工程力学公式微积分公式高等数学公式汇总
大学高等数学 5-3微积分基本公式
![大学高等数学 5-3微积分基本公式](https://img.taocdn.com/s3/m/009f23ed102de2bd960588ae.png)
[a , b]上的一个原函数,则 上的一个原函数,
∫
b
a
f ( x)dx = F (b) − F (a) = F ( x) a
b
.
另证 ∵ 已知 F ( x ) 是 f ( x ) 的一个原函数, 的一个原函数,
又∵ Φ ( x ) =
b
例1 解
求 ∫ ( 2 cos x + sin x − 1)dx .
0
2 原式 = [2 sin x − cos x − x ]0 = 3 − .
π 2
π
π 2
1 1 x (20) ∫ 2 dx = arctan + C 2 a a a +x b b 1 1 x dx = arctan 例 ∫ 2 : 2 aa +x a aa
a
x
积分上限函数
积分上限函数的性质
定积分存在的必要条件:f ( x)在[a, b]有界。
证明:设 f ( x)在[a, b]上无界,∀M M .
对任一分割,f (ξ )∆xi可任意大,即
∑ f (ξ )∆x λ
→0 i
i
→ ∞, 从而定积分不存在。
∫a
x
f ( t )dt 也是 f ( x ) 的一个原函数 的一个原函数,
f ( x )∫0 ( x − t ) f ( t )dt
x
(∫
x
0
f ( t )dt
)
2
,
∵ f ( x ) > 0, ( x > 0 ) ∵ ( x − t ) f ( t ) > 0,
x
高等数学常用微积分公式
![高等数学常用微积分公式](https://img.taocdn.com/s3/m/82d7b848b42acfc789eb172ded630b1c59ee9b09.png)
高等数学常用微积分公式一、极限1.无穷大与无穷小:当x→∞时,若极限值L=0,则称函数f(x)是无穷小。
常见无穷小有:x→0时的无穷小o(x)、无穷次可导的无穷小O(x^n);当x→∞时,若极限值L≠0或不存在,则称函数f(x)是无穷大;2.函数极限:若函数f(x)当x→a时的极限存在稳定的常数L,则称L为f(x)当x→a时的极限,记作:lim(x→a) f(x) = L;3.等价无穷小:若 f(x) 和 g(x) 都是x→a 时的无穷小,并且lim(x→a)(f(x)/g(x))=1,则称 f(x) 和 g(x) 是x→a 时的等价无穷小。
二、导数1.导数的定义:若函数f(x)在点x处的函数值可近似表示为f(x+Δx)≈f(x)+f'(x)Δx,其中f'(x)为f(x)在点x处的导数,则称f'(x)是函数f(x)在点x处的导数。
2.常见函数的导数:(1)和差法则:(u±v)'=u'±v';(2)乘法法则:(u*v)'=u'*v+u*v';(3)除法法则:(u/v)'=(u'*v-u*v')/v^2,其中v≠0;(4) 链式法则:若 y=f(u),u=g(x) ,则 y=f(g(x)) 的导数为dy/dx = f'(u)*g'(x)。
3.高阶导数:函数f(x)的导数f'(x)的导数称为f(x)的二阶导数,记为f''(x)。
可以依此类推,得到函数f(x)的n阶导数f^(n)(x)。
三、微分1.微分的定义:函数 f(x) 在点 x 处的微分记为 dx,根据导数的定义,有 df(x) = f'(x)dx。
2.微分的性质:(1)常数微分:d(c)=0,其中c为常数;(2) 取单项微分:d(x^n) = nx^(n-1)dx,其中 n 为实数,x 为变量;(3) 和差微分:d(u ± v) = du ± dv;(4) 乘法微分:d(uv) = u*dv + v*du;(5) 除法微分:d(u/v) = (v*du - u*dv)/v^2,其中v ≠ 0;(6) 复合函数微分:若 y=f(u),u=g(x),则 dy = f'(u)du =f'(g(x))g'(x)dx。
工程力学公式整理
![工程力学公式整理](https://img.taocdn.com/s3/m/9cd469c2ed3a87c24028915f804d2b160a4e8671.png)
工程力学公式整理工程力学(Engineering Mechanics)是一门研究力学原理在工程中的应用的学科。
它主要研究物体在受力作用下的运动和变形规律。
在工程学中,力学公式是进行分析和计算的基础。
下面是一些常见的工程力学公式整理。
1.力的合成与分解公式:力的合成公式:F = √(F₁² + F₂² + 2F₁F₂cosθ)力的分解公式:F₁ = Fcosθ, F₂ = Fsinθ其中,F为施于物体的合力,F₁、F₂为分解后的力,θ为施力与横坐标方向的夹角。
2.矩形截面惯性矩和抗弯应力公式:惯性矩公式:I=(b*h³)/12抗弯应力公式:σ=(M*y)/I其中,b和h分别为矩形截面的宽度和高度,I为截面的惯性矩,M 为弯矩,y为截面内其中一点的纵坐标。
3.应力和变形的关系公式:胡克定律公式:σ=Ee弹性模量公式:E=(F/A)/(ΔL/L₀)其中,σ为应力,E为弹性模量,F为受力,A为受力面积,ΔL为长度变化量,L₀为初始长度。
