二次函数与一元二次方程说课稿

合集下载

人教版九年级数学上册22.2.1《二次函数与一元二次方程》说课稿

人教版九年级数学上册22.2.1《二次函数与一元二次方程》说课稿

人教版九年级数学上册22.2.1《二次函数与一元二次方程》说课稿一. 教材分析《二次函数与一元二次方程》是人教版九年级数学上册第22章的第2节,这一节内容是在学生已经学习了函数、方程等基础知识的基础上进行讲解的。

二次函数和一元二次方程是中学数学中的重要内容,也是高考的必考内容。

本节内容主要介绍了二次函数的定义、性质以及一元二次方程的解法。

通过本节内容的学习,使学生能够掌握二次函数和一元二次方程的基本概念和性质,能够运用一元二次方程解决实际问题。

二. 学情分析九年级的学生已经具备了一定的数学基础,对于函数、方程等概念已经有了初步的认识。

但是,对于二次函数和一元二次方程的性质和应用可能还不是很清楚。

因此,在教学过程中,需要通过具体的例子和实际问题,引导学生理解和掌握二次函数和一元二次方程的概念和性质。

三. 说教学目标1.知识与技能:理解二次函数的定义和性质,掌握一元二次方程的解法,能够运用二次函数和一元二次方程解决实际问题。

2.过程与方法:通过观察、实验、探究等方法,培养学生的动手能力和思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。

四. 说教学重难点1.教学重点:二次函数的定义和性质,一元二次方程的解法。

2.教学难点:二次函数和一元二次方程的应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。

2.教学手段:利用多媒体课件、教学模具、实物模型等辅助教学。

六. 说教学过程1.导入:通过一个实际问题,引入二次函数和一元二次方程的概念。

2.讲解:讲解二次函数的定义和性质,演示一元二次方程的解法。

3.实践:让学生动手操作,进行实验和探究,加深对二次函数和一元二次方程的理解。

4.应用:通过解决实际问题,运用二次函数和一元二次方程的知识。

5.总结:对本节内容进行总结,强化学生的记忆。

七. 说板书设计板书设计要简洁明了,能够突出二次函数和一元二次方程的概念和性质。

沪教版初中数学初三数学下册《一元二次方程与二次函数》说课稿

沪教版初中数学初三数学下册《一元二次方程与二次函数》说课稿

沪教版初中数学初三数学下册《一元二次方程与二次函数》说课稿一、教材分析《一元二次方程与二次函数》是沪教版初中数学初三数学下册的一章内容,该章节是初中数学课程中较为重要的部分之一。

通过学习这一章节,学生将会掌握一元二次方程的求解方法以及二次函数的性质与变化规律。

在学习过程中,既要注重基础知识的学习,也要培养学生的逻辑思维能力,提高解题能力和实际应用能力。

二、教学目标本节课的教学目标主要包括:1.理解一元二次方程的定义和概念;2.掌握一元二次方程的求解方法;3.熟练应用一元二次方程解决实际问题;4.了解二次函数的定义和性质;5.通过综合练习,巩固和运用所学的知识。

三、教学重点和难点3.1 教学重点•理解一元二次方程的定义和概念;•掌握一元二次方程的求解方法;•熟练应用一元二次方程解决实际问题。

3.2 教学难点•掌握一元二次方程的求解方法;•熟练应用一元二次方程解决实际问题。

四、教学准备为了顺利完成本节课的教学任务,我需要准备以下教学素材和工具:•教材《沪教版初中数学初三数学下册》;•录音机和磁带;•教学反馈记录表。

五、教学过程5.1 导入新知识首先,我将通过提问和回答的方式,引导学生回顾前面学过的知识点,如什么是一元二次方程、什么是二次函数等。

通过导入环节,激发学生的学习兴趣,并为接下来的学习做好铺垫。

5.2 学习一元二次方程的求解方法在这一环节,我将详细讲解一元二次方程的求解方法,包括利用因式分解法、配方法和公式法等。

通过理论讲解和示例演示,让学生逐步理解并掌握不同的求解方法,培养他们的解题能力。

5.3 应用一元二次方程解决实际问题在这一环节,我将结合实际问题,引导学生将问题转化为一元二次方程,并运用所学的求解方法解决问题。

通过具体实例的讲解,让学生意识到数学知识在实际生活中的应用性和重要性,提高他们的数学思维能力和解决问题的能力。

5.4 介绍二次函数的定义和性质在这一环节,我将简要介绍二次函数的定义和性质,包括函数的图像特点、顶点坐标和对称轴等。

222二次函数与一元二次方程说课稿

222二次函数与一元二次方程说课稿

《22.2二次函数与一元二次方程》说课稿一、教材分析1、教材的地位和作用《二次函数与一元二次方程》是人教版九年级上册第22章第二节的教学内容.它既是一次函数与一元一次方程关系的延续.又为高中数学求一元二次不等式的解集以及三个“二次”的关系进一步探讨奠定基础.2、重难点的确点重点:从数和形两个角度理解二次函数与一元二次方程的关系;掌握二次函数与一元二次方程的互相转化问题.难点:灵活运用二次函数与一元二次方程的关系解决问题;利用函数的图象求一元二次方程的近似解.二、目标分析知识与技能:掌握二次函数与一元二次方程的联系.数学思考:运用类比、猜想的数学方法解决实际问题.解决问题:经历探索二次函数与一元二次方程关系的过程,认识到事物的互相联系与转化.情感态度:让学生在合作探究中培养学生合作学习的良好意识和团结协作的精神.三、学情分析已形成的:1、能理解二次函数的性质、图象,有一定看图识图能力,并能画一次函数、二次函数的草图.2、能熟练求解一元一次方程与一元二次方程的根.有待形成、提升的:1、由特殊到一般的归纳总结能力.2、理解二次函数与一元二次方程的联系和研究时互相转化的数学思想及数形结合思想.3、用函数的观点解决问题的应用意识.四、教法学法分析1、教法分析在本节课中我采用情景教学法,观察发现法和探讨法为主,多媒体演示为辅的教学方法进行教学.以学生活动为主线,引导学生在观察、操作、合作、交流等具体过程中突破本节课的难点,在学习活动中,尽量让每一位学生积极参与,最终让他们学会学习.2、学法分析通过观察发现、合作交流、归纳总结完成本节课的教学.五、教学过程(一)复习引入活动1:问题1:一次函数与一元一次方程有怎样的联系?师生活动:老师引导,学生回答,最后分别从数与形这两个角度得出一次函数与一元一次方程的关系.问题2:类比猜想一下二次函数与一元二次方程的联系?师生活动:老师展示问题,学生回答.得出当二次函数y=ax2+bx+c(a≠0)的函数值y=0时,则得到了一个一元二次方程ax2+bx+c=0(a≠0);若把一元二次方程ax2+bx+c=0(a≠0)中的常量0变为变量y,则得到二次函数y=ax2+bx+c(a≠0).设计的意图:在学生已有的数学基础上,采用类比的学习方法,探索新知.(二)探究新知活动2:问题:如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)飞行时间t(单位:s)之间具有函数关系:h= 20t-5t2问:(1)小球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)小球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5 m?(4)小球从飞出到落地要用多少时间?师生活动:第(1)问师生共同分析,先用代数的方法解答,然后引导学生用图象法对此问进行解释和分析.第(2)问由学生分析并展示过程,同时让学生用图象演示为什只有一个时间小球的飞行高度达到20m?接着老师又引导学生从二次函数的性质(即二次函数的最大值)来说明为什么只有一个时间?剩下的学生独立完成,学生代表分析并展示过程.设计的意图:让学生用数与形这两种不同的方法解决实际问题.活动3:小组合作问题:根据刚才例题的讲解,类比一次函数与一元一次方程的联系,现在以小组为单位对二次函数与x轴的交点的横坐标与一元二次方程的根的关系进行讨论,并请代表展示结果.二次函数的图象与x轴交点横坐标与一元二次方程根的关系:(1)“数”:二次函数y=ax2+bx+c(a≠0)的函数值y=0时相应的自变量的值即为一元二次方程ax2+bx+c=0(a≠0)的根;(2)“形”:二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标.即为一元二次方程ax2+bx+c=0(a≠0)的根.设计的意图:通过学生合作交流,得出二次函数y=ax2+bx+c(a≠0)的图象和x轴交点的横坐标与一元二次方程ax2+bx+c=0(a≠0)的根的关系,同时培养学生合作学习的能力.活动4:观察发现(1)观察二次函数①y=x2+x-2,②y=x2-6x+9,③y=x2-x+1的图象,回答下列问题:函数与x轴的交点的个数是:①个②个③个.函数与x轴交点的横坐标为:①②③ .(2)已知一元二次方程①x2+x-2=0,②x2-6x+9=0,③x2-x+1=0,则一元二次方程根的情况:①Δ 0,有根②Δ 0,有根,③Δ 0,有根.一元二次方程的解是:①,② ,③ .思考:二次函数y=ax2+bx+c(a≠0)与x轴交点情况与一元二次方程ax2+bx+c=0(a≠0)的根的情况有怎样的联系?师生活动:老师展示问题,学生观察填空.通过观察(1)与(2)的结果,对思考问题进行合作讨论.设计意图:通过学生讨论、观察,得出判别式和二次函数与x轴交点个数的情况的关系.并让学生掌握特殊到一般的学习方法.(三)归纳新知二次函数与一元二次方程的关系:师生活动:通过以上环节的探究,教师指导学生思考归纳,并展示结果。

