矩形翻折问题集锦及答案解析

合集下载

初中数学-矩形翻折问题小专题

初中数学-矩形翻折问题小专题

矩形翻折问题小专题【知识方法总结】1.联系实际,内容丰富,具有开放性,有利于考查学生的动手能力,空间观念和几何变换的思想。

2.图形的折叠就是对称变换,即翻折。

3.其解法看似灵活,抓住翻折前后的图形是全等图形这一关键,“边相等,角相等,折线为角平分线”再利用勾股定理或比例关系或线段的相等关系列方程,即可求解。

4.注意点:(1)折叠就是轴对称(2)其中蕴含着全等图形;即边和角的相等关系。

【经典例题】例1.已知,一张矩形纸片ABCD的边长分别为9cm和3cm,把顶点A和C叠合在一起,得折痕EF (如图).(1)猜想四边形AECF是什么四边形,并证明你的猜想;(2)求折痕EF的长.【解答】解:(1)菱形,理由如下:∵四边形ABCD为矩形,∴AB∥CD,∠AFE=∠CEF.∵矩形ABCD沿EF折叠,点A和C重合,∴∠CEF=∠AEF,AE=CE∴∠AFE=∠AEF,∴AE=AF.∴AF=CE,又∵AF∥CE,∴AECF为平行四边形,∵AE=EC,即四边形AECF的四边相等.∴四边形AECF为菱形.例2.已知:长方形纸片ABCD中,AB=10cm,AD<AB.(1)当AD=6.5cm时,如图①,将长方形纸片ABCD折叠,使点D落在AB边上,记作点D′,折痕为AE,如图②.此时,图②中线段D′B长是cm.(2)若AD=xcm,先将长方形纸片ABCD按问题(1)的方法折叠,再将三角形AED′沿D′E向右翻折,使点A落在射线D′B上,记作点A′.若翻折后的图形中,线段BD′=2BA′,请根据题意重新画出图形(草图),并求出x的值.【解答】解:(1)由题意知AD′=AD=6.5cm,∴D′B=AB﹣AD′=10﹣6.5=3.5(cm),故答案为:3.5;(2)如图所示,由题意知,AD=AD′=A′D′=xcm,∵AB=10cm,∴BD′=10﹣x,A′B=2x﹣10,由BD′=2BA′得10﹣x=2(2x﹣10),解得:x=6.例3.如图,在矩形纸片ABCD中,BC=a,将矩形纸片翻折,使点C恰好落在对角线交点O处,折痕为BE,点E在边CD上,则CE的长为()a;A. 12a;B. 25a;C. √33a.D. √32【答案】C例4.(1)如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,折痕的一端G 点在边BC上,BG=10.①当折痕的另一端点F在AB边上时,如图①,求△EFG的面积;②当折痕的另一端点F在AD边上时,如图②,证明四边形BGEF为菱形,并求出折痕GF的长.(2)在矩形纸片ABCD中,AB=5,AD=13.如图③所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ.当点A′在BC边上移动时,折痕的端点P,Q也随之移动.若限定点P,Q分别在AB,AD边上移动,求点A′在BC边上可移动的最大距离.【解答】例5.折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为=.DG,点G在BC边上,若AB=AD+2,EH=1,则ADAB【答案】3+4√313例6.在学习完特殊的平行四边形之后,某学习小组针对矩形中的折叠问题进行了研究.问题背景:在矩形ABCD中,点E、F分别是BC、AD 上的动点,且BE=DF,连接EF,将矩形ABCD沿EF折叠,点C落在点C′处,点D落在点D′处,射线EC′与射线DA相交于点M.猜想与证明:(1)如图1,当EC′与线段AD交于点M时,判断△MEF的形状并证明你的结论;操作与画图:(2)当点M与点A重合时,请在图2中作出此时的折痕EF和折叠后的图形(要求:尺规作图,不写作法,保留作图痕迹,标注相应的字母);操作与探究:(3)如图3,当点M在线段DA延长线上时,线段C′D'分别与AD,AB交于P,N两点时,C′E与AB交于点Q,连接MN 并延长MN交EF于点O.求证:MO⊥EF 且MO平分EF;【解答】解:(1)△MEF是等腰三角形.理由:∵四边形ABCD是矩形,∴AD∥BC,∴∠MFE=∠CEF,由折叠可得,∠MEF=∠CEF,∴∠MFE=∠MEF,∴ME=MF,∴△MEF是等腰三角形.(2)折痕EF和折叠后的图形如图2所示:7.如图1,矩形纸片ABCD的边长AB=4cm,AD=2cm.同学小明现将该矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色(如图2),观察图形对比前后变化,回答下列问题:(1)GF FD(直接填写=、>、<);(2)判断△CEF的形状,并说明理由;(3)运用所学知识,请计算着色部分多边形BCHFE的面积.【解答】解:(1)由翻折的性质,可得GD=FD;故答案为:=;(2)△CEF是等腰三角形.∵矩形ABCD,∴AB∥CD,∴∠AEF=∠CFE,由翻折的性质,∠AEF=∠FEC,∴∠CFE=∠FEC,∴CF=CE,故△CEF为等腰三角形;8.如图,已知矩形纸片ABCD,AB=4,BC=10,M是BC的中点,点P沿折线BA﹣AD运动,以MP为折痕将矩形纸片向右翻折,使点B落在矩形的边上,则折痕MP的长.√5或2√5或4【答案】529.如图,将矩形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E,交BC于点F,连接AF、CE,(1)求证:四边形AFCE为菱形;(2)设AE=a,ED=b,DC=c.请写出一个a、b、c三者之间的数量关系式.【解答】(1)由矩形ABCD与折叠的性质,易证得△CEF是等腰三角形,即CE=CF,即可证得AF=CF=CE=AE,即可得四边形AFCE为菱形;(2)由折叠的性质,可得CE=AE=a,在Rt△DCE中,利用勾股定理即可求得:a、b、c三者之间的数量关系式为:a2=b2+c2.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠AEF=∠EFC,由折叠的性质,可得:∠AEF=∠CEF,AE=CE,AF=CF,∴∠EFC=∠CEF,∴CF=CE,∴AF=CF=CE=AE,∴四边形AFCE为菱形;(2)a、b、c三者之间的数量关系式为:a2=b2+c2.理由:由折叠的性质,得:CE=AE,∵四边形ABCD是矩形,∴∠D=90°,∵AE=a,ED=b,DC=c,∴CE=AE=a,在Rt△DCE中,CE2=CD2+DE2,∴a、b、c三者之间的数量关系式为:a2=b2+c2.10.如图,把正方形纸片ABCD沿对边中点所在直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE,若AB=4,则FM的长为()A. 4B. 2√3C. 2√2D. 2【答案】B11.在一张长方形ABCD纸张中,AB=25cm,AD=20cm,现将这张纸片按下列图示方法折叠,请解决下列问题(1)如图1,折痕为DE,点A的对应点F在CD上,则折痕DE的长为cm;(2)如图2,H、G分别为BC、AD的中点,点A的对应点F在HG上,折痕为DE,求重叠部分(△DEF)的面积;(3)如图3,在图2中,把长方形ABCD沿着HG剪开,变成两张长方形纸片,将这两张纸按图形位置任意叠合后,发现重叠部分都是菱形,显然,这些菱形中周长最短是40cm.是否存在叠后周长最大的菱形?若存在,请求出叠合后周长最大的菱形的周长和面积;若不存在,请说明理由.【解答】12.如图,在矩形ABCD中,AB=4,AD=10,点E在AD边上,已知B、E两点关于直线l对称,直线l 分别交AD、BC边于点M、N,连接BM、NE.(1)求证:四边形BMEN是菱形;(2)若DE=2,求NC的长.【解答】(1)证明:∵B、E两点关于直线l对称,∴BM=ME,BN=NE,∠BMN=∠EMN,在矩形ABCD中,AD∥BC,∴∠EMN=∠MNB,∴∠BMN=∠MNB,∴BM=BN,∴BM=ME=BN=NE,∴四边形BMEN是菱形;(2)解:设菱形边长为x,则AM=8−x,在Rt△ABM中,42+(8−x)2=x2,解得:x=5,∴NC=5.【答案】(1)略;(2)5.。

矩形的折叠问题(专题)

矩形的折叠问题(专题)

→ Bx
D
,故OE= 。
练习8 如图,在直角三角形ABC中, C ∠C=90º ,沿着B点的一条直线BE折 叠这个三角形,使C点与AB边上的 一点D重合。当∠A满足什么条件时, 点D恰好是AB的中点?写出一个你 B 认为适当的条件,并利用此条件证 明D为AB中点。 条件:∠A=30º
E D A
证明:由轴对称可得,△BCE≌△BDE,∴ BC=BD , 在△ABC中,∵ ∠C=90º,∠A=30º, ∴ BC= ∴ BD =
答案:矩形的长为10,宽为8。
D F E A
C
B
4、求线段与面积间的变化关系
例5 已知一三角形纸片ABC,面积为25,BC的长为 10,B和C都为锐角,M为AB上的一动点(M与A、B 不重合),过点M作MN∥BC,交AC于点N,设MN=x. (1)用x表示△AMN的面积SΔ AMN。 (2)Δ AMN沿MN折叠,设点A关于Δ AMN对称的点为A¹ , Δ A¹ MN与四边形BCMN重叠部分的面积为y.①试求出 y与x的函数关系式,并写出自变量X的取值范围; ②当x为何值时,重叠部分的面积y最大,最大为多 少?
矩形的折叠问题
(复习课)
练习1 如图,有一块直角三角形纸片,两 直角边AC=6,BC=8,现将直角边AC沿 直线AD折叠,使它落在斜边AB上,且与AE 重合,求CD
A E C B D
如图,折叠矩形的一边AD,点D 落在BC边上点F处,已知AB=8, BC=10,求EC的长 D A
E B F C
练习2 如图,在梯形ABCD中, DCAB,将梯形对折,使点D、 C分别落在AB上的D¹ 、C¹ 处, 折痕为EF。若CD=3,EF=4, 则AD¹ +BC¹ = 。

矩形的翻折及答案

矩形的翻折及答案

矩形的翻折矩形的翻折一直是中考的重点,关于矩形的翻折通常有以下几种情况一、沿对角线翻折二、将一个顶点折到一边上三、将一条对角线的顶点折叠重合四、将一边折到对角线上1. 矩形ABCD中,AB=8,BC=4,将矩形沿对角线AC折叠,点D落在E处,求重叠部分△AFC 的面积解:由折叠,可证显然S△AEF≌S△CBF,∴AF=FC。

可设AF=FC=x,则BF=8-x,在Rt△CBF中,BC=4,得x2=(8-x)2+42,解得x=5,即AF=5.S△AFC=12•5•4=10.2.折叠矩形,使点D落在点F处,已知AB=8,BC=10,求EC的长由翻折可知△AFE≌△CBF,得EF=DE,AF=AD.因为而在Rt△ABF中,AB=8,AF=AD=10,∴BF=6,∴FC=10-6=4.设EC为x,则DE=EF=8-x,在△ECF中,由8-x()2=x2+42,解得x=3,即EC=33..矩形ABCD中,AB=6,BC=8将矩形折叠,使点B与点D重合,求折痕EF的长度解:连结BD、FD.由翻折可知BD⊥EF,且BO=DO,OF=OE,BF=DF.设BF=DF=x,则FC=8-x,由勾股定理得x2=(8-x)2+62,解得x=254.可得OF=154,EF=2•OF=152.4.矩形ABCD 中,AB=4,AD=3,折叠纸片使AD 与对角线BD 重合,折痕为DE ,求AE 长 解:由翻折AD=DF=6,设EF=AE=x ,则BE=8-x,在Rt △ABD 中,可求BD=10,所以BF=10-6=4,在Rt △BEF 中,x 2+42=8-x ()2,解得x=3,即AE=35.如图,ABCD 是矩形纸片,翻折∠B 、∠D ,使BC 、AD 恰好落在AC 上.设F 、H 分别是B 、D 落在AC 上的点,E 、G 分别是折痕CE 与AB 、AG 与CD 的交点.(1)试说明四边形AECG 的形状,并说明理由;(2)若矩形的一边AB=4,BC=3,求△AEC 的面积;(1)证明:在矩形ABCD 中,∵AD ∥BC ,∴∠DAC=∠BCA .由题意,得∠GAH=12∠DAC ,∠ECF=12∠BCA . ∴∠GAH=∠ECF ,∴AG ∥CE .又∵AE ∥CG ,∴四边形AECG 是平行四边形.(2)解法1:在Rt △ABC 中,∵AB=4,BC=3,∴AC=5.∵CF=CB=3,∴AF=2.在Rt △AEF 中,设EF=x ,则AE=4-x .根据勾股定理,得AE 2=AF 2+EF 2,即(4-x )2=22+x 2.解得x=32,即线段EF 长为32. ∴S △AEC=12×AC ×EF=12×5×32=1546.(2012•南平)如图,正方形纸片ABCD 的边长为3,点E 、F 分别在边BC 、CD 上,将AB 、AD 分别和AE 、AF 折叠,点B 、D 恰好都将在点G 处,已知BE=1,求EF 的长解:∵正方形纸片ABCD 的边长为3,∴∠C=90°,BC=CD=3,根据折叠的性质得:EG=BE=1,GF=DF ,设DF=x ,F B则EF=EG+GF=1+x,FC=DC﹣DF=3﹣x,EC=BC﹣BE=3﹣1=2,在Rt△EFC中,EF2=EC2+FC2,即(x+1)2=22+(3﹣x)2,解得:x=1.5,∴DF=1.5,即 EF=1+1.5=2.5.7.(2011•重庆)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE 对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的是 .解:①正确.因为AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴△ABG≌△AFG;②正确.因为:EF=DE=CD=2,设BG=FG=x,则CG=6﹣x.在直角△ECG中,根据勾股定理,得(6﹣x)2+42=(x+2)2,解得x=3.所以BG=3=6﹣3=GC;③正确.因为CG=BG=GF,所以△FGC是等腰三角形,∠GFC=∠GCF.又∠AGB=∠AGF,∠AGB+∠AGF=180°﹣∠FGC=∠GFC+∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④错误.过C作C H⊥GE于H,∵EF=2,FG=3, ∴EG=5,∴35GFEG=,∴S△EGC= =×3×4=6,∴356GF S GFCEG==∴S△FGC=≠3.答案①②③8.(2014河南省)如图,矩形ABCD中,AD=5,AB=7.点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D/落在∠ABC的角平分线上时,DE的长为 .答案:53或52解析:过D/作FH⊥AB交AB于F,交CD于H;如图1,由翻折,△EDA≌△ED/A,∴ED=ED/,AD=AD/=5, 设AF=x,则BF=7-x,在Rt△BD/F中,∵D/B是∠ABC的平分线,∴∠ABD/=450, 则D/F=BF=7-x,在Rt△AD/F中,AD/2=AF2+D/F2,即52=(7-x)2+x2,解得x=4或x=3,即D/F=BF=3或4.当x=4时,如图1,设DE=y,在Rt△D/HE中,EH=4-y,ED/=y,HD/=2,即(4-y)2+22=y2,解得y=52,即DE=52当x=3时,如图2,设DE=y,在Rt△D/HE中,EH=3-y,ED/=y,HD/=1,即(3-y)2+12=y2,解得y=53,即DE=53图1FA图2DA。

