第四章平面向量、数系的扩充与复数的引入第四节平面向量应用举例
高考数学一轮复习 第四章 平面向量、数系的扩充与复数的引入 4-4 平面向量的应用课件 文

【跟踪训练】
1.[2015·沈阳一模]在△ABC 中,|A→B+A→C|=|A→B-A→C|,AB=2,AC=1,E,F 为 BC 的三等分点,
则A→E·A→F=( )
8
10
A.9
B. 9
25
26
C. 9
D. 9
解析 由|A→B+A→C|=|A→B-A→C|,化简得A→B·A→C=0,又因为 AB 和 AC 为三角形的两条边,不可能为 0, 所以A→B与A→C垂直,所以△ABC 为直角三角形.以 AC 为 x 轴,以 AB 为 y 轴建立平面直角坐标系,如图 所示,则 A(0,0),B(0,2),C(1,0),由 E,F 为 BC 的三等分点知 E23,23,F31,34,所以A→E=32,32,A→F=13,43, 所以A→E·A→F=23×13+23×43=190.
2.[2016·兰州诊断]已知向量 a,b 满足 a·b=0,|a|=1,|b|=2,则|a-b|=( )A.0B来自1C.2D. 5
解析 因为|a-b|2=a2-2a·b+b2=1-0+22=5,所以|a-b|= 5,故选 D.
3.在△ABC 中,A→B=(cos18°,cos72°),B→C=(2cos63°,2cos27°),则角 B 等于( )
考点多维探究
考点 1 向量在平面几何中的应用
典例1
(1)[2014·天津高考]已知菱形 ABCD 的边长为 2,∠BAD=120°,点 E,F 分别在边 BC,DC
上,BE=λBC,DF=μDC.若A→E·A→F=1,C→E·C→F=-23,则 λ+μ=(
)
1
2
A.2
B.3
5
7
C.6
D.12
(2)已知 O 是平面上的一定点,A,B,C 是平面上不共线的三个动点,若动点 P 满足O→P=O→A+λ(A→B+
2012年金版新学案新编高三总复习第四章 第3课时

第四章
平面向量、数系的扩充与复数的引入
栏目导引
4.数量积的坐标运算 . 设 a=(a1,a2),b=(b1,b2),则 = , = , (1)a·b=______________. = a1b1+a2b2 (2)a⊥b⇔______________. ⊥ ⇔ a1b1+a2b2=0
a2+a2 1 2 (3)|a|=_________ =_________.
第四章
平面向量、数系的扩充与复数的引入
栏目导引
3.数量积的运算律 . (1)交换律 交换律a·b=_______. = b·a 交换律 · + · (2)分配律(a+b)·c=___________. (2)分配律 分配律(a+b)·c= a·c+b·c ( )· = a·(λb) . ·( ) (λa)·b (3)对λ∈R,λ(a·b)=_______=_______. 对 ∈ , ( )
第四章
平面向量、数系的扩充与复数的引入
栏目导引
解析: AB= , 解析: (1)在△ABC 中, C=90°, =5, 在 ∠ = , AC=4, = , 3 故 BC=3,且 cos∠ABC=5, = , ∠ = → → AB与BC的夹角 θ=π-∠ABC, = - , → → → → ∴ AB · BC = - | AB || BC |cos ∠ ABC = - 3 5×3× =- ×引入
栏目导引
(2)∵(a+2b)⊥(2a-b),∴(a+2b)·(2a-b)=0 ∵ + ⊥ - , + - = 即 2a2+3a·b-2b2=0.∴2|a|2+3a·b-2|b|2=0 - ∴ - 5 5 ∴2×5+3a·b-2×4=0,∴a·b=-2, × + - × , =- a·b =-1, ∴cos θ=|a||b|=- ,∵θ∈[0,π],∴θ=π. = ∈ , , =
复数讲义(含知识点和例题及解析)

数系的扩充与复数的引入1.复数的有关概念 (1)复数的概念:形如a +b i(a ,b ∈R )的数叫做复数,其中a ,b 分别是它的实部和虚部。
若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0且b ≠0,则a +b i 为纯虚数。
(2)复数相等:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R )。
(3)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R )。
(4)复平面:建立直角坐标系来表示复数的平面,叫做复平面。
x 轴叫做实轴,y 轴叫做虚轴。
实轴上的点都表示实数;除原点外,虚轴上的点都表示纯虚数;各象限内的点都表示非纯虚数。
(5)复数的模:向量OZ →的模r 叫做复数z =a +b i(a ,b ∈R )的模,记作|z |或|a +b i|,即|z |=|a +b i|=a 2+b 2。
2.复数的几何意义 (1)复数z =a +b i――→一一对应复平面内的点Z (a ,b )(a ,b ∈R )。
(2)复数z =a +b i ――→一一对应平面向量OZ →(a ,b ∈R )。
3.复数的运算(1)复数的加、减、乘、除运算法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R )则: ①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i 。
②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i 。
③乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i 。
④除法:z 1z 2=a +b i c +d i =(ac +bd )+(bc -ad )i c 2+d 2(c +d i ≠0)。
(2)复数加法的运算定律复数的加法满足交换律、结合律,即对任何z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3)。
7.1.1数系的扩充和复数的概念课件(人教版)

B.2,-3
C.-2,3
( B )
D.-2,-3
分析:两个复数相等,即这两个复数的实部和虚部分别对应相等,
得到等式求解.
解析:由2+bi与a-3i相等,得a=2,b=-3.故
实数a,b的值分别为2,-3.
五、举例应用 掌握定义
【例6】若关于x的方程3x²- x-1=(10-x-2x²)i有实根,求实
问题2:两个复数有大小关系吗?探究5:复数z=a+bi在什么条件下是实数、虚数?
四、定义辨析 强化理解
辨析1:若a,b为实数,则z=a+bi为虚数.( × )
提示:只有当b不等于零时z=a+bi为虚数.
辨析2:复数z1=3i,z2=2i,则z1>z2. ( × )
提示:复数不能比较大小,只有相等和不相等之分.
辨析3:复数z=bi(b∈R)是纯虚数.
( × )
提示:只有当b不等于零时z=bi才为纯虚数.
辨析4:实数集与复数集的交集是实数集.( √ )
提示:因为实数和虚数统称为复数,故实数集与复数
集的交集是实数集.
五、举例应用 掌握定义
【例1】复数3-i的实部和虚部分别是( C )
A.3和1
B.3和i
C.3和-1
所以ቊ
≠ 0.
解得y=3.
五、举例应用 掌握定义
【例4】 已知复数z=
²−−6
+(m²-2m-15)i.当m为何值时,
+3
(1)z是虚数;(2)z是纯虚数.
分析:解决复数分类问题的关键是找出等价条件,
列出方程(组).
五、举例应用 掌握定义
【例4】 已知复数z=
平面向量的基本定理及坐标表示课件

工具
第四章
平面向量、数系的扩充与复数的引入
栏目导引
已知 a=(1,0),b=(2,1), (1)当 k 为何值时,ka-b 与 a+2b 共线. → → (2)若AB=2a+3b,BC=a+mb 且 A、B、C 三点共线,求 m 的值.
解析: (1)ka-b=k(1,0)-(2,1)=(k-2,-1). a+2b=(1,0)+2(2,1)=(5,2). ∵ka-b 与 a+2b 共线, ∴2(k-2)-(-1)×5=0, 1 即 2k-4+5=0,得 k=- . 2
工具
第四章
平面向量、数系的扩充与复数的引入
栏目导引
→ → (2)∵CA=(-2,-4),BC=(1,1), → → → → → ∴MN=CN-CM=-2BC-3CA =(-2,-2)-(-6,-12)=(4,10). 设 M(x1,y1),N(x2,y2), → → 则CM=(x1-3,y1-2),CN=(x2-3,y2-2), → → → → ∵CM=3CA,CN=-2BC, ∴(x1-3,y1-2)=(-6,-12).
工具
第四章
平面向量、数系的扩充与复数的引入
栏目导引
→ → → → 1 解析: ∵2DC=AB,∴2DC=e2,∴DC= e2. 2 → → → → 又∵BC=BA+AD+DC, → 1 1 ∴BC=-e2+e1+2e2=e1-2e2. → → → → 又由MN=MA+AB+BN得 → 1→ → 1→ MN=2DA+AB+2BC 1 3 1 1 =- e1+e2+ e1-2e2= e2. 2 2 4
工具
第四章
平面向量、数系的扩充与复数的引入
栏目导引
(x2-3,y2-2)=(-2,-2),
x1-3=-6 x2-3=-2 ∴ , , y1-2=-12 y2-2=-2 x1=-3 x2=1 ∴ , , y1=-10 y2=0
第四章 平面向量、数系的扩充与复数的引入(共13张PPT) 2