北师大版数学九年级下册2.5《二次函数与一元二次方程》说课稿1

北师大版数学九年级下册2.5《二次函数与一元二次方程》说课稿1

北师大版数学九年级下册2.5《二次函数与一元二次方程》说课稿1一. 教材分析北师大版数学九年级下册2.5《二次函数与一元二次方程》这一节的内容,是在学生已经掌握了二次函数的图像和性质的基础上进行讲解的。

本节课的主要内容是一元二次方程的求解方法和应用,通过引导学生利用二次函数的性质来解决实际问题,培养学生的解决问题的能力。

教材中首先介绍了二次函数与一元二次方程的关系,引导学生理解二次函数的图像与一元二次方程的解的关系。

接着,教材通过具体的例子,讲解了一元二次方程的求解方法,包括因式分解法、配方法、求根公式法等。

最后,教材又通过实际问题,让学生应用所学的知识,解决实际问题。

二. 学情分析九年级的学生已经掌握了二次函数的基本知识,对于二次函数的图像和性质有一定的了解。

但是,对于一元二次方程的求解方法和应用,可能还不是很熟悉。

因此,在教学过程中,需要引导学生利用已学的二次函数知识,来理解和掌握一元二次方程的知识。

三. 说教学目标1.让学生理解二次函数与一元二次方程的关系,理解一元二次方程的解的性质。

2.让学生掌握一元二次方程的求解方法,包括因式分解法、配方法、求根公式法等。

3.培养学生利用二次函数和一元二次方程解决实际问题的能力。

四. 说教学重难点1.教学重点:让学生理解二次函数与一元二次方程的关系,掌握一元二次方程的求解方法。

2.教学难点:引导学生理解一元二次方程的根的判别式,以及如何应用一元二次方程解决实际问题。

五. 说教学方法与手段在教学过程中,我会采用讲授法、引导法、讨论法等教学方法,通过多媒体课件、教学实物等教学手段,引导学生理解二次函数与一元二次方程的关系,掌握一元二次方程的求解方法。

六. 说教学过程1.导入:通过复习二次函数的图像和性质,引导学生理解二次函数与一元二次方程的关系。

2.讲解:讲解一元二次方程的求解方法,包括因式分解法、配方法、求根公式法等。

3.应用:通过实际问题,让学生应用所学的知识,解决实际问题。

《二次函数与一元二次方程》说课稿

《二次函数与一元二次方程》说课稿

《二次函数与一元二次方程(第1课时)》说课稿一、教材分析《二次函数与一元二次方程》是人教版九年级上册第22章第二节的第1课时的内容。

教材从一次函数与一元一次方程的关系入手,通过类比引出二次函数与一元二次方程之间的关系问题,并结合一个具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系。

这一节是反映函数与方程这两个重要数学概念之间的联系的内容。

本节主要内容是用函数的观念看一元二次方程,探讨二次函数与一元二次方程的关系。

用函数的观点看方程,可以把方程看成函数值为某个定值时的情况,所以,研究函数与方程的关系是对函数的进一步深化。

学生在一次函数时已经了解了一次函数与一元一次方程、一元一次不等式、二元一次不等式组之间的联系,本章专设一节,通过探讨二次函数与一元二次方程的联系,再次展示函数与方程之间的联系。

这样既深化学生对一元二次方程的认识,又可以运用二次函数解决一元二次方程的相关问题,体现了知识之间的联系。

二、学情分析学生已经学习了一元一次方程和一次函数,一元二次方程,二次函数的图像和性质等知识,对函数与方程的关系已有初步认识。

但是运用函数的思想解决问题的意识还不够,仍习惯于孤立地看待方程与不等式的问题。

本节学习可以帮助学生进一步建立函数与方程的联系,提升用函数思想解决问题的意识和能力。

三、教学目标1.了解一元二次方程的根的几何意义;理解抛物线与横轴的三种位置关系对应一元二次方程的根的三种情况.2.经历探索二次函数与一元二次方程关系的过程,结合图象,进一步体会函数与方程之间的联系。

3.运用函数思想解决问题,体会事物之间的转化,提升思维品质。

四、教学重难点重点:二次函数与一元二次方程的联系,利用函数解决方程的有关问题.难点:将方程问题转化为函数问题,运用函数的思想解决问题。

五、教学策略由一次函数与一元一次方程的关系说起,采用类比的方法研究二次函数与一元二次方程的关系。

以实际问题为情境从数与形两个角度理解函数与方程之间的联系。

x1)(x-x2)与一元二次方程

x1)(x-x2)与一元二次方程

即时练习1:下面是否是二次函数的两根式,如果是请指出a, , ;如果不
是,你能否变成两根式
(1) (2) (3)
即时练习2:将下列二次函数化为两根式:
(1)y=x2+2x-15;
(2)y= x2+x-2;
y=2x2+2x-12;
(3)
我这样设计的理由是新课程标准倡导,有效的数学学习不是单纯 的依赖模仿与记忆,而要通过动手实践,自主探究与合作交流了解其 必要的推理过程,这样做学生更加清晰地明白二次函数交点式是怎么 得到的。紧跟的即时练习能让学生更加清楚地识别二次函数的两根 式,以及如何将二次函数一般式转化为两根式 即时练习1的(1)(2)题口答,(3)题派1组基础较好的3号学生在 侧黑板1展示并讲解;特别要注意(2)小题一个根为0,(3)小题如 何转化成两根式,转化后a, ,分别是多少?小组代表讲解完后,其他 学生评价或补充。
二次函数和一元二次方程的关系是中考的一个重要考点, 近几年经常在B卷的压轴题出现。
二、学情分析
1、学生已经学习了二次函数一般式、顶点式及其图象和性 质,一元二次方程的解的情况都有所了解,特别的,八年级时 学生已经学习了一次函数和一元一次方程、二元一次方程和一 次函数的关系,因此,对于本节所要学习的二次函数与一元二 次方程之间的关系,可以利用类比的方法让学生在自学的基础 上进行小组合作交流学习。 2、我校“金凤凰”初三学生基础参差不齐,两极分化已经形
一、学习准备
1.分解因式:x2-2x-3;
2.解方程:x2 -2x-3=0
3、回顾一次函数与一元一次方程的关系: 一次函数y=-x+5与x轴的交
点坐标是
,一元一次方程-x+5=0的解是
。你发现

