模具的寿命与失效外文翻译、中英文翻译、外文文献翻译

合集下载

冷冲模具毕业设计外文翻译-----冷冲模具使用寿命的影响及对策

冷冲模具毕业设计外文翻译-----冷冲模具使用寿命的影响及对策

Die Life of cold stamping die and mprovementsOverview of stamping dieStamping Die - Stamping in the cold, the material (metal or non-metallic) processing into parts (or half) of a special technical equipment, called cold stamping die (commonly known as Die). Press - is at room temperature, using the die installed in the press to put pressure on the material to produce a separation or plastic deformation, and thus to obtain the necessary parts of a pressure processing method.Stamping die in the form of many, the general categories according to the following main features:1. According to the technical nature of(1) Die along the closed or open contour the material are derived from mold. If blanking die, punch die, cut off the mold, cut mode, cutting mode, split mode, etc..(2) bending mode to blank or blank sheet along a straight line (curved line) to bend, deform, and thus obtain a certain angle and shape of the workpiece in the mold.(3) The drawing die is made of the blank sheet opening hollow, or hollow pieces of further changes to the shape and size of the mold.(4) Die rough or semi-finished workpiece is convex according to plan, direct copy the shape of the die shape, the material itself, generate only local plastic deformation of the mold. Such as the bulging mode, reducing the die, expansion die, forming die rolling, flanging mold, plastic mold.2. According to the degree classification process combination(1) single process model in a press tour, just completed a die stamping process.(2) composite model is only one station, in a press tour, at the same station at the same time to complete more than two or two die stamping process.(3) Progressive Die (also known as the modulus of continuity) in the feeding direction, rough, with two or more of the station, at the press of a visit, work in different places on the completion of two or two successive Road over stamping die process.Chong called cold stamping die Die-wide.Cold stamping die is used in cold stamping die mold industry, and accessories required for high-performance structural ceramic materials, preparation methods, high-performance ceramic materials, molds and accessories from the zirconium oxide and yttrium aluminum powder increases, Pr element composition, Preparation is the solution of zirconia, yttria solution, praseodymium oxide solution, according to a certain percentage of alumina solution when mixed liquor, ammonium bicarbonate infusion, by co-precipitation synthesis of ceramic materials, molds and accessories needed for raw materials, reaction precipitate generated by the treatment, drying, calcining and accessories by high performance ceramic mold material superfine powder, and then after forming, sintering, finishing, they will have high-performance ceramic materials,molds and accessories. Advantages of this invention is the invention made of cold stamping dies and parts and long service life, the process does not appear in the press and its parts and stamping die bond generated the phenomenon of stamping surface is smooth, no glitches, can replace traditional high-speed steel, tungsten steel.Die with the main partsDie stamping tools is the main process equipment, stamping rely on the relative movement under the mold completed. Processing time because the upper and lower mold between the constant division and, if continued operation of the fingers of workers to enter or remain in the mold closed, there will certainly pose a serious threat to their personal safety.(A) of the mold main parts, function and safety requirements1. Working parts is a direct punch to blank forming the working parts, therefore, it is the key to mold parts. Punch not only sophisticated and complex, it should meet the following requirements:(1) be of sufficient strength, can not be broken or destroyed during stamping.(2) should be appropriate to its material and heat treatment requirements, to prevent too high hardness and brittle fracture.2. Positioning parts positioning part is to determine the location of the parts installed blank, there are pins (board), gauge pin (plate), lead is sold, guide plate, knife set from the side, side pressure etc.. Design should be considered when positioning parts easy to operate and should not have had orientation, location to facilitate observation, preferably in the forward position, contouring to correct the pin location and positioning.3. Binder, unloading and discharging parts binder components are blank holder, binder board. Blank holder pressure can drawing blank holder force, thereby preventing billets under the action of the tangential pressure arch formed folds. The role of pressure plate to prevent movement and bounce blank. Top of the device, discharge board's role is to facilitate the pieces and clean up waste. Them by the spring, rubber and equipment, putting on the air-cushion support, can move up and down, knocking out pieces of the design should have enough top output, movement to the limited spaces. Stripper plate area should be minimized or closed position in the operating groove milling out empty-handed. Exposure of the stripper plate should have protection around the plate, to prevent finger inserted into or foreign objects inside, exposed surface edges should be blunt down.4. Guide parts and guide sleeve guide pin is the most widely used part of a guide. Its role is to ensure punch the punching clearance when accurate match. Therefore, the guide posts, guide cover the gap should be less than the blanking clearance. Guide Post located next mold base, to ensure that the stroke bottom dead center, the lead column in the template on the face over the top for at least 5 to 10 mm. Guide columns should be arranged far away from the module and the pressure plate in the area, so the operator's arms do not get to take over the lead column material.5. Supporting and clamping the upper and lower parts which includes templates, die handle,fixed plate punch, plate, stopper, etc..Up and down the template is the basis of the cold die parts, other parts are respectively fixed at the top. Template plane size, especially around the direction to be compatible with the workpiece, too large or too small are not conducive to action.Some molds (blanking, punching type mold) to the pieces of convenience, be set up under the mold plate. At this time the best and the template plate connected between the screw, the two plate thickness should be absolutely equal. Plate spacing out the pieces to be able to prevail, not too much, so as not to break the template.6. Fastening parts which includes screws, nuts, springs, pins, washers, etc., are generally used standard parts. Die more with the amount of standard parts, design choice and flexibility should be tightened to ensure the top out of the need to avoid exposure to the surface fastener operating position, the staff and impede operation to prevent bumps.Die with the development ofSince reform and opening, with the rapid development of the national economy, the market demand with the growing Die. In recent years, Die with the industry has been around 15% growth rate of the rapid development of industrial enterprises with ownership Die components also changed dramatically, in addition to the professional mold factory outside of state-owned, collective, joint ventures, wholly-owned and private has been a rapid development.As with the accelerating pace of international integration, the increasing competition in the market, it has been increasingly recognized product quality, cost, and new product development capacities. The cold die manufacturing is the most basic elements of the chain, one of the cold die manufacturing technology to measure a country's manufacturing sector has become an important symbol of the level, and largely determine the viability of enterprises.Die with enterprises to increase in recent years many technological advances for investment, technological progress will be seen as an important driving force for enterprise development. Some domestic enterprises have popularized the two-dimensional mold CAD, and gradually began to use UG, Pro / Engineer, I-DEAS, Euclid-IS and other international common software, individual manufacturers have also introduced Moldflow, C-Flow, DYNAFORM, Optris and MAGMASOFT etc. CAE software, and successfully applied in stamping die design.A car cover mold as the representative of a large stamping die manufacturing technology has made great progress, Dongfeng Motor Corporation mold factory, mold manufacturers such as FAW mold center has been able to produce some car cover mold. In addition, many research institutions and universities to carry out technology research and development of mold. After years of effort, in the mold CAD / CAE / CAM technology has made remarkable progress; in improving quality and reducing mold die design and manufacturing cycle, and so contributed. Although China Die with the industry over the past decade has made remarkable development, but in many ways compared with the industrialized countries there is still a large gap. Forexample, the precision machining equipment, processing equipment in Die with the relatively low proportion; CAD / CAE / CAM technology penetration is not high; many advanced mold technology not widely so, resulting in a considerable number of large, sophisticated, complex and long Die life with dependence on imports.With the continuous progress of science and technology, modern industrial production of increasingly complex and diverse, product performance and quality is ever increasing, thus the cold stamping technology put forward higher requirements. In order to adapt to the cold stamping technology industry needs, cold stamping technology itself also in innovation and development. cold stamping technology idea is to improve and expand as much as possible the advantages of the cold stamping process, to overcome its shortcomings. in the cold stamping technology development, should note the following aspects:(1) cold stamping technology process parameters should be properly identified and Die with the work of some of the shape and size, to improve the quality of stamping parts and shorten the new product production cycle should be in strengthening the metal forming the basis of theoretical studies, to metal forming theory to practice can produce a direction, and gradually establish a close connection with the actual production of the advanced process of calculation. abroad have begun to use plastic finite element method, automobile parts forming process of the stress and strain analysis and computer simulation to predict the forming part of a process plan on the possibilities and potential problems.(2) to accelerate product replacement, mold design to overcome the shortcomings of a long cycle. Should vigorously carry out computer-aided design and manufacture of molds (CAD / CAM) Research. In my country, paying particular attention to strengthening the multi-position progressive die CAD / CAM Technology.(3) to meet the needs of mass production, and reduce labor intensity. Should strengthen cold stamping of mechanized and automated, so that the average, small pieces of high-speed presses in a multi-position progressive die production, production reached a high degree of automation to further improve stamping productivity.(4) expand the scope of application of cold stamping production. So cold pressing both suitable for mass production, but also for small batch production; both the general accuracy of product production, but also can produce precision parts. Should pay attention to development such as fine blanking (especially thick material fine blanking), forming high-energy, soft mold forming, pressure and processing new superplastic forming process, but also promote the easy mode (soft mode and the low melting point alloy mold), Universal Hybrid model, the use of CNC punch press and other equipment.In addition, the performance improvement of sheet metal stamping, mold new material, die development of new processing methods should be further strengthened.Die with life and CountermeasuresDie with the life of the workpiece by punching out the number of terms. Many factors affect the life Die. There are die structure design, manufacture molds used in the punch and die materials, die quality and surface hardening heat treatment, precision die manufacturing parts and cold stamping materials selection. In addition, there are die installation, adjustment, use and maintenance.1. Die Design on Life(1) Layout design of layout methods and take the boundary value a great impact on the die life, too small to take the boundary value, often causing rapid wear and convex mold, die bite wounds on the. Starting from material savings, take the boundary value smaller the better, but take the edge is less than some value, the cut surface of the mold and the quality of life adversely. There will be left behind in the blanking die Q-gap were to produce spare parts glitch, or even damage the die edge, reduce die life. Therefore, consider increasing the material utilization of the same time, parts must yield, quality and life expectancy to determine the layout methods and take the boundary.(2) die structure prone to stress concentration on the cracking of the die structure, composite structure can be used or mosaic structure, and prestressed structure to enhance the mold life. (3) the impact of clearance when the gap is too small, compressed extrusion of interest, increased friction, increased wear, the wear side of aggravated discharge and push pieces after blanking time, materials and convex, the friction between die will cause wear and tear than the end edge on the side of the grinding much, but also easily lead to convex, concave mold temperature is high, the adsorption of metal debris in the side edge to form a metal tumor, so that male and female die chipping or expansion occurs crack phenomenon. Therefore, the gap is too small to Die Life very bad. Gap is too large will increase the punch and the die face the edge of the concentration of stress, resulting in a sharp increase in stress, so blade edge quickly lose angular yield deformation. Therefore, addition of blanking force, thereby enabling faster edge edge wear, reduce die life. But in order to reduce the male and female die wear, extending mold life, while ensuring quality of stamping pieces under the premise that larger space designed properly it is necessary.(4) Die-oriented structure of the life of a reliable guide for the working parts reduce wear, prevent male and female die bite wound is very effective. In particular, non-small-Q gap Q gap or Die, compound die and multi-position progressive die even more important. To improve the die life, must be based on processes and the demand of precision, the correct choice-oriented form and orientation accuracy, the choice should be higher than the accuracy-oriented convex, concave mold with precision.(5) the impact of cold stamping materials, cold stamping materials selected should meet the design requirements of workpieces and stamping process requirements, or easy to mold damage and reduce mold life. Poor surface quality of cold stamping, punching, cracking when the workpiece is also easy to scratch mold. Bad cold stamping plastic materials, deformation is small,easy to press when the workpiece rupture, but also easy to scratch mold. In addition, the material thickness tolerances shall comply with national standards. Die because of a certain thickness of material suitable for forming, bending, flanging, drawing die of the male and female die structure gap is directly determined by the thickness of the material. Therefore, uneven thickness, will result in waste generation and mold damage.2. Die Die Life ofDie Die Life of a mold material properties, chemical composition, structure, hardness and comprehensive reflection of metallurgical quality. Among them, the material properties and heat treatment affect the quality of the most obvious. Mold material properties on the impact of die life is great. If the same workpiece, using a different mold material of the bending test, the test results: The 9Mn2V material, the life of 5 million; with Crl2MoV nitriding, the life of up to 40 million. Therefore, the choice of materials, the batch size should be based on workpiece, rational use of mold materials. The hardness of the die parts to Die Life a great impact. But not the higher hardness, longer die life. This is because the hardness and strength, toughness and abrasion resistance are closely related. Some die demands of high hardness, long life. Such as the use of T10 steel dies, hardness 54 ~ 58HRC, only washed thousands of times a burr on the workpiece great. If the hardness to 60 ~ 64HRC, the grinding life of up to 2 to 3 million. However, if continue to improve hardness, fracture occurs earlier. Some die hardness should not be too high, as the die manufacturing using Crl2MoV 58 ~ 62HRC hardness, the general life of 2-3 million, invalid form of chipping and cracking, and if the hardness down to 54 ~ 58HRC, life expectancy increased to 5 ~ 60 000, but decreased to 50 ~ 53HRC hardness appears easy to blunt the die edge phenomenon. Thus, mold hardness must be based on material properties and failure modes may be. Should enable the hardness, strength, toughness and wear resistance, resistance to fatigue strength needed to achieve a particular stamping process the best match.3. The surface of the mold heat treatment to strengthen the quality and impact on lifeMold heat treatment the nature and quality of life of the mold a great impact. Practice shows that the die parts of the quenching distortion and cracking, early fracture during use, while the metallurgical and materials quality, forging quality, mold structure and process related, but related more to die of heat treatment. According to statistical analysis of failure causes of mold, heat treatment failure due to improper accounting for more than 50%. Practice shows that the mold material must be accompanied by high heat treatment process properly, can really play a material's potential. Parts surface hardening mold work purpose is to obtain the effect of external hard tough inside, so be hardness, wear resistance, toughness, good resistance to fatigue with. Many ways to die surface hardening, surface treatment technology of new technologies developed rapidly. In addition to Nitrocarburizing and ion nitride, boride, seepage niobium, vanadium permeability, hard chrome plated and spark strengthening, the chemical vapor deposition (CVD) and physical vapor deposition (PVD) has been gradually adopted. By CVD and PVD treatment, the mold surface covered with super-hard material, such as TiC, TiN, etc..High hardness, wear resistance, corrosion resistance, adhesion is very good, can improve the die life several times to several times.4. Manufacturing precision of the die parts of die lifePrecision die manufacturing and life in it in particular, mold surface roughness on the mold a great impact. If using Crl2MoV steel blanking die, if the surface roughness value R = 1.6 m, its life span is about 30,000. Such as polished by the precision, surface roughness value R = 0.4 m, life can be increased to 4-5 million. Therefore, the working parts of the mold surface, the general must go through grinding, grinding, polishing and other finishing and fine processing.5. Other aspects of the impact of die life(1) Press the accuracy is not high, but also easy to make die damage.(2) die in the press or not installed properly and the operator's technical level, on the tool life is also greatly affected.(3) dies in the custody and maintenance of good and bad, and the use of lubricant condition also affects mold life.6. ConclusionIn actual production, sheet metal dies for use, rare case of non-normal wear and tear. But when the die plate was found prone to irregular wear, we always study for the problems summarized. Because of a cold die, from the design, manufacture, assembly, commissioning and installation and use, all spent many hours, while the convex die, die material used, mostly high-quality alloy steel. Therefore, the die cost is relatively high. Therefore, in the production of understanding the factors that affect the die life and take the appropriate measures to guide the production of great practical significance.冷冲模具使用寿命的影响及对策冲压模具概述冲压模具--在冷冲压加工中,将材料(金属或非金属)加工成零件(或半成品)的一种特殊工艺装备,称为冷冲压模具(俗称冷冲模)。

