数学论文 浅谈数学归纳法的应用
数学归纳法的应用

数学归纳法的应用数学归纳法是一种证明数学命题的重要方法,通过数学归纳法可以从一个基础情形开始,逐步推导出所有情形成立的结论。
它在许多数学领域中都有广泛的应用,包括代数、数论、组合数学等等。
本文将详细探讨数学归纳法在各个领域中的应用。
一、代数中的数学归纳法应用在代数中,数学归纳法可以用来证明各类等式和不等式的成立。
以证明等差数列的和公式为例,首先我们可以选取一个基础情形,例如当n=1时,等差数列的和为首项本身。
接着我们假设当n=k时,等差数列的和成立,即1+2+...+k=k(k+1)/2。
然后我们通过数学归纳法的步骤,证明当n=k+1时,等差数列的和也成立。
具体的证明步骤可以通过化简等式得到。
这样,我们就可以得出等差数列和公式的普遍成立性。
二、数论中的数学归纳法应用在数论中,数学归纳法常被用来证明自然数的一些性质。
例如,我们可以用数学归纳法证明任意自然数的平方和公式。
首先我们取n=1时,平方和为1。
然后我们假设当n=k时,平方和公式成立,即1²+2²+...+k²=k(k+1)(2k+1)/6。
接着我们通过数学归纳法的步骤,证明当n=k+1时,平方和公式也成立。
具体的证明过程可以通过算术运算得到,最终得到平方和公式的普遍成立性。
三、组合数学中的数学归纳法应用在组合数学中,数学归纳法被广泛应用于证明一些组合恒等式和性质。
以证明组合恒等式的成立为例,我们可以选取一个基础情形,例如当n=1时,组合恒等式左右两边相等。
接着我们假设当n=k时,组合恒等式成立。
然后通过数学归纳法的步骤,证明当n=k+1时,组合恒等式也成立。
具体的证明过程可以通过组合恒等式的性质得到,最终得到组合恒等式的普遍成立性。
综上所述,数学归纳法作为一种重要的数学证明方法,在代数、数论、组合数学等领域中都有广泛的应用。
通过选取基础情形,并假设递推情形成立,再通过数学归纳法的步骤推导出结论,我们可以得出很多数学命题的成立性。
毕业论文:数学归纳法及其应用论文

数学归纳法及其应用数学归纳法是一种证明与正整数有关的命题的非常重要的数学方法,它不仅对我们中学数学的学习有着很大的帮助,而且在进一步学习及研究高等数学时,也是一种非常重要的方法.数学归纳法在证明与正整数有关的命题时有其独特之处.对数学归纳法逻辑基础即原理的准确理解,是掌握这种证明方法的关键.要熟练的掌握及应用数学归纳法,首先必须准确的理解其意义以及熟练地掌握解题步骤,而在三个步骤中,运用归纳假设尤为关键,运用归纳假设推出结论最为重要.数学归纳法可以用来证明与正整数有关的代数恒等式、不等式、整除性问题和几何问题等.n时表示一个命题,正整数是无穷的.一个与正整数N有关的命题,当1n时又表示一个命题,如此等等,无穷无尽.因此,一个与正整数N有关当2的命题本质上包含了无穷多个命题.假如我们对于这无穷多个命题,按部就班地一个一个去证,那么不管我们的证题速度有多快,也是今生今世都证不完的.在一个与正整数N有关的命题面前,作为万物之灵的人,发明了一种方法,叫做“数学归纳法”.人们运用此法,只需寥寥几步,像变戏法似的,便把无穷多个命题一个不剩的全证完了[1].数学归纳法是数学论证的一个基本工具,是一种非常重要的数学证明方法,它典型地用于确定一个表达式在所有正整数范围内是成立的,或者用于确定一个其他的形式在一个无穷序列是成立的.最简单和最常见的数学归纳法证明是证明当n属于所有正整数时一个表达式成立,这种方法是由下面两步组成,第一步是递推的基础: 证明当1n时表达式成立.第二步是递推的依据: 证明如果当n k时成立,那么当1n k时同样成立.(递推的依据中的“如果”被定义为归纳假设.不要把整个第二步称为归纳假设.) 这个方法的原理在于第一步证明起始值在表达式中是成立的,然后证明一个值到下一个值的证明过程是有效的.如果这两步都被证明了,那么任何一个值的证明都可以被包含在重复不断进行的过程中.1数学归纳法的概述1.1 常用数学证明方法数学是一门非常注重学习方法的学科,而数学的证明更是将这些方法体现的淋漓尽致,数学中研究问题的方法一般有以下分类:1.1.1 演绎推理——从一般到特殊的推理叫做演绎推理,它又称演绎法.1.1.2 归纳推理——由特殊事例得出一般结论的归纳推理方法,通常叫做归纳推理,它又称归纳法.根据推理过程中考察的对象是涉及事物的一部分还是全部,归纳法又可分为不完全归纳法和完全归纳法.不完全归纳法是根据事物的部分(而不是全部)特例得出一般结论的推理方法.不完全归纳法所得到的命题并不一定成立,所以这种方法并不能作为一种论证方法.但是,不完全归纳法是研究数学的一把钥匙,是发现数学规律的一种重要手段.在问题探索中,为了寻求一般规律,往往先考察一些特例,通过对这些特例的不完全归纳形成猜想,然后再试图去证明或否定这种猜想.因而学会用不完全归纳法对问题进行探索,对提高数学能力十分重要.完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又叫做枚举法.与不完全归纳法不同,用完全归纳法得出的结论是可靠的.通常在事物包括的特殊情况数不多时,采用完全归纳法[2].1.2 数学归纳法的定义数学归纳法概念:数学归纳法是数学上证明与正整数N有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题.1.3 数学归纳法的逻辑基础意大利有一个数学家,名叫皮亚诺(G.Peano,1858-1932),他总结了自然数的有关性质,并在关于自然数的理论中提出了关于自然数的五条公理,后人称之为“皮亚诺公理”.皮亚诺公理的内容如下:任何一个满足下列条件的非空集合N的元素叫做自然数.在这个集合中,某些元素之间存在着一种基本关系——“随从”关系(或者叫做“直接后继”关系)并且满足以下五条公理:Ⅰ.0N(即“0是自然数”).Ⅱ.对于N的每一个元素a,在N中都有一个确定的随从'a(我们用符号'a 表示a的随从,以下类同).Ⅲ. 0不是N中任何一个元素的随从.a b可以推出a b(这就是说,N中的每个元素只能是某一个元Ⅳ.由''素的随从,或者根本不是随从).Ⅴ.设M是自然数的集合,若它具有下列性质:(1)自然数0属于M;(2)如果自然数a属于M,那么它的随从'a也属于M;则集合M包含一切自然数[1].自然数就是满足上述皮亚诺公理的集合N中的元素.关于自然数的所有性质都是这些公理的直接推论.由皮亚诺公理可知,0是自然数关于“后继”的起n n,…,则始元素,如果记'01,'12,'23,…,'1{0,1,2,,,}N n皮亚诺公理与最小数原理是等价的,我们可以用皮亚诺公理来证明最小数原理.定理1 (最小数原理) 自然数集N 的任意非空子集A 都有最小数. 证 设M 是不大于A 中任何数的所有自然数的集合,即{|,}Mn nN nm mA 且对任意由于A 非空,至少有一自然数a A ,而1()a a 不在M 中,所以M N .从而必存在自然数0m M ,且01m M .因为若不然,就有(1)0M (0不大于任一自然数); (2)若m M ,则1m M .根据归纳原理,集合M 包含一切自然数.此与M 是不大于A 中任何数的所有自然数的集合矛盾.这个自然数0m 就是集合A 的最小数,因为对任何aA ,都有0m a ;而且0m A .事实上,若0m A ,则有01m a ,对任意a A ,于是01m M ,这又与0m 的选取相矛盾.下面我们用最小数原理来证明数学归纳法原理.定理2 (数学归纳法原理)一个与自然数有相关的命题()T n ,如果(1)00()(0)T n n 为真;(2)假设0()()T n nn 为真,则可以推出(1)T n 也为真.那么,对所有大于等于0n 的正整数n ,命题()T n 为真.证 用反证法.若命题()T n 不是对所有的自然数n 为真,则0{|,()}Mm mN mn T m 且不真非空.根据定理1,M 中有最小数0m .由(1),00m n ,从而001m n 且0(1)T m 为真.由(2),取01nm 即知0()T m 为真.此与0()T m 不真相矛盾.从而证明了定理2[4].因而从理论上讲,皮亚诺公理中的第五条公理正是数学归纳法的依据,因此,第五条公理也称做数学归纳法原理。
浅谈数学归纳法在中学数学中的应用