《22.2二次函数与一元二次方程》说课稿

《22.2二次函数与一元二次方程》说课稿

22.2 二次函数与一元二次方程》说课稿一、教材分析1、教材的地位和作用《二次函数与一元二次方程》是人教版九年级上册第22 章第二节的教学内容.它既是一次函数与一元一次方程关系的延续. 又为高中数学求一元二次不等式的解集以及三个“二次” 的关系进一步探讨奠定基础.2、重难点的确点重点:从数和形两个角度理解二次函数与一元二次方程的关系;掌握二次函数与一元二次方程的互相转化问题.难点:灵活运用二次函数与一元二次方程的关系解决问题;利用函数的图象求一元二次方程的近似解.二、目标分析知识与技能:掌握二次函数与一元二次方程的联系.数学思考:运用类比、猜想的数学方法解决实际问题.解决问题:经历探索二次函数与一元二次方程关系的过程,认识到事物的互相联系与转化.情感态度:让学生在合作探究中培养学生合作学习的良好意识和团结协作的精神.三、学情分析已形成的:1、能理解二次函数的性质、图象,有一定看图识图能力,并能画一次函数、二次函数的草图.2、能熟练求解一元一次方程与一元二次方程的根.有待形成、提升的:1、由特殊到一般的归纳总结能力.2、理解二次函数与一元二次方程的联系和研究时互相转化的数学思想及数形结合思想.3、用函数的观点解决问题的应用意识.四、教法学法分析1、教法分析在本节课中我采用情景教学法,观察发现法和探讨法为主,多媒体演示为辅的教学方法进行教学. 以学生活动为主线,引导学生在观察、操作、合作、交流等具体过程中突破本节课的难点,在学习活动中,尽量让每一位学生积极参与,最终让他们学会学习.2、学法分析通过观察发现、合作交流、归纳总结完成本节课的教学.五、教学过程(一)复习引入活动1:问题1:一次函数与一元一次方程有怎样的联系?师生活动:老师引导,学生回答,最后分别从数与形这两个角度得出一次函数与一元一次方程的关系.问题2:类比猜想一下二次函数与一元二次方程的联系?师生活动:老师展示问题,学生回答.得出当二次函数y=aX+bx+c(a工的函数值y=0时,则得到了一个一元二次方程ax2+bx+c=0(a工;0若把一元二次方程ax2+bx+c=0(a丰0)中的常量0变为变量y,则得到二次函数y=ax2+bx+c(a工.0)设计的意图:在学生已有的数学基础上,采用类比的学习方法,探索新知.(二)探究新知活动2:4问题:如图,以40m/s 的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线. 如果不考虑空气阻力,小球的飞行高度h(单位:m)飞行时间t(单位:s)2之间具有函数关系:h= 20t-5t 2问:(1)小球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)小球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5 m ?4 小球从飞出到落地要用多少时间?师生活动:第(1)问师生共同分析,先用代数的方法解答,然后引导学生用图象法对此问进行解释和分析. 第(2)问由学生分析并展示过程,同时让学生用图象演示为什只有一个时间小球的飞行高度达到20m?接着老师又引导学生从二次函数的性质(即二次函数的最大值)来说明为什么只有一个时间?剩下的学生独立完成,学生代表分析并展示过程.设计的意图:让学生用数与形这两种不同的方法解决实际问题.活动3:小组合作问题:根据刚才例题的讲解,类比一次函数与一元一次方程的联系,现在以小组为单 位对二次函数与 x 轴的交点的横坐标与一元二次方程的根的关系进行讨论,并请代表展示 结果•二次函数的图象与 x 轴交点横坐标与一元二次方程根的关系:(1)"数”:二次函数y=ax 2+bx+c ( 0)的函数值y=0时相应的自变量的值即为一元二次方 程 ax 2+bx+c=0 (0)的根;(2) "形”:二次函数 y=ax 2+bx+c ( a * 0)的图象与 x 轴交点的横坐标.即为一元二次方程 ax 2+bx+c=0 (a丰 0)的根.设计的意图:通过学生合作交流, 得出二次函数y=ax 2+bx+c(a 丰0)的图象和x 轴交点的 横坐标与一元二次方程 ax 2+bx+c=0(a 丰0)的根的关系,同时培养学生合作学习的能力•活动4:观察发现(1 )观察二次函数①y=x 2+x-2,②y=x 2-6x+9,③y=x 2-x+1的图象,回答下列问题: 函数与x 轴的交点的个数是:① ______________ 个② _________ 个③ _________ 个• 函数与x 轴交点的横坐标为:① _________________② ____________ ③x 2+x-2=0,② X 2-6X +9=0,③ x 2-x+1=0,则元二次方程根的情况: ①厶_0,有_根 ②' _0,有_根,③△ _0,有 _______________________ 根. 一元二次方程的解是:① ___________ ,②, ③ •思考:二次函数y=a/+bx+c(a 工与)x 轴交点情况与一元二次方程 ax 2+bx+c=0(a 却的根的情况有怎样的联系?师生活动: 老师展示问题,学生观察填空•通过观察(1)与(2)的结果,对思考问题进行合作讨论设计意图:通过学生讨论、观察,得出判别式和二次函数与 系.并让学生掌握特殊到一般的学习方法 •(三) 归纳新知(2)已知一元二次方程①x 轴交点个数的情况的关 -2 -1^*11 2 X-2设计意图:培养学生语言表述能力,及用表格法归纳知识的能力。

湘教版数学九年级下册1.4《二次函数与一元二次方程的联系》说课稿

湘教版数学九年级下册1.4《二次函数与一元二次方程的联系》说课稿

湘教版数学九年级下册1.4《二次函数与一元二次方程的联系》说课稿一. 教材分析湘教版数学九年级下册1.4《二次函数与一元二次方程的联系》这一节,主要让学生了解二次函数与一元二次方程之间的关系,进一步理解二次函数的图象与性质。

通过对本节内容的学习,学生可以更好地解决实际问题,提高解决问题的能力。

二. 学情分析学生在学习本节内容前,已经掌握了二次函数的图象与性质,一元二次方程的解法,具备一定的抽象思维能力。

但部分学生对二次函数与一元二次方程之间的联系仍较模糊,需要在本节课中加以引导和深化。

三. 说教学目标1.让学生理解二次函数与一元二次方程之间的关系;2.使学生能够运用二次函数与一元二次方程解决实际问题;3.培养学生观察、分析、归纳的能力;4.提高学生解决问题的能力。

四. 说教学重难点1.教学重点:二次函数与一元二次方程之间的关系;2.教学难点:如何运用二次函数与一元二次方程解决实际问题。

五. 说教学方法与手段1.采用问题驱动法,引导学生探索二次函数与一元二次方程之间的关系;2.利用多媒体演示,直观展示二次函数与一元二次方程的图象;3.运用案例分析法,让学生参与实际问题的解决过程;4.注重启发式教学,引导学生主动思考、总结归纳。