塑料注塑模具中英文对照外文翻译文献

塑料注塑模具中英文对照外文翻译文献

外文翻译及原文(文档含英文原文和中文翻译)【原文一】CONCURRENT DESIGN OF PLASTICS INJECTION MOULDS AbstractThe plastic product manufacturing industry has been growing rapidly in recent years. One of the most popular processes for making plastic parts is injection moulding. The design of injection mould is critically important to product quality and efficient product processing.Mould-making companies, who wish to maintain the competitive edge, desire to shorten both design and manufacturing leading times of the by applying a systematic mould design process. The mould industry is an important support industry during the product development process, serving as an important link between the product designer and manufacturer. Product development has changed from the traditional serial process of design, followed by manufacture, to a more organized concurrent process where design and manufacture are considered at a very early stage of design. The concept of concurrent engineering (CE) is no longer new and yet it is still applicable and relevant in today’s manuf acturing environment. Team working spirit, management involvement, total design process and integration of IT tools are still the essence of CE. The application of The CE process to the design of an injection process involves the simultaneous consideration of plastic part design, mould design and injection moulding machine selection, production scheduling and cost as early as possible in the design stage.This paper presents the basic structure of an injection mould design. The basis of this system arises from an analysis of the injection mould design process for mould design companies. This injection mould design system covers both the mould design process and mould knowledge management. Finally the principle of concurrent engineering process is outlined and then its principle is applied to the design of a plastic injection mould.Keywords :Plastic injection mould design, Concurrent engineering, Computer aided engineering, Moulding conditions, Plastic injection moulding, Flow simulation1.IntroductionInjection moulds are always expensive to make, unfortunately without a mould it can not be possible ho have a moulded product. Every mould maker has his/her own approach to design a mould and there are many different ways of designing and building a mould. Surely one of the most critical parameters to be considered in the design stage of the mould is the number of cavities, methods of injection, types of runners, methods of gating, methods of ejection, capacity and features of the injection moulding machines. Mould cost, mould quality and cost of mould product are inseparableIn today’s completive environment, computer aided mould filling simulation packages can accurately predict the fill patterns of any part. This allows for quick simulations of gate placements and helps finding the optimal location. Engineers can perform moulding trials on the computer before the part design is completed. Process engineers can systematically predict a design and process window, and can obtain information about the cumulative effect of the process variables that influence part performance, cost, and appearance.2.Injection MouldingInjection moulding is one of the most effective ways to bring out the best in plastics. It is universally used to make complex, finished parts, often in a single step, economically, precisely and with little waste. Mass production of plastic parts mostly utilizes moulds. The manufacturing process and involving moulds must be designed after passing through the appearance evaluation and the structure optimization of the product design. Designers face a hugenumber of options when they create injection-moulded components. Concurrent engineering requires an engineer to consider the manufacturing process of the designed product in the development phase. A good design of the product is unable to go to the market if its manufacturing process is impossible or too expensive. Integration of process simulation, rapid prototyping and manufacturing can reduce the risk associated with moving from CAD to CAM and further enhance the validity of the product development.3. Importance of Computer Aided Injection Mould DesignThe injection moulding design task can be highly complex. Computer Aided Engineering (CAE) analysis tools provide enormous advantages of enabling design engineers to consider virtually and part, mould and injection parameters without the real use of any manufacturing and time. The possibility of trying alternative designs or concepts on the computer screen gives the engineers the opportunity to eliminate potential problems before beginning the real production. Moreover, in virtual environment, designers can quickly and easily asses the sensitivity of specific moulding parameters on the quality and manufacturability of the final product. All theseCAE tools enable all these analysis to be completed in a meter of days or even hours, rather than weeks or months needed for the real experimental trial and error cycles. As CAE is used in the early design of part, mould and moulding parameters, the cost savings are substantial not only because of best functioning part and time savings but also the shortens the time needed to launch the product to the market.The need to meet set tolerances of plastic part ties in to all aspects of the moulding process, including part size and shape, resin chemical structure, the fillers used, mould cavity layout, gating, mould cooling and the release mechanisms used. Given this complexity, designers often use computer design tools, such as finite element analysis (FEA) and mould filling analysis (MFA), to reduce development time and cost. FEA determines strain, stress and deflection in a part by dividing the structure into small elements where these parameters can be well defined. MFA evaluates gate position and size to optimize resin flow. It also defines placement of weld lines, areas of excessive stress, and how wall and rib thickness affect flow. Other finite element design tools include mould cooling analysis for temperature distribution, and cycle time and shrinkage analysis for dimensional control and prediction of frozen stress and warpage.The CAE analysis of compression moulded parts is shown in Figure 1. The analysis cycle starts with the creation of a CAD model and a finite element mesh of the mould cavity. After the injection conditions are specified, mould filling, fiber orientation, curing and thermal history, shrinkage and warpage can be simulated. The material properties calculated by the simulation can be used to model the structural behaviour of the part. If required, part design, gate location and processing conditions can be modified in the computer until an acceptable part is obtained. After the analysis is finished an optimized part can be produced with reduced weldline (known also knitline), optimized strength, controlled temperatures and curing, minimized shrinkage and warpage.Machining of the moulds was formerly done manually, with a toolmaker checking each cut. This process became more automated with the growth and widespread use of computer numerically controlled or CNC machining centres. Setup time has also been significantly reduced through the use of special software capable of generating cutter paths directly from a CAD data file. Spindle speeds as high as 100,000 rpm provide further advances in high speed machining. Cutting materials have demonstrated phenomenal performance without the use of any cutting/coolant fluid whatsoever. As a result, the process of machining complex cores and cavities has been accelerated. It is good news that the time it takes to generate a mould is constantly being reduced. The bad news, on the other hand, is that even with all these advances, designing and manufacturing of the mould can still take a long time and can be extremely expensive.Figure 1 CAE analysis of injection moulded partsMany company executives now realize how vital it is to deploy new products to market rapidly. New products are the key to corporate prosperity. They drive corporate revenues, market shares, bottom lines and share prices. A company able to launch good quality products with reasonable prices ahead of their competition not only realizes 100% of the market before rival products arrive but also tends to maintain a dominant position for a few years even after competitive products have finally been announced (Smith, 1991). For most products, these two advantages are dramatic. Rapid product development is now a key aspect of competitive success. Figure 2 shows that only 3–7% of the product mix from the average industrial or electronics company is less than 5 years old. For companies in the top quartile, the number increases to 15–25%. For world-class firms, it is 60–80% (Thompson, 1996). The best companies continuously develop new products. AtHewlett-Packard, over 80% of the profits result from products less than 2 years old! (Neel, 1997)Figure 2. Importance of new product (Jacobs, 2000)With the advances in computer technology and artificial intelligence, efforts have been directed to reduce the cost and lead time in the design and manufacture of an injection mould. Injection mould design has been the main area of interest since it is a complex process involving several sub-designs related to various components of the mould, each requiring expert knowledge and experience. Lee et. al. (1997) proposed a systematic methodology and knowledge base for injection mould design in a concurrent engineering environment.4.Concurrent Engineering in Mould DesignConcurrent Engineering (CE) is a systematic approach to integrated product development process. It represents team values of co-operation, trust and sharing in such a manner that decision making is by consensus, involving all per spectives in parallel, from the very beginning of the productlife-cycle (Evans, 1998). Essentially, CE provides a collaborative, co-operative, collective and simultaneous engineering working environment. A concurrent engineering approach is based on five key elements:1. process2. multidisciplinary team3. integrated design model4. facility5. software infrastructureFigure 3 Methodologies in plastic injection mould design, a) Serial engineering b) Concurrent engineeringIn the plastics and mould industry, CE is very important due to the high cost tooling and long lead times. Typically, CE is utilized by manufacturing prototype tooling early in the design phase to analyze and adjust the design. Production tooling is manufactured as the final step. The manufacturing process and involving moulds must be designed after passing through the appearance evaluation and the structure optimization of the product design. CE requires an engineer to consider the manufacturing process of the designed product in the development phase.A good design of the product is unable to go to the market if its manufacturing process is impossible. Integration of process simulation and rapid prototyping and manufacturing can reduce the risk associated with moving from CAD to CAM and further enhance the validity of the product development.For years, designers have been restricted in what they can produce as they generally have todesign for manufacture (DFM) – that is, adjust their design intent to enable the component (or assembly) to be manufactured using a particular process or processes. In addition, if a mould is used to produce an item, there are therefore automatically inherent restrictions to the design imposed at the very beginning. Taking injection moulding as an example, in order to process a component successfully, at a minimum, the following design elements need to be taken into account:1. . geometry;. draft angles,. Non re-entrants shapes,. near constant wall thickness,. complexity,. split line location, and. surface finish,2. material choice;3. rationalisation of components (reducing assemblies);4. cost.In injection moulding, the manufacture of the mould to produce the injection-moulded components is usually the longest part of the product development process. When utilising rapid modelling, the CAD takes the longer time and therefore becomes the bottleneck.The process design and injection moulding of plastics involves rather complicated and time consuming activities including part design, mould design, injection moulding machine selection, production scheduling, tooling and cost estimation. Traditionally all these activities are done by part designers and mould making personnel in a sequential manner after completing injection moulded plastic part design. Obviously these sequential stages could lead to long product development time. However with the implementation of concurrent engineering process in the all parameters effecting product design, mould design, machine selection, production scheduling,tooling and processing cost are considered as early as possible in the design of the plastic part. When used effectively, CAE methods provide enormous cost and time savings for the part design and manufacturing. These tools allow engineers to virtually test how the part will be processed and how it performs during its normal operating life. The material supplier, designer, moulder and manufacturer should apply these tools concurrently early in the design stage of the plastic parts in order to exploit the cost benefit of CAE. CAE makes it possible to replace traditional, sequential decision-making procedures with a concurrent design process, in which all parties can interact and share information, Figure 3. For plastic injection moulding, CAE and related design data provide an integrated environment that facilitates concurrent engineering for the design and manufacture of the part and mould, as well as material selection and simulation of optimal process control parameters.Qualitative expense comparison associated with the part design changes is shown in Figure 4 , showing the fact that when design changes are done at an early stages on the computer screen, the cost associated with is an order of 10.000 times lower than that if the part is in production. These modifications in plastic parts could arise fr om mould modifications, such as gate location, thickness changes, production delays, quality costs, machine setup times, or design change in plastic parts.Figure 4 Cost of design changes during part product development cycle (Rios et.al, 2001)At the early design stage, part designers and moulders have to finalise part design based on their experiences with similar parts. However as the parts become more complex, it gets rather difficult to predict processing and part performance without the use of CAE tools. Thus for even relatively complex parts, the use of CAE tools to prevent the late and expensive design changesand problems that can arise during and after injection. For the successful implementation of concurrent engineering, there must be buy-in from everyone involved.5.Case StudyFigure 5 shows the initial CAD design of plastics part used for the sprinkler irrigation hydrant leg. One of the essential features of the part is that the part has to remain flat after injection; any warping during the injection causes operating problems.Another important feature the plastic part has to have is a high bending stiffness. A number of feeders in different orientation were added to the part as shown in Figure 5b. These feeders should be designed in a way that it has to contribute the weight of the part as minimum aspossible.Before the design of the mould, the flow analysis of the plastic part was carried out with Moldflow software to enable the selection of the best gate location Figure 6a. The figure indicates that the best point for the gate location is the middle feeder at the centre of the part. As the distortion and warpage of the part after injection was vital from the functionality point of view and it has to be kept at a minimum level, the same software was also utilised to yiled the warpage analysis. Figure 5 b shows the results implying the fact that the warpage well after injection remains within the predefined dimensional tolerances.6. ConclusionsIn the plastic injection moulding, the CAD model of the plastic part obtained from commercial 3D programs could be used for the part performance and injection process analyses. With the aid ofCEA technology and the use of concurrent engineering methodology, not only the injection mould can be designed and manufactured in a very short of period of time with a minimised cost but also all potential problems which may arise from part design, mould design and processing parameters could be eliminated at the very beginning of the mould design. These two tools help part designers and mould makers to develop a good product with a better delivery and faster tooling with less time and money.References1. Smith P, Reinertsen D, The time-to-market race, In: Developing Products in Half the Time. New York, Van Nostrand Reinhold, pp. 3–13, 19912.Thompson J, The total product development organization. Proceedings of the SecondAsia–Pacific Rapid Product Development Conference, Brisbane, 19963.Neel R, Don’t stop after the prototype, Seventh International Conference on Rapid Prototyping, San Francisco, 19974.Jacobs PF, “Chapter 3: Rapid Product Development” in Rapid Tooling: Technologies and Industrial Applications , Ed. Peter D. Hilton; Paul F. Jacobs, Marcel Decker, 20005.Lee R-S, Chen, Y-M, and Lee, C-Z, “Development of a concurrent mould design system: a knowledge based approach”, Computer Integrated Manufacturing Systems, 10(4), 287-307, 19976.Evans B., “Simultaneous Engineering”, Mechanical Engi neering , V ol.110, No.2, pp.38-39, 19987.Rios A, Gramann, PJ and Davis B, “Computer Aided Engineering in Compression Molding”, Composites Fabricators Association Annual Conference , Tampa Bay, 2001【译文一】塑料注塑模具并行设计塑料制品制造业近年迅速成长。

基于deform模具寿命的预测(中英文)

基于deform模具寿命的预测(中英文)

Abstract摘要This paper describes the estimation method of die service life based on wear and the plastic deformation of dies in hot forging processes. Die service life is considerably shortened due to the thermal softening of surface layer, caused by the high thermal load and long contact time between the dies and the deforming material. Also, the die service life depended on wear and the plastic deformation of dies can be to a large extent determined by finite element (FE) analysis, wear and thermal softening tests. These are some of the major limiting factors affects die accuracy and die service life, and forming velocity and initial die temperatures influence greatly wear and the plastic deformation of hot forging dies. In this study, two methods are suggested for estimating the service life of hot forging dies by plastic deformation and abrasive wear, and these applied to predict the product quantity according to two main process variables, forming velocity and initial die temperature for a spindle component. Through the applications of the suggested methods, the thermal softening of dies due to the local temperature rise led to the reduction of the service life of hot forging dies by plastic deformation more than by abrasive wear. © 2004 Elsevier B.V. All rights reserved.本文介绍了计算方法的模具使用寿命基于磨损和塑性变形的模具在热锻过程。

注塑模具设计外文翻译

注塑模具设计外文翻译

毕业设计(论文)外文资料翻译及原文(2012届)题目电话机三维造型与注塑模具设计指导教师院系工学院班级学号姓名二〇一一年十二月六日【译文一】塑料注塑模具并行设计Assist.Prof.Dr. A. Y AYLA /Prof.Dr. Paş a YAYLA摘要塑料制品制造业近年迅速成长。

其中最受欢迎的制作过程是注塑塑料零件。

注塑模具的设计对产品质量和效率的产品加工非常重要。

模具公司想保持竞争优势,就必须缩短模具设计和制造的周期。

模具是工业的一个重要支持行业,在产品开发过程中作为一个重要产品设计师和制造商之间的联系。

产品开发经历了从传统的串行开发设计制造到有组织的并行设计和制造过程中,被认为是在非常早期的阶段的设计。

并行工程的概念(CE)不再是新的,但它仍然是适用于当今的相关环境。

团队合作精神、管理参与、总体设计过程和整合IT工具仍然是并行工程的本质。

CE过程的应用设计的注射过程包括同时考虑塑件设计、模具设计和注塑成型机的选择、生产调度和成本中尽快设计阶段。

介绍了注射模具的基本结构设计。

在该系统的基础上,模具设计公司分析注塑模具设计过程。

该注射模设计系统包括模具设计过程及模具知识管理。

最后的原则概述了塑料注射模并行工程过程并对其原理应用到设计。

关键词:塑料注射模设计、并行工程、计算机辅助工程、成型条件、塑料注塑、流动模拟1、简介注塑模具总是昂贵的,不幸的是没有模具就不可能生产模具制品。

每一个模具制造商都有他/她自己的方法来设计模具,有许多不同的设计与建造模具。

当然最关键的参数之一,要考虑到模具设计阶段是大量的计算、注射的方法,浇注的的方法、研究注射成型机容量和特点。

模具的成本、模具的质量和制件质量是分不开的在针对今天的计算机辅助充型模拟软件包能准确地预测任何部分充填模式环境中。

这允许快速模拟实习,帮助找到模具的最佳位置。

工程师可以在电脑上执行成型试验前完成零件设计。

工程师可以预测过程系统设计和加工窗口,并能获得信息累积所带来的影响,如部分过程变量影响性能、成本、外观等。

外文翻译---模具存在的问题及发展状况

外文翻译---模具存在的问题及发展状况

外文资料翻译Problems and development of mouldIn modern production of dies and moulds, is the production of various important processes of industrial products and equipment, he it to its specific shape by means of certain raw materials. For example, stampings and forgings by stamping and forging a way that is obtained on plastic deformation occurs in the mold of metallic materials, metal die casting, powder metallurgy components as well as plastic, ceramics, rubber, glass and other non-metallic parts, the vast majority through mould forming. Due to mould forming with high quality, high yield, materials, low-cost characteristics, is now in the national economic sectors, especially automobiles, tractors, aerospace, instrumentation, mechanical manufacturing, household appliances, petrochemical, light industry and other daily necessities are extremely wide range of applications in the industrial sector.Now, technology has become a country's products in the manufacture of the die level one of the important symbols of, research and development of mould technology, promoting the development of the national economy has a special significance. Mold industry to promote the development and the improvement of the quality of industrial production, and to have a great economic benefit, resulting each country attaches great importance to and appreciated. In Japan, mould was known as "into the motivity of affluent society", in Germany called "Kings in the metal processing industry", in Romania as "mold is gold". So it can be asserted, as the rapid development of industrial production, mould industry position in the national economy will be growing, mold technology will also continue to develop and play an increasingly important role in the development of the national economy.Mold is the content of high technology products, is designed for industrial production, and for a specific product is special production process equipment, with the development of industrial products to diversify, moldproduction, material from the shape, size, quantity, structure, accuracy, conditions of use and terms of life, towards diversified development trends are becoming increasingly apparent. Single piece production mold is essentially according to the order contract, therefore, mold product diversity and single piece production technique features very prominent. Therefore, design, technology, process and equipment of the factory and management, has to adapt to the characteristics of this technology. Most sophisticated die requires high-precision machining, testing devices require high precision. Mold processing technology of mechanical, electronic and chemical and optical industry technical elite. At the same time, die reliance on skilled craftsmen is far greater than that of other processing industries. Therefore, advanced technology and skilled techniques rely on the mold technical characteristics of the product. With the rapid development of technology, especially information technology, and other high-tech applications in mould design and manufacture an increasingly widespread and increasingly demanding high-tech made to die, die of high-tech features will become increasingly apparent, and for skilled techniques rely on will gradually fade.As a basis for industrial production technology and equipment, mold occupy an important position in the national economy, mold technology has also become a country's level of product manufacturing one of the important symbols. Since the 80 's, China's mould industry development was very rapid. Rapid development of the national economy put increasingly higher demands on the mouldindustry, also provided a great impetus for its development. Over the years, China die and mould industry has been 15% the growth rate of around rapid development. At present, more than 17,000 more mold production plant in China, numbers of employees is about more than 500,000. 1999 China mold industrial output value reached 24.5 billion yuan. Gross output value of industrial enterprises accounted for captive use in two-thirds, as the sale of goods of about one-third.In die and mould industry in GDP, stamping mould design about 50%, about 33% plastic mould, die about 6%, other types of mould about 11%. Sincereform and opening up, China die and mould industry enterprises ownership composition of tremendous changes have taken place. In addition to State-owned professional mould factory, mould manufacturers of other forms of ownership, including collective enterprises, joint ventures, wholly-owned enterprises and private enterprises, have achieved rapid development, collective Mold, and private enterprises in Guangdong and Zhejiang provinces have developed most rapidly. For example, and huangyan area, Ningbo, Zhejiang, collective enterprises and private enterprises engaged in mold manufacturing up to thousands of homes, became the well-known "mould town" and one of the most dynamic region in the development. In Guangdong, some group companies and the rapid rise of township and town enterprises, to enhance the market competitiveness of its products, joining the die manufacturing inputs, for example, kelon, midea, KONKA and power group has established its own mouldmanufacturingcenter. Sino-foreign joint ventures and wholly foreign-owned enterprises concentrated in coastal industrialized areas of the mould, is now on thousands of homes. For example, Wuxi micro research is a Japan-owned enterprises, employees have more than 200 employees, with precision CNC mold processing equipment more than more than 60, 1998 the die output of more than 200 million Yuan.Technical level of China die and mould industry have also made considerable progress in recent years. At present, the country can produce precision precision multi-position progressive die for up to 2 microns, maximum number of stations has reached 160, life 1~2 billions. In a large plastic mould, now has been able to produce 48-inch TV plastic shell and 6.5Kg of large capacity washing machine plastic moulds, as well as auto mold such as bumpers, dashboards as a whole. In terms of precision plastic mold, the domestic plastic mould, has been able to produce a camera multiple-cavity mould and plastic mould and small modulus gear. In terms of large precision diecasting die for the complex, is capable of producing escalators in China overall pedal die and Diecasting die for automobile rear axle gearbox. In terms of auto mould, is now part of Panel die manufacturing new cars. Other types ofmold, such as segmented radial tire mold, aluminum alloy and plastic door and window profile Extrusion die, also reached a higher level, and can replace imported die.Although the die industry in the past has achieved remarkable development in more than 10 years, but in many respects compared with industrialized countries are still a large gap. For example, the proportion of precision machining equipment in mold processing equipment is still relatively low, penetration of CAD/CAE/CAM technologies is not high, many advanced die technology applications are not broad enough, and so on. Particularly in large, sophisticated, complex and long life on the mould technology there is a significant gap, these types of mould production capacity cannot meet domestic demand, requiring a large number of imported from abroad.However, since China's mould industry has a late start, compared with foreign countries, there are still big gaps, mainly reflected in: production and demand contradiction: as the level of industrial development continues to improve, update rate of industrial products, growing demand to die. Neither the quantity nor the quality are unable to meet the needs of the domestic market, only about 70%. Cause contradictions are low levels of specialization, standardization of mould enterprises, long production period. In addition, the level of design and manufacturing process are not yet fully meet the needs of development.Irrational enterprise structure: many mould production capacity in China is concentrated in the mould of the host plant within the factory or workshop, low levels of commercialization of the mold, and abroad over 70% is specialized in mould factory, and is taking the "small but excellent" road, therefore production are of high efficiency and cost-effectiveness.Product level: measure the mould level of products, mainly in manufacturing precision and surface roughness of mould processing, processing complexity of the mold and mold manufacturing cycle and use of life. Gap and that several indicators compared with foreign countries is very clear.In addition, the mold industry as a whole there are also relatively backward equipment, a low utilization rate. Lack of high quality tooling talents, also needed to strengthen product development ability.For insufficient and die market huge of potential, under in China die industrial of status, and contact international advanced level, China die industrial association assist Government developed has in China die industry "15" development planning, determine die industrial focus development area has three aspects: a is on entire die industry development has important effect of main die standard parts; second is technology content high, reflect die manufacturing level and development direction of die; three is currently large import of high-end die. Focus development of die products main has: die frame, including cold die frame, and plastic die frame and pressure mold frame,; die oriented pieces, including Guide column, and guide sets, and channels and the no oil lubrication oriented pieces,; pusher, and push tube, including plastic die with and the pressure mold with of shaped pusher,; heat flow road components, including heat type, and outside hot type, and valve type and tube type,; elastic components, including rectangle spring, and polyurethane elastic body and nitrogen cylinder,; small standard parts, including standard punch die, and poured mouth sets, and positioning ring and hooks,; car cover pieces die, especially car by required of cover pieces die; precision stamping die, including more station level into die, and thick Board fine die and cemented carbide multifunctional composite die,; large plastic die, including car ornaments pieces die and appliances plastic shell die,; precision plastic die, including plastic seal die and multilayer more cavity, and more material, and more color precision plastic die; large thin-walled precision complex pressure mold, including for aluminum, and magnesium, and zinc, and copper and alloy die casting of die; large, and precision forging die; radial tire rubber die; long life glass , Ceramic dies; rapid economic dies; multi-station heading die and extrusion die; plastic mold and plastic pipe road. Hope in the mould Enterprise overall strength is further enhanced, focus, enterprises can reach 50%. 2003 is "15" key for one year, if you do not see the60% of tasks to complete, the plan will fail and die failed, on the whole industry will be affected.In recent years, foreign enterprises to enter China, increased competition, a number of price competition. In order to avoid losses in the long run because of temporary interest and overall development, in the coming year, industry associations will also strengthen the Organization and coordination of mould enterprises, make reasonable price level. At the same time, Research International mould price levels, to guidance and information communication industry.In China, it has become increasingly recognized in important basic position in the manufacture of the die, recognizing the mould level of technology, has become the important symbol of a country's manufacturing levels, and to a large extent determine the quality, efficiency, and new product development capability.Many mold enterprises attach great importance to technology development, increase the intensity of investment for technical progress, the technology progress considered as an important driving force for enterprise development. In addition, many research institutes and tertiary institutions to conduct research and development of die and mold technology. At present, institutions and institutions engaged in research on mould technology has reached more than 30 companies, training institutions have been engaged in mould technology education over more than 50 companies. Where access to key State-funded construction of State Key Laboratory of mold technology, Huazhong University, Shanghai Jiaotong University, Beijing Institute of mechanical and electrical CAD National Engineering Research Center National Engineering Research Center of fine blanking technology and Zhengzhou University of technology such as rubber and plastic mold National Engineering Research Center. After years of effort, CAD/CAE/CAM technology in mould, mould EDM and CNC machining technologies, rapid prototyping and rapid tooling technology has made remarkable progress, new die material; in improving the quality of mould and contributed to the reducedmould design and manufacture cycle, and so on.(1) stamping die technologyTo representatives of automobile covering dies for large stamping mould manufacturing technology has made great progress, mold plant of Dongfeng motor company, Faw Center moulds manufacturers have been able to produce some car cover mould. In terms of design and manufacturing methods and technical means to continuously improve, localization in car die in a welcome step forward.Multi-position progressive die and multi-function tooling is focused on developing precision mould varieties in China. At present, there have been manufactured with automatic punching, folding, riveting, counting, grouping, rotor core become skewed, and security features such as protection of iron core-automatic lamination multifunction die. Production of motor stator and rotor dual Rotary laminated hard alloy progressive die step accuracy of up to 20 μ m, life of more than 100 million times. Other multi-position progressive die, such as 20~30 for IC lead frame-station progressive die, hard alloy progressive die for gun parts progressive die for the heat sink and air conditioner, has also reached a higher level.(2) technology of plastic mouldIn recent years, plastic mold is developing rapidly, the proportion of domestic mould plastic mould in industrial output continues to expand. Required for household appliances such as televisions, air conditioning, washing machine plastic mould can largely be based on domestic production. Weighing 10~20 tons of plastic such as car bumpers and dashboards as a whole and as many as 600 die cavity mold has its own production of plastic packaging. In terms of accuracy, plastic dimension precision of up to IT6-7 level, surface roughness reaches Ra0.05-0.025 μ m, plastic mold service life up to more than 1 million.Plastic mould design and manufacture in the popularization of CAD/CAM technology faster, CAE application software has been in the part of manufacturers. Hot runner technology has been widely used, multiple colorinjection technology for gas-assisted injection technology and efficient application started successfully.(3) CAD/CAE/CAM technologyAt present, the domestic mould enterprises has quite a number of manufacturers was popular in computer graphics, and introduction of high-grade CAD/CAE/CAM,UG, Pro/Engineer, I-DEAS, Euclid-IS and other well-known software in China die and mould industry has very broad application. Some manufacturers also introduced a Moldflow, C-Flow, DYNAFORM, Optris and MAGMASOFT CAE software, and successfully applied to plastic mould, stamping mould and die design.In recent years, independent development CAD/CAE/CAM system development in China. For example, central China Polytechnic University die technology national focus laboratory development of injection die, and car cover pieces die and level into die CAD/CAE/CAM software, Shanghai Jiao Tong University die CAD National Engineering Research Center development of cold die and fine rushed Research Center development of cold die and fine die CAD software, Beijing electromechanical Institute development of forging die CAD/CAE/CAM software, Beihang University China are Software Engineering Institute development CAXA software, Jilin car cover pieces forming technology by independent development of commercialization cover pieces stamping forming analysis KMAS software, in domestic die industry has many of user.(4) rapid prototyping/rapid tooling technologiesRapid prototyping/rapid tooling technology in China to be valued and developed, many research institutions devoted to research and development in this area, and continually achieve new results. Tsinghua University, Huazhong University, Xian Communications University, and long Yuan automated systems and other units have independent research and development of rapid prototyping technology and equipment to produce hierarchical object (LOM), three-dimensional light-cured (SLA) and fused deposition modeling (FDM) and the selective sintering (SLS), and other types of rapid prototypingequipment. These devices have been applied to the development of new products in the country, precision casting and rapid tooling, and so on. Rapid tooling technology in several research units, current research more arc spray forming technology and mould by plasma spraying technique. , Low melting point alloy die in stamping die-manufacturing technology has been successfully applied and resin, silicone rubber mold is also applied in the development of new products.(5) Other related technologiesIn recent years, some domestic steel companies have introduced and is equipped with advanced technological equipment, specifications and quality of mould steel is a large improvement. In the mould manufacturing has a more widespread adoption of the new steel, such as cold working die steel-D2, D3, such as A1, A2, LD, 65Nb; H10, hot working die steel H13, H21, 4Cr5MoVSi, 45Cr2NiMoVSi etc; plastic mould steel P20, 3Cr2Mo, PMS, such as SMI, SMII. The application of mould materials has been made in improving the quality of life and better results. Domestic research units on a variety of mold polishing method, and the development of specialized tools and machinery. Pattern etching technology and process level to improve more quickly, widely used in the production of in mould decoration to the grain.Is high speed milling of mold processing technology developed rapidly in recent years. Domestic has some company introduced high speed milling machine, and start the application. The domestic machine tool factory gradually developed some high speed milling machine, and is developing high-speed machine. However, for high speed milling of the surface in the country is not yet widely used.Although China's mould industry and technology have achieved rapid development in the past more than 10 years, but compared with foreign industrial developed countries there are still large gaps, not yet fully meet the needs of rapid development of the national economy.The next ten years, main development direction of China mould industry and technology include:(1)improving design of large, sophisticated, complex, long life molds manufacturing level;(2)in the widespread application of CAD/CAE/CAM technology in mould design and manufacture;(3)Development of rapid prototyping and rapid manufacturing mold for forming technology;(4)In the plastic mold application in hot runner technology, and high pressure injection molding technology of gas-assisted injection molding;(5)Improve standardization of mold and mold standard parts usage;(6)Development of high quality mold surface treatment of materials and advanced technologies;(7)Gradually promote the application of high speed milling in die and mold machining;(8)Further research and development of mould polishing technology and equipment;(9)Research and application of high speed measurement of mould technology and reverse engineering;(10)Development of a new forming technology and die.模具存在的问题及发展状况模具在现代生产中,是生产各种工业产品的重要工艺装备,他它以其特定的形状通过一定的方式使原材料成形。