浅谈数学归纳法在中学数学中的应用摘要:数学归纳法是建立在最小数原理基础上的一种用于证明和自然数有关的命题的常用方法,分为第一数学归纳法和第二数学归纳法。
本文介绍了数学归纳法基于最小数原理的理论背景,同时以例题的形式阐述了两种数学归纳法的使用方式,分析了其各自的特点,同时通过特殊例题浅要比较了两种归纳法本质的区别。
在文章的最后,浅要给出了数学归纳法在中学阶段教法和学法的建议。
一.绪论1.研究背景在高中数学中,像数列,不等式,以及一些求和公式,很多题目都会要求你证明和自然数有关的命题,而数学归纳法主要就是争对有关自然数的命题的一种高效简便的方法,如果能够熟练的掌握数学归纳法的概念及使用方法,并能够巧妙地应用在实际的问题当中,那很多时候一些很复杂的问题都可以得到一个很巧妙的解法。
在近几年的高考数学大题中,出现了很多以数列不等式为背景的证明题,数列本是一种定义在自然数集中的特殊函数,所以很多这种类型的题目都可以用数学归纳法巧妙解决。
同时,数学归纳法可以锻炼学生的归纳总结能力,类比推理能力,对高中生增加适当的数学归纳法的教学可以增加其数学修养。
数学归纳法是一套解决一大类问题的完美工具。
2.研究意义在大学四年数学专业课的学习中,像高等代数,初等数论,图论这样的课程中,在证明一些结论的时候都会用到数学归纳法,由此可见,数学归纳法的应用面非常的广泛。
同时,数学归纳法的解题步骤和里面的原理是很容易让高中阶段的学生理解的。
所以在教学过程中,对于一些合适的题讲述出用数学归纳法的解法是很有必要的。
数学是一门锻炼学生思维能力的学科,所以一味的让学生死记硬背的教学方法是不可取的,数学归纳法,主要是对相关数学知识进行合理地证明,以具体的命题为解题基础,能够使其在自然数的范围中成立,把有关于数学基础知识正确地应用在解题的过程中,从而对数学习题的求证。
二.数学归纳法的理论背景及使用方法1.数学归纳法的证明设 M 是自然数集的任一非空子集, 则必存在一个自然数m∈M, 使对一切n∈M, 都有m≤n。
浅谈数学归纳法的认识及应用

浅谈数学归纳法的认识及应用【摘要】数学归纳法是一种非常重要的数学方法,它不仅对我们中学数学的学习有着很大的帮助,而且在高等数学的学习及研究中也是一种重要的方法。
本文通过一些具有代表性的典型例题重点讨论数学归纳法的应用。
要熟练的应用数学归纳法,首先必须准确的理解其意义以及熟练的掌握解题步骤,而在三个步骤中运用归纳假设尤为关键,运用归纳假设推出猜想最为重要。
最后我们在通过用数学归纳法证明命题的过程中,可以更加深刻理解和掌握“归纳——猜想——证明”这一探索发现的思维方法。
【关键词】归纳法猜想证明方法(一)数学归纳法的概述归纳是一种有特殊事例导出一般原理的思维方法。
归纳推理分完全归纳推理与不完全归纳推理两种。
不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在高中数学推理论证中是不允许的。
完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。
[1]例如:大球中装有若干个小球,以下是试验过程和推理,其结论是否正确?试验(1)从大球中取出5个小球,发现全是红色的。
推理大球中装的全是红球判断考察部分对象,得到一般结论的方法,叫做不完全归纳法。
不完全归纳法得到的结论不一定正确。
试验(2)从大球中取出所有的小球,发现全是红色的。
推理大球中装的全是红球判断考察全部对象,得到一般结论的方法,叫做完全归纳法。
完全归纳法一定是正确![2]数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解高中数学题中有着广泛的应用。
它是一个递推的数学论证方法。
用数学归纳法证明命题的步骤:(1)证明:当n取第一个值n。
结论正确;(2)假设当n=k(k∈N,且k≥n。
)时,结论正确,证明当n=k+1时结论也正确。
由(1)、(2)可知,命题对从n。
开始的所有正整数n都正确。
这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。
关于数学归纳法的论文