六. 说教学过程1.导入新课:通过复习二次函数的图象与性质,引导学生思考二次函数与一元二次方程之间的关系;2.探索关系:提出问题,引导学生利用已知的二次函数图象,找出对应的的一元二次方程;3.讲解原理:讲解二次函数与一元二次方程之间的关系,解释为什么二次函数的图象与一元二次方程的解有关;4.案例分析:给出实际问题,让学生运用二次函数与一元二次方程解决;5.总结归纳:让学生总结本节课所学内容,加深对二次函数与一元二次方程之间联系的理解;6.课堂练习:布置一些有关二次函数与一元二次方程的练习题,巩固所学知识;7.课后作业:布置一些有关实际问题的作业,提高学生解决问题的能力。

七. 说板书设计板书设计如下:1.二次函数与一元二次方程的关系(1)二次函数的图象与一元二次方程的解有关;(2)一元二次方程的解法与二次函数的性质有关。

《二次函数与一元二次方程的关系》说课稿

《二次函数与一元二次方程的关系》说课稿

《§2.8 二次函数与一元二次方程》说课稿第一课时教学目标一、教学知识点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

2、理解二次函数与x 轴交点的个数与一元二次方程的根的关系,理解何时方程有两个不等的实根、两个相等的实根和没有实根。

3、理解一元二次方程的根就是二次函数与y =h 交点的横坐标。

二、能力训练要求1、经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神2、通过观察二次函数与x 轴交点的个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。

3、通过学生共同观察和讨论,培养合作交流意识。

三、情感与价值观要求1、经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。

2、具有初步的创新精神和实践能力。

教学重点1.体会方程与函数之间的联系。

2.理解何时方程有两个不等的实根、两个相等的实根和没有实根。

3.理解一元二次方程的根就是二次函数与y =h 交点的横坐标。

教学难点1、探索方程与函数之间的联系的过程。

2、理解二次函数与x 轴交点的个数与一元二次方程的根的个数之间的关系。

教学方法:讨论探索法教学过程:1、设问题情境,引入新课我们已学过一元一次方程kx+b=0 (k≠0)和一次函数y =kx+b (k≠0)的关系,你还记得吗?它们之间的关系是:当一次函数中的函数值y =0时,一次函数y =kx+b就转化成了一元一次方程kx+b=0,且一次函数的图像与x 轴交点的横坐标即为一元一次方程kx+b=0的解。

现在我们学习了一元二次方程和二次函数,它们之间是否也存在一定的关系呢?本节课我们将探索有关问题。

2、新课讲解我们已经知道,竖直上抛物体的高度h (m )与运动时间t (s )的关系可以用公式 h =-5t 2+v 0t +h 0表示,其中h 0(m)是抛出时的高度,v 0(m/s )是抛出时的速度。

二次函数与一元二次方程》说课稿

二次函数与一元二次方程》说课稿

二次函数与一元二次方程》说课稿各位领导、专家,今天我将向大家介绍人教版九年级上册第22章第二节的第一课时,即《二次函数与一元二次方程》的教学内容。

在本次说课中,我将分享我对本节课的教学安排和教学思路。

一、教材分析本节课的主要内容是通过函数的观念来看待一元二次方程,探讨二次函数与一元二次方程之间的关系。

教材从一次函数与一元一次方程的关系入手,通过类比引出二次函数与一元二次方程之间的关系问题,并结合一个具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系。

这一节课程反映了函数与方程这两个重要数学概念之间的联系。

二、学情分析就知识掌握方面而言,学生已经了解了二次函数的图象及其性质以及一元二次方程的解的情况。

特别地,八年级时学生已经了解到了一次函数和一元一次方程的解之间的关系。

因此,对于本节所要研究的二次函数与一元二次方程之间的关系,利用类比的方法让学生在自学的基础上进行交流合作研究应该不是难题。

在学生研究本节课的知识方面,障碍在于建立二次函数与一元二次方程之间的联系,以及渗透数形结合的思想。

心理上,老师应该抓住一元二次方程的求解方法很多这一点,在研究了因式分解法、配方法、求根公式法等的基础上,激发学生对一元二次方程的其它解法的探求兴趣。

进而由一次函数与一元一次方程的关系类比到二次函数的图象与一元二次方程的根的情况上来,顺着学生的思维逐步引导加以激发。

三、教学目标根据新课标的要求及九年级学生的认知水平,本节课的教学目标如下:知识与技能:掌握二次函数与一元二次方程的联系。

过程与方法:经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

情感、态度与价值观:1、经历探索二次函数与一元二次方程的关系的过程,提高学生的分析能力与在探索过程中抽象概括能力。

2、培养学生团结合作研究的良好意识和积极进取的精神。

3、培养学生用联系的观点看问题。

四、教学重难点本节课的重点在于二次函数的图象和一元二次方程的联系。

二次函数与一元二次方程 说课

二次函数与一元二次方程 说课

2
4
6
8
t
预习生疑
1.二次函数与x轴的交点与一元二次方程的根
合作辨疑
有什么关系?
探究释疑
2.二次函数与y=h的交点与一元二次方程的
实践解疑
根有什么关系?
反思升疑
3.还有哪些交点类型?在哪些地方考察?
预习生疑
x= -x²+4x-3
y= -x²+4x-3
合作辨疑
探究释疑
y=x
在函数y= -x²+4x-3上求满足y=x的点的横坐标
教法与学法分析
以学生为主体,以问题为主线,以质疑为特征
动手
操作
启发
发现
讨论
小组
合作
【合作辩疑】
预习生疑
1.二次函数与x轴的交点与一元二次方程的根
合作辨疑
有什么关系?
探究释疑
2.二次函数与y=h的交点与一元二次方程的
实践解疑
根有什么关系?
反思升疑
3.还有哪些交点类型?在哪些地方考察?
小组讨论要求
时间:5分钟;小组长组织本组组员进行合作交流;
证、说明推理,有效地突破了难点;及时小结,注重升华;
紧密链接中考,注意拓展延伸和上下链接。
教材分析 学情分析 教学目标 教法与学法分析 教学过程 特色说明
数学是思维的体操。怎样培养学生的核心素
养,我认为目标就是:即便学生将来忘记了所学
的知识,却会在将来感激数学课堂带来的思维灵
动。
这就是我们数学教师的使命与价值。
解方程得 =
+
,