冲压模具成型外文翻译参考文献

冲压模具成型外文翻译参考文献

冲压模具成型外文翻译参考文献(文档含中英文对照即英文原文和中文翻译)4 Sheet metal forming and blanking4.1 Principles of die manufacture4.1.1 Classification of diesIn metalforming,the geometry of the workpiece is established entirely or partially by the geometry of the die.In contrast to machining processes,ignificantly greater forces are necessary in forming.Due to the complexity of the parts,forming is often not carried out in a single operation.Depending on the geometry of the part,production is carried out in several operational steps via one or several production processes such as forming or blanking.One operation can also include several processes simultaneously(cf.Sect.2.1.4).During the design phase,the necessary manufacturing methods as well as the sequence and number of production steps are established in a processing plan(Fig.4.1.1).In this plan,theavailability of machines,the planned production volumes of the part and other boundary conditions are taken into account.The aim is to minimize the number of dies to be used while keeping up a high level of operational reliability.The parts are greatly simplified right from their design stage by close collaboration between the Part Design and Production Departments in order to enable several forming and related blanking processes to be carried out in one forming station.Obviously,the more operations which are integrated into a single die,the more complex the structure of the die becomes.The consequences are higher costs,a decrease in output and a lower reliability.Fig.4.1.1 Production steps for the manufacture of an oil sumpTypes of diesThe type of die and the closely related transportation of the part between dies is determined in accordance with the forming procedure,the size of the part in question and the production volume of parts to be produced.The production of large sheet metal parts is carried out almost exclusively using single sets of dies.Typical parts can be found in automotive manufacture,the domestic appliance industry and radiator production.Suitable transfer systems,for example vacuum suction systems,allow the installation of double-action dies in a sufficiently large mounting area.In this way,for example,the right and left doors of a car can be formed jointly in one working stroke(cf.Fig.4.4.34).Large size single dies are installed in large presses.The transportation of the parts from oneforming station to another is carried out mechanically.In a press line with single presses installed one behind the other,feeders or robots can be used(cf.Fig.4.4.20 to 4.4.22),whilst in large-panel transfer presses,systems equipped with gripper rails(cf.Fig.4.4.29)or crossbar suction systems(cf.Fig.4.4.34)are used to transfer the parts.Transfer dies are used for the production of high volumes of smaller and medium size parts(Fig.4.1.2).They consist of several single dies,which are mounted on a common base plate.The sheet metal is fed through mostly in blank form and also transported individually from die to die.If this part transportation is automated,the press is called a transfer press.The largest transfer dies are used together with single dies in large-panel transfer presses(cf.Fig.4.4.32).In progressive dies,also known as progressive blanking dies,sheet metal parts are blanked in several stages;generally speaking no actual forming operation takes place.The sheet metal is fed from a coil or in the form of metal ing an appropriate arrangement of the blanks within the available width of the sheet metal,an optimal material usage is ensured(cf.Fig.4.5.2 to 4.5.5). The workpiece remains fixed to the strip skeleton up until the laFig.4.1.2 Transfer die set for the production of an automatic transmission for an automotive application-st operation.The parts are transferred when the entire strip is shifted further in the work flow direction after the blanking operation.The length of the shift is equal to the center line spacing of the dies and it is also called the step width.Side shears,very precise feeding devices or pilot pins ensure feed-related part accuracy.In the final production operation,the finished part,i.e.the last part in the sequence,is disconnected from the skeleton.A field of application for progressive blanking tools is,for example,in the production of metal rotors or stator blanks for electric motors(cf.Fig.4.6.11 and 4.6.20).In progressive compound dies smaller formed parts are produced in several sequential operations.In contrast to progressive dies,not only blanking but also forming operations areperformed.However, the workpiece also remains in the skeleton up to the last operation(Fig.4.1.3 and cf.Fig.4.7.2).Due to the height of the parts,the metal strip must be raised up,generally using lifting edges or similar lifting devices in order to allow the strip metal to be transported mechanically.Pressed metal parts which cannot be produced within a metal strip because of their geometrical dimensions are alternatively produced on transfer sets.Fig.4.1.3 Reinforcing part of a car produced in a strip by a compound die setNext to the dies already mentioned,a series of special dies are available for special individual applications.These dies are,as a rule,used separately.Special operations make it possible,however,for special dies to be integrated into an operational Sequence.Thus,for example,in flanging dies several metal parts can be joined together positively through the bending of certain metal sections(Fig.4.1.4and cf.Fig.2.1.34).During this operation reinforcing parts,glue or other components can be introduced.Other special dies locate special connecting elements directly into the press.Sorting and positioning elements,for example,bring stamping nuts synchronised with the press cycles into the correct position so that the punch heads can join them with the sheet metal part(Fig.4.1.5).If there is sufficient space available,forming and blanking operations can be carried out on the same die.Further examples include bending,collar-forming,stamping,fine blanking,wobble blanking and welding operations(cf.Fig.4.7.14 and4.7.15).Fig.4.1.4 A hemming dieFig.4.1.5 A pressed part with an integrated punched nut4.1.2 Die developmentTraditionally the business of die engineering has been influenced by the automotive industry.The following observations about the die development are mostly related to body panel die construction.Essential statements are,however,made in a fundamental context,so that they are applicable to all areas involved with the production of sheet-metal forming and blanking dies.Timing cycle for a mass produced car body panelUntil the end of the 1980s some car models were still being produced for six to eight years more or less unchanged or in slightly modified form.Today,however,production time cycles are set for only five years or less(Fig.4.1.6).Following the new different model policy,the demands ondie makers have also changed prehensive contracts of much greater scope such as Simultaneous Engineering(SE)contracts are becoming increasingly common.As a result,the die maker is often involved at the initial development phase of the metal part as well as in the planning phase for the production process.Therefore,a muchbroader involvement is established well before the actual die development is initiated.Fig.4.1.6 Time schedule for a mass produced car body panelThe timetable of an SE projectWithin the context of the production process for car body panels,only a minimal amount of time is allocated to allow for the manufacture of the dies.With large scale dies there is a run-up period of about 10 months in which design and die try-out are included.In complex SE projects,which have to be completed in 1.5 to 2 years,parallel tasks must be carried out.Furthermore,additional resources must be provided before and after delivery of the dies.These short periods call for pre-cise planning,specific know-how,available capacity and the use of the latest technological and communications systems.The timetable shows the individual activities during the manufacturing of the dies for the production of the sheet metal parts(Fig.4.1.7).The time phases for large scale dies are more or less similar so that this timetable can be considered to be valid in general.Data record and part drawingThe data record and the part drawing serve as the basis for all subsequent processing steps.They describe all the details of the parts to be produced. The information given in theFig.4.1.7 Timetable for an SE projectpart drawing includes: part identification,part numbering,sheet metal thickness,sheet metal quality,tolerances of the finished part etc.(cf.Fig.4.7.17).To avoid the production of physical models(master patterns),the CAD data should describe the geometry of the part completely by means of line,surface or volume models.As a general rule,high quality surface data with a completely filleted and closed surface geometry must be made available to all the participants in a project as early as possible.Process plan and draw developmentThe process plan,which means the operational sequence to be followed in the production of the sheet metal component,is developed from the data record of the finished part(cf.Fig.4.1.1).Already at this point in time,various boundary conditions must be taken into account:the sheet metal material,the press to be used,transfer of the parts into the press,the transportation of scrap materials,the undercuts as well as thesliding pin installations and their adjustment.The draw development,i.e.the computer aided design and layout of the blank holder area of the part in the first forming stage–if need bealso the second stage–,requires a process planner with considerable experience(Fig.4.1.8).In order to recognize and avoid problems in areas which are difficult to draw,it is necessary to manufacture a physical analysis model of the draw development.With this model,theforming conditions of the drawn part can be reviewed and final modifications introduced,which are eventually incorporated into the data record(Fig.4.1.9).This process is being replaced to some extent by intelligent simulation methods,through which the potential defects of the formed component can be predicted and analysed interactively on the computer display.Die designAfter release of the process plan and draw development and the press,the design of the die can be started.As a rule,at this stage,the standards and manufacturing specifications required by the client must be considered.Thus,it is possible to obtain a unified die design and to consider the particular requests of the customer related to warehousing of standard,replacement and wear parts.Many dies need to be designed so that they can be installed in different types of presses.Dies are frequently installed both in a production press as well as in two different separate back-up presses.In this context,the layout of the die clamping elements,pressure pins and scrap disposal channels on different presses must be taken into account.Furthermore,it must be noted that drawing dies working in a single-action press may be installed in a double-action press(cf.Sect.3.1.3 and Fig.4.1.16).Fig.4.1.8 CAD data record for a draw developmentIn the design and sizing of the die,it is particularly important to consider the freedom of movement of the gripper rail and the crossbar transfer elements(cf.Sect.4.1.6).These describe the relative movements between the components of the press transfer system and the die components during a complete press working stroke.The lifting movement of the press slide,the opening and closing movements of the gripper rails and the lengthwise movement of the whole transfer are all superimposed.The dies are designed so that collisions are avoided and a minimum clearance of about 20 mm is set between all the moving parts.4 金属板料的成形及冲裁4. 模具制造原理4.1.1模具的分类在金属成形的过程中,工件的几何形状完全或部分建立在模具几何形状的基础上的。

模具寿命 英语

模具寿命 英语

模具寿命英语As an essential part of manufacturing, molds play a crucial role in ensuring product quality, efficiency, and cost-effectiveness. However, molds also have a limited lifespan, which can vary depending on different factors. In this article, we will explore the topic of mold lifespan and how to prolong it.Step 1: Understanding Mold LifespanMold lifespan refers to the number of cycles a mold can run before it loses its effectiveness and requires repair or replacement. The lifespan of a mold can vary greatly depending on several factors, such as the type of material being molded, the complexity of the product, the machine settings, and the maintenance of the mold.Step 2: Identifying Causes of Mold FailureThere are various reasons why a mold might fail before reaching its expected lifespan. Some of the common causes include wear and tear, material fatigue, thermal cycling, and inadequate ventilation. Other factors that contribute to mold failure include poor maintenance and improper use, such as excessive pressure or speed, incorrect temperature, and poor tool design.Step 3: Maintaining MoldsTo prolong the lifespan of a mold, proper maintenance is crucial. This includes regular cleaning, inspection, and repair of the mold. During cleaning, it’s important to remove any residue or debris and check for any signs of wear or damage, such as cracks or chips. Lubrication of movingparts, especially during storage, is also essential toprevent rust or corrosion.Step 4: Designing for MoldabilityOne of the best ways to ensure a mold lasts longer is to design parts with moldability in mind. This means designing products that are easy to mold, with simple shapes anduniform wall thicknesses, to reduce stress on the mold. Proper sizing of the mold cavity also plays a significantrole in reducing stress on the mold.Step 5: Choosing the Right Mold MaterialThe choice of mold material can also affect its lifespan. Different materials have varying durability and resistance to wear and tear. For example, aluminum is a lightweight andcost-effective option, but it may not last as long as steelor other high-strength materials. Choosing the right material for the specific application can help extend the mold lifespan.In conclusion, a mold’s lifespan can v ary depending on several factors, and proper maintenance is crucial to prolong its effectiveness. Designing molds for moldability, choosing the right material, and identifying and mitigating causes of mold failure all contribute to extending the lifespan of molds. By following these steps, manufacturers can improve product quality and reduce costs associated with mold repair and replacement.。

冲压模具外文翻译---影响冲压模具寿命的因素分析

冲压模具外文翻译---影响冲压模具寿命的因素分析

附录The study of Influence factors on dies' lifeBecause the ramming processing has the productivity to be high, the material use factor is high, the pressing part precision high, the complex degree is high and interchangeability good and so on characteristics, therefore, in the industrial production, applies especially in the production in enormous quantities very widely. But the ramming mold in the cold stamping processing is also essential. The ramming mold general structure is complex, the accuracy requirement is high, the production cost is also high. In the ramming process, the ramming mold as a result of long-term reasons and so on attrition, distortion, break has the expiration, thus causes the enterprise production cost to stay at a high level. Therefore, the exploration enhances the ramming mold's service life efficient path to have the important meaning regarding the enterprise development。

