矩形折叠问题 (2)ppt课件
合集下载
矩形折叠问题ppt课件
(1)若∠ADE=20°,求∠EBD的度数。
(2)若AB=4,BC=8,求AF。
(3)在(2)的条件下,试求 E
重叠部分△DBF的面积。
A F
D
B
C
12
1、 如图,已知矩形ABCD,将△BCD沿对角 线BD折叠,点C落在点E处,BE交AD于点F。 (1)若∠ADE=20°,求∠EBD的度数。
E
A F
C
16
3.如图,矩形纸片ABCD中,AB=6cm,AD =8cm,在BC上找一点F,沿DF折叠矩形AB 使C点落在对角线BD上的点E处, 此时折痕DF的长是多少?
A
D
6
4x
6
B
8-x
xC
17
1.把一张长方形的纸片按如图所示的方式
折叠,EM、FM 为折痕,折叠后的C点落 在MB′或MB′的延长线上,那么∠EMF的
D
EC
AG
B
6
二、一条对角线的顶点折叠重合
例2、如图,矩形纸片ABCD的长AD=9cm, 宽AB=3cm,将其折叠,使点D与点B重合,那 么折叠后DE的长和折痕EF的长分别是多少?
A
E
D
O
B
F
C
7
三、将一个顶点折到一边上
例3、四边形ABCD是一块矩形纸片,E是AB上一点,
且BE:EA=5:3,EC=15 5 ,将△BCE沿
4≤A′C≤8
分析:根据点E、F分别在 AB、AD上移动,可画出两 个极端位置时的图形。
6
4
(E)
6
F
8
E
10 6
10
(F) 27
3、如图,把一张矩形的纸片ABCD沿对角 线BD折叠,使点C落在点E处,BE与AD的 交于点F。
《矩形中的折叠问题》公开课教学PPT课件(终稿)
初三数学专题复习
例2:(2011·四川宜宾)如图,矩形纸片
D ABCD中,已知AD=8,折叠纸片使AB边与对角
线AC重合,点B落在点F处,折痕为AE,且EF=3,
则AB的长为( D )
C A.3
B.4
C.5
D.6
变式拓展 A
初三数学专题复习
DA
F DA
F
D F
B
E
C B 图① E C B
EB B' 图3
互动探究二
初三数学专题复习
DF
A
E
矩形ABCD中,AD=5,AB=3.若点E、C 图4 A' B
F分别是边AB、AD上的点,将△AEF沿 D
F
A
EF对折,使A点的对应点A'落在边BC上.
观察图形,回答下列问题:
(1)如图2,BA'= 3 。 5 (2)如图5,BA'= 1 ,AE= 3 。
;
。C A'
EB B'
互动探究一
初三数学专题复习
D
F
A
若矩形ABCD中,AD=5,AB=3.
(1)如图2,BA'= 3 。
C D
A' 图1 F
E B'
B A
(2)如图3,BA'= 5 . C
(3)设BA'=m,当m的取值范围是
D
3≤m≤5 时,四边形AEA'F是菱形。
A'图2 B(E)
F
A
(A') C
E 图② C
如图,在矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连
接AE,把△ABE沿AE折叠,使点B落在点F处,当△CEF直角三
例2:(2011·四川宜宾)如图,矩形纸片
D ABCD中,已知AD=8,折叠纸片使AB边与对角
线AC重合,点B落在点F处,折痕为AE,且EF=3,
则AB的长为( D )
C A.3
B.4
C.5
D.6
变式拓展 A
初三数学专题复习
DA
F DA
F
D F
B
E
C B 图① E C B
EB B' 图3
互动探究二
初三数学专题复习
DF
A
E
矩形ABCD中,AD=5,AB=3.若点E、C 图4 A' B
F分别是边AB、AD上的点,将△AEF沿 D
F
A
EF对折,使A点的对应点A'落在边BC上.
观察图形,回答下列问题:
(1)如图2,BA'= 3 。 5 (2)如图5,BA'= 1 ,AE= 3 。
;
。C A'
EB B'
互动探究一
初三数学专题复习
D
F
A
若矩形ABCD中,AD=5,AB=3.