数学归纳法在问题求解中的应用作者:管国策指导老师:张胜摘要数学归纳法是一种常用的证明方法,在不少数学问题的证明中,它都有着其他方法所不能替代的作用.甚至在物理、生物等方面都有着广泛的前景,本文首先阐述数学归纳法的理论依据以及表现形式,然后通过一些具有代表性的典型例题重点讨论数学归纳法在初等数学、高等数学、离散数学以及中学数学竞赛中的应用,最后详细叙述对数学归纳法的认识和使用中应该注意的问题.关键词数学归纳法数列行列式离散数学树数学竞赛1、数学归纳法的理论依据归纳法和演绎法都是重要的数学方法.归纳法中的完全归纳法和演绎法都是逻辑方法;不完全归纳法是非逻辑方法,只适用于数学发现规律,不适用于数学严谨证明.数学归纳法既不是归纳法,也不是演绎法,是一种递归推理,其理论依据是下列归纳公理:(1)存在一个自然数0∈N.(2)每一个自然数a有一个后继元素'a,如果'a是a的后继元素,则a叫做'a的生成元素.(3)自然数0无生成元素.(4)如果'a='b,则a=b.(5)(归纳公理)自然数N的每个子集M,如果M含有0,并且含有M内每个元素的后继元素,则M=N.自然数就是满足上述公理的集合N中的元素,关于自然数的所有性质都是这些公理的直接理论.由以上公理可知,0是自然数关于“后继”的起始元素.如果记'0=1,'1=2,'2=3,…,'n=n+1,…,则N={0,1,2,…,n,…}.由以上公理所定义的自然数与前面由集合所定义的自然数在本质上是一致的.20世纪90年代以前的中学数学教材将自然数的起始元素视作1,则自然数集即为正整数集.现在已统一采用上面的证法,即将0作为第1个自然数.为了阐述数学归纳法,我们首先介绍一下正整数集的最小数原理.最小数原理:正整数集中≤,的任意一个非空子集必含有一个最小数.也就是说,存在数a∈S,对于∀x∈S都有a x最小数原理也就是数学归纳法的理论依据.2、数学归纳法的表现形式2.1.第一数学归纳法在教科书里我们常见到的就是第一数学归纳法,介绍如下:原理:设有一个与正整数n有关的命题()P n .如果:(1)当n =1时命题成立(2)假设n =k 时命题成立(3)若能证明n =k +1时命题也成立.证明:反证法.假设该命题不是对于一切正整数都成立.令S 表示使该命题不成立的正整数作成的集合,那么S ≠∅.于是由最小数原理,S 中有最小数a .因为命题对于n =1时成立,所以1a ≠, a >1.从而a -1是个正整数.又由于条件(3),当n =a 时命题也成立.因此a S ∉,导致矛盾.因此该命题对于一切正整数都成立.定理证毕.在应用数学归纳法时,有些命题不一定从c 开始的,这时在叙述上只要将n =1换成n =c 即可.第一数学归纳法主要可概括为以下三步:(1)归纳基础:证明c 时命题成立(2)归纳假设:假设n =k 时命题成立(3)归纳递推:由归纳假设推出n =k +1时命题也成立.2.2.第二数学归纳法第二数学归纳法与第一归纳法是等价的.在有些情况下,由归纳法“假设n =k 时命题成立”还不够,而需要更强的假定.也就是说,对于命题()P n ,在证明(1)P k +成立,不仅依赖()P k 成立,而且依赖于前面各步成立,这时一般要选用第二数学归纳法.原理:设有一个与正整数n 有关的命题()P n .如果:(1)当n =1时命题成立(2)在假设命题对于一切正整数n k ≤成立时(3)若能证明n =k +1时命题也成立.则这个命题对于一切正整数n 都成立.其证明方法与上述证明方法类似,在这个地方不再赘述.第二数学归纳法可概括为一下几个三步:(1)归纳基础:证明n =1时命题成立(2)归纳假设:假设n k ≤时命题成立(3)归纳递推:由归纳假设推出n =k +1时命题也成立.第二数学归纳法与第一数学归纳法基本形式的区别在于归纳假设.2.3.反向归纳法反向数学归纳法是数学家柯西最先使用的,下面我们就来介绍一下.原理:设有一个与正整数n 有关的命题()P n .如果:(1)命题()P n 对于无限多个正整数n 成立(2)假设n =k 时命题成立(3)若能证明n =k -1时命题也成立,则这个命题对一切正整数n 都成立.证明:反证法.假设该命题不是对于一切正整数都成立.令A 表示使该命题不成立的正整数作成的集合,那么A ≠∅.任取a A ∈,由条件(1)知必有正整数b >a ,使()P b 成立.令这样的正整数b 组成的集合为B .因为集合B ≠∅,故必有最小数,设这个最小数为m ,显然m >1,由条件(3)知:(1)P m -成立,由a 的取法知:3、数学归纳法的应用数学归纳法作为一种证明方法有着广泛的应用,它不仅可以用来证明与自然数n 有关的初等代数问题,在高等数学、几何学、离散数学、概率论甚至物理、生物、计算机等方面的应用也相当突出.在用数学归纳法解决以上问题时,不仅思路清晰、大大降低了问题的复杂性,又能找出相应的递推关系,非常有效.下面重点谈谈它在初等代数、高等数学、离散数学以及数学竞赛中的应用. 3.1.数学归纳法在初等代数中的应用数学归纳法在恒等式问题、整除问题、三角函数问题、数列问题以及不等式问题中均有着广泛的应用.例1.求证:3n +5n (n N +∈)能被6整除证明:(1)当n =1时,31+51⨯=6能被6整除,命题成立(2)假设n =k 时,命题成立,即3k +5k 能被6整除当n =k +1时,有3(1)k ++5(1)k +=(3k +32k +3k +1)+(5k +5) =(35k k +)+3(1)k k ++6 因为两个连续的正整数的乘积(1)k k +是偶数,所以3(1)k k +能被6整除 则(35k k +)+3(1)k k ++6能被6整除,即当n =k +1时命题也成立 综上所述,对一切正整数n 命题都成立.例2.已知在各项均为正整数的数列{}n a 中,它的前n 项和n S 满足n S =11()2n na a +,试猜想数列{}n a 的通项公式,并有数学归纳法证明你的猜想. 解:1S =1111()2a a + 21a ∴=1n a >0 1a ∴=12S =1a +2a =2211()2a a +即22a +22a -1=0又n a >0 ∴2a-13S =1a +2a +3a=1+(1+3a =331()a a +即23a+3a -1=0 又n a >0 ∴3a…猜想:n an N +∈)下面用数学归纳法证明这个猜想(1)当n =1时,1a=1,命题成立(2)假设n k =(1k ≥)时,k a1n k =+时,有:1k a +=1k S +-k S =1111()2k k a a +++-11()2k ka a +,即1k a +=1111()2k k a a +++-12=1111()2k k a a +++21k a +∴1k a +-1=0又n a >0 1k a +∴∴当1n k =+时,命题也成立.由(1)(2)可知:当n N +∈时,n a 例3:已知数列{}n b 是等差数列, 1b =1,1b +2b +…10b =145 (1)求数列{}n b 的通项公式n b (2)设数列{}n a 的通项n a =1log(1)nb +(a >0且1a ≠),记n S 是数列{}n a 的前n 项和,试比较n S 与11log 3a nb +的大小并证明你的结论. 解:(1)设数列{}n b 的公差为d 由题意知:1b =1;1b +10(101)2d -=145 解得:d =3 ∴n b =3n -2(2)由n b =3n -2知:n S =log (11)a ++1log (1)4a ++ (1)log (1)32a n +- =1log [(11)(1)4a ++ (1)(1)]32n +-而11log 3a nb +=log an S 与11log 3a nb +的大小,就是要比较1(11)(1)4++ (1)(1)32n +-的大小取n =1,有(1+1)取n =2,有1(11)(1)4++推测:1(11)(1)4++ (1)(1)32n +-()* (1)当n =1时,已验证()*式成立(2)假设n k =(k >1且k N +∈)时()*式成立.即1(11)(1)4++ (1)(1)32k +-则当1n k =+时,1(11)(1)4++…1(1)32k +-1(1)3(1)2k ++-1(1)31k ++=3231k k +-33332(31k k +-+=322(32)(34)(31)(31)k k k k +-+++=294(31)k k ++>0从而1(11)(1)4++…1(1)32k +-1(1)31k ++即当n =1k +时()*式也成立由(1)(2)知:()*式对任意正整数n 都成立于是当a >1时,n S >11log 3a n b +;当0<a <1时,n S <11log 3a nb +3.2.数学归纳法在高等数学中的应用证明是高等数学的一个重要的组成部分,它的重要性,不仅表现在数学命题需要严格的推理证明,才能确定其真实性,更重要的还在于通过数学证明有助于学生弄清命题的条件与结论之间的本质联系,加强对数学问题的认识,有助于学生深刻理解数学本质,养成严谨的思考问题的习惯,从而自觉掌握数学规律,从根本上提高分析问题和解决问题的能力.例4:如果对一切实数x 和y ,等式()f x y +=()f x +()f y 成立,试证对一切有理数r ,有()f rx =()rf x证:令x =y ,则由已知条件有: (2)f x =()f x +()f x =2()f x (3)f x =()f x +(2)f x =3()f x用数学归纳法可证,对一切自然数n 有()f nx =()nf x另外,对正分数p q (,p q 互质且q >1)有:()pf x =()f px =()p f q x q =()p qf x q()p f x q ∴=()()pf x q令x =y =0,有(0)f =2(0)f ∴(0)f =0接着令y =x -,有()f x +()f x -=0 ∴()f x -=-()f x 同理,对负数p q -(,p q 互质且p >0, q >1)有:()p f x q-=pq -()f x因此,可知对一切有理数r 命题成立. 例5.证明211arctan2n n ∞=⋅∑收敛 证:令n a =21arctan2n ⋅ 求出该数列的部分和n S 1S =1arctan22S =1arctan 2+21arctan 22⋅=2211222arctan111222+⋅-⋅⋅=2arctan 3 3S =1a +2a +3a =2S +3a =2arctan 3+21arctan 23⋅=3arctan 4猜想:n S =arctan 1nn +下面用数学归纳法证明: 假设1k S -=1arctank k-,将上式两边同时加上k a ,得: k S =1k S -+k a =1arctan k k -+21arctan 2k ⋅=23(221)arctan 21k k k k k -+-+=arctan 1k k + 证出等式在n =k 时成立. 因此n S =arctan1nn + 又lim 1n n n →∞+=1,arctan1=4π,证得级数211arctan 2n n ∞=⋅∑收敛 S =4π例6:证明:n D =cos 10012cos 100012cos 012cos aa aa=cos na证:对n 施第二数学归纳法 (1)当n =2时,cos 112cos a a=22cos a -1=cos2a(2)假设<n 时结论成立,则当n 时n D =cos 1012cos 10012cos 001aa a -+21cos n aD - =2n D --+12cos n aD -=cos(2)n a --+2cos cos(1)a n a ⋅- =cos(2)n a --+2cos[(2)]cos n a a a -+⋅=cos(2)n a --+2[cos(2)cos sin(2)sin ]cos n a a n a a a -⋅--⋅ =cos(2)n a --+22cos(2)cos 2sin(2)cos sin n a a n a a a -⋅--⋅⋅=2cos(2)(2cos 1)sin(2)sin 2n a a n a -⋅---⋅ =cos(2)cos 2sin(2)sin 2n a a n a a -⋅--⋅ =cos[(2)2]n a a -+=cos na3.3.数学归纳法在离散数学中的应用随着计算机科学的发展,离散数学在计算机的研究中的作用越来越大,而离散数学中(特别是图论中)的许多命题的论证,数学归纳法不失为一种行之有效的方法.例7.设R 是集合X 上的关系,则()t R =1i i R ∞==R ⋃2R ⋃3R ⋃…证明:用第一归纳法先证明1i i R ∞=⊆()t R ;(1)当n =1时,根据传递闭包定义R ⊆()t R ; (2)假设1n ≥时,nR ⊆()t R .设(,)x y ⊆1n R+,因为1n R+⊆n R ⋃R ,故必有某个c x ∈,使(,)x c ∈n R ,(,)c y ∈R由归纳假设,有(,)x c ∈()t R ,(,)c y ∈()t R ,即(,)x y ∈()t R 1n R+∴⊆()t R故对任意的自然数n ,有nR ⊆()t R ,因而1i i R ∞=⊆()t R再证()t R ⊆1i i R ∞=设(,)x y ∈1ii R ∞=,(,)y z ∈1i i R ∞=,则必存在整数,s t ,使得(,)x y ∈s R ,(,)y z ∈t R这样(,)x z ∈s R ⋃tR ,即(,)x z ∈1i i R ∞=∴1i i R ∞=是传递的由传递闭包的定义可知:()t R =1i i R ∞=例8:设T 为任意一颗完全二元树,m 为边数,t 为树叶数,试证明m =22t -,这里2t ≥证明:对树叶数t 进行证明当t =2时,结点树为3,边数m =2,故m =22t -成立假设t =k (2)k ≥时,结论成立,下面证明t =1k +时结论也成立由于T 为二元数,因此T 中一定存在都是兄弟结点12,v v ,设v 是12,v v 的父亲,在T中删除12,v v ,得到'T ,'T 仍为二元完全树,这时结点v 成为树叶,树叶数't =21t -+=11k +-=k ,边数'm =2m -由归纳假设知:'m ='22t -所以2m -=2(21)2t -+-,故m =22t -3.4.数学归纳法在中学竞赛中的应用我们知道中学数学竞赛里有的知识解决需要用的数学归纳法,它方便了我们的解题,下面举几个例子看看它在数学竞赛里是如何运用的.例9.数列{}n a 中有1a =2a =1,1n a +=1n a -+n a (2)n ≥,请你证明:n a =]n n -(这个数列叫做斐波那契数列,它的前12项是1,1,2,3,5,8,13,21,34,55,89,144)证明:(1)当1n =时,11522--=5(1)T ∴成立当2n =时,2211(]522+-=33(544+--=5(2)T ∴成立(2)假设n k =和1n k =+时,()T k ,(1)T k +都成立即k a ]k k -且1k a +11]k k ++- 则当2n k =+时,2k a +=k a +1k a +]k k -11]k k ++-(1(1k k +-+k k=221111[(()((]52222k k ⋅-⋅=2211[()(]522k k ++- (2)T k ∴+也成立.由(1)(2)可知:对一切正整数,n a =11()]522n n--恒成立. 例10.设x +1x =2cos θ(其中x 为复数),请用θ的三角函数式表示nx +1n x(n 是正整数),并用数学归纳法证明你的结论.解:(1)当1n =时,x +1x=2cos θ 当2n =时,2x +21x=21()2x x +-=22(2cos 1)θ-∴2x +21x=2cos2θ当3n =时,3x +31x =22111()()()x x x x x x++-+=2cos 2cos22cos θθθ⋅-=2cos32cos 2cos θθθ+- =2cos3θ 猜想:nx +1n x=2cos n θ (2)假设1n k =-时,1k x -+11k x -=2cos(1)k θ-n k =时,kx +1k x=2cos (2)k k θ≥ 那么1n k =+时,1k x ++11k x+=11111()()()k k k k x x x x x x --++-+=2cos 2cos 2cos(1)k k θθθ⋅--=2cos(1)2cos(1)2cos(1)k k k θθθ++--- =2cos(1)k θ+ (1)T k ∴+成立由(1)(2)知,对一切n 恒有nx +1n x=2cos n θ(其中n 为正整数) 4、对数学归纳法的认识数学归纳法有时也叫逐次归纳法或者完全归纳法.前面两种叫法最早见于英国数学家德摩根1838年所写的《小百科全书》的引言中.因为在使用这个方法论证的时候,有一个形式上的归纳步骤,即确证命题对于第一项为真时,并由此归纳得出命题对于第n 项为真,“这个和通常的归纳程序有极其相似之处”.所以德摩根赋予它“逐次归纳法”的名称.也许是由于这种方法主要被用来数学中的证明的缘故.在《引言》的结尾处,德摩根又提出“数学归纳法”这个名称.比起逐次归纳法,人们似乎更喜欢数学归纳法,因为后者更能表明它论证的可靠性.此后,1887年,德国数学家戴德金又称此法为“完全归纳法”.有一个时期,这个叫法在德国很流行,后来由于逻辑学上完全归纳法专指“从列举对应的一切特殊的前提中,推出关于全部对象的一般结论的一种推理方法”,所以与“数学归纳法”不完全等价了.虽然数学归纳法和普通归纳法有着相似之处,但本质是完全不同的.归纳法常常是通过简单的枚举而没有碰到矛盾事实出发的.在这种方法里,它的前提只是已被考察过的部分对象的属性,而结论却是关于同类对象全体的.因此,由归纳所得出的结论并不一定是可靠的.比如,从1到40个自然数中,归纳出素数公式是“n 2-n+41”,这个公式对于n=1,2,…,40是正确的,可是当n=41时,得出的412确不是素数,看来归纳法不能用来作为严格的、科学的证明,仅能帮助我们从需要情况的考察中揭露并找出一般的规律性.然而,数学归纳法则不同,它的基础是递归推理原理,隐含着推向无穷的可能.由于数学归纳法包括着一串有穷多个三段论,每一个三段论自身都是一致的,所以从一定意义上说它又是古典演绎逻辑的一种发展了的形式,其严密性与演绎推理相同.庞加莱很彻底地指出了普通归纳法和数学归纳法的本质区别.他说:“我们必须承认,这(数学归纳法)和通常的归纳法程序有极其相似的不同,归纳法,当其应用于自然科学时,常是不确定的,因为它的基础是相信宇宙中有一种普通顺序,一种在我们之外的顺序.相反,数学归纳法,即递归证法,把自身视为一种必然,因为它不过是心灵本身的一种性质……”庞加莱十分推崇数学归纳法,称它“是数学中全部优点的根源”,“我们只能循着数学归纳法前进,只有它能交给我们新的东西.如果没有这种与自然(普通)归纳法不同但却同样极为有用的归纳法的帮助,演绎法是无法去创造出一种科学来的."应该说数学归纳法早就被明确提出并广泛应用了,它在数学中的地位已经完全确立.其实不然,仔细想来,数学归纳法的逻辑基础仍然是不明确的.数学归纳法是说“一个对1真的命题,如果它对任一数为真的,对其后继数也为真,则这个命题对于一切数都是真的.”人们不禁要问,何以断定每一个数都有后继数呢?这个问题不解决,自然也就谈不到数学归纳法的可靠性,所以归纳法的逻辑基础问题,与自然数理论密切联系.有趣的是,数的推展是由自然数向着有理数、实数、复数的方向进行的;然而,数的逻辑基础的奠定却循着一个相反的方向.自然数理论建立以后,与有理数数论一起建立起来的.1889年,意大利数学家皮亚诺发表《算数原理新方法》,他从不经定义的“集合”、“后继者”以及“属于”等概念出发,建立起关于自然数的五条公理,即:(1)1是自然数;(2)1不是任何自然数的后继者;(3)每一个自然数a 都是一个后继者;(4)若a 和b 的后继者相等,则a 和b 也相等;(5)(归纳公理)若有一个由自然数组成的集合S 含有1,又若当S 中含有一个数a 时,它一定也含有a 的后继者,则S 就含有全部自然数.这样,皮亚诺不仅以公理的形式保证了一个数的后继者的存在,而且为用数学归纳法推证的结果对全体自然数的有效性作了保证.皮亚诺把数学归纳法原理奠基在下述事实的基础上:在任一整数a 之后接着便有下一个a+1,从而从整数1出发,通过有限次这种步骤,便能达到选定的整数n.自然数理论的简历,标志着数学归纳法逻辑基础的奠定,也是严格意义下的数学归纳法的进一步明确.对于数学归纳法的深入研究,重在运用它去解决或证明一些问题,在社会生活和自然科学中有着极其广泛的应用.例如在中学数学中的许多重要定理或结论都可以用数学归纳法来证明.比如等差数列、等比数列的通项公式以及二项式定理.当然,我们在重视它的应用的同时,也不要忘记它的审美价值和哲学价值.数学是自然界中所有美的集合,也是哲学辩证思维和逻辑思维的重要组成部分.5.数学归纳法在应用中要注意的问题5.1在应用第一数学归纳法时,只有第2步而无第1步的证明可能导致错误.例11.设n =k ,等式2+4+…+2n =2n +n +1成立,即:2+4+…+2k =2k +k +1(1)两边同时加上2(1)k +,则有:2+4+…+2(1)k +=2(1)k ++(1)k ++1成立,即:如果n =k 时,等式(1)成立,则n =k +1时,等式也成立.由此得出结论:对于一切自然数n ,等式(1)是成立,这是错误的.因为n =1时,有2=3的错误. 5.2在应用第一数学归纳法时,只第1步骤而无第2步骤的归纳证明可能导致错误的结论.例12.在函数()f n =2n +n +17中,由(1)f =19,(2)f =23,(3)f =29,…,(15)f =257等都是质数,便说:“n 为任何自然数时()f n =2n +n +17的值都是质数”便是错误的.因为:(16)f =216+16+17=16(16+1)+17=17(16+1)=217=289就不是质数如果缺少了第2步,则不论对于多少个自然数来验证命题()T n 的正确性,都不能肯定命题对所有自然数都正确.例如:歌德巴赫猜想“对于不小于6的偶数都可以表示成两个质数之和”,虽然对大量偶数进行了具体验证,但因缺少第2步归纳递推,所以仍只停留在归纳的第1步,至今只是个猜想而已.第2步在证明(1)T n +为真时,一定要用到归纳假设,即要由()T n 为真,推出(1)T n +为真;或由“0()T n ,0(1)T n +,…,(1)T k -为真,推出()T k 为真”的实质蕴含真正体现出来,否则不是数学归纳法证明.5.3并不是凡与自然数相关的命题()T n 都要用数学归纳法来证明,而且也不是所有这类命题都能用数学归纳法给以证明的.结 束 语数学归纳法是一种常用的不可缺少的推理论证方法,第一数学归纳法与第二数学归纳法在数学的证明中经常用到,而反向归纳法在数学的证明中不是很常见.通过数学归纳法去证明与自然数有关的命题,可降低证明过程中的复杂性,使推理过程简单、清晰、也保证了推理的严谨性.正如华罗庚先生在《数学归纳法》一书中提到的:“数学归纳法整数体现了人的认识从有限到无限的飞跃.”参考文献[1]吉米多维奇,数学分析习题集题解[M],济南,山东科学技术出版社,1983.[2]王仁发,代数与解析几何[M],长春,东北师范大学出版社,1999年9月第一版.[3]北京大学数学系几何与代数教研室代数小组编,《高等代数》(第三版).高等教育出版社.[4]左孝凌等《离散数学》[M],上海科学技术文献出版社,1982.[5]卢开澄,卢明华,图论及其应用[M],北京,清华大学出版社1995.[6]KAWAHIGASHIY.Generalized Longo-Rehren subfactors and A-induction[J],Comm Math Phys,2002,26(2),269-287[7]苏淳《数学奥赛辅导丛书,漫谈数学归纳法》[M],中国科学技术大学出版社,2009.4Mathematical induction application in problem solvingAuthor: Guan guoce Supervisor: Zhang ShengAbstract Mathematical induction is a kind of common methods of proof.In the proof of many mathematics problems ,it has the function which cannot be replaced by other methods,it has broad prospects even in physics,biology and so on.This paper firstly state the theoretical basis of Mathematical induction and its form of expression,then mainly discuss the Mathematical induction in elementary mathematics,higher mathematics,discrete mathematics and the application of mathematical contest through some representatively typical examples.Finally give an account of the cognition to Mathematicalinduction in detail and the problem when using it.Keywords Mathematical induction sequence determinant discrete mathematics tree mathematical contest。
浅议数学归纳法的应用

