数学归纳法知识点大全

合集下载

数学归纳总结

数学归纳总结

数学归纳总结一、数学归纳法的基本原理1.数学归纳法的步骤:首先验证基本情况,然后假设对于某个正整数k,命题成立,最后证明当k增加1时,命题也成立。

2.数学归纳法的适用范围:可以用来证明与自然数有关的数学命题。

二、数学归纳法的应用1.求解数列的前n项和:利用数学归纳法可以证明某些数列的前n项和公式。

2.求解递推式:利用数学归纳法可以证明某些递推式的解。

3.证明恒等式:利用数学归纳法可以证明某些涉及自然数的恒等式。

4.解决计数问题:利用数学归纳法可以解决某些与自然数相关的计数问题。

三、数学归纳法的常见错误1.基本情况验证不充分:在证明过程中,首先要验证基本情况是否成立,如果基本情况不成立,则整个证明过程无效。

2.归纳假设不正确:在证明过程中,假设对于某个正整数k,命题成立,但如果归纳假设不正确,则整个证明过程也无效。

3.没有证明归纳步骤:在证明过程中,不仅要验证基本情况,还要证明当k增加1时,命题也成立。

四、数学归纳法的推广1.双向数学归纳法:除了验证基本情况外,还需要验证基本情况的反面情况,即证明当n不取特殊情况时,命题也成立。

2.多元数学归纳法:适用于证明与多个自然数有关的命题。

3.非标准数学归纳法:适用于证明某些特殊形式的命题。

五、数学归纳法的实践与应用1.数学竞赛:在数学竞赛中,数学归纳法是一种常用的证明方法。

2.数学研究:在数学研究中,数学归纳法可以用来证明某些定理和公式。

3.日常生活:在解决日常生活中的一些问题时,也可以运用数学归纳法。

六、数学归纳法的学习与掌握1.理解数学归纳法的基本原理和步骤。

2.熟练掌握数学归纳法的应用,能够根据题目要求选择合适的证明方法。

3.注意数学归纳法中的常见错误,避免在证明过程中出现逻辑错误。

4.学习数学归纳法的推广形式,提高自己的数学思维能力。

知识点:__________习题及方法:1.习题:证明对于所有自然数n,1^2 + 2^2 + … + n^2 = n(n + 1)(2n +1)/6。

数学归纳法

数学归纳法

A、1
B、1 a
C、1 a a2
D、1 a a2 a3
2、用数学归纳法证明: 1 1 1
1
24 46 68
2n (2n 2)
n 4(n
1)
时,从k到k+1时左边需要增添的项为__1_______
4(k 1)(k 2)
3、用数学归纳法证明: 当n N时,1 2 22 23 25n1是31 的倍数,当n=1时,原式为 _____________
7、用数学归纳法证明:
1 1 1 1 234
1 2n 1
n(n
N
, 且n
1)时,
不等式在n=k 1时的形式是 ____________
1
1 2
1 3
1 4
1 2k 1
1 2k
1 2k 1
1 2k1 1
共有多少项呢? 2k 个项
例1已知数列
1 ,1 , 1 , 1×4 4×7 7×10
,
1
则当n=k+1时,
12 + 22 + … +
k2
+
(k + 1)2
13 35
(2k 1)(2k +1) (2k +1)(2k + 3)
= k2 + k +
(k + 1)2
= k(k + 1)(2k + 3)+ 2(k + 1)2
4k + 2 (2k +1)(2k + 3)
2(2k +1)(2k + 3)
k
1
3k 1 (3k 1)(3k 4)
3k 2 4k 1 (3k 1)(3k 4)