(1)如图2,BA'= 3 。
C D
A' 图1 F
E B'
B A
(2)如图3,BA'= 5 . C
(3)设BA'=m,当m的取值范围是
D
3≤m≤5 时,四边形AEA'F是菱形。
A'图2 B(E)
F
A
(A') C
E 图② C
如图,在矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连
接AE,把△ABE沿AE折叠,使点B落在点F处,当△CEF直角三
矩形的翻折问题课件
创新思考
鼓励学生发挥想象力,探索翻折问 题的创新应用,培养他们的创新思 维和实践能力。
THANKS
感谢观看
02
矩形翻折问题的基本解法
翻折线段的长度计算
总结词
翻折线段的长度计算是解决矩形翻折问题的关键步骤之一,需要利用几何知识来 求解。
详细描述
在矩形翻折问题中,我们需要计算翻折后的线段长度。这通常涉及到利用勾股定 理、相似三角形等几何知识来求解。具体计算方法包括通过已知的边长和角度, 或者通过设定的变量来表示未知的边长,然后建立方程求解。
,理解空间关系和几何变换。
探索几何性质
矩形翻折问题涉及到几何图形的 性质和特点,如对称性、角度、 边长等,通过解决这类问题可以 深入了解几何学的基本概念和性
质。
应用实际生活
矩形翻折问题在日常生活中有广 泛的应用,如包装、折纸艺术、 建筑设计等领域,通过解决这类 问题可以帮助学生理解数学与实
际生活的联系。
在包装设计中的应用
包装设计中的矩形翻折问题主要涉及包装盒的结构设计和折叠工艺。
通过解决矩形翻折问题,包装设计师可以设计出结构稳定、易于生产和折叠的包装 盒,同时保证其美观性和保护性。
例如,在食品包装设计中,包装设计师可能会遇到需要将矩形纸板翻折成特定形状 的问题,以实现包装盒的结构稳定性和生产效率。
03
矩形翻折问题的实际应用
在建筑设计中的应用
建筑设计中的矩形翻折问题主要涉及 建筑结构的稳定性、美观性和功能性 。
例如,在建筑设计过程中,建筑师可 能会遇到需要将矩形板材翻折成特定 形状的问题,以实现建筑外观的独特 性和功能性。
通过解决矩形翻折问题,建筑师可以 设计出具有独特造型和优雅线条的建 筑结构,同时保证其稳定性和安全性 。
鼓励学生发挥想象力,探索翻折问 题的创新应用,培养他们的创新思 维和实践能力。
THANKS
感谢观看
02
矩形翻折问题的基本解法
翻折线段的长度计算
总结词
翻折线段的长度计算是解决矩形翻折问题的关键步骤之一,需要利用几何知识来 求解。
详细描述
在矩形翻折问题中,我们需要计算翻折后的线段长度。这通常涉及到利用勾股定 理、相似三角形等几何知识来求解。具体计算方法包括通过已知的边长和角度, 或者通过设定的变量来表示未知的边长,然后建立方程求解。
,理解空间关系和几何变换。
探索几何性质
矩形翻折问题涉及到几何图形的 性质和特点,如对称性、角度、 边长等,通过解决这类问题可以 深入了解几何学的基本概念和性
质。
应用实际生活
矩形翻折问题在日常生活中有广 泛的应用,如包装、折纸艺术、 建筑设计等领域,通过解决这类 问题可以帮助学生理解数学与实
际生活的联系。
在包装设计中的应用
包装设计中的矩形翻折问题主要涉及包装盒的结构设计和折叠工艺。
通过解决矩形翻折问题,包装设计师可以设计出结构稳定、易于生产和折叠的包装 盒,同时保证其美观性和保护性。
例如,在食品包装设计中,包装设计师可能会遇到需要将矩形纸板翻折成特定形状 的问题,以实现包装盒的结构稳定性和生产效率。
03
矩形翻折问题的实际应用
在建筑设计中的应用
建筑设计中的矩形翻折问题主要涉及 建筑结构的稳定性、美观性和功能性 。
例如,在建筑设计过程中,建筑师可 能会遇到需要将矩形板材翻折成特定 形状的问题,以实现建筑外观的独特 性和功能性。
通过解决矩形翻折问题,建筑师可以 设计出具有独特造型和优雅线条的建 筑结构,同时保证其稳定性和安全性 。
第一章 特殊平行四边形探究专题--矩形的折叠问题(共10张PPT)
近年来中考中出现了许多考查数形结合和空间想象能力的矩形折叠问题, 解决这类问题的关键是要根据矩形和轴对称图形的性质,弄清折叠前后哪 些量变了,哪些量没变,折叠前后图形之间的关系以及哪些条件可以用.下 面从历年中考试题中撷取几例,分类说明折叠问题的求解策略.