八年级数学翻折变换(折叠问题)参考答案与试题解析

八年级数学翻折变换(折叠问题)参考答案与试题解析

八年级数学翻折变换(折叠问题)参考答案与试题解析work Information Technology Company.2020YEAR八年级数学翻折变换(折叠问题)参考答案与试题解析一.选择题(共12小题)1.如图,矩形纸片ABCD,长AD=9m,宽AB=3cm,将其折叠,使点D与点B重合,那么折叠后DE的长为()A.7cm B.6cm C.5.5cm D.5cm【分析】由矩形的性质和折叠的性质以及勾股定理得出方程,解方程即可.【解答】解:由折叠的性质得:BE=DE,设DE长为xcm,则AE=(9﹣x)cm,BE=xcm,∵四边形ABCD是矩形,∴∠A=90°,根据勾股定理得:AE2+AB2=BE2,即(9﹣x)2+32=x2,解得:x=5,即DE长为5cm,故选:D.【点评】本题考查了矩形的性质、翻折变换、勾股定理等知识;熟练掌握矩形和翻折变换的性质,运用勾股定理进行计算是解决问题的关键.2.如图,在等边三角形ABC中,点D、E分别是边AC、BC上两点.将△ABC沿DE翻折,点C正好落在线段AB上的点F处,使得AF:BF=2:3.若BE=16,则点F到BC边的距离是()A.8B.12C.D.【分析】作EM⊥AB于M,由等边三角形的性质和直角三角形的性质求出BM=BE=8,ME=BM=8,由折叠的性质得出FE=CE,设FE=CE=x,则AB=BC=16+x,得出BF=(16+x),求出FM=BF﹣BM=(16+x)﹣8=+x,在Rt△EFM中,由勾股定理得出方程,解方程求出BF=21.作FN⊥BC于N,则∠BFN=30°,由直角三角形的性质得出BN=BF=,得出FN=BN=即可.【解答】解:作EM⊥AB于M,如图所示:∵△ABC是等边三角形,∴BC=AB,∠B=60°,∵EM⊥AB,∴∠BEM=30°,∴BM=BE=8,ME=BM=8,由折叠的性质得:FE=CE,设FE=CE=x,则AB=BC=16+x,∵AF:BF=2:3,∴BF=(16+x),∴FM=BF﹣BM=(16+x)﹣8=+x,在Rt△EFM中,由勾股定理得:(8)2+(+x)2=x2,解得:x=19,或x=﹣16(舍去),∴BF=(16+19)=21,作FN⊥BC于N,则∠BFN=30°,∴BN=BF=,∴FN=BN=,即点F到BC边的距离是,故选:D.【点评】本题考查了翻折变换的性质、等边三角形的性质、直角三角形的性质、勾股定理等知识;熟练掌握翻折变换和等边三角形的性质,由勾股定理得出方程是解题的关键.3.如图,在等腰Rt△ABC中∠C=90°,AC=BC=2.点D和点E分别是BC边和AB 边上两点,连接DE.将△BDE沿DE折叠,得到△B′DE,点B恰好落在AC的中点处设DE与BB交于点F,则EF=()A.B.C.D.【分析】根据等腰直角三角形的性质得到AB=AC=4,∠A=∠B=45°,过B′作B′H⊥AB与H,得到AH=B′H=AB′,求得AH=B′H=1,根据勾股定理得到BB′===,由折叠的性质得到BF=BB′=,DE ⊥BB′,根据相似三角形即可得到结论.【解答】解:∵在等腰Rt△ABC中∠C=90°,AC=BC=2,∴AB=AC=4,∠A=∠B=45°,过B′作B′H⊥AB与H,∴△AHB′是等腰直角三角形,∴AH=B′H=AB′,∵AB′=AC=,∴AH=B′H=1,∴BH=3,∴BB′===,∵将△BDE沿DE折叠,得到△B′DE,∴BF=BB′=,DE⊥BB′,∴∠BHB′=∠BFE=90°,∵∠EBF=∠B′BH,∴△BFE∽△BHB′,∴=,∴=,∴EF=,故答案为:.故选:C.【点评】本题考查了翻折变换(折叠问题),等腰直角三角形的判定和性质,勾股定理,相似三角形的判定和性质,正确的作出辅助线是解题的关键.4.如图,在△ABC中,AB=AC=2,∠BAC=30°,将△ABC沿AC翻折得到△ACD,延长AD交BC的延长线于点E,则△ABE的面积为()A.B.C.3D.【分析】由折叠的性质可知∠CAD=30°=∠CAB,AD=AB=2.由等腰三角形的性质得出∠BCA=∠ACD=∠ADC=75°.求出∠ECD=30°.由三角形的外角性质得出∠E=75°﹣30°=45°,过点C作CH⊥AE于H,过B作BM⊥AE于M,由直角三角形的性质得出CH=AC=1,AH=CH=.得出HD=AD﹣AH=2﹣.求出EH =CH=1.得出DE=EH﹣HD=﹣1,AE=AD+DE=1+,由直角三角形的性质得出AM=AB=1,BM=AM=.由三角形面积公式即可得出答案.【解答】解:由折叠的性质可知:∠CAD=30°=∠CAB,AD=AB=2.∴∠BCA=∠ACD=∠ADC=75°.∴∠ECD=180°﹣2×75°=30°.∴∠E=75°﹣30°=45°.过点C作CH⊥AE于H,过B作BM⊥AE于M,如图所示:在Rt△ACH中,CH=AC=1,AH=CH=.∴HD=AD﹣AH=2﹣.在Rt△CHE中,∵∠E=45°,∴△CEH是等腰直角三角形,∴EH=CH=1.∴DE=EH﹣HD=1﹣(2﹣)=﹣1,∴AE=AD+DE=1+,∵BM⊥AE,∠BAE=∠BAC+∠CAD=60°,∴∠ABM=30°,∴AM=AB=1,BM=AM=.∴△ABE的面积=AE×BM=×(1+)×=;故选:B.【点评】本题考查了翻折变换的性质、等腰三角形的性质、含30°角的直角三角形的性质、等腰直角三角形的判定与性质、三角形面积等知识;熟练掌握翻折变换和等腰三角形的性质是解题的关键.5.如图,点F是长方形ABCD中BC边上一点将△ABF沿AF折叠为△AEF,点E落在边CD上,若AB=5,BC=4,则BF的长为()A.B.C.D.【分析】根据矩形的性质得到CD=AB=5,AD=BC=4,∠B=∠D=∠C=90°,根据折叠的性质得到AE=AB=5,EF=BF,根据勾股定理得到DE===3,求得CE=2,设BF=EF=x,则CF=4﹣x,根据勾股定理列方程即可得到结论.【解答】解:∵四边形ABCD是矩形,∴CD=AB=5,AD=BC=4,∠B=∠D=∠C=90°,∵将△ABF沿AF折叠为△AEF,∴AE=AB=5,EF=BF,∴DE===3,∴CE=2,设BF=EF=x,则CF=4﹣x,∵EF2=CF2+CE2,∴x2=(4﹣x)2+22,解得:x=,故选:B.【点评】本题考查了翻折变换(折叠问题),矩形的矩形,勾股定理,熟练掌握折叠的性质是解题的关键.6.如图,在矩形纸片ABCD中,CB=12,CD=5,折叠纸片使AD与对角线BD重合,与点A重合的点为N,折痕为DM,则△MNB的面积为()A.B.C.D.26【分析】由勾股定理得出BD==13,由折叠的性质可得ND=AD=12,∠MND=∠A=90°,NM=AM,得出∠EA′B=90°,BN=BD﹣ND=1,设AM=NM =x,则BM=AB﹣AM=5﹣x,在Rt△BMN中,由勾股定理得出方程,解方程得出NM =AM=,即可得出答案.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,AD=BC=12,AB=CD=5,∴BD===13,由折叠的性质可得:ND=AD=12,∠MND=∠A=90°,NM=AM,∴∠EA′B=90°,BN=BD﹣ND=13﹣12=1,设AM=NM=x,则BM=AB﹣AM=5﹣x,在Rt△BMN中,NM2+BN2=BM2,∴x2+12=(5﹣x)2,解得:x=,∴NM=AM=,∴△MNB的面积=BN×NM=×1×=;故选:A.【点评】此题考查了折叠的性质、勾股定理以及矩形的性质.熟练掌握折叠的性质和矩形的性质,由勾股定理得出方程是解题的关键.7.如图,在△ABC中∠ACB=90°、∠CAB=30°,△ABD是等边三角形、将四边形ACBD折叠,使点D与点C重合,HK为折痕,则sin∠ACH的是()A.B.C.D.【分析】在Rt△ABC中,设BC=a,则AB=2BC=2a,AD=AB=2a.设AH=x,则HC=HD=AD﹣AH=2a﹣x.在Rt△ABC中,由勾股定理得AC2=3a2,在Rt△ACH 中,由勾股定理得AH2+AC2=HC2,即x2+3a2=(2a﹣x)2.解得x=a,即AH=a.求得HC的值后,利用sin∠ACH=AH:HC求值.【解答】解:∵△ABD是等边三角形,∴∠BAD=60°,AB=AD,∵∠CAB=30°,∴∠CAH=90°.在Rt△ABC中,∠CAB=30°,设BC=a,则AB=2BC=2a.∴AD=AB=2a.设AH=x,则HC=HD=AD﹣AH=2a﹣x,在Rt△ABC中,AC2=(2a)2﹣a2=3a2,在Rt△ACH中,AH2+AC2=HC2,即x2+3a2=(2a﹣x)2,解得x=a,即AH=a.∴HC=2a﹣x=2a﹣a=a.∴sin∠ACH==,故选:C.【点评】本题考查了折叠的性质,锐角三角函数值,勾股定理的应用,熟练掌握折叠的性质和解直角三角形是解题的关键.8.如图,在矩形ABCD中,AB=1,在BC上取一点E,连接AE、ED,将△ABE沿AE翻折,使点B落在B'处,线段EB'交AD于点F,将△ECD沿DE翻折,使点C的对应点C'落在线段EB'上,若点C'恰好为EB'的中点,则线段EF的长为()A.B.C.D.【分析】由折叠的性质可得AB=AB'=CD=C'D=1,∠B=∠B'=90°=∠C=∠DC'E,BE=B'E,CE=C'E,由中点性质可得B'E=2C'E,可得BC=AD=3EC,由勾股定理可求可求CE的长,由“AAS”可证△AB'F≌△DC'F,可得C'F=B'F=,即可求解.【解答】解:∵四边形ABCD是矩形,∴AB=CD=1,AD=BC,∠B=∠C=90°由折叠的性质可得:AB=AB'=CD=C'D=1,∠B=∠B'=90°=∠C=∠DC'E,BE=B'E,CE=C'E,∵点C'恰好为EB'的中点,∴B'E=2C'E,∴BE=2CE,∴BC=AD=3EC,∵AE2=AB2+BE2,DE2=DC2+CE2,AD2=AE2+DE2,∴1+4CE2+1+CE2=9CE2,解得:CE=,∴B'E=BE=,BC=AD=,C'E=,∴B'C'=,在△AB'F和△DC'F中,∴△AB'F≌△DC'F(AAS),∴C'F=B'F=,∴EF=C'E+C'F=,故选:D.【点评】本题考查了翻折变换,矩形的性质,全等三角形的性质,勾股定理,求出CE 的长是本题的关键.9.如图,▱ABCD中,AB=6,∠B=75°,将△ABC沿AC边折叠得到△AB′C,B′C交AD于E,∠B′AE=45°,则点A到BC的距离为()A.2B.3C.D.【分析】过B′作B′H⊥AD于H,根据等腰直角三角形的性质得到AH=B′H=AB′,根据折叠的性质得到AB′=AB=6,∠AB′E=∠B=75°,求得∠AEB′=60°,解直角三角形得到HE=B′H=,B′E=2,根据平行线的性质得到∠DAC=∠ACB,推出AE=CE,根据全等三角形的性质得到DE=B′E=2,求得AD=AE+DE=3+3,过A作AG⊥BC于G,根据直角三角形的性质即可得到结论.【解答】解:过B′作B′H⊥AD于H,∵∠B′AE=45°,∴△AB′H是等腰直角三角形,∴AH=B′H=AB′,∵将△ABC沿AC边折叠得到△AB′C,∴AB′=AB=6,∠AB′E=∠B=75°,∴∠AEB′=60°,∴AH=B′H=×6=3,∴HE=B′H=,B′E=2,∵▱ABCD中,AD∥BC,∴∠DAC=∠ACB,∵∠ACB=∠ACB′,∴∠EAC=∠ACE,∴AE=CE,∵∠AB′E=∠B=∠D,∠AEB′=∠CED,∴△AB′E≌△CDE(AAS),∴DE=B′E=2,∴AD=AE+DE=3+3,∵∠AEB′=∠EAC+∠ACE=60°,∴∠ACE=∠CAE=30°,∴∠BAC=75°,∴AC=AD=BC,∠ACB=30°,过A作AG⊥BC于G,∴AG=AC=,故选:C.【点评】本题考查了翻折变换(折叠问题),全等三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.10.如图1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB 的中点,连结CE并延长交AD于F,如图2,现将四边形ACBD折叠,使D与C重合,HK为折痕,则sin∠ACH的值为()A.B.C.D.【分析】在Rt△ABC中,设BC=a,则AB=2BC=2a,AD=AB=2a.设AH=x,则HC=HD=AD﹣AH=2a﹣x.在Rt△ABC中,由勾股定理得AC2=3a2,在Rt△ACH 中,由勾股定理得AH2+AC2=HC2,即x2+3a2=(2a﹣x)2.解得x=a,即AH=a.求得HC的值后,利用sin∠ACH=AH:HC求值.【解答】解:∵∠BAD=60°,∠CAB=30°,∴∠CAH=90°.在Rt△ABC中,∠CAB=30°,设BC=a,∴AB=2BC=2a.∴AD=AB=2a.设AH=x,则HC=HD=AD﹣AH=2a﹣x,在Rt△ABC中,AC2=(2a)2﹣a2=3a2,在Rt△ACH中,AH2+AC2=HC2,即x2+3a2=(2a﹣x)2,解得x=a,即AH=a.∴HC=2a﹣x=2a﹣a=a.∴sin∠ACH==,故选:B.【点评】本题考查了折叠的性质,锐角三角函数值,勾股定理的应用,注意:折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11.如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连结AC',若AD=AC′=2,BD=3,则点D到BC′的距离为()A.B.C.D.【分析】连接CC',交BD于点M,过点D作DH⊥BC'于点H,由翻折知,△BDC≌△BDC',BD垂直平分CC',证△ADC'为等边三角形,利用解直角三角形求出DM=1,C'M=DM=,BM=2,在Rt△BMC'中,利用勾股定理求出BC'的长,在△BDC'中利用面积法求出DH的长.【解答】解:如图,连接CC',交BD于点M,过点D作DH⊥BC'于点H,∵AD=AC′=2,D是AC边上的中点,∴DC=AD=2,由翻折知,△BDC≌△BDC',BD垂直平分CC',∴DC=DC'=2,BC=BC',CM=C'M,∴AD=AC′=DC'=2,∴△ADC'为等边三角形,∴∠ADC'=∠AC'D=∠C'AC=60°,∵DC=DC',∴∠DCC'=∠DC'C=×60°=30°,在Rt△C'DM中,∠DC'C=30°,DC'=2,∴DM=1,C'M=DM=,∴BM=BD﹣DM=3﹣1=2,在Rt△BMC'中,BC'===,∵S△BDC'=BC'•DH=BD•CM,∴DH=3×,∴DH=,故选:B.【点评】本题考查了轴对称的性质,解直角三角形,勾股定理等,解题关键是会通过面积法求线段的长度.12.如图,在△ABC中,∠ABC=45°,AB=3,AD⊥BC于点D,BE⊥AC于点E,AE=1.连接DE,将△AED沿直线AE翻折至△ABC所在的平面内,得△AEF,连接DF.过点D作DG⊥DE交BE于点G.则四边形DFEG的周长为()A.8B.4C.2+4D.3+2【分析】先证△BDG≌△ADE,得出AE=BG=1,再证△DGE与△EDF是等腰直角三角形,在直角△AEB中利用勾股定理求出BE的长,进一步求出GE的长,可通过解直角三角形分别求出GD,DE,EF,DF的长,即可求出四边形DFEG的周长.【解答】解:∵∠ABC=45°,AD⊥BC于点D,∴∠BAD=90°﹣∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,∴∠GBD+∠C=90°,∵∠EAD+∠C=90°,∴∠GBD=∠EAD,∵∠ADB=∠EDG=90°,∴∠ADB﹣∠ADG=∠EDG﹣∠ADG,即∠BDG=∠ADE,∴△BDG≌△ADE(ASA),∴BG=AE=1,DG=DE,∵∠EDG=90°,∴△EDG为等腰直角三角形,∴∠AED=∠AEB+∠DEG=90°+45°=135°,∵△AED沿直线AE翻折得△AEF,∴△AED≌△AEF,∴∠AED=∠AEF=135°,ED=EF,∴∠DEF=360°﹣∠AED﹣∠AEF=90°,∴△DEF为等腰直角三角形,∴EF=DE=DG,在Rt△AEB中,BE===2,∴GE=BE﹣BG=2﹣1,在Rt△DGE中,DG=GE=2﹣,∴EF=DE=2﹣,在Rt△DEF中,DF=DE=2﹣1,∴四边形DFEG的周长为:GD+EF+GE+DF=2(2﹣)+2(2﹣1)=3+2,故选:D.【点评】本题考查了等腰直角三角形的判定与性质,全等三角形的判定与性质,勾股定理,解直角三角形等,解题关键是能够灵活运用等腰直角三角形的判定与性质.二.填空题(共7小题)13.如图,把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE、FG,得到∠AGE=30°,若AE=EG=2厘米,则△ABC的边BC的长为(6+4)厘米.【分析】根据折叠的性质和含30°的直角三角形的性质解答即可.【解答】解:∵把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE,FG,∴BE=AE,AG=GC,∵∠AGE=30°,AE=EG=2厘米,∴AG=6厘米,∴BE=AE=2厘米,GC=AG=6厘米,∴BC=BE+EG+GC=(6+4)厘米,故答案为:(6+4),【点评】此题考查翻折问题,关键是根据折叠的性质和含30°的直角三角形的性质解答.14.如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于.【分析】根据题意、解直角三角形、菱形的性质、翻折变化可以求得AE的长.【解答】解:由题意可得,DE=DB=CD=AB,∴∠DEC=∠DCE=∠DCB,∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,∴∠DEC=∠ACE,∴∠DCE=∠ACE=∠DCB=30°,∴∠ACD=60°,∠CAD=60°,∴△ACD是等边三角形,∴AC=CD,∴AC=DE,∵AC∥DE,AC=CD,∴四边形ACDE是菱形,∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,∴AC=,∴AE=.【点评】本题考查翻折变化、平行线的性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.已知Rt△ABC中,∠ACB=90°,AC=8,BC=4,D为斜边AB上的中点,E是直角边AC上的一点,连接DE,将△ADE沿DE折叠至△A′DE,A′E交BD于点F,若△DEF的面积是△ADE面积的一半,则CE=2.【分析】根据等高的两个三角形的面积比等于边长比可得AD=2DF,A'F=EF,通过勾股定理可得AB的长度,可可求AD,DF,BF的长度,可得BF=DF,可证BEDA'是平行四边形,可得BE=A'D=2,根据勾股定理可得CE的长度【解答】解:如图连接BE∵∠ACB=90°,AC=8,BC=4∴AB=4∵D是AB中点∴BD=AD=2∵折叠∴AD=A'D=2,S△ADE=S△A'DE∵S△DEF=S△ADE∴AD=2DF,S△DEF=S△A'DE∴DF=,A'F=EF∴BF=DF=,且A'F=EF∴四边形BEDA'是平行四边形∴A'D=BE=∴根据勾股定理得:CE=2故答案为2【点评】本题考查了折叠问题,直角三角形斜边上的中线等于斜边的一半,关键是用面积法解决问题.16.如图,在△ABC中,AB=AC=5,tan A=,BC=,点D是AB边上一点,连接CD,将△BCD沿着CD翻折得△B1CD,DB1⊥AC且交于点E,则DE=.【分析】作BF⊥AC于F,证明△B1EC≌△CFB(AAS),得出B1E=CF=1,设DE=3a,则AD=5a,得出BD=B1D=3a+1,得出方程,解方程即可.【解答】解:作BF⊥AC于F,如图所示:则∠AFB=∠CFB=90°,在Rt△ABF中,tan A==,AB=5,∴AF=4,BF=3,sin A==,∴CF=AC﹣AF=1,由折叠的性质得:B1C=BC=,∠CB1E=∠ABC,B1D=BD,∵AB=AC,∴∠ABC=∠BCF,∴∠CB1E=∠BCF,∵DB1⊥AC,∴∠B1EC=90°=∠CFB,在△B1EC和△CBF中,,∴△B1EC≌△CFB(AAS),∴B1E=CF=1,设DE=3a,则AD=5a,∴BD=B1D=3a+1,∵AD+BD=AB,∴3a+1+5a=5,∴a=,∴DE=;故答案为:【点评】本题考查了翻折的性质、等腰三角形的性质、全等三角形的判定与性质、解直角三角形以及方程的解题思想,熟练掌握翻折变换的性质,证明三角形全等是解题的关键.17.如图,在Rt△ABC中,∠ABC=90°,把△ABC沿斜边AC折叠,使点B落在B’,点D,点E分别为BC和AB′上的点,连接DE交AC于点F,把四边形ABDE沿DE 折叠,使点B与点C重合,点A落在A′,连接AA′交B′C于点H,交DE于点G.若AB=3,BC=4,则GE的长为.【分析】设HC=HA=x,在Rt△CA′H中,可得x2=32+(4﹣x)2,解得x=,由△CA′H∽△AGE,可得=,由此即可解决问题.【解答】解:由题意四边形ABCA′是矩形,BD=CD=2,AG=GA′=2,∵BC∥AA′,∴∠BCA=∠CAA′,∵∠ACB=∠ACB′,∴∠HCA=∠HAC,∴HC=HA,设HC=HA=x,在Rt△CA′H中,x2=32+(4﹣x)2,∴x=,∴A′H=4﹣=,由△CA′H∽△AGE,可得:=,∴=,∴EG=.【点评】本题考查翻折变换,解直角三角形,勾股定理,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.如图,在平行四边形ABCD中,∠B=30°,且BC=CA,将△ABC沿AC翻折至△AB′C,AB′交CD于点E,连接B′D.若AB=3,则B′D的长度为6.【分析】作CM⊥AB于M,由折叠的性质得:B'C=BC=AC,∠AB'C=∠B=∠CAB'=30°,AB'=AB=CD,由平行四边形的性质得出AD=CB,AB=CD,∠ADC=∠B=30°,求出AD=AC,AM=BM=AB=,∠BAC=∠B=30°,由等腰三角形的性质得出∠ACD=∠ADC=30°,由直角三角形的性质得出CM=,证出AD=BC=2CM=3,再由勾股定理即可得出结果.【解答】解:作CM⊥AB于M,如图所示:由折叠的性质得:B'C=BC=AC,∠AB'C=∠B=∠CAB'=30°,AB'=AB=CD,∵四边形ABCD是平行四边形,∴AD=CB,AB=CD,∠ADC=∠B=30°,∠BAD=∠BCD=180°﹣∠B=150°,∴∠B'AD=150°﹣30°﹣30°=90°,∵BC=AC,∴AM=BM=AB=,∠BAC=∠B=30°,∴CM=,∴AD=BC=2CM=3,在Rt△AB'D中,由勾股定理得:B'D===6;故答案为:6.【点评】本题考查了翻折变换的性质、平行四边形的性质、等腰三角形的性质以及勾股定理等知识;熟练掌握翻折变换的性质和平行四边形的性质,求出∠B'AD=90°是解题关键.19.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,使点D恰好落在BC 边上的F点处.已知折痕AE=10,且CE:CF=4:3,那么该矩形的周长为96.【分析】由CE:CF=4:3,可以假设CE=4k,CF=3k推出EF=DE=5k,AB=CD=9k,利用相似三角形的性质求出BF,再在Rt△ADE中,利用勾股定理构建方程即可解决问题.【解答】解:∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠B=∠C=∠D=90°,∵CE:CF=4:3,∴可以假设CE=4k,CF=3k∴EF=DE=5k,AB=CD=9k,∵∠AFE=∠D=90°,∴∠AFB+∠EFC=90°,∠EFC+∠FEC=90°,∴∠AFB=∠CEF,∴△ABF∽△FCE,∴∴∴BF=12k∴AD=BC=15k,在Rt△AED中,∵AE2=AD2+DE2,∴1000=225k2+25k2,∴k=2或﹣2(舍弃),∴矩形的周长=48k=96,故答案为:96【点评】本题考查翻折变换,矩形的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.。

矩形的翻折问题

矩形的翻折问题

是.Leabharlann 12 或2712..如图,ABCD是矩形纸片,翻折∠B、∠D,使BC、AD恰 好落在AC上.设F、H分别是B、D落在AC上的点,E、G分别 是折痕CE与AB、AG与CD的交点. (1)试说明四边形AECG的形状,并说明理由; (2)若矩形的边AD=3cm,AB=4cm,求△AGC的面积; (3)当四边形AECG是菱形时,求∠AGC的度数。
答案3
10.(09内江)如图12所示,将△ABC沿着DE翻折,若∠1+
∠2 =800,则∠B= 答案400
11.(09德州) 将三角形纸片(△ABC)按如图14所示的方式折叠,使
点B落在边AC上,记为点B/,折痕为EF.已知AB = AC=3,BC=4,
若以点B/,F,C为顶点的三角形与△ABC相似,那么BF的长度
若∠A=75°,则∠1+∠2=
(A)
A.150° B.210° C.105° D.75°
8.(2008·郴州)如图1所示,D是AB边上的中点,将△ABC沿
过D的直线折叠,使点A落在BC上的F处,若DE为折痕,∠B
=500,则∠BDF =
( 800 )
9.(09河北) 如图8,等边△ABC的边长为1 cm,D、E分别是AB、AC 上的点,将△ADE沿直线DE折叠,点A落在点A/处,且点A/在 △ABC外部,则阴影部分图形的周长为 cm.
3
6.(2012上海)如图,在Rt△ABC中,∠C=900,∠A=300,BC=1, 点D在AC上,将△ADB沿直线BD翻折后,将点A落在点E处,如
果AD⊥ED,那么线段DE的长为

7.(2012•梅州)如图,在折纸活动中,小明制作了一张△ABC纸片,
点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,

矩形的翻折及答案

矩形的翻折及答案

矩形的翻折矩形的翻折一直是中考的重点,关于矩形的翻折通常有以下几种情况一、沿对角线翻折二、将一个顶点折到一边上三、将一条对角线的顶点折叠重合四、将一边折到对角线上1. 矩形ABCD中,AB=8,BC=4,将矩形沿对角线AC折叠,点D落在E处,求重叠部分△AFC 的面积解:由折叠,可证显然S△AEF≌S△CBF,∴AF=FC。

可设AF=FC=x,则BF=8-x,在Rt△CBF中,BC=4,得x2=(8-x)2+42,解得x=5,即AF=5.S△AFC=12•5•4=10.2.折叠矩形,使点D落在点F处,已知AB=8,BC=10,求EC的长由翻折可知△AFE≌△CBF,得EF=DE,AF=AD.因为而在Rt△ABF中,AB=8,AF=AD=10,∴BF=6,∴FC=10-6=4.设EC为x,则DE=EF=8-x,在△ECF中,由8-x()2=x2+42,解得x=3,即EC=33..矩形ABCD中,AB=6,BC=8将矩形折叠,使点B与点D重合,求折痕EF的长度解:连结BD、FD.由翻折可知BD⊥EF,且BO=DO,OF=OE,BF=DF.设BF=DF=x,则FC=8-x,由勾股定理得x2=(8-x)2+62,解得x=254.可得OF=154,EF=2•OF=152.4.矩形ABCD 中,AB=4,AD=3,折叠纸片使AD 与对角线BD 重合,折痕为DE ,求AE 长 解:由翻折AD=DF=6,设EF=AE=x ,则BE=8-x,在Rt △ABD 中,可求BD=10,所以BF=10-6=4,在Rt △BEF 中,x 2+42=8-x ()2,解得x=3,即AE=35.如图,ABCD 是矩形纸片,翻折∠B 、∠D ,使BC 、AD 恰好落在AC 上.设F 、H 分别是B 、D 落在AC 上的点,E 、G 分别是折痕CE 与AB 、AG 与CD 的交点.(1)试说明四边形AECG 的形状,并说明理由;(2)若矩形的一边AB=4,BC=3,求△AEC 的面积;(1)证明:在矩形ABCD 中,∵AD ∥BC ,∴∠DAC=∠BCA .由题意,得∠GAH=12∠DAC ,∠ECF=12∠BCA . ∴∠GAH=∠ECF ,∴AG ∥CE .又∵AE ∥CG ,∴四边形AECG 是平行四边形.(2)解法1:在Rt △ABC 中,∵AB=4,BC=3,∴AC=5.∵CF=CB=3,∴AF=2.在Rt △AEF 中,设EF=x ,则AE=4-x .根据勾股定理,得AE 2=AF 2+EF 2,即(4-x )2=22+x 2.解得x=32,即线段EF 长为32. ∴S △AEC=12×AC ×EF=12×5×32=1546.(2012•南平)如图,正方形纸片ABCD 的边长为3,点E 、F 分别在边BC 、CD 上,将AB 、AD 分别和AE 、AF 折叠,点B 、D 恰好都将在点G 处,已知BE=1,求EF 的长解:∵正方形纸片ABCD 的边长为3,∴∠C=90°,BC=CD=3,根据折叠的性质得:EG=BE=1,GF=DF ,设DF=x ,F B则EF=EG+GF=1+x,FC=DC﹣DF=3﹣x,EC=BC﹣BE=3﹣1=2,在Rt△EFC中,EF2=EC2+FC2,即(x+1)2=22+(3﹣x)2,解得:x=1.5,∴DF=1.5,即 EF=1+1.5=2.5.7.(2011•重庆)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE 对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的是 .解:①正确.因为AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴△ABG≌△AFG;②正确.因为:EF=DE=CD=2,设BG=FG=x,则CG=6﹣x.在直角△ECG中,根据勾股定理,得(6﹣x)2+42=(x+2)2,解得x=3.所以BG=3=6﹣3=GC;③正确.因为CG=BG=GF,所以△FGC是等腰三角形,∠GFC=∠GCF.又∠AGB=∠AGF,∠AGB+∠AGF=180°﹣∠FGC=∠GFC+∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④错误.过C作C H⊥GE于H,∵EF=2,FG=3, ∴EG=5,∴35GFEG=,∴S△EGC= =×3×4=6,∴356GF S GFCEG==∴S△FGC=≠3.答案①②③8.(2014河南省)如图,矩形ABCD中,AD=5,AB=7.点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D/落在∠ABC的角平分线上时,DE的长为 .答案:53或52解析:过D/作FH⊥AB交AB于F,交CD于H;如图1,由翻折,△EDA≌△ED/A,∴ED=ED/,AD=AD/=5, 设AF=x,则BF=7-x,在Rt△BD/F中,∵D/B是∠ABC的平分线,∴∠ABD/=450, 则D/F=BF=7-x,在Rt△AD/F中,AD/2=AF2+D/F2,即52=(7-x)2+x2,解得x=4或x=3,即D/F=BF=3或4.当x=4时,如图1,设DE=y,在Rt△D/HE中,EH=4-y,ED/=y,HD/=2,即(4-y)2+22=y2,解得y=52,即DE=52当x=3时,如图2,设DE=y,在Rt△D/HE中,EH=3-y,ED/=y,HD/=1,即(3-y)2+12=y2,解得y=53,即DE=53图1FA图2DA。