[点评] 本题条件 OA +2 OB +3 OC =0 与三角形的重心性 质GA +GB +GC =0 十分类似,因此我们通过添加辅助线,构
造一个三角形,使点 O 成为辅助三角形的重心,而三角形的重 心与顶点的连线将三角形的面积三等分,从而可求三部分的面 积比.
(4)外心:三角形三条边的中垂线的交点叫外心.外心就是 三角形外接圆的圆心,它到三角形的三个顶点的距离相等.在 向量表达形式中,若点O是△ABC的外心,则( OA + OB )· = BA ( OB + OC )· =( OC + OA)· =0或| OA |=| OB |=| OC |.反之, CB AC 若| OA|=| OB |=| OC |,则点O是△ABC的外心.
2.关于“四心”的典型例题
已知 O 是平面上的一定点,A,B,C 是平面上不共线 的三个动点,若动点 P 满足 OP = OA+λ( AB + AC ),λ∈(0,+∞), [例 1] 则点 P 的轨迹一定通过△ABC 的________心. [解析] 由原等式, OP - OA =λ( AB + AC ), AP =λ( AB 得 即 + AC ), 根据平行四边形法则, AB + AC 是△ABC 的中线所对 知
=0,试求 S△BOC∶S△COA∶S△AOB 之值.
[解]
延长 OB 至 B1,使 BB1=OB,
延长 OC 至 C1,使 CC1=2OC,连接 AB1,AC1,B1C1,如图所示, 则 OB1 =2 OB , OC1 =3 OC ,由条件,得 OA + OB1 + OC1 =0,所 1 以点 O 是△AB1C1 的重心.从而 S△B1OC1=S△C1OA=S△AOB1=3S,其 中 S 表示△AB1C1 的面积, 1 1 1 1 1 1 所以 S△COA=9S,S△AOB=6S,S△BOC=2S△B1OC=2×3S△B1OC1=18 S. 1 1 1 于是 S△BOC∶S△COA∶S△AOB=18∶9∶6=1∶2∶3.
高考数学一轮总复习 第四章 平面向量、数系的扩充与复数的引入 第四节 平面向量应用举例课件 文

x-
2 2 cos
x=0,
∴tan x=1.
π (2)∵m 与 n 的夹角为 3 ,
π ∴m·n=|m|·|n|cos 3 ,
即
2 2 sin
x-
2 2 cos
x=12,
∴sinx-π4 =12.
又∵x∈0,π2 ,∴x-π4 ∈-π4 ,π4 ,
ππ ∴x- 4 = 6 ,即
x=51π2 .
解决平面向量与三角函数交汇问题的关键是准确利用向量的坐 标运算化简已知条件,将其转化为三角函数中的有关问题解决.
设向量 a=(cos x,-sin x),b=(2sin x,2sin x)函数 f(x)=a·b +m 的最大值是 2.
(1)求实数 m 的值; (2)若 x∈0,π2 ,且 f(x)=1,求 x 的值.
解:(1)f(x)= 2sin2x+π4 -1+m
∵f(x)max= 2∴m-1=0,∴m=1. (2)2x+π4 ∈π4 ,54π
答案:C
【 探 究 迁 移 1 】 在 本 例 中 , 若 动 点 P 满 足 O→P = O→A + λ|AA→→BB|+|AA→→CC|,λ∈(0,+∞),则如何选择?
解 析 : 由 条 件 , 得 O→P - O→A = λ |AA→→BB|+|AA→→CC| , 即 A→P = λ·|AA→→BB|+|AA→→CC|又|AA→→BB|和AA→→CC分别表示平行于A→B,A→C的单位向量,故 |AA→→BB|+|AA→→CC|平分∠BAC,即A→P平分∠BAC.
所以点 P 的轨迹必过△ABC 的内心. 答案:A
【 探 究 迁 移 2 】 在 本 例 中 , 若 动 点 P 满 足 O→P = O→A +
第四章 第四节 数系的扩充与复数的引入

[题组自测 题组自测] 题组自测 1.若复数 z 满足 +i)z=1-3i,则复数 z 在复平面上的 . 满足(1+ = - , 对应点在 A.第四象限 . C.第二象限 . B.第三象限 . D.第一象限 . ( )
1-3i (1-3i)( -i) - )(1- ) - )( 解析: =-1- , 解析:由已知得 z= = = =- -2i,则 1+i )(1- ) + (1+i)( -i) + )( z 所对应的点为 -1,- ,故 z 对应的点在第三象限. 所对应的点为(- ,- ,-2), 对应的点在第三象限.
a+2i + (a+2i)i + ) 解析: 解析:由题可知 i =b+i,整理可得 i2 =b+i, +, +, =-1, = , 即 2-ai=b+i,根据复数相等可知 a=- ,b=2, - = +, =- 所以 a+b=1. + =
答案: 答案: B
3.若复数z1=4+29i,z2=6+9i,其中 是虚数单位,则 .若复数 是虚数单位, + , + ,其中i是虚数单位 复数(z 的实部为________. 复数 1-z2)i的实部为 的实部为 . 解析:∵z1=4+29i,z2=6+9i, 解析: + , + , =-20- , ∴(z1-z2)i=(-2+20i)i=- -2i, =- + =- 的实部为- ∴复数(z1-z2)i的实部为-20. 复数 的实部为 答案: 答案:-20
答案:B 答案:
)(2+ ) (1+2i)( +i) + )( 3.复数 . 等于 (1-i)2 -) 5 A. 2 5 C. i 2 5 B.- .- 2 5 D.- i .- 2
(
)
)(2+ ) (1+2i)( +i) 2+4i+i+2i2 + )( + ++ 5i 5 解析: 解析: = = =- . 2 (1-i)2 -) -2i -2i
高考一轮第四章 第四节 数系的扩充与复数ppt

返回
3+i 5.若复数z满足z+i= i ,则|z|=________.
3+i 解析:因为z= i -i=1-3i-i=1-4i,则|z|= 17.
答案: 17
返回
1.复数的几何意义 除了复数与复平面内的点和向量的一一对应关系外, 还要注意 (1)|z|=|z-0|=a(a>0)表示复数z对应的点到原点的距离为a;
(3,-4)=λ(-1,2)+μ(1,-1)=(-λ+μ,2λ-μ),
-λ+μ=3, ∴ 2λ-μ=-4, λ=-1, 解得 μ=2.
∴λ+μ=1.
答案:1
返回
[冲关锦囊] 复数与复平面内的点是一一对应的,复数和复平面 内以原点为起点的向量也是一一对应的,因此复数加减
法的几何意义可按平面向量加减法理解,利用平行四边
返回
返回
[精析考题] [例1] 数a为 A.2 1 C.-2 B.-2 1 D.2 (2011· 安徽高考)设i是虚数单位,复数 1+ai 为纯虚数,则实 2-i ( )
返回
[自主解答]
法一:因为
1+ai 1+ai2+i = 2-i 2-i2+i
2-a+2a+1i = 为纯虚数, 5 所以2-a=0,a=2; 1+ai ia-i 法二:因为 = 为虚数,所以a=2. 2-i 2-i
2 2i3-4i 8 6 z2 1+i 2i 2 2 解析:∵z2=z·1,∴z=z = z = = =5+5i. 5 3+4i 3+4i 1
答案:C
返回
[冲关锦囊]
1.复数的加法、减法、乘法运算可以类比多项式运算,除法关 键是分子分母同乘以分母的共轭复数,注意要把i的幂写成最 简形式. 2.记住以下结论,可提高运算速度 1+i 1-i a+bi (1)(1± =± i) 2i;(2) =i;(3) =-i;(4) i =b-ai; 1-i 1+i
4-4第四节 数系的扩充与复数的引入(2015年高考总复习)

第27页
返回导航
第四章
第四节
高考总复习模块新课标
新课标A版数学
(2)在复平面内,复数 6+5i,-2+3i 对应的点分别为 A,B, 若 C 为线段 AB 的中点,则点 C 对应的复数是( A.4+8i C.2+4i B.8+2i D.4+i )
考源教学资源网
第28页
第31页
返回导航
第四章
第四节
高考总复习模块新课标
新课标A版数学
(3)已知复数 z1=cos23° +isin23° 和复数 z2=cos37° +isin37° , 则 z1 · z2 为( 1 3 A.2+ 2 i 1 3 C.2- 2 i ) 3 1 B. 2 +2i 3 1 D. 2 -2i
(2)几何意义: 复数加减法可按向量的平行四边形或三角形法 则进行. 如右图给出的平行四边形 OZ1ZZ2 可以直观地反映出复数加减
→ → → → → → OZ2-OZ1 OZ1+OZ2 ,Z1Z2=____________. 法的几何意义,即OZ=____________
考源教学资源网
第2页
返回导航
第四章
第四节
高考总复习模块新课标
新课标A版数学
高考这样考 1.考查复数的基本概念,复数相等的条件.
2.考查复数的代数形式的运算,复数的几何意义.
考源教学资源网
第3页
返回导航
第四章
第四节
高考总复习模块新课标
新课标A版数学
备考这样做 1.要理解复数的相关概念如实部、 虚部、 纯虚数、 共轭复数等, 以及复数的几何意义. 2.要把复数的基本运算作为复习的重点, 尤其是复数的四则运 算与共轭复数的性质等.因考题较容易,所以重在练基础.
数系的扩充与复数的引入