数学归纳法知识点

数学归纳法知识点

数学归纳法知识点数学归纳法是数学证明的一种强有力的方法,广泛应用于数论、组合数学、算法分析等多个领域。

它的基本思想是通过验证某个性质在初始情况下成立,以及证明当该性质对某个自然数n成立时,它对n+1也成立,从而可以推导出该性质对于所有自然数均成立。

数学归纳法不仅增强了数学论证的严谨性,还能帮助发现数学中的规律。

一、数学归纳法的基本步骤1.基础步:验证命题在n=1或其他小的自然数情况下成立。

通常此步被称为“基础案例”或“基础情况”。

它是数学归纳法的起始点,确保我们的论证是有基可依的。

2.归纳假设:假设当n=k时,命题成立。

这个假设是归纳法的核心,它允许我们利用这种假设来进行进一步的推导。

3.归纳步骤:在归纳假设的基础上,证明当n=k时,命题成立,则在n=k+1时也成立。

这一步表明了命题从一个自然数延续到下一个自然数。

1.自然数求和公式:通过数学归纳法可以简单地证明自然数求和的公式,即1+2+...+n=n(n+1)/2。

通过验证基础情况n=1和归纳步骤,可以得出这一结论。

2.组合计数:在组合数学中,许多计数问题都可以利用归纳法进行证明,例如证明C(n, k) + C(n, k-1) = C(n+1, k)。

3.算法复杂度:在算法分析中,归纳法用于证明递归算法的时间复杂度。

例如,可以对归纳法求解的递推公式进行严格的时间复杂度分析。

三、数学归纳法的性质1.简洁性:归纳法通过简单的基础案例和归纳步骤,减少了需要直接证明的情况,使得证明过程简单化。

2.广泛性:适用于多种数学命题,不仅限于数论,还适用于几何、组合等各个数学领域。

3.严谨性:归纳法提供了一种结构化的证明方式,使得结果更加严谨,易于理解与复现。

1.适用范围:并非所有命题都适用于数学归纳法,特别是涉及到非自然数的情况。

2.复杂命题:有些复杂命题的归纳步骤可能过于繁琐,难以为归纳假设提供强有力的支撑。

3.直观理解:对于某些初学者而言,归纳法的逻辑可能不易理解,容易造成错误。

数学归纳法讲义

数学归纳法讲义

数学归纳法一、基本知识概要:1.数学归纳法:对于某些与自然数n 有关的命题常常采用下面的方法来证明它的正确性:先证明当n 取第一个值n 0时命题成立;然后假设当n=k(k ∈N*,k ≥n 0)时命题成立,证明当n=k+1时命题也成立这种证明方法就叫做数学归纳法2. 数学归纳法的基本思想:即先验证使结论有意义的最小的正整数n 0,如果当n =n 0时,命题成立,再假设当n =k (k ≥n 0,k ∈N *)时,命题成立.(这时命题是否成立不是确定的),根据这个假设,如能推出当n =k +1时,命题也成立,那么就可以递推出对所有不小于n 0的正整数n 0+1,n 0+2,…,命题都成立.●锦囊妙记(1)数学归纳法的基本形式设P (n )是关于自然数n 的命题,若 1°P (n 0)成立(奠基)2°假设P (k )成立(k ≥n 0),可以推出P (k +1)成立(归纳),则P (n )对一切大于等于n 0的自然数n 都成立.3.用数学归纳法证明一个与正整数有关的命题的步骤: (1)证明:当n 取第一个值n 0结论正确;(2)假设当n =k (k ∈N *,且k ≥n 0)时结论正确,证明当n =k +1时结论也正确. 由(1),(2)可知,命题对于从n 0开始的所有正整数n 都正确递推基础不可少,归纳假设要用到,结论写明莫忘掉.1.用数学归纳法证题要注意下面几点:①证题的两个步骤缺一不可,要认真完成第一步的验证过程;②成败的关键取决于第二步对1+=k n 的证明:1)突破对“归纳假设”的运用;2)用好命题的条件;3)正确选择与命题有关的知识及变换技巧.2.中学教材内,用数学归纳法证明的问题的主要题型有“等式问题”、“整除问题”、“不等式问题”等,要积累这几种题型的证题经验.探究1.数学归纳法的本质:无穷的归纳→有限的演绎(递推关系)2.数学归纳法公理:(1)(递推奠基):当n 取第一个值n 0结论正确; (2)(递推归纳):假设当n =k (k ∈N *,且k ≥n 0)时结论正确;(归纳假设)证明当n =k +1时结论也正确。

数学归纳法原理与应用例题和知识点总结

数学归纳法原理与应用例题和知识点总结

数学归纳法原理与应用例题和知识点总结数学归纳法是一种用于证明与自然数有关的命题的重要方法。

它不仅在数学领域中有着广泛的应用,对于培养逻辑思维和推理能力也具有重要意义。

一、数学归纳法的原理数学归纳法基于两个基本步骤:基础步骤:首先证明当 n = 1 时命题成立。

归纳步骤:假设当 n = k 时命题成立,证明当 n = k + 1 时命题也成立。

通过这两个步骤,就可以得出对于任意自然数 n,命题都成立的结论。

为什么通过这两个步骤就能证明命题对所有自然数都成立呢?我们可以这样理解:基础步骤证明了命题在起点(n = 1)时是正确的。

而归纳步骤则像是一个传递机制,假设在某个位置(n = k)命题成立,能够推出下一个位置(n = k + 1)命题也成立。

就像一排多米诺骨牌,只要第一块倒下(基础步骤),并且每一块倒下都能导致下一块倒下(归纳步骤),那么所有的骨牌都会倒下,即命题对于所有自然数都成立。

二、数学归纳法的应用例题例 1:证明 1 + 2 + 3 +… + n = n(n + 1) / 2 对任意自然数 n都成立。

证明:基础步骤:当 n = 1 时,左边= 1,右边= 1×(1 + 1) / 2 = 1,左边=右边,命题成立。

归纳步骤:假设当 n = k 时命题成立,即 1 + 2 + 3 +… + k =k(k + 1) / 2 。

当 n = k + 1 时,左边= 1 + 2 + 3 +… + k +(k + 1)= k(k + 1) / 2 +(k + 1)=(k + 1)(k / 2 + 1)=(k + 1)(k + 2) / 2右边=(k + 1)(k + 2) / 2 ,左边=右边,命题成立。