模具注射成型毕业论文中英文对照资料外文翻译文献

模具注射成型毕业论文中英文对照资料外文翻译文献

模具注射成型中英文对照资料外文翻译文献Injection MoldingThe basic concept of injection molding revolves around the ability of a thermoplastic material to be softened by heat and to harden when cooled .In most operations ,granular material (the plastic resin) is fed into one end of the cylinder (usually through a feeding device known as a hopper ),heated, and softened(plasticized or plasticated),forced out the other end of the cylinder,while it is still in the form of a melt,through a nozzle into a relatively cool mold held closed under pressure.Here,the melt cools and hardens until fully set-up.The mold is then opened,the piece ejected,and the sequence repeated.Thus,the significant elements of an injection molding machine become :1)the way in which the melt is plasticized (softened) and forced into the mold (called the injection unit);2)the system for opening the mold and closing it under pressure (called the clamping unit);3)the type of mold used;4)the machine controls.The part of an injection-molding machine,which converts a plastic material from a sold phase to homogeneous seni-liguid phase by raising its temperature .This unit maintains the material at a present temperature and force it through the injection unit nozzle into a mold .The plunger is a combination of the injection and plasticizing device in which a heating chamber is mounted between the plunger and mold. This chamber heats the plastic material by conduction .The plunger,on each storke; pushes unmelted plastic material into the chamber ,which in turn forces plastic melt at the front of the chamber out through the nozzleThe part of an injection molding machine in which the mold is mounted,and which provides the motion and force to open and close the mold and to hold the mold close with force during injection .This unit can also provide other features necessary for the effective functioning of the molding operation .Moving plate is the member of the clamping unit,which is moved toward a stationary member.the moving section of the mold is bolted to this moving plate .This member usually includes the ejector holes and moldmounting pattern of blot holes or “T”slots .Stationary plate is the fixed member of the clamping unit on which the stationary section of the mold is bolted .Thismember usually includes a mold-mounting pattern of boles or “T” slots.Tie rods are member of the clamping force actuating mechanism that serve as the tension member of the clamp whenit is holding the mold closed.They also serve as a gutde member for the movable plate .Ejector is a provision in the clamping unit that actuates a mechanism within the mold to eject the molded part(s) from the mold .The ejection actuating force may be applied hydraulically or pneumatically by a cylinder(s) attached to the moving plate ,or mechanically by the opening storke of the moving plate.Methods of melting and injecting the plastic differ from one machine to another and are constantly being improred .couventional machines use a cylinder and piston to do both jobs .This method simplifies machine construction but makes control of injection temperatures and pressures an inherently difficult problem .Other machines use a plastcating extruder to melt the plastic and piston to inject it while some hare been designed to use a screw for both jobs :Nowadays,sixty percent of the machines use a reciprocating screw,35% a plunger (concentrated in the smaller machine size),and 5%a screw pot. Many of the problems connected with in jection molding arises because the densities of polymers change so markedly withtemperature and pressure.Athigh temperatures,the density of a polymer is considerably cower than at room temperature,provided the pressure is the same.Therefore,if modls were filled at atmospheric pressure, “shrinkage”would make the molding deviate form the shape of the mold.To compensate for this poor effect, molds are filled at high pressure.The pressure compresses the polymer and allows more materials to flow into the mold,shrinkage is reduced and better quality moldings are produced.Cludes a mold-mounting pattern of bolt holes or “T”slots.Tie rods are members of the clamping force actuating machanism that serve as the tension members of clamp when it is holding the mold closed.Ejector is a provision in the claming unit that actuates a mechanism within the mold to eject themolded part(s) form the mold.The ejection actuating force may be applied hydraulically or pneumatically by a cylinder(s) attached to the moving plate,or mechanically by the opening stroke of the moving plate.The function of a mold is twofold :imparting the desired shape to the plasticized polymer and cooling the injection molded part.It is basically made up of two sets of components :the cavities and cores and the base in which the cavities and cores are mounted. The mold ,which contains one or morecavities,consists of two basic parts :(1) a stationary molds half one the side where the plastic is injected,(2)Amoving half on the closing or ejector side of the machine. The separation between the two mold halves is called the parting line.In some cases the cavity is partly in the stationary and partly in the moving section.The size and weight of the molded parts limit the number of cavities in the mold and also determine the machinery capacity required.The mold components and their functions are as following :(1)Mold Base-Hold cavity(cavities) in fixed ,correctposition relative to machine nozzle .(2)Guide Pins-Maintain Proper alignment of entry into moldintrior .(3)Sprue Bushing(sprue)-Provide means of entry into moldinterior .(4)Runners-Conrey molten plastic from sprue to cavities .(5)Gates-Control flow into cavities.(6)Cavity(female) and Force(male)-Contorl the size,shapeand surface of mold article.(7)Water Channels-Control the temperature of mold surfacesto chill plastic to rigid state.(8)Side (actuated by came,gears or hydrauliccylinders)-Form side holes,slots,undercuts and threaded sections.(9)Vent-Allow the escape of trapped air and gas.(10)Ejector Mechanism (pins,blades,stripper plate)-Ejectrigid molded article form cavity or force.(11)Ejector Return Pins-Return ejector pins to retractedposition as mold closes for next cycle.The distance between the outer cavities and the primary sprue must not be so long that the molten plastic loses too much heat in the runner to fill the outer cavities properly.The cavities should be so arranged around the primary sprue that each receives its full and equal share of the total pressure available,through its own runner system(or the so-called balanced runner system).The requires the shortest possible distance between cavities and primary sprue,equal runner and gate dimension,and uniform colling.注射成型注射成型的基本概念是使热塑性材料在受热时熔融,冷却时硬化,在大部分加工中,粒状材料(即塑料树脂)从料筒的一端(通常通过一个叫做“料斗”的进料装置)送进,受热并熔融(即塑化或增塑),然后当材料还是溶体时,通过一个喷嘴从料筒的另一端挤到一个相对较冷的压和封闭的模子里。

模具设计外文翻译

模具设计外文翻译

外文资料翻译系别. 专业. 班级. 姓名. 学号. 指导教师.2011年4 月一、China’s mold industryDue to historical reasons for the formation of closed, "big and complete" enterprise features, most enterprises in China are equipped with mold workshop, in factory matching status since the late 70s have a mold the concept of industrialization and specialization of production. Production efficiency is not high, poor economic returns. Mold production industry is small and scattered, cross-industry, capital-intensive, professional, commercial and technical management level are relatively low.According to incomplete statistics, there are now specialized in manufacturing mold, the product supporting mold factory workshop (factory) near 17 000, about 600 000 employees, annual output value reached 20 billion yuan mold. However, the existing capacity of the mold and die industry can only meet the demand of 60%, still can not meet the needs of national economic development. At present, the domestic needs of large, sophisticated, complex and long life of the mold also rely mainly on imports. According to customs statistics, in 1997 630 million U.S. dollars worth of imports mold, not including the import of mold together with the equipment; in 1997 only 78 million U.S. dollars export mold. At present the technological level of China Die & Mould Industry and manufacturing capacity, China's national economy in the weak links and bottlenecks constraining sustainable economic development.1、Research on the Structure of industrial products moldIn accordance with the division of China Mould Industry Association, China mold is divided into 10 basic categories, which, stamping die and plastic molding two categories accounted for the main part. Calculated by output, present, China accounts for about 50% die stamping, plastic molding die about 20%, Wire Drawing Die (Tool) about 10% of the world's advanced industrial countries and regions, the proportion of plastic forming die die general of the total output value 40%.Most of our stamping die mold for the simple, single-process mode and meet the molds, precision die, precision multi-position progressive die is also one of the few, die less than 100 million times the average life of the mold reached 100 million times the maximum life of more than accuracy 3 ~ 5um, more than 50 progressive station, and the international life ofthe die 600 million times the highest average life of the die 50 million times compared to the mid 80s at the international advanced level.China's plastic molding mold design, production technology started relatively late, the overall level of low. Currently a single cavity, a simple mold cavity 70%, and still dominant.A sophisticated multi-cavity mold plastic injection mold, plastic injection mold has been able to multi-color preliminary design and manufacturing. Mould is about 80 million times the average life span is about, the main difference is the large deformation of mold components, excess burr side of a large, poor surface quality, erosion and corrosion serious mold cavity, the mold cavity exhaust poor and vulnerable such as, injection mold 5um accuracy has reached below the highest life expectancy has exceeded 20 million times, the number has more than 100 chamber cavity, reaching the mid 80s to early 90s the international advanced level.2、mold Present Status of TechnologyTechnical level of China's mold industry currently uneven, with wide disparities. Generally speaking, with the developed industrial countries, Hong Kong and Taiwan advanced level, there is a large gap.The use of CAD / CAM / CAE / CAPP and other technical design and manufacture molds, both wide application, or technical level, there is a big gap between both. In the application of CAD technology design molds, only about 10% of the mold used in the design of CAD, aside from drawing board still has a long way to go; in the application of CAE design and analysis of mold calculation, it was just started, most of the game is still in trial stages and animation; in the application of CAM technology manufacturing molds, first, the lack of advanced manufacturing equipment, and second, the existing process equipment (including the last 10 years the introduction of advanced equipment) or computer standard (IBM PC and compatibles, HP workstations, etc.) different, or because of differences in bytes, processing speed differences, differences in resistance to electromagnetic interference, networking is low, only about 5% of the mold manufacturing equipment of recent work in this task; in the application process planning CAPP technology, basically a blank state, based on the need for a lot of standardization work; in the mold common technology, such as mold rapid prototyping technology, polishing, electroforming technologies, surface treatment technologyaspects of CAD / CAM technology in China has just started. Computer-aided technology, software development, is still at low level, the accumulation of knowledge and experience required. Most of our mold factory, mold processing equipment shop old, long in the length of civilian service, accuracy, low efficiency, still use the ordinary forging, turning, milling, planing, drilling, grinding and processing equipment, mold, heat treatment is still in use salt bath, box-type furnace, operating with the experience of workers, poorly equipped, high energy consumption. Renewal of equipment is slow, technological innovation, technological progress is not much intensity. Although in recent years introduced many advanced mold processing equipment, but are too scattered, or not complete, only about 25% utilization, equipment, some of the advanced functions are not given full play.Lack of technology of high-quality mold design, manufacturing technology and skilled workers, especially the lack of knowledge and breadth, knowledge structure, high levels of compound talents. China's mold industry and technical personnel, only 8% of employees 12%, and the technical personnel and skilled workers and lower the overall skill level. Before 1980, practitioners of technical personnel and skilled workers, the aging of knowledge, knowledge structure can not meet the current needs; and staff employed after 80 years, expertise, experience lack of hands-on ability, not ease, do not want to learn technology. In recent years, the brain drain caused by personnel not only decrease the quantity and quality levels, and personnel structure of the emergence of new faults, lean, make mold design, manufacturing difficult to raise the technical level.mold industry supporting materials, standard parts of present conditionOver the past 10 years, especially the "Eighth Five-Year", the State organization of the ministries have repeatedly Material Research Institute, universities and steel enterprises, research and development of special series of die steel, molds and other mold-specific carbide special tools, auxiliary materials, and some promotion. However, due to the quality is not stable enough, the lack of the necessary test conditions and test data, specifications and varieties less, large molds and special mold steel and specifications are required for the gap. In the steel supply, settlement amount and sporadic users of mass-produced steel supply and demand contradiction, yet to be effectively addressed. In addition, in recent years have foreign steel mold set up sales outlets in China, but poor channels, technical services supportthe weak and prices are high, foreign exchange settlement system and other factors, promote the use of much current.Mold supporting materials and special techniques in recent years despite the popularization and application, but failed to mature production technology, most still also in the exploratory stage tests, such as die coating technology, surface treatment technology mold, mold guide lubrication technology Die sensing technology and lubrication technology, mold to stress technology, mold and other anti-fatigue and anti-corrosion technology productivity has not yet fully formed, towards commercialization. Some key, important technologies also lack the protection of intellectual property.China's mold standard parts production, the formation of the early 80s only small-scale production, standardization and standard mold parts using the coverage of about 20%, from the market can be assigned to, is just about 30 varieties, and limited to small and medium size. Standard punch, hot runner components and other supplies just the beginning, mold and parts production and supply channels for poor, poor accuracy and quality.3、Die & Mould Industry Structure in Industrial OrganizationChina's mold industry is relatively backward and still could not be called an independent industry. Mold manufacturer in China currently can be divided into four categories: professional mold factory, professional production outside for mold; products factory mold factory or workshop, in order to supply the product works as the main tasks needed to die; die-funded enterprises branch, the organizational model and professional mold factory is similar to small but the main; township mold business, and professional mold factory is similar. Of which the largest number of first-class, mold production accounts for about 70% of total output. China's mold industry, decentralized management system. There are 19 major industry sectors manufacture and use of mold, there is no unified management of the department. Only by China Die & Mould Industry Association, overall planning, focus on research, cross-sectoral, inter-departmental management difficulties are many.Mold is suitable for small and medium enterprises organize production, and our technical transformation investment tilted to large and medium enterprises, small and medium enterprise investment mold can not be guaranteed. Including product factory mold shop,factory, including, after the transformation can not quickly recover its investment, or debt-laden, affecting development.Although most products factory mold shop, factory technical force is strong, good equipment conditions, the production of mold levels higher, but equipment utilization rate.Price has long been China's mold inconsistent with their value, resulting in mold industry "own little economic benefit, social benefit big" phenomenon. "Dry as dry mold mold standard parts, standard parts dry as dry mold with pieces of production. Dry with parts manufactured products than with the mold" of the class of anomalies exist.二、Basic terminology1、ImpressionThe injection mould is an assenbly of parts containing within an inpression into which plastic material is injected and cooled. It is the impression which gives the moulding its form. The impression may, therefore, be defined as thatpart of the mould which imparts shape to the moulding.The impression is formed by two mould mimbers:(i)The cavity, which is the female portion of the mould, gices the moulding itsexternal form.(ii)The core, which is the male portion of the mould , forms the internal shape of the moulding.2、Cavity an core platesThe basic mould in this case consists of two plates. Into one plate is sunk the cavity which shapes the outside form of the moulding and os therefore known as the cavity plate. Similarly, the core which projects form the core plate forms the inside shape of the moulding os closed, the two plates come together forming a space between the cavity and core which is the impression.3、Sprue bushDuring the injection process plastic material is delivered to the mozzle of the machie as a melt;it is then tramsferred to the impression though a passage. The material in this passage is termed the sprue, and the bush is called a sprue bush.4、Runner and gate systemsThe material may bedirectly injected into the impression though the sprue bush or for moulds containing several impressions it may pass from the sprue bush hole through a runnerand gate system therefore entering the impression.5、Register ringIf the material is to pass without hidrance into the mould the mozzle and sprue must be correctly aligned. To endure that this is so the mould must be central to the machine and this can be achieved by including a regicter ring.6、Guide pillars and bushesTo mould an even-walled article it is necessary to ensure that the cavity and core are keptin alignmemt. This is done by incorporating guide pillars on one mould plate which then enter corresponding guide bushes in the other mould plate as the mouls closes.7、Fixed half and moving halfThe various mould parts fall naturally into two sections or halves. Hence, that half attached to the stationary platen of the machine (indicated by the chain dotted line)is termed the fixed half, The other half of the mould attached to the moving platen of the machine is known simply as the moving half. Now it has to be situsted. Generally the core is situated in the moving half and the overriding reason why this is so, is as follows:The moulding as it cools, will shrink on to the core and remain with it as the mould opens. This will occur irrespective of whether the core is in the fixed half or the moving half. However, this shrinkage on to the core means that some form of ejector system is almostly certainly necessary. Motivation for this ejector system iseasily provided if the core is in the moving half. Moreover, in the case of our single-impression basic mould, where a direct sprue feed to the underside of the moulding is desired the cavity must be in the fixed half and the core in the moving half.8、Methods of incorporating cavity and coreWe have now seen that in general the core is incorporsted in the moving half and the cavity in the fixed half. However, there are various methods by which the cavity and core can be incorporated in their respective halves of the mould. These represent two basic alternatives (i) the integer method where the cavity and core can be machined form steel plates which become part of the structural build-up of the mould, or (ii) the cavity and core can be machined form small blocks of steel, termed inderts, and subsequently bolstered. The choice between these alternatives constitutes an important decision on the part of the mould designer. The final result, nevertheless, will be the contains the core is termed the core plate and the plate or assembly which contains the cavity is termed the cavity plate.9、Cavity FabricationWhen a decision for making a mold is made, the cost is predicated on producing aspecified quantity of parts without additional tooling expenditure. Sometimes, the anticipatesare quantities are exceeded; other times, they all short of requirements, and costly repairs becomenecesary in order to supply the needs.In the making of cavities by machining, grinding, or electric discharge machining, there is constant drive to improve the rate of metal removal. Cutting tools as well as machine tools are developed for heavier and faster cuts; grinding wheels are tailor-made for special steels to allow deeper cuts per pass; and EDM machines are revamped to burn the metal at an accelerated pace.It is fully appreciated that faster mental-removal rate leads to more economical manufacture,but at the same time it mast be recognized that the newer cavity fabrication is associated with generation of more heat and indirectly with higher stresses that if not relieved can cause premature gailure.Suppliers of tool steel caution the user against fabricating stresses and strongly advise a stress-relieving operation. When a steel is to be heat-treated and a preheat cycle ia part of the heat-treating specification, then the metal-removal stresses will be eliminated.A great number of cavities are made of prehardened steel, and therefore would not be heat-treated.For those cavities,a stress-relieving operation should be carried out immediately after fabricaton.the stress-relieving temperature as a rule is about 100ºF below the tempring heat and is held for 30 min. for each inch of steel thickness. It is best to check the stress-relieving heat and time with the maker of the steel.The information about fabrication stress has always been emphasized by the steelmakers,but for some reason it has not been given the attention it deserves. Since a tool drawing should cover all the requirements of a tool element, it would be the appropriate place for a note such as the following:Note: For heat-treated steel:“Note: Use preheat and harden to RC ____.”Note: For prehardened steel:“Note: Stress relieve@___ºF for____hoursper____ inch of thickness.”Every effort should be made to eliminate the invisible source of problems, namely,fabricating stresses.Mold cavities can be produced by a variety of processes. The process to be used is Determined.First of all by the lowest cost at which the cavity can be produced for the desired end result. Other factors include precision of repairability. Frequently, a combination of processes is employed in order to meet all the specified requirements. The most common processes are discussed in the following sections.Specifically, investment casting may be considered for applications where the number of cavities is greater than six and tolerances of dimensions are in the range of ±0.005. It isparticularly adaptable to complex shapes and unusual configurations as well as for surface that are highly decorative and difficult to obtain by conventional processes. These decorative surface may have a wood grain, leather grain, or textured surface suitable for handle grips,etc.A lmost any alloy of steel or beryllium copper alloys can be cast to size and heat-treated metal hardness that is within the range of the alloy being cast. Acomparative cost evaluation will in many cases favor the investment process. The investment cast tooling when produced by qualified people can be of the same quality as those machined from bar stock., i.e.,they can be free of porosity, proper hardness, uniform with respect to each other, and where (and-where)the time element is a factor-can be produced in days instead of weeks. In this process, cavities have been made that weigh as much as 750 lb.The investment caqsting method calls for a model of a low-melt material such as wax, plastic, or frozen mercury. The model is a reproduction of the desired cavity block and, when cast, is ready for mounting in the base. It incorporates shrinkage allowances as well as a gating system for metal pouring. The complete model is sipped in a slurry of fine refractory material and then encased in the investment material, which may be plaster of paris or mixtures of ceramic materials with high refractory properties. With the encased investment fully set up, the model is removed from the mold by heating in can over to liquefy the meltable material and cause it to run out. The molten material is reclaimed for further use. The mold or investment casing is fully dried out during the heating. After these steps, the investment is preheated to 1000°to 2000ºF in preparation for the pouring of the metal. The preheat temperature is governed by the type of metal. When pouring is completed and solidification of the metal has taken place, the investment material is broken away to free the casting for removal of the gates and cleaning.The making of the model for cavity and core blocks of meltable material is an intermediate step. These model blocks are cast in molds that are the staring point for the process. The starting-point mold consists of the part cavity or core where the parting line width as well as block portin for mounting, etc., are built around the part cavity and core, and thus form the shape needed as the complete block.The investment-casting process was developed commercially to a high dehree of precision and quality during World War II for the manufacture of aviation gasturbine blades were made of alloys, which were difficult or impossible to be foged. Subsequently, refinements have been developed in the investment-casting process that are especially valuable to the moldmaking field. Most these improvements are in the area of investment materials for the pyrpose of maintaining closer tolerances on the castings. Some mold shops have equippedthemselves with the ability to produce investment castings alongside their regular fabrication facilities.三、Feed SystemIt is necessary to paovide a flow-way in the injection mould to connect the nozzle of the injection machine to each impression. This flow-way is termed the feed system. Normally the feed system comprises a sprue, runner and gate. These terms apply equally to the flow-way itself, and to the molded material which is removed from the flow-way itself in the process of extracting the molding.1、SprueA spure is a channel though which to transfer molten plastic injected from the nozzle of the injector the mold. It is a part of spure bush, which is a separate part from th mold.2、RunnerA runner is a channel that guides molten plastic into the cavity of a mold.3、GateA gate is an entrance through which molten plastic enters the cavity. The gate has the following functions:restricts the flow and the direction of molten plastic;simplifies cutting of a runner and moldings to simplify finishing of parts;quickly cools and solidifies to avoid backflow after molten plastic has filled up in the cavity.4、Cold slug wellThe purpose of the cold slug well, shown oppwsite the sprue, is theoretically to receive the material that has chilled at the front of the nozzle during the cooling and ejection phase. Perhaps of greater importance is the fact that it provides positive means whereby the sprue can be pulled from the sprue bush for ejection purposes.The sprue, the runner, and the gate will be discarded after a part is complete. However, the runner and the gate are important items that affect the quality or the cost of parts.四、Parting SurfaceThe parting surfaces of a mould are those portion of both mould plates, adjacent to the impressions, which butt together to form a seal and prevent the loss of plastic material from the impression. The parting surface is 1、classified flat and non-flatThe mature of the parting surface depends entirely on the shape of the component. A further consideration os that the parting surface must be chosen so that the molding can be removed from the mould. Many molding are required which have a parting line which lies ona non-planar or curved surface.When the parting surface os not flat, there is the quertion of unbalanced forces to consider in certain instances. The plastic material when under pressure within the impression, will exert a force which will tend to open the mould in the lateral direction. If this happens some flashing may occur on the angled face. The movement between the two mould halves will be resisted by the guide pillars, but even so, because of the large forced involved, it is desirable to balance the mould by reversing the step so that the parting surface continues across the mould as a mirror image of the section which includes the impression. It is often convenient to spercify an even number of impressions when considering this type of mould, as impressions positioned on opposite sides of the mould‟s centre-line serve to balance the mould.五、Mould coolingOne fundamental principle of injection molding os that hot material enters the mouls, where it cools rapidly to a temperature at which it solidified sufficiently to retain the shape of the impression. The temperature of the mould os therefore important as it governs a portion of the overall molding cycle. While the melt flows more freely in a hot mould, a greater cooling period is required before the solidified molding can be ejected. Alternatively, while the melt solidifies quickly in a cold mould it may not reach the extremities of the impression. A compromise between the two extremes must therefore be accepted to obtain the optimum molding cycle.The operating temperature for a particular mould will depend on a number of factors which include the following:type and grade of material to be molded;length of flow within the impression;wall section of the molding;length of the feed system, etc. It is often found advantageous to use a slightly higher temperature than is required just to fill the impression, as this tends to impreove the surface finish of the molding by minimizing weld lines, flow marks and other blemishes.To maintain the required temperature differential between the mould and plastic material, water or other fluid is circulated through holes or channels within the mould. These holes or channels are termed flow-ways or water-ways and the complete system of flow ways is termed the circuit.During the impression filling stage the hottert material will be in the vicinity of the entry point, i. e. the gate, the coolest material will be at the point farthest from the entry. The temperature of the coolant fluid, however, increases as it passes though the mould. Thereforeto achieve an even cooling rate over the molding surface it is necessary to locate the incoming coolant fluid adjacent to…hot‟molding surfaces and to locate the channels containing…heated‟coolant fluid adjacent to …cool‟molding surfaces. However, as will be seen from the following discussion, it is not always practicable to adopt the idealized appreach and the designer must use a fair amount of common sense when laying out coolant circuits if unnercessarily expensive moulds are to be avoided.Units for the circulation of water and other fluids are commercially available. These units are simply connected to the mould via flexible hoses, with these units the mould‟s temperature can be maintained within close limits. Close temperature control is not possible using the alternative system in which the mould is connected to a cold water supply.It is the mould designer‟s responsibility to provide an adequate circulating system within the mould. In general, the simplest systems are those in which holes are bored longitudinally through the mould plates. However, this is not necessarily the most dfficient method for a particular mould.When using drillings for the circulation of the coolant, however, these must not be positioned too close to the impression say closer than 16mm as this is likely to cause a marked temperature66variation across the impression, with resultant molding problems.The layout of a circuit is often complicated by the fact that flow ways must not be drilled too close to any other hole in the same mould plate. It will be recalled that the mould plate has a large number of holes or recessers, to accommodate ejector pins, guide pillars, guide bushes, sprue bush, inserts, etc. How close it is safe to position in a flow way adjacent to another hole depends to a large extent on the depth of the flow way driolling required. When drilling deep flow ways there is a tendency for the drill to wander off its prescribed course. A rule which is often applied is that for drillings up to 150mm deep the flow way should not be closer than 3 mm to any other hole. For deeper flow ways this allowance is increased to 5 mm.To obtain the best possible position for a circuit it is good practice to lay the circuit in at the earliest opportunity in the design. The other mould itens such as ejector pins, guide bushes, etc. , can then be positioned accordingly.六、Designs CAD/CAMAlthough CAD/CAM manufactures and suppliers are addressing the challenges mold disigners face when using software, these designers are still grappling with a number of issues. Kevin Crystal, senior quality engineer with The Protomold Co. (Maple Plain, MN)-a rapid injection molding company-reports that the greatest challenges he faces are with file。