矩形翻折问题

矩形翻折问题

矩形翻折问题二、方法剖析与提炼例1.如图,折叠矩形的一边AD,使点D 落在BC 边上的点F 处.已知AB=8cm,BC= 10cm.则折痕AE 的长是____________cm.【解答】55【解析】△AEF 由△AED 翻折而成,得AF=AD=10cm ,在Rt △ABF 中,利用勾股定理可得BF=6cm, CF=4cm.设DE=EF=x,EC=8-x, 在Rt △ECF 中, 2224)8(x x =+-,解得DE=5cm. 再在Rt △ADE 中,利用勾股定理得AE=55cm.【解法】这是一个矩形翻折的边长问题,由翻折得到对应线段相等,设元利用勾股定理构造一元二次方程可解线段长度。

【解释】此题涵盖了三角形全等,勾股定理,一元二次方程求边长等知识,意在培养学生翻折找对应边。

例2:将一矩形纸片OABC 放在平面直角坐标系中,O (0,0),A (8,0),C (0,4)。

动点Q 从点C 出发以每秒1个单位长的速度沿CB 向终点B 运动,动点P 从点A 出发以相等的速度沿AO 向终点O 运动。

当其中一点到达终点时,另一点也停止运动.设点P 的运动时间为t (秒)。

如图,将矩形OABC 沿PQ 翻折,当A 与C 重合时,求另一落点M 的坐标及折痕PQ【解答】62,532,516-=⎪⎭⎫⎝⎛x y M【解析】过M 点作MN ⊥y 轴,垂足为N ,由翻折得Rt ∠A=Rt ∠MCP,所以△OPC ≈△NMC,由例1可知△OPC 是3,4,5的直角三角形,利用相似比分别求得FMN=516,CN=512,所以62,532,516-=⎪⎭⎫⎝⎛x y M 【解法】这是与一个矩形翻折有关的动点问题。

利用Rt ∠A 翻折到y 轴,构造K 字相似三角形。

利用对应边成比例,可求得CN,MN 的长度,继而求得M 的坐标及折痕PQ 的解析式。

【解释】此题是将矩形翻折到一个固定状态,利用特殊位置求对应的量,而下面变式题则变为一个不确定的状态。

矩形翻折问题集锦及答案解析

矩形翻折问题集锦及答案解析

重庆南开中学初2015级九年级(下)半期考试数 学 试 题一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号 为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答卷上对应的方框涂黑. 1.2的相反数是( ) A .2 B .21 C .-2 D .21- 2.计算322·x x -的结果是( )A .52x - B .52x C .62x - D .62x 3.下列图形中,既是中心对称图形又是轴对称图形的是( )4.如图,点O 在直线AC 上,BO ⊥DO 于点O ,若︒=∠1451,则3∠的度数为( ) A .35° B .45° C .55° D .65°5.若a(a≠0)是关于方程022=-+a bx x 的一个根,则b a +的值为( ) A .2 B .-2 C .0 D .46.如图,已知DE ∥BC ,且=DB AD :2:1,则△ADE 与△ABC 的面积比为( ) A .1:4 B .2:3 C .4:6 D .4:9 7.下列说法正确的是( )A .调查重庆市空气质量情况应采用普查的方式B .若A 、B 两组数据的平均数相同,A 组数据的方差2A S =0.03,B 组数据的方差2B S =0.2,则8组数据比A 组数据稳定C .南开中学明年开运动会一定会下雨D .为了解初三年级24个班课间活动的使用情况。

李老师采用普查的方式 8.如图,O 是正方ABCD 的外接圆,点E 是弧AB 上任意一点,则DEC ∠的度数为( )A .40°B .45°C .48°D .50° 9.关于x 的方程11=+x a的解是负数,则口的取值范围是( ) A .a<l B .a<1且a≠0 C .a≤1 D .a≤l 且a≠010.2015年4月l8日周杰伦“摩天轮2”演唱会在重庆奥体中心如期举行.小王开车从家出发前去观看,预计1个小时能到达,可当天路上较为拥堵,行驶了半个小时,刚好行驶了一半路程,道路被“堵死”,堵了几分钟突然发现旁边刚好有一个轻轨站,于是小王将车停在轻轨站的车库,然后坐轻轨前往,结果按预计时间到达.下面能反映小王距离奥体中心的距离y (千米)与时间x (小时)的函数关系的大致图象是( )11.将一些形状相同的小棒按如图所示的方式摆放。

专题36 矩形与折叠问题(解析版)

专题36 矩形与折叠问题(解析版)