复数的代数形式:
z a bi (a R, b R)
其中a —实部 , b —虚部 ,
i
称为虚数单位.
讨论:复数集 C 和实数集 R 之间有什么关系?
规定: 0i=0 ,0+bi=bi, a+0i=a
当 b 0 时,这时 z a 是实数. 复数 z a bi 当 b 0 时, z a bi 叫做虚数. 当 a 0且b 0 时,z bi 叫做纯虚数.
2
到底是怎么一回事?
x 2x 3 0 2 配方得 x 2 x 1 2 2 即 ( x 1) 2
2
负数能否开平方?又如 x 1 呢?
2
在解方程时经常会遇到这类问题.如果负数可以 开平方,那这个平方根不会是实数,是什么数呢?
问题解决:为了解决负数开平方问题,我们引入一个新数
由此可知:R
C
复数相等的充要条件: 规定:两复数:
a bi c di a c 且 b d
(其中:a, b, c, d R )
例1 实数m取什么值时,复数
z m 1 (m 1)i
是(1)实数? (2)虚数? (3)纯虚数? 解: (1)当 m 1 0 ,即 m 1 时,复数z 是实数.
把 i 叫做虚数单位,并且规定:
(1) i 21;
i,
(2)实数可以与 i 进行四则运算,在进行四则运算时,原有的加 法与乘法的运算律(包括交换律、结合律和分配律)仍然成立.
这样就会出现许多新数,如 2i 、3i 、2 i 、3 i 等. 形如 a bi (a, b R) 的数叫做复数.
x 3, y 2 ⑵ 若 3 10i y 2 i x 1 9i ,
高中数学第四章数系的扩充与复数的引入4.1数系的扩充与复数的引入复数的确立素材

复数的确立有了实数概念,人们就解决了过去仅有有理数概念时所不能解决的不可公度和开方开不尽等矛盾.但后来随着生产实践的深入发展,又产生了新的矛盾,如负数开平方是什么?众所周知,在实数范围内,任何一个正数或负数的平方都得正数,或者说,没有一个数的平方这样的数称之为“虚数”,以示“不存在”、“虚无”的意思.后来,人们经过长期实践逐步认识到,“虚数”并不虚无,还把虚数与实数的复合形式a+a b,为实数)称为复数.于是,在数的概念中,又引进了复数的概念,数的系统得到了再一次的扩充.“虚数”概念的确立,是一个漫长而曲折的过程,大体可分为以下几个阶段:第一,问题提出阶段.早在公元前,在解决生产实际问题时,人们就遇到了负数开平方问题,例如,解方程210x+=时,又遇到了负数开平方.例如,公元七世纪,我国唐代的《辑古算经》中,就有三次方程问题及其解法.但一直到十六世纪以前,无论是我国还是外国,虽然研究并解决了许多三次方程问题,但对负数开平方问题仍采取回避的态度.就是说,问题是提出来了,但没有解决.第二、理论探讨阶段.到了十六世纪,人们已获得了三次方程的一般求解公式:30x px q++=(p q,为实数)有x①后来,人们发现,某些三次方程有实根,但用公式①求不出实根,于是出现了矛盾.例如,31540x x--=,显然有实根4x=.但应用公式①,则得x===如何解决这一矛盾?当时,人们从理论上进行了探讨,充分发挥了辩证思维的能动作用.例如,1572年,意大利数学家邦别利(R.Bombelli,1526-1572),从21=-出发,证得332(22(2⎧+=+⎪⎨-=⎪⎩③将③代入②,得x224=+.这样,就解决了用公式①求不出实根的矛盾.不仅如此,还逐渐建立了关于虚数的一些运算法则.虚数开始得到人们的承认.第三,实践检验阶段.有了虚数概念之后,人们在理论上把数的概念由实数扩展到了复数.但是,在相当长的时期里,一些人对虚数和复数的存在是有怀疑的.十六世纪的意大利数学家卡当(G.Cardane,1501-1576)仍称复数为“似实而虚的”数.十七、十八世纪,人们努力寻找复数的几何表示和物理意义.到了十九世纪,人们最终作出了复数的各种几何解释,它被理解为平面上的点或矢量,并与物理学上的各种矢量联系起来了.这样,复数在物理学的实际研究中首先得到了一些应用,并受到了初步检验.这种应用,反过来又推动了复数理论的进一步发展,逐渐形成了一门重要的数学分支———复变函数论.复变函数论在解决与弹性力学、电工学、空气动力学、流体力学等有关的生产实际问题中显示出,它是一种很有效的数学工具.既然复变函数论在实践中得到了检验,证明它是科学的数学理论,那么,作为这种理论的基本概念的复数及虚数,也就一同在实践中得到了检验,证明它是科学的数学概念.复数确立之后,数的概念得到了又一次扩展.。
第四节 数系的扩充与复数的引人-高考状元之路

第四节 数系的扩充与复数的引入预习设计 基础备考知识梳理1.复数的有关概念(1)复数的概念:形如),(R b a bi a ∈+的数叫做复数,其中a ,b 分别是它的 和 .若 ,则bi a + 为实数;若,0=/b 则bi a +为虚数;若 ,则bi a +为纯虚数.(2)复数相等:⇔+=+di c bi a ).,,,(R d c b a ∈(3)共轭复数:bi a +与di c +共轭⇔ ).,,,(R d c b a ∈(4)复平面:建立直角坐标系来表示复数的平面,叫做复平面,叫做实轴, 叫做虚轴,实轴上的点都表示 ;除原点外,虚轴上的点都表示 各象限内的点都表示(5)复数的模: 向量OZ 的模r 叫做复数bi a z +=的模,记作 或 ,即=+=||||bi a z2.复数的几何意义(1)复数一一对应bi a z +=复平面内的点).,)(,(R b a b a Z ∈(2)复数一一对应bi a z +=平面向量OZ ).,R b a ∈3.复数的运算(1)复数的加、减、乘、除运算法则:设),,,(,21R d c b a di c z bi a z ∈+=+=则:①加法:=++⋅+=+)()(21di c h a z z②减法:=+-+=-)()(21di c bi a z z③乘法:=+⋅+=)()(.21di c bi a z z④除法:=-+-+=++=))(())((21di c di c di c bi a di c bi a z z ).0(=/+di c(2)复数加法的运算定律:复数的加法满足交换律、结合律,即对任何,,,321c z z z ∈有=+2z z l =++321)(,z z z典题热身1.(2011.广东湛江一中月考)设复数,21,3421i z i z +=-=则复数21z z z =在复平面内所对应的点位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限答案:C2.(2011.山东高考)复数i ii z (22+-=为虚数单位)在复平面内对应的点所在象限为( ) A.第一象限 B .第二象限 C .第三象限 D .第四象限答案:D3.(2011.浙江宁海中学月考)若复数),(225R a i iai ∈+=--则实数a 的值为( ) 0.A 1.-B 1.C 2.D答案:A4.(2010.课标全国卷)已知复数,)31(32i iz -+=若z 是z 的共轭复数,则=⋅z z ( )41.A 21.B 1.C2.D 答案:A5.(2011.江西高考)若,,,2)(R y x i y i i x ∈+=-则复数+x =i y ( )i A +-2. i B +2. i c 21.- i D 21.+答案:B课堂设计 方法备考题型一 复数的基本概念【例1】求当实数m 为何值时,i m m m m m z )65(3622++++--= (1)为实数;(2)为虚数;(3)为纯虚数;(4)z 对应的点在复平面内的第二象限内,题型二 复数相等的概念及应用【例2】设存在复数z 同时满足下列条件:①复数z 在复平面内对应的点位于第二象限;).(82R a ai iz z z ∈+=+②试求a 的取值范围,题型三 复数的代数运算【例3】计算:;)31()22()1(54i i -+ .)12(32132)2(2010i ii -+++-题型四 复数的几何意义【例4】 如图所示,平行四边形OABC ,顶点O ,A ,C 分别表示,42,23,0i i +-+试求:BC AO ,)1(所示表的复数;(2)对角线所表示的复数;(3)求B 点对应的复数.技法巧点1. 复数的代数运算(1)复数代数运算的实质是转化为实数运算,在转化时常用的知识有复数相等,复数的加、减、乘、除运算法则,模的性质,共轭复数的性质.(2)一些常用的结论:;2)1(2i i ±=±① ;11,11i ii i i i -=+-=-+② ,,1144i i i n n ==+③,124-=+n i ;34i i n -=+ ,03424144=++++++n n n n i i i i 其中n 为整数.2.复数的几何意义 (1)(2)∣ z ∣表示复数z 对应的点与原点的距离,||)3(21z z -表示两点间的距离,即表示复数1z 与2z 对应点间的距离.失误防范1.判定复数是实数,仅注重虚部等于O 是不够的,还需考虑它的实部是否有意义.2.对复系数(系数不全为实数)的一元二次方程的求解,判别式不再成立,因此解此类方程的解,一般都是将实根代人方程,用复数相等的条件进行求解.3.两个虚数不能比较大小.4.利用复数相等di c bi a +=+列方程时,注意R d c b a ∈,,,的前提条件.0.52<z 在复数范围内有可能成立,例如:当i z 3=时,.092<-=z随堂反馈1.复数)1(2i i +的实部是 ( ) 1.-A 1.B 2.c 3.D答案:A2.(2010.陕西高考)复数ii z +=1在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案:A3.(2010.天津高考)i 是虚数单位,复数=++-ii 2131( ) i A +1. i B 55.+ i C 55.-- i D --1.答案:A4.(2010.辽宁高考)设a ,b 为实数,若复数,121i bia i +=++则( ) 21,23.==b a A 1,3.==b a B 23,21.==b a C 3,1.==b a D 答案:A5.(2011.浙江台州调研)已知,31,221i z i z -=+=则复数12z z i +的虚部为答案:-1 高效作业 技能备考一、选择题1.(2010.广东高考)若复数,3,121i z i z -=+=则=21.z z ( )i A 24,+ i B +2. i C 22.+ i D +3.答案:A2.(2010.山东高考)若),,(2R b a i b ii a ∈+=+其中i 为虚数单位,则=+b a ( ) 1.-A 1.B 2.C 3.D答案:B3.(2010.杭州市模拟)若i i (2321+-=ω是虚数单位),集合},1,0,1{-=M 则下列结论中正确的是( ) M A ∈+3)1.(ω M B ⊆3.ω M c ≠⊂ω1.M D ∉+ωω2. 答案:A4.(2011.西城模拟)在复平面内,复数i i 32,56+-+对应的点分别为A ,B .若C 为线段AB 的中点,则点C 对应的复数是 ( )i A 84.+ i B 28.+ i C 42.+ i D +4.答案:C5.(2011.宁波模拟)已知复数mi b i a +=+=4,23(其中i 为虚数单位),若复数,0)(2<b a 则实数m 的值为 ( ) 6.-A 6.B 38.c 38.-D 答案:A6.(2011.韶关模拟)已知,c z ∈i i z ,1|22|=--且为虚数单位,则|22|i z -+的最小值是( )2.A3.B4.c5.D答案:B二、填空题7.(2011.泉州模拟)复数ii z +=12的共轭复数=z 答案:i -18.(2011.铜陵调研)已知复数=-=+-=321,1,21z i z i z ,23i -它们所对应的点分别为A ,B ,C .若 +=x ,y 则y x +的值是答案:59.(2011.江苏盐城中学月考)已知实数m ,n 满足-=+11im ni (其中i 是虚数单位),则双曲线122=-ny mx 的离心率为 答案:3三、解答题10.求当实数m 为何值时,++<+--=m m m m z 3)22lg(22,)2i(1)为纯虚数;(2)为实数; (3)对应的点在复平面内的第二象限内.11.若复数1z 与2z 在复平面上所对应的点关于y 轴对称,且,2||),31()3(121-+=-z i z i z 求⋅1z12.已知关于x 的方程:)(09)6(2R a ai x i x ∈=+++-有实数根b .(1)求实数a ,b 的值;(2)若复数z 满足,0||2||=---z bi a z 求z 为何值时,∣z ∣取得最小值,并求出∣z ∣的值.。
高考数学第四章平面向量、数系的扩充与复数的引入4.2平面向量基本定理及坐标表示理高三全册数学