浅议数学归纳法的应用
数学归纳法是一种思维方式,它是从一般原理出发,到达特殊情况的规律性思维模型。
它具有可数的、可经验的推导,它的作用深远,在科学研究,学术分析及决策等方面都得到认可和应用。
下面就以列表的形式总结数学归纳法的应用:
一、在数学研究中的应用
1.可以从定理的初始情况开始,利用数学归纳法来证明定理,推导出新的定理。
2.可以根据定义形式推导出结论,从而解决问题。
二、在科学研究中的应用
1.可以利用它来构建模型。
2.可以用它来分析和预测实际问题,例如物理或营养等问题。
三、在社会学分析中的应用
1.可以用来解释不规则的社会现象,以及危机的滋生以及发展。
2.可以用它来探索社会变化规律并发现分布规律。
四、在计算机技术领域中的应用
1.可以用数学归纳法来识别微机程序的性质,从而优化程序的性能。
2.可以用数学归纳法来识别编程错误,从而及早改正错误并保证程序的安全运行。
总之,数学归纳法是一种有效的思维方式,它的作用不仅仅是在数学领域,而且还在科学研究、学术分析、社会学分析和计算机技术领域中都有其实际的应用,从而为社会的进步和发展做出了贡献。
浅谈数学归纳法的应用数学毕业论文