综上,1 + 2 + 3 +… + n = n(n + 1) / 2 对任意自然数 n 都成立。

例 2:证明对于任意自然数 n,n³ n 能被 3 整除。

证明:基础步骤:当 n = 1 时,n³ n = 1³ 1 = 0,能被 3 整除,命题成立。

数学知识点归纳总结7篇

数学知识点归纳总结7篇

数学知识点归纳总结7篇篇1一、引言数学作为自然科学的基础学科,知识点众多且相互关联。

为了帮助我们更好地掌握数学知识,本文将对其核心知识点进行归纳总结。

本文内容严谨、结构清晰,旨在帮助读者系统地理解数学的基本概念和方法。

二、数与代数1. 数的认识(1)自然数、整数、有理数、无理数、实数的概念与性质。

(2)数的分类与数轴表示。

2. 代数式(1)代数式的概念、分类与运算。

(2)代数式的化简、因式分解。

3. 方程与不等式(1)一元一次方程、一元二次方程的解法。

(2)不等式的基本性质与解法。

(3)方程与不等式的应用。

三、几何知识1. 平面几何(1)点、线、面、角的性质。

(2)三角形、四边形、圆的性质与计算。

(3)相似与全等图形的概念与性质。

2. 立体几何(1)三维图形的认识与分类。

(2)表面积、体积的计算。

(3)空间位置关系。

四、函数与图像1. 函数概念与性质(1)函数的概念、分类与性质。

(2)反函数、复合函数的概念与应用。

2. 图像与性质分析(1)函数的图像表示。

(2)函数图像的平移、对称性质。

(3)函数的单调性、周期性分析。

五、数列与极限1. 数列概念与性质(1)数列的分类、通项公式与前n项和公式。

等差数列和等比数列的性质与应用。

无穷数列的概念与性质。

极限概念及计算六、微积分知识初级微积分知识,包括导数概念与应用,微分法则;积分概念,积分运算方法,定积分的应用等。

七、概率与统计概率基础知识,随机事件及其概率计算;统计学的描述性统计和推断性统计基础,包括数据的收集、整理与分析等。

八、数学史与数学文化介绍数学的发展历程,著名数学家的生平与贡献,数学在各个领域的应用等。

九、总结通过上述归纳和总结,我们可以清晰地看到数学知识体系的框架和各个知识点之间的联系。

为了更好地掌握数学知识,我们需要不断地学习与实践,深入理解各个知识点,掌握其应用方法。

同时,我们还需要注重数学与其他学科的交叉融合,拓展数学知识在各个领域的应用。

数学归纳法相关知识点总结

数学归纳法相关知识点总结

数学归纳法相关知识点总结数学归纳法是一种常用且重要的证明方法,广泛应用于数学和计算机科学等领域。

它是建立在自然数的基础上,通过确定基本情况成立和对于任意情况的假设进行推理,来证明任意情况成立的方法。

以下是与数学归纳法相关的知识点总结。

一、数学归纳法的基本思想1.1 证明基本情况成立:通过直接验证第一个情况是否成立来确保归纳法的开始。

1.2 假设第k个情况成立:假设前k个情况均成立,即假设第k个情况成立。

1.3 推导第k+1个情况成立:根据第k个情况的成立,推导第k+1个情况的成立。

1.4 利用数学归纳法原理:基于第一个情况成立、第k个情况成立能推导第k+1个情况成立,所以根据数学归纳法原理,可以得出所有情况均成立。

二、数学归纳法的应用场景2.1 整数证明:证明与整数相关的等式或不等式。

2.2 数列证明:证明数列的性质,如递推关系、通项公式等。

2.3 集合证明:证明集合的性质,如集合的元素个数等。

2.4 图论证明:证明与图论相关的问题,如图的染色问题、路径问题等。

三、数学归纳法常见误区及注意事项3.1 遗漏基本情况:在使用数学归纳法时,必须验证基本情况的成立,否则无法进行后续推导。

3.2 假设过强:假设第k个情况成立时,注意不要假设第k-1个情况也成立,否则可能导致推导错误。

3.3 步骤不清晰:数学归纳法需要严谨的逻辑推导,每一步的推导必须明确、清晰,不能存在模棱两可的推理。

3.4 漏掉递归关系:在推导第k+1个情况成立时,需要明确并合理利用第k个情况的假设,也即递归关系的应用。

四、数学归纳法的拓展应用4.1 强归纳法:相比于数学归纳法只假设前一个情况成立,强归纳法假设前k个情况均成立。

4.2 双重归纳法:在证明数学命题时,先对整数n归纳,再对其他相关数值归纳。

4.3 递归定义证明:对于递归定义的数列或集合,可以通过数学归纳法来证明其性质。

五、数学归纳法在计算机科学中的应用5.1 证明算法的正确性:通过数学归纳法来证明算法在各个情况下的正确性。

数学归纳法(各种全)

数学归纳法(各种全)

解:设椭圆221mx ny +=,则4191m n m n +=⎧⎨+=⎩,解得335835m n ⎧=⎪⎪⎨⎪=⎪⎩,所以椭圆方程为223813535x y +=.六、数学归纳法(一)数学归纳法应用关于正整数的命题的证明可以用数学归纳法.本部分的数学归纳法指的是第一数学归纳法.第一数学归纳法的思维方法是:命题在1n =成立的条件下,如果n k =时命题成立能够推出1n k =+时命题也成立,我们就可以下结论,对于任意正整数命题都成立.1.证明等式典型例题:证明222112(1)(21)6n n n n ++⋅⋅⋅+=++,其中n N *∈.证明:(1)当1n =时,左边211==,右边11(11)(21)16=⨯⨯++=,等式成立.(2)假设n k =时等式成立,即222112(1)(21)6k k k k ++⋅⋅⋅+=++.则当1n k =+时,左边22222112(1)(1)(21)(1)6k k k k k k =++⋅⋅⋅+++=++++1(1)(2)(23)6k k k =+++1(1)[(1)1][2(1)1]6k k k =+++++=右边,即1n k =+时等式成立.根据(1)(2)可知,等式对于任意n N *∈都成立.2.证明不等式典型例题 1.证明1111223n n+++⋅⋅⋅+<,其中n N *∈.证明:(1)当1n =时,左边1=,右边2=,不等式成立.(2)假设n k =时不等式成立,即1111223k k+++⋅⋅⋅+<,则当1n k =+时,左边11111122311k k k k =+++⋅⋅⋅++<+++,右边21k =+.要证左边<右边,536只需证12211k k k +<++,而此式2112(1)k k k ⇔++<+2121k k k ⇔+<+24(1)(21)01k k k ⇔+<+⇔<,显然01<成立,故1n k =+时不等式也成立.综上所述,不等式对任意n N *∈都成立.典型例题2.已知,0a b >,a b ≠,n N ∈,2n ≥,证明()22n nn a b a b ++<.证明:(1)当2n =时,2222222222()2442a b a ab b a b a b +++++=<=,不等式成立.