铸造模具外文文献翻译、中英文翻译

铸造模具外文文献翻译、中英文翻译

外文资料翻译资料来源:《模具设计与制造专业英语》文章名:Chapter 3 Casting Dies书刊名:《English for Die & Mould Design and Manufacturing》作者:刘建雄王家惠廖丕博主编出版社:北京大学出版社,2002章节:Chapter 3 Casting Dies页码:P51~P60文章译名:铸造模具Chapter 3 Casting Dies3.1CastingThe first castings were made during the period 4000~3000 B.C., using stone and metal molds for casting copper. Various casting processes have been developed over a long period of time, each with its own characteristics and applications, to meet specific engineering and service requirements. Many parts and components are made by casting, including cameras, carburetors, engine blocks, crankshafts, automotive components, agricultural and railroad equipment, pipes and plumbing fixtures, power tools, gun barrels, frying pans, and very large components for hydraulic turbines.Casting can be done in several ways. The two major ones are sand casting, in which the molds used are disposable after each cycle, and die casting, or permanent molding, in which the same metallic die is used thousands or even millions of times. Both types of molds have three common features. They both have a “plumbing” system to channel molten alloy into the mold cavity. These channels are called sprues, runners, and gates (Fig. 3-1). Molds may be modified by cores which form holes and undercuts or inserts that become an integral part of the casting. Inserts strengthen and reduce friction, and they may be more machinable than the surrounding metal. For example, a steel shaft when properly inserted into a die cavity results in an assembled aluminum step gear after the shot.After pouring or injection, the resulting castings require subsequent operations such trim-ming, inspection, grinding, and repairs to a greater or lesser extent prior to shipping. Premium-quality castings from alloys of aluminum or steel require x-ray soundness that will be acceptable by the customer.Certain special casting processes are precision-investment casting, low-pressure casting, and centrifugal casting.3.2Sand CastingThe traditional method of casting metals is in sand molds and has been used for millennia. Simply stated, sand casting consists of (a) placing a pattern having the shape of the desired casting in sand to make an imprint, (b) incorporating a gating system, (c) filling the resulting cavity with molten metal, (d) allowing the metal to cool until it solidifies, (e) breaking away the sand mold, and (f) removing the casting (Fig. 3-2). The production steps for a typical sand-casting operation are shown in Fig. 3-3.Although the origins of sand casting date to ancient times, it is still the most prevalent form of casting. In the United States alone, about 15 million tons of metal are cast by this method each year.Open riser Vent Pouring basin (cup)CopeBlind FlaskriserSprueCore(sand)SandParting lineDragMoldcavityChokeRunner GateSandFig. 3-2 Schematic illustration of a sand mold33.2.1SandsMost sand casting operations use silica sand (SiO2), which is the product of the dis- integration of rocks over extremely long periods of time. Sand is inexpensive and is suitable as mold material because of its resistance to high temperatures. There are two general types of sand: naturally bonded (bank sand) and synthetic (lake sand). Because its composition can be controlled more accurately, synthetic sand is preferred by most foundries.Several factors are important in the selection of sand for molds. Sand having fine, round grains can be closely packed and forms a smooth mold surface. Although fine-grained sand enhances mold strength, the fine grains also lower mold permeability. Good permeability of molds and cores allows gases and steam evolved during casting to escape easily.3.2.2Types of Sand MoldsSand molds are characterized by the types of sand that comprise them and by the methods used to produce them. There are three basic types of sand molds: greensand, cold-box, and no-bake molds.The most common mold material is green molding sand, which is a mixture of sand, clay, and water. The term “green” refers to the fact that the sand in the mold is moist or damp while the metal is being poured into it. Greensand molding is the least expensive method of makingmolds.In the skin-dried method, the mold surfaces are dried, either by storing the mold in air or by drying it with torches. These molds are generally used for large castings because of their higher strength.Sand molds are also oven dried (baked) prior to pouring the molten metal; they are stronger than greensand molds and impart better dimensional accuracy and surface finish to the casting. However, this method has drawbacks: distortion of the mold is greater; the castings are more susceptible to hot tearing because of the lower collapsibility of the mold; and the production rate is slower because of the drying time required.In the cold-box mold process, various organic and inorganic binders are blended into the sand to bond the grains chemically for greater strength. These molds are dimensionally more accurate than greensand molds but are more expensive.In the no-bake mold process, a synthetic liquid resin is mixed with the sand; the mixture hardens at room temperature. Because bonding of the mold in this and in thecold-box process takes place without heat, they are called cold-setting processes.The following are the major components of sand molds (Fig. 3-2):(1)The mold itself, which is supported by a flask. Two-piece molds consist of a cope on top and a drag on the bottom. The seam between them is the parting line. When more than two pieces are used, the additional parts are called cheeks.(2)A pouring basin or pouring cup, into which the molten metal is poured.(3)A sprue, through which the molten metal flows downward.(4)The runner system, which has channels that carry the molten metal from the sprue to the mold cavity. Gates are the inlets into the mold cavity.(5)Risers, which supply additional metal to the casting as it shrinks during solidification. Fig. 3-2 shows two different types of risers: a blind riser and an open riser.(6)Cores, which are inserts made from sand. They are placed in the mold to form hollow regions or otherwise define the interior surface of the casting. Cores are also used on the outside of the casting to form features such as lettering on the surface of a casting or deep external pockets.(7)Vents, which are placed in molds to carry off gases produced when the molten metal comes into contact with the sand in the mold and core. They also exhaust air from the mold cavity as the molten metal flows into the mold.3.2.3PatternsPatterns are used to mold the sand mixture into the shape of the casting. They may be made of wood, plastic, or metal. The selection of a pattern material depends on the size and shape of the casting, the dimensional accuracy, the quantity of castings required, and the molding process.Because patterns are used repeatedly to make molds, the strength and durability of the material selected for patterns must reflect thenumber of castings that the mold will produce.They may be made of a combination of materials to reduce wear in critical regions. Patterns are usually coated with a parting agent to facilitate their removal from the molds.Patterns can be designed with a variety of features to fit application and economic requirements. One-piece patterns, also called loose or solid patterns, are generally used for simpler shapes and low-quantity production. They are generally made of wood and are inexpensive. Split patterns are two-piece patterns made such that each part forms a portion of the cavity for the casting; in this way, castings with complicated shapes can be produced.Match-plate patterns are a popular type of mounted pattern in which two-piece patterns are constructed by securing each half of one or more split patterns to the opposite sides of a single plate (Fig.3-4). In such constructions, the gating system can be mounted on the drag side of the pattern. This type of pattern is used most often in conjunction with molding machines and large production runs to produce smaller castings.Cope sidePlateDrag sideFig. 3-4 A typical metal match-plate pattern used in sand castingAn important recent development is the application of rapid prototyping to moldand pattern making. In sand casting, for example, a pattern can be fabricated in arapid prototyping machine and fastened to a backing plate at a fraction of the timeand cost of machining a pattern. There are several rapid prototyping techniques withwhich these tools can be produced quickly.Pattern design is a crucial aspect of the total casting operation. The design should provide for metal shrinkage, case of removal from the sand mold by means of a taper or draft (Fig.3-5), and proper metal flow in the mold cavity.Pattern Draft angleDamageFlaskSand moldPoor GoodFig. 3-5 Taper on patterns for case of removal from the sand mold3.2.4CoresFor castings with internal cavities or passages, such as those found in an automotive engine block or a valve body, cores are utilized. Cores are placed in themold cavity before casting to form the interior surfaces of the casting and are removed from the finished part during shakeout and further processing. Like molds,cores must possess strength, permeability, ability to withstand heat, and collapsibility; therefore, cores are made of sand aggregates.The core is anchored by core prints. These are recesses that are added to the pattern to support the core and to provide vents for the escape of gases (Fig. 3-6). A common problem with cores is that for some casting requirements, as in the casewhere a recess is required, they may lack sufficient structural support in the cavity.To keep the core from shifting, metal supports (chaplets) may be used to anchor thecore in place (Fig. 3-6).ChapletCore CoreCoreprintsCavity PartinglineMoldCavity CoreprintsFig. 3-6 Examples of sand cores showing core prints and chaplets to support cores8Cores are generally made in a manner similar to that used in making molds; the majority are made with shell, no-bake, or cold-box processes. Cores are formed in core boxes, which are used in much the same way that patterns are used to form sand molds. The sand can be packed into the boxes with sweeps, or blown into the box by compressed air from core blowers. The latter have the advantages of producing uniform cores and operating at very high production rates.3.2.5Sand-Molding MachinesThe oldest known method of molding, which is still used for simple castings, is to compact the sand by hand hammering (tamping) or ramming it around the pattern. For most operations, however, the sand mixture is compacted around the pattern by molding machines (Fig.3-7). These machines eliminate arduous labor, offer high-quality casting by improving the application and distribution of forces, manipulate the mold in a carefully controlled manner, and increase production rate.Squeeze head(a)(c) Equalizing pistons Pressurized air(b)(d)DiaphragmHydraulic cylinderFig. 3-7 Various designs of squeeze heads for mold making(a)conventional flat head (b) profile head (c) equalizing squeeze pistons (d) flexible diaphragmMechanization of the molding process can be further assisted by jolting the assembly. The flask, molding sand, and pattern are first placed on a pattern plate mounted on an anvil, and then jolted upward by air pressure at rapid intervals. The inertial forces compact the sand around the pattern. Jolting produces the highest compaction at the horizontal parting line, whereas in squeezing, compaction is highest at the squeezing head (Fig. 3-7). Thus, more uniform com- paction can be obtained by combining squeezing and jolting.In vertical flaskless molding, the halves of the pattern form a vertical chamber wall against which sand is blown and compacted (Fig. 3-8). Then, the mold haves are packed horizontally, with the parting line oriented vertically and moved along a pouring conveyor. This operation is simple and eliminates the need to handle flasks, allowing for very high production rates, particularly when other aspects of the operation (such as coring and pouring) are automated.Ram forceBoxSandPatternMetal poured here(a)(b)Fig. 3-8 Vertical flaskless molding(a)sand is squeezed between two halves of the pattern(b)assembled molds pass along an assembly line for pouringSandslingers fill the flask uniformly with sand under high-pressure stream. They are used to fill large flasks and are typically operated by machine. An impeller in the machine throws sand from its blades or cups at such high speeds that the machine not only places the sand but also rams it appropriately.In impact molding, the sand is compacted by controlled explosion or instantaneous release of compressed gases. This method produces molds withuniform strength and good permeability.In vacuum molding, also known as the “V” process, the pattern is covered tightly by a thin sheet of plastic. A flask is placed over the coated pattern and is filled with dry binderless sand. A second sheet of plastic is then placed on top of the sand, and a vacuum action hardens the sand so that the pattern can be withdrawn. Both halves of the mold are made this way and assembled.During pouring, the mold remains under a vacuum but the casting cavity does not. When the metal has solidified, the vacuum is turned off and the sand falls away, releasing the casting. Vacuum molding produces castings with high-quality detail and dimensional accuracy. It is especially well suited for large, relatively flat castings.113.2.6The Sand Casting OperationAfter the mold has been shaped and the cores have been placed in position, the two halves (cope and drag) are closed, clamped, and weighted down. They are weighted to prevent the separation of the mold sections under the pressure exerted when the molten metal is poured into the mold cavity.The design of the gating system is important for proper delivery of the molten metal into the mold cavity. As described, turbulence must be minimized, air and gases must be allowed to escape by such means as vents, and proper temperature gradients must be established and maintained to minimize shrinkage and porosity. The design of risers is also important in order to supply the necessary molten metal during solidification of the casting. The pouring basin may also serve as a riser. A complete sequence of operations in sand casting is shown in Fig. 3-9. In Fig. 3-9(a), a mechanical drawing of the part is used to generate a design for the pattern. Considerations such as part shrinkage and draft must be built into the drawing. In (b)~(c), patterns have been mounted on plates equipped with pins for alignment. Note the presence of core prints designed to hold the core in place. In (d)~(e), core boxes produce core halves, which are pasted together. The cores will be used to produce the hollow area of the part shown in (a). In (f), the cope half of the mold is assembled by securing the cope pattern plate to the flask with aligning pins, and attaching inserts to form the sprue and risers. In (g), the flask is rammed with sand and the plate and inserts are removed. In (h), the drag half is produced in a similar manner, with the pattern inserted. A bottom board is placed below the drag and aligned with pins. In (i), the pattern, flask, and bottom board are inverted, and the pattern is withdrawn, leaving the appropriate imprint. In (j), the core is set in place within the drag cavity. In (k), the mold is closed by placing the cope on top of the drag and securing the assembly with pins. The flasks are then subjected to pressure to counteract buoyant forces in the liquid, which might lift the cope. In (l), after the metal solidifies, the casting is removed from the mold. In (m), the sprue and risers are cut off and recycled, and the casting is cleaned, inspected, and heat treated (when necessary).After solidification, the casting is shaken out of its mold, and the sand and oxide layers adhering to the casting are removed by vibration (using a shaker) or by sand blasting. Ferrous castings are also cleaned by blasting with steel shot (shot blasting) or grit. The risers and gates are cut off by oxyfuel-gas cutting, sawing, shearing, andabrasive wheels, or they are trimmed in dies. Gates and risers on steel castings are also removed with air carbon-arc or powder-injection torches. Castings may be cleaned by electrochemical means or by pickling with chemicals to remove surface oxides.(a) (b) (c) Core printsMechanical drawing of part (d) (e)Core boxesCore printsCope pattern plateCore halvespasted together(f)FlaskGateDrag pattern plateRisers SprueCope ready for sand(g) (h) (i)Cope after ramming withsand and removing pattern, sprue, and risers Drag ready for sandDrag afterremoving pattern(j)CopeDrag (k)(l)(m)Drag with core set in place ClosingpinsCope and dragassembled readyfor pouringCasting asremoved frommold; heat treatedCasting readyfor shipmentFig. 3-9 Schematic illustration of the sequence of operations for sand castingAlmost all commercially-used metals can be sand cast. The surface finish obtained is largely a function of the materials used in making the mold. Dimensional accuracy is not as good as that of other casting processes. However, intricate shapes can be cast by this process, such as cast-iron engine blocks and very large propellers for ocean liners. Sand casting can be economical for relatively small production runs, and equipment costs are generally low.The surface of castings is important in subsequent machining operations, because machi- nability can be adversely affected if the castings are not cleaned properly and sand particles remain on the surface. If regions of the casting have not formed properly or have formedincompletely, the defects may be repaired by filling them with weld metal. Sand-mold castings generally have rough, grainy surfaces, depending on the quality of the mold and the materials used.The casting may subsequently be heat-treated to improve certain properties needed for its intended service use; these processes are particularly important for steel castings. Finishing operations may involve machining straightening, or forging with dies to obtain final dimensions.Minor surface imperfections may also be filled with a metal-filled epoxy, especially for cast-iron castings because they are difficult to weld. Inspection is an important final step and is carried out to ensure that the casting meets all design and quality control requirements.第三章铸造模具3.1 铸造第一批铸件是在公元前4000年至公元前3000年制造的。