4.摩擦力公式:滑动摩擦力公式:F=μN滚动摩擦力公式:F=RμN其中,F为摩擦力,μ为摩擦系数,N为垂直于接触面的力,R为滚动半径。
5.动量和能量守恒公式:动量守恒公式:m₁v₁+m₂v₂=m₁v₁'+m₂v₂'动能公式:K = (1/2)mv²其中,m为物体的质量,v为物体的速度,v'为受撞物体的速度。
6.应力和应变的关系公式:杨氏模量公式:E=(σ/ε)横向收缩率公式:μ=-(ε₁/ε₂)泊松比公式:μ=-(ε₁/ε₂)其中,E为杨氏模量,σ为应力,ε为应变,μ为泊松比,ε₁为纵向应变,ε₂为横向应变。
这些力学公式是工程力学中常用的基本公式,用于解决各种工程问题。
通过运用这些公式,我们可以计算结构的受力情况、变形情况,进行力学分析和设计,保证工程的稳定性和安全性。
当然,工程力学的应用还远不止于此,还包括静力学、动力学、流体力学等等。
微积分基本公式16个
![微积分基本公式16个](https://img.taocdn.com/s3/m/f1a0f05b00f69e3143323968011ca300a6c3f680.png)
微积分基本公式16个1. 微分:微分是数学中最重要的概念之一,它指的是在一定时间内几何形状的变化率。
可以理解为小步长地移动拟合函数,接近曲线本身。
可以表示为\frac{dy}{dx} 或f'(x) 。
2. 泰勒公式:泰勒公式是一个重要的微积分工具,它可以在某一特定点附近对任意连续函数进行展开,也就是说任意设定一个位置x0,可以根据它附近的数值向量求出函数在该位置的平均值。
可以用公式表示为:f(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)(x-x_0)^2}{2!} + \frac{f^{n}(x_0)(x-x_0)^n}{n!} + ...3. 高斯积分公式:高斯积分是指将函数抽象为一次多项式曲线,采用指数型或线性型积分方法求解积分。
它可以用公式f(x)=\sum_{i=0}^n a_i x^i 表示,其中a_i为积分下限、上限和积分点x_i处函数值相乘所得到的系数。
4. 黎曼积分:黎曼积分是一种常用的积分方法,它通过对连续函数求和,来确定函数在给定区间上的定积分。
可以用公式表示为:\int_{a}^{b}f(x)dx=\sum_{i=1}^{n}f(x_i)\Delta x_i ,其中n为梯形的节点数。
5. Stokes公式:Stokes公式是一种将多变量函数投影到多方向进行积分的方法,可以用公式表示为:\int_{\Omega}\nabla\times{\bf F} dA =\int_{\partial\Omega}{\bf F}\cdot{\bf n}dS,其中\nabla\times{\bf F} 为梯度矢量场,\partial\Omega 为边界,{\bfn}dS 为单位向量与边界面积的乘积。
6. Γ函数:Γ函数是一种重要的数学函数,通常用来表示非负整数的排列组合,也可以表示实数的阶乘,可以用公式表示为:\Gamma(x)=\int_0^{\infty}t^{x-1}e^{-t}dt7. 方阵的行列式:方阵的行列式是指一个n阶矩阵的行列式,可以用公式表示为:D= |a_{i,j}| = \begin{vmatrix} a_{1,1} & a_{1,2} & ... & a_{1,n} \\ a_{2,1} & a_{2,2} & ... & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & ... & a_{n,n} \end{vmatrix} ,其中a_{i,j} 为矩阵中的元素。
高数微积分公式大全
![高数微积分公式大全](https://img.taocdn.com/s3/m/24845a4bcf84b9d528ea7a98.png)
∫ duv = uv = ∫ udv + ∫ vdu →∫ udv = uv - ∫ vdu cos2θ-sin2θ=cos2θ cos2θ+ sin2θ=1 cosh2θ-sinh2θ=1 cosh2θ+sinh2θ=cosh2θ
sin 3θ=3sinθ-4sin3θ cos3θ=4cos3θ-3cosθ
x
sin α + sin β = 2 sin ½(α+β) cos ½(α-β) sin α - sin β = 2 cos ½(α+β) sin ½(α-β) cos α + cos β = 2 cos ½(α+β) cos ½(α-β) cos α - cos β = -2 sin ½(α+β) sin ½(α-β) tan (α±β)= tan α ± tan β ∓ cot α cot β , cot (α±β)= ∓ tan α tan β cot α ± cot β
2
∞
0
∫
∞
0
1 (ln ) x-1 dt t
(1+x)r =1+rx+
π 1 r ( r − 1) 2 r ( r − 1)( r − 2) 3 x+ x +… -1<x<1 β(m, n) = ∫ x m-1(1-x)n-1 dx=2 ∫ 2 sin 2m-1x cos2n-1x dx 0 0 2! 3!