(一)折叠后求角度
1.如图,将矩形纸片 ABCD 沿 BD 折叠,得到△BC′D,C′D 与 AB 交
(二)折叠后求线段的长度
3.如图,在矩形 ABCD 中,BC=8,CD=6,将△ABE 沿 BE 折叠,使点
A 恰好落在对角线 BD 上的点 F 处,则 DE 的长是( C )
A.3
24 B. 5
C.5
89B=CD=6,BC=AD=8,根据勾股定理得 BD =10,即 FD=10-6=4.设 EF=AE=x,则有 ED=8-x,在 Rt△EFD 中, 根据勾股定理得:x2+42=(8-x)2,解得 x=3.则 DE=8-3=5.故选 C.
解:(1)猜想:∠MBN=30°. 理由:图 1 中连接 AN,∵直线 EF 是 AB 的垂直平分线,∴NA=NB.由折 叠可知,BN=AB.∴AB=BN=AN,∴△ABN 是等边三角形,∴∠ABN= 60°,∴∠NBM=∠ABM=12∠ABN=30°.
(2)结论:MN=21BM. 折纸方案:如图 3 中,折叠△BMN,使得点 N 落 在 BM 上 O 处,折痕为 MP,连接 OP.
4.如图,将矩形纸片 ABCD 沿直线 EF 折叠,使点 C 落在 AD 边的中点 C′
处,点 B 落在点 B′处,其中 AB=9,BC=6,则 FC′的长为( D )
10 A. 3
B.4
C.4.5
D.5
5.如图,矩形 ABCD 中,对角线 AC=2 3,E 为 BC 边上一点,BC=3BE, 将矩形 ABCD 沿 AE 所在的直线折叠,B 点恰好落在对角线 AC 上的 B′处, 则 AB= 3 .
(一)折叠后求角度
1.如图,将矩形纸片 ABCD 沿 BD 折叠,得到△BC′D,C′D 与 AB 交
(二)折叠后求线段的长度
3.如图,在矩形 ABCD 中,BC=8,CD=6,将△ABE 沿 BE 折叠,使点
A 恰好落在对角线 BD 上的点 F 处,则 DE 的长是( C )
A.3
24 B. 5
C.5
89B=CD=6,BC=AD=8,根据勾股定理得 BD =10,即 FD=10-6=4.设 EF=AE=x,则有 ED=8-x,在 Rt△EFD 中, 根据勾股定理得:x2+42=(8-x)2,解得 x=3.则 DE=8-3=5.故选 C.
解:(1)猜想:∠MBN=30°. 理由:图 1 中连接 AN,∵直线 EF 是 AB 的垂直平分线,∴NA=NB.由折 叠可知,BN=AB.∴AB=BN=AN,∴△ABN 是等边三角形,∴∠ABN= 60°,∴∠NBM=∠ABM=12∠ABN=30°.
(2)结论:MN=21BM. 折纸方案:如图 3 中,折叠△BMN,使得点 N 落 在 BM 上 O 处,折痕为 MP,连接 OP.
4.如图,将矩形纸片 ABCD 沿直线 EF 折叠,使点 C 落在 AD 边的中点 C′
处,点 B 落在点 B′处,其中 AB=9,BC=6,则 FC′的长为( D )
10 A. 3
B.4
C.4.5
D.5
5.如图,矩形 ABCD 中,对角线 AC=2 3,E 为 BC 边上一点,BC=3BE, 将矩形 ABCD 沿 AE 所在的直线折叠,B 点恰好落在对角线 AC 上的 B′处, 则 AB= 3 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25
1、如图,将矩形6、 纸片ABCD沿对角线BD折叠, 点C落在点E处,BE交AD于点F.连结AE.证明 :AE∥BD
E
A
D
F
B
C
26
2.如图,矩形纸片ABCD中,AB=6cm,AD=10cm,
3.如果两个图形关于某条直线对称,那么 对称轴是对应点连线的 垂直平分 线。
4
矩形的翻折一直是中考的重点,关于矩形 的翻折通常有以下几种情况
一、将一边折到对角线上 二、将一个顶点折到一边上 三、一边沿对角线翻折 四、一条对角线的顶点折叠重合
5
一、将一边折到对角线上
例1、折叠矩形纸片ABCD,先折出折 痕(对角线)BD,再折叠AD边与对角 线BD重合,得折痕DG。若AB=2, BC=1,求AG
(1)若∠ADE=20°,求∠EBD的度数。
(2)若AB=4,BC=8,求AF。
(3)在(2)的条件下,试求 E
重叠部分△DBF的面积。
A F
D
B
C
12
1、 如图,已知矩形ABCD,将△BCD沿对角 线BD折叠,点C落在点E处,BE交AD于点F。 (1)若∠ADE=20°,求∠EBD的度数。
E
A F
点C落在点E处,BE交AD于点F。根据图形,你能发 现图中有哪些相等的线段和角吗?