专题36 矩形与折叠问题一、单选题1.如图,矩形纸片ABCD 中,AB =6cm ,BC =8cm .现将其沿AE 对折,使得点B 落在边AD 上的点B 1处,折痕与边BC 交于点E ,则CB 1的长为( )A .cmB .C .8cmD .10cm【答案】B【分析】 根据翻折变换的性质可以证明四边形ABEB 1为正方形,得到BE =AB ,根据EC =BC ﹣BE 计算得到EC ,再根据勾股定理可求答案.【详解】解:∵∵AB 1E =∵B =90°,∵BAB 1=90°,∵四边形ABEB 1为矩形,又∵AB =AB 1,∵四边形ABEB 1为正方形,∵BE =AB =6cm ,∵EC =BC ﹣BE =2cm ,∵CB 1cm .故选B .【点睛】本题考查的是翻折变换、矩形和正方形的判定和性质,掌握翻折变换的性质及矩形、正方形的判定定理和性质定理是解题的关键.2.如图,矩形ABCD 中,3AB =,9AD =,将此矩形折叠,使点B 与点D 重合,折痕为EF ,则ABE ∆的面积为( )A.12B.10C.8D.6【答案】D【分析】根据折叠的条件可得:BE=DE,在直角∵ABE中,利用勾股定理就可以求解.【详解】将此长方形折叠,使点B与点D重合,∵BE=ED.∵AD=AE+DE=AE+BE=9.∵BE=9−AE,根据勾股定理可知AB2∵AE2∵ BE2,32∵AE2∵∵9-AE∵2∵解得AE=4.∵∵ABE的面积为3×4÷2=6.故选:D.【点睛】本题考查了利用勾股定理解直角三角形的能力,即:直角三角形两直角边的平方和等于斜边的平方.3.如图,在矩形ABCD中,E是BC边的中点,将∵ABE沿AE所在的直线折叠得到∵AFE,延长AF交CD 于点G,已知CG=2,DG=1,则BC的长是()A.B.C.D.【答案】B【分析】连接EG ,由折叠的性质可得BE =EF 又由E 是BC 边的中点,可得EF =EC ,然后证得Rt∵EGF ∵Rt∵EGC (HL ),得出FG =CG =2,继而求得线段AG 的长,再利用勾股定理求解,即可求得答案.【详解】解:连接EG ,∵E 是BC 的中点,∵BE =EC ,∵∵ABE 沿AE 折叠后得到∵AFE ,∵BE =EF ,∵EF =EC ,∵在矩形ABCD 中,∵∵C =90°,∵∵EFG =∵B =90°,∵在Rt∵EGF 和Rt∵EGC 中,EF EC EG EG=⎧⎨=⎩, ∵Rt∵EGF ∵Rt∵EGC (HL ),∵FG =CG =2,∵在矩形ABCD 中,AB =CD =CG +DG =2+1=3,∵AF =AB =3,∵AG =AF +FG =3+2=5,∵BC =AD =.故选:B .【点睛】此题考查了折叠的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的应用.熟练掌握折叠的性质是关键.4.在矩形纸片ABCD 中,AB =6,AD =10.如图所示,折叠纸片,使点A 落在BC 边上的A ′处,折痕为PQ .当点A ′在BC 边上移动时,折痕的端点P 、Q 也随之移动.若限定点P 、Q 分别在AB 、AD 边上移动,则点A ′在BC 边上可移动的最大距离为( )A .8cmB .6cmC .4cmD .2cm【答案】C【分析】 根据翻折的性质,可得BA ′与AP 的关系,根据线段的和差,可得A ′C ,根据勾股定理,可得A ′C ,根据线段的和差,可得答案.【详解】解:∵当P 与B 重合时,BA ′=BA =6,CA ′=BC ﹣BA ′=10﹣6=4cm ,∵当Q 与D 重合时,由勾股定理,得CA cm ,CA ′最远是8,CA ′最近是4,点A ′在BC 边上可移动的最大距离为8﹣4=4cm ,故选:C .【点睛】本题考查了翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.5.如图,把矩形纸片ABCD 沿EF 折叠后得到1∠,再把纸片铺平,若150∠=︒,则AEF ∠的度数为()A .105°B .120°C .130°D .115°【答案】D【分析】 点B 折叠后的点为G ,根据折叠的性质,可得∵GFE=∵BFE ,结合∵1的度数即可求出∵EFB 的度数,利用矩形的性质AD∵BC 即可求出结果.【详解】点B 折叠后的点为G ,根据折叠的性质,可得∵GFE=∵BFE ,∵∵1=50°,∵∵BFE=(180°-50°)÷2=65°,∵ABCD 是矩形,∵AD∵BC ,∵∵DEF=∵BFE=65°,∵∵AEF=180°-65°=115°,故选:D .【点睛】本题考查了折叠的性质,矩形的性质,平行的性质,掌握折叠的性质是解题的关键.6.如图所示,在矩形ABCD 中,4AB =,8AD =,将矩形沿BD 折叠,点A 落在点E 处,DE 与BC 交于点F ,则重叠部分BDF ∆的面积是( )A .20B .16C .12D .10【答案】D【分析】 根据折叠的性质可得∵ADB=∵EDB,由平行可得∵ADB=∵CBD,推出∵CBD=∵EDB,设BF 为x ,在Rt∵DCF 中根据勾股定理列出方程求出x ,再根据面积公式求出∵BDF 的面积即可.【详解】∵AD∵BC,∵∵ADB=∵CBD,∵∵BDE 是∵BDA 折叠后的图形,∵∵ADB=∵EDB,∵∵CBD=∵EDB,设BF 为x ,则DF 为x ,CF 为8-x ,在Rt∵DCF 中,()22284x x -+=解得:x =5.∵S ∵BDF =154102⨯⨯=. 故选D .【点睛】本题考查折叠中矩形的性质,关键在于利用勾股定理列出方程求解.7.如图,把一张长方形的纸沿对角线BD 折叠,使点C 落到点C '的位置,若BC '平分ABD ∠,则DBC ∠的度数是( )A .15°B .30°C .45°D .60°【答案】B【分析】 根据折叠的性质,得到DBC DBC'∠=∠,再根据角平分线的性质得到''ABC DBC ∠=∠ ,得到∵ABC 被平均分成了3份,求出解决即可.【详解】解:∵把一张长方形纸片ABCD 沿BD 折叠∵DBC DBC'∠=∠∵BC '平分ABD ∠∵''ABC DBC ∠=∠∵DBC ∠=13∵ABC=30° 故选B.【点睛】本题考查了折叠的性质以及角平分线的性质,解决本题的关键是熟练掌握折叠与角平分线的性质,找到相等的角.8.将长方形ABCD 纸片沿AE 折叠,得到如图所示的图形,已知∵CED'=70°,则∵EAB 的大小是( )A .60°B .50°C .75°D .55°【答案】D【分析】首先根据折叠的性质得出∵DEA=∵D′EA=55°,然后由余角的性质得出∵DEA=∵EAD′=35°,进而得出∵D′AB=20°,最后即可得出∵EAB.【详解】根据折叠的性质,∵CED'=70°,得 ∵DEA=∵D′EA=18070552︒-︒=︒ ∵∵ADE=∵AD′E=90°∵∵DAE=∵EAD′=90°-55°=35°∵∵D′AB=90°-∵DAE -∵EAD′=90°-35°-35°=20°∵∵EAB=∵EAD′+∵D′AB=35°+20°=55°故答案为D.【点睛】此题主要考查折叠的性质以及余角的性质,熟练掌握,即可解题.9.如图,有一张长方形纸片ABCD ,其中15AB cm =,10AD cm =.将纸片沿EF 折叠,//EF AD ,若9AE cm =,折叠后重叠部分的面积为( )A .230cmB .260cmC .250cmD .290cm【答案】B【解析】【分析】 根据折叠的性质,可知折叠后重叠部分的面积等于长方形ABCD 的面积减去长方形AEFD 的面积,即可得解.【详解】根据题意,得折叠后重叠部分的面积等于长方形ABCD 的面积减去长方形AEFD 的面积,∵10AD cm =,9AE cm =,//EF AD∵2=151091060ABCD AEFD S S S AB AD AE AD cm -=-=⨯-⨯=阴影长方形长方形故答案为B.【点睛】此题主要考查折叠的性质和长方形的面积求解,熟练掌握,即可解题.10.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()A.B C D.6【答案】A【分析】先根据图形翻折变换的性质求出AC的长,再由勾股定理及等腰三角形的判定定理即可得出结论.【详解】解:∵∵CEO是∵CEB翻折而成,∵BC=OC,BE=OE,∵B=∵COE=90°,∵EO∵AC,∵O是矩形ABCD的中心,∵OE是AC的垂直平分线,AC=2BC=2×3=6,∵AE=CE,在Rt∵ABC中,AC2=AB2+BC2,即62=AB2+32,解得AB=33,在Rt∵AOE中,设OE=x,则AE=33-x,AE2=AO2+OE2,即(33-x)2=32+x2,解得x=3,∵AE=EC=33-3=23.故选:A.【点睛】本题考查翻折变换,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解题的关键.11.如图,在矩形ABCD 中,点E 在边CD 上,将该矩形沿AE 折叠,恰好使的D 落在边BC 上的点F 处,如果∵BAF =60°,则∵DAE 的大小为( )A .10°B .15 °C .20 °D .25°【答案】B【分析】 由题意可知90BAD ∠=︒,12FAE DAE DAF ∠=∠=∠.再由DAF BAD BAF ∠=∠-∠,即可求出DAE ∠的大小.【详解】∵四边形ABCD 为矩形,∵90BAD ∠=︒,∵FAE 是由DAE △沿AE 折叠而来,且F 点恰好落在BC 上, ∵12FAE DAE DAF ∠=∠=∠, ∵906030DAF BAD BAF ∠=∠-∠=︒-︒=︒, ∵130152DAE ∠=⨯︒=︒. 故选:B .【点睛】 本题考查矩形的折叠问题,根据折叠的性质推出12FAE DAE DAF ∠=∠=∠是解答本题的关键. 12.如图,长方形ABCD 中,点O 是AC 的中点,E 是AB 边上的点,把∵BCE 沿CE 折叠后,点B 恰好与点O 重合,则图中全等的三角形有( )对.A .1B .2C .3D .4【答案】D【分析】 由长方形的性质利用“SSS ”即可证明ADC CBA ≅,再由折叠的性质可知∵BCE ∵∵OCE ,即可得出结论90EOC EBC ∠=∠=︒,从而推出90EOA EOC ∠=∠=︒,最后由O 点为AC 中点,利用“ASA ”即可证明OCE OAE ≅,最后又可推出∵OAE ∵∵BCE ,即可选择.【详解】∵四边形ABCD 为长方形,∵在ADC 和CBA △中AD CB CD AB AC CA =⎧⎪=⎨⎪=⎩,∵()ADC CBA SSS ≅;∵∵BCE 沿CE 折叠后,点B 恰好与点O 重合,∵∵BCE ∵∵OCE ;∵O 点为AC 中点,∵AO =CO .∵∵BCE ∵∵OCE ,∵90EOC EBC ∠=∠=︒,∵在∵OCE 和∵OAE 中,90AO CO EOA EOC OE OE =⎧⎪∠=∠=︒⎨⎪=⎩,∵()OCE OAE ASA ≅;∵∵BCE ∵∵OCE ,OCE OAE ≅,∵∵OAE ∵∵BCE综上,图中全等三角形有4对.故选:D .【点睛】本题考查矩形的性质以及全等三角形的判定和性质.掌握全等三角形的判定条件是解答本题的关键. 13.如图,矩形纸片ABCD 中,6AB =,10AD =,折叠纸片,使点A 落在BC 边上的点A 处,折痕为PQ ,当点1A 在BC 边上移动时,折痕的端点P 、Q 分别在AB 、AD 边上移动,则当1A B 最小时其值为( )A .2B .3C .4D .5【答案】A【分析】 根据翻折的性质,可得当Q 与D 重合时,A 1B 最小,根据勾股定理,可得A 1C ,从而可得答案.【详解】解:由折叠可知:当Q 与D 重合时,A 1B 最小,A 1D=AD=10,由勾股定理,得:A 1,∵A 1B=10-8=2,故选A .【点睛】本题考查了翻折变换,利用了翻折的性质得到当Q 与D 重合时,A 1B 最小是解题的关键.14.如图,将长方形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于E ,AD =8,AB =4,则重叠部分(即BDE )的面积为( )A .6B .7.5C .10D .20【答案】C【分析】 由折叠结合矩形的性质先证明,BE DE =设,BE DE x == 则8,AE x =- 再利用勾股定理求解,x 从而可得BDE 的面积.【详解】 解: 长方形ABCD ,8,4,AD AB ==//,AD BC ∴,ADB CBD ∴∠=∠由对折可得:,CBD C BD '∠=∠,ADB C BD '∴∠=∠,BE DE ∴=设,BE DE x == 则8,AE x =-由222,BE AB AE =+ ()22248,x x ∴=+-1680,x ∴=5,x ∴= 5,DE BE ∴==115410.22BDE S DE AB ∴==⨯⨯= 故选:.C【点睛】本题考查的是矩形与折叠问题,勾股定理的应用,矩形的性质,掌握以上知识是解题的关键.15.如图,把一张长方形纸片沿对角线折叠,若∵EDF 是等腰三角形,则∵BDC ( )A .45ºB .60ºC .67.5ºD .75º【答案】C【分析】 由翻折可知:∵BDF∵∵BCD ,所以∵EBD=∵CBD ,∵E=∵C=90°,由于∵EDF 是等腰三角形,易证∵ABF=45°,所以∵CBD=12∵CBE=22.5°,从而可求出∵BDC=67.5°. 【详解】解:由翻折的性质得,∵DBC=∵EBD ,∵矩形的对边AD∵BC ,∵E=∵C=90°,∵∵DBC=∵ADB ,∵∵EBD=∵ADB ,∵∵EDF 是等腰三角形,∵E=90°,∵∵EDF 是等腰直角三角形,∵∵DFE=45°,∵∵EBD+∵ADB=∵DFE , ∵∵DBF=12∵DFE=22.5°, ∵∵CBD =22.5°,∵∵BDC=67.5°,故选:C .【点睛】本题考查等腰三角形,涉及矩形的性质,全等三角形的判定与性质等知识,需要学生灵活运用所学知识. 16.如图,矩形纸片ABCD 中,4AB =,3AD =,折叠纸片使AD 边与对角线BD 重合,则折痕为DG 的长为( )A B C.2D【答案】D【分析】首先设AG=x,由矩形纸片ABCD中,AB=4,AD=3,可求得BD的长,又由折叠的性质,可求得A′B 的长,然后由勾股定理可得方程:x2+22=(4-x)2,解此方程即可求得AG的长,继而求得答案.【详解】解:设AG=x,∵四边形ABCD是矩形,∵∵A=90°,∵AB=4,AD=3,∵BD5,由折叠的性质可得:A′D=AD=3,A′G=AG=x,∵DA′G=∵A=90°,∵∵BA′G=90°,BG=AB-AG=4-x,A′B=BD-A′D=5-3=2,∵在Rt∵A′BG中,A′G2+A′B2=BG2,∵x2+22=(4-x)2,解得:x=32,∵AG=32,∵在Rt∵ADG中,DG=故选:D.【点睛】此题考查了折叠的性质、矩形的性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.17.如图,在矩形纸片ABCD中,BC a=,将矩形纸片翻折,使点C恰好落在对角线交点O处,折痕为BE,点E 在边CD 上,则CE 的长为( )A .12aB .25aC .2aD .3a 【答案】D【分析】首先证明∵OBC 是等边三角形,在Rt∵EBC 中求出CE 即可解决问题;【详解】解:∵四边形ABCD 是矩形,∵OB=OC ,∵BCD=90°,由翻折不变性可知:BC=BO ,∵BC=OB=OC ,∵∵OBC 是等边三角形,∵∵OBC=60°,∵∵EBC=∵EBO=30°,∵BE=2CE根据勾股定理得:EC=3a , 故选:D .【点睛】本题考查翻折变换,等边三角形的判定和性质等知识,解题的关键是证明∵OBC 是等边三角形. 18.如图,将矩形纸片ABCD 沿EF 折叠,点C 落在边AB 上的点H 处,点D 落在点G 处,若111GEF ∠=︒,则AHG ∠的度数为( ).A .42°B .69°C .44°D .32°【答案】A【分析】 根据翻折的性质,及矩形的性质,求出AEG ∠,再利用“8”字模型求解即可.【详解】由图形翻折的性质可知,111GEF DEF ∠=∠=︒,180111AEF ∴∠=︒-︒=69︒,1116942AEG GEF AEF ∠=∠-∠=︒-︒=︒,90A G ∠=∠=︒,利用“8”字模型,42AHG AEG ∴∠=∠=︒,故选:A .【点睛】本题考查了矩形翻折问题,能够根据图形翻折的性质推理出AEG ∠是解决问题的关键,熟练运用“8”字模型是求最终结果的关键.19.如图,已知长方形ABCD ,将∵DBC 沿BD 折叠得到∵DBC′,BC′与AD 交于点E ,若长方形的周长为20cm ,则∵ABE 的周长是( )A .5cmB .10cmC .15cmD .20cm【答案】B【分析】 根据现有条件推出∵EDB=∵EBD ,得出BE=DE ,可知∵ABE 的周长=AB+AD ,是长方形的周长的一半,即可得出答案.【详解】由折叠可知:∵CBD=∵C′BD,∵四边形ABCD为平行四边形,∵AD∵BC,∵∵ADB=∵CBD,∵∵ADB=∵C′BD,∵∵EDB=∵EBD,∵BE=DE,∵∵ABE的周长=AB+AD,∵长方形的周长为20cm,∵2(AB+AD)=20cm,∵AB+AD=10cm,∵∵ABE的周长为10cm,故选:B.【点睛】本题考查了等腰三角形的性质,折叠的性质,推出BE=DE是解题关键.20.如图,将一块长方形纸片ABCD沿BD翻折后,点C与E重合,若∵ADE = 30°,EH = 2,则BC的长度为()A.8B.7C.6.5D.6【答案】D【分析】由折叠的性质可得∵E=∵C=∵A=90°,再证明∵ABH∵∵EDH,得到AB的长,再求出∵DBC=30°,在Rt∵BCD 中即可求解.【详解】∵四边形ABCD是矩形,∵AD∵BC,∵C=90°,∵将一块长方形纸片ABCD 沿BD 翻折后,∵∵E =∵C =∵A=90°,又∵AHB=∵EHD ,AB=ED∵∵ABH∵∵EDH∵∵ABH=∵ADE = 30°,AH=EH = 2∵BH=2AH=4∵CD=AB= =∵∵ABH= 30°,∵∵HBC=60°∵翻折,∵∵DBC=30°6=故选:D .【点睛】本题考查了翻折变换,矩形的性质,含30°的直角三角形的性质,求出AB 的长是本题的关键. 21.在数学拓展课《折叠矩形纸片》上,小林发现折叠矩形纸片ABCD 可以进行如下操作:∵把ABF 翻折,点B 落在C 边上的点E 处,折痕为AF ,点F 在BC 边上;∵把ADH 翻折,点D 落在AE 边上的点G 处,折痕为AH ,点H 在CD 边上,若610AD CD ==,,则EH EF=( )A .32B .53C .43D .54【答案】A【分析】利用翻折不变性可得10AE AB ==,推出8DE =,2EC =,设BF EF x ==,在Rt EFC △中,2222(6)x x =+-,可得103x =,设DH GH y ==,在Rt EGH △中,2224(8)y y +=-,可得3y =,由此即可解决问题.【详解】 解:四边形ABCD 是矩形,90C D ∴∠=∠=︒,10AB CD ==,6AD BC ==,由翻折不变性可知:10AB AE ==,6AD AG ==,BF EF =,DH HG =,4EG ∴=,在Rt ADE △中,8DE ==,1082EC ∴=-=,设BF EF x ==,在Rt EFC △中有:2222(6)x x =+-,103x ∴=, 设DH GH y ==,在Rt EGH △中,2224(8)y y +=-,3y ∴=,5EH ∴=, ∴531023EH EF ==,故选:A .【点睛】本题考查矩形的性质,翻折变换,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.22.如图,将一张矩形纸片ABCD 沿EF 折叠后,点D ,C 分别落在D ′,C ′地位置,ED ′的延长线与BC 相交于点G ,若∵EFG =68°,则∵1的度数是( )A .112°B .136°C .144°D .158°【答案】B【分析】由AD//BC,∵EFG=68°,根据两直线平行,内错角相等,可求得∵DEF的度数,然后由折叠的性质,求得∵DEG 的度数,继而求得答案.【详解】解:∵AD//BC,∵EFG=68°,∵∵DEF=∵EFG=68°,由折叠的性质可得:∵FEG=∵DEF=68°,∵∵DEG=∵DEF+∵FEG=136°,∵AD//BC,∵∵1=∵DEG=136°.故选:B.【点睛】此题考查了平行线的性质以及折叠的性质.注意掌握折叠前后图形的对应关系是解此题的关键.23.如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC边上的点F处.若AB=3,BC=5,则DE的长为()A.12B.53C.25D.13【答案】B【分析】先根据矩形的性质得AD=BC=5,AB=CD=3,再根据折叠的性质得AF=AD=5,EF=DE,在Rt∵ABF 中,利用勾股定理计算出BF=4,则CF=BC﹣BF=1,设CE=x,则DE=EF=3﹣x,然后在Rt∵ECF中根据勾股定理得到x2+12=(3﹣x)2,解方程即可得到DE的长.【详解】解:∵四边形ABCD为矩形,∵AD=BC=5,AB=CD=3,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∵AF=AD=5,EF=DE,在Rt∵ABF中,BF4,∵CF=BC﹣BF=5﹣4=1,设CE=x,则DE=EF=3﹣x,在Rt∵ECF中,CE2+FC2=EF2,∵x2+12=(3﹣x)2,解得x=43,∵DE=3﹣x=53,故选:B.【点睛】本题考查了翻折变换、矩形的性质、勾股定理等知识,属于常考题型,灵活运用这些性质进行推理与计算是解题的关键.24.如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平,再一次折叠,使点D落到EF上的点G处,并使折痕经过点A,已知2BC=,则线段EG的长度为()A.1B C D.2【答案】B【分析】由折叠的性质可得AE=12AD=12BC=1,AG=AD=2,由勾股定理得出EG即可.【详解】解:如图所示:∵四边形ABCD 是矩形,对折矩形纸片ABCD ,使AB 与DC 重合得到折痕EF , ∵AE=12AD=12BC=1,EF∵AD , ∵∵AEF=90°,∵再一次折叠,使点D 落到EF 上点G 处∵AG=AD=2,=,故选:B .【点睛】此题主要考查了翻折变换的性质以及矩形的性质,熟练掌握折叠的性质是解题关键.25.如图,将长方形纸片ABCD 沿EF 折叠后,点C ,D 分别落在点C ',D 处,若68AFE ∠=︒,则'∠C EB 等于( )A .68︒B .80︒C .44︒D .55︒【答案】C【分析】 根据矩形的性质可得AD//BC ,根据平行线的性质可得∵CEF =∵AFE ,根据折叠的性质可得∵CEF =∵C′EF ,根据平角的定义即可得答案.【详解】解:∵ABCD 是长方形,∵68AFE ∠=︒,∵∵CEF =∵AFE=68°,∵将长方形纸片ABCD 沿EF 折叠后,点C ,D 分别落在点C ',D 处,∵∵CEF =∵C′EF =68°,∵'∠C EB =180°-∵CEF -∵C′EF=44°,故选:C .【点睛】本题考查了矩形的性质、平行线的性质,翻折变换的性质,熟记折叠的性质是解题的关键.26.如图,把长方形纸片ABCD 沿对角线折叠,设重叠部分为EBD △.下列说法错误的是( )A .AE CE =B .12AE BE =C .EBD EDB ∠=∠ D .∵ABE∵∵CDE【答案】B【分析】 由折叠的性质和平行线的性质可得∵ADB=∵CBD ,可得BE=DE ,可证AE=CE ,由“SAS”可证∵ABE∵∵CDE ,即可求解.【详解】解:如图,∵把矩形纸片ABC'D 沿对角线折叠,∵∵CBD=∵DBC',CD=C'D=AB ,AD=BC=BC',∵∵EDB=∵DBC',∵∵EDB=∵EBD ,故选项C 正确;∵BE=DE ,∵AD=BC ,∵AE=CE ,故选项A 正确;在∵ABE 和∵CDE 中,AB CD A C AE CE =⎧⎪∠=∠⎨⎪=⎩,∵∵ABE∵∵CDE (SAS ),故选项D 正确; 没有条件能够证明12AE BE =, 故选:B .【点睛】本题考查了翻折变换,全等三角形的判定和性质,矩形的性质,掌握折叠的性质是本题的关键. 27.如图,将长方形纸片沿对角线折叠,重叠部分为BDE ,则图中全等三角形共有( )A .0对B .1对C .2对D .3对【答案】C【分析】 因为图形对折,所以首先∵CDB∵∵ABD ,由于四边形是长方形,进而可得∵ABE∵∵CDE ,如此答案可得.【详解】解:∵∵BDC 是将长方形纸片ABCD 沿BD 折叠得到的,∵CD=AB ,AD=BC ,∵BD=BD ,∵∵CDB∵∵ABD (SSS ),∵∵CBD=∵ADB∵EB=ED∵CE=AE又AB=CD∵∵ABE∵∵CDE ,∵图中全等三角形共有2对故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、SSA 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要由易到难,循序渐进.28.如图,在矩形ABCD 中,点E 是AD 的中点,EBC ∠的平分线交CD 于点F ,将DEF 沿EF 折叠,点D 恰好落在BE 上M 点处,延长BC 、EF 交于点N .有下列四个结论:∵ DF CF =;∵BF EN ⊥;∵BEN 是等边三角形;∵3BEF DEF S S =△△.其中,将正确结论的序号全部选对的是( )A .∵∵∵B .∵∵∵C .∵∵∵D .∵∵∵∵【答案】B【分析】 由折叠的性质、矩形的性质与角平分线的性质,可证得CF =FM =DF ,即可判断∵;易求得∵BFE =∵BFN ,则可得BF∵EN ,即可判断∵;易证得∵BEN 是等腰三角形,但无法判定是等边三角形,即可判断∵;易求得BM =2EM =2DE ,即可得EB =3EM ,根据等高三角形的面积比等于对应底的比,即可判断∵.【详解】∵四边形ABCD 是矩形,∵∵D =∵BCD =90°,DF =MF ,由折叠的性质可得:∵EMF =∵D =90°,即FM∵BE ,CF∵BC ,∵BF 平分∵EBC ,∵CF =MF ,∵DF =CF ;故∵正确;∵∵BFM =90°−∵EBF ,∵BFC =90°−∵CBF ,∵∵BFM =∵BFC ,∵∵MFE =∵DFE =∵CFN ,∵∵BFE =∵BFN ,∵∵BFE +∵BFN =180°,∵∵BFE =90°,即BF∵EN ,故∵正确;∵在∵DEF 和∵CNF 中,90D FCN DF CFDFE CFN ∠∠︒⎧⎪⎨⎪∠∠⎩==== ∵∵DEF∵∵CNF (ASA ),∵EF =FN ,∵BF 垂直平分EN ,∵BE =BN ,假设∵BEN 是等边三角形,则∵EBN =60°,∵EBA =30°,则AE =12BE , 又∵AE =12AD ,则AD =BC =BE ,而明显BE =BN >BC ,∵∵BEN 不是等边三角形;故∵错误;∵∵BFM =∵BFC ,BM∵FM ,BC∵CF ,∵BM =BC =AD =2DE =2EM ,∵BE =3EM ,∵S ∵BEF =3S ∵EMF =3S ∵DEF ;故∵正确.故选:B .【点睛】此题考查了折叠的性质、矩形的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.29.如图,将长方形纸片ABCD 沿AE 折叠,使点D 恰好落在BC 边上点F 处.若6AB =,10AD =,则EC 的长为( )A .2B .83C .3D .103【答案】B【分析】 由翻折可知:AD=AF=10.DE=EF ,设EC=x ,则DE=EF=6-x .在Rt∵ECF 中,利用勾股定理构建方程即可解决问题.【详解】解:∵四边形ABCD 是矩形,∵AD=BC=10,AB=CD=6,∵∵B=∵BCD=90°,由翻折可知:AD=AF=10,DE=EF ,设EC=x ,则DE=EF=6-x .在Rt∵ABF 中,8BF ===,∵CF=BC -BF=10-8=2,在Rt∵EFC 中,EF 2=CE 2+CF 2,∵(6-x )2=x 2+22, ∵x=83, ∵EC=83. 故选:B .【点睛】本题考查了折叠的性质,矩形的性质,勾股定理,熟练掌握方程的思想方法是解题的关键.30.如图,已知长方形ABCD 中6cm AB =,10cm BC =,在边CD 上取一点E ,将ADE 折叠使点D 恰好落在BC 边上的点F ,CE 的长是( )A .3B .2.5C .83D .2【答案】C【分析】 要求CE 的长,应先设CE 的长为x ,由将∵ADE 折叠使点D 恰好落在BC 边上的点F 可得Rt∵ADE∵Rt∵AFE ,所以AF=10cm ,EF=DE=6-x ;在Rt∵ABF 中由勾股定理得:AB 2+BF 2=AF 2,已知AB 、AF 的长可求出BF 的长,又CF=BC -BF=10-BF ,在Rt∵ECF 中由勾股定理可得:EF 2=CE 2+CF 2,即:(6-x )2=x 2+(10-BF )2,将求出的BF 的值代入该方程求出x 的值,即求出了CE 的长.【详解】∵四边形ABCD 是矩形,∵AD=BC=10cm ,CD=AB=6cm ,根据题意得:Rt∵ADE∵Rt∵AFE ,∵∵AFE=90°,AF=10cm ,EF=DE ,设CE=x cm ,则DE=EF=CD -CE=(6-x )cm ,在Rt∵ABF 中由勾股定理得:AB 2+BF 2=AF 2,即62+BF 2=102,∵BF=8cm ,∵CF=BC -BF=10-8=2(cm ),在Rt∵ECF 中,由勾股定理可得:EF 2=CE 2+CF 2,即(6-x )2=x 2+22,∵36-12x +x 2=x 2+4,∵x =83,即CE=83cm . 故选:C .【点睛】本题主要考查了图形的翻折变换以及勾股定理、全等三角形、方程思想等知识,关键是熟练掌握勾股定理,找准对应边.31.如图,将长方形ABCD 沿AC 折叠,使点B 落在点B '处,B C '交AD 于点E ,若125∠=︒,则2∠等于( )A .25︒B .30C .50︒D .60︒【答案】C【分析】 根据折叠的性质得到∵ACB '=125∠=︒,由长方形的性质得到AD∵BC ,即可得到∵2=∵BCB '=2∵1=50︒.【详解】由折叠可知:∵ACB '=125∠=︒,∵四边形ABCD 是长方形,∵AD∵BC ,∵∵2=∵BCB '=2∵1=50︒,故选:C.【点睛】此题考查折叠的性质,长方形的对边平行的性质,平行线的性质:两直线平行内错角相等.32.如图,将长方形纸片ABCD 沿对角线BD 折叠,点C 的对应点为E.若CBD 35∠=︒,则ADE ∠的度数为( ).A .15︒B .20︒C .25︒D .30【答案】B【分析】 根据折叠的性质和平行线的性质,可以得到ADB ∠和EDB ∠的度数,然后即可得到ADE ∠的度数.【详解】解:由折叠的性质可得,CDB EDB ∠∠=,AD //BC ,CBD 35∠=︒,CBD ADB 35∠∠∴==︒,C 90︒∠=,CDB 55∠∴=︒,EDB 55∠∴=︒,ADE EDB ADB 553520∠∠∠∴=-=︒-︒=︒.故选:B .【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.33.如图,折叠长方形纸片ABCD 的一边AD ,使点D 落在BC 边上的点F 处,已知8AB cm =,10AD cm =,则折痕EF 的长为( ).A.2cm B.3cm C.4cm D.5cm【答案】D【分析】根据折叠可得,AD=AF,然后根据勾股定理求出BF,易得CF,再由勾股定理即可求得.【详解】根据折叠可得,AD=AF=10,DE=EF在Rt∵ABF中,根据勾股定理得,BF=6∵CF=4在Rt∵CEF中,EF2=CE2+CF2即EF2=(8-EF)2+42解得EF=5cm故选D【点睛】本题考查勾股定理,掌握折叠的性质是解题关键.34.如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C'处,折痕为EF,若EFC'∠=︒,那么ABE122∠的度数为()A.24︒B.32︒C.30D.26︒【答案】D【分析】由折叠的性质知:∵EBC′、∵BC′F都是直角,∵BEF=∵DEF,因此BE∵C′F,那么∵EFC′和∵BEF互补,这样可得出∵BEF 的度数,进而可求得∵AEB 的度数,则∵ABE 可在Rt∵ABE 中求得.【详解】解:由折叠的性质知,∵BEF=∵DEF ,∵EBC′、∵BC′F 都是直角,∵BE∵C′F ,∵∵EFC′+∵BEF=180°,又∵∵EFC′=122°,∵∵BEF=∵DEF=58°,∵∵AEB=180°-∵BEF -∵DEF=64°,在Rt∵ABE 中,∵ABE=90°-∵AEB=26°.故选D .【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.35.如图,将矩形纸片ABCD 沿BD 折叠,得到','BC D C D ∆与AB 交于点E ,若140∠=︒,则2∠的度数为( )A .25︒B .20︒C .15︒D .10︒【答案】D【分析】 根据矩形的性质,可得∵ABD=40°,∵DBC=50°,根据折叠可得∵DBC'=∵DBC=50°,最后根据∵2=∵DBC'-∵DBA 进行计算即可.【详解】解:140,//CD AB ∠=︒,40,50ABD DBC ∴∠=︒∠=︒,由折叠可知'50DBC DBC ∠=∠=︒,2504010DBC ABD '∴∠=∠-∠=︒-︒=︒.故选:D .【点睛】本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出∵DBC′和∵DBA 的度数.36.如图,在长方形ABCD 中,将∵ABC 沿AC 对折至∵AEC 位置,CE 与AD 交于点F ,如果AB =2,BC =4,则AF 的长是( ).A .2B .2.5C .2.8D .3【答案】B【分析】 根据题意,根据轴对称的性质,得AB=AE=CD=2,BC=AD=4;通过证明AEF CDF △≌△得=EF FD ,再通过直角AEF 中勾股定理,计算得AF 的长.【详解】根据题意得:AB=AE=CD=2,BC=AD=4设AF=x ,则FD=AD -AF=4-x∵90AEC D AFE DFC AE CD ⎧∠=∠=⎪∠=∠⎨⎪=⎩∵AEF CDF △≌△∵=EF FD∵4EF FD x ==-∵222AE EF AF +=∵()22224x x +-=∵ 2.5x =∵AF 的长是2.5故选:B .【点睛】本题考查了全等三角形、矩形、勾股定理、一元一次方程、轴对称的知识;解题的关键是熟练掌握全等三角形、矩形、勾股定理、轴对称的性质,从而完成求解.37.如图,矩形ABCD 沿着对角线BD 进行折叠,使点C 落在C '处,BC '交AD 于点E ,16AD =,8AB =,则DE 的长( ).A .10B .6C .8D .【答案】A【分析】 先根据翻折变换的性质得出CD=C′D ,∵C=∵C′=90°,再设DE=x ,则AE=16-x ,由全等三角形的判定定理得出Rt∵ABE∵Rt∵C′DE ,可得出BE=DE=x ,在Rt∵ABE 中利用勾股定理即可求出x 的值,进而得出DE 的长.【详解】解:∵Rt DC B '△由Rt DCB △翻折而成,∵8CD C D AB '===,90C C '∠=∠=︒,设DE x =,则16AE x =-,∵90A C '∠=∠=︒,AEB DEC '∠=∠,∵ABE C DE '∠=∠,在Rt ABE △与Rt C DE '△中,90A C '∠=∠=︒,AB C D '=,ABE C DE '∠=∠∵Rt Rt ABE C DE '≌△△,∵BE DE x ==,在Rt ABE △中,222AB AE BE +=,即()222816x x +-=,解得10x =,即10DE =,故选A .【点睛】本题考查的是翻折变换的性质及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.38.如图,长方形ABCD 中,AD BC 6==,10AB CD ==,点E 为射线DC 上的一个动点,ADE 与AD E '关于直线AE 对称,当'AD B 为直角三角形时,DE 的长为() A .2或8B .83或18C .83或2D .2或18【答案】D【分析】 分两种情况: 当E 点在线段DC 上时, 当E 点在线段DC 的延长线上时,利用全等三角形的判定和性质得出答案即可.【详解】解:分两种情况讨论:∵当E 点在线段DC 上时,AD E '△∵ADE ,90AD E D '∴∠=∠=︒,90AD B '∠=︒,180AD B AD E ''∴∠+∠=︒,B ∴、D 、E 三点共线,1122ABE S BE AD AB AD AD AD ''=⋅=⋅=,, BE AB 10∴==,8BD '===,1082DE D E '∴==-=;∵当E 点在线段DC 的延长线上时,如下图,90ABD CBE ABD BAD ''''''∠+∠=∠+∠=︒,CBE BAD ''∴∠=∠,在ABD ''△和BEC △中,D BCE AD BCBAD CBE '''''∠=∠⎧⎪=⎨⎪∠=∠'⎩, ABD ''∴△∵BEC ,BE AB 10∴==,8BD ''==,81018DE D E BD BE ''''∴==+=+=,综上所知,DE 2=或18,故选:D .【点睛】本题考查翻折的性质、三角形全等的判定与性质、勾股定理、掌握翻折的性质、分类探讨的思想方法是解决问题的关键.39.如图,四边形ABCD 是矩形纸片,AB =2.对折矩形纸片ABCD ,使AD 与BC 重合,折痕为EF ;展平后再过点B 折叠矩形纸片,使点A 落在EF 上的点N ,折痕BM 与EF 相交于点Q ;再次展平,连接BN ,MN,延长MN交BC于点G.有如下结论:∵∵ABN=60°;∵AM=1;∵AB∵CG;∵BMG是等边三角形;∵点P为线段BM上一动点,点H是BN的中点,则PN+PH.其中正确结论有()A.5个B.4个C.3个D.2个【答案】B【分析】∵根据折叠的性质得出AE=BE,AB=BN,∵NEB=90°,再根据含30度的直角三角形判定定理即可得出∵ENB =30°,即可得出∵ABN=60°;∵根据折叠的性质得出∵ABM=∵NBM=30°,设AM=x,根据勾股定理即可求出AM的值;∵直接根据矩形的性质即可得出;∵根据∵ABM=30°,得出∵MBG=∵BMA=60°,再根据折叠的性质和等量代换即可得出∵BGM是等边三角形;∵根据点H是BN的中点即矩形的性质得出BH=BE,结合题意得出PE=PH,再根据三点共线时值最小及勾股定理即可判断.【详解】解:由折叠可知,AE=BE,AB=BN,∵NEB=90°,在Rt∵BEN中,∵BN=AB=2BE,∵∵ENB=30°,∵∵ABN=60°,故∵正确;由折叠可知,∵ABM=∵NBM=30°,设AM=x,则BM=2x,x2+22=(2 x)2,∵x>0,解得:x,即AM =∵错误; ∵∵ABG =90°,∵AB ∵CG ,故∵正确;∵∵ABM =30°,∵∵MBG =∵BMA =60°,由折叠可知,∵BMG =∵BMA =60°,∵∵MBG =∵BMG =∵MGB =60°,∵∵BGM 是等边三角形,故∵正确,连接PE .∵点H 是BN 的中点,∵BH =BE =1,∵∵MBH =∵MBE ,∵E 、H 关于BM 对称,∵PE =PH ,∵PH +PN =PE +PN ,∵E 、P 、N 共线时,PH +PN 的值最小,EN ∵正确,故选为B .【点睛】本题考查翻折变换、等边三角形的判定和性质、直角三角形中30度角的判断、轴对称最短问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考填空题中的压轴题.40.如图,矩形纸片,,ABCD AB a BC b ==,满足12b a b <<,将此矩形纸片按下面顺序折叠,则图4中MN 的长为(用含,a b 的代数式表示)( )A .2b a -B .22b a -C .32b a +D .12b a + 【答案】B【分析】 如图3中,由折叠的性质可得PQ =BC =b ,A 1F =a ﹣12b ,∵PEQ 是等腰直角三角形,进而可得∵MNE 是等腰直角三角形,然后根据等腰直角三角形的性质可得EG =12MN ,而12EG EF A F =-,进一步即可求得答案.【详解】解:如图3中,由折叠的性质可得PQ =BC =b ,A 1F =a ﹣12b ,∵EPQ =11904522APQ ∠=⨯︒=︒,∵EQP =11904522DQP ∠=⨯︒=︒, ∵∵PEQ =90°,∵∵PEQ 是等腰直角三角形,如图4,∵MN ∵PQ ,∵∵MNE 是等腰直角三角形,∵EG ∵MN ,∵EG=MG=NG =12MN , ∵12EG EF A F =-=a ﹣2(a ﹣12b )=b ﹣a , ∵MN =2EG =22b a -.故选:B∵【点睛】本题考查了矩形的性质、折叠的性质以及等腰直角三角形的判定与性质,正确理解题意、熟练掌握等腰直角三角形的判定和性质是解题的关键.41.将矩形纸片 ABCD 按如图所示的方式折叠,得到菱形 AECF .若 AB =3,则 BC 的长为( )AB .2C .1.5 D【答案】D【分析】 设BC x =,先根据矩形的性质可得90,B AD BC ∠=︒=,再根据折叠的性质可得,,90OA AD x OC BC x COE B ====∠=∠=︒,从而可得OA OC =,又根据菱形的性质可得AE CE =,然后根据三角形全等的判定定理与性质可得90AOE COE ∠=∠=︒,从而可得点,,A O C 共线,由此可得2AC x =,最后在Rt ABC 中,利用勾股定理即可得.【详解】设BC x =,四边形ABCD 是矩形,90,B AD BC x ∴∠=︒==,由折叠的性质得:,,90OA AD x OC BC x COE B ====∠=∠=︒,OA OC x ∴==,四边形AECF 是菱形,AE CE ∴=,。