1 + x2 x 1 )=ln( + ) |x| >0 x2 a x duv = udv + vdu csch-1 (
∫ tanh x dx = ln | cosh x |+ C coth x = -csch x ∫ coth x dx = ln | sinh x | + C sech x = -sech x tanh x ∫ sech x dx = -2tan-1 (e-x) + C csch x = -csch x coth x 1 + e− x ∫ csch x dx = 2 ln | |+C 1 − e −2 x x 1 Dx sinh-1( )= ∫ sinh-1 x dx = x sinh-1 x- 1 + x 2 + C 2 2 a a +x x 1 cosh-1( )= ∫ cosh-1 x dx = x cosh-1 x- x 2 − 1 + C 2 2 a x −a x ±a tanh-1( )= 2 a a − x2
工程力学公式总结
![工程力学公式总结](https://img.taocdn.com/s3/m/15f70d5fcbaedd3383c4bb4cf7ec4afe04a1b1fe.png)
工程力学公式总结工程力学是一门研究力的作用和分析物体行为的学科。
在工程领域中,掌握力学公式是非常重要的,它能够帮助工程师们预测和解决各种问题。
本文将对一些常用的工程力学公式进行总结。
I. 静力学公式1. 牛顿第一定律:物体的速度保持恒定,除非受到外力的作用。
这个公式可以用来解释一些静力学问题,比如一个静止的物体如果没有受到外力的作用,将保持静止。
2. 牛顿第二定律:物体的加速度与作用力成正比,与物体质量成反比。
F = ma这个公式是力学中最重要的公式之一,能够解释物体运动的原因。
它表明,当作用力增加时,物体的加速度也会增加;而物体的质量越大,加速度越小。
3. 牛顿第三定律:对于每一个作用力,都存在一个等大、方向相反的反作用力。
这个公式可以解释为什么两个物体之间的力是相互作用的。
例如,当一个物体推另一个物体时,另一个物体也会推回来。
II. 动力学公式1. 动量定理:物体所受的总冲量等于物体的动量变化率。
FΔt = Δmv这个公式可以解释为什么用力撞击物体会改变物体的速度。
它表明,当物体受到一个力的作用时,物体的动量会发生变化。
2. 动能定理:物体的动能变化等于物体所受的净外力沿位移方向所做的功。
ΔKE = W这个公式可以解释为什么物体受到加速度时会增加它的动能。
它表示,当物体受到外力的作用并移动时,物体的动能将发生变化。
III. 应力与变形公式1. 应力应变关系:应力与应变成正比。
σ = Eε这个公式描述了材料受到应力时的变形情况。
E是材料的弹性模量,σ是应力,ε是应变。
2. 杨氏模量:刚度的度量。
E = σ/ε这个公式描述了材料在受到应力时的应变情况。
杨氏模量越大,材料越坚硬。
IV. 力矩与力的关系1. 力矩公式:力矩等于力与力臂的乘积。
M = Fd这个公式用来计算物体受到力的转动效应。
力矩等于力乘以力臂的长度。
2. 力的平衡公式:力的矢量和为零。
ΣF = 0这个公式用来解决物体处于平衡状态下的力的平衡问题。
高等数学中所涉及到的微积分公式汇总
![高等数学中所涉及到的微积分公式汇总](https://img.taocdn.com/s3/m/a1b83e652e60ddccda38376baf1ffc4fff47e27e.png)
高等数学中所涉及到的微积分公式汇总微积分是高等数学中的一门重要学科,涉及到很多重要的公式和定理。
下面是一些微积分中常用的公式的汇总:1.导数公式:- 函数f(x)在点x处的导数:f'(x) = lim (f(x+h)-f(x))/h,其中h -> 0- 常见函数的导数公式:常数函数导数为0,幂函数导数为nx^(n-1),三角函数的导数等-乘法法则:(f*g)'(x)=f'(x)*g(x)+f(x)*g'(x)-商法则:(f/g)'(x)=(f'(x)g(x)-f(x)g'(x))/(g(x))^22.积分公式:- 不定积分和定积分的基本定理:若F'(x) = f(x),则∫f(x) dx = F(x) + C- 基本不定积分:∫x^n dx = (1/n+1)*x^(n+1) + C (其中n不等于-1)- 定积分的性质:∫(a to b) f(x) dx = -∫(b to a) f(x) dx,∫(a to b) [f(x) ± g(x)] dx = ∫(a to b) f(x) dx ± ∫(a to b)g(x) dx3.微分学的基本定理:- 导数的基本定理:如果F(x)是f(x)的一个原函数,那么∫(a to b) f(x) dx = F(b) - F(a)- 牛顿-莱布尼茨公式:若F(x)是f(x)的一个原函数,那么∫(a tob) f(x) dx = F(x),_(a to b) = F(b) - F(a)4.极限定理:- 极限的四则运算定理:设lim (x -> a) f(x) = L,lim (x -> a) g(x) = M,则lim (x -> a) [f(x)±g(x)] = L±M,lim (x -> a)[f(x)*g(x)] = L*M,lim (x -> a) [f(x)/g(x)] = L/M (其中M不等于0)- L'Hospital法则:设lim (x -> a) f(x) = 0,lim (x -> a) g(x) = 0,并且lim (x -> a) f'(x)/g'(x) 存在,则lim (x -> a) f(x)/g(x) = lim (x -> a) f'(x)/g'(x)- 夹逼定理:如果数列{a_n}、{b_n}、{c_n}满足a_n <= b_n <=c_n,并且lim (n -> ∞) a_n = lim (n -> ∞) c_n = L,则lim (n -> ∞) b_n = L5.泰勒级数:-函数f(x)的泰勒级数展开:f(x)=f(a)+f'(a)(x-a)+f''(a)*(x-a)^2/2!+...+f^n(a)*(x-a)^n/n!+...,其中f^n(a)表示函数f(x)在点a处的n阶导数以上仅是微积分中涉及到的一些公式,实际上微积分的公式和定理非常丰富,还有更多的公式可以在相关的教材和文献中找到。
微积分公式-工程数学(非常实用)
![微积分公式-工程数学(非常实用)](https://img.taocdn.com/s3/m/4eee160979563c1ec5da715c.png)
x
2 1 x
六、高阶导数的运算法则 (1) u x v x (3) u ax b
n n
u x
n
v x
n
(2) cu x (4) u x v x
f cot x csc
2
xdx f tan x d tan x xdx f cot x d cot x
u tan x
u cot x
2
f arctan x 1 x f arcsin x
1
1
2
dx f arc ta n x d arc ta n x dx f arcsin x d arcsin x
考无忧论坛-----考霸整理版
有关高等数学计算过程中所涉及到的数学公式(集锦)