I浅谈数学归纳法的应用摘要数学归纳法是一种非常重要的数学方法,它不仅对我们中学数学的学习有着很大的帮助,而且在高等数学的学习及研究中也是一种重要的方法,数学归纳法对公式的正确性检验中也有着很大的应用。
数学归纳法是将无限化为有限的桥梁,主要探讨关于自然数集的有关命题或者恒等式,数学归纳法在中学数学中的整除问题,恒等式证明,公理证明,排列和组合,几何领域等都有着广泛的应用,这里我们主要结合初中教材来详细列举数学归纳法在中学数学以及在高等数学中的应用。
要准确的运用数学归纳法,首先必须准确的理解其原理和意义以及熟练地掌握解题步骤,而在三个步骤中运用归纳假设尤为关键,运用归纳假设推出猜想最为重要。
最后我们在通过用数学归纳法证明一些数学问题的过程中,可以更加深刻理解和掌握“归纳——猜想——证明”这一探索发现的思维方法。
关键词:归纳法,数学归纳法,证明II the Application of Mathematical InductionABSTRACTMathematical induction is a very important mathematical method, it not only of the middle school mathematics learning has the very big help to us, but in the higher mathematics study and research is also a kind of important method, mathematical induction test the correctness of the formulas is also has a lot of applications. Mathematical induction is a bridge to infinite into a limited, mainly discusses about the relevant propositions or identities of natural number set mathematical induction method in middle school mathematics problem of divisible identities are proved, axiom proves that the permutation and combination, geometric field, has a wide range of applications, here we mainly combined with junior high school textbooks to detailed mathematical induction method in middle school mathematics and application in advanced mathematics. To use mathematical induction accurate, it must first be accurately understand its principle and the significance as well as expertly grasp the problem solving steps, and in three steps, it is important to use inductive hypothesis, using the induction hypothesis launch a guess that the most important. Finally we through use mathematical induction to prove some math problems in the process of, can be more profound understanding and mastering "induction - guess - proof" theIII discovery of thinking method.KEY WORDS: induction method, mathematical induction, proof目录1 绪论 (1)1.1 引言 (2)1.2 数学归纳法的来源 (2)2 数学归纳法的概述 (4)2.1 常用数学证明方法 (4)2.1.1 演绎法 (4)2.1.2 归纳法 (4)2.2 数学归纳法基本原理及其其它形式 (5)2.2.1 数学归纳法概念 (5)2.2.2 数学归纳法的基本原理 (5)2.2.3 数学归纳法的其它形式 (7)3 数学归纳法的步骤 (9)3.1 数学归纳法的步骤 (9)3.2 三个步骤缺一不可 (10)4 数学归纳法的典型应用 (13)4.1证明恒等式 (13)4.2 证明不等式 (15)4.3 证明整除问题 (18)IV4.4 证明几何问题 (19)4.5 行列式与矩阵的证明 (19)5运用数学归纳法时容易出现的错误分析 (22)5.1 忽略了归纳奠定基础的必要性 (23)5.3 在第二步证明中没有利用归纳假设 (24)6 应用数学归纳法时的一些技巧 (25)6.1 灵活选取“起点” (25)6.2 恰当选取“跨度” (26)6.3 选取合适的假设方式 (27)6.3.1 以“假设n k=时成立” (27)£时成立”代替“假设n k6.3.2 以“假设n k=+时成立”代替“假设n k=时成立”28n k=,17 数学归纳法的地位和作用 (30)致谢 (31)参考文献 (33)浅谈数学归纳法的应用11 绪论在高中数学教科书中,我们已经学习过数学归纳法,在高中阶段,学生主要是通过了解数学归纳法的证明三步骤来模仿证明其他表达式的成立,学生也往往满足于“k时命题成立,那么1+k时命题也成立”的证明方法。
数学归纳法在中学数学教学中的应用

浅谈数学归纳法在中学数学教学中的应用摘要:数学归纳法是一种十分重要的数学论证方法,常用于与正整数有关命题的证明。
本文是从数学归纳法的概念、正确的应用数学归纳法、灵活的应用数学归纳法来说明数学归纳法在中学数学教学中的应用。
关键字:数学归纳法;正确、灵活的应用引言数学归纳法是一种十分重要的证明方法,在数学学习中的应用十分广泛,而首先使用数学归纳法的是意大利数学家马奥罗修勒斯,他在1575年的著作《算术》中,用数学归纳法证明了前n 个正奇数之和是2n 。
正是有了这个方法,我们在中学的数学学习中,数学归纳法被广泛用来解决一些数列、不等式、整除等问题。
一、数学归纳法的概念在介绍什么是数学归纳法的之前,我们先来看看我国著名数学家华罗庚是这样评价数学归纳法的:“把数学归纳法学好了,对进一步学好高等数学有帮助,甚至对认识数学的性质,也会有所裨益。
[1]”由此可见数学归纳法是多么重要,那么究竟什么是数学归纳法呢?数学归纳法就是数学上证明与自然数N 有关的命题的一种特殊方法,它主要是从特殊到一般的思想,它使我们能够在一些个别事例的基础上,对某个普遍规律做出判断,作为证明某些与自然数有关的命题的一种推论方法,在解数学题中有着广泛的应用。
在高中数学中常用来证明等式成立和数列通项公式成立。
那么用数学归纳法论证的一般步骤是什么呢?第一步是证明命题0n n =时成立,这是递推的基础;第二步是假设在n k =时命题成立,再证明当1n k =+时命题也成立,这是无限递推下去的理论依据。
而数学归纳法所依据的数学公理是意大利数学家皮亚诺提出的皮亚诺自然数公理的的第五条(归纳公理):任意一个自然数集合N ,1属于N ;假定N 包含n ,N 也一定包含后继数n ',则N 包含所有自然数。
[2]归纳公理用准确的逻辑术语表达了自然数的性质,这是数学归纳原理的数学依据。
从1开始,一个一个地选取可以达到任意自然数。
这样一下子把整个自然数的无穷集合引入到论证中去,从而清楚地阐明了,为什么数学归纳法只用证两步,命题就被证明了。
浅谈数学归纳法