E
解:AB=CD=DE,BF=DF A F
D
BC=BE=AD,AF=EF,
∠A=∠E=90°
∠ABF=∠EDF
B
C
∠BDC=∠BDE
∠FBD=∠FDB=∠DBC
11
1、 如图,已知矩形ABCD,将△BCD沿对角
线BD折叠,点C落在点E处,BE交AD于点F。
E
AF
D
B
C
15
2、 如图,矩形纸片ABCD中,AB=3厘米
BC=4厘米,现将A、C重合,再将纸片折叠
压平,
(1)找出图中的一对全等三角形,并证明;
(2)△AEF是何种形状的三角形?说明你的
理由;
G
(3)求AE的长。
A
(4)试确定重叠部分△AEF
F D
的面积。
B
若连结CF,四边形AECF是菱形吗? E
A
D
E
B
C
F
20
4.折叠矩形ABCD,让点B落在对角线AC上 若AD=4,AB=3,请求出线段CE的长度。
A
D
F
B
E
C
21
1、如图,矩形ABCD沿AE折叠,使D点 落在BC边上的F点处,如果∠BAF=60°,那 么∠DAE等于
22
2.如图,已知矩形纸片ABCD,点E是AB的中点, 点G是BC上的一点,∠BEG>60°.现沿直线EG将 纸片折叠,使点B落在纸片上的点H处,连接AH, 则与∠BEG相等的角的个数为_____.
D
EC
AG
B
6
二、一条对角线的顶点折叠重合
例2、如图,矩形纸片ABCD的长AD=9cm, 宽AB=3cm,将其折叠,使点D与点B重合,那 么折叠后DE的长和折痕EF的长分别是多少?
A
E
D
O
B
F
C
7
三、将一个顶点折到一边上
例3、四边形ABCD是一块矩形纸片,E是AB上一点,
且BE:EA=5:3,EC=15 5 ,将△BCE沿
让我们的亲人及朋友因我们的存在而感
到快乐和幸福
1
矩形性质独特,折叠起来形态各异, 趣味无穷,会产生丰富多彩的几何问题, 而这些问题往往融入了丰富的数学知识 和思想,以矩形为背景的折叠问题是近 年来兴起的一类比较新型的问题,在中 考试题,竞赛试题中屡见不鲜。在很多 中考试卷中,矩形的折叠问题成为一道 最后的“压轴题”。为此今天咱们专题 研究有关矩形折叠的数学问题。
C
16
3.如图,矩形纸片ABCD中,AB=6cm,AD =8cm,在BC上找一点F,沿DF折叠矩形AB 使C点落在对角线BD上的点E处, 此时折痕DF的长是多少?