2021/12/12
第十页,共四十一页。
3.在▱ABCD 中,A→B=a,A→D=b,A→N=3N→C,M 为 BC 的中点,
则M→N= -14a+14b
(用 a,b 表示).
解析:因为A→N=3N→C,所以A→N=34A→C=34(a+b),又因为A→M= a+12b,所以M→N=34(a+b)-a+12b=-14a+14b.
D.-12,-5
2021/12/12
第三十页,共四十一页。
解析:(1)设 c=xa+yb,则0,52=(2x-y,x+2y),
2x-y=0, 所以x+2y=52,
解得x=12, y=1,
则 c=12a+b. (2)A→C=A→B+A→D=(-2,3)+(3,7)=(1,10),
∴O→C=12A→C=12,5.∴C→O=-12,-5.
(2)由题意知-2m-12=0,m=-6. (3)因为 b=(2,1),且 a 与 b 的方向相反, 所以设 a=(2λ,λ)(λ<0),因为|a|=2 5, 所以 4λ2+λ2=20,λ2=4,λ=-2. 所以 a=(-4,-2).
2021/12/12
第三十三页,共四十一页。
(1)向量共线的两种表示形式 设 a=(x1,y1),b=(x2,y2),①a∥b⇒a=λb(b≠0);②a∥b⇔x1y2 -x2y1=0. (2)两向量共线的充要条件的作用 判断两向量是否共线(平行),可解决三点共线问题;另外,利用两 向量共线的充要条件可以列出方程(组),求出未知数的值.
(2)法 1:连接 AC(图略),由A→B=λA→M+μA→N,得A→B=λ·12(A→D +A→C)+μ·12(A→C+A→B),则μ2-1A→B+2λA→D+2λ+2μA→C=0,得μ2-1 A→B+2λA→D+2λ+μ2
(完整版)数系的扩充与复数的引入

数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
1.虚数单位i的引入; 2.复数有关概念:
复数的代数形式:z a bi (a R,b R)
2 7 , 0.618, 2 i, 0
7
i i 2 , i 1 3 , 3 9 2i, 5 +8,
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
数系的扩充
复数的概念
例1: 实数m取什么值时,复数
z m 1 (m 1)i
(1)实数? (2)虚数?(3)纯虚数?
满足 i2 1
数系的扩充
复数的概念
现在我们就引入这样一个数 i ,把 i 叫做虚数单位,
并且规定:
(1)i21;
(2)实数可以与 i 进行四则运算,在进行四则运
算时,原有的加法与乘法的运算律(包括交换律、结 合律和分配律)仍然成立。
形如a+bi(a,b∈R)的数叫做复数.
全体复数所形成的集合叫做复数集, 一般用字母C表示 .
数系的扩充
复数的概念
复数的代数形式: 通常用字母 z 表示,即
z a bi (a R位。
讨 论?
复数集C和实数集R之间有什么关系?
实数b 0
R C
复数a+bi虚数b
高三数学复习第四章 平面向量、数系的扩充与复数的引入

提 升 学 科 素 养
演 练 知 能 检 测
第一节
平面向量的概念及其线性运算 [自测· 牛刀小试]
回 扣 主 干 知 识
1.下列说法中正确的是
A.只有方向相同或相反的向量是平行向量 B.零向量的长度为零 C.长度相等的两个向量是相等向量
(
)
提 升 学 科 素 养
突 破 热 点 题 型
解析:向量是既有大小又有方向的量,a与|a|a0的模相
同,但方向不一定相同,故①是假命题;若a与a0平行, 则a与a0的方向有两种情况:一是同向,二是反向,反 向时a=-|a|a0,故②③也是假命题.综上所述,假命 题的个数是3. 答案:D
数学(6省专版)
演 练 知 能 检 测
第一节
平面向量的概念及其线性运算 向量的线性运算
D.共线向量是在一条直线上的向量
解析:由于零向量与任意向量平行,故选项A错误;
长度相等且方向相同的两个向量是相等向量,故C错 误;方向相同或相反的两个非零向量是共线向量,故 D错误.
演 练 知 能 检 测
答案:B
数学(6省专版)
第一节
平面向量的概念及其线性运算
2.(教材习题改编)D 是△ABC 的边 AB 上的中点, 则向量 CD
提 升 学 科 素 养
突 破 热 点 题 型
位向量的核心是方向没有限制,但长度都是一个单位长度;
零向量的核心是方向没有限制,长度是0;规定零向量与任 意向量共线.只有紧紧抓住概念的核心才能顺利解决与向 量概念有关的问题.
——————————————————————————
数学(6省专版)
演 练 知 能 检 测
回 扣 主 干 知 识
高考数学专题平面向量、数系的扩充与复数的引入