a0 b n m 0 n n 1 a x a1 x an 一、 lim 0 m 0 (系数不为 0 的情况) nm x b x b x m 1 b 0 1 m n m 1 sin x (2)lim 1 x x e (3)lim n a (a o) 1 二、 重要公式 (1)lim 1 n x 0 0 x x
九、微分运算法则 ⑴ d u v du dv ⑵ d cu cdu
考无忧论坛-----考霸整理版
⑶ d uv vdu udv 十、基本积分公式 ⑴ kdx kx c
⑷d
u vdu udv v2 v
⑵ x dx
u ex
x
f a a dx ln a f a d a
高数微积分基本公式大全
![高数微积分基本公式大全](https://img.taocdn.com/s3/m/bafbef0902020740be1e9be7.png)
高等数学微积分公式大全一、基本导数公式⑴()0c ′=⑵1x xµµµ−=⑶()sin cos x x′=⑷()cos sin x x ′=−⑸()2tan sec x x ′=⑹()2cot csc x x′=−⑺()sec sec tan x x x ′=⋅⑻()csc csc cot x x x′=−⋅⑼()xxe e ′=⑽()ln xxa aa′=⑾()1ln x x′=⑿()1log lnxax a′=⒀()arcsin x ′=⒁()arccos x ′=⒂()21arctan 1x x ′=+⒃()21arccot 1x x ′=−+⒄()1x ′=⒅′=二、导数的四则运算法则()u v u v ′′′±=±()uv u v uv ′′′=+2u u v uv v v ′′′−⎛⎞=⎜⎟⎝⎠三、微分公式与微分运算法则⑴()0d c =⑵()1d xxdxµµµ−=⑶()sin cos d x xdx=⑷()cos sin d x xdx =−⑸()2tan sec d x xdx=⑹()2cot csc d x xdx=−⑺()sec sec tan d x x xdx =⋅⑻()csc csc cot d x x xdx=−⋅⑼()xxd ee dx=⑽()ln xxd aaadx=⑾()1ln d x dx x=⑿()1log ln xad dx x a=⒀()arcsin d x =⒁()arccos d x =⒂()21arctan 1d x dx x=+⒃()21arccot 1d x dx x=−+四、微分运算法则⑴()d u v du dv ±=±⑵()d cu cdu =⑶()d uv vdu udv =+⑷2u vdu udv d v v −⎛⎞=⎜⎟⎝⎠五、基本积分公式⑴kdx kx c=+∫⑵11x x dx cµµµ+=++∫⑶ln dxx cx =+∫⑷ln xxa a dx ca=+∫⑸x xe dx e c=+∫⑹cos sin xdx x c=+∫⑺sin cos xdx x c =−+∫⑻221sec tan cos dx xdx x c x ==+∫∫⑼221csc cot sin xdx x cx ==−+∫∫⑽21arctan 1dx x c x=++∫⑾arcsin dx x c=+六、补充积分公式tan ln cos xdx x c =−+∫cot ln sin xdx x c =+∫sec ln sec tan xdx x x c=++∫csc ln csc cot xdx x x c=−+∫2211arctan xdx c a x a a=++∫2211ln 2x adx c x a a x a−=+−+∫arcsin xca =+ln x c=七、下列常用凑微分公式积分型换元公式()()()1f ax b dx f ax b d ax b a +=++∫∫u ax b=+()()()11f x x dx f x d x µµµµµ−=∫∫u x µ=()()()1ln ln ln f x dx f x d x x⋅=∫∫ln u x =()()()x x x x f e e dx f e d e ⋅=∫∫xu e =()()()1ln x x x xf a a dx f a d a a ⋅=∫∫x u a =()()()sin cos sin sin f x xdx f x d x ⋅=∫∫sin u x=()()()cos sin cos cos f x xdx f x d x ⋅=−∫∫cos u x=()()()2tan sec tan tan f x xdx f x d x ⋅=∫∫tan u x =()()()2cot csc cot cot f x xdx f x d x ⋅=∫∫cot u x=()()()21arctan arc n arc n 1f x dx f ta x d ta x x ⋅=+∫∫arctan u x=八、分部积分法公式⑴形如n ax x e dx ∫,令n u x =,axdv e dx=形如sin n x xdx ∫令nu x =,sin dv xdx =形如cos n x xdx ∫令nu x =,cos dv xdx =⑵形如arctan n x xdx ∫,令arctan u x =,ndv x dx =形如ln n x xdx ∫,令ln u x =,ndv x dx=⑶形如sin ax e xdx∫,cos ax e xdx ∫令,sin ,cos ax u e x x =均可。
大学微积分公式大全整理
![大学微积分公式大全整理](https://img.taocdn.com/s3/m/6f3dd16bbe23482fb5da4c13.png)
有关高等数学计算过程中所涉及到的数学公式(集锦)一、101101lim0n nnm mxman mba x a x an mb x b x bn m--→∞⎧=⎪⎪+++⎪=<⎨+++⎪∞>⎪⎪⎩(系数不为0的情况)二、重要公式(1)sinlim1xxx→=(2)()1lim1xxx e→+=(3))1na o>=(4)1n=(5)limarctan2xxπ→∞=(6)lim tan2xarc xπ→-∞=-(7)limarccot0xx→∞=(8)lim arccotxxπ→-∞=(9)lim0xxe→-∞=(10)lim xxe→+∞=∞(11)lim1xxx+→=三、下列常用等价无穷小关系(0x→)sin x x tan x x arcsin x x arctan x x211cos2x x-()ln 1x x+1xe x-1lnxa x a-()11x x∂+-∂四、导数的四则运算法则()u v u v'''±=±()uv u v uv'''=+2u u v uvv v'''-⎛⎫=⎪⎝⎭五、基本导数公式⑴()0c'=⑵1x xμμμ-=⑶()sin cosx x'=⑷()cos sinx x'=-⑸()2tan secx x'=⑹()2cot cscx x'=-⑺()sec sec tanx x x'=⋅⑻()csc csc cotx x x'=-⋅⑼()x xe e'=⑽()lnx xa a a'=⑾()1ln xx'=⑿()1loglnxa x a'=⒀()arcsin x'=⒁()arccos x'=⒂()21arctan1xx'=+⒃()21arccot1xx'=-+⒄()1x'=⒅'=六、高阶导数的运算法则1)()()()()()()()n n nu x v x u x v x±=±⎡⎤⎣⎦(2)()()()()n