注塑模具中英文对照外文翻译文献

注塑模具中英文对照外文翻译文献

中英文对照资料外文翻译Integrated simulation of the injection molding process withstereolithography moldsAbstract Functional parts are needed for design verification testing, field trials, customer evaluation, and production planning. By eliminating multiple steps, the creation of the injection mold directly by a rapid prototyping (RP) process holds the best promise of reducing the time and cost needed to mold low-volume quantities of parts. The potential of this integration of injection molding with RP has been demonstrated many times. What is missing is the fundamental understanding of how the modifications to the mold material and RP manufacturing process impact both the mold design and the injection molding process. In addition, numerical simulation techniques have now become helpful tools of mold designers and process engineers for traditional injection molding. But all current simulation packages for conventional injection molding are no longer applicable to this new type of injection molds, mainly because the property of the mold material changes greatly. In this paper, an integrated approach to accomplish a numerical simulation of injection molding into rapid-prototyped molds is established and a corresponding simulation system is developed. Comparisons with experimental results are employed for verification, which show that the present scheme is well suited to handle RP fabricated stereolithography (SL) molds.Keywords Injection molding Numerical simulation Rapid prototyping1 IntroductionIn injection molding, the polymer melt at high temperature is injected into the mold under high pressure [1]. Thus, the mold material needs to have thermal and mechanical properties capable of withstanding the temperatures and pressures of the molding cycle. The focus of many studies has been to create theinjection mold directly by a rapid prototyping (RP) process. By eliminating multiple steps, this method of tooling holds the best promise of reducing the time and cost needed to createlow-volume quantities of parts in a production material. The potential of integrating injection molding with RP technologies has been demonstrated many times. The properties of RP molds are very different from those of traditional metal molds. The key differences are the properties of thermal conductivity and elastic modulus (rigidity). For example, the polymers used in RP-fabricated stereolithography (SL) molds have a thermal conductivity that is less than one thousandth that of an aluminum tool. In using RP technologies to create molds, the entire mold design and injection-molding process parameters need to be modified and optimized from traditional methodologies due to the completely different tool material. However, there is still not a fundamental understanding of how the modifications to the mold tooling method and material impact both the mold design and the injection molding process parameters. One cannot obtain reasonable results by simply changing a few material properties in current models. Also, using traditional approaches when making actual parts may be generating sub-optimal results. So there is a dire need to study the interaction between the rapid tooling (RT) process and material and injection molding, so as to establish the mold design criteria and techniques for an RT-oriented injection molding process.In addition, computer simulation is an effective approach for predicting the quality of molded parts. Commercially available simulation packages of the traditional injection molding process have now become routine tools of the mold designer and process engineer [2]. Unfortunately, current simulation programs for conventional injection molding are no longer applicable to RP molds, because of the dramatically dissimilar tool material. For instance, in using the existing simulation software with aluminum and SL molds and comparing with experimental results, though the simulation values of part distortion are reasonable for the aluminum mold, results are unacceptable, with the error exceeding 50%. The distortion during injection molding is due to shrinkage and warpage of the plastic part, as well as the mold. For ordinarily molds, the main factor is the shrinkage and warpage of the plastic part, which is modeled accurately in current simulations. But for RP molds, the distortion of the mold has potentially more influence, which have been neglected in current models. For instance, [3] used a simple three-step simulation process to consider the mold distortion, which had too much deviation.In this paper, based on the above analysis, a new simulation system for RP molds is developed. The proposed system focuses on predicting part distortion, which is dominating defect in RP-molded parts. The developed simulation can be applied as an evaluation tool for RP mold design and process opti mization. Our simulation system is verified by an experimental example.Although many materials are available for use in RP technologies, we concentrate on usingstereolithography (SL), the original RP technology, to create polymer molds. The SL process uses photopolymer and laser energy to build a part layer by layer. Using SL takes advantage of both the commercial dominance of SL in the RP industry and the subsequent expertise base that has been developed for creating accurate, high-quality parts. Until recently, SL was primarily used to create physical models for visual inspection and form-fit studies with very limited func-tional applications. However, the newer generation stereolithographic photopolymers have improved dimensional, mechanical and thermal properties making it possible to use them for actual functional molds.2 Integrated simulation of the molding process2.1 MethodologyIn order to simulate the use of an SL mold in the injection molding process, an iterative method is proposed. Different software modules have been developed and used to accomplish this task. The main assumption is that temperature and load boundary conditions cause significant distortions in the SL mold. The simulation steps are as follows:1The part geo metry is modeled as a solid model, which is translated to a file readable by the flow analysis package.2Simulate the mold-filling process of the melt into a pho topolymer mold, which will output the resulting temperature and pressure profiles.3Structural analysis is then performed on the photopolymer mold model using the thermal and load boundary conditions obtained from the previous step, which calculates the distortion that the mold undergo during the injection process.4If the distortion of the mold converges, move to the next step. Otherwise, the distorted mold cavity is then modeled (changes in the dimensions of the cavity after distortion), and returns to the second step to simulate the melt injection into the distorted mold.5The shrinkage and warpage simulation of the injection molded part is then applied, which calculates the final distor tions of the molded part.In above simulation flow, there are three basic simulation mod ules.2. 2 Filling simulation of the melt2.2.1 Mathematical modelingIn order to simulate the use of an SL mold in the injection molding process, an iterativemethod is proposed. Different software modules have been developed and used to accomplish this task. The main assumption is that temperature and load boundary conditions cause significant distortions in the SL mold. The simulation steps are as follows:1. The part geometry is modeled as a solid model, which is translated to a file readable by the flow analysis package.2. Simulate the mold-filling process of the melt into a photopolymer mold, which will output the resulting temperature and pressure profiles.3. Structural analysis is then performed on the photopolymer mold model using the thermal and load boundary conditions obtained from the previous step, which calculates the distortion that the mold undergo during the injection process.4. If the distortion of the mold converges, move to the next step. Otherwise, the distorted mold cavity is then modeled (changes in the dimensions of the cavity after distortion), and returns to the second step to simulate the melt injection into the distorted mold.5. The shrinkage and warpage simulation of the injection molded part is then applied, which calculates the final distortions of the molded part.In above simulation flow, there are three basic simulation modules.2.2 Filling simulation of the melt2.2.1 Mathematical modelingComputer simulation techniques have had success in predicting filling behavior in extremely complicated geometries. However, most of the current numerical implementation is based on a hybrid finite-element/finite-difference solution with the middleplane model. The application process of simulation packages based on this model is illustrated in Fig. 2-1. However, unlike the surface/solid model in mold-design CAD systems, the so-called middle-plane (as shown in Fig. 2-1b) is an imaginary arbitrary planar geometry at the middle of the cavity in the gap-wise direction, which should bring about great inconvenience in applications. For example, surface models are commonly used in current RP systems (generally STL file format), so secondary modeling is unavoidable when using simulation packages because the models in the RP and simulation systems are different. Considering these defects, the surface model of the cavity is introduced as datum planes in the simulation, instead of the middle-plane.According to the previous investigations [4–6], fillinggoverning equations for the flow and temperature field can be written as:where x, y are the planar coordinates in the middle-plane, and z is the gap-wise coordinate; u, v,w are the velocity components in the x, y, z directions; u, v are the average whole-gap thicknesses; and η, ρ,CP (T), K(T) represent viscosity, density, specific heat and thermal conductivity of polymer melt, respectively.Fig.2-1 a–d. Schematic procedure of the simulation with middle-plane model. a The 3-D surface model b The middle-plane model c The meshed middle-plane model d The display of the simulation result In addition, boundary conditions in the gap-wise direction can be defined as:where TW is the constant wall temperature (shown in Fig. 2a).Combining Eqs. 1–4 with Eqs. 5–6, it follows that the distributions of the u, v, T, P at z coordinates should be symmetrical, with the mirror axis being z = 0, and consequently the u, v averaged in half-gap thickness is equal to that averaged in wholegap thickness. Based on this characteristic, we can divide the whole cavity into two equal parts in the gap-wise direction, as described by Part I and Part II in Fig. 2b. At the same time, triangular finite elements are generated in the surface(s) of the cavity (at z = 0 in Fig. 2b), instead of the middle-plane (at z = 0 in Fig. 2a). Accordingly, finite-difference increments in the gapwise direction are employed only in the inside of the surface(s) (wall to middle/center-line), which, in Fig. 2b, means from z = 0 to z = b. This is single-sided instead of two-sided with respect to the middle-plane (i.e. from the middle-line to two walls). In addition, the coordinate system is changed from Fig. 2a to Fig. 2b to alter the finite-element/finite-difference scheme, as shown in Fig. 2b. With the above adjustment, governing equations are still Eqs. 1–4. However, the original boundary conditions inthe gapwise direction are rewritten as:Meanwhile, additional boundary conditions must be employed at z = b in order to keep the flows at the juncture of the two parts at the same section coordinate [7]:where subscripts I, II represent the parameters of Part I and Part II, respectively, and Cm-I and Cm-II indicate the moving free melt-fronts of the surfaces of the divided two parts in the filling stage.It should be noted that, unlike conditions Eqs. 7 and 8, ensuring conditions Eqs. 9 and 10 are upheld in numerical implementations becomes more difficult due to the following reasons:1. The surfaces at the same section have been meshed respectively, which leads to a distinctive pattern of finite elements at the same section. Thus, an interpolation operation should be employed for u, v, T, P during the comparison between the two parts at the juncture.2. Because the two parts have respective flow fields with respect to the nodes at point A and point C (as shown in Fig. 2b) at the same section, it is possible to have either both filled or one filled (and one empty). These two cases should be handled separately, averaging the operation for the former, whereas assigning operation for the latter.3. It follows that a small difference between the melt-fronts is permissible. That allowance can be implemented by time allowance control or preferable location allowance control of the melt-front nodes.4. The boundaries of the flow field expand by each melt-front advancement, so it is necessary to check the condition Eq. 10 after each change in the melt-front.5. In view of above-mentioned analysis, the physical parameters at the nodes of the same section should be compared and adjusted, so the information describing finite elements of the same section should be prepared before simulation, that is, the matching operation among the elements should be preformed.Fig. 2a,b. Illustrative of boundary conditions in the gap-wise direction a of the middle-plane model b of thesurface model2.2.2 Numerical implementationPressure field. In modeling viscosity η, which is a function of shear rate, temperature and pressure of melt, the shear-thinning behavior can be well represented by a cross-type model such as:where n corresponds to the power-law index, and τ∗ characterizes the shear stress level of the transition region between the Newtonian and power-law asymptotic limits. In terms of an Arrhenius-type temperature sensitivity and exponential pressure dependence, η0(T, P) can be represented with reasonable accuracy as follows:Equations 11 and 12 constitute a five-constant (n, τ∗, B, Tb, β) representation for viscosity. The shear rate for viscosity calculation is obtained by:Based on the above, we can infer the following filling pressure equation from the governing Eqs. 1–4:where S is calculated by S = b0/(b−z)2η d z. Applying the Galerkin method, the pressure finite-element equation is deduced as:where l_ traverses all elements, including node N, and where I and j represent the local node number in element l_ corresponding to the node number N and N_ in the whole, respectively. The D(l_) ij is calculated as follows:where A(l_) represents triangular finite elements, and L(l_) i is the pressure trial function in finite elements.Temperature field. To determine the temperature profile across the gap, each triangular finite element at the surface is further divided into NZ layers for the finite-difference grid.The left item of the energy equation (Eq. 4) can be expressed as:where TN, j,t represents the temperature of the j layer of node N at time t.The heat conduction item is calculated by:where l traverses all elements, including node N, and i and j represent the local node number in element l corresponding to the node number N and N_ in the whole, respectively.The heat convection item is calculated by:For viscous heat, it follows that:Substituting Eqs. 17–20 into the energy equation (Eq. 4), the temperature equation becomes:2.3 Structural analysis of the moldThe purpose of structural analysis is to predict the deformation occurring in the photopolymer mold due to the thermal and mechanical loads of the filling process. This model is based on a three-dimensional thermoelastic boundary element method (BEM). The BEM is ideally suited for this application because only the deformation of the mold surfaces is of interest. Moreover, the BEM has an advantage over other techniques in that computing effort is not wasted on calculating deformation within the mold.The stresses resulting from the process loads are well within the elastic range of the mold material. Therefore, the mold deformation model is based on a thermoelastic formulation. The thermal and mechanical properties of the mold are assumed to be isotropic and temperature independent.Although the process is cyclic, time-averaged values of temperature and heat flux are used for calculating the mold deformation. Typically, transient temperature variations within a mold have been restricted to regions local to the cavity surface and the nozzle tip [8]. The transients decay sharply with distance from the cavity surface and generally little variation is observed beyond distances as small as 2.5 mm. This suggests that the contribution from the transients to the deformation at the mold block interface is small, and therefore it is reasonable to neglect the transient effects. The steady state temperature field satisfies Laplace’s equation 2T = 0 and the time-averaged boundary conditions. The boundary conditions on the mold surfaces are described in detail by Tang et al. [9]. As for the mechanical boundary conditions, the cavity surface is subjected to the melt pressure, the surfaces of the mold connected to the worktable are fixed in space, and other external surfaces are assumed to be stress free.The derivation of the thermoelastic boundary integral formulation is well known [10]. It is given by:where uk, pk and T are the displacement, traction and temperature,α, ν represent the thermal expansion coefficient and Poisson’s ratio of the material, and r = |y−x|. clk(x) is the surfacecoefficient which depends on the local geometry at x, the orientation of the coordinate frame and Poisson’s ratio for the domain [11]. The fundamental displacement ˜ulk at a point y in the xk direction, in a three-dimensional infinite isotropic elastic domain, results from a unit load concentrated at a point x acting in the xl direction and is of the form:where δlk is the Kronecker delta function and μ is the shear modulus of the mold material.The fundamental traction ˜plk , measured at the point y on a surface with unit normal n, is:Discretizing the surface of the mold into a total of N elements transforms Eq. 22 to:where Γn refers to the n th surface element on the domain.Substituting the appropriate linear shape functions into Eq. 25, the linear boundary element formulation for the mold deformation model is obtained. The equation is applied at each node on the discretized mold surface, thus giving a system of 3N linear equations, where N is the total number of nodes. Each node has eight associated quantities: three components of displacement, three components of traction, a temperature and a heat flux. The steady state thermal model supplies temperature and flux values as known quantities for each node, and of the remaining six quantities, three must be specified. Moreover, the displacement values specified at a certain number of nodes must eliminate the possibility of a rigid-body motion or rigid-body rotation to ensure a non-singular system of equations. The resulting system of equations is assembled into a integrated matrix, which is solved with an iterative solver.2.4 Shrinkage and warpage simulation of the molded partInternal stresses in injection-molded components are the principal cause of shrinkage and warpage. These residual stresses are mainly frozen-in thermal stresses due to inhomogeneous cooling, when surface layers stiffen sooner than the core region, as in free quenching. Based onthe assumption of the linear thermo-elastic and linear thermo-viscoelastic compressible behavior of the polymeric materials, shrinkage and warpage are obtained implicitly using displacement formulations, and the governing equations can be solved numerically using a finite element method.With the basic assumptions of injection molding [12], the components of stress and strain are given by:The deviatoric components of stress and strain, respectively, are given byUsing a similar approach developed by Lee and Rogers [13] for predicting the residual stresses in the tempering of glass, an integral form of the viscoelastic constitutive relationships is used, and the in-plane stresses can be related to the strains by the following equation:Where G1 is the relaxation shear modulus of the material. The dilatational stresses can be related to the strain as follows:Where K is the relaxation bulk modulus of the material, and the definition of α and Θ is:If α(t) = α0, applying Eq. 27 to Eq. 29 results in:Similarly, applying Eq. 31 to Eq. 28 and eliminating strain εxx(z, t) results in:Employing a Laplace transform to Eq. 32, the auxiliary modulus R(ξ) is given by:Using the above constitutive equation (Eq. 33) and simplified forms of the stresses and strains in the mold, the formulation of the residual stress of the injection molded part during the cooling stage is obtain by:Equation 34 can be solved through the application of trapezoidal quadrature. Due to the rapid initial change in the material time, a quasi-numerical procedure is employed for evaluating the integral item. The auxiliary modulus is evaluated numerically by the trapezoidal rule.For warpage analysis, nodal displacements and curvatures for shell elements are expressed as:where [k] is the element stiffness matrix, [Be] is the derivative operator matrix, {d} is the displacements, and {re} is the element load vector which can be evaluated by:The use of a full three-dimensional FEM analysis can achieve accurate warpage results, however, it is cumbersome when the shape of the part is very complicated. In this paper, a twodimensional FEM method, based on shell theory, was used because most injection-molded parts have a sheet-like geometry in which the thickness is much smaller than the other dimensions of the part. Therefore, the part can be regarded as an assembly of flat elements to predict warpage. Each three-node shell element is a combination of a constant strain triangular element (CST) and a discrete Kirchhoff triangular element (DKT), as shown in Fig. 3. Thus, the warpage can be separated into plane-stretching deformation of the CST and plate-bending deformation of the DKT, and correspondingly, the element stiffness matrix to describe warpage can also be divided into the stretching-stiffness matrix and bending-stiffness matrix.Fig. 3a–c. Deformation decomposition of shell element in the local coordinate system. a In-plane stretchingelement b Plate-bending element c Shell element3 Experimental validationTo assess the usefulness of the proposed model and developed program, verification is important. The distortions obtained from the simulation model are compared to the ones from SL injection molding experiments whose data is presented in the literature [8]. A common injection molded part with the dimensions of 36×36×6 mm is considered in the experiment, as shown in Fig. 4. The thickness dimensions of the thin walls and rib are both 1.5 mm; and polypropylene was used as the injection material. The injection machine was a production level ARGURY Hydronica 320-210-750 with the following process parameters: a melt temperature of 250 ◦C; an ambient temperature of 30 ◦C; an injection pressure of 13.79 MPa; an injection time of 3 s; and a cooling time of 48 s. The SL material used, Dupont SOMOSTM 6110 resin, has the ability to resist temperatures of up to 300 ◦C temperatures. As mentioned above, thermal conductivity of the mold is a major factor that differentiates between an SL and a traditional mold. Poor heat transfer in the mold would produce a non-uniform temperature distribution, thus causing warpage that distorts the completed parts. For an SL mold, a longer cycle time would be expected. The method of using a thin shell SL mold backed with a higher thermal conductivity metal (aluminum) was selected to increase thermal conductivity of the SL mold.Fig. 4. Experimental cavity modelFig. 5. A comparison of the distortion variation in the X direction for different thermal conductivity; where “Experimental”, “present”, “three-step”, and “conventional” mean the results of the experimental, the presented simulation, the three-step simulation process and the conventional injection molding simulation, respectively.Fig. 6. Comparison of the distortion variation in the Y direction for different thermal conductivitiesFig. 7. Comparison of the distortion variation in the Z direction for different thermal conductivitiesFig. 8. Comparison of the twist variation for different thermal conductivities For this part, distortion includes the displacements in three directions and the twist (the difference in angle between two initially parallel edges). The validation results are shown in Fig.5 to Fig. 8. These figures also include the distortion values predicted by conventional injection molding simulation and the three-step model reported in [3].4 ConclusionsIn this paper, an integrated model to accomplish the numerical simulation of injection molding into rapid-prototyped molds is established and a corresponding simulation system is developed. For verification, an experiment is also carried out with an RPfabricated SL mold.It is seen that a conventional simulation using current injection molding software breaks down for a photopolymer mold. It is assumed that this is due to the distortion in the mold caused by the temperature and load conditions of injection. The three-step approach also has much deviation. The developed model gives results closer to experimental.Improvement in thermal conductivity of the photopolymer significantly increases part quality. Since the effect of temperature seems to be more dominant than that of pressure (load), an improvement in the thermal conductivity of the photopolymer can improve the part quality significantly.Rapid Prototyping (RP) is a technology makes it possible to manufacture prototypes quickly and inexpensively, regardless of their complexity. Rap id Tooling (RT) is the next step in RP’s steady progress and much work is being done to obtain more accurate tools to define the parameters of the process. Existing simulation tools can not provide the researcher with a useful means of studying relative changes. An integrated model, such as the one presented in this paper, is necessary to obtain accurate predictions of the actual quality of final parts. In the future, we expect to see this work expanded to develop simulations program for injection into RP molds manufactured by other RT processes.References1. Wang KK (1980) System approach to injection molding process. Polym-Plast Technol Eng 14(1):75–93.2. Shelesh-Nezhad K, Siores E (1997) Intelligent system for plastic injection molding process design. J Mater Process Technol 63(1–3):458–462.3. Aluru R, Keefe M, Advani S (2001) Simulation of injection molding into rapid-prototyped molds. Rapid Prototyping J 7(1):42–51.4. Shen SF (1984) Simulation of polymeric flows in the injection molding process. Int J Numer Methods Fluids 4(2):171–184.5. Agassant JF, Alles H, Philipon S, Vincent M (1988) Experimental and theoretical study of the injection molding of thermoplastic materials. Polym Eng Sci 28(7):460–468.6. Chiang HH, Hieber CA, Wang KK (1991) A unified simulation of the filling and post-filling stages in injection molding. Part I: formulation. Polym Eng Sci 31(2):116–124.7. Zhou H, Li D (2001) A numerical simulation of the filling stage in injection molding based on a surface model. Adv Polym Technol 20(2):125–131.8. Himasekhar K, Lottey J, Wang KK (1992) CAE of mold cooling in injection molding using a three-dimensional numerical simulation. J EngInd Trans ASME 114(2):213–221.9. Tang LQ, Pochiraju K, Chassapis C, Manoochehri S (1998) Computeraided optimization approach for the design of injection mold cooling systems. J Mech Des, Trans ASME 120(2):165–174.10. Rizzo FJ, Shippy DJ (1977) An advanced boundary integral equation method for three-dimensional thermoelasticity. Int J Numer Methods Eng 11:1753–1768.11. Hartmann F (1980) Computing the C-matrix in non-smooth boundary points. In: New developments in boundary element methods, CML Publications, Southampton, pp 367–379.12. Chen X, Lama YC, Li DQ (2000) Analysis of thermal residual stress in plastic injection molding. J Mater Process Technol 101(1):275–280.13. Lee EH, Rogers TG (1960) Solution of viscoelastic stress analysis problems using measured creep or relaxation function. J Appl Mech 30(1):127–134.14. Li Y (1997) Studies in direct tooling using stereolithography. Dissertation, University of Delaware, Newark, DE..。

