,∴无论k 为何实数,方程总有实数根;(2)∵方程的一个根是﹣1, ∴2×(﹣1)2﹣k ﹣1=0, 解得:k=1,把k=1代入方程2x 2+kx ﹣1=0得方程2x 2+x ﹣1=0, 解得:x 1=﹣1,x 2=,故另一根是,k 的值是151.(1)∵△≥0,方程有两个实数根, ∴12﹣4×1×m ≥0,解得m ≤1, ∴当m ≤1时,方程有两个实数根; (2)∵方程的两个实数根为a 、b , ∴b 2﹣b+m=0,ab=m , ∴y=m ﹣2(b 2﹣b )+1 =m ﹣2×(﹣m )+1 =m+1, ∵m ≤1, ∴y ≤+1, 即y ≤.52.(1)∵关于x 的一元二次方程x 2+(2k+1)x+k 2﹣2=0有实根,∴△=(2k+1)2﹣4×1×(k 2﹣2)≥0,解得:;(2)设方程x 2+(2k+1)x+k 2﹣2=0设其两根为x 1,x 2, 得x 1+x 2=﹣(2k+1),x 1•x 2=k 2﹣2, ∵x 12+x 22=11,∴(x1+x2)2﹣2x1x2=11,∴(2k+1)2﹣2(k2﹣2)=11,解得k=1或﹣3;∵k≥﹣,∴k=1.53.∵一元二方程x2+mx+2m﹣n=0有一个根为2,∴4+4m﹣n=0①,又∵根的判别式为0,∴△=m2﹣4×(2m﹣n)=0,即m2﹣8m+4n=0②,由①得:n=4+4m,把n=4+4m代入②得:m2+8m+16﹣0,解得m=﹣4,代入①得:n=﹣12,所以m=﹣4,n=﹣12.54.(1)∵方程有实数根,∴△≥0,即16+4a≥0,解得a≥﹣4.由于ax2+4x﹣1=0是关于x的一元二次方程,可知a≠0,∴a≥﹣4且a≠0.(2)∵ax2+4x﹣1=0是关于x的一元二次方程,∴x1+x2=﹣,x1•x2=﹣,∴y=﹣+=﹣.当﹣4≤a<0时,y=﹣+=﹣>0;当a>0时,y=﹣+=﹣<0.55.(1)将x=2代入方程得:4﹣2m﹣2=0,解得:m=1,方程为x2﹣x﹣2=0,即(x﹣2)(x+1)=0,解得:x=2或x=﹣1,则方程的另一根为﹣1;(2)∵△=m2+8≥8>0,∴方程有两个不相等的实数根.56.(1)∵方程只有一个根,∴此方程是一元一次方程,即k﹣=0,∴k=;代入原方程得﹣x=1,解得x=﹣;(2)∵方程有两个相等的实数根,∴,∴k1=0,k2=﹣6.57.∵两个一元二次方程都有实数根,∴,解得﹣≤k ≤.58.(1)∵关于x的一元二次方程kx2+2(k+4)x+(k﹣4)=0方程有实数根,∴b2﹣4ac=[2(k+4)]2﹣4k(k﹣4)≥0,解得:k≥﹣且k≠0;(2)①若a=3为底边,则b,c为腰长,则b=c,则△=0.∴b2﹣4ac=[2(k+4)]2﹣4k(k﹣4)=0,解得:k=﹣.此时原方程化为x2﹣4x+4=0∴x1=x2=2,即b=c=2.此时△ABC三边为3,2,2能构成三角形,∴△ABC的周长为:3+2+2=8;②若a=b为腰,则b,c中一边为腰,不妨设b=a=3代入方程:kx2+2(k+4)x+(k﹣4)=0得:k×32+2(k+4)×3+(k﹣4)=0∴解得:k=﹣,∵x1×x2=bc====3c,∴c=,∴△ABC的周长为:3+3+=.59.(1)证明:∵△=k2﹣4×2×(﹣1)=k2+4>0,∴该方程一定有两个不相等的实数根;(2)解:设另一个根为x1,根据根与系数的关系可得:x1•x2=﹣,∵一个根是﹣1,∴x1•(﹣1)=﹣,解得:x1=60.∵一元二次方程x2﹣2(m+1)x+m2=0有两个整数根,∴△=b2﹣4ac=4(m+1)2﹣4m2=8m+4≥0,∴,∵12<m<40,由求根公式,∵一元二次方程x2﹣2(m+1)x+m2=0有两个整数根,∴2m+1必须是完全平方数,∴m=24。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档