(2)假设n k =时不等式成立,即()22k kk a b a b ++<,则当1n k =+时,左边1()2k a b ++11224k k k k k k a b a b a b a b ab +++++++<⋅=,因为11()()k k k ka b a b ab +++-+()()k k a b a b =--0>,所以11k k k k a b ab a b +++<+,则111142k k k k k k a b a b ab a b ++++++++<,即111()22k k k a b a b +++++<,故1n k =+时不等式也成立.由(1)(2)可知,不等式对任意n N ∈,2n ≥都成立.3.证明整除性问题典型例题:证明22nn ab -能被a b +整除,其中n N *∈.证明:(1)当1n =时,显然22a b -能被a b +整除.(2)假设n k =时命题成立,即22k k a b -能被a b +整除,则当1n k =+时,2(1)2(1)2(1)2(1)2222k k k k k k a b a b a b a b ++++-=-+-222222()()k k k a a b b a b =-+-,因为22a b -与22k k a b -都能被a b +整除,所以222222()()k kk a a b b a b -+-能被a b +整除,即1n k =+时命题也成立.综上所述,原命题成立.4.证明几何问题典型例题:求证平面内n 条直线的交点最多有1(1)2n n -个.证明:平面内n 条直线的交点最多,只需任意三条直线不过同一点,任意两条直线不平行,下面在此条件下证明.(1)当2n =时,显然两条直线只有1个交点,而1(1)12n n -=,命题成立.537(2)假设n k =时命题成立,即平面内k 条直线的交点有1(1)2k k -个,则当1n k =+即平面上有1k +条直线时,因为任意三条直线不过同一点,任意两条直线不平行,所以第1k +条直线与原来的k 条直线共有k 个交点.这时交点的总个数为1(1)2k k k-+1(1)[(1)1)]2k k =++-,即1n k =+时命题也成立.综上所述,原命题成立.(二)其他数学归纳法除了第一数学归纳法以外,还有一些特别的数学归纳法.1.第二数学归纳法典型例题:设n N *∈,且12cos x x α+=,证明:12cos n n x n x α+=.证明:(1)当1n =时,12cos x xα+=,命题成立.当2n =时,21()x x +2212x x =++24cos α=,得2212cos 2x xα+=,命题成立.(2)假设n k ≤(2)k ≥时命题成立,则当1n k =+时,有111k k x x +++11111()()()k k k k x x x x x x--=++-+2cos 2cos 2cos(1)k k ααα=⋅--2[cos(1)cos(1)]2cos(1)k k k ααα=++---2cos(1)k α=+,故1n k =+时不等式也成立.由(1)(2)可知,命题成立.2.反向数学归纳法典型例题:函数:f N N **→满足(1)(2)2f =,(2)对任意正整数m 、n ,()()()f mn f m f n =,(3)当m n >时,()()f m f n >;证明:()f n n =.证明:令2m =、1n =,则(2)(2)(1)f f f =,故(1)1f =.令2m =、2n =,则22(2)(2)(2)2f f f ==;令22m =、2n =,则323(2)(2)(2)2f f f ==;由第一数学归纳法易证(2)2mmf =.下面用反向数学归纳法证()f n n =.(1)由上面推证知,存在无数个形如2m的数使()f n n =成立.(2)假设1n k =+时成立,即(1)1f k k +=+.因为存在t N *∈满足1212t t k +<+≤,则122t t k +≤<.设2t k s =+,s N *∈,则1112(2)(21)(22)(2)(21)(2)2t t t t t t t t f f f f s f f +++=<+<+<⋅⋅⋅<+<⋅⋅⋅<-<=.所以1(21),(22),,(2),,(21)t t t t f f f s f +++⋅⋅⋅+⋅⋅⋅-是区间1(2,2)t t +内的21t -个不同的自然数,538而区间1(2,2)t t +内恰好有21t -个不同的自然数121,22,,2,,21t t t t s +++⋅⋅⋅+⋅⋅⋅-,于是11(21)21,(22)22,,(21)21t t t t t t f f f +++=++=+⋅⋅⋅-=-,即()f k k =.由反向数学归纳法知,对任意n N *∈都有()f n n =.3.跷跷板数学归纳法典型例题:n S 是数列{}n a 的前n 项和,设223n a n =,213(1)1n a n n -=-+,n N *∈,求证:2211(431)2n S n n n -=-+及221(431)2n S n n n =++.证明:设()P n :2211(431)2n S n n n -=-+;()Q n :221(431)2n S n n n =++.(1)当1n =时,111S a ==,则(1)P 成立.(2)假设n k =时,则()P k 成立,即2211(431)2k S k k k -=-+,则2212k k k S S a -=+=221(431)32k k k k -++21(431)2k k k =++,即()Q k 成立.当()Q k 成立时,21k S +=221k k S a ++21(431)3(1)12k k k k k =+++++21(1)[4(1)3(1)1]2k k k =++-++,即(1)P k +成立.由跷跷板数学归纳法可知,原命题成立.4.二重数学归纳法典型例题:设(,)f m n 满足(,)(,1)(1,)f m n f m n f m n ≤-+-,其中,m n N *∈,1mn >,且(,1)(1,)1f m f n ==,证明:12(,)m m n f m n C -+-≤.证明:设命题(,)P m n 表示(,)f m n .(1)112(,1)1m m f m C -+-==,012(1,)1n f n C +-==,即(,1)P m 、(1,)P n 成立.(2)假设(1,)P m n +、(,1)P m n +成立,即1(1,)m m n f m n C +-+≤,11(,1)m m n f m n C -+-+≤.则(1,1)(1,)(,1)f m n f m n f m n ++≤+++11111(1)(1)2m m m m m n m n m n m n C C C C -+++-+-++++-≤+==,即(1,1)P m n ++也成立.由二重数学归纳法知,原不等式成立.539。