模具设计与制造外文翻译参考文献

模具设计与制造外文翻译参考文献

模具设计与制造外文翻译参考文献(文档含中英文对照即英文原文和中文翻译)译文:模具设计与制造模具是制造业的重要工艺基础,在我国模具制造属于专用设备制造业。

中国虽然很早就开始制造模具和使用模具,但长期未形成产业。

直到20世纪80年代后期,中国模具工业才驶入发展的快车道。

近年,不仅国有模具企业有了很大发展,三资企业、乡镇(个体)模具企业的发展也相当迅速。

虽然中国模具工业发展迅速,但与需求相比,显然供不应求,其主要缺口集中于精密、大型、复杂、长寿命模具领域。

由于在模具精度、寿命、制造周期及生产能力等方面,中国与国际平均水平和发达国家仍有较大差距,因此,每年需要大量进口模具。

中国模具产业除了要继续提高生产能力,今后更要着重于行业内部结构的调整和技术发展水平的提高。

结构调整方面,主要是企业结构向专业化调整,产品结构向着中高档模具发展,向进出口结构的改进,中高档汽车覆盖件模具成形分析及结构改进、多功能复合模具和复合加工及激光技术在模具设计制造上的应用、高速切削、超精加工及抛光技术、信息化方向发展。

近年,模具行业结构调整和体制改革步伐加大,主要表现在,大型、精密、复杂、长寿命、中高档模具及模具标准件发展速度高于一般模具产品;塑料模和压铸模比例增大;专业模具厂数量及其生产能力增加;“三资”及私营企业发展迅速;股份制改造步伐加快等。

从地区分布来看,以珠江三角洲和长江三角洲为中心的东南沿海地区发展快于中西部地区,南方的发展快于北方。

目前发展最快、模具生产最为集中的省份是广东和浙江,江苏、上海、安徽和山东等地近几年也有较大发展。

虽然我国模具总量目前已达到相当规模,模具水平也有很大提高,但设计制造水平总体上落后于德、美、日、法、意等工业发达国家许多。

当前存在的问题和差距主要表现在以下几方面:(1)总量供不应求,国内模具自配率只有70%左右。

其中低档模具供过于求,中高档模具自配率只有50%左右。

(2)企业组织结构、产品结构、技术结构和进出口结构均不合理。

塑料模具外文文献

塑料模具外文文献

附录二附录二 外文翻译外文翻译Treating and the modern mould make high speed One, summarizes 1 the present situation that the mould makes at present and trend The The mould mould mould is is is important important important handicraft handicraft handicraft equipment equipment equipment , , , occupies occupies occupies decisive decisive decisive position position position in in in industrid industrid industrid departments departments departments such such such as as consumer consumer goods goods goods , , , electrical electrical electrical equipment equipment equipment electron electron electron , , , automobile automobile automobile , , , aircraft aircraft aircraft fabrication. fabrication. fabrication. The The The mould mould mould is is is important important handicraft handicraft equipment equipment equipment , , , occupies occupies occupies decisive decisive decisive position position position in in in industrid industrid industrid departments departments departments such such such as as as consumer consumer consumer goods goods goods , , , electrical electrical equipment equipment electron electron electron , , , automobile automobile automobile , , , aircraft aircraft aircraft fabrication. fabrication. fabrication. Industrial Industrial Industrial product product product part part part rough rough rough process process process 75%, 75%, 75%, the the the finish finish machining machining 50% 50% 50% and and and plastic plastic plastic part part part 90% 90% 90% will will will be be be completed completed completed from from from the the the mould. mould. mould. The The The Chinese Chinese Chinese mould mould mould market market market demand demand already already reaches reaches reaches scale scale scale of of of 500 500 500 hundred hundred hundred million million million yuan yuan yuan at at at present. present. present. The The The automobile automobile automobile mould mould mould , , , the the the annual annual annual growth growth growth rate rate covering piece of mould especially will exceed 20 %; Also prompt building material mould development , various heterotype material the mould , wall surface and floor mould become new mould growth point , plastic doors and windows and plastic drain-pipe increase to exceeding 30 by in the upcoming several years %; The home appliance mould annual growth rate will exceed 10 %; The IT industry year increases % speed equally exceeding 20 , the need need to to to the the the mould mould mould accounts accounts accounts for for for 20 20 20 of of of mould mould mould marketplace marketplace marketplace %.2004 %.2004 %.2004 annual annual annual Chinese Chinese Chinese machine machine machine tools tools tools implements implements industry output value will continue to increase. Our country mould fabrication market potential is enormous. The basis data counts , in recent years, our country mould year gross output value reaches 3 billion U. S. dollar , entrance exceeds 1 billion U. S. dollar, exceed 100 million U. S. dollar outlet. Increase by from 25% to increase to 2005 50% of 1995. The expert foretells that abroad: Asia portion being occupied by in mould fabrication in the whole world, will from 25% to increase to 2005 50% of 1995. Chinese mould industry has been expanding by leaps and bounds , has formed east China and two big South China bases, and has expanded gradually arriving at other province. In 2002 (Shandong , Anhui , Sichuan) in 1996 ~, mould manufacturing industry output value annual average growth 14% , grows by 25% in 2003. In 2003 our country country mould mould mould output output output value value value is is is 45 45 45 billion billion billion RMB. RMB. RMB. The The The gross gross gross product product product place place place occupies occupies occupies the the the world world world the the the 3rd, 3rd, 3rd, exports exports exports a a mould increases 33.5% compared to last year 336,800,000 U. S. dollar. But, contents low our country technology moulds moulds already already already pile pile pile up up up in in in excess excess excess of of of requirement requirement requirement , , , very very very most most most support support support of of of accurate accurate accurate , complicated , complicated top top grade grade grade mould mould imports. Every year the entrance mould exceeds 1 billion U. S. dollar. Exceed 100 million U. S. dollar outlet. Precise mould accuracy requires that 3 mu ms , large-scale moulds require that 8000 satisfied kN agree well with model force injection machine request in 2 ~; The minitype mould needs the request satisfying the diameter 1 mm silent stock tube. At present, adopt quick-cutting to produce a mould already becoming the general trend that the mould makes, a few moulds have produced a manufacturer in abroad , high-speed machine tool large area has substituted the electric spark machine tool , quick-cutting has improved the mould efficacy greatly. Machine tool enterprise enterprise aims aims aims at at at mould mould mould manufacturing manufacturing manufacturing enterprises enterprises enterprises , , , some some some treating treating treating centres centres centres 60% 60% 60% all all all above above above of of of the the the machine machine machine tool tool producing a factory sells treating enterprise to a mould. The mould fabrication enterprise substituting the electric spark finish machining mould gradually in abroad has adopt quick-cutting already commonly , quick-cutting has produced a mould already becoming the general trend that the mould makes gradually , has improved the mould efficacy and mass greatly. Adopt quick-cutting to replace electric spark producing a mould , can get on the stick obviously , improves mould accuracy , life time growing. 2 high speed processes application in making in the mould 2.1 quick-cutting merit: 1) cutter high rotation rate and the machine tool height enter be given to and high acceleration , improve metal excision rate greatly; 2) quick-cutting diminutions cut a force; 3) quick-cutting heat major part generate heat from the cuttings entrainment , workpiece being short; 4) quick-cutting cut down vibration , improve treating mass; 2.2 high speed treating apply to the beneficial result that the mould processes 1) fleetness rough process and half finish machining, improve treating efficiency; 2) high speed high-accuracy finish machining replace only entire the height processing , indicating mass , form accuracy rise , 50%, cuts down repair a mill by hand than EDM processes a potentiation; 3) cuts the surface processing final molding stiffly , improve surface mass , form accuracy, the treating (not only being that surface harshness is low, and the surface radiance is high) , being used for complicated surface has more advantage; 4) the surface loss that EDM treating produces , improve mould life-span 20%; 5) 5) processes processes processes an an an electrode electrode electrode rapidly rapidly rapidly combining combining combining with with with the the the CAD/CAM CAD/CAM CAD/CAM technology technology technology , , , especially, especially, the the form form form is is complicated , thin-wall is similar to an electrode. 3 adopt quick-cutting to process a mould needing the problem solving In in the homeland, since the aspect cause such as fund , technology , the quick-cutting applying produce a mould be in the initial stage stage. Return the machine tool , cutter , handicraft back to existence as well as some problem of aspect needs to proceed orderly other solve. The shortcoming is that finished cost is high, correct cutter sigmatism have comparatively high demand, can not have used big cutters , need to have the complicated computer programming technology to be used for support , equipment running cost height. Two, the high speed processing a mould's processes a machine tool Mould finish machining and hard cutting treating require that the numerical control high-speed machine tool , form form board board board , , , model model model put put put up up up the the the precision precision precision processing processing processing need need need , , , high-effect high-effect high-effect numerical numerical numerical control control control machine machine machine tool tool tool etc.The etc.The mould aiming at produces a lot of machine tool enterprise , some treating centres 60% all above of the machine tool producing a factory sells enterprise to a mould. The The fixed assets fixed assets having having 5 5 billion billion yuan yuan yuan without without without exception exception exception in in in the the the upcoming upcoming upcoming several several several years years years throws throws throws into into into mould mould industry , 80% is the machine tool buying a mould process equipment , just saying every year having 4 billion yuan of RMB to buy Jinqie among them. At At present present present average average average our our our country country country numerical numerical numerical control control control machine machine machine tool tool tool utilization utilization utilization ratio ratio ratio approximately approximately approximately 20%, 20%, 20%, the the high-speed machine tool utilization ratio 3 ~ 5%. Also, mould enterprise has the unit suitable to buy a high-speed machine tool , complies with 6000 ~ 40000 rmp's to have. 1 high-speed machine tool technology parameter demands Process Process centre centre centre chief chief chief axis axis axis high-power high-power high-power , , , high high high rotation rotation rotation rate rate rate , , , satisfied satisfied satisfied rude rude rude finish finish finish machining; machining; machining; The The The finish finish machining mould wants to need to reach 15000 ~ 20000 rmp like the cutter , the machine tool with minor diameter. Generally, the chief axis rotation rate machine tool under 10000 rpm can carry out rough process and half finish machining , cannot reach the finish machining accuracy; Have no way to reach 400 the above m/min cutting speed. 2 five scrolls of machine tools application increases a trend 1) treating route is nimble , the surface form is complicated; 2) treating range is big , the various type mould suitable processes; 3) cuts life-span of condition easy to cut down cutter wear , to raise a cutter,; 3 the softwares buying CAD/CAM and high-speed machine tools assort On the grounds of the machine tool , major part counting , having several billions U. S. dollar to be used to enter port every year, the electromachining machine tool and the high-speed machine tool need to import. Three, quick-cutting mould cutter technology Quick-cutting processes the cutter needing allocating proper quick-cutting. Progressing processing cutter material's in high speed has urged development of high speed treating. The cutter , knife edge headquarter and high tenacity base gathering crystal strengthening the ceramics cutter being able to be used giving consideration to high hardness experience and observe carbide alloy coating becoming possibility. Gather the crystal cube nitriding boron (PCBN) (PCBN) bit, bit, bit, whose whose whose hardness hardness hardness may may may amount amount amount to to to 3500 3500 3500 ~ ~ ~ 4500 4500 4500 HV HV HV. . . Gather Gather Gather crystal crystal crystal miamond miamond miamond (PCD) (PCD) (PCD) it's it's it's hardness hardness hardness but but amount to 6000 ~ 10000 HV . Germany SCS , Japan Mitsubishi (magical steel) and Sumitomo , Switzerland Switzerland Shanteweike Shanteweike Shanteweike , , , USA USA USA Kenna Kenna Kenna are are are in in in recent recent recent years years years swiftly swiftly swiftly large large large wait wait wait for for for the the the famous famous famous abroad abroad abroad cutter cutter company company to to to successively successively successively have have have debuted debuted debuted the the the respective respective respective quick-cutting quick-cutting quick-cutting cutter, cutter, cutter, not not not only only only cutter cutter cutter having having average structural steel of quick-cutting, the ceramics cutter still still having having direct direct quick-cutting quick-cutting of of energy energy quenching hard steel is waiting for an effect to surpass the hard cutter, especially the coating cutter appears all of a sudden sudden , , , bringing bringing bringing into into into play play play in in in quenching quenching quenching half half half finish finish finish machining machining machining and and and finish finish finish machining machining machining of of of hard hard hard steel. steel. steel. New New New cutter cutter material and cutter technology appearing already make the bottleneck problem that high speed has processed no longer be able to appear on the cutter. But, expensive entrance cutter price also blocks quick-cutting mould key factor. Above to come to saying the cutter and the cutter holder acceleration reach 3 gs the sort, the cutter circular runout needs to be smaller than 0.015 mm, but the knife length is unable greater than 4 times cutters diameter. The reality according to SANDVIK company has counted , the carbide alloy has stood on in the entirety using carbon nitriding nitriding titanium titanium titanium (TICN) (TICN) (TICN) coating coating coating when when when milling milling milling cutters cutters cutters (58 (58 (58 HRC) HRC) HRC) carry carry carry out out out high high high speed speed speed bright bright bright metal metal metal chopping chopping chopping , , rough process cutter linear speed has been 100 m/min about , whose linear speed has exceeded but 280 m/min when finish machining and microstoning. Such demands to cutter material (include the hardness , tenacity , red hardness keep the form (include row of crumbs function , surface accuracy , dynamic balance sex etc. (cutting the function) , the cutter under high temperature state)) as well as cutter life-span all has very highly. Experience according to in the homeland mould high speed finish machining, linear speed has exceeded 400 ~ 800 800 m/min m/min m/min when when when adopt adopt adopt the the the young young young diameter diameter diameter ball ball ball head head head milling milling milling cutter cutter cutter to to to carry carry carry out out out mould mould mould finish finish finish machining. machining. machining. The The machine tool choosing sufficient high-speed's cuts mould finish machining stiffly. Delcam adopt 0.8 mm diameter cutter to process the narrow slot , rotation rate 40000 rpm , 0.1 mm depth, feed speed 30 m/min. 1 chooses the cutter parameter , the cutter waits if shouldering an anterior angle. The cutter requires that the ability processing request shock resistance tenacity more highly , requiring that heat resistance pounds than average is strong; 2 adopts various method improving cutter life-span , reduces cutter cost. 3 adopt the high speed hilt , HSK hilt , heat pressing applying the most being at present to pretend to grip a 3 adopt the high speed hilt , HSK hilt , heat pressing applying the most being at present to pretend to grip a cutter. Pay attention to a cutter pretend to grip overall in the day afer tomorrow dynamic balance; 4current cutter enterprise has already done many jobs in the field of the technology resolving the quick-cutting cutter cutter , , , serving serving serving facing facing facing the the the cutter cutter cutter processing processing processing may may may help help help to to to solve solve solve much much much problem problem problem , , , the the the cutter cutter cutter has has has produced produced produced a a manufacturer manufacturer becoming becoming becoming the the the main main main body body body , , , the the the reference reference reference cutter cutter cutter has has has produced produced produced the the the technology technology technology parameter parameter parameter that that that the the manufacturer provides. Four, improve quick-cutting mould efficiency technology 1 cutter diameter and the length choice 2 HSM and the EDM choice 3 does cutting and the lubricating cooling 4 feeds choice: Move forward generally giving amounts <milling cutter diameters 10% , move forward giving a a width width width <milling <milling <milling cutter cutter cutter diameter diameter diameter 40%. 40%. 40%. According According According to to to material, material, material, condition condition condition chooses chooses chooses the the the parameter parameter parameter processing processing handicraft rationally High speed bright metal cuts the mass processing part material abroad fairly good, material quality level is identical , the treating function comparison is stable; But, the cutter that the company produces abroad is also that the the standard standard standard makes makes makes an an an experiment experiment experiment with with with their their their material; material; material; The The The treating treating treating being being being recommended recommended recommended by by by is is is suitable suitable suitable to to to their their standard standard comparatively comparatively comparatively like like like the the the parameter parameter parameter , , , material material material quality quality quality has has has the the the certain certain certain difference difference difference with with with domestic domestic domestic part part part , , , this this difference difference shows shows shows comparatively comparatively comparatively obviously obviously obviously , , , some some some parameters parameters parameters can can can apply apply directly, directly, but but but some some effect dispatches right away comparatively during the period of high speed bright metal chops if using their cutter. But select and use part material quality in the homeland like enterprise having the certain standard, what be put into use part material, can use the part material quality that high speed processes especially , the general meeting is limited in some part material range inner, that this applies the high speed processing technology to us has also provided advantageous condition , has been able to apply to less treating material within range. Being needing to emphasize that here, must choose the treating technological parameter optimizing out a set of capital suitable enterprise on these material , is brought into company standard and. The technology selecting and using the domestic cutter , seldom having the bright metal recommending high speed to chop parametric , is necessary making an experiment, get the comparatively satisfied parameter , produce a manufacturer had better to select and use the fixed cutter , cut down the number of times testing that , the standard forming forming a a a processing processing processing technology, technology, technology, such such such can can can improve improve improve effective effective effective utilization utilization utilization ratio ratio ratio of of of equipment equipment equipment , , , lowers lowers lowers production production costs , can get the fairly good economic effect. Five, quick-cutting route processing a cutter and programming 1) flat surface feeds the route choice 2) 2) outlines process the route choice 3) Keep cutting loading stable 4) keeps relatively stable moving forward giving amounts and feed speed 5) keeps the garden corner in flat surface cutting 6) chooses the finish machining margin rationally Programming demand of HSC finish machining to CAM: 1) the bright metal avoiding a corner to the full cuts motion; 2) tries one's best to avoid external feed of workpiece and enter next depth return knife motion , direct from the outline. Or adopt a helical line or being sure enter slanting to moving forward; 3) constant each edge feed , improve the quality, prolongs cutter life-span; 4) outline treating are kept waiting in level surface. Quick-cutting CAM software: Several years ago will have started quick-cutting processing programming technology research, the Delcam company company , , , has has has developed developed developed the the the quick-cutting quick-cutting quick-cutting automation automation automation programming programming programming software software software module; module; module; Lately, Lately, Lately, the the the MasterCAM MasterCAM company has also developed the quick-cutting automation programming software module; You also are in in the homeland north navigation developing the quick-cutting automation programming software module; Six, high-speed machine tool numerical control system characteristic 1) high speed data is processed 2) corner forecasts are handled 3) NURBS are not justified appearance strip runin curve treating Seven, safe quick-cutting mould problem 1) Monitoring wearing a cutter away and destroying; 2) Intensity that the bit links; 3) Strict with the machine tool and the cutter examination is very important and before the average machine tool processing diversity , safety protects and starts up. Eight, there exists problem in our country at present in adopt high speed to process the mould technology 1 machine tool: 1) domestic high-speed machine tool overall function still has the gap , the function component function to be able to not satisfy a request. Power and rotation rate including the electricity chief axis, entrance machine tool price is high; 2)Under the machine tool high speed, the dynamic behaviour studies the function being not enough to affect a complete machine as a result,; 3)The five scroll of machine tool is not enough mature , entrance machine tool price is very high; 4) supporting technology and equipment are fairly incomplete 2 cutters: 1) domestic cutter is not able to adapt to the quick-cutting application , high speed cuts only entire treating is to affect quick-cutting processing a key especially stiffly. Entrance cutter price is high. The cutter technology factor of mould. 2) supporting technologies are not enough to include hilt , online dynamic balance in complete set etc.. 3 high speed moulds process the technology and the experiment 1) Be short of the accumulation applying experience since high speed processes the mould history comparatively shortly,; 2)The comparison studying comparison stops throwing into lack, sets up a project to quick-cutting handicraft is difficult; 3) Be short of the quick-cutting data base or the handbook , is still blank space at present; 4) moulds produce the manufacturer cognition lack to quick-cutting , the analysis contrast being short of long range beneficial result; 4 Be short of the quick-cutting automation programming software; 5 Be short of a five scroll of gear quick-cutting automation programming CAM software. Concluding remark The mould marketplace has the intense need, but technology to be unable to keep abreast with to high speed treating. Starting is late , the basis is relatively poor , overall engineering level not being taller than , develops slowlyRequire that one by one, aspect coordinated growth , the product mimic inkstone throwing into combining with enlarging, each comprehensive utilization aspect strengths drive quick-cutting application in making in the mould.. Our hope , effort passing every aspect, before the market demand push go down , pass technological progress, look like automobile , machine tool , home appliance , before long, not only our country being going to become a mould producing Great Power, and be going to become a mould producing the powerful country. References1, Jin Diecheng , Song Fangzhi. The modern mould makes the technology , Beijing: Mechanical industry press, 2001. 2, Xu Hefeng, The digitization mould makes the technology , Beijing: Chemical industry press, 2001. 3,Zhao Bo ,High speed processes the forward position technology that the mould processes. Mould technology , 2000 , (2) 4,Zhang Haiou,The fleetness mould makes the technology current situation and their developing trend. Mould technology , 2000 , (6) 5,Guo Dongming,Wang Xiaoming,Be geared to the needs of the particular kind processing technology that the fleetness creates. Chinese mechanical engineering , 2000 , (11) 高速加工和现代模具制造一、概述一、概述1.目前模具制造的发展现状和趋势.目前模具制造的发展现状和趋势模具作为重要的工艺装备,在消费品、电器电子、汽车、飞机制造等工业部门中,占有举足轻重的地位。