ncu x cu x=⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑ 七、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(5) ()()cos cos 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+八、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx = ⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =-⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅ ⑼()x x d e e dx = ⑽()ln x x d a a adx = ⑾()1ln d x dx x= ⑿()1log ln xad dx x a= ⒀()arcsin d x = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arccot 1d x dx x =-+九、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭十、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dxx c x=+⎰ ⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰⑺sin cos xdx x c =-+⎰⑻221sec tan cos dx xdx x c x ==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰ ⑽21arctan 1dx x c x=++⎰ ⑾arcsin x c =+十一、下列常用凑微分公式十二、补充下面几个积分公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan xdx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsinxc a=+ ln x c =+十三、分部积分法公式⑴形如n ax x e dx ⎰,令n u x =,axdv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx = ⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。
高数微积分基本公式大全
![高数微积分基本公式大全](https://img.taocdn.com/s3/m/4ce4915f58eef8c75fbfc77da26925c52cc5919a.png)
高数微积分基本公式大全1.导数的基本公式:-基本导数:(常数)' = 0, (x^n)' = nx^(n-1), (e^x)' = e^x, (a^x)' = a^xln(a), (ln(x))' = 1/x, (sin(x))' = cos(x),(cos(x))' = -sin(x), (tan(x))' = sec^2(x), (cot(x))' = -csc^2(x), (sec(x))' = sec(x)tan(x), (csc(x))' = -csc(x)cot(x).-乘法法则:(uv)' = u'v + uv'.-除法法则:(u/v)' = (u'v - uv') / v^2.-链式法则:(f(g(x)))' = f'(g(x)) * g'(x).2.不定积分的基本公式:-基本积分:∫(k) dx = kx + C, ∫(x^n) dx =(1/(n+1))x^(n+1) + C, ∫(e^x) dx = e^x + C, ∫(1/x) dx =ln(|x|) + C, ∫(sin(x)) dx = -cos(x) + C, ∫(cos(x)) dx =sin(x) + C.-分部积分:∫(uv') dx = uv - ∫(u'v) dx.-特殊积分:∫(1/(1+x^2)) dx = arctan(x) + C,∫(1/(sqrt(1-x^2))) dx = arcsin(x) + C.3.微分方程的基本公式:-一阶线性微分方程:dy/dx + P(x)y = Q(x),解为y = e^(-∫P(x)dx) * (∫Q(x)e^(∫P(x)dx)dx + C).-齐次方程:dy/dx = f(y/x),令v = y/x,化为可分离变量的形式求解.-常系数线性齐次微分方程:ay'' + by' + cy = 0,其特征方程为ar^2 + br + c = 0,解为y = C1e^(r1x) + C2e^(r2x)。
工程力学公式微积分公式高等数学公式汇总
![工程力学公式微积分公式高等数学公式汇总](https://img.taocdn.com/s3/m/f8a7a52c4b7302768e9951e79b89680203d86b20.png)
公式:1、轴向拉压杆件截面正应力N F Aσ=,强度校核max []σσ≤2、轴向拉压杆件变形Ni i iF l l EA ∆=∑3、伸长率:1100%l l l δ-=⨯断面收缩率:1100%A A Aψ-=⨯ 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ= 5、扭转切应力表达式:TI ρρτρ=,最大切应力:maxP PT TR I W τ==,44(1)32P d I πα=-,34(1)16P d W πα=-,强度校核:maxmax []PT W ττ=≤ 6、单位扭转角:Pd Tdx GI ϕθ==,刚度校核:max max []PT GI θθ=≤,长度为l 的一段轴两截面之间的相对扭转角PTl GI ϕ=,扭转外力偶的计算公式:()(/min)9549KW r p Me n =7、薄壁圆管的扭转切应力:202T R τπδ=8、平面应力状态下斜截面应力的一般公式:cos 2sin 222x yx yx ασσσσσατα+-=+-,sin 2cos 22x yx ασστατα-=+9、平面应力状态三个主应力:'2x yσσσ+=,''2x yσσσ+='''0σ=最大切应力max '''2σστ-=±=,最大正应力方位02tan 2x x yτασσ=--10、第三和第四强度理论:3r σ=4r σ=11、平面弯曲杆件正应力:ZMy I σ=,截面上下对称时,ZM W σ=矩形的惯性矩表达式:312Z bh I =圆形的惯性矩表达式:44(1)64Z d I πα=-矩形的抗扭截面系数:26Z bh W =,圆形的抗扭截面系数:34(1)32Zd W πα=-13、平面弯曲杆件横截面上的最大切应力:max max *S z SZ F S FK bI Aτ==14、平面弯曲杆件的强度校核:1弯曲正应力max []t t σσ≤,max []c c σσ≤ 2弯曲切应力max []ττ≤3第三类危险点:第三和第四强度理论 15、平面弯曲杆件刚度校核:叠加法max []w wl l≤,max []θθ≤ 16、1轴向载荷与横向载荷联合作用强度: maxmax min ()N ZF M A W σσ=±2偏心拉伸偏心压缩:max min ()N ZF F A W δσσ=±3弯扭变形杆件的强度计算:有关高等数学计算过程中所涉及到的数学公式集锦错误!未定义书签。