数学归纳法相关知识总结

数学归纳法相关知识总结

数学归纳法相关知识总结数学归纳法是数学中一种常用的证明方法,用于证明某种性质对于所有自然数成立。

它是数学推理和证明的重要基础,具有广泛的应用。

在这篇文章中,我们将对数学归纳法的基本概念、步骤以及一些常见的应用进行总结和讨论。

一、数学归纳法的基本概念数学归纳法基于自然数的递增性质,通过证明某个性质在第一个自然数上成立,并证明该性质在一个自然数成立时也在下一个自然数上成立,从而得出该性质对于所有自然数成立的结论。

二、数学归纳法的步骤数学归纳法一般分为三个步骤:基础步骤、归纳步骤和归纳假设。

1. 基础步骤:首先证明当n等于某个确定的值时,所要证明的性质成立。

这个确定的值通常是第一个自然数1或者0。

2. 归纳步骤:假设当n等于k时,所要证明的性质成立。

然后证明当n等于k+1时,所要证明的性质也成立。

在归纳步骤中,对于任意一个自然数k,只需要证明性质在k+1上成立即可。

3. 归纳假设:在归纳步骤中,我们假设当n等于k时,所要证明的性质成立。

这个假设是数学归纳法的关键,通过它我们可以得出当n等于k+1时,所要证明的性质成立的结论。

三、数学归纳法的应用1. 数列的性质证明:数学归纳法常用于证明数列的性质。

例如,我们可以通过数学归纳法证明斐波那契数列的递推公式。

假设当n=k时,斐波那契数列的递推公式成立,即F(k) = F(k-1) + F(k-2)。

然后证明当n=k+1时,递推公式也成立,即F(k+1) = F(k) + F(k-1)。

通过数学归纳法,我们可以证明递推公式对所有自然数成立。

2. 数学恒等式的证明:数学归纳法也可以应用于证明一些数学恒等式。

例如,我们可以通过数学归纳法证明1+2+3+...+n = n(n+1)/2。

首先,在n=1时,等式左边为1,右边为1(1+1)/2,两边相等成立。

然后,假设当n=k时,等式成立,即1+2+3+...+k = k(k+1)/2。

接着证明当n=k+1时,等式也成立,即1+2+3+...+k+(k+1) = (k+1)(k+1+1)/2。

数学归纳法知识点大全

数学归纳法知识点大全

数学归纳法知识点大全数学归纳法数学归纳法是用于证实与正整数n 有关的数学命题的正确性的一种严格的推理办法.在数学比赛中占有很重要的地位.(1)第一数学归纳法设)(n P 是一个与正整数有关的命题,假如① 0n n =(N n ①01.数学归纳法的基本形式)时,)(n P 成立;①假设),(0N k n k k n ①≥=成立,由此推得1+=k n 时,)(n P 也成立,那么,按照①①对一切正整数0n n ≥时,)(n P 成立.(2)其次数学归纳法设)(n P 是一个与正整数有关的命题,假如①当0n n =(N n ①0)时,)(n P 成立;①假设),(0N k n k k n ①≥≤成立,由此推得1+=k n 时,)(n P 也成立,那么,按照①①对一切正整数0n n ≥时,)(n P 成立.2.数学归纳法的其他形式(1)跳动数学归纳法①当l n ,,3,2,1Λ=时,)(,),3(),2(),1(l P P P P Λ成立,①假设k n =时)(k P 成立,由此推得l k n +=时,)(n P 也成立,那么,按照①①对一切正整数1≥n 时,)(n P 成立.(2)反向数学归纳法设)(n P 是一个与正整数有关的命题,假如① )(n P 对无限多个正整数n 成立;①假设k n =时,命题)(k P 成立,则当1-=k n 时命题)1(-k P 也成立,那么按照①①对一切正整数1≥n 时,)(n P 成立.例如,用数学归纳法证实:为非负实数,有在证实中,由真,不易证出真;然而却很简单证出真,又简单证实不等式对无穷多个(只要型的自然数)为真;从而证实,不等式成立.(3)螺旋式归纳法P (n ),Q (n )为两个与自然数有关的命题,如果①P(n0)成立;①假设P(k) (k>n0)成立,能推出Q(k)成立,假设Q(k)成立,能推出P(k+1)成立;综合(1)(2),对于一切自然数n (>n0),P(n),Q(n)都成立;(4)双重归纳法设是一个含有两上自立自然数的命题.①与对随意自然数成立;①若由和成立,能推出成立;按照(1)、(2)可断定,对一切自然数均成立.3.应用数学归纳法的技巧(1)起点前移:有些命题对一切大于等于1的正整数正整数n 都成立,但命题本身对0=n 也成立,而且验证起来比验证1=n 时简单,因此用验证0=n 成立代替验证1=n ,同理,其他起点也可以前移,只要前移的起点成立且简单验证就可以.因而为了便于起步,故意前移起点.(2)起点增多:有些命题在由k n =向1+=k n 跨进时,需要经其他特别情形作为基础,此时往往需要补充验证某些特别情形,因此需要适当增多起点.(3)加大跨度:有些命题为了削减归纳中的困难,适当可以转变跨度,但注重起点也应相应增多.(4)挑选合适的假设方式:归纳假设为一定要拘泥于“假设k n =时命题成立”不行,需要按照题意实行第一、其次、跳动、反向数学归纳法中的某一形式,灵便挑选使用.(5)变换命题:有些命题在用数学归纳证实时,需要引进一个辅助命题协助证实,或者需要转变命题即将命题普通化或加强命题才干满足归纳的需要,才干顺当举行证实.5.归纳、猜测和证实在数学中常常通过特例或按照一部分对象得出的结论可能是正确的,也可能是错误的,这种不严格的推理办法称为不彻低归纳法.不彻低归纳法得出的结论,只能是一种猜测,其正确与否,必需进一步检验或证实,常常采纳数学归纳法证实.不彻低归纳法是发觉逻辑、解决问题极好的办法.从0以外的数字开头假如我们想证实的命题并不是针对所有自然数,而只是针对全部大于等于某个数字b的自然数,那么证实的步骤需要做如下修改:第一步,证实当n=b时命题成立。

数学归纳法相关知识点总结

数学归纳法相关知识点总结

数学归纳法相关知识点总结一、数学归纳法的基本概念数学归纳法的基本思想是:如果我们能够证明一个结论对于第一个自然数成立(通常是对于n=1),并且能够证明结论对于某一个自然数成立时,它也对于下一个自然数成立,那么我们就可以得出结论对于所有自然数都成立的结论。

因此,数学归纳法通常包括两个步骤:基础步骤(base case)和归纳步骤(inductive step)。

基础步骤是证明一个结论对于第一个自然数成立,通常是证明结论对于n=1时成立。

这个步骤通常是比较直接的,可以通过代入数值或者简单的推理来进行证明。

归纳步骤是假定结论对于某一个自然数n成立,然后证明结论对于下一个自然数n+1也成立。

这个步骤通常是通过数学推理和逻辑推导来进行证明,因此需要一定的数学技巧和思维能力。

通过基础步骤和归纳步骤,我们就可以得出结论对于所有自然数都成立的结论。

这就是数学归纳法的基本思想和步骤。

二、数学归纳法的原理数学归纳法的原理是非常简单的,可以用如下的语言来描述:如果一个结论对于第一个自然数成立,并且对于某一个自然数n成立时,它也对于下一个自然数n+1成立,那么这个结论对于所有自然数都成立。

这个原理也可以用数学符号来表达。

假设P(n)是关于自然数n的一个命题,那么数学归纳法的原理可以用如下的数学表达来描述:(1) 基础步骤:证明P(1)成立;(2) 归纳步骤:假设对于某一个自然数n,命题P(n)成立,证明P(n+1)也成立。

通过基础步骤和归纳步骤,我们就可以得出结论对于所有自然数都成立的结论。

这就是数学归纳法的原理。

三、数学归纳法的应用数学归纳法是数学中非常重要的一种证明方法,它被广泛应用于代数、数论、组合数学、离散数学等多个数学领域中。

下面我们将介绍数学归纳法在不同数学领域中的具体应用。

1. 代数在代数中,数学归纳法常常被用来证明各种恒等式和不等式的成立。

例如,我们可以用数学归纳法来证明各种整式的恒等式、不等式和递推关系式。

《数学归纳法》 知识清单

《数学归纳法》 知识清单

《数学归纳法》知识清单数学归纳法是一种用于证明与自然数有关的命题的重要方法。

它就像是一把神奇的钥匙,能够帮助我们打开一系列看似复杂的数学谜题的大门。

一、数学归纳法的基本原理想象有一列无限长的多米诺骨牌,我们想要证明所有的骨牌都会倒下。

首先,我们需要保证第一张骨牌能够倒下,这是基础。

然后,我们要证明的是,只要任意一张骨牌倒下,那么它后面紧挨着的那张骨牌也一定会倒下。

当这两个条件都满足时,我们就可以确定所有的骨牌都会倒下。

数学归纳法的原理也是如此。

第一步,我们要证明当 n 取第一个值n₀(通常 n₀= 1)时,命题成立,这被称为“基础步骤”。

第二步,假设当 n = k(k ≥ n₀,k 为自然数)时命题成立,然后证明当 n = k +1 时命题也成立,这被称为“归纳步骤”。

二、基础步骤的重要性基础步骤就像是大厦的基石,如果基础不牢固,整个证明就会摇摇欲坠。

在很多问题中,直接验证n =1 时命题的正确性相对较为简单。

但也有一些情况,可能需要从n =0 或者其他特定的起始值开始验证。

例如,证明“1 + 3 + 5 +… +(2n 1) =n²”这个命题。

当 n = 1 时,左边是 1,右边是 1²= 1,等式成立,基础步骤得以完成。

三、归纳步骤的关键归纳步骤是数学归纳法的核心部分。

在这一步中,我们要利用假设n = k 时命题成立这个条件,来推导 n = k + 1 时命题也成立。

还是以“1 + 3 + 5 +… +(2n 1) =n²”为例。

假设当 n = k 时,1 + 3 + 5 +… +(2k 1) = k²成立。

那么当 n = k + 1 时,左边变为 1 + 3 + 5 +… +(2k 1) +(2(k + 1) 1),利用假设,可将其化简为 k²+(2k + 1) =(k + 1)²,从而证明了 n = k + 1 时命题也成立。