矩形折叠问题及动点问题精讲

矩形折叠问题及动点问题精讲
A
O
F
D
C
E
B
F
C
ห้องสมุดไป่ตู้
新知探究
一、矩形折叠问题
例1、如图,在矩形纸片ABCD中,AB=6cm,BC=8cm, 将矩形纸片折叠,使点C与点A重合. (3)四边形AFCE是什么四边形?说明理由. 答:四边形AFCE是菱形. A 理由:∵四边形ABCD是矩形, ∴AD∥BC,OD=OB,OA=OC, ∴∠EDO=∠CBO ∵∠BOF=∠DOE B ∴△BOF≌△DOE ∴OE=OF ∵OA=OC ∴四边形AFCE是平行四边形, 由对折可得EF⊥AC ∴四边形AFCE是菱形.
设DF=x,由折叠的性质得 10 EF=FC=6-x,DE=AD-AE=2, 在Rt△DEF中,由勾股定理得DE2+DF2=EF2, 即22+x2=(6-x)2,
6-x
8 解得DF=x= 3 .
自主练习
一、矩形折叠问题
3、如图,四边形ABCD是边长为9的正方形纸片,将其 沿MN折叠,使点B落在CD边上的B′处,点A对应点为A′, 且B′C=3,则AM的长是( ) x 9-x A.1.5 B.2 C.2.25 D.2.5 6 9 析解:如图,连结MB,MB′, 由折叠的性质可知MB=MB′, 3 设AM=x, 在Rt△ABM中,BM2=AB2+AM2, 在Rt△MDB′中,B′M2=MD2+DB′2, ∴AB2+AM2=MD2+DB′2, 即92+x2=(9-x)2+(9-3)2, 解得x=2,即AM=2.
∴DQ=CP 即 16-t=21-2t 2t 解得 t=5 21-2t ∴当 t=5秒时,四边形PQDC是平行四边形
自主练习
二、特殊四边形动点问题