=
∴ 两图像有两个交点
+

《22.2二次函数与一元二次方程》说课稿

《22.2二次函数与一元二次方程》说课稿

《22.2二次函数与一元二次方程》说课稿一、教材分析1、教材的地位和作用《二次函数与一元二次方程》是人教版九年级上册第22章第二节的教学内容.它既是一次函数与一元一次方程关系的延续.又为高中数学求一元二次不等式的解集以及三个“二次”的关系进一步探讨奠定基础.2、重难点的确点重点:从数和形两个角度理解二次函数与一元二次方程的关系;掌握二次函数与一元二次方程的互相转化问题.难点:灵活运用二次函数与一元二次方程的关系解决问题;利用函数的图象求一元二次方程的近似解.二、目标分析知识与技能:掌握二次函数与一元二次方程的联系.数学思考:运用类比、猜想的数学方法解决实际问题.解决问题:经历探索二次函数与一元二次方程关系的过程,认识到事物的互相联系与转化.情感态度:让学生在合作探究中培养学生合作学习的良好意识和团结协作的精神.三、学情分析已形成的:1、能理解二次函数的性质、图象,有一定看图识图能力,并能画一次函数、二次函数的草图.2、能熟练求解一元一次方程与一元二次方程的根.有待形成、提升的:1、由特殊到一般的归纳总结能力.2、理解二次函数与一元二次方程的联系和研究时互相转化的数学思想及数形结合思想.3、用函数的观点解决问题的应用意识.四、教法学法分析1、教法分析在本节课中我采用情景教学法,观察发现法和探讨法为主,多媒体演示为辅的教学方法进行教学.以学生活动为主线,引导学生在观察、操作、合作、交流等具体过程中突破本节课的难点,在学习活动中,尽量让每一位学生积极参与,最终让他们学会学习.2、学法分析通过观察发现、合作交流、归纳总结完成本节课的教学.五、教学过程(一)复习引入活动1:问题1:一次函数与一元一次方程有怎样的联系?师生活动:老师引导,学生回答,最后分别从数与形这两个角度得出一次函数与一元一次方程的关系.问题2:类比猜想一下二次函数与一元二次方程的联系?师生活动:老师展示问题,学生回答.得出当二次函数y=ax2+bx+c(a≠0)的函数值y=0时,则得到了一个一元二次方程ax2+bx+c=0(a≠0);若把一元二次方程ax2+bx+c=0(a≠0)中的常量0变为变量y ,则得到二次函数y=ax 2+bx+c(a≠0).设计的意图:在学生已有的数学基础上,采用类比的学习方法,探索新知.(二)探究新知活动2:问题:如图,以40m /s 的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)飞行时间t(单位:s)之间具有函数关系:h= 20t-5t 2问:(1)小球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)小球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5 m ?(4)小球从飞出到落地要用多少时间?师生活动:第(1)问师生共同分析,先用代数的方法解答,然后引导学生用图象法对此问进行解释和分析.第(2)问由学生分析并展示过程,同时让学生用图象演示为什只有一个时间小球的飞行高度达到20m ?接着老师又引导学生从二次函数的性质(即二次函数的最大值)来说明为什么只有一个时间?剩下的学生独立完成,学生代表分析并展示过程.设计的意图:让学生用数与形这两种不同的方法解决实际问题.活动3:小组合作问题:根据刚才例题的讲解,类比一次函数与一元一次方程的联系,现在以小组为单位对二次函数与x 轴的交点的横坐标与一元二次方程的根的关系进行讨论,并请代表展示结果.二次函数的图象与x 轴交点横坐标与一元二次方程根的关系:(1)“数”:二次函数y=ax 2+bx+c (a ≠0)的函数值y=0时相应的自变量的值即为一元二次方程ax 2+bx+c=0(a ≠0)的根;(2)“形”:二次函数y=ax 2+bx+c (a ≠0)的图象与x 轴交点的横坐标.即为一元二次方程ax 2+bx+c=0(a ≠0)的根.设计的意图:通过学生合作交流,得出二次函数y=ax 2+bx+c(a ≠0)的图象和x 轴交点的横坐标与一元二次方程ax 2+bx+c=0(a ≠0)的根的关系,同时培养学生合作学习的能力.活动4:观察发现(1)观察二次函数①y=x 2+x-2,②y=x 2-6x+9,③y=x 2-x+1的图象,回答下列问题:函数与x 轴的交点的个数是:① 个② 个③ 个.函数与x 轴交点的横坐标为:① ② ③ .22y x x =+-21y x x =-+269y x x =-+(2)已知一元二次方程①x 2+x-2=0,②x 2-6x+9=0,③x 2-x+1=0,则一元二次方程根的情况:①Δ 0,有 根 ②Δ 0,有 根,③Δ 0,有 根. 一元二次方程的解是:① ,② ,③ .思考:二次函数y=ax 2+bx+c(a≠0)与x 轴交点情况与一元二次方程ax 2+bx+c=0(a≠0)的根0 的情况有怎样的联系?师生活动:老师展示问题,学生观察填空.通过观察(1)与(2)的结果,对思考问题进行合作讨论.设计意图:通过学生讨论、观察,得出判别式和二次函数与x 轴交点个数的情况的关系.并让学生掌握特殊到一般的学习方法.(三)归纳新知 二次函数与一元二次方程的关系:师生活动:通过以上环节的探究,教师指导学生思考归纳,并展示结果。

(说课稿)用二次函数的图像解一元二次方程

(说课稿)用二次函数的图像解一元二次方程

(说课稿)用二次函数的图像解一元二次方程大伙儿好,今天我说课的题目是《用二次函数的图像解一元二次方程》一、教材分析1、地位和作用本节课是新冀教版九年级上册第30章二次函数的第五节,是学生在学习和把握了二次函数的图像和性质以及一元二次方程的基础上来研究二次函数与一元二次方程的关系。

本节课和用函数观点看方程(组)与不等式比较类似,因此学生对函数与方程之间的联系已不再生疏。

通过本节课的学习,学生能够进一步加深对二次函数的图像和性质的明白得,是后面学习二次函数与实际问题的基础,同时让学生进一步体会数形结合思想,也是以后高中学习一元二次不等式的基础。

2、教材内容在这节课中,第一通过小球飞行高度问题展现二次函数与一元二次方程的联系,然后进一步举例说明,从而得出二次函数与一元二次方程的关系,最后通过例题介绍用函数的图像求一元二次方程的根的方法。

二、学情分析依照学生现状,在往常已接触过用函数观点看方程(组)与不等式,因此学生对函数与方程之间的联系已不再生疏,且二次函数和一元二次方程是初中数学的难点问题。

因此,在教学中,我抓住这些特点,从学生已学的知识入手,引导学生在充分明白得函数和一元二次方程关系的基础上,体会数形结合的思想。

三、教学目标四、教学重点难点五、教学设计说明二次函数为一元二次方程的求解提供了一个强有力的工具,查找一元二次方程与二次函数的关系,是解二次方程的关键.本节课从实际问题动身,利用二次函数及图像特点探讨一元二次方程根的问题.如此设计,既激发了学生学习热情,同时使学生积极主动地投入到探究活动中.在探究一元二次方程与二次函数的关系中,教师引导学生,关心学生建立数与形的结合,体会数形结合的思想.通过例题巩固用函数图像判定方程根的情形,提高学生的解题能力,激发他们对问题的探究精神,同时体会函数在方程中的应用.最后师生共同总结归纳,加深对二次函数与一元二次方程的明白得与应用,提高应用数学的能力.以学生为主体,通过学生自主探究和合作交流,真正明白得和把握二次函数与一元二次方程之间的关系。

二次函数及一元二次方程说课稿

二次函数及一元二次方程说课稿

《<二次函数与一元二次方程>第一课时》说课稿付家堰中小学家付各位领导、专家:大家好!我今天的说课容是人教版九年级上册第22章第二节《二次函数与一元二次方程》的第一课时的教学容,现就我对本节课的教学安排和教学思路向各位领导和专家汇报如下:一、教材分析本节主要容是用函数的观念看一元二次方程,探讨二次函数与一元二次方程的关系。

教材从一次函数与一元一次方程的关系入手,通过类比引出二次函数与一元二次方程之间的关系问题,并结合一个具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系。

这一节是反映函数与方程这两个重要数学概念之间的联系的容。

二、学情分析1、知识掌握上,学生对二次函数的图象及其性质和一元二次方程的解的情况都有所了解,特别的,八年级时学生已经了解到了一次函数和一元一次方程的解之间的关系,因而,对于本节所要学习的二次函数与一元二次方程之间的关系利用类比的方法让学生在自学的基础上进行交流合作学习应该不是难题。