第四章平面向量、数系的扩充与复数的引入第一节平面向量的概念及其线性运算(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算平行四边形法则3.共线向量定理向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa .1.作两个向量的差时,要注意向量的方向是指向被减向量的终点; 2.在向量共线的重要条件中易忽视“a ≠0”,否则λ可能不存在,也可能有无数个;3.要注意向量共线与三点共线的区别与联系. [试一试]1.若向量a 与b 不相等,则a 与b 一定( ) A .有不相等的模 B .不共线C .不可能都是零向量D .不可能都是单位向量答案:C2.若菱形ABCD 的边长为2,则|AB -CB+CD |=________.解析:|AB -CB +CD |=|AB +BC +CD |=|AD|=2. 答案:21.向量的中线公式若P 为线段AB 的中点,O 为平面内一点,则OP OP =12(OA +OB). 2.三点共线等价关系A ,P ,B 三点共线⇔AP =λAB(λ≠0)⇔OP =(1-t )·OA +t OB (O 为平面内异于A ,P ,B 的任一点,t ∈R )⇔OP =x OA +y OB(O 为平面内异于A ,P ,B 的任一点,x ∈R ,y ∈R ,x +y =1).[练一练]1.D 是△ABC 的边AB 上的中点,则向量CD等于( )A .-BC +12BAB .-BC -12BAC .BC -12BAD .BC +12BA答案:A2.已知a 与b 是两个不共线向量,且向量a +λb 与-(b -3a )共线,则λ=________.解析:由题意知a +λb =k [-(b -3a )], 所以⎩⎨⎧λ=-k ,1=3k ,解得⎩⎪⎨⎪⎧k =13,λ=-13.答案:-131.给出下列命题: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB =DC是四边形ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ; ④a =b 的充要条件是|a |=|b |且a ∥b ; ⑤若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是( )A .②③B .①②C .③④D .④⑤解析:选A ①不正确.两个向量的长度相等,但它们的方向不一定相同.②正确.∵AB =DC ,∴|AB |=|DC |且AB ∥DC, 又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形; 反之,若四边形ABCD 为平行四边形,则AB ∥DC 且|AB |=|DC |,因此,AB =DC. ③正确.∵a =b ,∴a ,b 的长度相等且方向相同, 又b =c ,∴b ,c 的长度相等且方向相同, ∴a ,c 的长度相等且方向相同,故a =c .④不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.⑤不正确.考虑b =0这种特殊情况. 综上所述,正确命题的序号是②③.故选A.2.设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题的个数是( )A .0B .1C .2D .3解析:选D 向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.[类题通法]平面向量中常用的几个结论(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)向量可以平移,平移后的向量与原向量是相等向量.解题时不要把它与函数图像的平移混为一谈.(3)a |a |是与a 同向的单位向量,a -|a |是与a 反向的单位向量.[典例] (1)如图,在正六边形ABCDEF 中,BA+CD +EF=( )A .0B . BEC .ADD . CF(2)(2013·江苏高考)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE =λ1AB +λ2AC (λ1,λ2为实数),则λ1+λ2的值为________.[解析] (1)如图,∵在正六边形ABCDEF 中,CD =AF,BF =CE,∴BA +CD +EF =BA +AF +EF =BF +EF =CE+EF =CF.(2)由题意DE =CE +BE =12AB +23BC =12AB +23(BA +AC )=-16AB+23AC ,所以λ1=-16,λ2=23,即λ1+λ2=12. [答案] (1)D (2)12解析:∵CD =CA +AD ,CD =CB +BD ,∴2CD =CA +CB +AD +BD .又∵AD=2CE , ∴2CD =CA +CB +13AB =CA +CB +13(CB -CA ) =23CA+43CB .∴CD =13CA +23CB ,即λ=23. 答案:23 [类题通法]在向量线性运算时,要尽可能转化到平行四边形或三角形中,运用平行四边形法则、三角形法则,利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.[针对训练]若A ,B ,C ,D 是平面内任意四点,给出下列式子:①AB +CD =BC +DA ;②AC +BD =BC+AD ; ③AC -BD =DC +AB.其中正确的有( ) A .0个B .1个C .2个D .3个解析:选C ①式的等价式是AB -BC =DA -CD ,左边=AB +CB,右边=DA +DC ,不一定相等;②式的等价式是AC -BC =AD -BD ,AC+CB=AD +CE =AB 成立;③式的等价式是AC -DC =AB +BD ,AD =AD成立.[典例] 设两个非零向量a 与b 不共线,(1)若AB=a +b ,BC =2a +8b ,CD =3(a -b ), 求证:A ,B ,D 三点共线.(2)试确定实数k ,使k a +b 和a +k b 共线.[解] (1)证明:∵AB=a +b ,BC =2a +8b ,CD =3(a -b ),∴BD =BC +CD =2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB. ∴AB ,BD共线, 又∵它们有公共点B , ∴A ,B ,D 三点共线. (2)∵k a +b 与a +k b 共线,∴存在实数λ,使k a +b =λ(a +k b ), 即k a +b =λa +λk b . ∴(k -λ)a =(λk -1)b .∵a ,b 是不共线的两个非零向量, ∴k -λ=λk -1=0, ∴k 2-1=0.∴k =±1.[类题通法]1.共线向量定理及其应用(1)可以利用共线向量定理证明向量共线,也可以由向量共线求参数的值. (2)若a ,b 不共线,则λa +μb =0的充要条件是λ=μ=0,这一结论结合待定系数法应用非常广泛.2.证明三点共线的方法若AB=λAC ,则A 、B 、C 三点共线. [针对训练]已知a ,b 不共线,OA =a ,OB =b , OC =c , OD =d , OE=e ,设t ∈R ,如果3a =c,2b =d ,e =t (a +b ),是否存在实数t 使C ,D ,E 三点在一条直线上?若存在,求出实数t 的值,若不存在,请说明理由.解:由题设知,CD =d -c =2b -3a ,CE=e -c =(t -3)a +t b ,C ,D ,E 三点在一条直线上的充要条件是存在实数k ,使得CE =k CD,即(t -3)a +t b =-3k a +2k b ,整理得(t -3+3k )a =(2k -t )b .因为a ,b 不共线,所以有⎩⎨⎧t -3+3k =0,t -2k =0,解之得t =65.故存在实数t =65使C ,D ,E 三点在一条直线上.第二节平面向量的基本定理及坐标表示1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模: 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |(2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB=(x 2-x 1,y 2-y 1),|AB|3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ∥b ⇔x 1y 2-x 2y 1=0.1.若a 、b 为非零向量,当a ∥b 时,a ,b 的夹角为0°或180°,求解时容易忽视其中一种情形而导致出错;2.要区分点的坐标与向量坐标的不同,尽管在形式上它们完全一样,但意义完全不同,向量坐标中既有方向也有大小的信息.3.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,应表示为x 1y 2-x 2y 1=0.[试一试]1.若向量BA=(2,3),CA =(4,7),则BC =( ) A .(-2,-4) B .(2,4) C .(6,10)D .(-6,-10)答案:A2.(2013·石家庄模拟)已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值是________.解析:∵u =(1+2x,4),v =(2-x,3),u ∥v ,∴8-4x =3+6x ,∴x =12.答案:12用基向量表示所求向量时,注意方程思想的运用. [练一练]设e 1、e 2是平面内一组基向量,且a =e 1+2e 2,b =-e 1+e 2,则向量e 1+e 2可以表示为另一组基向量a ,b 的线性组合,即e 1+e 2=________a +________b .解析:由题意,设e 1+e 2=m a +n b . 因为a =e 1+2e 2,b =-e 1+e 2,所以e 1+e 2=m (e 1+2e 2)+n (-e 1+e 2)=(m -n )e 1+(2m +n )·e 2. 由平面向量基本定理,得⎩⎨⎧m -n =1,2m +n =1,所以⎩⎪⎨⎪⎧m =23,n =-13.答案:23 -131.(2014·昆明一中摸底)已知点M (5,-6)和向量a =(1,-2),若MN=-3a ,则点N 的坐标为( )A .(2,0)B .(-3,6)C .(6,2)D .(-2,0)解析:选A MN =-3a =-3(1,-2)=(-3,6),设N (x ,y ),则MN=(x -5,y -(-6))=(-3,6),所以⎩⎨⎧ x -5=-3,y +6=6,即⎩⎨⎧x =2,y =0,选A.2.(2013·北京高考)向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa+μb (λ,μ∈R ),则λμ=________.解析:设i ,j 分别为水平方向和竖直方向上的正向单位向量,则a =-i +j ,b =6i +2j ,c =-i -3j ,所以-i -3j =λ(-i +j )+μ(6i +2j ),根据平面向量基本定理得λ=-2,μ=-12,所以λμ=4.