矩形折叠问题(解析版)-中考数学训练

矩形折叠问题(解析版)-中考数学训练

矩形折叠问题模型的概述:已知矩形的长与宽,利用勾股定理、相似三角形及翻折的性质,求各线段边长。

解题方法:不找以折痕为边长的直角三角形,利用未知数表示其它直角三角形三边,通过勾股定理/相似三角形知识求解。

问题:根据已知信息,求翻折后各边长。

模型一:思路:模型二:思路:模型三:思路:尝试借助一线三垂直知识利用相似的方法求解模型四:思路:模型五:思路:模型六:点M ,点N 分别为DC ,AB 中点思路:模型七:点A '为BC 中点思路:过点F 作FH ⊥AE ,垂足为点H设AE =A 'E =x ,则BE =8-x 由勾股定理解得x =174∴BE=154由于△EBA '∽△A 'CG ∽△FD 'G ∴A 'G =3415CG =1615GD '=2615DF =D 'F =AH =134HE =1EF =17【培优过关练】1.(2022秋·山东青岛·九年级统考期末)如图,在正方形ABCD 中,AB =9,点E 、F 分别在边AB 、CD上,∠FEB =120°.若将四边形EBCF 沿EF 折叠,点C 恰好落在AD 边C 上,则C D 的长度为()A.3B.33C.32D.3【答案】B 【分析】根据翻折的性质和正方形及勾股定理的有关性质求解.【详解】解:在正方形ABCD 中,CD =AB =9,CD ∥AB ,∠D =90°,∴∠FEB +∠EFC =180°,∴∠EFC =∠C FE =60°,∴∠C FD =180°-∠EFC -∠C FE =60°,∴∠DC F =30°,∴C F =2DF ,又∵C F =CF ,CF +DF =9,∴DF =3,C F =6,∴C D =62-32=33,故选:B .【点睛】本题考查了翻折及正方形的性质,勾股定理的应用是解题的关键.2.(2022秋·江苏徐州·九年级校考阶段练习)如图,在矩形纸片ABCD 中,点E 在边AD 上,沿着BE 折叠使点A 落在边CD 上的点F 处,若tan ∠ABE =13,AD =3,则DF 的长为()A.1B.2C.43D.32【答案】A 【分析】先根据折叠的性质和正切的定义得出EF BF=13,再证明△DEF ∽△CFB ,最后利用相似三角形的性质得出结论.【详解】解:由折叠可知,∠ABE =∠FBE ,∴tan ∠ABE =tan ∠FBE =13,∴EF BF =13,∵∠EFB =∠C =∠D =90°,∴∠DFE +∠DEF =90°,∠DFE +∠BFC =90°,∴∠DEF =∠BFC ,∴△DEF ∽△CFB ,∴EF FB =DF CB=13,∵BC =AD =3,∴DF =1,故选:A .【点睛】本题考查了矩形中的折叠问题,涉及三角函数,相似三角形判定与性质等知识,解题的关键是证明△DEF ∽△CFB .3.(2022秋·福建泉州·九年级福建省惠安第一中学校联考期中)如图,在平面直角坐标系中,矩形ABCO 的边OA 在x 轴上,边OC 在y 轴上,点B 的坐标为1,3 ,将矩形沿对角线AC 折叠,使点B 落在D 点的位置,且交y 轴交于点E ,则点D 的坐标是()A.-35,83B.-35,2C.-45,145D.-45,125【答案】D【分析】过D 作DF ⊥AO 于F ,根据折叠可以证明△CDE ≌△AOE ,然后利用全等三角形的性质得到OE =DE ,OA =CD =1,设OE =m ,那么CE =3-m ,DE =m ,利用勾股定理即可求出m ,然后利用已知条件可以证明△AEO ∽△ADF ,而AD =AB =3,接着利用相似三角形的性质即可求出DF 、AF 的长度,也就求出了点D 的坐标.【详解】如图,过D 作DF ⊥AO 于F ,∵点B 的坐标为1,3 ,∴AO =1,AB =3,根据折叠可知CD =BC =OA ,而∠ADC =∠AOE =90°,∠DEC =∠AEO∴△CDE ≌△AOE ,∴OE =DE ,OA =CD =1,设OE =m ,那么CE =3-m ,DE =m ,在Rt △DCE 中,CE 2=DE 2+CD 2,∴3-m 2=m 2+12,解得m =43,∵DF ⊥AF ,∴DF ∥EO ,∴△AEO ∽△ADF而AD =AB =3,∴AE =CE =3-43=53,∴AE AD =EO DF =AO AF ,即533=43DF =1AF,∴DF =125,AF =95,∴OF =95-1=45,∴D 的坐标为-45,125,故选:D .【点睛】此题主要考查了图形的折叠问题,也考查了坐标与图形的性质,解题的关键是把握折叠的隐含条件,利用隐含条件得到全等三角形和相似三角形,然后利用它们的性质即可解决问题.4.(2023春·广东广州·九年级专题练习)如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 落在对角线BD 上,折痕为DG ,点A 的对应点为A ,那么AG 的长为()A.1B.43C.32D.2【答案】C【分析】首先设AG=x,由矩形纸片ABCD中,AB=4,AD=3,可求得BD的长,又由折叠的性质,可求得A B的长,然后由勾股定理可得方程:x2+22=4-x2,解此方程即可解决问题.【详解】解:设AG=x,∵四边形ABCD是矩形,∴∠A=90°,∵AB=4,AD=3,∴BD=AD2+AB2=5,由折叠的性质可得:A D=AD=3,A G=AG=x,∠DA G=∠A=90°,∴∠BA G=90°,BG=AB-AG=4-x,A B=BD-A D=5-3=2,∵在Rt△A BG中,A G2+A B2=BG2,∴x2+22=4-x2,解得:x=3 2,∴AG=32.故选:C.【点睛】此题考查了折叠的性质、矩形的性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.5.(2022秋·湖南邵阳·九年级校联考期中)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A 恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△HFG;③四边形BGDE的面积等于35;④AG+DF=FG.其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C【分析】利用折叠性质得∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,则可得到∠EBG=12∠ABC,于是可对①进行判断;在Rt△ABF中利用勾股定理计算出AF=8,则DF=AD-AF=2,设AG=x,利用勾股定理得到x2+42=(8-x)2,得到AG=3,GF=5,于是可对④进行判断;接着证明△DEF∽△HFG,于是可对②进行判断;根据S四边形BGDE=S矩形ABCD -S△ABG-S△EBC可对③进行判断.【详解】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,,∴∠EBG=∠EBF+∠FBG=12∠CBF+12∠ABF=12∠ABC=45°,所以①正确;在Rt△ABF中,AF=BF2-AB2=102-62=8,∴DF=AD-AF=10-8=2,设AG=x,则GH=x,GF=8-x,HF=BF-BH=10-6=4,在Rt△GFH中,∵GH2+HF2=GF2,∴x2+42=(8-x)2,解得x=3,∴GF=5,∴AG+DF=FG=5,所以④正确;在△DEF中,DF=2,设DE=a,则CE=EF=6-a∴6-a2=a2+22解得a=8 3∴EC=6-83=103∵SΔABG=12×6×3=9,S△BCE=12×10×103=503,∴S四边形BGDE =S矩形ABCD-S△ABG-S△EBC=6×10-9-503=1033≠35.所以③不正确.∵DF=2,DE=83,EF=103,GH=3,HF=4,GF=5∴DF GH =DEHF=EFFG∴△DEF∽△HFG故②正确故选:C.【点睛】本题考查了矩形的折叠问题,勾股定理,相似三角形的性质与判定,掌握以上知识是解题的关键.6.(2022秋·广东梅州·九年级校考阶段练习)如图,在矩形ABCD中,AB=8,BC=12,点E为BC的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则CF 的长为()A.185B.6C.325D.365【答案】D【分析】连接BF ,根据三角形的面积公式求出BH ,得到BF ,根据直角三角形的判定得到∠BFC =90°,根据勾股定理求出答案.【详解】解:连接BF ,交AE 于H ,∵BC =12,点E 为BC 的中点,∴BE =6,又∵AB =8,∴AE =AB 2+BE 2=36+64=10,由折叠知,BF ⊥AE (对应点的连线必垂直于对称轴),∴BH =AB ×BE AE=245,则BF =485,∵FE =BE =EC ,∴∠EFB =∠EBF ,∠EFC =∠ECF ,∵∠EFB +∠EBF +∠EFC +∠ECF =180°,∴∠BFC =90°,∴CF =BC 2-BF 2=122-485 2=365,故选:D .【点睛】本题考查的是翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.7.(2022秋·广西贵港·九年级统考期中)如图,在矩形纸片ABCD 中,AB =8,BC =11,M 是BC 上的点,且CM =3,将矩形纸片ABCD 沿过点M 的直线折叠,使点D 落在AB 上的点P 处,点C 落在点C 处,折痕为MN ,当PC 与线段BC 交于点H 时,则线段BH 的长是()A.3B.5516C.4D.7316【答案】B 【分析】连接PM ,证明△PBM ≌△PC M 即可得到CM =C M =PB =3,证明△PBH ≌△C MH ,得出BH =HC =x ,然后列出关于x 的方程,解方程即可.【详解】解:连接PM ,如图所示:∵矩形纸片ABCD 中,AB =8,BC =11,∴CD =AB =8,∠A =∠B =∠C =∠D =90°,∵CM =3,∴BM =11-3=8,根据折叠可知,CD =PC =8,∠C =∠C =90°,C M =CM =3,∴∠B =∠C ,∴BM =PC =8,∵PM =PM ,∴Rt △PBM ≌Rt △PC M HL ,∴C M =PB =3,∵∠PHB =∠C HM ,∠B =∠C ,∴△PBH ≌△C MH ,∴BH =HC ,设BH =HC =x ,则HM =8-x ,∵HM 2=HC 2+C M 2,∴8-x 2=x 2+32,解得:x =5516,∴BH =5516,故B 正确.故选:B .【点睛】本题考查矩形的折叠问题,解题的关键是看到隐藏条件BM =PC =8,证明三角形全等,学会利用翻折不变性解决问题.8.(2022秋·山东枣庄·九年级校考期中)如图,边长为2的正方形ABCD 的对角线AC 与BD 交于点O ,将正方形ABCD 沿直线DF 折叠,点C 落在对角线BD 上的点E 处,折痕DF 交AC 于点M ,则OM =()A.12B.2-2C.3-1D.2-1【答案】B【分析】根据题意先求BD =2AB =22,OD =2,再求BE =EF =CF =BD -DE =BD -CD =22-2,进而根据△ODM ∽△CDF 的线段比例关系,即可求出OM 的长.【详解】解:如图,连接EF ,∵四边形ABCD 是正方形,∴AB =AD =BC =CD =2,∠BCD =∠COD =∠BOC =90°,OD =OC ,∴BD =2AB =22,OD =2,由折叠的性质可知,∠OEF =∠DCB =90°,∠EDF =∠CDF ,DE =CD ,∴∠BEF =90°,∴∠BFE =∠FBE =45°,∴△BEF 是等腰直角三角形,∴BE =EF =CF =BD -DE =BD -CD =22-2,∵∠DCB =∠COD =90°,∠EDF =∠CDF ,∴△ODM ∽△CDF ,∴OM CF =OD CD ,即OM 22-2=22,∴OM =2-2.故选:B .【点睛】本题主要考查图形的翻折,熟练掌握图形翻折的性质,正方形的性质,等腰直角三角形的性质及相似三角形的判定和性质是解题的关键.9.(2022·辽宁营口·统考中考真题)如图,在矩形ABCD 中,点M 在AB 边上,把△BCM 沿直线CM 折叠,使点B 落在AD 边上的点E 处,连接EC ,过点B 作BF ⊥EC ,垂足为F ,若CD =1,CF =2,则线段AE 的长为()A.5-2B.3-1C.13D.12【答案】A【分析】先证明△BFC≌△CDE,可得DE=CF=2,再用勾股定理求得CE=5,从而可得AD= BC=5,最后求得AE的长.【详解】解:∵四边形ABCD是矩形,∴BC=AD,∠ABC=∠D=90°,AD∥BC,∴∠DEC=∠FCB,∵BF⊥EC,∴∠BFC=∠CDE,∵把△BCM沿直线CM折叠,使点B落在AD边上的点E处,∴BC=EC,在△BFC与△CDE中,∠DEC=∠FCB ∠BFC=∠CDE BC=EC∴△BFC≌△CDE(AAS),∴DE=CF=2,∴CE=CD2+DE2=12+22=5,∴AD=BC=CE=5,∴AE=AD-DE=5-2,故选:A.【点睛】本题考查了矩形的性质、全等三角形的判定和性质、折叠的性质,勾股定理的应用,解决本题的关键是熟练掌握矩形中的折叠问题.10.(2022·贵州毕节·统考中考真题)矩形纸片ABCD中,E为BC的中点,连接AE,将△ABE沿AE折叠得到△AFE,连接CF.若AB=4,BC=6,则CF的长是()525【答案】D【分析】连接BF交AE于点G,根据对称的性质,可得AE垂直平分BF,BE=FE,BG=FG=12BF,根据E为BC中点,可证BE=CE=EF,通过等边对等角可证明∠BFC=90°,利用勾股定理求出AE,再利用三角函数(或相似)求出BF,则根据FC=BC2-BF2计算即可.【详解】连接BF,与AE相交于点G,如图,∵将△ABE沿AE折叠得到△AFE∴△ABE与△AFE关于AE对称∴AE垂直平分BF,BE=FE,BG=FG=12BF∵点E是BC中点∴BE=CE=DF=12BC=3∴AE=AB2+BE2=42+32=5∵sin∠BAE=BEAE =BG AB∴BG=BE⋅ABAE =3×45=125∴BF=2BG=2×122=245∵BE=CE=DF∴∠EBF=∠EFB,∠EFC=∠ECF∴∠BFC=∠EFB+∠EFC=180°2=90°∴FC=BC2-BF2=62-2452=185故选D【点睛】本题考查了折叠对称的性质,熟练运用对称性质证明相关线段相等是解题的关键.11.(2022·四川宜宾·统考中考真题)如图,在矩形纸片ABCD中,AB=5,BC=3,将△BCD沿BD折叠到△BED位置,DE交AB于点F,则cos∠ADF的值为()17151715【答案】C【分析】先根据矩形的性质和折叠的性质,利用“AAS”证明ΔAFD≌ΔEFB,得出AF=EF,DF= BF,设AF=EF=x,则BF=5-x,根据勾股定理列出关于x的方程,解方程得出x的值,最后根据余弦函数的定义求出结果即可.【详解】解:∵四边形ABCD为矩形,∴CD=AB=5,AB=BC=3,∠A=∠C=90°,根据折叠可知,BE=BC=3,DE=DE=5,∠E=∠C=90°,∴在△AFD和△EFB中∠A=∠E=90°∠AFD=∠EFB AD=BE=3 ,∴ΔAFD≌ΔEFB(AAS),∴AF=EF,DF=BF,设AF=EF=x,则BF=5-x,在RtΔBEF中,BF2=EF2+BE2,即5-x2=x2+32,解得:x=85,则DF=BF=5-85=175,∴cos∠ADF=ADDF =3175=1517,故C正确.故选:C.【点睛】本题主要考查了矩形的折叠问题,三角形全等的判定和性质,勾股定理,三角函数的定义,根据题意证明ΔAFD≌ΔEFB,是解题的关键.12.(2022·浙江湖州·统考中考真题)如图,已知BD是矩形ABCD的对角线,AB=6,BC=8,点E,F分别在边AD,BC上,连结BE,DF.将△ABE沿BE翻折,将△DCF沿DF翻折,若翻折后,点A,C分别落在对角线BD上的点G,H处,连结GF.则下列结论不正确的是()A.BD=10B.HG=2C.EG∥FHD.GF⊥BC 【答案】D【分析】根据矩形的性质以及勾股定理即可判断A,根据折叠的性质即可求得HD,BG,进而判断B,根据折叠的性质可得∠EGB=∠FHD=90°,进而判断C选项,根据勾股定理求得CF的长,根据平行线线段成比例,可判断D选项【详解】∵BD是矩形ABCD的对角线,AB=6,BC=8,∴BC=AD=8,AB=CD=6∴BD=BC2+CD2=10故A选项正确,∵将△ABE沿BE翻折,将△DCF沿DF翻折,∴BG=AB=6,DH=CD=6∴DG=4,BH=BD-HD=4∴HG=10-BH-DG=10-4-4=2故B选项正确,∵EG⊥BD,HF⊥DB,∴EG∥HF,故C正确设AE=a,则EG=a,∴ED=AD-AE=8-a,∵∠EDG=∠ADB∴tan∠EDG=tan∠ADB即EGDG=ABAD=68=34∴a 4=34∴AE=3,同理可得CF=3若FG∥CD则CFBF=GDBG∵CF BF =35,GDBG=46=23,∴CF BF ≠GD BG,∴FG不平行CD,即GF不垂直BC,故D不正确.故选D【点睛】本题考查了折叠的性质,矩形的性质,勾股定理,平行线分线段成比例,掌握以上知识是解题的关键.13.(2022·江苏连云港·统考中考真题)如图,将矩形ABCD沿着GE、EC、GF翻折,使得点A、B、D恰好都落在点O处,且点G、O、C在同一条直线上,同时点E、O、F在另一条直线上.小炜同学得出以下结论:①GF∥EC;②AB=435AD;③GE=6DF;④OC=22OF;⑤△COF∽△CEG.其中正确的是()A.①②③B.①③④C.①④⑤D.②③④【答案】B【分析】由折叠的性质知∠FGE=90°,∠GEC=90°,点G为AD的中点,点E为AB的中点,设AD =BC=2a,AB=CD=2b,在Rt△CDG中,由勾股定理求得b=2a,然后利用勾股定理再求得DF=FO=a2,据此求解即可.【详解】解:根据折叠的性质知∠DGF=∠OGF,∠AGE=∠OGE,∴∠FGE=∠OGF+∠OGE=12(∠DGO+∠AGO)=90°,同理∠GEC=90°,∴∠FGE+∠GEC=180°∴GF∥EC;故①正确;根据折叠的性质知DG=GO,GA=GO,∴DG=GO=GA,即点G为AD的中点,同理可得点E为AB的中点,设AD=BC=2a,AB=CD=2b,则DG=GO=GA=a,OC=BC=2a,AE=BE=OE=b,∴GC=3a,在Rt△CDG中,CG2=DG2+CD2,即(3a)2=a2+(2b)2,∴b=2a,∴AB=22a=2AD,故②不正确;设DF=FO=x,则FC=2b-x,在Rt△COF中,CF2=OF2+OC2,即(2b-x)2=x2+(2a)2,∴x =b 2-a 2b =a 2,即DF =FO =a 2,GE =a 2+b 2=3a ,∴GE DF =3aa 2=6,∴GE =6DF ;故③正确;∴OC OF =2a a 2=22,∴OC =22OF ;故④正确;∵∠FCO 与∠GCE 不一定相等,∴△COF ∽△CEG 不成立,故⑤不正确;综上,正确的有①③④,故选:B .【点睛】本题主要考查了折叠问题,解题时,我们常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.14.(2021·广西来宾·统考中考真题)如图,矩形纸片ABCD ,AD :AB =2:1,点E ,F 分别在AD ,BC 上,把纸片如图沿EF 折叠,点A ,B 的对应点分别为A ,B ,连接AA 并延长交线段CD 于点G ,则EF AG的值为()A.22B.23C.12D.53【答案】A【分析】根据折叠性质则可得出EF 是AA 的垂直平分线,则由直角三角形性质及矩形性质可得∠AEO =∠AGD ,∠FHE =∠D =90°,根据相似三角形判定推出△EFH ∽△GAD ,再利用矩形判定及性质证得FH =AB ,即可求得结果.【详解】解:如图,过点F 作FH ⊥AD 于点H ,∵点A ,B 的对应点分别为A ,B ,∴EA =EA ,FB =FB ,∴EF是AA'的垂直平分线.∴∠AOE=90°.∵四边形ABCD是矩形,∴∠BAD=∠B=∠D=90°.∴∠OAE+∠AEO=∠OAE+∠AGD,∴∠AEO=∠AGD.∵FH⊥AD,∴∠FHE=∠D=90°.∴△EFH∽△GAD.∴EF AG =FH AD.∵∠AHF=∠BAD=∠B=90°,∴四边形ABFH是矩形.∴FH=AB.∴EF AG =FHAD=ABAD=12=22;故选:A.【点睛】本题考查了矩形的折叠问题,掌握折叠的性质、矩形及相似三角形的判定与性质是解题的关键.15.(2011·吉林长春·中考真题)如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3B.4C.5D.6【答案】D【分析】先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.【详解】解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8-3=5,在Rt△CEF中,CF=CE2-EF2=52-32=4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选:D.【点睛】本题考查了翻折变换(折叠问题),勾股定理,解题的关键是利用勾股定理建立等式求解.16.(2020·广东深圳·统考中考真题)如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°.其中正确的结论共有()A.1个B.2个C.3个D.4个【答案】C【分析】由折叠的性质可得四边形EBFG是菱形从而判断①②正确;由角平分线定理即可判断DG≠GH,由此推出③错误;根据F、C重合时的性质,可得∠AEB=30°,进而算出④正确.【详解】连接BE,由折叠可知BO=GO,∵EG⎳BF,∴∠EGO=∠FBO,又∵∠EOG=∠FOB,∴△EOG≌△FOB(ASA),∴EG=BF,∴四边形EBFG是平行四边形,由折叠可知BE=EG,则四边形EBFG为菱形,故EF⊥BG,GE=GF,∴①②正确;∵四边形EBFG为菱形,∴KG平分∠DGH,∴,DG≠GH,∴S△GDK≠S△GKH,故③错误;当点F与点C重合时,BE=BF=BC=12=2AB,∴∠AEB=30°,∠DEF=12∠DEB=75°,故④正确.综合,正确的为①②④.故选C.【点睛】本题考查矩形的性质,菱形的判断,折叠的性质,关键在于结合图形对线段和角度进行转换.17.(2020·内蒙古呼和浩特·中考真题)如图,把某矩形纸片ABCD沿EF,GH折叠(点E、H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A 、D点的对称点为D ,若∠FPG=90°,△A EP的面积为8,△D PH的面积为2,则矩形ABCD的长为()A.65+10B.610+52C.35+10D.310+52【答案】D【分析】设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,因为△A′EP的面积为4,△D′PH的面积为1,推出D′H=12x,由S△D′PH=12D′P·D′H=12A′P·D′H,可解得x=22,分别求出PE和PH,从而得出AD的长.【详解】解:∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,∵△A′EP的面积为8,△D′PH的面积为2,又∵∠FPG=90°,∠A′PF=∠D′PG=90°,∴∠A′PD′=90°,则∠A′PE+∠D′PH=90°,∴∠A′PE=∠D′HP,∴△A′EP∽△D′PH,∴A′P2:D′H2=8:2,∴A′P:D′H=2:1,∵A′P=x,∴D ′H =12x ,∵S △D ′PH =12D ′P ·D ′H =12A ′P ·D ′H ,即12⋅x ⋅12x =2,∴x =22(负根舍弃),∴AB =CD =22,D ′H =DH =2,D ′P =A ′P =CD =22,A ′E =2D ′P =42,∴PE =42 2+22 2=210,PH =22 2+2 2=10,∴AD =42+210+10+2=52+310,故选D .【点睛】本题考查翻折变换,矩形的性质,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.18.如图,矩形纸片ABCD ,AB =4,BC =3,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落在点E 处,PE 、DE 分别交AB 于点O 、F ,且OP =OF ,则cos ∠ADF 的值为()A.1113B.1315C.1517D.1719【答案】C【分析】根据折叠的性质可得出DC =DE 、CP =EP ,由∠EOF =∠BOP 、∠B =∠E 、OP =OF 可得出△OEF ≌△OBP (AAS ),根据全等三角形的性质可得出OE =OB 、EF =BP ,设EF =x ,则BP =x 、DF =4-x 、BF =PC =3-x ,进而可得出AF =1+x ,在Rt △DAF 中,利用勾股定理可求出x 的值,再利用余弦的定义即可求出cos ∠ADF 的值.【详解】根据折叠,可知:△DCP ≌△DEP ,∴DC =DE =4,CP =EP .在△OEF 和△OBP 中,∠EOF =∠BOP∠E =∠B =90°OF =OP,∴△OEF ≌△OBP (AAS ),∴OE =OB ,EF =BP .设EF =x ,则BP =x ,DF =DE -EF =4-x ,又∵BF =OB +OF =OE +OP =PE =PC ,PC =BC -BP =3-x ,∴AF =AB -BF =1+x .在Rt △DAF 中,AF 2+AD 2=DF 2,即(1+x )2+32=(4-x )2,解得:x =35,∴DF =4-x =175,∴cos ∠ADF =AD DF =1517,故选C .【点睛】本题考查了全等三角形的判定与性质、勾股定理以及解直角三角形,利用勾股定理结合AF =1+x ,求出AF 的长度是解题的关键.19.(2022·山东泰安·统考中考真题)如图,四边形ABCD 为正方形,点E 是BC 的中点,将正方形ABCD沿AE 折叠,得到点B 的对应点为点F ,延长EF 交线段DC 于点P ,若AB =6,则DP 的长度为___________.【答案】2【分析】连接AP ,根据正方形的性质和翻折的性质证明Rt △AFP ≌Rt △ADP (HL ),可得PF =PD ,设PF =PD =x ,则CP =CD -PD =6-x ,EP =EF +FP =3+x ,然后根据勾股定理即可解决问题.【详解】解:连接AP ,如图所示,∵四边形ABCD 为正方形,∴AB =BC =AD =6,∠B =∠C =∠D =90°,∵点E 是BC 的中点,∴BE =CE =12AB =3,由翻折可知:AF =AB ,EF =BE =3,∠AFE =∠B =90°,∴AD =AF ,∠AFP =∠D =90°,在Rt △AFP 和Rt △ADP 中,AP =AP AF =AD ,∴Rt △AFP ≌Rt △ADP (HL ),∴PF =PD ,设PF =PD =x ,则CP =CD -PD =6-x ,EP =EF +FP =3+x ,在Rt △PEC 中,根据勾股定理得:EP 2=EC 2+CP 2,∴(3+x )2=32+(6-x )2,解得x =2,则DP 的长度为2,故答案为:2.【点睛】本题考查了翻折变换,正方形的性质,勾股定理,解决本题的关键是掌握翻折的性质.20.(2022·贵州黔东南·统考中考真题)如图,折叠边长为4cm 的正方形纸片ABCD ,折痕是DM ,点C 落在点E 处,分别延长ME 、DE 交AB 于点F 、G ,若点M 是BC 边的中点,则FG =______cm .【答案】53##123【分析】根据折叠的性质可得DE =DC =4,EM =CM =2,连接DF ,设FE =x ,由勾股定理得BF ,DF ,从而求出x 的值,得出FB ,再证明ΔFEG ∼ΔFBM ,利用相似三角形对应边成比例可求出FG .【详解】解:连接DF ,如图,∵四边形ABCD 是正方形,∴AB =BC =CD =DA =4,∠A =∠B =∠C =∠CDA =90°.∵点M 为BC 的中点,∴BM =CM =12BC =12×4=2由折叠得,ME =CM =2,DE =DC =4,∠DEM =∠C =90°,∴∠DEF =90°,∠FEG =90°,设FE =x ,则有DF 2=DE 2+EF 2∴DF 2=42+x 2又在Rt ΔFMB 中,FM =2+x ,BM =2,∵FM 2=FB 2+BM 2∴FB =FM 2-BM 2=(2+x )2-22∴AF =AB -FB =4-(2+x )2-22在Rt ΔDAF 中,DA 2+AF 2=DF 2,∴42+4-2+x 2-22 2=42+x 2,解得,x 1=43,x 2=-8(舍去)∴FE =43,∴FM =FE +ME =43+2=103∴FB =2+43 2-22=83∵∠DEM =90°∴∠FEG =90°∴∠FEG =∠B ,又∠GFE =∠MFB .∴△FEG ∼ΔFBM∴FG FM =FE FB ,即FG 103=4383∴FG =53,故答案为:53【点睛】本题主要考查了正方形的性质,折叠的性质,勾股定理,相似三角形的判定与性质,正确作出辅助线是解答本题的关键.21.(2022·浙江丽水·统考中考真题)如图,将矩形纸片ABCD 折叠,使点B 与点D 重合,点A 落在点P处,折痕为EF .(1)求证:△PDE ≌△CDF ;(2)若CD =4cm ,EF =5cm ,求BC 的长.【答案】(1)证明见解析(2)163cm 【分析】(1)利用ASA 证明即可;(2)过点E 作EG ⊥BC 交于点G ,求出FG 的长,设AE =xcm ,用x 表示出DE 的长,在Rt △PED 中,由勾股定理求得答案.【详解】(1)∵四边形ABCD 是矩形,∴AB =CD ,∠A =∠B =∠ADC =∠C =90°,由折叠知,AB =PD ,∠A =∠P ,∠B =∠PDF =90°,∴PD =CD ,∠P =∠C ,∠PDF =∠ADC ,∴∠PDF -∠EDF=∠ADC -∠EDF ,∴∠PDE =∠CDF ,在△PDE 和△CDF 中,∠P =∠CPD =CD ∠PDE =∠CDF,∴△PDE≌△CDF(ASA);(2)如图,过点E作EG⊥BC交于点G,∵四边形ABCD是矩形,∴AB=CD=EG=4cm,又∵EF=5cm,∴GF=EF2-EG2=3cm,设AE=xcm,∴EP=xcm,由△PDE≌△CDF知,EP=CF=xcm,∴DE=GC=GF+FC=3+x,在Rt△PED中,PE2+PD2=DE2,即x2+42=3+x2,解得,x=7 6,∴BC=BG+GC=76+3+76=163(cm).【点睛】本题考查了翻折变换,矩形的性质,勾股定理,全等三角形的判定和性质,根据翻折变换的性质将问题转化到直角三角形中利用勾股定理是解题的关键.22.(2022·河南·统考中考真题)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1中一个30°的角:______.(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,∠MBQ=______°,∠CBQ=______°;②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP的长.【答案】(1)∠BME或∠ABP或∠PBM或∠MBC(2)①15,15;②∠MBQ=∠CBQ,理由见解析(3)AP=4011cm或2413cm【分析】(1)根据折叠的性质,得BE=12BM,结合矩形的性质得∠BME=30°,进而可得∠ABP=∠PBM=∠MBC=30°;(2)根据折叠的性质,可证RtΔBQM≅RtΔBQC HL,即可求解;(3)由(2)可得QM=QC,分两种情况:当点Q在点F的下方时,当点Q在点F的上方时,设AP= PM=x,分别表示出PD,DQ,PQ,由勾股定理即可求解.(1)解:∵AE=BE=12AB,AB=BM∴BE=12BM∵∠BEM=90°,sin∠BME=BEBM =12∴∠BME=30°∴∠MBE=60°∵∠ABP=∠PBM∴∠ABP=∠PBM=∠MBC=30°(2)∵四边形ABCD是正方形∴AB=BC,∠A=∠ABC=∠C=90°由折叠性质得:AB=BM,∠PMB=∠BMQ=∠A=90°∴BM=BC①∵BM=BC,BQ=BQ∴RtΔBQM≅RtΔBQC HL∴∠MBQ=∠CBQ∵∠MBC=30°∴∠MBQ=∠CBQ=15°②∵BM=BC,BQ=BQ∴RtΔBQM≅RtΔBQC HL∴∠MBQ =∠CBQ(3)当点Q 在点F 的下方时,如图,∵FQ =1cm ,DF =FC =4cm ,AB =8cm∴QC =CD -DF -FQ =8-4-1=3(cm ),DQ =DF +FQ =4+1=5(cm )由(2)可知,QM =QC设AP =PM =x ,PD =8-x ,∴PD 2+DQ 2=PQ 2,即8-x 2+52=x +3 2解得:x =4011∴AP =4011cm ;当点Q 在点F 的上方时,如图,∵FQ =1cm ,DF =FC =4cm ,AB =8cm∴QC =5cm ,DQ =3cm ,由(2)可知,QM =QC设AP =PM =x ,PD =8-x ,∴PD 2+DQ 2=PQ 2,即8-x 2+32=x +5 2解得:x =2413∴AP =2413cm .【点睛】本题主要考查矩形与折叠,正方形的性质、勾股定理、三角形的全等,掌握相关知识并灵活应用是解题的关键.23.(2022·吉林长春·统考中考真题)【探索发现】在一次折纸活动中,小亮同学选用了常见的A 4纸,如图①,矩形ABCD 为它的示意图.他查找了A 4纸的相关资料,根据资料显示得出图①中AD =2AB .他先将A 4纸沿过点A 的直线折叠,使点B 落在AD 上,点B 的对应点为点E ,折痕为AF ;再沿过点F 的直线折叠,使点C 落在EF 上,点C 的对应点为点H ,折痕为FG ;然后连结AG ,沿AG 所在的直线再次折叠,发现点D 与点F 重合,进而猜想△ADG ≌△AFG .【问题解决】(1)小亮对上面△ADG≌△AFG的猜想进行了证明,下面是部分证明过程:证明:四边形ABCD是矩形,∴∠BAD=∠B=∠C=∠D=90°.由折叠可知,∠BAF=12∠BAD=45°,∠BFA=∠EFA.∴∠EFA=∠BFA=45°.∴AF=2AB=AD.请你补全余下的证明过程.【结论应用】(2)∠DAG的度数为________度,FGAF的值为_________;(3)在图①的条件下,点P在线段AF上,且AP=12AB,点Q在线段AG上,连结FQ、PQ,如图②,设AB=a,则FQ+PQ的最小值为_________.(用含a的代数式表示)【答案】(1)见解析(2)22.5°,2-1.(3)52a【分析】(1)根据折叠的性质可得AD=AF,∠AFG=∠D=90°,由HL可证明结论;(2)根据折叠的性质可得∠DAG=12∠DAF=22.5°;证明ΔGCF是等腰直角三角形,可求出GF的长,从而可得结论;(3)根据题意可知点F与点D关于AG对称,连接PD,则PD为PQ+FQ的最小值,过点P作PR⊥AD,求出PR=AR=24a,求出DR,根据勾腰定理可得结论.【详解】(1)证明:四边形ABCD是矩形,∴∠BAD=∠B=∠C=∠D=90°.由折叠可知,∠BAF=12∠BAD=45°,∠BFA=∠EFA.∴∠EFA=∠BFA=45°.∴AF=2AB=AD.由折叠得,∠CFG=∠GFH=45°,∴∠AFG=∠AFE+∠GFE=45°+45°=90°∴∠AFG=∠D=90°又AD=AF,AG=AG∴△ADG≌△AFG(2)由折叠得,∠BAF=∠EAF,又∠BAF+∠EAF=90°∴∠EAF=12∠BAE=12×90°=45°,由△ADG≌△AFG得,∠DAG=∠FAG=12∠FAD=12×45°=22.5°,∠AFG=∠ADG=90°,又∠AFB=45°∴∠GFC=45°,∴∠FGC=45°,∴GC=FC.设AB=x,则BF=x,AF=2x=AD=BC,∴FC=BC-BF=2x-x=(2-1)x∴GF=2FC=(2-2)x∴GF AF =(2-2)x2x=2-1.(3)如图,连接FD,∵DG=FG∴AG是FD的垂直平分线,即点F与点D关于AG轴对称,连接PD交AG于点Q,则PQ+FQ的最小值为PD的长;过点P作PR⊥AD交AD于点R,∵∠DAF=∠BAF=45°∴∠APR=45°.∴AR=PR又AR2+PR2=AP2=a22=a24∴AR=PR=24a,∴DR=AD-AR=2a-24a=342a在RtΔDPR中,DP2=AR2+PR2∴DP =AR 2+PR 2=24a 2+324a 2=52a ∴PQ +FQ 的最小值为52a 【点睛】本题主要考查了折叠的性质,全等三角形的判定与性质,最短路径问题,矩形的性质以及勾股定理等知识,正确作出辅助线构造直角三角形是解答本题的关键.24.(2021·湖北荆州·统考中考真题)在矩形ABCD 中,AB =2,AD =4,F 是对角线AC 上不与点A ,C重合的一点,过F 作FE ⊥AD 于E ,将△AEF 沿EF 翻折得到△GEF ,点G 在射线AD 上,连接CG .(1)如图1,若点A 的对称点G 落在AD 上,∠FGC =90°,延长GF 交AB 于H ,连接CH .①求证:△CDG ∽△GAH ;②求tan ∠GHC .(2)如图2,若点A 的对称点G 落在AD 延长线上,∠GCF =90°,判断△GCF 与△AEF 是否全等,并说明理由.【答案】(1)①见解析;②23;(2)不全等,理由见解析【分析】(1)①先根据同角的余角相等得出∠DCG =∠AGH ,再根据两角对应相等,两三角形相似即可得出结论;②设EF =x ,先证得△AEF ~△ADC ,得出EF AE =CD AD=24=12,再结合折叠的性质得出AE =EG =2x ,AG =4x ,AH =2EF =2x ,再由△CDG ~△GAH ,得出比例式AG DC =AH DG =HG CG ,求出EF 的长,从而得出HGCG的值,即可得出答案;(2)先根据两角对应相等,两三角形相似得出△AEF~△ACG,得出比例式AEAC =AFAG,得出EF=5 4,AE=52,AF=545,从而判定△GCF与△AEF是否全等.【详解】(1)①在矩形ABCD中,∠BAD=∠D=90°∴∠DCG+∠DGC=90°又∵∠FGC=90°∴∠AGH+∠DGC=90°∴∠DCG=∠AGH∴△CDG~△GAH②设EF=x∵△AEF沿EF折叠得到△GEF∴AE=EG∵EF⊥AD∴∠AEF=90°=∠D∴EF⎳CD⎳AB∴△AEF~△ADC∴EF CD =AE AD∴EF AE =CDAD=24=12∴AE=EG=2x∴AG=4x∵AE=EG,EF⎳AB∴EF AH =EGAG=12∴AH=2EF=2x ∵△CDG~△GAH∴AG DC =AHDG=HGCG∴4x2=2x4-4x=HGCG∴x=34∴4x2=32=HGCG∵∠FCG=90°∴tan∠GHC=CGHG =23(2)不全等理由如下:在矩形ABCD中,AC=AB2+AD2=22+42=25由②可知:AE=2EF∴AF=AE2+EF2=5EF由折叠可知,AG=2AE=4EF,AF=GF∵∠AEF=∠GCF,∠FAE=∠GAC∴△AEF~△ACG∴AE AC =AF AG∴2EF 25=54∴EF=54∴AE=52,AF=545∴FC=AC-AF=25-545=345∴AE≠FC,EF≠FC∴不全等【点睛】本题考查了矩形的性质,翻折变换,相似三角形的判定和性质,三角函数等知识,得出AE= 2EF是解题的关键.。

翻折问题总结

翻折问题总结
29.如图,有一张矩形纸条 ABCD , AB = 5cm , BC = 2cm ,点 M , N 分别在边 AB , CD 上,CN = 1cm .现将四边形 BCNM 沿 MN 折叠,使点 B ,C 分别落在点 B′ ,C′ 上.当点 B′ 恰好落在边 CD 上时,线段 BM 的长为 cm ;在点 M 从点 A 运动到点 B 的过程中,若边 MB′ 与边 CD 交于点 E ,则点 E 相应运动的路径长为 cm .