(完整word版)高等数学公式(定积分微积分三角函数导函数等等应有尽有)值得搜藏
![(完整word版)高等数学公式(定积分微积分三角函数导函数等等应有尽有)值得搜藏](https://img.taocdn.com/s3/m/18ec8a9e0b4e767f5bcfce2f.png)
高等数学公式基本积分表(1)kdx kx C =+⎰ (k 是常数)(2)1,1x x dx C μμμ+=++⎰ (1)u ≠- (3)1ln ||dx x C x =+⎰(4)2tan 1dxarl x C x =++⎰ (5)arcsin x C =+(6)cos sin xdx x C =+⎰ (7)sin cos xdx x C =-+⎰(8)21tan cos dx x C x =+⎰(9)21cot sin dx x C x =-+⎰(10)sec tan sec x xdx x C =+⎰ (11)csc cot csc x xdx x C =-+⎰ (12)x x e dx e C =+⎰(13)ln xxa a dx C a=+⎰,(0,1)a a >≠且 (14)shxdx chx C =+⎰ (15)chxdx shx C =+⎰(16)2211tan xdx arc C a x a a =++⎰ (17)2211ln ||2x adx C x a a x a -=+-+⎰ (18)sinxarc C a=+(19)ln(x C =++(20)ln |x C =++(21)tan ln |cos |xdx x C =-+⎰ (22)cot ln |sin |xdx x C =+⎰ (23)sec ln |sec tan |xdx x x C =++⎰ (24)csc ln |csc cot |xdx x x C =-+⎰注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。
2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。
3、复习三角函数公式:2222sin cos 1,tan 1sec ,sin 22sin cos ,x x x x x x x +=+==21cos 2cos 2xx +=, 21cos 2sin 2xx -=。
注:由[()]'()[()]()f x x dx f x d x ϕϕϕϕ=⎰⎰,此步为凑微分过程,所以第一类换元法也叫凑微分法。
工程力学公式总结
![工程力学公式总结](https://img.taocdn.com/s3/m/323f2ec5b8d528ea81c758f5f61fb7360b4c2be7.png)
工程力学公式总结工程力学是物理学的一个分支,研究物体在受力作用下的运动、变形和它们之间的关系。
它是工程学科中不可或缺的基础课程,应用广泛,涉及到力学、材料力学、结构力学、固体力学等领域。
在学习工程力学过程中,我们会遇到许多公式,这些公式是我们解决工程力学问题的重要工具。
下面我来总结一些常用的工程力学公式,希望能对大家的学习有所帮助。
1. 牛顿第二定律:F = ma牛顿第二定律描述了物体在外力作用下的加速度与力的关系。
其中,F代表力,m代表物体的质量,a代表物体的加速度。
这个公式在力学问题的求解中经常使用。
2. 力的合成与分解:当一个物体受到多个力的作用时,可以将这些力合成为一个合力。
合力的大小等于各个力的矢量和。
同时,也可以将一个力分解为两个或多个分力,分力的矢量和等于原力。
3. 力矩与力矩平衡条件:力矩是力对物体转动产生的影响。
力矩等于力的大小与力臂的乘积。
力矩的方向符合右手螺旋定则。
力矩平衡条件要求物体受到的所有力矩的矢量和为零,即力矩的代数和为零。
4. 刚体静力平衡条件:刚体静力平衡要求物体受到的所有力的矢量和为零,即力的代数和为零。
这个条件可以用于解决静力学问题,确定物体的受力情况。
5. 牛顿万有引力定律:F = G * (m1 * m2) / r^2牛顿万有引力定律描述了两个物体之间的引力的大小与它们之间的距离和质量有关。
其中,F代表引力,G为引力常数,m1和m2分别为两个物体的质量,r为它们之间的距离。
6. 弹性力学公式:弹性力学公式用于描述物体在受力下的弹性变形。
其中,Hooke定律描述了弹性材料的应力与应变之间的关系,即σ = E * ε。
这里,σ代表应力,E为杨氏模量,ε代表应变。
7. 杆件受拉伸或压缩的应力公式:当杆件受拉伸或压缩时,应力的大小与外力、截面积和材料性质有关。
受拉伸时,应力的大小等于外力除以截面积;受压缩时,应力的大小等于外力除以截面积的负值。
8. 曲杆弯曲公式:曲杆弯曲公式描述了杆件在受弯矩作用下的弯曲变形。
高数微积分公式大全
![高数微积分公式大全](https://img.taocdn.com/s3/m/880ea648b42acfc789eb172ded630b1c58ee9b40.png)
高数微积分公式大全1.极限和连续:- 函数f(x)在x=a处连续的充分必要条件是:$\lim_{x\toa}f(x)=f(a)$- 若$\lim_{x\to a}f(x)=A$,$\lim_{x\to a}g(x)=B$,则$\lim_{x\to a}[f(x)\pm g(x)]=A\pm B$- $\lim_{x\to a}[f(x)g(x)]=\lim_{x\to a}f(x)\cdot\lim_{x\to a}g(x)$- 若$\lim_{x\to a}f(x)=A$,$\lim_{x\to a}g(x)=B\neq0$,则$\lim_{x\to a}\frac{f(x)}{g(x)}=\frac{A}{B}$- $f(x)$在$a$点附近可导的充分必要条件是:存在常数$A$和$B$,使得$x\to a$时,$f(x)-f(a)=A(x-a)+o(x-a)$,且$A=B$-若$f(x)$在$a$点可导,则$f(x)$在$a$点连续2.微分中值定理:- 若$f(x)$在闭区间$[a,b]$上连续,在开区间$(a,b)$上可微,则在$(a,b)$内存在一点$c$,使得$f'(c)=\frac{f(b)-f(a)}{b-a}$ - 若$f(x)$在闭区间$[a,b]$上连续,且在开区间$(a,b)$上可导,且存在常数$M$,使得$,f'(x),\leq M$,则$f(x)$在闭区间$[a,b]$上有界3.微分法:-$(C)'=0$,其中$C$为常数- $(x^n)'=nx^{n-1}$,其中$n$为实数- $(\sin x)'=\cos x$,$(\cos x)'=-\sin x$,$(\tan x)'=\sec^2 x$- $(e^x)'=e^x$,$(a^x)'=a^x\ln a$- $(\ln x)'=\frac{1}{x}$,$(\log_a x)'=\frac{1}{x\ln a}$4.