四、数学归纳法的应用1、证明数列的通项公式比如证明等差数列的通项公式 an = a1 +(n 1)d。

数学归纳法与递推关系知识点总结

数学归纳法与递推关系知识点总结

数学归纳法与递推关系知识点总结数学归纳法和递推关系是数学中常用的两种证明方法和计算方法。

它们在解决各种问题和证明定理时经常被应用。

本文将对数学归纳法和递推关系的相关知识点进行总结,以便读者更好地理解和应用它们。

一、数学归纳法1. 基本思想数学归纳法是一种证明方法,用于证明与正整数有关的命题。

其基本思想是:-(1)先证明当n=1时命题成立;-(2)假设当n=k时命题成立,即假设命题对于某一特定的正整数k成立;-(3)利用这个假设,证明当n=k+1时命题也成立;-(4)由(1)和(3)可得,命题对于一切正整数都成立。

2. 过程步骤数学归纳法的一般步骤如下:a. 基础步骤:证明当n=1时命题成立;b. 归纳假设:假设当n=k时命题成立;c. 归纳步骤:利用归纳假设,证明当n=k+1时命题也成立;d. 综合步骤:结合基础步骤和归纳步骤,可得出命题对于一切正整数都成立。

3. 应用范围数学归纳法广泛应用于数学领域,特别是在证明与正整数有关的等式、不等式、恒等式等方面。

例如证明正整数的奇数和一定是平方数,证明等差数列的通项公式等。

二、递推关系1. 定义递推关系是数列中的相邻项之间的关系。

通过已知的前一项来推导出后一项。

递推关系通常表示为an与an-1之间的关系。

2. 递推公式递推关系可以用一个递推公式来表示。

递推公式描述了数列的项与前一项之间的关系。

形式化表示为an = f(an-1),其中f是一个函数。

3. 求解递推关系为了求解递推关系,我们需要已知数列的初始项或递推关系的初始条件。

通常,给定数列的初始项或递推关系的初始条件后,就可以通过递推公式来计算数列的其他项。

4. 应用范围递推关系经常出现在数学、计算机科学和经济学等领域。

在数学中,递推关系被广泛应用于计算数列的通项公式、计算组合数等问题。

在计算机科学中,递推关系常用于设计和分析算法。

在经济学中,递推关系用于建立经济模型和预测。

总结:数学归纳法和递推关系都是数学中常用的方法。

高中数学讲义:数学归纳法

高中数学讲义:数学归纳法

数学归纳法一、基础知识:1、数学归纳法适用的范围:关于正整数n 的命题(例如数列,不等式,整除问题等),则可以考虑使用数学归纳法进行证明2、第一数学归纳法:通过假设n k =成立,再结合其它条件去证1n k =+成立即可。

证明的步骤如下:(1)归纳验证:验证0n n =(0n 是满足条件的最小整数)时,命题成立(2)归纳假设:假设()0,n k k n n N =³Î成立,证明当1n k =+时,命题也成立(3)归纳结论:得到结论:0,n n n N ³Î时,命题均成立3、第一归纳法要注意的地方:(1)数学归纳法所证命题不一定从1n =开始成立,可从任意一个正整数0n 开始,此时归纳验证从0n n =开始(2)归纳假设中,要注意0k n ³,保证递推的连续性(3)归纳假设中的n k =,命题成立,是证明1n k =+命题成立的重要条件。

在证明的过程中要注意寻找1n k =+与n k =的联系4、第二数学归纳法:在第一数学归纳法中有一个细节,就是在假设n k =命题成立时,可用的条件只有n k =,而不能默认其它n k £的时依然成立。

第二数学归纳法是对第一归纳法的补充,将归纳假设扩充为假设n k £,命题均成立,然后证明1n k =+命题成立。

可使用的条件要比第一归纳法多,证明的步骤如下:(1)归纳验证:验证0n n =(0n 是满足条件的最小整数)时,命题成立(2)归纳假设:假设()0,n k k n n N £³Î成立,证明当1n k =+时,命题也成立(3)归纳结论:得到结论:0,n n n N ³Î时,命题均成立二、典型例题例1:已知等比数列{}n a 的首项12a =,公比3q =,设n S 是它的前n 项和,求证:131n n S n S n++£思路:根据等比数列求和公式可化简所证不等式:321n n ³+,n k =时,不等式为321k k ³+;当1n k =+时,所证不等式为1323k k +³+,可明显看到n k =与1n k =+中,两个不等式的联系,从而想到利用数学归纳法进行证明证明:()11311n nn a q S q -==--,所证不等式为:1313131n n n n+-+£-()()()1313131n n n n +\-£+-1133331n n n n n n n ++Û×-£×+--321n n Û³+,下面用数学归纳法证明:(1)验证:1n =时,左边=右边,不等式成立(2)假设()1,n k k k N =³Î时,不等式成立,则1n k =+时,()()133332163211k k k k k +=׳+=+>++所以1n k =+时,不等式成立n N *\"Î,均有131n n S n S n++£小炼有话说:数学归纳法的证明过程,关键的地方在于寻找所证1n k =+与条件n k =之间的联系,一旦找到联系,则数学归纳法即可使用例2(2015,和平模拟):已知数列{}n a 满足0n a >,其前n 项和1n S >,且()()112,6n n n S a a n N *=++Î(1)求数列{}n a 的通项公式(2)设21log 1n n b a æö=+ç÷èø,并记n T 为数列{}n b 的前n 项和,求证:233log ,2n n a T n N *+æö>Îç÷èø解:(1)2632n n n S a a =++①()21116322,n n n S a a n n N *---=++³Î②①-②可得:()222211116333n n n n n n n n n a a a a a a a a a ----=-+-Þ+=-0n a >Q 所以两边同除以1n n a a -+可得:13n n a a --={}n a \是公差为3的等差数列()131n a a n \=+-,在2632n n n S a a =++中令1n =可得:211116321S a a a =++Þ=(舍)或12a =31n a n \=-(2)思路:利用(1)可求出n b 和n T ,从而简化不等式可得:33633225312n n n +æö×××>ç÷-èøL ,若直接证明则需要进行放缩,难度较大。