5
BF
22.如图,折叠矩形纸片 ABCD ,使点 D 落在 AB 边的点 M 处, EF 为折痕, AB = 1 , AD = 2 .设 AM 的长为 t ,用含有 t 的式子表示四边形 CDEF 的面积是 .
第6页(共41页)
23.在矩形 ABCD 中,AB = 1 ,BC = a ,点 E 在边 BC 上,且 BE = 3 a ,连接 AE ,将 ∆ABE 5
32.如图是一张矩形纸片,点 E 在 AB 边上,把 ∆BCE 沿直线 CE 对折,使点 B 落在对角线 AC 上的点 F 处,连接 DF .若点 E ,F ,D 在同一条直线上,AE = 2 ,则 DF = ,BE = .
33.如图,对折矩形纸片 ABCD ,使 AB 与 DC 重合得到折痕 EF ,将纸片展平,再一次折 叠,使点 D 落到 EF 上点 G 处,并使折痕经过点 A ,已知 BC = 2 ,则线段 EG 的长度为 .
合,中间空白部分是以 E 为直角顶点,腰长为 2cm 的等腰直角三角形,则纸片的长 AD (单
位: cm) 为 ( )
A. 7 + 3 2
B. 7 + 4 2
C. 8 + 3 2
第4页(共41页)
D. 8 + 4 2

专题1.2 折叠问题(强化)(解析版)

专题1.2 折叠问题(强化)(解析版)

专题1.2 折叠问题【例题精讲】【例1】如图,在矩形ABCD 中,8AB =,4BC =,将矩形沿AC 折叠,则重叠部分AFC D 的面积为( )A .12B .10C .8D .6【解答】解:Q △AD C CBA ¢@D ,\△AD F CBF ¢@D ,\△AD F ¢与CBF D 面积相等,设BF x =,则222(8)4x x -=+,22641616x x x -+=+,1648x =,解得3x =,AFC \D 的面积1148341022=´´-´´=.故选:B .【例2】一张矩形纸ABCD ,将点B 翻折到对角线AC 上的点M 处,折痕CE 交AB 于点E .将点D 翻折到对角线AC 上的点H 处,折痕AF 交DC 于点F ,折叠出四边形AECF .(1)求证://AF CE ;(2)当BAC Ð= 30 度时,四边形AECF 是菱形?说明理由.【解答】(1)证明:Q四边形ABCD为矩形,//AD BC\,DAC BCA\Ð=Ð,由翻折知,12DAF HAF DACÐ=Ð=Ð,12BCE MCE BCAÐ=Ð=Ð,HAF MCE\Ð=Ð,//AF CE\;(2)解:当30BACÐ=°时四边形AECF为菱形,理由如下:Q四边形ABCD是矩形,90D BAD\Ð=Ð=°,//AB CD,由(1)得://AF CE,\四边形AECF是平行四边形,30BACÐ=°Q,60DAC\Ð=°.30ACD\Ð=°,由折叠的性质得30DAF HAFÐ=Ð=°,HAF ACD\Ð=Ð,AF CF\=,\四边形AECF是菱形;故答案为:30.【题组训练】1.如图,在矩形ABCD中,4AB=,6BC=,点E为BC的中点,将ABED沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为( )A .95B .125C .165D .185【解答】解:连接BF ,6BC =Q ,点E 为BC 的中点,3BE \=,又4AB =Q ,5AE \==,由折叠知,BF AE ^(对应点的连线必垂直于对称轴)125AB BE BH AE ´\==,则245BF =,FE BE EC ==Q ,\Ð185CF \==.故选:D .2.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C ¢处,点B 落在点B ¢处,其中9AB =,6BC =,则FC ¢的长为( )A .103B .4C .4.5D .5【解答】解:设FC x ¢=,则9FD x =-,6BC =Q ,四边形ABCD 为矩形,点C ¢为AD 的中点,6AD BC \==,3C D ¢=.在Rt △FC D ¢中,90D Ð=°,FC x ¢=,9FD x =-,3C D ¢=,222FC FD C D \¢=+¢,即222(9)3x x =-+,解得:5x =.故选:D .3.如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B ¢处,若2AE =,6DE =,60EFB Ð=°,则矩形ABCD 的面积是( )A .12B .24C .D .【解答】解:在矩形ABCD 中,//AD BC Q ,60B EF EFB \Т=Ð=°,由折叠的性质得90A A Ð=Т=°,2A E AE ¢==,AB A B =¢¢,18060120A EF AEF Т=Ð=°-°=°,1206060A EB A EF B EF \Т¢=Т-Т=°-°=°.在Rt △A EB ¢¢中,906030A B E Т¢=°-°=°Q ,2B E A E \¢=¢,而2A E ¢=,4B E \¢=,A B \¢¢=,即AB =2AE =Q ,6DE =,268AD AE DE \=+=+=,\矩形ABCD 的面积8AB AD ===g .故选:D .4.如图,在平面直角坐标系中,四边形OABC 是矩形,6OA =,将ABC D 沿直线AC 翻折,使点B 落在点D 处,AD 交x 轴于点E ,若30BAC Ð=°,则点D 的坐标为( )A .2)-B .3)-C .3)-D .(3,-【解答】解:过D 点作DF x ^轴,垂足为F ,则//DF y 轴,Q 四边形AOCB 为矩形,90OAB AOC B \Ð=Ð=Ð=°,6BC AO ==,AB OC =,30BAC Ð=°Q ,12AC \=,OC AB ==,由折叠可知:30DAC BAC Ð=Ð=°,AD AB ==,30OAE \Ð=°,OE \=,AE =,ED \=//DF y Q 轴,30EDF EAO \Ð=Ð=°,EF \=,3DF =,OF OE EF \=+=D \点坐标为,3)-,故选:B .5.如图,把正方形纸片ABCD 沿对边中点所在直线折叠后展开,折痕为MN ;再过点D 折叠,使得点A 落在MN 上的点F 处,折痕为DE ,则EM FN的值是( )A B 1-C .2D .3【解答】解:设正方形纸片ABCD 的边长为2a .由题意可知:AM BM DN NC a ====,2AD DF MN a ===,AE EF =,90EMF DNF Ð=Ð=°,FN \===,(2FM MN FN a \=-=.设AE EF x ==,则EM AM AE a x =-=-.在Rt EMF D 中,222EM MF EF +=Q ,222()[(2]a x a x \-+-=,(4x a \=-,(43)EM a a a \=--=-,\2EM FN ==故选:C .6.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若:2:1BE EC =,则线段CH 的长是( )A .3B .4C .5D .6【解答】解:设CH x =,则9DH EH x ==-,:2:1BE EC =Q ,9BC =,133CE BC \==,\在Rt ECH D 中,222EH EC CH =+,即222(9)3x x -=+,解得:4x =,即4CH =.故选:B .7.如图,将长方形纸片折叠,使A 点落在BC 上的F 处,折痕为BE ,若沿EF 剪下,则折叠部分是一个正方形,其数学原理是( )A .邻边相等的矩形是正方形B .对角线相等的菱形是正方形C .两个全等的直角三角形构成正方形D .轴对称图形是正方形【解答】解:Q 将长方形纸片折叠,A 落在BC 上的F 处,BA BF \=,Q 折痕为BE ,沿EF 剪下,\四边形ABFE 为矩形,\四边形ABEF 为正方形.故用的判定定理是;邻边相等的矩形是正方形.故选:A .9.如图,正方形纸片ABCD 的边长为3,点E 、F 分别在边BC 、CD 上,将AB 、AD 分别沿AE 、AF 折叠,点B 、D 恰好都落在点G 处,已知1BE =,则EF 的长为 52 .【解答】解:Q 正方形纸片ABCD 的边长为3,90C \Ð=°,3BC CD ==,根据折叠的性质得:1EG BE ==,GF DF =,设DF x =,则1EF EG GF x =+=+,3FC DC DF x =-=-,312EC BC BE =-=-=,在Rt EFC D 中,222EF EC FC =+,即222(1)2(3)x x +=+-,解得:32x =,32DF \=,35122EF =+=.故答案为52.三.解答题(共8小题)10.如图,在矩形纸片ABCD 中,6AB =,8BC =,将矩形纸片折叠,使点B 与点D 重合,点A 落在点E 处,FG 是折痕,连接BF .(1)求证:四边形BGDF 是菱形;(2)求折痕FG 的长.【解答】(1)证明:Q 将矩形纸片折叠,使点B 与点D 重合,点A 落在点E 处,FG 是折痕,BF DF \=,BG DG =,BFG DFG Ð=Ð,Q 四边形ABCD 是矩形,8AD BC \==,//AD BC ,DFG BGF \Ð=Ð,BFG BGF \Ð=Ð,BF BG \=,BF DF BG DG \===,\四边形BGDF 是菱形;(2)解:过F 作FM BC ^于M ,则90FMC FMB Ð=Ð=°,Q 四边形ABCD 是矩形,90A ABM \Ð=Ð=°,\四边形ABMF 是矩形,6AB FM \==,AF BM =,设AF x =,则8BF DF x ==-,Q 四边形ABCD 是矩形,90BAD \Ð=°,在Rt BAF D 中,由勾股定理得:222AB AF BF +=,即2226(8)x x +=-,解得:74x =,即74AF =,2584BG x =-=,2579442MG BG BM \=-=-=,在Rt FMG D 中,由勾股定理得:152FG ==.11.将矩形ABCD 折叠使A ,C 重合,折痕交BC 于E ,交AD 于F ,(1)求证:四边形AECF 为菱形;(2)若4AB =,8BC =,求菱形的边长;(3)在(2)的条件下折痕EF 的长.【解答】(1)证明:Q 矩形ABCD 折叠使A ,C 重合,折痕为EF ,OA OC \=,EF AC ^,EA EC =,//AD BC Q ,FAC ECA \Ð=Ð,在AOF D 和COE D 中,FAO ECO AO COAOF COE Ð=Ðìï=íïÐ=Ðî,AOF COE \D @D ,OF OE \=,OA OC =Q ,\四边形AECF 为平时四边形,AC EF ^Q ,\四边形AECF 为菱形;(2)解:设菱形的边长为x ,则8BE BC CE x =-=-,AE x =,在Rt ABE D 中,222BE AB AE +=Q ,222(8)4x x \-+=,解得5x =,即菱形的边长为5;(3)解:在Rt ABC D中,AC ===,12OA AC \==,在Rt AOE D中,OE ==,2EF OE\==12.如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.(1)求证:CM CN=;(2)若CMND的面积与CDND的面积比为3:1,求MNDN的值.【解答】(1)证明:Q将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,ANM CNM\Ð=Ð,Q四边形ABCD是矩形,//AD BC\,ANM CMN\Ð=Ð,CMN CNM\Ð=Ð,CM CN\=;(2)解:过点N作NH BC^于点H,则四边形NHCD是矩形,HC DN\=,NH DC=,CMNDQ的面积与CDND的面积比为3:1,\12312CMNCDNMC NHS MCS NDDN NHDD===g gg g,33MC ND HC\==,2MH HC\=,设DN x=,则HC x=,2MH x=,3CM x CN\==,在Rt CDND中,DC==,HN \=,在Rt MNH D 中,MN ==,\MN DN ==.13.如图,在矩形ABCD 中,15AB =,E 是BC 上的一点,将ABE D 沿着AE 折叠,点B 刚好落在CD 边上点G 处;点F 在DG 上,将ADF D 沿着AF 折叠,点D 刚好落在AG 上点H 处,且45CE BE =.(1)求AD 的长;(2)求FG 的长.【解答】解:(1)45CE BE =Q ,5BE x \=,4CE x =,由折叠的性质可得:15AB AG ==,AD AH =,5EB EG x ==,90B AGE Ð=Ð=°,90D AHF Ð=Ð=°,3CG x \===,90EGC GEC EGC AGD Ð+Ð=°=Ð+ÐQ ,AGD CEG \Ð=Ð,sin sin CG AD CEG AGD EG AG \Ð=Ð==,\3515x AD x =,9AD \=;(2)9AD =Q ,15AG =,6GH AG AH \=-=,cos cos EC GH CEG AGD EG GF Ð=Ð==Q ,\465x x GF=,7.5GF \=.14.如图所示,在矩形ABCD 中,8AB =,6BC =,P 为AD 上一点,将ABP D 沿BP 翻折至EBP D ,PE 与CD 相交于点O ,且OE OD =,BE 与CD 交于G 点.(1)求证:AP DG =;(2)求线段CG 的长.【解答】(1)证明Q 四边形ABCD 是矩形,90D A C \Ð=Ð=Ð=°,6AD BC ==,8CD AB ==,根据题意得:ABP EBP D @D ,EP AP \=,90E A Ð=Ð=°,8BE AB ==,在ODP D 和OEG D 中,D E OD OEDOP EOG Ð=Ðìï=íïÐ=Ðî,()ODP OEG ASA \D @D ,OP OG \=,PD GE =,DG EP \=,AP DG \=;(2)解:设AP EP x ==,则6PD GE x ==-,DG x =,8CG x \=-,8(6)2BG x x =--=+,根据勾股定理得:222BC CG BG +=,即2226(8)(2)x x +-=+,解得: 4.8x =,4.8AP \=,8 4.8 3.2CG \=-=.15.如图,四边形ABCD 为平行四边形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边上,折痕为AF .且10AB cm =,8AD cm =,6DE cm =.(1)求证:平行四边形ABCD 是矩形;(2)求BF 的长;(3)求折痕AF 长.【解答】(1)证明:Q 把纸片ABCD 折叠,使点B 恰好落在CD 边上,10AE AB \==,2210100AE ==,又222286100AD DE +=+=Q ,222AD DE AE \+=,ADE \D 是直角三角形,且90D Ð=°,又Q 四边形ABCD 为平行四边形,\平行四边形ABCD 是矩形(有一个角是直角的平行四边形是矩形);(2)解:设BF x =,则EF BF x ==,1064EC CD DE cm =-=-=,8FC BC BF x =-=-,在Rt EFC D 中,222EC FC EF +=,即2224(8)x x +-=,解得5x =,故5BF cm =;(3)解:在Rt ABF D 中,由勾股定理得,222AB BF AF +=,10AB cm =Q ,5BF cm =,AF \==.16.如图,正方形ABCD 中,6AB =,点E 在边CD 上,且3CD DE =.将ADE D 沿AE 翻折至AFE D ,延长EF 交边BC 于点G ,连接AG 、CF .(1)求证:ABG AFG D @D ;(2)求证:BG GC =;(3)求CFG D 的面积.【解答】(1)证明:Q 四边形ABCD 是正方形,6AB AD \==,90B D Ð=Ð=°,Q 将ADE D 对折得到AFE D ,AF AD \=,90AFE Ð=°,90AFG B \Ð=°=Ð,又AG AG =Q ,ADE AFG \D @D .(2)证明:6AB =Q ,3CD DE =,6DC \=,2DE \=,4CE =,2EF DE \==,设FG x =,则BG FG x ==,6CG x =-,2EG x =+,在Rt ECG D 中,由勾股定理得,2224(6)(2)x x +-=+,解得3x =,3BG FG \==,63CG x =-=,BG CG \=.(3)过点F作FN CG^于点N,则90FNG DCGÐ=Ð=°,又EGC EGCÐ=ÐQ,GFN GEC\D D∽,\GF FN GE EC=,\354FN =,\125FN=,11121832255 CGFS CG FND\==´´=g.。

小专题(一)矩形中的折叠问题

小专题(一)矩形中的折叠问题

小专题(一) 矩形中的折叠问题【例】(连云港中考)在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.(1)求证:四边形BFDE为平行四边形;(2)若四边形BFDE为菱形,且AB=2,求BC的长.【思路点拨】(1)证△ABE≌△CDF,推出AE=CF,求出DE=BF,DE∥BF,根据平行四边形判定推出即可;(2)求出∠ABE=30°,根据直角三角形性质求出AE、BE,即可求出答案.【方法归纳】解决有关矩形的折叠问题时,通常方法是利用根据矩形的性质、折叠的对称性及勾股定理求解.1.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,则重叠部分△AFC的面积为( )A.12 B.10 C.8 D.62.如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG=60°.现沿直线GE将纸片折叠,使点B落在纸片上的点H处,连接AH,则图中与∠BEG相等的角的个数为( )A.5个 B.4个 C.3个 D.2个3.如图,将矩形ABCD沿直线EF对折,点D恰好与BC边上的点H重合,∠GFP=62°,那么∠EHF的度数等于________.4.把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=3 cm,BC=5 cm,则重叠部分△DEF的面积是________cm2.5.如图,折叠矩形一边AD,点D落在BC边的点F处,BC=10 cm,AB=8 cm,求:(1)FC的长;(2)EF的长.6.如图,四边形ABCD为平行四边形纸片.把纸片ABCD折叠,使点B恰好落在CD边上,折痕为AF,且AB=10 cm,AD=8 cm,DE=6 cm.(1)求证:平行四边形ABCD是矩形;(2)求BF的长;(3)求折痕AF长.7.将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,求点B的坐标和点E的坐标;(自己重新画图)(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.8.如图,矩形ABCD中,AB=8,AD=10.(1)求矩形ABCD的周长;(2)E是CD上的点,将△ADE沿折痕AE折叠,使点D落在BC边上点F处.①求DE的长;②点P是线段CB延长线上的点,连接PA,若△PAF是等腰三角形,求PB的长.(3)M是AD上的动点,在DC上存在点N,使△MDN沿折痕MN折叠,点D落在BC边上点T处,求线段CT长度的最大值与最小值之和.参考答案【例】(1)证明:∵四边形ABCD 是矩形, ∴∠A =∠C =90°,AB =CD ,AB ∥CD. ∴∠ABD =∠CDB.由折叠的性质可得:∠ABE =∠EBD =12∠ABD ,∠CDF =12∠CDB ,∴∠ABE =∠CDF.在△ABE 和△CDF 中,⎩⎪⎨⎪⎧∠A =∠C ,AB =CD ,∠ABE =∠CDF ,∴△ABE ≌△CDF(ASA).∴AE =CF.∵四边形ABCD 是矩形,∴AD =BC ,AD ∥BC. ∴DE =BF ,DE ∥BF ,∴四边形BFDE 为平行四边形. (2)∵四边形BFDE 为菱形, ∴BE =ED ,∠EBD =∠FBD =∠ABE. ∵四边形ABCD 是矩形, ∴AD =BC ,∠ABC =90°. ∴∠ABE =30°.∵∠A =90°,AB =2,设AE =x ,BE =2x. 根据勾股定理得AB =3x. ∴x =233,即AE =233.BE =433.∴BC =AD =AE +ED =AE +BE =233+433=2 3.针对训练** 2.A 3.56° 4.5.15.(1)由题意可得AF =AD =10 cm , 在Rt △ABF 中,AB =8 cm , ∴BF =6 cm.∴FC =BC -BF =10-6=4(cm).(2)由题意可得EF =DE ,可设DE 的长为x ,则在Rt △EFC 中,(8-x)2+42=x 2, 解得x =5,即EF 的长为5 cm.6.(1)证明:∵把纸片ABCD 折叠,使点B 恰好落在CD 边上,∴AE =AB =10,AE 2=102=100.又∵AD 2+DE 2=82+62=100,∴AD 2+DE 2=AE 2.∴△ADE 是直角三角形,且∠D =90°. 又∵四边形ABCD 为平行四边形, ∴平行四边形ABCD 是矩形.(2)设BF =x ,则EF =BF =x ,EC =CD -DE =10-6=4(cm),FC =BC -BF =8-x ,在Rt △EFC 中,EC 2+FC 2=EF 2,即42+(8-x)2=x 2, 解得x =5. 故BF =5 cm.(3)在Rt △ABF 中,由勾股定理得AB 2+BF 2=AF 2. ∵AB =10 cm ,BF =5 cm ,∴AF =102+52=55(cm).7.(1)如图,点B 的坐标为(3,4).∵AB =BD =3,∴△ABD 是等腰直角三角形.∴∠BAD =45°.则∠DAE =∠BAD =45°.则E 在y 轴上.AE =AB =BD =3, ∴四边形ABDE 是正方形,OE =1.则点E 的坐标为(0,1). (2)点E 能恰好落在x 轴上.理由如下:∵四边形OABC 为矩形,∴BC =OA =4,∠AOC =∠DCE =90°. 由折叠的性质可得:DE =BD =OA -CD =4-1=3,AE =AB =OC =m. 假设点E 恰好落在x 轴上,在Rt △CDE 中,由勾股定理可得EC =DE 2-CD 2=32-12=2 2. 则有OE =OC -CE =m -2 2.在Rt △AOE 中,OA 2+OE 2=AE 2.即42+(m -22)2=m 2,解得m =3 2. 8.(1)周长为2×(10+8)=36.(2)①∵四边形ABCD 是矩形,由折叠对称性得AF =AD =10,FE =DE. 在Rt △ABF 中,由勾股定理得BF =6,∴FC =4.在Rt △ECF 中,42+(8-DE)2=EF 2,解得DE =5.②分三种情形讨论:若AP =AF ,∵AB ⊥PF ,∴PB =BF =6; 若PF =AF ,则PB +6=10,解得PB =4;若AP =PF ,在Rt △APB 中,AP 2=PB 2+AB 2,解得PB =73.综合得PB =6或4或73.(3)当点N 与C 重合时,CT 取最大值是8, 当点M 与A 重合时,CT 取最小值为4,所以线段CT 长度的最大值与最小值之和为12.。

2022年中考数学专题复习 折叠题(含解析)

2022年中考数学专题复习 折叠题(含解析)