答案:43.已知A (-2,4),B (3,-1),C (-3,-4).设AB=a ,BC =b ,CA =c . (1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n .解:由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24) =(6,-42).(2)∵m b +n c =(-6m +n ,-3m +8n ), ∴⎩⎨⎧ -6m +n =5,-3m +8n =-5,解得⎩⎨⎧m =-1,n =-1. [类题通法]1.向量的坐标运算实现了向量运算代数化,将数与形结合起来,从而可使几何问题转化为数量运算.2.两个向量相等当且仅当它们的坐标对应相同.此时注意方程(组)思想的应用.[典例] 如图,在梯形ABCD 中,AD ∥BC ,且AD =13BC ,E ,F 分别为线段AD 与BC 的中点.设BA=a ,BC =b ,试用a ,b 为基底表示向量EF , DF ,CD.[解] EF =EA +AB +BF =-16b -a +12b =13b -a ,DF =DE +EF =-16b +⎝ ⎛⎭⎪⎫13b -a =16b -a , CD =CF +FD =-12b -⎝ ⎛⎭⎪⎫16b -a =a -23b . [类题通法]用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.[针对训练](2014·济南调研)如图,在△ABC 中,AN =13NC,P 是BN上的一点,若AP =m AB +211AC ,则实数m 的值为________.解析:因为AP =AB +BP =AB +k BN =AB+k (AN -AB )=AB +k ⎝ ⎛⎭⎪⎫14 AC-AB=(1-k )AB +k 4AC,且AP =m AB +211AC, 所以1-k =m ,k 4=211, 解得k =811,m =311. 答案:311[典例] 平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1). (1)求满足a =m b +n c 的实数m ,n ; (2)若(a +k c )∥(2b -a ),求实数k ;[解] (1)由题意得(3,2)=m (-1,2)+n (4,1), 所以⎩⎨⎧-m +4n =3,2m +n =2,得⎩⎪⎨⎪⎧m =59,n =89.(2)a +k c =(3+4k,2+k ),2b -a =(-5,2), 由题意得2×(3+4k )-(-5)×(2+k )=0. ∴k =-1613.解:设由题意得⎩⎨⎧4(x -4)-2(y -1)=0,(x -4)2+(y -1)2=5, 得⎩⎨⎧ x =3,y =-1或⎩⎨⎧x =5,y =3. ∴d =(3,-1)或(5,3). [类题通法]1.向量共线的两种表示形式设a =(x 1,y 1),b =(x 2,y 2),①a ∥b ⇒a =λb (b ≠0);②a ∥b ⇔x 1y 2-x 2y 1=0,至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.2.两向量共线的充要条件的作用判断两向量是否共线(平行),可解决三点共线的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值.[针对训练]已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a ,b 的关系式; (2)若AC =2AB,求点C 的坐标.解:(1)由已知得AB=(2,-2),AC =(a -1,b -1),∵A ,B ,C 三点共线,∴AB ∥AC.∴2(b -1)+2(a -1)=0,即a +b =2.(2)∵AC =2AB ,∴(a -1,b -1)=2(2,-2). ∴⎩⎨⎧ a -1=4,b -1=-4,解得⎩⎨⎧a =5,b =-3. ∴点C 的坐标为(5,-3).第三节平面向量的数量积与平面向量应用举例1.平面向量的数量积 平面向量数量积的定义已知两个非零向量a 和b ,它们的夹角为θ,把数量|a||b|cos θ叫做a 和b 的数量积(或内积),记作a·b .即a·b =|a||b|cos θ,规定0·a =0.2.向量数量积的运算律 (1)a·b =b·a .(2)(λa )·b =λ(a·b )=a·(λb ). (3)(a +b )·c =a·c +b·c .3.平面向量数量积的有关结论 已知非零向量a =(x 1,y 1),b =(x 2,y 2)1.若a ,b ,c 是实数,则ab =ac ⇒b =c (a ≠0);但对于向量就没有这样的性质,即若向量a ,b ,c ,若满足a ·b =a ·c (a ≠0),则不一定有b =c ,即等式两边不能同时约去一个向量,但可以同时乘以一个向量.2.数量积运算不适合结合律,即(a ·b )·c ≠a ·(b ·c ),这是由于(a ·b )·c 表示一个与c 共线的向量,a ·(b ·c )表示一个与a 共线的向量,而a 与c 不一定共线,因此(a ·b )·c 与a ·(b ·c )不一定相等.[试一试]1.(2013·广州调研)已知向量a ,b 都是单位向量,且a ·b =12,则|2a -b |的值为________.解析:|2a -b |=(2a -b )2=4a 2-4a ·b +b 2=4-2+1= 3. 答案: 32.(2013·山东高考)在平面直角坐标系xOy 中,已知OA =(-1,t ),OB =(2,2).若∠ABO =90°,则实数t 的值为________.解析:AB =OB -OA =(3,2-t ),由题意知OB ·AB=0,所以2×3+2(2-t )=0,t =5.答案:51.明确两个结论:(1)两个向量a 与b 的夹角为锐角,则有a ·b >0,反之不成立(因为夹角为0时不成立);(2)两个向量a 与b 的夹角为钝角,则有a ·b <0,反之不成立(因为夹角为π时不成立).2.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧.[练一练]1.已知向量a ,b 均为非零向量,(a -2b )⊥a ,(b -2a )⊥b ,则a ,b 的夹角为( )A.π6 B.π3 C.2π3D.5π6解析:选B (a -2b )·a =|a |2-2a ·b =0,(b -2a )·b =|b |2-2a ·b =0,所以|a |2=|b |2,即|a |=|b |,故|a |2-2a ·b =|a |2-2|a |2cos a ,b =0,可得cos a ,b =12,又因为0≤ a ,b ≤π,所以 a ,b =π3.2.(2013·福建高考)在四边形ABCD 中,AC =(1,2),BD=(-4,2),则该四边形的面积为( )A. 5B .2 5C .5D .10解析:选C 依题意得,AC ·BD=1×(-4)+2×2=0, ∴AC ⊥BD ,∴四边形ABCD 的面积为12|AC|·|BD |=12×5×20=5.1.(2014·11=(x 2,y 2),若|=2,|b |=3,a ·b =-6.则x 1+y 1x 2+y 2的值为( ) A.23 B .-23 C.56D .-56解析:选B 由已知得,向量a =(x 1,y 1)与b =(x 2,y 2)反向,3a +2b =0,即3(x 1,y 1)+2(x 2,y 2)=(0,0),得x 1=-23x 2,y 1=-23y 2,故x 1+y 1x 2+y 2=-23.2.(2014·温州适应性测试)在△ABC 中,若∠A =120°,AB ·AC=-1,则|BC |的最小值是( )A. 2 B .2C. 6D .6 解析:选C ∵AB ·AC =-1,∴|AB |·|AC |cos 120°=-1,即|AB |·|AC|=2,∴|BC |2=|AC -AB |2=AC 2-2AB ·AC +AB 2≥2|AB |·|AC |-2AB ·AC =6,∴|BC|min = 6.3.(2013·南昌模拟)已知向量e 1=⎝ ⎛⎭⎪⎫cos π4,sin π6,e 2=⎝ ⎛⎭⎪⎫2sin π4,4cos π3,则e 1·e 2=________.解析:由向量数量积公式得e 1·e 2=cos π4×2sin π4+sin π6×4cos π3=22×2+12×2=2.答案:24.(2013·全国卷Ⅱ)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE ·BD=________.解析:因为AE =AD +12AB ,BD =AD -AB ,所以AE ·BD =(AD +12AB )·(AD -AB )=AD 2-12AD ·AB -12AB 2=2. 答案:2 [类题通法]向量数量积的两种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a ·b =|a ||b |cos a ,b .(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.运用两向量的数量积可解决长度、夹角、垂直等问题,解题时应灵活选择相应公式求解.平面向量数量积的性质是高考的重点.归纳起来常见的命题角度有: (1)平面向量的模; (2)平面向量的夹角; (3)平面向量的垂直.角度一 平面向量的模1.(2013·天津高考)在平行四边形ABCD 中,AD =1,∠BAD =60° , E 为CD的中点.若AC ·BE=1 , 则AB 的长为________. 解析:由已知得AC =AD +AB ,BE =AD -12AB,∴AC ·BE =AD 2-12AB ·AD +AB ·AD -12AB 2=1+12AB·AD -12|AB |2=1+12|AB |·|AD |cos 60°-12|AB|2=1,∴|AB |=12.答案:12角度二 平面向量的夹角2.(1)已知平面向量a ,b ,|a |=1,|b |=3,且|2a +b |=7,则向量a 与a +b 的夹角为( )A.π2 B.π3 C.π6D .π解析:选B ∵|2a +b |2=4|a |2+4a ·b +|b |2=7,|a |=1,|b |=3,∴4+4a ·b +3=7,∴a ·b =0,∴a ⊥b .如图所示,a 与a +b 的夹角为∠COA .∵tan ∠COA =|CA ||OA |=|b ||a |=3,∴∠COA =π3,即a 与a +b 的夹角为π3. (2)(2014·云南第一次检测)若平面向量a 与平面向量b 的夹角等于π3,|a |=2,|b |=3,则2a -b 与a +2b 的夹角的余弦值等于( )A.126 B .-126 C.112D .-112解析:选B 记向量2a -b 与a +2b 的夹角为θ,又(2a -b )2=4×22+32-4×2×3×cos π3=13,(a +2b )2=22+4×32+4×2×3×cos π3=52,(2a -b )·(a +2b )=2a 2-2b 2+3a ·b =8-18+9=-1,故cos θ=(2a -b )·(a +2b )|2a -b |·|a +2b |=-126,即向量2a-b 与a +2b 的夹角的余弦值是-126,因此选B.