2024高考数学数学归纳法知识点整理

2024高考数学数学归纳法知识点整理

2024高考数学数学归纳法知识点整理数学归纳法是高中数学中的重要概念和解题方法之一。

它是一种推理方法,用于证明一些关于整数或正整数的性质。

在高考数学中,对于数学归纳法的理解和运用都是必备的知识点。

本文将整理归纳了2024年高考数学数学归纳法的知识点,以帮助同学们更好地理解和掌握这一内容。

1. 数学归纳法的基本思想数学归纳法是一种证明方法,基本思想是:首先证明当n=1时命题成立,然后假设当n=k时命题成立,再证明当n=k+1时命题也成立。

这样,就可以通过递推的方式证明命题对于所有正整数都成立。

2. 数学归纳法的三个步骤数学归纳法主要包含三个步骤:2.1 基础步骤(或称初始步骤)首先,我们需要证明当n=1时命题成立。

这是数学归纳法的基础,也是推理的起点。

2.2 归纳步骤(或称归纳假设)假设当n=k时命题成立,我们需要证明当n=k+1时命题也成立。

这是数学归纳法的关键,通过这一步骤我们可以建立起命题成立的递推关系。

2.3 归纳结论在经过归纳步骤后,我们可以得出结论:对于所有大于等于1的正整数n,命题都成立。

这是数学归纳法的最终目标,通过这一步骤我们将命题的正确性扩展到了所有正整数上。

3. 数学归纳法的应用数学归纳法在高考数学中有广泛的应用。

下面列举几个常见的应用场景:3.1 证明数列的性质我们可以使用数学归纳法证明某个数列的性质。

以等差数列为例,假设我们已知当n=k时等差数列的某个性质成立,通过归纳步骤可以推导出当n=k+1时该性质也成立。

3.2 证明数学等式数学归纳法也可以用来证明某些数学等式的成立。

例如,我们可以使用数学归纳法证明等式1+2+...+n=n(n+1)/2。

3.3 证明不等式的性质对于一些数学不等式,我们也常常使用数学归纳法进行证明。

例如,证明2^n > n^2对于所有大于等于5的正整数n成立。

4. 数学归纳法的注意事项在使用数学归纳法时,需要注意以下几个方面:4.1 对于基础步骤的证明要充分,不能遗漏。

数学归纳法高中知识点总结

数学归纳法高中知识点总结

数学归纳法高中知识点总结一、数学归纳法的概念数学归纳法是一种数学证明方法,它通过证明一个命题在某个基本情形成立,然后证明它在某一个情形成立时也在下一个情形成立,从而证明这个命题对所有情形都成立。

数学归纳法通常包括以下两个基本步骤:1. 基础情形的证明:首先证明当n取某个基本值时命题成立,通常情况下取n=1时成立。

2. 归纳假设的证明:假设当n=k时命题成立,然后证明在n=k+1时命题也成立。

通过这两个步骤可以证明对于所有的正整数n都成立,这就是数学归纳法的基本原理。

二、数学归纳法的步骤数学归纳法的具体步骤可以分为以下几个步骤:1. 确定基础情形:首先需要确定要证明的命题的基础情形,通常取n=1。

2. 证明基础情形成立:证明当n取基础值时命题成立。

3. 假设归纳前提成立:假设当n=k时命题成立,即归纳假设。

4. 证明归纳假设成立:证明当n=k+1时命题也成立。

5. 结论:根据数学归纳法的原理,得出对所有正整数n命题成立的结论。

通过以上步骤可以完整地运用数学归纳法来证明一个命题对所有正整数n成立的结论。

三、高中数学中的数学归纳法应用知识点数学归纳法在高中数学中有着广泛的应用,主要包括以下几个知识点:等差数列、等比数列、二次不等式、整式的推广、不等式的证明等。

1. 等差数列等差数列是一类数学中常见的数列,它的通项公式为an=a1+(n-1)d,其中a1为首项,d为公差,n为项数,an为第n项。

在高中数学中,我们经常需要证明一些等差数列的性质,如等差数列的通项公式、前n项和公式等。

而数学归纳法正是证明这些性质的有效方法之一。

2. 等比数列等比数列是另一类常见的数列,它的通项公式为an=a1*q^(n-1),其中a1为首项,q为公比,n为项数,an为第n项。

在高中数学中,我们同样需要证明一些等比数列的性质,如等比数列的通项公式、前n项和公式等。

数学归纳法同样可以用来证明这些性质。

3. 二次不等式在高中数学中,我们学习了很多的二次不等式,如x^2>0,ax^2+bx+c>0等。

数学全部知识点归纳

数学全部知识点归纳

数学全部知识点归纳一、数与代数。

1. 整数。

- 整数的认识。

- 自然数:0、1、2、3……用来表示物体个数的数。

- 整数包括正整数、0和负整数。

- 整数的运算。

- 加法:把两个或多个数合并成一个数的运算。

- 减法:已知两个数的和与其中一个加数,求另一个加数的运算,是加法的逆运算。

- 乘法:求几个相同加数和的简便运算。

- 除法:已知两个因数的积与其中一个因数,求另一个因数的运算,是乘法的逆运算。

- 运算顺序:先算乘除,后算加减,有括号的先算括号里面的。

2. 小数。

- 小数的认识。

- 小数由整数部分、小数点和小数部分组成。

- 小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

- 小数的运算。

- 小数加减法:小数点对齐,然后按照整数加减法的方法进行计算。

- 小数乘法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

- 小数除法:除数是整数时,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;除数是小数时,先把除数转化为整数,再按照除数是整数的除法进行计算。

3. 分数。

- 分数的认识。

- 分数表示把单位“1”平均分成若干份,表示这样一份或几份的数。

- 分数单位:把单位“1”平均分成若干份,表示其中一份的数。

- 分数的运算。

- 分数加减法:同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先通分,再按照同分母分数加减法的方法进行计算。