2022年中考数学专题复习:折叠题1.如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF 折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有以下四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S△BEF=3S△DEF.其中,将正确结论的序号全部选对的是〔〕A.①②③B.①②④C.②③④D.①②③④解答:解:∵四边形ABCD是矩形,∴∠D=∠BCD=90°,DF=MF,由折叠的性质可得:∠EMF=∠D=90°,即FM⊥BE,CF⊥BC,∵BF平分∠EBC,∴CF=MF,∴DF=CF;故①正确;∵∠BFM=90°﹣∠EBF,∠BFC=90°﹣∠CBF,∴∠BFM=∠BFC,∵∠MFE=∠DFE=∠CFN,∴∠BFE=∠BFN,∵∠BFE+∠BFN=180°,∴∠BFE=90°,即BF⊥EN,故②正确;∵在△DEF和△CNF中,,∴△DEF≌△CNF〔ASA〕,∴EF=FN,∴BE=BN,但无法求得△BEN各角的度数,∴△BEN不一定是等边三角形;故③错误;∵∠BFM=∠BFC,BM⊥FM,BC⊥CF,∴BM=BC=AD=2DE=2EM,∴BE=3EM,∴S△BEF=3S△EMF=3S△DEF;故④正确.应选B.点评:此题考查了折叠的性质、矩形的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.2.如图,将矩形ABCD的一个角翻折,使得点D恰好落在BC边上的点G处,折痕为EF,假设EB为∠AEG的平分线,EF和BC的延长线交于点H.以下结论中:①∠BEF=90°;②DE=CH;③BE=EF;④△BEG和△HEG的面积相等;⑤假设,那么.以上命题,正确的有〔〕A.2个B.3个C.4个D.5个解答:解:①由折叠的性质可知∠DEF=∠GEF,∵EB为∠AEG的平分线,∴∠AEB=∠GEB,∵∠AED=180°,∴∠BEF=90°,故正确;②可证△EDF∽△HCF,DF>CF,故DE≠CH,故错误;③只可证△EDF∽△BAE,无法证明BE=EF,故错误;④可证△GEB,△GEH是等腰三角形,那么G是BH边的中线,∴△BEG和△HEG的面积相等,故正确;⑤过E点作EK⊥BC,垂足为K.设BK=x,AB=y,那么有y2+〔2y﹣2x〕2=〔2y﹣x〕2,解得x1=y〔不合题意舍去〕,x2=y.那么,故正确.故正确的有3个.应选B.点评:此题考查了翻折变换,解答过程中涉及了矩形的性质、勾股定理,属于综合性题目,解答此题的关键是根据翻折变换的性质得出对应角、对应边分别相等,然后分别判断每个结论,难度较大,注意细心判断.3.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD 于F点,假设CF=1,FD=2,那么BC的长为〔〕A.3B.2C.2D.2解答:解:过点E作EM⊥BC于M,交BF于N,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,∵∠EMB=90°,∴四边形ABME是矩形,∴AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM,∵∠ENG=∠BNM,∴△ENG≌△BNM〔AAS〕,∴NG=NM,∴CM=DE,∵E是AD的中点,∴AE=ED=BM=CM,∵EM∥CD,∴BN:NF=BM:CM,∴BN=NF,∴NM=CF=,∴NG=,∵BG=AB=CD=CF+DF=3,∴BN=BG﹣NG=3﹣=,∴BF=2BN=5,∴BC===2.应选B.点评:此题考查了矩形的判定与性质、折叠的性质、三角形中位线的性质以及全等三角形的判定与性质.此题难度适中,注意辅助线的作法,注意数形结合思想的应用.4.如图,两个正方形ABCD和AEFG共顶点A,连BE,DG,CF,AE,BG,K,M分别为DG和CF的中点,KA的延长线交BE于H,MN⊥BE于N.那么以下结论:①BG=DE且BG⊥DE;②△ADG 和△ABE的面积相等;③BN=EN,④四边形AKMN为平行四边形.其中正确的选项是〔〕A.③④B.①②③C.①②④D.①②③④解答:解:由两个正方形的性质易证△AED≌△AGB,∴BG=DE,∠ADE=∠ABG,∴可得BG与DE相交的角为90°,∴BG⊥DE.①正确;如图,延长AK,使AK=KQ,连接DQ、QG,∴四边形ADQG是平行四边形;作CW⊥BE于点W,FJ⊥BE于点J,∴四边形CWJF是直角梯形;∵AB=DA,AE=DQ,∠BAE=∠ADQ,∴△ABE≌△DAQ,∴∠ABE=∠DAQ,∴∠ABE+∠BAH=∠DAQ+∠BAH=90°.∴△ABH是直角三角形.易证:△CWB≌△BHA,△EJF≌△AHE;∴WB=AH,AH=EJ,∴WB=EJ,又WN=NJ,∴WN﹣WB=NJ﹣EJ,∴BN=NE,③正确;∵MN是梯形WGFC的中位线,WB=BE=BH+HE,∴MN=〔CW+FJ〕=WC=〔BH+HE〕=BE;易证:△ABE≌△DAQ〔SAS〕,∴AK=AQ=BE,∴MN∥AK且MN=AK;四边形AKMN为平行四边形,④正确.S△ABE=S△ADQ=S△ADG=S▱ADQG,②正确.所以,①②③④都正确;应选D.点评:当出现两个正方形时,一般应出现全等三角形.图形较复杂,选项较多时,应用排除法求解.5.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,MN∥AB,MC=6,NC=,那么四边形MABN的面积是〔〕A.B.C.D.解答:解:连接CD,交MN于E,∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,∴MN⊥CD,且CE=DE,∴CD=2CE,∵MN∥AB,∴CD⊥AB,∴△CMN∽△CAB,∴,∵在△CMN中,∠C=90°,MC=6,NC=,∴S△CMN=CM•CN=×6×2=6,∴S△CAB=4S△CMN=4×6=24,∴S四边形MABN=S△CAB﹣S△CMN=24﹣6=18.应选C.点评:此题考查了折叠的性质、相似三角形的判定与性质以及直角三角形的性质.此题难度适中,解此题的关键是注意折叠中的对应关系,注意数形结合思想的应用.6.如图,D是△ABC的AC边上一点,AB=AC,BD=BC,将△BCD沿BD折叠,顶点C恰好落在AB边的C′处,那么∠A′的大小是〔〕A.40°B.36°C.32°D.30°解答:解:连接C'D,∵AB=AC,BD=BC,∴∠ABC=∠ACB=∠BDC,∵△BCD沿BD折叠,顶点C恰好落在AB边的C′处,∴∠BCD=∠BC'D,∴∠ABC=∠BCD=∠BDC=∠BDC'=∠BC'D,∵四边形BCDC'的内角和为360°,∴∠ABC=∠BCD=∠BDC=∠BDC'=∠BC'D==72°,∴∠A=180°﹣∠ABC﹣∠ACB=36°.应选B.点评:此题考查了折叠的性质,解答此题的关键是掌握翻折前后的对应角相等,注意此题的突破口在于得出∠ABC=∠BCD=∠BDC=∠BDC'=∠BC'D,根据四边形的内角和为360°求出每个角的度数.7.如图,△ABC中,∠CAB=∠B=30°,AB=2,点D在BC边上,把△ABC沿AD翻折使AB 与AC重合,得△AB′D,那么△ABC与△AB′D重叠局部的面积为〔〕A.B.C.3﹣D.解答:解:过点D作DE⊥AB′于点E,过点C作CF⊥AB,∵△ABC中,∠CAB=∠B=30°,AB=2,∴AC=BC,∴AF=AB=,∴AC===2,由折叠的性质得:AB′=AB=2,∠B′=∠B=30°,∵∠B′CD=∠CAB+∠B=60°,∴∠CDB′=90°,∵B′C=AB′﹣AC=2﹣2,∴CD=B′C=﹣1,B′D=B′C•cos∠B′=〔2﹣2〕×=3﹣,∴DE===,∴S阴影=AC•DE=×2×=.应选A.点评:此题考查了折叠的性质,等腰三角形的性质、直角三角形的性质以及特殊角的三角函数问题.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用,注意掌握折叠前后图形的对应关系.8.如图,△ABC中,∠CAB=∠B=30°,AB=,点D在BC边上,把△ABC沿AD翻折,使AB与AC重合,得△AED,那么BD的长度为〔〕A.B.C.D.解答:解:作CF⊥AB于点F.∵∠CAB=∠B∴AC=BC,∴BF=AB=,在直角△BCF中,BC==2,在△CDE中,∠E=∠B=30°,∠ECD=∠CAB+∠B=60°,DE=BD,∴∠CDE=90°,设BD=x,那么CD=DE=2﹣x,在直角△CDE中,tanE===tan30°=,解得:x=3﹣.应选B.点评:此题考查了图形的折叠,以及三线合一定理、三角函数,正确理解折叠的性质,找出图形中相等的线段、相等的角是关键.9.如图,在Rt△ABC中,∠C=90°,AC=,BC=1,D在AC上,将△ADB沿直线BD翻折后,点A落在点E处,如果AD⊥ED,那么△ABE的面积是〔〕A.1 B.C.D.解答:解:∵∠C=90°,AC=,BC=1,∴AB==2,∴∠BAC=30°∵△ADB沿直线BD翻折后,点A落在点E处,∴BE=BA=2,∠BED=∠BAD=30°,DA=DE,∵AD⊥ED,∴BC∥DE,∴∠CBF=∠BED=30°,在Rt△BCF中,CF==,BF=2CF=,∴EF=2﹣,在Rt△DEF中,FD=EF=1﹣,ED=FD=﹣1,∴S△ABE=S△ABD+S△BED+S△ADE=2S△ABD+S△ADE=2×BC•AD+AD•ED=2××1×〔﹣1〕+×〔﹣1〕〔﹣1〕=1.应选A.点评:此题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了勾股定理和含30度的直角三角形三边的关系.。

折叠几何综合专题---16道题目(含答案)

折叠几何综合专题---16道题目(含答案)

折叠几何综合专题---16道题目(含答案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN01如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E 处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG,GF,AF之间的数量关系,并说明理由;(3)若AG=6,EG=25,求BE的长.(1)证明:由折叠性质可得,EF =FD ,∠AEF =∠ADF =90°,∠EFA =∠DFA ,EG =GD ,∵EG ∥DC ,∴∠DFA =∠EGF , ∴∠EFA =∠EGF ,∴EF =EG =FD =GD ,∴四边形EFDG 是菱形;(2)解:EG 2=12GF ·AF .理由如下: 如解图,连接ED ,交AF 于点H ,∵四边形EFDG 是菱形,∴DE ⊥AF ,FH =GH =12GF ,EH =DH =12DE , ∵∠FEH =90°-∠EFA =∠FAE ,∠FHE =∠AEF =90°, ∴Rt △FEH ∽Rt △FAE ,∴EFAF =FHEF ,即EF 2=FH ·AF ,又∵FH =12GF ,EG =EF ,∴EG 2=12GF ·AF ;(3)解:∵AG =6,EG =25,EG 2=12AF ·GF ,∴(25)2=12(6+GF )·GF ,解得GF =4或GF =-10(舍),∴GF =4,∴AF =10.∵DF =EG =25,∴AD =BC =AF 2-DF 2=45,DE =2EH =2EG 2-(12GF )2=8,∵∠CDE +∠DFA =90°,∠DAF +∠DFA =90°,∴∠CDE =∠DAF ,∵∠DCE =∠ADF =90°,∴Rt △DCE ∽Rt △ADF ,∴EC DF =DE AF ,即EC 25=810,∴EC =855,∴BE =BC -EC =1255.02如图,将矩形ABCD 沿对角线BD 对折,点C 落在E 处,BE 与AD 相交于点F ,若DE =4,BD =8.(1)求证:AF =EF ;(2)求证:BF 平分∠ABD .证明:(1)在矩形ABCD 中,AB =CD ,∠A =∠C =90°, ∵△BED 是△BCD 对折得到的,∴ED =CD ,∠E =∠C ,∴ED =AB ,∠E =∠A ,(2分)又∵∠AFB =∠EFD ,∴△ABF ≌△EDF (AAS),∴AF =EF ;(4分)(2)在Rt △BCD 中,∵DC =DE =4,BD =8,∴sin ∠CBD =DC BD =12, ∴∠CBD =30°,(5分)∴∠EBD =∠CBD =30°,∴∠ABF=90°-30°×2=30°,(7分)∴∠ABF=∠EBD,∴BF平分∠ABD.(8分)03把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F 重合(E、F两点均在BD上),折痕分别为BH、DG。

中考数学复习---矩形中的折叠变换专题训练(含答案)

中考数学复习---矩形中的折叠变换专题训练(含答案)

中考数学复习---矩形中的折叠变换专题训练1.如图,将矩形ABCD折叠,使点A与点C重合,折痕交BC、AD分别于点E、F.若AB=4,BC=8,则菱形AECF的面积为______,OE的长为_______。

2.如图,ABCD是矩形纸片,翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,折痕分别是CE,AF,则AEEB等于_______3.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为C′,再将所折得的图形沿EF折叠,使得点D和点A重合.若AB=3,BC=4,则折痕EF的长为________4.已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于O,连结AP、OP、OA.若△OCP与△PDA的面积比为1:4,则边AB的长为_____.5.如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.连接DE,交AF与O点,则线段EG、GF、AF之间的数量关系是__________。

6.如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕的长为AE________.7.如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE,DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为______8.如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把△ADE沿直线AE 折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为________.9.如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为________.10.如图,矩形ABCD中,AB=6,BC=8,点E是射线CB上的一个动点,把△DCE沿DE折叠,点C 的对应点为C′.(1)若点C′刚好落在对角线BD上时,BC′=________;(2)若点C′刚好落在线段AB的垂直平分线上时,则CE的长为_______;(3)若点C′刚好落在线段AD的垂直平分线上时,则CE的长为_______.11.如图,四边形ABCD是矩形纸片,AB=2,对折矩形纸片ABCD,使AB与CD重合,折痕为MN,展平后再过点B折叠矩形纸片,使点A落在MN上的点G处,折痕BE与MN相交于点H;再次展平,连接BG,EG,延长EG交BC于点F.有如下结论:①EG=FG;②∠ABG=60°;③AE=1;④△BEF是等边三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆南开中学初2015级九年级(下)半期考试数 学 试 题一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号 为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答卷上对应的方框涂黑. 1.2的相反数是( ) A .2 B .21 C .-2 D .21- 2.计算322·x x -的结果是( )A .52x - B .52x C .62x - D .62x 3.下列图形中,既是中心对称图形又是轴对称图形的是( )4.如图,点O 在直线AC 上,BO ⊥DO 于点O ,若︒=∠1451,则3∠的度数为( ) A .35° B .45° C .55° D .65°5.若a(a≠0)是关于方程022=-+a bx x 的一个根,则b a +的值为( ) A .2 B .-2 C .0 D .46.如图,已知DE ∥BC ,且=DB AD :2:1,则△ADE 与△ABC 的面积比为( ) A .1:4 B .2:3 C .4:6 D .4:9 7.下列说法正确的是( )A .调查重庆市空气质量情况应采用普查的方式B .若A 、B 两组数据的平均数相同,A 组数据的方差2A S =0.03,B 组数据的方差2B S =0.2,则8组数据比A 组数据稳定C .南开中学明年开运动会一定会下雨D .为了解初三年级24个班课间活动的使用情况。

李老师采用普查的方式 8.如图,O 是正方ABCD 的外接圆,点E 是弧AB 上任意一点,则DEC ∠的度数为( )A .40°B .45°C .48°D .50° 9.关于x 的方程11=+x a的解是负数,则口的取值范围是( ) A .a<l B .a<1且a≠0 C .a≤1 D .a≤l 且a≠010.2015年4月l8日周杰伦“摩天轮2”演唱会在重庆奥体中心如期举行.小王开车从家出发前去观看,预计1个小时能到达,可当天路上较为拥堵,行驶了半个小时,刚好行驶了一半路程,道路被“堵死”,堵了几分钟突然发现旁边刚好有一个轻轨站,于是小王将车停在轻轨站的车库,然后坐轻轨前往,结果按预计时间到达.下面能反映小王距离奥体中心的距离y (千米)与时间x (小时)的函数关系的大致图象是( )11.将一些形状相同的小棒按如图所示的方式摆放。

图①中有3根小棒,图②中有9根小棒,图③中有18根小棒。

照此规律,图⑧中小棒的根数为( )12.如图,一次函数b x y +=的图象与x 轴交于点A ,与y 轴交于点B ,与反比例函数xy 2=交于点C(2,m ),则点B 到OC 的距离是( )A .2B .5C .52D .552二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答卷中对 应的横线上.13.计算()=--+++-302015812131π . 14.方程组⎩⎨⎧=++=421y x x y 的解为 .15.我校初三年级许多同学经过刻苦锻炼,在4月9、10日的中考体考中取得了优良的成绩.年级上随机抽取了6名同学的体育成绩如下表所示:则这6名同学的平均分是 .16.如图,在ABC Rt ∆中,︒=∠90C ,︒=∠30A ,AB=4,以AC 为直径作半圆交AB 于点D ,则图中阴影部分的面积为 .17.从1-,0,1,3,4这五个数中任选一个数,记为a ,则使二次函数()1222-+--=a ax x a y 的顶点在第四象限且双曲线xay 27-=在第一、三象限的概率是 . 18.如图,矩形ABCD 中,AB=6,BC=8,将△ACD 沿对角线AC 翻折得△ACE 。

AE 交BC 于点F ,将△CEF 绕点C 逆时针旋转a 角(0°<a<180°)得''F CE ∆,点E 、F 的对应点分别为'E 、'F ,旋转过程中直线'CF 、''F E 分别交直线AE 于点N M 、,当NM F '∆是等腰三角形且'MF MN =时,则MN = .程或推理步骤,请将解答过程书写在答卷中对应的位置上.19.如图,AC 与BD 相交于点O ,AO=DO ,21∠=∠,求证:DCB ABC ∆≅∆.20.暑假期间,一些同学将要到A ,B ,C ,D 四个地方参加夏令营活动,现从这些同学中随机调查了一部分同学.根据调查结果,绘制成了如下两幅统计图:(1)扇形A 的圆心角的度数为 °,若此次夏令营一共有320名学生参加,则前往C 地的学生约有 人,并将条形统计图补充完整;(2)若某姐弟两人中只能有一人参加夏令营,姐弟俩决定用一个游戏来确定参加者:在4张形状、大小完全相同的卡片上分别写上1-,1,2,3四个整数,先让姐姐随机地抽取一张,再由弟弟从余下的三张卡片中随机地抽取一张.若抽取的两张卡片上的数字之和小于3则姐姐参加,否则弟弟参加.用列表法或树状图分析这种方法对姐弟俩是否公平?过程或推理步骤,请将解答过程书写在答卷中对应的位置上. 21.化简下列各式.(1)()()()()y x y y x x y y x 222222--+-+-;(2)222⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-++-a b a ab b a bab b.22.重庆市是著名的山城,许多美丽的建筑建在山上.如图,刘老师为了测量小山项一建筑物DE 的高度,和潘老师一起携带测量装备前往测量.刘老师在山脚下的A 处测得建筑物顶端D 的仰角为53°,山坡AE 的坡度i=1:5,潘老师在B 处测得建筑物顶端D 的仰角为45°,若此时刘老师与潘老师的距离AB=200m ,求建筑物DE 的高度.(5453sin ≈︒,5353cos ≈︒,3453tan ≈︒,结果精确到0.1m )23.每年的3月15日是 “国际消费者权益日”,许多商家都会利用这个契机进行打折促销活动.甲卖家的A 商品成本为500元,在标价800元的基础上打9折销售.(1)现在甲卖家欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于10%?(2)据媒体爆料,有一些卖家先提高商品价格后再降价促销,存在欺诈行为.乙卖家也销售A 商品,成本、标价与甲卖家一致,以前每周可售出50件,为扩大销量,尽快减少库存,他决定打折促销.但他先将标价提高m 3%,再大幅降价m 26元,使得A 商品在3月15日那一天卖出的数量就比原来一周卖出的数量增加了m 512%,这样一天的利润达到了20000元,求m .24.阅读材料:如图,在平面直角坐标系中,O 为坐标原点,对于任意两点A (1x ,1y ),()22y x B ,,由勾股定理可得:()()2212212y y x x AB -+-=,我们把()()221221y y x x -+- 叫做A 、B 两点之间的距离,记作()()221221y y x x AB -+-=.例题:在平面直角坐标系中,O 为坐标原点,设点P(x ,0). ①A(0,2),B (3,-2),则AB= .;PA = .; 解:由定义有()()[]5223022=--+-=AB ;()()4203222+=-+-=x x PA .②()412+-x 表示的几何意义是 .;()92122+-++x x 表示的几何意义是 ..解:因为()()()22220141-+-=+-x x ,所以()412+-x 表示的几何意义是点()0,x P 到点()21,的距离;同理可得,()92122+-++x x 表示的几何意义是点()0,x P 分别到点(0,1)和点(2,3)的距离和.根据以上阅读材料,解决下列问题:(1)如图,已知直线82+-=x y 与反比例函数xy 6=(x >0)的图像交于()()2211y x B y x A ,、,两点,则点A 、B 的坐标分别为A( , ),B( , ),AB= .(2)在(1)的条件下,设点()0,x P ,则()()22222121y x x y x x +-++-表示的几何意义是 ;试求()()22222121y x x y x x +-++-的最小值,以及取得最小值时点P的坐标.五、解答题 25.如图1,ABCD 中,AE ⊥BC 于E ,AE=AD ,EG ⊥AB 于G ,延长GE 、DC 交于点F ,连接AF .(1)若BE=2EC ,AB =13,求AD 的长; (2)求证:EG=BG+FC ;(3)如图2,若AF=25,EF=2,点M 是线段AG 上的一个动点,连接ME ,将GME ∆沿ME 翻折得ME G '∆,连接'DG ,试求当'DG 取得最小值时GM 的长.26.已知抛物线c bx x y ++-=23与x 轴交于点A (1,0)、B(3,0),与y 轴交于点C ,抛物线的顶点为D .(1)求b 、c 的值及顶点D 的坐标;(2)如图1,点E 是线段BC 上的一点,且BC=3BE ,点F(0,m )是y 轴正半轴上一点,连接BF 、EF ,EF 与线段OB 交于点G ,OF:OG=2:3,求△FEB 的面积;(3)如图2,P 为线段BC 上一动点,连接DP ,将△DBP 绕点D 顺时针旋转60°得''P DB ∆’(点B 的对 应点是点'B ,点P 的对应点是点'P ),'DP 交y 轴于点M ,N 为'MP 的中点,连接'PP 、NO ,延长NO 交BC 于点Q ,连接'QP ,若Q PP '∆的面积是BOC ∆面积的91,求线段BP 的长.如图,有一张矩形纸片ABCD ,已知AB=2,BC=4,若点E 是AD 上的一个动点(与点A 不重合),且0<AE ≤2,沿BE 将△ABE 翻折后,点A 落到点P 处,连接PC .有下列说法: ①△ABE 与△PBE 关于直线BE 对称; ②线段PC 的长有可能小于2; ③四边形ABPE 有可能为正方形; ④当△PCD 是等腰三角形时,PC=2或 5 . 其中说法正确的序号是.① ③如图,矩形ABCD 中,AB=4,AD=8,点E 、F 分别在线段BC 、CD 上,将△CEF 沿EF 翻折,点C 的落点为M (1)如图1,当 CE=5,M 点落在线段AD 上时,求MD 的长 (2)如图2,若点F 是CD 如图所示,矩形纸片ABCD 中,AB=6cm ,BC=8 cm ,现将其沿EF 对折,使得 点C 与点A 重合,则AF 长为【 】A.25cm 8 B. 25cm 4 C. 25cm 2D. 8cm 【答案】B 。

相关文档
最新文档