角度三 平面向量的垂直3.(1)(2013·荆州高中毕业班质量检查Ⅰ)已知向量a 与b 的夹角是2π3,且|a |=1,|b |=4,若(2a +λb )⊥a ,则实数λ=________.解析:若a ⊥(2a +λb ),则a ·(2a +λb )=0,即2|a |2+λ·|a ||b |·cos 2π3=0,∴2+λ×1×4×⎝ ⎛⎭⎪⎫-12=0.∴λ=1.答案:1(2)在直角三角形ABC 中,已知AB=(2,3),AC =(1,k ),则k 的值为________. 解析:①当A =90°时,∵AB ⊥AC ,∴AB ·AC=0.∴2×1+3k =0,解得k =-23.②当B =90°时,∵AB ⊥BC, 又BC =AC -AB=(1,k )-(2,3)=(-1,k -3),∴AB ·BC=2×(-1)+3×(k -3)=0, 解得k =113.③当C =90°时, ∵AC ⊥BC,∴1×(-1)+k (k -3)=0,即k 2-3k -1=0.∴k =3±132.答案:-23或113或3±132. [类题通法]1.求两非零向量的夹角时要注意: (1)向量的数量积不满足结合律;(2)数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明两向量的夹角为直角,数量积小于0且两向量不能共线时两向量的夹角就是钝角.2.利用数量积求解长度问题的处理方法 (1)a 2=a ·a =|a |2或|a |=a ·a . (2)|a ±b |=(a ±b )2=a 2±2a ·b +b 2. (3)若a =(x ,y ),则|a |=x 2+y 2.[典例),b =(cos β,,0<β<α<π. (1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值. [解] (1)证明:由题意得|a -b |2=2, 即(a -b )2=a 2-2a ·b +b 2=2. 又因为a 2=b 2=|a |2=|b |2=1, 所以2-2a ·b =2,即a ·b =0,故a ⊥b .(2)因为a +b =(cos α+cos β,sin α+sin β)=(0,1), 所以⎩⎨⎧cos α+cos β=0,sin α+sin β=1.由此得,cos α=cos (π-β),由0<β<π,得0<π-β<π. 又0<α<π,故α=π-β.代入sin α+sin β=1, 得sin α=sin β=12,而α>β,所以α=5π6,β=π6. [类题通法]平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.[针对训练]已知向量a =(sin θ,cos θ-2sin θ),b =(1,2). (1)若a ∥b ,求tan θ的值; (2)若|a |=|b |,0<θ<π,求θ的值.解:(1)因为a ∥b ,所以2sin θ=cos θ-2sin θ, 于是4sin θ=cos θ,故tan θ=14.(2)由|a |=|b |,知sin 2θ+(cos θ-2sin θ)2=5, 所以1-2sin 2θ+4sin 2θ=5.从而-2sin 2θ+2(1-cos 2θ)=4,即sin 2θ+cos 2θ=-1, 于是sin ⎝ ⎛⎭⎪⎫2θ+π4=-22.又由0<θ<π,知π4<2θ+π4<9π4, 所以2θ+π4=5π4或2θ+π4=7π4. 因此θ=π2或θ=3π4.第四节数系的扩充与复数的引入1.复数的有关概念 (1)复数的概念:形如a +b i(a ,b ∈R )的数叫复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0且b ≠0,则a +b i 为纯虚数.(2)复数相等:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ). (3)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R ). (4)复数的模:向量OZ ―→的模r 叫做复数z =a +b i(a ,b ∈R )的模,记作|z |或|a +b i|,即|z |=|a +b i|=a 2+b 2.2.复数的几何意义 (1)复数z =a +b i复平面内的点Z (a ,b )(a ,b ∈R ).(2)复数z =a +b i(a ,b ∈R ) 平面向量OZ.3.复数的运算(1)复数的加、减、乘、除运算法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则 ①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; ②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; ③乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; ④除法:z 1z 2=a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=ac +bd c 2+d 2+bc -ad c 2+d 2i(c +d i ≠0). (2)复数加法的运算定律复数的加法满足交换律、结合律,即对任何z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3).1.判定复数是实数,仅注重虚部等于0是不够的,还需考虑它的实部是否有意义.2.利用复数相等a +b i =c +d i 列方程时,注意a ,b ,c ,d ∈R 的前提条件. 3.z 2<0在复数范围内有可能成立,例如:当z =3i 时z 2=-9<0.[试一试]1.(2014·惠州调研)i 是虚数单位,若z (i +1)=i ,则|z |等于( ) A .1 B.32 C.22D.12解析:选C 由题意知z =i i +1=i (1-i )(i +1)(1-i )=1+i 2,|z |=22,故选C. 2.(2013·天津高考)已知a ,b ∈R ,i 是虚数单位.若(a +i)·(1+i)=b i ,则a +b i =________.解析:因为(a +i)(1+i)=a -1+(a +1)i =b i ,a ,b ∈R ,所以⎩⎨⎧a -1=0,a +1=b ,解得⎩⎨⎧a =1,b =2,所以a +b i =1+2i. 答案:1+2i1.把握复数的运算技巧(1)设z =a +b i(a ,b ∈R ),利用复数相等和相关性质将复数问题实数化是解决复数问题的常用方法.(2)在复数代数形式的四则运算中,加、减、乘运算按多项式运算法则进行,除法则需分母实数化.2.掌握复数代数运算中常用的几个结论在进行复数的代数运算时,记住以下结论,可提高计算速度. (1)(1±i)2=±2i ;1+i 1-i =i ;1-i1+i=-i ; (2)-b +a i =i(a +b i);(3)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i ,i 4n +i 4n +1+i 4n +2+i 4n +3=0,n ∈N *. [练一练](2013·安徽联考)已知i 是虚数单位,则⎝ ⎛⎭⎪⎫1+i 2 2 013在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选C ∵⎝⎛⎭⎪⎫1+i 22=2i2=i , ∴⎝ ⎛⎭⎪⎫1+i 2 2 013=⎝ ⎛⎭⎪⎫1+i 2 2 0121+i 2=i 1 006·1+i 2=i 2·1+i 2=-22-22i.∴其对应点位于第三象限,故选C.1.(2014·湖北八校联考)设x ∈R ,则“x =1”是“复数z =(x 2-1)+(x +1)i 为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C 由纯虚数的定义知:⎩⎨⎧x 2-1=0,x +1≠0,⇒x =1,选C.2.(2014·安徽“江南十校”联考)若a +b i =51+2i(i 是虚数单位,a ,b ∈R ),则ab =( )A .-2B .-1C .1D .2解析:选A a +b i =51+2i =1-2i ,所以a =1,b =-2,ab =-2.3.(2013·安徽高考)设i 是虚数单位,若复数a -103-i(a ∈R )是纯虚数,则a 的值为( )A .-3B .-1C .1D .3解析:选D 复数a -103-i =a -10(3+i )(3-i )(3+i )=(a -3)-i 为纯虚数,则a -3=0,即a =3.4.(2013·洛阳统考)设复数z =-1-i(i 为虚数单位),z 的共轭复数为z ,则|(1-z )·z -|=( )A.10 B .2 C. 2D .1解析:选A 依题意得(1-z )·z -=(2+i)(-1+i)=-3+i ,|(1-z )·z -|=|-3+i|=(-3)2+12=10.选A.[类题通法]解决复数概念问题的方法及注意事项(1)复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.(2)解题时一定要先看复数是否为a +bi (a ,b ∈R )的形式,以确定实部和虚部.[典例] (1)(2013·四川高考)如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( )A .AB .BC .CD .D(2)(2014·郑州质量预测)复数z 1=3+i ,z 2=1-i ,则z =z 1z 2的共轭复数在复平面内的对应点位于( )A .第一象限B .第二象限C .第三象限D .第四象限[解析] (1)设z =a +b i(a ,b ∈R ),且a <0,b >0,则z 的共轭复数为a -b i ,其中a <0,-b <0,故应为B 点.(2)依题意得,z =3+i 1-i =(3+i )(1+i )(1-i )(1+i )=2+4i 2=1+2i ,因此复数z =z 1z 2的共轭复数1-2i 在复平面内的对应点的坐标是(1,-2),该点位于第四象限,选D.[答案] (1)B (2)D [类题通法]对复数几何意义的理解及应用(1)复数z 、复平面上的点Z 及向量OZ相互联系,即z =a +b i(a ,b ∈R )⇔Z (a ,b )⇔ OZ(2)由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.[针对训练]1.(2013·湖北八校联考)已知i 是虚数单位,z =1+i ,z -为z 的共轭复数,则复数z 2z-在复平面上对应的点的坐标为________.解析:z =1+i ,则z 2z -=(1+i )21-i =2i 1-i =2i (1+i )(1-i )(1+i )=-1+i ,则复数z 2z-在复平面上对应的点的坐标为(-1,1).答案:(-1,1)2.已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-4i ,它们在复平面上对应的点分别为A ,B ,C ,若OC =λOA +μOB,(λ,μ∈R ),则λ+μ的值是________.