积分法:- $\int k\,dx=kx+C$,其中$k$为常数,$C$为常数- $\int x^n\,dx=\frac{1}{n+1}x^{n+1}+C$,其中$n$为实数,$C$为常数- $\int \frac{1}{x}\,dx=\ln ,x,+C$,其中$C$为常数- $\int e^x\,dx=e^x+C$- $\int \sin x\,dx=-\cos x+C$,$\int \cos x\,dx=\sin x+C$,$\int \sec^2 x\,dx=\tan x+C$- $\int \frac{1}{\sqrt{1-x^2}}\,dx=\arcsin x+C$5.微分方程:- $y'+P(x)y=Q(x)$的通解为$y=e^{-\int P(x)\,dx}\left(\intQ(x)e^{\int P(x)\,dx}\,dx+C\right)$,其中$P(x)$和$Q(x)$是已知函数- $y''+P(x)y'+Q(x)y=R(x)$的通解是$y=e^{-\intP(x)\,dx}\left[A\int e^{\intP(x)\,dx}R(x)\,dx+B\right]+C_1e^{kx}+C_2e^{kx}$,其中$k$为$P(x)$的重根,$A$和$B$为任意常数,$C_1$和$C_2$为任意常数这只是微积分中的一些重要公式,还有许多其他的公式和定理可以用于不同的问题和应用中。
高等数学公式大全(几乎包含了所有)
![高等数学公式大全(几乎包含了所有)](https://img.taocdn.com/s3/m/825e9220cbaedd3383c4bb4cf7ec4afe05a1b14b.png)
高等数学公式大全(几乎包含了所有)高等数学公式大全(几乎包含了所有)在高等数学中,公式是解决问题的重要工具之一。
它们可以帮助我们理解和描述数学概念,推导出新的数学结论,并应用于各个领域,包括物理学、工程学、经济学等。
本文将呈现一个高等数学公式大全,几乎包含了所有相关的公式。
希望这个公式大全能对广大数学爱好者和学习者有所帮助。
一、微积分公式微积分是高等数学的基础,它主要研究函数的极限、导数和积分等概念。
以下是一些常用的微积分公式:1. 极限公式:(1)极限的四则运算法则:对于函数f(x)和g(x),若lim[x→a] f(x)存在且等于A,lim[x→a] g(x)存在且等于B,则有:lim[x→a] (f(x)±g(x)) = A±Blim[x→a] (f(x)·g(x)) = A·Blim[x→a] (f(x)/g(x)) = A/B (若B≠0)lim[x→a] (c·f(x)) = c·A (c为常数)(2)洛必达法则:若lim[x→a] f(x) = lim[x→a] g(x) = 0或±∞,则有:lim[x→a] (f(x)/g(x)) = lim[x→a] (f'(x)/g'(x)) (其中,f'(x)和g'(x)分别表示f(x)和g(x)的导数)2. 导数公式:(1)基本求导法则:对于常数c和可导函数u(x)、v(x),有以下导数法则:(常数法则) (c)' = 0(乘法法则) (u·v)' = u'·v + u·v'(除法法则) (u/v)' = (u'·v - u·v')/v^2(2)常见函数的导数公式:函数导数sin(x) cos(x)cos(x) -sin(x)e^x e^xln(x) 1/x3. 积分公式:(1)基本积分法则:对于连续函数f(x)和可导函数F(x),有以下积分法则:(常数法则)∫(c)dx = cx + C (C为常数)(幂函数积分法则)∫(x^n)dx = (x^(n+1))/(n+1) (n≠-1)(三角函数积分法则)∫sin(x)dx = -cos(x) + C∫cos(x)dx = sin(x) + C(2)常见函数的积分公式:函数积分e^x e^x + C (C为常数)1/x ln|x| + C二、线性代数公式线性代数是研究向量空间和线性映射的数学分支。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程力学公式微积分公式高等数学公式汇总 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】公式:1、轴向拉压杆件截面正应力N F Aσ=,强度校核max []σσ≤2、轴向拉压杆件变形Ni i iF l l EA ∆=∑3、伸长率:1100%l l l δ-=⨯断面收缩率:1100%A A Aψ-=⨯ 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ= 5、扭转切应力表达式:T I ρρτρ=,最大切应力:max P PT TR I W τ==,44(1)32P d I πα=-,34(1)16P d W πα=-,强度校核:maxmax []PT W ττ=≤ 6、单位扭转角:Pd Tdx GI ϕθ==,刚度校核:max max []PT GI θθ=≤,长度为l 的一段轴两截面之间的相对扭转角PTl GI ϕ=,扭转外力偶的计算公式:()(/min)9549KW r p Me n =7、薄壁圆管的扭转切应力:202T R τπδ=8、平面应力状态下斜截面应力的一般公式:cos 2sin 222x yx yx ασσσσσατα+-=+-,sin 2cos 22x yx ασστατα-=+9、平面应力状态三个主应力:'2x yσσσ+=,''2x yσσσ+='''0σ=最大切应力max '''2σστ-=±=最大正应力方位02tan 2x x yτασσ=--10、第三和第四强度理论:3r σ=4r σ=11、平面弯曲杆件正应力:ZMy I σ=,截面上下对称时,ZM W σ=矩形的惯性矩表达式:312Z bh I =圆形的惯性矩表达式:44(1)64Z d I πα=-矩形的抗扭截面系数:26Z bh W =,圆形的抗扭截面系数:34(1)32Zd W πα=-13、平面弯曲杆件横截面上的最大切应力:max max *S z SZ F S FK bI Aτ==14、平面弯曲杆件的强度校核:(1)弯曲正应力max []t t σσ≤,max []c c σσ≤ (2)弯曲切应力max []ττ≤(3)第三类危险点:第三和第四强度理论 15、平面弯曲杆件刚度校核:叠加法max []w wl l≤,max []θθ≤ 16、(1)轴向载荷与横向载荷联合作用强度: maxmax min ()N ZF M A W σσ=±(2)偏心拉伸(偏心压缩):max min ()N ZF F A W δσσ=±(3)弯扭变形杆件的强度计算:有关高等数学计算过程中所涉及到的数学公式(集锦)一、0101101lim 0n n n m m x m a n m b a x a x a n m b x b x b n m --→∞⎧=⎪⎪+++⎪=<⎨+++⎪∞>⎪⎪⎩(系数不为0的情况) 二、重要公式(1)0sin lim1x xx →=(2)()10lim 1x x x e →+= (3))1n a o >= (4)1n = (5)limarctan 2x x π→∞=(6)lim tan 2x arc x π→-∞=-(7)limarccot 0x x →∞= (8)lim arccot x x π→-∞= (9)lim 0x x e →-∞=(10)lim x x e →+∞=∞ (11)0lim 1xx