A
D
6
4x
6
B
8-x
xC
17
1.把一张长方形的纸片按如图所示的方式
折叠,EM、FM 为折痕,折叠后的C点落 在MB′或MB′的延长线上,那么∠EMF的
D
B
C
13
1、如图,已知矩形ABCD,将△BCD沿对角 线BD折叠,点C落在点E处,BE交AD于点F。 (2)若AB=4,BC=8,求AF。
E
AF
D
B
C
14
1、如图,已知矩形ABCD,将△BCD沿对角
线BD折叠,点C落在点E处,BE交AD于点F。
(3)在(2)的条件下,试求
重叠部分△DBF的面积。
折痕EC翻折,若点B恰好落在AD边上的点F上,求A B、BC的长。F ADFra bibliotekM E
C
B
8
四、一边沿对角线翻折
例4、如图,已知将矩形ABCD沿着直线BD折叠, 使点C落在C/处,BC/交AD于E,AD=8,AB=4, 求△BDE的面积
C/
A
E
D
F
B
C
9
( 1 )折叠过程实质上是一个轴对称变换,折 痕就是对称轴,变换前后两个图形全等。
23
3.将矩形纸片ABCD按如图1所示的方式折 叠,得到图2所示的菱形AECF.若AB=3, 则BC的长为( ) (A)1 (B) 2
(C) 2
(D) 3
24
4.如图,在矩形ABCD中,E是AD的中点,将 △ABE折叠后得到△GBE , 延长BG交CD于点 F,若CF=1.FD=2,则BC的长为( )
度数是( )
18
2.如图,把一个长方形纸片沿EF折叠后,点 D、C分别落在D′、C′的位置,若∠EFB= 65°,则∠AED′等于( )
19
3.如图5,四边形ABCD 为矩形纸片.把 纸片ABCD 折叠,使点 B恰好落在CD 边 的中点E 处,折痕为 AF.若CD=6 ,则 AF 等于( )
A . 4 3 B.3 3 C.4 2 D.8
(2)在矩形的折叠问题中,若有求边长问 题,常设未知数,找到相应的直角三角形, 用勾股定理建立方程,利用方程思想解决 问题。
(3)在折叠问题中,若直接解决较困难时, 可将图形还原,可让问题变得简单明了。 有时还可采用动手操作,通过折叠观察得 出问题的答案。
10
4.如图,已知矩形ABCD,将△BCD沿对角线BD折叠
2
学习目标:通过本节课对矩形折叠问题的探究 学习,达到总结折叠问题的规律,提炼解 决折叠问题的方法,并利用折叠的规律和 方法进行计算和证明.
学习重难点:综合运用知识挖掘矩形折叠问 题中角度和线段的数量关系.。
3
1. 如果一个图形沿一条直线折叠后,直 线两旁的部分能够互相重合,那么这 个图形叫做 轴对称 图形,这条直线 叫做 对称轴 这时,我们也说这个图形 关于这条直线对称. 2.关于某条直线对称的两个图形是 全等 形。
1、如图,将矩形6、 纸片ABCD沿对角线BD折叠, 点C落在点E处,BE交AD于点F.连结AE.证明 :AE∥BD
E
A
D
F
B
C
26
2.如图,矩形纸片ABCD中,AB=6cm,AD=10cm,
3.如果两个图形关于某条直线对称,那么 对称轴是对应点连线的 垂直平分 线。
4
矩形的翻折一直是中考的重点,关于矩形 的翻折通常有以下几种情况
一、将一边折到对角线上 二、将一个顶点折到一边上 三、一边沿对角线翻折 四、一条对角线的顶点折叠重合
5
一、将一边折到对角线上
例1、折叠矩形纸片ABCD,先折出折 痕(对角线)BD,再折叠AD边与对角 线BD重合,得折痕DG。若AB=2, BC=1,求AG
(1)若∠ADE=20°,求∠EBD的度数。
(2)若AB=4,BC=8,求AF。
(3)在(2)的条件下,试求 E
重叠部分△DBF的面积。
A F
D
B
C
12
1、 如图,已知矩形ABCD,将△BCD沿对角 线BD折叠,点C落在点E处,BE交AD于点F。 (1)若∠ADE=20°,求∠EBD的度数。
E
A F
点C落在点E处,BE交AD于点F。根据图形,你能发 现图中有哪些相等的线段和角吗?
E
解:AB=CD=DE,BF=DF A F
D
BC=BE=AD,AF=EF,
∠A=∠E=90°
∠ABF=∠EDF
B
C
∠BDC=∠BDE
∠FBD=∠FDB=∠DBC
11
1、 如图,已知矩形ABCD,将△BCD沿对角
线BD折叠,点C落在点E处,BE交AD于点F。
E
AF
D
B
C
15
2、 如图,矩形纸片ABCD中,AB=3厘米
BC=4厘米,现将A、C重合,再将纸片折叠
压平,
(1)找出图中的一对全等三角形,并证明;
(2)△AEF是何种形状的三角形?说明你的
理由;
G
(3)求AE的长。
A
(4)试确定重叠部分△AEF
F D
的面积。
B
若连结CF,四边形AECF是菱形吗? E
A
D
E
B
C
F
20
4.折叠矩形ABCD,让点B落在对角线AC上 若AD=4,AB=3,请求出线段CE的长度。
A
D
F
B
E
C
21
1、如图,矩形ABCD沿AE折叠,使D点 落在BC边上的F点处,如果∠BAF=60°,那 么∠DAE等于
22
2.如图,已知矩形纸片ABCD,点E是AB的中点, 点G是BC上的一点,∠BEG>60°.现沿直线EG将 纸片折叠,使点B落在纸片上的点H处,连接AH, 则与∠BEG相等的角的个数为_____.