冲压模具技术外文文献翻译中英文

冲压模具技术外文文献翻译中英文

外文文献翻译(含:英文原文及中文译文)英文原文Stamping technologyIntroductionIn the current fierce market competition, the product to market sooner or later is often the key to the success or failure. Mould is a product of high quality, high efficiency production tool, mold development cycle of the main part of the product development cycle. So the customer requirements for mold development cycle shorter, many customers put the mould delivery date in the first place, and then the quality and price. Therefore, how to ensure the quality, control the cost under the premise of processing mould is a problem worthy of serious consideration. Mold processing technology is an advanced manufacturing technology, has become an important development direction, in the aerospace, automotive, machinery and other industries widely used. Mold processing technology, can improve the comprehensive benefit and competitiveness of manufacturing industry. Research and establish mold process database, provide production enterprises urgently need to high speed cutting processing data, to the promotion of high-speed machining technology has very important significance. This article's main goal is to build a stamping die processing, mold manufacturing enterprises in theactual production combined cutting tool, workpiece and machine tool with the actual situation of enterprise itself accumulate to high speed cutting processing instance, process parameters and experience of high speed cutting database selectively to store data, not only can save a lot of manpower and material resources, financial resources, but also can guide the high speed machining production practice, to improve processing efficiency, reduce the tooling cost and obtain higher economic benefits.1. The concept, characteristics and application of stampingStamping is a pressure processing method that uses a mold installed on a press machine (mainly a press) to apply pressure to a material to cause it to separate or plastically deform, thereby obtaining a desired part (commonly referred to as a stamped or stamped part). Stamping is usually cold deformation processing of the material at room temperature, and the main use of sheet metal to form the required parts, it is also called cold stamping or sheet metal stamping. Stamping is one of the main methods of material pressure processing or plastic processing, and is affiliated with material forming engineering.The stamping die is called stamping die, or die. Dies are special tools for the batch processing of materials (metal or non-metallic) into the required stampings. Stamping is critical in stamping. There is no die that meets the requirements. Batch stamping production is difficult. Without advanced stamping, advanced stamping processes cannot be achieved.Stamping processes and dies, stamping equipment, and stamping materials constitute the three elements of stamping. Only when they are combined can stampings be obtained.Compared with other methods of mechanical processing and plastic processing, stamping processing has many unique advantages in both technical and economic aspects, and its main performance is as follows;(1) The stamping process has high production efficiency, easy operation, and easy realization of mechanization and automation. This is because stamping is accomplished by means of die and punching equipment. The number of strokes for ordinary presses can reach several tens of times per minute, and the high-speed pressure can reach hundreds or even thousands of times per minute, and each press stroke is Y ou may get a punch.(2) Since the die ensures the dimensional and shape accuracy of the stamping part during stamping, and generally does not destroy the surface quality of the stamping part, the life of the die is generally longer, so the stamping quality is stable, the interc hangeability is good, and it has “the same” Characteristics.(3) Stamping can process parts with a wide range of sizes and shapes, such as stopwatches as small as clocks, as large as automobile longitudinal beams, coverings, etc., plus the cold deformation hardening effect of materials during stamping, the strength of stamping and Thestiffness is high.(4) Stamping generally does not generate scraps, material consumption is less, and no other heating equipment is required. Therefore, it is a material-saving and energy-saving processing method, and the cost of stamping parts is low.However, the molds used for stamping are generally specialized, and sometimes a complex part requires several sets of molds for forming, and the precision of the mold manufacturing is high and the technical requirements are high. It is a technology-intensive product. Therefore, the advantages of stamping can only be fully realized in the case of large production volume of stamping parts, so as to obtain better economic benefits.Stamping is widely used in modern industrial production, especially in mass production. A considerable number of industrial sectors are increasingly using punching to process product components such as automobiles, agricultural machinery, instruments, meters, electronics, aerospace, aerospace, home appliances, and light industry. In these industrial sectors, the proportion of stamped parts is quite large, at least 60% or more, and more than 90%. Many of the parts that were manufactured in the past using forging = casting and cutting processes are now mostly replaced by light-weight, rigid stampings. Therefore, it can be said that if the stamping process cannot be adopted in production, it isdifficult for many industrial departments to increase the production efficiency and product quality, reduce the production cost, and quickly replace the product.2. Basic process and mould for stampingDue to the wide variety of stamped parts and the different shapes, sizes, and precision requirements of various parts, the stamping process used in production is also varied. Summarized, can be divided into two major categories of separation processes and forming processes; Separation process is to make the blank along a certain contour line to obtain a certain shape, size and section quality stamping (commonly referred to as blanking parts) of the process; forming process refers to The process of producing a stamped part of a certain shape and size by plastic deformation of the blank without breaking.The above two types of processes can be divided into four basic processes: blanking, bending, deep drawing and forming according to different basic deformation modes. Each basic process also includes multiple single processes.In actual production, when the production volume of the stamped part is large, the size is small and the tolerance requirement is small, it is not economical or even difficult to achieve the requirement if the stamping is performed in a single process. At this time, a centralized scheme is mostly used in the process, that is, two or more singleprocesses are concentrated in a single mold. Different methods are called combinations, and they can be divided into compound-graded and compound- Progressive three combinations.Composite stamping - A combination of two or more different single steps at the same station on the die in one press stroke.Progressive stamping - a combination of two or more different single steps on a single work station in the same mold at a single working stroke on the press.Composite - Progressive - On a die combination process consisting of composite and progressive two ways.There are many types of die structure. According to the process nature, it can be divided into blanking die, bending die, drawing die and forming die, etc.; the combination of processes can be divided into single-step die, compound die and progressive die. However, regardless of the type of die, it can be regarded as consisting of two parts: the upper die and the lower die. The upper die is fixed on the press table or the backing plate and is a fixed part of the die. During work, the blanks are positioned on the lower die surface by positioning parts, and the press sliders push the upper die downwards. The blanks are separated or plastically deformed under the action of the die working parts (ie, punch and die) to obtain the required Shape and size of punching pieces. When the upper mold is lifted, the unloading and ejecting device of the moldremoves or pushes and ejects the punching or scrap from the male and female molds for the next punching cycle.3. Current status and development direction of stamping technologyWith the continuous advancement of science and technology and the rapid development of industrial production, many new technologies, new processes, new equipment, and new materials continue to emerge, thus contributing to the constant innovation and development of stamping technology. Its main performance and development direction are as follows:(1) The theory of stamping and the stamping process The study of stamping forming theory is the basis for improving stamping technology. At present, the research on the stamping forming theory at home and abroad attaches great importance, and significant progress has been made in the study of material stamping performance, stress and strain analysis in the stamping process, study of the sheet deformation law, and the interaction between the blank and the mold. . In particular, with the rapid development of computer technology and the further improvement of plastic deformation theory, computer simulation techniques for the plastic forming process have been applied at home and abroad in recent years, namely the use of finite element (FEM) and other valuable analytical methods to simulate the plastic forming process of metals. According to the analysis results, the designer can predict the feasibility and possiblequality problems of a certain process scheme. By selecting and modifying the relevant parameters on the computer, the process and mold design can be optimized. This saves the cost of expensive trials and shortens the cycle time.Research and promotion of various pressing technologies that can increase productivity and product quality, reduce costs, and expand the range of application of stamping processes are also one of the development directions of stamping technology. At present, new precision, high-efficiency, and economical stamping processes, such as precision stamping, soft mold forming, high energy high speed forming, and dieless multi-point forming, have emerged at home and abroad. Among them, precision blanking is an effective method for improving the quality of blanking parts. It expands the scope of stamping processing. The thickness of precision blanking parts can reach 25mm at present, and the precision can reach IT16~17; use liquid, rubber, polyurethane, etc. Flexible die or die soft die forming process can process materials that are difficult to process with ordinary processing methods and parts with complex shapes, have obvious economic effects under specific production conditions, and adopt energy-efficient forming methods such as explosion for processing. This kind of sheet metal parts with complex dimensions, complex shapes, small batches, high strength and high precision has important practical significance; Superplastic forming of metal materialscan be used to replace multiple common stampings with one forming. Forming process, which has outstanding advantages for machining complex shapes and large sheet metal parts; moldless multi-point forming process is an advanced technology for forming sheet metal surfaces by replacing the traditional mold with a group of height adjustable punches. Independently designed and manufactured an international leading-edge moldless multi-point forming equipment, which solves the multi-point press forming method and can therefore be Changing the state of stress and deformation path, improving the forming limit of the material, while repeatedly using the forming technology may eliminate the residual stress within the material, the rebound-free molding. The dieless multi-point forming system takes CAD/CAM/CAE technology as the main means to quickly and economically realize the automated forming of three-dimensional surfaces.(2) Dies are the basic conditions for achieving stamping production. In the design and manufacture of stampings, they are currently developing in the following two aspects: On the one hand, in order to meet the needs of high-volume, automatic, precision, safety and other large-volume modern production, stamping is To develop high-efficiency, high-precision, high-life, multi-station, and multi-function, compared with new mold materials and heat treatment technologies, various high-efficiency, precision, CNC automatic mold processing machine toolsand testing equipment and molds CAD/CAM technology is also rapidly developing; On the other hand, in order to meet the needs of product replacement and trial production or small-batch production, zinc-based alloy die, polyurethane rubber die, sheet die, steel die, combination die and other simple die And its manufacturing technology has also been rapidly developed.Precision, high-efficiency multi-station and multi-function progressive die and large-scale complex automotive panel die represent the technical level of modern die. At present, the precision of the progressive die above 50 stations can reach 2 microns. The multifunctional progressive die can not only complete the stamping process, but also complete welding, assembly and other processes. Our country has been able to design and manufacture its own precision up to the international level of 2 to 5 microns, precision 2 to 3 microns into the distance, the total life of 100 million. China's major automotive mold enterprises have been able to produce complete sets of car cover molds, and have basically reached the international level in terms of design and manufacturing methods and means. However, the manufacturing methods and methods have basically reached the international level. The mold structure and function are also close to international Level, but there is still a certain gap compared with foreign countries in terms of manufacturing quality, accuracy, manufacturing cycle and cost.4. Stamping standardization and professional productionThe standardization and professional production of molds has been widely recognized by the mold industry. Because the die is a single-piece, small-volume production, the die parts have both certain complexity and precision, as well as a certain structural typicality. Therefore, only the standardization of the die can be achieved, so that the production of the die and the die parts can be professionalized and commercialized, thereby reducing the cost of the die, improving the quality of the die and shortening the manufacturing cycle. At present, the standard production of molds in foreign advanced industrial countries has reached 70% to 80%. Mould factories only need to design and manufacture working parts, and most of the mold parts are purchased from standard parts factories, which greatly increases productivity. The more irregular the degree of specialization of the mold manufacturing plant, the more and more detailed division of labor, such as the current mold factory, mandrel factory, heat treatment plant, and even some mold factories only specialize in the manufacture of a certain type of product or die The bending die is more conducive to the improvement of the manufacturing level and the shortening of the manufacturing cycle. China's stamp standardization and specialized production have also witnessed considerable development in recent years. In addition to the increase in the number of standard parts specialized manufacturers, the number ofstandard parts has also expanded, and the accuracy has also improved. However, the overall situation can not meet the requirements of the development of the mold industry, mainly reflected in the standardization level is not high (usually below 40%), the standard parts of the species and specifications are less, most standard parts manufacturers did not form a large-scale production, standard parts There are still many problems with quality. In addition, the sales, supply, and service of standard parts production have yet to be further improved.中文译文冲压模具技术前言在目前激烈的市场竞争中, 产品投入市场的迟早往往是成败的关键。

冷冲模具使用寿命中英文对照外文翻译文献

冷冲模具使用寿命中英文对照外文翻译文献

中英文对照外文翻译文献(文档含英文原文和中文翻译)冷冲模具使用寿命的影响及对策冲压模具概述冲压模具--在冷冲压加工中,将材料(金属或非金属)加工成零件(或半成品)的一种特殊工艺装备,称为冷冲压模具(俗称冷冲模)。

冲压--是在室温下,利用安装在压力机上的模具对材料施加压力,使其产生分离或塑性变形,从而获得所需零件的一种压力加工方法。

冲压模具的形式很多,一般可按以下几个主要特征分类:1.根据工艺性质分类(1)冲裁模沿封闭或敞开的轮廓线使材料产生分离的模具。

如落料模、冲孔模、切断模、切口模、切边模、剖切模等。

(2)弯曲模使板料毛坯或其他坯料沿着直线(弯曲线)产生弯曲变形,从而获得一定角度和形状的工件的模具。

(3)拉深模是把板料毛坯制成开口空心件,或使空心件进一步改变形状和尺寸的模具。

(4)成形模是将毛坯或半成品工件按图凸、凹模的形状直接复制成形,而材料本身仅产生局部塑性变形的模具。

如胀形模、缩口模、扩口模、起伏成形模、翻边模、整形模等。

2.根据工序组合程度分类(1)单工序模在压力机的一次行程中,只完成一道冲压工序的模具。

(2)复合模只有一个工位,在压力机的一次行程中,在同一工位上同时完成两道或两道以上冲压工序的模具。

(3)级进模(也称连续模)在毛坯的送进方向上,具有两个或更多的工位,在压力机的一次行程中,在不同的工位上逐次完成两道或两道以上冲压工序的模具。

冲冷冲模全称为冷冲压模具。

冷冲压模具是一种应用于模具行业冷冲压模具及其配件所需高性能结构陶瓷材料的制备方法,高性能陶瓷模具及其配件材料由氧化锆、氧化钇粉中加铝、镨元素构成,制备工艺是将氧化锆溶液、氧化钇溶液、氧化镨溶液、氧化铝溶液按一定比例混合配成母液,滴入碳酸氢铵,采用共沉淀方法合成模具及其配件陶瓷材料所需的原材料,反应生成的沉淀经滤水、干燥,煅烧得到高性能陶瓷模具及其配件材料超微粉,再经过成型、烧结、精加工,便得到高性能陶瓷模具及其配件材料。

本发明的优点是本发明制成的冷冲压模具及其配件使用寿命长,在冲压过程中未出现模具及其配件与冲压件产生粘结现象,冲压件表面光滑、无毛刺,完全可以替代传统高速钢、钨钢材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

翻译原文二:Die Life and Die FailureProper selection of the de material and of the die manufacturing technique determines, to a large extent, the useful life of forming des. Dies may have to be replaced for a number of reasons, such as changes n dimensions due to wear or plastic deformation, deterioration of the surface finish, breakdown of lubrication, and cracking or breakage. In hot impression die forging, the principal modes of die failure are erosion, thermal fatigue, mechanical fatigue and permanent (plastic) deformation.In erosion, also commonly called die wear, material is actually removed from the die surface by pressure and sliding of the deforming material, wear resistance of the die material, die surface temperature, relative sliding speed at the die/material interface and the nature of the interface layer are the most significant factors influencing abrasive die wear. Thermal fatigue occurs on the surface of the die impression in hot forming and results in “heat checking”. Thermal fatigue results from cyclic yelling of the de surface due to contact with the hot deforming material. This contact causes the surface layers to expend, and, because of the very steep temperature gradients, the surface layers are subject to compressive stresses. At sufficiently high temperatures, these compressive stresses may cause the surface layers to deform. When the de surface cools, a stress reversal may occur and the surface layers will then be n tension. After repeated cycling in this manner, fatigue will cause formation of a crack pattern that s recognized as heat checking. Die breakage or cracking is due to mechanical fatigue and occurs in cases where the dies are overloaded and local stresses are high. The dies are subject to alternating stresses due to loading and unloading during the deformation process and this causes crack initiation and eventual failure.Die life and de failure are greatly affected by the mechanical properties of the die materials under the conditions that exist in a given deformation process.Generally, the properties that are most significant depend on the process temperature. Thus, die materials used in cold forming processes are quite different from those used in hot forming.The design and manufacture of dies and the selection of die materials are very important in the production of discrete parts by use of metal forming processes. The dies must be made by modern manufacturing methods from appropriate die materials in order to provide acceptable die life at a reasonable cost. Often the economy success of a forming process depends on die life and de costs per piece produced. For a given application, selection of the appropriate die material depends on three types of variables:(a)Variables related to the process itself, including factors such as size of the die cavity, type of machine used and deformation speed, initial stock size and temperature, die temperature to be use, lubrication, production rata and number of parts to be produced.(b)Variables related to the type of die loading, including speed of loading, i.e. impact of gradual contact time between dies and deforming metal (this contact time is especially important in hot forming), maximum load and pressure on the dies, maximum and minimum die temperatures, and number of loading cycles to which the dies will be subjected.(c)Mechanical properties of the die material, including harden ability, impact strength, hot strength(if hot forming is considered)and resistance to thermal and mechanical fatigue.译文二:模具的寿命与失效正确的选择模具材料和模具的制造技术,在很大程度上决定着成形模具的使用寿命。

为着某些原因,模具可能不得不更换。

例如,由于磨损或塑性变性而使尺寸发生改变、表面损坏、光洁度降低、润滑故障和裂纹即破裂。

在热压模缎中,模具失效的主要模式是腐蚀作用、热疲劳、机械疲劳和永久性即塑性变形。

腐蚀,通常也叫做模具磨损,实际上模具由于受到压力后模具表面上的材料发生剥落。

变形材料的滑移、模具材料的抗磨性,模具表面温度、模具和材料接触表面的相对滑动速度以及接触层的性质,都是影响模具磨损的最主要的因素。

]热成形加工中会发生热裂效应,热疲劳都发生在模具模腔的表面。

由于跟热变形材料接触,就在周期性屈服的模具表面引起了热疲劳。

由于温度梯度的急剧变化,这种接触引起的表面层的膨胀,而且表面层受到压应力的影响。

在温度足够高的时刻,这些压应力可引起表面层的破坏。

当模具表面冷却时,可发生反向应力,因而表面层将处于拉应力状态。

这种状态循环往复将引起形成龟裂的模面,那就是作为识别热裂纹的特征。

模具破裂或产生裂纹是由于机械疲劳,并且是在模具过载和局部应力高等情况下发生的。

在变形加工过程中,由于加载、减载、模具承受交变应力作用,这就将引起开裂并发生重大破坏。

在给定的成形工艺条件下,模具材料的机械性能对模具寿命和模具的损坏影响很大。

一般而言,最具影响的性能是取决于加工过程的温度。

这样,用于冷却盛开加工工艺的模具材料与用于热成形加工的材料有着极大的区别。

对于金属成形加工工艺的小批、单件生产,模具的设计、制造和模具材料的选择是非常重要的。

为着提供成本合理和具有令人满意的寿命的模具,必须用合适的模具材料和用现代的制造方法来制造模具。

成形加工的经济效益常常是取决于模具寿命和所制造的每件模具的成本。

根据上述应用,合适的模具材料的选择取决于以下三个方面的因素:(a)与加工工艺本身有关的因素,包括模腔尺寸、所用机器形式和变形速度,毛坯尺寸和温度,要用的模具温度、润滑、生产率和要生产的零件数量。

(b)与模具加载形式相关的因素,包括加载速度,即模具与正在变形的金属之间的冲击时间或逐渐接触的时间(在热变形加工中,这种接触时间显得特别重要),在模具上的最大载荷和压力,最大和最小的模具温度以及模具将要承受的加载周期的数目。

相关文档
最新文档