- 分数乘法:分子相乘的积作分子,分母相乘的积作分母。

- 分数除法:除以一个数(0除外)等于乘以这个数的倒数。

4. 百分数。

- 表示一个数是另一个数的百分之几的数。

- 百分数与分数、小数的互化:- 百分数化小数:去掉百分号,小数点向左移动两位。

- 小数化百分数:小数点向右移动两位,加上百分号。

- 百分数化分数:先把百分数写成分母是100的分数,再化简。

- 分数化百分数:先把分数化成小数(除不尽时,通常保留三位小数),再化成百分数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学归纳法
数学归纳法是用于证明与正整数n 有关的数学命题的正确性的一种严格的推理方法.在数学竞赛中占有很重要的地位.
(1)第一数学归纳法
设)(n P 是一个与正整数有关的命题,如果
① 0n n =(N n ∈01.数学归纳法的基本形式)时,)(n P 成立; ②假设),(0N k n k k n ∈≥=成立,由此推得1+=k n 时,)(n P 也成立,那么,根据①②对一切正整数0n n ≥时,)(n P 成立.
(2)第二数学归纳法
设)(n P 是一个与正整数有关的命题,如果
①当0n n =(N n ∈0)时,)(n P 成立;
②假设),(0N k n k k n ∈≥≤成立,由此推得1+=k n 时,)(n P 也成立,那么,根据①②对一切正整数0n n ≥时,)(n P 成立.
2.数学归纳法的其他形式
(1)跳跃数学归纳法
①当l n ,,3,2,1Λ=时,)(,),3(),2(),1(l P P P P Λ成立,
②假设k n =时)(k P 成立,由此推得l k n +=时,)(n P 也成立,那么,根据①②对一切正整数1≥n 时,)(n P 成立.
(2)反向数学归纳法
设)(n P 是一个与正整数有关的命题,如果
① )(n P 对无限多个正整数n 成立;
②假设k n =时,命题)(k P 成立,则当1-=k n 时命题)1(-k P 也成立,那么根据①②对一切正整数1≥n 时,)(n P 成立. 例如,用数学归纳法证明: 为非负实数,有
在证明中,由
真,不易证出 真;然而却很容易证出 真,又容易证明不等式对无穷多个 (只要
型的自然数)为真;从而证明
,不等式成立. (3)螺旋式归纳法 P (n ),Q (n )为两个与自然数 有关的命题,假如
①P(n0)成立;
②假设 P(k) (k>n0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1)成立;
综合(1)(2),对于一切自然数n (>n0),P(n),Q(n)都成立;
(4)双重归纳法 设
是一个含有两上独立自然数 的命题. ①
与 对任意自然数 成立; ②若由 和 成立,能推出 成立;
根据(1)、(2)可断定,
对一切自然数 均成立. 3.应用数学归纳法的技巧
(1)起点前移:有些命题对一切大于等于1的正整数正整数n 都成立,但命题本身对0=n 也成立,而且验证起来比验证1=n 时容易,因此用验证0=n 成立代替验证1=n ,同理,其他起点也可以前移,只要前移的起点成立且容易验证就可以.因而为了便于起步,有意前移起点.
(2)起点增多:有些命题在由k n =向1+=k n 跨进时,需要经其他特殊情形作为基础,此时往往需要补充验证某些特殊情形,因此需要适当增多起点.
(3)加大跨度:有些命题为了减少归纳中的困难,适当可以改变跨度,但注意起点也应相应增多.
(4)选择合适的假设方式:归纳假设为一定要拘泥于“假设k n =时命题成立”不可,需要根据题意采取第一、第二、跳跃、反向数学归纳法中的某一形式,灵活选择使用.
(5)变换命题:有些命题在用数学归纳证明时,需要引进一个辅助命题帮助证明,或者需要改变命题即将命题一般化或加强命题才能满足归纳的需要,才能顺利进行证明.
5.归纳、猜想和证明
在数学中经常通过特例或根据一部分对象得出的结论可能是正确的,也可能是错误的,这种不严格的推理方法称为不完全归纳法.不完全归纳法得出的结论,只能是一种猜想,其正确与否,必须进一步检验或证明,经常采用数学归纳法证明.不完全归纳法是发现规律、解决问题极好的方法.
从0以外的数字开始
如果我们想证明的命题并不是针对全部自然数,而只是针对所有大于等于某个数字b的自然数,那么证明的步骤需要做如下修改:
第一步,证明当n=b时命题成立。

第二步,证明如果n=m(m ≥b)成立,那么可以推导出n=m+1也成立。

用这个方法可以证明诸如“当n≥3时,n2>2n”这一类命题。

只针对偶数或只针对奇数
如果我们想证明的命题并不是针对全部自然数,而只是针对所有奇数或偶数,那么证明的步骤需要做如下修改:
奇数方面:
第一步,证明当n=1时命题成立。

第二步,证明如果n=m成立,那么可以推导出n=m+2也成立。

偶数方面:
第一步,证明当n=0或2时命题成立。

第二步,证明如果
n=m成立,那么可以推导出n=m+2也成立。

递降归纳法
数学归纳法并不是只能应用于形如“对任意的n”这样的命题。

对于形如“对任意的n=0,1,2,...,m”这样的命题,如果对一般的n比较复杂,而n=m比较容易验证,并且我们可以实现从k到k-1的递推,k=1,...,m的话,我们就能应用归纳法得到对于任意的n=0,1,2,...,m,原命题均成立。

(一)第一数学归纳法:
一般地,证明一个与自然数n有关的命题P(n),有如下步骤:
(1)证明当n取第一个值n0时命题成立。

n0对于一般数列取值为0或1,但也有特殊情况;
(2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。

综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。

(二)第二数学归纳法:
对于某个与自然数有关的命题P(n),
(1)验证n=n0时P(n)成立;
(2)假设n0≤n<=k时P(n)成立,并在此基础上,推出P(k+1)成立。

综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。

(三)倒推归纳法(反向归纳法):
(1)验证对于无穷多个自然数n命题P(n)成立(无穷多个自然数可以是一个无穷数列中的数,如对于算术几何不等式的证明,可以是2^k,k≥1);
(2)假设P(k+1)(k≥n0)成立,并在此基础上,推出P(k)成立,综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立;(四)螺旋式归纳法
对两个与自然数有关的命题P(n),Q(n),
(1)验证n=n0时P(n)成立;
(2)假设P(k)(k>n0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1)成立;
综合(1)(2),对一切自然数n(≥n0),P(n),Q(n)都成立。

相关文档
最新文档