2、学生学习本节课的知识障碍就是建立二次函数与一元二次方程之间的联系,渗透数形结合的思想。

3、心理上,老师应抓住一元二次方程的求解方法很多,在学习了因式分解法、配方法、求根公式法等的基础上,激发学生对一元二次方程的其它解法的探求兴趣,进而由一次函数与一元一次方程的关系类比到二次函数的图象与一元二次方程的根的情况上来,顺着学生的思维逐步引导加以激发。

三、教学目标根据新课标的要求及九年级学生的认知水平特制定本节课的教学目标如下:知识与技能:掌握二次函数与一元二次方程的联系。

过程与方法:经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

情感、态度与价值观:1、经历探索二次函数与一元二次方程的关系的过程,提高学生的分析能力与在探索过程中抽象概括能力。

2、培养学生团结合作学习的良好意识和积极进取的精神。

3、培养学生用联系的观点看问题。

四、教学重难点重点:二次函数的图象和一元二次方程的联系。

北师大版九年级数学下册:2.5《二次函数与一元二次方程》说课稿1

北师大版九年级数学下册:2.5《二次函数与一元二次方程》说课稿1

北师大版九年级数学下册:2.5《二次函数与一元二次方程》说课稿1一. 教材分析北师大版九年级数学下册2.5《二次函数与一元二次方程》这一节主要介绍了二次函数与一元二次方程之间的关系。

通过学习,学生能够理解二次函数的图像与一元二次方程的解法,以及如何将一元二次方程转化为二次函数的问题。

教材通过具体的例子和练习题,帮助学生掌握这一知识点。

二. 学情分析九年级的学生已经学习过一次函数和二次函数的基本概念,对函数的图像和解法有一定的了解。

然而,对于二次函数与一元二次方程之间的联系,他们可能还不太清楚。

因此,在教学过程中,我需要通过具体的例子和练习题,帮助学生理解和掌握这一知识点。

三. 说教学目标1.知识与技能目标:学生能够理解二次函数与一元二次方程之间的关系,能够将一元二次方程转化为二次函数的问题,并能够运用二次函数的知识解决实际问题。

2.过程与方法目标:通过观察、分析和解决实际问题,学生能够培养自己的观察能力、思考能力和解决问题的能力。

3.情感态度与价值观目标:学生能够积极参与课堂讨论,培养自己的合作意识和团队精神,增强对数学学习的兴趣和自信心。

四. 说教学重难点1.教学重点:学生能够理解二次函数与一元二次方程之间的关系,能够将一元二次方程转化为二次函数的问题,并能够运用二次函数的知识解决实际问题。

2.教学难点:学生能够理解二次函数的图像与一元二次方程的解法之间的联系,能够运用二次函数的知识解决实际问题。

五. 说教学方法与手段在教学过程中,我将采用讲授法、引导发现法、讨论法和练习法等教学方法。

同时,我还将利用多媒体课件和黑板等教学手段,帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入:通过一个实际问题,引出二次函数与一元二次方程之间的关系,激发学生的兴趣和好奇心。

2.讲解:通过讲解和示例,引导学生理解和掌握二次函数与一元二次方程之间的关系,以及如何将一元二次方程转化为二次函数的问题。

3.练习:通过课堂练习和小组讨论,巩固学生对二次函数与一元二次方程之间关系的理解,培养学生的思考能力和解决问题的能力。

22.4 二次函数与一元二次方程讲学稿

22.4  二次函数与一元二次方程讲学稿

22.4 二次函数与一元二次方程讲学稿执笔:李新丰审核:焦道胜金峰教学目标:1.会用函数图象的交点解释方程的根的意义;2.能结合二次函数的图象与x轴的交点的个数判断一元二次方程的根的存在性和根的个数;3.了解函数的零点与对应方程根的联系.教学重点:根据二次函数的图象与x轴的交点的个数判断一元二次方程的根的个数.教学难点根据二次函数的图象与x轴的交点的个数判断一元二次方程的根的个数.教学过程:一、提出统摄性问题,创设适宜情境,引入新课我们知道,等式x2-2x-3=0是关于x的一元二次方程,关系式y =x2-2x-3则是关于自变量x的一个二次函数,那么,二次函数与对应的一元二次方程有什么关系?它们有哪些联系?这些联系对于研究函数问题有怎样的作用?这就是我们这节课所要研究的问题.(引入新课,书写课题——二次函数与一元二次方程)二、学生活动(一)探究二次函数与对应的一元二次方程之间的关系问题1:你能快速地求出一元二次方程x2—2x—3=0的根吗?请画出二次函数y =x2-2x-3的图象.(生动手画图,师生共同归纳画二次函数图象的步骤)方法引导:画二次函数简图的步骤:(1) 先根据二次项系数确定图象的开口方向,即当a>0时,图象开口向上;当a<0时,图象开口向下.(2) 再根据x=2ba -画出函数的对称轴.(3) 确定函数图象与两坐标轴的交点,成图.问题2:请观察你所画的函数图象,研究图象上的一些特殊点以及二次方程x 2-2x-3=0的根,你有什么发现吗?(组织学生交流,得出如下结论)结论:(1) 一元二次方程x 2-2x-3=0的两个实数根就是二次函数y =x 2-2x-3的图象与x 轴交点的横坐标.(2) 一元二次方程x 2-2x-3=0的两个实数根即为二次函数y =x 2-2x-3的函数值等于0时的自变量x 的值.问题3:研究一元二次方程x 2-2x-3=0的根的个数及其判别式与二次函数y =x 2-2x-3的开口方向和顶点位置,你能得到什么结论?结论:(1) 一元二次方程x 2-2x-3=0有两个不相等的实数根,判别式Δ>0;(2) 二次函数y =x 2-2x-3的开口向上,顶点在x 轴下方;(3) 方程x 2-2x-3=0有两个不相等的实数根⇔判别式Δ>0⇔对应的二次函数y =x 2-2x-3的开口向上且顶点在x 轴下方;问题4:你能将这个结论进行推广吗?(学生思考,同时投影显示如下问题) 合作探究:一元二次方程ax 2+bx+c=0(a>0)的根的个数及其判别式与二次函数y= ax 2+bx+c=0(a>0)的开口方向和顶点位置之间有什么联系?(师生共同结合函数ax 2+bx+c=0(a>0)的图象的不同情形,得出如下结论) 方程ax 2+bx+c=0(a>0)有两个不相等的实数根⇔判别式Δ>0⇔对应的二次函数y =ax 2+bx+c(a>0)的开口向上且顶点在x 轴下方;方程ax 2+bx+c=0(a>0)有两个相等的实数根⇔判别式Δ=0⇔对应的二次函数y =ax 2+bx+c(a>0)的开口向上且顶点在x 轴上;方程ax 2+bx+c=0(a>0)没有实数根⇔判别式Δ<0⇔对应的二次函数y =ax 2+bx+c(a>0)的开口向上且顶点在x 轴上方.也就是说,判断一个方程是否有解以及解的个数的问题,可以转化为讨论对应的二次函数的图象开口方向以及顶点与x 轴的位置问题.也可以通过二次函数对应的二次方程的根的个数来判断二次函数的开口方向以及顶点位置.思考:当二次函数y =ax 2+bx+c(a <0)时,是否也有类似的结论呢?(二) 函数与方程关系的应用[例1]求证:一元二次方程2x 2+3x-7=0有两个不相等的实数根.根据我们前面研究的结论,你觉得应该如何完成上题的证明呢?证法一:因为一元二次方程2x 2+3x-7=0 的判别式Δ=32-4×2×(-7)=65>0,所以方程2x 2+3x-7=0有两个不相等的实数根.证法二:设f(x)= 2x 2+3x-7,因为函数的图象是一条开口向上的抛物线,且顶点在x 轴的下方,即2333()2()3()770444f -=-+⨯--=-<,所以函数f(x)= 2x 2+3x-7图象与x 轴有两个不同的交点,即方程2x 2+3x-7=0有两个不相等的实数根.思考:该题还有其他证法吗?[例2]右图是一个二次函数y=f(x)的图象.(1) 写出这个二次函数的零点;(2) 写出这个二次函数的解析式;(3) 试比较f(-4) f(-1),f(0) f(2)与0的大小关系. 问题:什么是函数的零点?所谓函数的零点,是指函数图象上函数值为0的点的横坐标,你能说出求函数零点的本质是什么吗?求函数的零点即解与函数对应的方程.问题:你能由图中找到二次函数的零点吗?请同学们回顾一下初中确定一个二次函数的解析式都有哪些方法呢?[学生交流归纳求二次函数解析式的常见方法]方法一:设函数解析式为y =ax2+bx+c(a≠0),再根据题意得到关于a、b、c的三个方程,联立方程,解方程组确定出y =ax2+bx+c(a≠0).方法二:根据题中具体要求,也可设函数的解析式为y=a(x-x1)(x-x2),进而求出函数的对应变量的值.方法三:也可设解析式为顶点式,进而求出函数的解析式.问:你能根据题目的具体条件选拔具体的方法确定上题中函数的解析式吗?(师板书解题过程)(3)解:由(1),可知这个函数的解析式可设为f(x)=a(x+3)(x-1),由f(-1)=4可知a=-1,故f(x)=- (x+3)(x-1),即这个二次函数的解析式为f(x)=-x2-2x+3.方法引导:要比较二次函数图象上两个自变量所对应的函数值的乘积与0的大小关系,只需判断各个自变量的值的大小、正负以及函数零点之间的关系.(4)解:由函数图象可知f(-4)=-5,f(-1)=4,f(0)=3,f(2)=5,所以f(-4) ·f(-1)=-20<0,f(0)·f(2)=-15<0.三、课堂小结1.一元二次方程根的个数的判断方法;2.函数的零点和方程的根的联系.四、布置作业课本第30页习题第1、2、3题.。