x +→=三、下列常用等价无穷小关系(0x →) 四、导数的四则运算法则 五、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=-⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅ ⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1ln x x'= ⑿()1log ln x a x a '=⒀()arcsin x '= ⒁()arccos x '= ⒂()21arctan 1x x '=+ ⒃()21arccot 1x x '=-+⒄()1x '=⒅'=六、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑ 七、基本初等函数的n 阶导数公式 (1)()()!n n x n = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(5) ()()cos cos 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+八、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =-⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅ ⑼()x x d e e dx = ⑽()ln x x d a a adx = ⑾()1ln d x dx x= ⑿()1logln x a d dx x a =⒀()arcsin d x =⒁()arccos d x = ⒂()21arctan 1d x dx x =+ ⒃()21arccot 1d x dx x =-+ 九、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu =⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫=⎪⎝⎭十、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dxx c x=+⎰ ⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰ ⑻221sec tan cos dx xdx x c x==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰ ⑽21arctan 1dx x c x =++⎰⑾arcsin x c =+十一、下列常用凑微分公式积分型换元公式十二、补充下面几个积分公式 十三、分部积分法公式⑴形如n ax x e dx ⎰,令n u x =,ax dv e dx =形如sin n x xdx ⎰令n u x =,sin dv xdx = 形如cos n x xdx ⎰令n u x =,cos dv xdx =⑵形如arctan n x xdx ⎰,令arctan u x =,n dv x dx = 形如ln n x xdx ⎰,令ln u x =,n dv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos ax u e x x =均可。
十四、第二换元积分法中的三角换元公式sin x a t =tan x a t =sec x a t = 【特殊角的三角函数值】(1)sin 00= (2)1sin62π=(3)sin 32π= (4)sin 12π=) (5)sin 0π=(1)cos01= (2)cos6π=(3)1cos 32π= (4)cos 02π=) (5)cos 1π=-(1)tan 00= (2)tan63π=(3)tan 3π= (4)tan 2π不存在 (5)tan 0π=(1)cot 0不存在 (2)cot 6π=(3)cot3π=(4)cot 02π=(5)cot π不存在十五、三角函数公式1.两角和公式2.二倍角公式3.半角公式4.和差化积公式5.积化和差公式6.万能公式7.平方关系8.倒数关系9.商数关系十六、几种常见的微分方程 1.可分离变量的微分方程:()()dyf xg y dx= , ()()()()11220f x g y dx f x g y dy += 2.齐次微分方程:dy y f dx x ⎛⎫= ⎪⎝⎭3.一阶线性非齐次微分方程:()()dyp x y Q x dx+= 解为: 高等数学公式·平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC 中, 角A 的正弦值就等于角A 的对边比斜边, 余弦等于角A 的邻边比斜边 正切等于对边比邻边, ·三角函数恒等变形公式 ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) ·辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B ·倍角公式: sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] ·三倍角公式: sin(3α)=3sinα-4sin^3(α) cos(3α)=4cos^3(α)-3cosα ·半角公式: sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2) tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-co sα)/sinα ·降幂公式 sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] ·积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] ·推导公式 tanα+cotα=2/sin2α tanα-cotα=-2cot2α 1+cos2α=2cos^2α 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα/2)^2 ·其他: sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n -1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n -1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot (3π/2+α)=-tanα sin (3π/2-α)=-cosα cos (3π/2-α)=-sinα tan (3π/2-α)=cotα cot (3π/2-α)=tanα (以上k ∈Z) 部分高等内容 [编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)] 泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n !+… 此时三角函数定义域已推广至整个复数集。