浅谈“数学归纳法”论文摘要:“观察—归纳—猜想—论证”的思想方法,既能发现问题,又能证明结论,还能激发学习兴趣,它是由揭露个别事物或某一对象的部分属性过渡到一般或整体的思维形式。
由于归纳推理的过程和人类认识进程的一致性,因而这种推理方法显得非常自然,容易被人接受,是认识数学真理的一个重要手段,其地位越来越重要,数学归纳法正是应用这一思想方法来证明某些与自然数n有关的数学命题的一种方法。
本文简单总结了一下它的基本依据和证明过程,以及它两个条件的内在联系,然后回顾了一下数学归纳法的各种其他形式,在原来的基础上拓宽了对数学归纳法的认识。
最后举例说明数学归纳法的应用,其中有代数、不等式方面的证明,也有几何方面的典型例子,从中可以窥见数学归纳法的强大功能。
正文:已知最早的使用数学归纳法的证明出现于Francesco Maurolico的Arithmeticorum libri duo(1575年)。
Maurolico利用递推关系巧妙的证明出证明了前n个奇数的总和是n^2,由此揭开了数学归纳法之谜。
最简单和常见的数学归纳法证明方法是证明当n属于所有正整数时一个表达式成立,这种方法是由下面两步组成:(1)递推的基础:证明当n=1时表达式成立。
(2)递推的依据:证明如果当n=m时成立,那么当n=m+1时同样成立。
这种方法的原理在于第一步证明起始值在表达式中是成立的,然后证明一个值到下一个值的证明过程是有效的。
如果这两步都被证明了,那么任何一个值的证明都可以被包含在重复不断进行的过程中。
或许想成多米诺效应更容易理解一些,如果你有一排很长的直立着的多米诺骨牌那么如果你可以确定:第一张骨牌将要倒下,只要某一个骨牌倒了,与之相邻的下一个骨牌也要倒,那么你就可以推断所有的的骨牌都将要倒。
这样就确定出一种递推关系,只要满足两个条件就会导致所有骨牌全都倒下:(1)第一块骨牌倒下;(2)任意两块相邻骨牌,只要前一块倒下,后一块必定倒下。
浅谈数学归纳法及其应用

浅谈数学归纳法及其应用学生姓名:XXX(XXX班)指导老师:XXX摘要:数学归纳法是数学中最基本也是最重要的证明方法之一,在数学各个分支里都有广泛应用,利用数学归纳法可以解决比较复杂的问题.本文从数学归纳法的整体结构出发,对数学归纳法的思想渊源、基本原理及常见形式进行了分析总结,介绍了数学归纳法在初等数学、高等数学、离散数学、概率论、图论等学科中的应用.关键词:数学归纳法;渊源;原理;表现形式;理论基础及其证明;应用On the Mathematical Induction and its ApplicationStudent: X XXInstructor: X XXAbstract:Mathematical induction is one way of the most basic and important mathematical proof, and has a wide application in several mathematics. Using the mathematical induction can solve the complicated problem. This paper begins from the overall structure of mathematical induction. Then mathematical induction on ideological origin, basic theory and common forms are analyzed and summarized. It is introduced by the application of mathematical induction in basic mathematics, discrete mathematics, probability theory, graph theory and other subjects.Key words: Mathematical induction;Origin;Theory;Manifestations;Theoretical foundation and its proof;Application目录1 数学归纳法的思想渊源 (1)2 数学归纳法的原理 (2)3 数学归纳法 (3)3.1 数学归纳法的具体表现形式 (3)3.2 两种归纳法之间的关系 (4)4 数学归纳法的理论基础及其证明 (4)4.1 第一数学归纳法的理论基础及其证明 (4)4.2 第二数学归纳法的理论基础及其证明 (5)5 数学归纳法在各门学科中的简单应用 (6)5.1 数学归纳法在初等数学中的应用 (6)5.2 数学归纳法在高等代数中的应用 (8)5.3 数学归纳法在离散数学方面的应用 (11)5.4 数学归纳法在高等数学中的应用 (12)5.5 数学归纳法在图论中的应用 (14)5.6 数学归纳法在概率论方面的应用 (14)6 结束语 (15)参考文献 (16)1 数学归纳法思想的渊源追根溯源数学归纳法可以在印度和古希腊时代的著作中找到丝缕痕迹,例如,印度婆什迦罗(Bashkiria 1114~约1185)的“循环方法”和欧几里得素数无限的证明中都可以找到这种踪迹.欧几里得《几何原本》第九卷命题20为:质数比任何指定数目都要多(注:质数也称为素数),即:素数无穷.欧几里得对这个命题的证法是经典的.他假定素数是有限的,不妨设这有限的n 个素数为n p p p ,,,21 .然后作自然数121,,,+n p p p 并证明还存在新的素数,从而得到矛盾.因为若所作的数是素数,则它比全部给出的n 个素数都要大,因此是一个新的素数,这与假设有n 个素数矛盾;又若它不是素数,它必能被一素数整除,但它被已知全部的n 个素数n p p p ,,,21 .除都有余数1,故整除121,,,+n p p p 的素数必定是这n 个素数以外的新的素数,从而又与假设有n 个素数的条件矛盾.欧几里得素数无穷命题即是说,素数的个数与自然数的个数一样多.上述证明可以这样“翻译”,首先,至少有一个素数存在,因为2就是素数,这一点在欧几里得的证明中没有指明;此外,上面欧几里得的证明表明,假如有n 个素数,那么就必定有1+n 个素数存在.也就是按现代数学归纳法的要求,证明了从n 到1+n 的递推关系,即完成了数学归纳法证明的关键性一步.但欧几里得没有使用任何明显的术语与现在的推理格式,因此,我们只能认为它蕴涵了现代数学归纳法的痕迹.现代形式的数学归纳法被很多人认为是法国数学家、物理学家和哲学家帕斯卡(B •Pascal,错误!未找到引用源。
数学归纳法在实际问题中的应用

数学归纳法在实际问题中的应用数学归纳法是一种重要的证明方法,它在解决实际问题中起着关键作用。
本文将探讨数学归纳法在实际问题中的应用,并通过具体案例来说明其思路和效果。
首先,让我们了解一下数学归纳法的基本原理。
数学归纳法是一种证明方法,用于证明一系列的命题。
它主要分为两个步骤:基本步骤和归纳步骤。
基本步骤要证明命题在某个初始情况下成立,而归纳步骤要证明如果某一情况下命题成立,那么在下一情况下它也成立。
通过这两个步骤的循环迭代,可以得出命题在所有情况下都成立的结论。
数学归纳法在实际问题中的应用非常广泛。
例如,在计算机科学中,我们经常需要证明某个算法在所有输入情况下都能得到正确的结果。
这时,可以使用数学归纳法来证明算法的正确性。
首先,我们可以证明算法在最简单的情况下,如输入为空时,能得到正确结果。
然后,我们假设算法在某一种情况下能得到正确结果,然后通过归纳步骤证明在下一种情况下也能得到正确结果。
通过这样的推理,我们可以得出算法在所有情况下都能得到正确结果的结论。
另一个实际问题中的应用是在数列或序列的求和问题中。
例如,考虑一个数列1, 2, 3, 4, ..., n,我们需要证明这个数列的和为n(n+1)/2。
使用数学归纳法,我们首先证明在最简单的情况下,当n=1时,数列的和为1。
然后,假设当n=k时,数列的和为k(k+1)/2,然后通过归纳步骤证明当n=k+1时,数列的和也为(k+1)(k+2)/2。
通过这样的推理,我们可以得出结论,对于任意正整数n,数列的和都等于n(n+1)/2。
在实际问题中使用数学归纳法时,我们需要合理选择基本步骤和归纳步骤,并确保它们能够覆盖所有情况。
我们还需要注意证明的严谨性,确保每一步的推理都是准确无误的。
总结起来,数学归纳法在实际问题中的应用非常广泛,它可以用于证明算法的正确性、数列求和等各种问题。
通过合理选择基本步骤和归纳步骤,并确保推理的准确性,我们可以在实际问题中有效地应用数学归纳法来解决各种复杂的问题。
浅谈数学归纳法在解题中的应用

数学归纳法是数学解题中一种重要的方法,它可以有效地推导出解决问题所需的结果。
它是通过观察某一系列的模式和规律,将总体规律推导出这一系列的总结,从而得出最终
的结论。
归纳法的最大特点是以前的结论会影响后续的推理,因此在解题的过程中,我们需要
一步一步深入地推导,逐步收集足够的信息,以此来检验我们的推理是否正确。
在实际的解题过程中,我们可以根据归纳法先将问题分解为有限个具体的问题,然后
根据它们的具体情况,从中推导出更宽泛的规律,最终得出结论。
例如,在解决等比数列
的问题时,我们可以先求出前几项的和,然后根据它们推导出等比数列的一般项和,从而
得出最终的结论。
另外,归纳法也可以用来证明某一定理的正确性,而不是只用来解决具体问题。
例如,我们可以先推导出一个定理的某些特殊情况,然后根据这些特殊情况来推导出这个定理的
一般情况,从而证明它的正确性。
总之,数学归纳法是数学解题中一种重要的方法,它可以有效地推导出解决问题所需
的结果,也可以用来证明某一定理的正确性。
只要在解题过程中认真地推理,就可以取得
好的效果。
数学归纳法在中学数学中的应用探讨