一元二次方程、二次函数说课稿

一元二次方程、二次函数说课稿

一元二次方程说课稿尊敬的评委老师:上午好,我是15号考生。

今天我的说课题目是一元二次方程,我将根据新课标的思路从说教材、说教法学法、说教学过程、说板书设计四个方面进行我今天的说课。

首先说教材本节课采用的是人教版初中数学九年级上册第一章第一节第一课时,是学习了一元一次方程、二元一次方程后对一元二次方程的进一步学习,为后面二次函数的学习做铺垫,具有承上启下的作用,在初中数学知识体系中具有重要的地位。

根据新课标的要求结合学生的基本情况,我设计了以下教学目标:1.知识与技能目标:通过类比一元一次方程,了解一元二次方程的概念及一般形式。

2.过程与方法目标:在探究过程中联系一元二次方程与实际生活,体会数学建模的思想。

3.情感态度与价值观目标:通过类比的学习过程中,减少学习数学的陌生感,增加学习的乐趣。

根据本节课的知识,我设置了以下教学重点和教学难点教学重点:通过类比一元一次方程,了解一元二次方程的概念及一般形式和一元二次方程解。

教学难点:一元二次方程及其二次项、一次项系数和常数项的识别。

为了达成教学目标,突破教学重点难点,完成有效的教学活动,我设计了以下教法和学法。

说教法学法本节课将根据新课标以学生为主体的理念,积极发挥教师的引导作用,完成教师教与学生学的统一,真正将课堂还给学生。

我将采用启发性的教学方法,创设教学情境,运用多媒体等直观性的教具,激发学生的主观能动性,通过学生自主学习、合作交流、探究实践体会数学学习中蕴含的类比等数学思维,提高数学的综合素养。

说教学过程本节课我将以新课标为准绳,借助多媒体课件,以小组学习为依托。

将本班学生分为若干个小组,每个小组由A/B/C/D/E五个不同层次的学生组成。

此种分组学习的方式有助于学生合作交流、探究实践、共同提高。

教学过程分为四步第一,创设情境,导入新课通过白板动画展示人体雕像黄金比例的问题,导入一元二次方程,引导学生思考此类方程与之前学过的一元一次方程的不同点。

二次函数与一元二次方程说课稿课件

二次函数与一元二次方程说课稿课件
布置作业:习题2.9 1、2、3
设计思想
• 根据本节内容,采用问题启迪,互动交流的方法来引导学 生探索研究,归纳总结,形成认知结构,培养思维能力。 为此,我以简短的具体问题导入对每一环节都针对性地设 计一些问题,并注意设问的技巧,以便促进学生对概念的 理解和学习能力的提高,同时在设计过程中加强归纳总结, 拓展推广,体现从特殊到一般的哲学思想是研究问题的常 规方法之一,不断地引导学生发现新问题,提出新问题, 激发学生的学习兴趣和求知欲。
为充分发挥学生的主体性和教师的主导辅助作用,教学 过程中设计了六个教学环节:1、创设问题情境,引入新课;2、
活动探究; 3、课堂点睛;4、课堂练习;5、小结思考;6、
作业布置。
教学程序
一、创设问题情境,引入新课
我们学习了一元一次方程kx+b=0(k≠0)和一次 函数y=kx+b(k≠0)后,讨论了它们之间的关 系.当一次函数中的函数值y=0时,一次函数y= kx+b就转化成了一元一次方程kx+b=0,且一次 函数y=kx+b(k≠0)的图象与x轴交点的横坐标即 为一元一次方程kx+b=0的解.
2 抛物线y=0.5x2-x+3与x轴的交点情况是( c )
A 两个交点 B 一个交点 C 没有交点 D 画出图象后才能说明 3 抛物线y=x2-4x+4与轴有 一 个交点,坐标是 (2,0) 。
4 不画图象,求抛物线y=x2-3x-4与x轴的交点坐标。 解:∵解方程x2-3x-4=0得: x1=-1,x2=4 ∴抛物线y=x2-3x-4与x轴的交点坐标是: (-1,0)和(4,0)
北师大版九年级数学下册
一、教材与目标 二、学情与教法 三、教学程序与评价
教材分析
第一课时是在学生对二次函数图象、性质以及一元 二次方程的学习后进行的综合学习。学生已具备了相应 的学习经验,如画二次函数图象、求抛物线与轴的交点、 判别一元二次方程根的情况等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数与一元二次方
程说课稿
集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-
《<二次函数与一元二次方程>第一课时》说课稿
付家堰中小学刘家付
各位领导、专家:
大家好!我今天的说课内容是人教版九年级上册第22章第二节《二次函数与一元二次方程》的第一课时的教学内容,现就我对本节课的教学安排和教学思路向各位领导和专家汇报如下:
一、教材分析
本节主要内容是用函数的观念看一元二次方程,探讨二次函数与一元二次方程的关系。

教材从一次函数与一元一次方程的关系入手,通过类比引出二次函数与一元二次方程之间的关系问题,并结合一个具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系。