D
EC
AG
B
6
二、一条对角线的顶点折叠重合
例2、如图,矩形纸片ABCD的长AD=9cm, 宽AB=3cm,将其折叠,使点D与点B重合,那 么折叠后DE的长和折痕EF的长分别是多少?
A
E
D
O
B
F
C
7
三、将一个顶点折到一边上
例3、四边形ABCD是一块矩形纸片,E是AB上一点,
且BE:EA=5:3,EC=15 5 ,将△BCE沿
让我们的亲人及朋友因我们的存在而感
到快乐和幸福
1
矩形性质独特,折叠起来形态各异, 趣味无穷,会产生丰富多彩的几何问题, 而这些问题往往融入了丰富的数学知识 和思想,以矩形为背景的折叠问题是近 年来兴起的一类比较新型的问题,在中 考试题,竞赛试题中屡见不鲜。在很多 中考试卷中,矩形的折叠问题成为一道 最后的“压轴题”。为此今天咱们专题 研究有关矩形折叠的数学问题。
C
16
3.如图,矩形纸片ABCD中,AB=6cm,AD =8cm,在BC上找一点F,沿DF折叠矩形AB 使C点落在对角线BD上的点E处, 此时折痕DF的长是多少?
A
D
6
4x
6
B
8-x
xC
17
1.把一张长方形的纸片按如图所示的方式
折叠,EM、FM 为折痕,折叠后的C点落 在MB′或MB′的延长线上,那么∠EMF的
D
B
C
13
1、如图,已知矩形ABCD,将△BCD沿对角 线BD折叠,点C落在点E处,BE交AD于点F。 (2)若AB=4,BC=8,求AF。
E
AF
D
B
C
14
1、如图,已知矩形ABCD,将△BCD沿对角
线BD折叠,点C落在点E处,BE交AD于点F。
(3)在(2)的条件下,试求
重叠部分△DBF的面积。
折痕EC翻折,若点B恰好落在AD边上的点F上,求A B、BC的长。F ADFra bibliotekM E
C
B
8
四、一边沿对角线翻折
例4、如图,已知将矩形ABCD沿着直线BD折叠, 使点C落在C/处,BC/交AD于E,AD=8,AB=4, 求△BDE的面积
C/
A
E
D
F
B
C
9
( 1 )折叠过程实质上是一个轴对称变换,折 痕就是对称轴,变换前后两个图形全等。
23
3.将矩形纸片ABCD按如图1所示的方式折 叠,得到图2所示的菱形AECF.若AB=3, 则BC的长为( ) (A)1 (B) 2
(C) 2
(D) 3
24
4.如图,在矩形ABCD中,E是AD的中点,将 △ABE折叠后得到△GBE , 延长BG交CD于点 F,若CF=1.FD=2,则BC的长为( )
度数是( )
18
2.如图,把一个长方形纸片沿EF折叠后,点 D、C分别落在D′、C′的位置,若∠EFB= 65°,则∠AED′等于( )
19
3.如图5,四边形ABCD 为矩形纸片.把 纸片ABCD 折叠,使点 B恰好落在CD 边 的中点E 处,折痕为 AF.若CD=6 ,则 AF 等于( )
A . 4 3 B.3 3 C.4 2 D.8
(2)在矩形的折叠问题中,若有求边长问 题,常设未知数,找到相应的直角三角形, 用勾股定理建立方程,利用方程思想解决 问题。
(3)在折叠问题中,若直接解决较困难时, 可将图形还原,可让问题变得简单明了。 有时还可采用动手操作,通过折叠观察得 出问题的答案。
10
4.如图,已知矩形ABCD,将△BCD沿对角线BD折叠
2
学习目标:通过本节课对矩形折叠问题的探究 学习,达到总结折叠问题的规律,提炼解 决折叠问题的方法,并利用折叠的规律和 方法进行计算和证明.
学习重难点:综合运用知识挖掘矩形折叠问 题中角度和线段的数量关系.。
3
1. 如果一个图形沿一条直线折叠后,直 线两旁的部分能够互相重合,那么这 个图形叫做 轴对称 图形,这条直线 叫做 对称轴 这时,我们也说这个图形 关于这条直线对称. 2.关于某条直线对称的两个图形是 全等 形。