数学归纳法在中学数学中的应用探讨数学归纳法在中学数学中的应用
指推理法可以为知识复杂性建立系统性和有效性,数学归纳法作为一种关键的推理法,其在中学数学教学中可以起到举足轻重的作用。
数学归纳法在中学数学教学中,通常是以一些数学定理为主切入点,对它进行可能推广应用之前,首先使用此推理法对其进行分析验证,要求学生先把定理的个别情况验证通过,即把特殊情况用归纳法证明为已知的定理,然后以此作为准备,证明一般情况,实现一般性地理解和把握定理的所有情形,及其运用的实践活动,通过掌握其实践应用,进而感受到其前提定义,把握定理的思想。
此外,数学归纳法还可以帮助学生从具体例子中发现出其与反例把握归纳法的概念本质,引起其重视和记忆,并及时、定期地归纳(概括)出规律,在实践和科学的基础上,及时归纳(或总结)出重要的全局性知识,如定义、原理等,使学习过程变得更有效,使大家能够快速地掌握知识,增加理解与掌握能力。
最后,数学归纳法在中学数学中的应用极大地拓展了学生的思维,提高了相关思维能力,有效地帮助他们获得数学定理并把握数学知识,进而有效地锻炼其素质和启发精神。
高中数学中的数学归纳法在问题求解中的应用

高中数学中的数学归纳法在问题求解中的应用数学归纳法是一种重要的证明方法,它在高中数学中起到了至关重要的作用。
通过数学归纳法,我们可以解决一些复杂的问题,从而提高我们的数学思维能力。
本文将探讨高中数学中数学归纳法的应用,以及它对问题求解的帮助。
首先,我们来了解一下数学归纳法的基本原理。
数学归纳法是一种基于递推关系的证明方法。
它的基本思想是:首先证明当n=1时命题成立,然后假设当n=k时命题成立,再证明当n=k+1时命题也成立。
通过这种递推的方式,我们可以得出当n为任意正整数时命题都成立的结论。
在高中数学中,数学归纳法常常应用于数列和等式的证明。
例如,我们可以利用数学归纳法证明斐波那契数列的性质。
首先,我们证明当n=1时,斐波那契数列的第一项为1。
然后,假设当n=k时斐波那契数列的前k项满足定义,即第k-1项加上第k项等于第k+1项。
接下来,我们证明当n=k+1时,斐波那契数列的前k+1项也满足定义。
通过递推的方式,我们可以得出结论:斐波那契数列的每一项都是前两项之和。
这个例子展示了数学归纳法在数列问题中的应用。
除了数列问题,数学归纳法还可以用于等式的证明。
例如,我们可以利用数学归纳法证明等差数列的通项公式。
首先,我们证明当n=1时,等差数列的第一项为a。
然后,假设当n=k时等差数列的前k项满足通项公式,即第k项为a+(k-1)d。
接下来,我们证明当n=k+1时,等差数列的前k+1项也满足通项公式。
通过递推的方式,我们可以得出结论:等差数列的第n项为a+(n-1)d。
这个例子展示了数学归纳法在等式问题中的应用。
数学归纳法不仅在数列和等式的证明中有应用,还可以用于解决一些复杂的问题。
例如,我们可以利用数学归纳法证明2的n次方大于n。
首先,我们证明当n=1时,2的n次方大于n。
然后,假设当n=k时2的n次方大于n,即2的k次方大于k。
接下来,我们证明当n=k+1时,2的n次方大于n。
通过递推的方式,我们可以得出结论:对于任意正整数n,2的n次方都大于n。
谈谈数学归纳法 毕业论文

谈谈数学归纳法毕业论文数学归纳法是一种证明数学命题的常见方法,它通常用于证明关于自然数的命题。
本文将从数学归纳法的定义、应用原理、常见例题等方面进行阐述,旨在深入了解并掌握这一重要的数学工具。
一、数学归纳法的定义数学归纳法是由法国数学家Blaise Pascal于17世纪发明的一种证明方法。
它的基本思想是从一个已知的命题开始,利用数学归纳原理逐步推导出所有相似的命题的正确性。
具体的数学归纳法可以分为强归纳法和弱归纳法,这里我们先从弱归纳法的定义入手。
弱归纳法:设$P(n)$是关于自然数n的命题,如果$P(1)$成立,且对于任意正整数$k$,$P(k)$成立时$P(k+1)$也成立,则可以得出结论:对于任意自然数$n$,命题$P(n)$都成立。
弱归纳法主要考虑了$P(1)$成立的时候,能否通过任意的$k$将$P(n)$扩展到任意自然数$n$上去。
而强归纳法则更强一些,它关注的不仅是$k$,而是任意的$k' <k$范围内的所有$P(k')$是否满足,只有所有的$P(k')$都成立时才能推导出$P(k)$。
二、数学归纳法的应用原理数学归纳法是一种非常强大的证明方法,它的应用原理可以归纳如下:1. 证明基础部分:首先要证明归纳的基础部分即$P(1)$成立;2. 归纳假设:假设对于任意正整数$k$,都有$P(k)$成立;3. 归纳步骤:接下来证明当$k=n$时,$P(n+1)$也成立。
利用归纳假设,我们可以假设$P(n)$成立,则接下来考虑$P(n+1)$是否成立,如果成立则可以得出:对于任意自然数$n$,命题$P(n)$都成立。
三、数学归纳法的例题下面来看几个关于数学归纳法的例题,帮助大家更好地理解它的运用:1. 证明$1 + 2 + … + n = (1+n)n/2$。
(1)证明基础部分:$n=1$时,$1=(1+1)/2$成立;(2)归纳假设:假设对于任意正整数$k$,都有$1+2+…+k = (1+k)k/2$成立;(3)归纳步骤:现在考虑证明$1+2+…+k+(k+1) = (1+k+1)(k+1)/2$成立。
完整版浅谈数学归纳法在高考中应用