这一节是反映函数与方程这两个重要数学概念之间的联系的内容。

二、学情分析
1、知识掌握上,学生对二次函数的图象及其性质和一元二次方程的解的情况都有所了解,特别的,八年级时学生已经了解到了一次函数和一元一次方程的解之间的关系,因而,对于本节所要学习的二次函数与一元二次方程之间的关系利用类比的方法让学生在自学的基础上进行交流合作学习应该不是难题。

2、学生学习本节课的知识障碍就是建立二次函数与一元二次方程之间的联系,渗透数形结合的思想。

3、心理上,老师应抓住一元二次方程的求解方法很多,在学习了因式分解法、配方法、求根公式法等的基础上,激发学生对一元二次方程的其它解法的探求兴趣,进而由一次函
数与一元一次方程的关系类比到二次函数的图象与一元二次方程的根的情况上来,顺着学生的思维逐步引导加以激发。

三、教学目标
根据新课标的要求及九年级学生的认知水平特制定本节课的教学目标如下:
知识与技能:
掌握二次函数与一元二次方程的联系。

过程与方法:
经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。

情感、态度与价值观:
1、经历探索二次函数与一元二次方程的关系的过程,提高学生的分析能力与在探索过程中抽象概括能力。

2、培养学生团结合作学习的良好意识和积极进取的精神。

3、培养学生用联系的观点看问题。

四、教学重难点
重点:二次函数的图象和一元二次方程的联系。

难点:培养学生的数形结合的意识和学会用数形结合的方法解决问题。

五、教学策略
采用类比的方法在学生自学的基础上放手让学生大胆地猜想、交流,分组合作,同时老师设定一定的问题环境来引导学生的探究过程,最后在老师的释疑、归纳、拓展、总结的过程中结束本节课的教学。

为充分发挥学生的主体性和教师的主导辅助作用,教学过程中设计了十个教学环节:1、问题呈现;2、课前小试;3、情境导入;4、合作探究;5、知识小结;6、知识反馈;7、知识归纳;8、课堂检测;9、我的收获和疑惑;10、作业布置。

六、教学程序设计
1、问题呈现
(1)你对一次函数y=2x-3的图象在X轴上方、下方、X轴上的点的坐标的特点是怎么理解的?
(2)用图象法解方程:2x-3=0
(3)你在解一元二次方程时,通常会想到哪几种解法?
(4)你想过能否象用一次函数图象来解一元一次方程那样去用二次函数图象来解一元二次方程吗?该怎样去操作呢?
安排这一环节的意图:通过这些问题让学生把新旧知识连接起来,从而在旧知识的基础上找出解决新问题的方法。

同时也可使学生养成一个主动思考和善于思考的学习习惯。

2、课前小试
1.y=ax2+bx+c(a,b,c是常数,a≠0),y叫做x的__________。

它的图象是一条抛物线。

它的对称轴是直线x=_____,顶点坐标是(,)。

2.抛物线y=2(x-2)(x-3)与x轴的交点为___________,与y轴的交点为________。

3.求方程:x2-2x+2=0的根。

4.函数y=x2-2x+2当y=0,1,2时,x等于多少?
安排这一环节的意图:检测和加强对前面知识的掌握,并为本节的导入作铺垫。

3、情景导入
事例:以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t-5t2.
安排这一环节的意图:从生活中引出数学事例。

告诉学生数学与生活紧密相关的。

4、合作探究
认真思考情景中的事例,完成以下几个问题:
(1)小球的飞行高度能否达到15m?如果能,需要多少飞行时间?
(2)小球的飞行高度能否达到20m?如能,需要多少飞行时间?
(3)小球的飞行高度能否达到20.5m?为什么?
(4)小球从飞出到落地要用多少时间?
(5)画出函数h=20t-5t2的图像和函数h=15,h=20,h=20.5,h=0的图像。

(6)说出图像上函数h=15,h=20,h=20.5,h=0分别与函数h=20t-5t2的交点情况。

(7)从函数解析式和函数图像两方面思考,(1)(2)(3)(4)和(6)之间存在什么联系?
安排这一环节的意图:让学生根据函数的函数值去求自变量的值和巩固画函数图像的步骤;让学生自己去探究数字与图像之间的联系。

5、知识小结
(1)在第(1)小题中,一元二次方程有两个解,从函数解析式看,就是自变量取这两个值时函数值为15,从函数的图像看,就是直线h=15与抛物线h=20t-5t2有两个公共点。

(2)在第(2)小题中,一元二次方程有两个相同的解,从函数解析式看,就是自变量取这个值时函数值为20,从函数的图像看,就是直线h=20与抛物线h=20t-5t2有一个公共点。

(3)在第(3)小题中,一元二次方程无实数解,从函数解析式看,就是自变量取任何实数值时函数值都不会为20.5,从函数的图像看,就是直线h=20.5与抛物线h=20t-5t2没有公共点。

(4)在第(4)小题中,一元二次方程有两个解,从函数解析式看,就是自变量这两个值时函数值为0,从函数的图像看,就是t轴与抛物线h=20t-5t2有两个公共点。

6、知识反馈
(1)函数y=x2-6x+9的图像与x轴有公共点吗?如果有,公共点的横坐标是多少?当
y=0时,x等于多少?当x取公共点的横坐标时,函数值是多少?由此,x2-6x+9=0的根是多少?
(2)能利用(1)中方法得出x2+x-2=0和x2-x+1=0的根吗?
(3)如二次函数y=ax2+bx+c与x轴没有公共点,ax2+bx+c=0有几个根?如有一个公共点呢?有两个公共点呢?
安排这一环节的意图:让学生在理解情景中问题的基础上完成这两个问题,并且学生自己去发现和总结规律。

7、知识归纳
一般地,从二次函数y=ax2+bx+c的图象可知:
(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x0,那么当x=x。

时,函数值是0,因此x=x。

是方程ax2+bx+c=0的一个根.
(2)二次函数y=ax2+bx+c的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点.这对应着一元二次方程ax2+bx+c=0的根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根.
8、课堂检测
(1)完成下列表格
安排这一环节的意图:教学过程中学生往往对所学的知识和探究的问题感觉比较零乱,没有一个系统的、一般的理解与认识。

所以安排这一教学环节来及时地把问题和教学内容进行整理和归纳,给学生一明细的系统化的认知。

(2)完成课本P47第一题。

9、我的收获和疑惑
课程结束时,让学生谈谈自己的收获以及还有哪些问题没能搞明白。

安排这一环节的意图:这一环节可以促使学生对本节课的内容进行主动的、深层次的的回顾与反思,从而加深学生对所学知识的整理、记忆与理解,同时也便于老师对课堂教学效果的及时掌握和调整以后的教学思路。

10、作业布置:
课堂作业:A:教材P45第三题;B:教材P45第二题;C:教材P45第一题。

课外作业:(1):长江作业中本节内容;
(2):探究二次函数与一元二次不等式的关系。

作业设计的意图:分层课堂作业的的布置主要强化不同学生对基础知识和本节知识点的练习,课外作业的布置主要想通过“探究二次函数与一元二次不等式的关系”来强化学生对类比数学思想的运用,锻炼学生的自主学习和合作学习的能力。

本节课评价和反思:
总之,在教学过程中,我始终遵循着“有效的数学学习活动不能单独地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。

”在本课中,注意发挥学生的主体作用,让学生通过自主探究、合作学习来主动发现问题、提出问题、解决问题,实现师生互动,通过这样的教学实践取得了良好的教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,使他们能够在独立思考与团结合作学习交流中解决学习中的问题。

以上是我对本节课的设想,不足之处请各位专家批评、指正,谢谢!。

相关文档
最新文档