赣南师范学院2015 届本科生毕业论文1、数学概括法的理论基础数学概括法,人类天才的思想、奇妙的方法、雅致的工具,解决无穷的问题。
它表现的是利用有限解决无穷问题的思想,这一思想凝固了数学家们无穷的想象力和创建力,这无疑形成了数学证明中一道绚烂多彩的景色线。
它的奇妙让人耐人回味,这一思想的发现为以后数学的发睁开辟了道路,如用有限维空间取代无穷维空间(多项式迫近连续函数)用有限过程取代无穷过程(积分和无量级数用有限项和答题,导数用差分取代)。
1.1 数学概括法的发展历史自古以来,人们就会想到问题的推行,由特别到一般、由有限到无穷,可人类对无穷的掌握不顺利。
在对无量思虑的过程中,古希腊出现了很多悖论,如芝诺悖论,在数列中为了保证结论的正确,则一定考虑无穷。
还有生活中一些现象,如战火的传达,爆竹的燃放等,触动了人类的思想。
安提丰用圆周内接正多边形无量地迫近圆的方法解决化圆为方;刘徽、祖冲之用圆内接正多边形去无量地强迫圆,无量的问题层见迭出,以后古希腊欧几里得对命题“素数的个数是无量的”的证明,经过了有限去实现无穷,表现了数学概括法递推思想。
但要形成数学概括法中明确的递推,清楚的步骤确是一件不简单的事,作为自觉运用进行数学证明倒是近代的事。
伊本海塞姆( 10 世纪末)、凯拉吉( 11 世纪上叶)、伊本穆思依姆( 12 世纪末)、伊本班纳( 13 世纪末)等都使用了概括推理,这表示数学概括法使用较广泛,特别是凯拉吉利用数学概括法证明1323n3 n2 (n 1)24这是数学家对数学概括法的最早证明。
接着 , 法国数学家莱维 . 本. 热尔松 (13 世纪末 ) 用" 逐渐的无穷递进 " ,即概括推理证明相关整数命题和摆列组合命题。
他比伊斯兰数学家更清楚地表现数学概括法证明的基础,递进概括两个步骤。
到 16 世纪中叶,意大利数学家毛罗利科对与全体和全体自然数相关的命题的证明作了深入的观察在1575 年,毛罗利科证了然an 1an n2此中ak1 23k 1,2他利用了逐渐推理铸就了“递归推理”的思路,成为了较早找到数学概括中“递归推理”的数学家,为无穷的掌握供给了思想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈数学归纳法的应用数学归纳法是证明与自然数有关的命题的一种方法,应用广泛.在最近几年的高考试卷中体现的特别明显,以下通过几道高考试题来谈一谈数学归纳法的应用。
一、用数学归纳法证明整除问题用数学归纳法证明整除问题时,由到时,首先要从要证的式子中拼凑出假设成立的式子,然后证明剩余的式子也能被某式(数)整除,这是数学归纳法证明问题的一大技巧。
例1、是否存在正整数m ,使得f (n )=(2n +7)·3n +9对任意自然数n 都能被m 整除?若存在,求出最大的m 值,并证明你的结论;若不存在,请说明理由.证明:解:由f (n )=(2n +7)·3n +9,得f (1)=36, f (2)=3×36, f (3)=10×36, f (4)=34×36,由此猜想m =36.下面用数学归纳法证明:(1)当n =1时,显然成立.(2)假设n =k 时, f (k )能被36整除,即f (k )=(2k +7)·3k +9能被36整除;当n =k +1时,[2(k +1)+7]·3k +1+9=3[(2k +7)·3k +9]+18(3k --1-1),由于3k -1-1是2的倍数,故18(3k -1-1)能被36整除.这就是说,当n =k +1时,f (n )也能被36整除.由(1)(2)可知对一切正整数n 都有f (n )=(2n +7)·3n +9能被36整除,m 的最大值为36.二、用数学归纳法证明恒等式问题对于证明恒等的问题,在由证等式也成立时,应及时把结论和推导过程对比,也就是我们通常所说的两边凑的方法,以减小计算的复杂程度,从而发现所要证明的式子,使问题的证明有目的性.例2、是否存在常数c b a ,,,使得等式)(12)1()1(32212222c bn an n n n n +++=+•++•+•对一切自然数n 成立?并证明你的结论.解:假设存在c b a ,,,使得题设的等式成立,则当时3,2,1=n 也成立,代入得⎪⎪⎪⎩⎪⎪⎪⎨⎧++=++=++=c b a c b a c b a 3970)24(2122)(614 解得10,11,3===c b a ,于是对3,2,1=n ,下面等式成立:)10113(12)1()1(32212222+++=+•++•+•n n n n n n 令222)1(3221+•++•+•=n n S n假设k n =时上式成立,即)10113(12)1(2+++=k k k k S k 那么21)2)(1(+++=+k k S S k k 22)2)(1()10113(12)1(++++++=k k k k k k2)2)(1()53)(2(12)1(++++++=k k k k k k )101253(12)2)(1(2+++++=k k k k k ]10)1(11)1(3[12)2)(1(2++++++=k k k k 这就是说,等式当1+=k n 时也成立.综上所述,当10,11,3===c b a 时,题设的等式对一切自然数n 都成立. 三、用数学归纳法证明不等式问题用数学归纳法证明一些与n 有关的不等式时,推导“n =k +1”时成立,有时要进行一些简单的放缩,有时还要用到一些其他的证明不等式的方法,如比较法、综合法、分析法、反证法等等.例3.已知函数).1(13)(-≠++=x x x x f 设数列n a {}满足)(,111n n a f a a ==+,数列n b {}满足).(|,3|*21N n b b b S a b n n n n ∈+++=-=(Ⅰ)用数学归纳法证明12)13(--≤n n n b ; (Ⅱ)证明.332<n S 证明:解:(Ⅰ)证明:当.1121)(,0≥++=≥x x f x 时 因为a 1=1,所以*).(1N n a n ∈≥下面用数学归纳法证明不等式.2)13(1--≤n nn b (1)当n=1时,b 1=13-,不等式成立,(2)假设当n=k 时,不等式成立,即.2)13(1--≤k kk b 那么 kk k k a a a b +--=-=+-1|3|)13(|3|11.2)13(2131k k k b +-≤-≤ 所以,当n=k+1时,不等也成立。
根据(1)和(2),可知不等式对任意n ∈N*都成立。
(Ⅱ)证明:由(Ⅰ)知, .2)13(1--≤n nn b 所以 12212)13(2)13()13(--++-+-≤+++=n nn n b b b S2131)213(1)13(----⋅-=n .33221311)13(=--⋅-< 故对任意.332,<∈*n S N n 例4.已知数列{bn }是等差数列,b1=1,b1+b2+…+b10=100.(1)求数列{bn }的通项公式bn ;(2)设数列{a n }的通项a n =lg (1+nb 1),记S n 为{a n }的前n 项和,试比较S n 与 21lg bn +1的大小,并证明你的结论. 解:(1)容易得bn =2n -1.(2)由bn =2n -1,知S n =lg (1+1)+1g (1+31)+…+lg (1+121-n ) =lg (1+1)(1+31)·…·(1+121-n ). 又211g b n +1=1g 12+n , 因此要比较S n 与211g b n +1的大小,可先比较(1+1)(1+31)·…·(1+121-n )与12+n 的大小. 取n =1,2,3时可以发现:前者大于后者,由此推测 (1+1)(1+31)· …· (1+121-n )>12+n . ① 下面用数学归纳法证明上面猜想:当n =1时,不等式①成立.假设n =k 时,不等式①成立,即 (1+1)(1+31)·…·(1+121-k )>12+k . 那么n =k +1时,(1+1)(1+31)·…·(1+121-k )(1+121+k ) >12+k (1+121+k )=1212)1(2+++k k k . 又[1212)1(2+++k k k ]2-(32+k )2=121+k >0, ∴1212)1(2+++k k k >32+k =.1)1(2++k ∴当n =k +1时①成立.综上所述,n ∈N*时①成立.由函数单调性可判定S n >211g b n +1. 四、用数学归纳法解决某些与正整数有关的探索性问题由有限个特殊事例进行归纳、猜想、,从而得出一般性的结论,然后加以证明是科学研究的重要思想方法.在研究与正整数有关的数学命题中,此思想方法尤其重要.例5、已知y =f (x )满足f (n -1)=f (n )-lg a n -1(n ≥2,n ∈N )且f (1)=-lg a ,是否存在实数α、β使f (n )=(αn 2+βn -1)lg a 对任何n ∈N *都成立,证明你的结论解:∵f (n )=f (n -1)+lg a n -1,令n =2,则f (2)=f (1)+f (a )=-lg a +lg a =0 又f (1)=-lg a ,∴⎩⎨⎧=+=+.1420αββα∴⎪⎪⎩⎪⎪⎨⎧-==.21,21βα∴f (n )=(21n 2-21n -1)lg a 证明:(1)当n =1时,显然成立(2)假设n =k 时成立,即f (k )=(21k 2-21k -1)lg a , 则n =k +1时,f (k +1)=f (k )+lg a k =f (k )+k lg a =(21k 2-21k -1+k )lg a =[21(k +1)2-21(k +1)-1]lg a ∴当n =k +1时,等式成立 综合(1)(2)可知,存在实数α、β且α=21,β=-21,使f (n )=(αn 2+βn -1)lg a 对任意n ∈N *都成立 点评:本题是探索性问题.它通过观察――归纳――猜想――证明这一完整的过程去探索和发现问题,并证明所得出的结论的正确性,这是非常重要的一种思维能力.六、数学归纳法与其它知识点的交汇数学归纳法在高考试题中常与数列、平面几何、解析几何等知识相结合来考查,对于此类问题解决的关键往往在于抓住对问题的所划分标准,例如在平面几何中要抓住线段、平面、空间的个数与交点、交线间的关系等.例6、平面上有n 个圆,每两个圆交于两点,每三个圆不过同一点,求证这n 个圆分平面为n 2-n +2个部分.证明:(1)当n =1时,n 2-n +2=1-1+2=2,而一个圆把平面分成两部分,所以n =1时命题成立.(2)设当n =k 时,命题成立,即k 个圆分平面为k 2-k +2个部分,则n =k +1时,第k +1个圆与前k 个圆有2k 个交点,这2k 个交点把第k +1个圆分成2k 段,每一段把原来的所在平面一分为二,故共增加了2k 个平面块,共有k 2-k +2+2k =(k +1)2-(k +1)+2个部分.∴当n =k +1时,命题也成立.由(1)(2)可知,这个圆把平面分成n 2-n +2个部分.点评:关于这类几何问题,关键在于分析k 与k +1的差异,k 到k +1的变化情况,然后借助于图形的直观性,建立k 与k +1的递推关系.例7.如下图,设P 1,P 2,P 3,…,P n ,…是曲线y =x 上的点列,Q 1,Q 2,Q 3, …,Q n ,…是x 轴正半轴上的点列,且△OQ 1P 1,△Q 1Q 2P 2,…,△Q n -1Q n P n ,…都是正三角形,设它们的边长为a 1,a 2,…,a n ,…,求证:a 1+a 2+…+a n =31n (n +1).x yO P 1Q 1P 2Q 2P 3Q 3证明:(1)当n =1时,点P 1是直线y =3x 与曲线y =x 的交点,∴可求出P 1(31,33). ∴a 1=|OP 1|=32.而31×1×2=32,命题成立. (2)假设n =k (k ∈N *)时命题成立,即a 1+a 2+…+a k =31k (k +1),则点Q k 的坐标为(31k (k +1),0), ∴直线Q k P k +1的方程为y =3[x -31k (k +1)].代入y =x ,解得P k +1点的坐标为)).1(33,3)1((2++k k ∴a k +1=|Q k P k +1|=33(k +1)·32=32(k +1). ∴a 1+a 2+…+a k +a k +1=31k (k +1)+32(k +1)=31(k +1)(k +2). ∴当n =k +1时,命题成立.由(1)(2)可知,命题对所有正整数都成立.评述:本题的关键是求出P k +1的纵坐标,再根据正三角形高与边的关系求出|Q k P k +1|.。