解析:由条件得OC =(3,-4),OA=(-1,2), OB=(1,-1),根据OC =λOA +μOB 得(3,-4)=λ(-1,2)+μ(1,-1)=(-λ+μ,2λ-μ), ∴⎩⎨⎧ -λ+μ=3,2λ-μ=-4,解得⎩⎨⎧λ=-1,μ=2. ∴λ+μ=1. 答案:1[典例] (1)若复数z 满足z (2-i)=11+7i(i 为虚数单位),则z 为( ) A .3+5i B .3-5i C .-3+5iD .-3-5i(2)(2013·长春调研)已知复数z =1+a i(a ∈R ,i 是虚数单位),z -z =-35+45i ,则a =( )A .2B .-2C .±2D .-12[解析] (1)z =11+7i 2-i =(11+7i )(2+i )(2-i )(2+i )=15+25i5=3+5i. (2)由题意可知:1-a i 1+a i =(1-a i )2(1+a i )(1-a i )=1-2a i -a 21+a 2=1-a 21+a 2-2a 1+a 2i =-35+45i ,因此1-a 21+a 2=-35,化简得5a 2-5=3a 2+3,a 2=4,则a =±2,由-2a 1+a 2=45可知a <0,仅有a =-2满足,故选B.[答案] (1)A (2)B解:∵z =3+5i ,∴z -=3-5i∴(1+z )·z -=(4+5i)(3-5i)=12-20i +15i +25=37-5i. [类题通法]复数四则运算的解答策略复数的加法、减法、乘法运算可以类比多项式的运算,除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把i 的幂写成最简形式.[针对训练]1.(2013·山东高考)复数z 满足(z -3)(2-i)=5(i 为虚数单位),则z 的共轭复数z 为( )A .2+iB .2-iC.5+i D.5-i解析:选D由(z-3)(2-i)=5,得z=3+52-i=3+5(2+i)(2-i)(2+i)=3+2+i=5+i,所以z=5-i.2.设复数z的共轭复数为z,若z=1-i(i为虚数单位),则zz+z2的值为()A.-3i B.-2i C.i D.-i解析:选D依题意得zz+z2=1+i1-i+(1-i)2=-i2+i1-i-2i=i-2i=-i.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(2012·清远调研)平面上 O,A,B 三点不共线,设O→A=a,
O→B=b,则△OAB 的面积等于(
)
A. |a|2|b|2-a·b2
B. |a|2|b|2+a·b2
1 C.2
|a|2|b|2-a·b2
1 D.2
|a|2|b|2+a·b2
【解析】 ∵cos〈a,b〉=|aa|·|bb|,
∴sin〈a,b〉= 1-cos2〈a,b〉
a·b
=_|_a_|_|_b_|___=
xx21+1x2y+21 yx122y+2 y22,②|AB|=|A→B|=
=
___x_2_-_x_1_2_+__y_2-__y_1_2_______.
2.向量在物理中的应用 (1)向量的加法、减法在力的分解与合成中的应用. (2)向量在速度的分解与合成中的应用. (3)向量的数量积在合力做功问题中的应用:W=f·s.
=
1-|aa|·|bb|2=
|a|2|b|2-a·b2, |a||b|
S△OAB=12|O→A||O→B|sin〈O→A,O→B〉=12|a||b|sin〈a,b〉,
=1 2
|a|2|b|2-a·b2.
【答案】 C
2.(2011·江西高考)已知过抛物线 y2=2px(p>0)的焦点,斜率
为 2 2的直线交抛物线于 A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|
∴A→D⊥C→E,即 AD⊥CE.
1.本题把证明 AD⊥CE 转化为证明向量垂直,即证明A→D·C→E =0.解题的关键是把A→D,C→E用基向量C→A,C→B表示出来,然后利 用向量的运算法则和性质解决问题.
2.用向量法解决几何问题的“三步曲”,先用向量表示相应 的点、线段、夹角等几何元素;通过平面向量的运算解决向量问 题;把向量运算结果“翻译”成几何关系.
∴ab= =- 3y. x2,
把 a=-x2代入①,得-x2(x+x2)+3y=0,
整理得 y=14x2.
∴动点 M 的轨迹方程是 y=14x2(x≠0).
1.(1)向量法解决平面解析几何问题的关键是把点的坐标 转换成向量的坐标,然后进行向量的运算.(2)相等向量、 共线向量、垂直向量的坐标形式经常用到,必须熟练掌握.
向量在解析几何中的应用
向量在解析几何中的应用
已知点 P(0,-3),点 A 在 x 轴上,点 Q 在 y 轴的正半轴 上,点 M 满足P→A·A→M=0,A→M=-32M→Q,当点 A 在 x 轴上移动 时,求动点 M 的轨迹方程.
【思路点拨】 设动点M(x,y),利用向量共线,垂直等 条件构建x,y满足的代数方程.
3.向量与相关知识的交汇 平面向量作为一种工具,常与函数(三角函数),解析几何结合 ,常通过向量的线性运算与数量积,向量的共线与垂直求解相 关问题.
过点(1,2)且与向量a=(4,2)所在的直线平行的直线,其斜 率与a的坐标有何关系?你能写出该直线的方程吗?
【提示】 直线的斜率 k=24=12,为 a 的纵坐标与横坐标的比值, ∴直线方程为 y-2=12(x-1),即 x-2y+3=0.
整理得:x2+y2= 43
1,即为点
P
的轨迹方程……………...4
分
(2)①当过点 C 的直线斜率不存在时,其方程为 x=-1.
解得 A(-1,-32),B(-1,32).
此时O→A·O→B=-45…………………………………………..6 分
②当过点 C 的直线斜率存在时,设斜率为 k,
则直线 AB 的方程为 y=k(x+1).
向量在三角函数中的应用
(2012·韶关调研)已知向量 a=(cos α,sin α), b=(cos β,sin β),c=(-1,0). (1)求向量 b+c 的长度的最大值; (【2思)设路点α拨=】π4且(1)把ab⊥+c(用b+ 坐标c表),示,求再c求o|bs+βc|2的 的表值达. 式;(2)由向量垂直得数
2.向量在解析几何中出现,多用于“包装”,求解这类 问题要根据向量的意义与运算“脱去”向量外衣,导出曲线 上点的坐标之间的关系,从而解决有关斜率、距离、轨迹与 最值等问题.
从近两年的高考试题来看,用向量方法解决简单的平面几何及 力学问题,要求较低,只是在2011·天津,2010·辽宁高考中各考一 个小题,重点考查向量方法的简单应用,另外向量作为载体,常 与相关知识交汇,平面向量在其中起一个穿针引线的作用,如 2011·江西高考,此类题目常以向量的运算为切入口,体现了向量 的工具性作用.
∴O→A·O→B=x1x2+y1y2=-54kk22+ +132=-45-
33 44k2+
3…..11
分
∴-11≤-
4
4
33 4k2+
3<0,
∴O→A·O→B∈
[-4,-54).
综合①②知,O→A·O→B的取值范围是[-4,-54]………..14 分
【解题程序】 第一步:设点 P(x,y),表示向量P→Q与P→C. 第二步:利用向量数量积与模的运算,得点 P 的轨迹方程. 第三步:讨论斜率不存在的直线 x=-1 时,求O→A·O→B的值. 第四步:当斜率 k 存在时,用参数 k 表示O→A·O→B. 第五步:利用函数的性质与不等式的性质求O→A·O→B的取值范 围.
量积为0,从而列方程求解.
【尝试解答】 (1)b+c=(cos β-1,sin β),则 |b+c|2=(cos β-1)2+sin2β=2(1-cos β). ∵-1≤cos β≤1. ∴0≤|b+c|2≤4, 即 0≤|b+c|≤2. 当 cos β=-1 时,有|b+c|=2, 所以向量 b+c 的长度的最大值为 2.
=9. (1)求该抛物线的方程;
(2)O 为坐标原点,C 为抛物线上一点,若O→C=O→A+λO→B,
求 λ 的值.
【解】
(1)∵直线 AB 斜率为 2
2,且过点(2p,0),
∴直线 AB 的方程为 y=2 2(x-2p),
由y=2 2x-2p, 得 4x2-5px+p2=0,
(*)
y2=2px
所以 x1+x2=54p,
代入方程x2+y2= 43
1,整理得(3+4k2)x2+
8k2x+4k2-12=
0.Βιβλιοθήκη 设 A(x1,y1),B(x2,y2),则 x1+x2=-3+8k42k2,x1x2=43k+2-4k122......................................9 分
∴y1y2=k2(x1x2+x1+x2+1)=-3+9k42k2.
第六步:检验易错点,规范题目结论.
易错提示:(1)不会对向量的条件进行转化,造成思维受阻, 出现这种现象的原因是对平面向量代数化的思想理解不深刻.忽 略对过点 C 的直线斜率的讨论, 导致解答不完整.(2)变形能力 差,部分同学虽得到O→A·O→B=-54kk22+ +132,却无法进一步求出其取 值范围.
平方后化简得 cos β(cos β-1)=0.
解得 cos β=0 或 cos β=1,
经检验 cos β=0 或 cos β=1 满足题设要求.
故 cos β 的值是 1 或 0.
1.解答本题主要用到两方面的知识,一是把向量模 转化为向量的数量积,二是把向量垂直转化为数量积为 0.
2.平面向量与三角函数结合的题目的解题思路通常 是将向量的数量积与模经过坐标运算后转化为三角问题 ,然后利用三角函数基本公式求解.
从近两年的高考试题来看,用向量方法解决简单的平面几何及 力学问题,要求较低,只是在2011·天津,2010·辽宁高考中各考一 个小题,重点考查向量方法的简单应用,另外向量作为载体,常 与相关知识交汇,平面向量在其中起一个穿针引线的作用,如 2011·江西高考,此类题目常以向量的运算为切入口,体现了向量 的工具性作用.
【尝试解答】 设 M(x,y),A(a,0),Q(0,b)(b>0),
则P→A=(a,3), A→M=(x-a,y),M→Q=(-x,b-y).
由P→A·A→M=0,得 a(x-a)+3y=0.
①
由A→M=-23M→Q,得(x-a,y)=-32(-x,b-y).
∴xy= -32a= y-3232xb,,
∴F,f 所做的功分别是 500 3J,-22 J.
1.(1)物理学中的“功”可看作是向量的数量积的原型. (2)善于将平面向量与物理知识进行类比.例如,向量加法的 平行四边形法则可与物理中力、位移的合成分解进行类比.
2.用向量方法解决物理问题的步骤:一是把物理问题中 的相关量用向量表示;二是转化为向量问题的模型,通过向 量运算解决问题;三是将结果还原为物理问题.
由抛物线定义得:|AB|=x1+x2+p=9, 所以 p=4,从而抛物线方程是 y2=8x. (2)由(1)知,p=4,从而由(*)式,得 x2-5x+4=0, ∴x1=1,x2=4. 当 x1=1 时,y1=-2 2;当 x2=4 时,y2=4 2. 因此设点 A(1,-2 2),B(4,4 2), ∴O→C=O→A+λO→B=(1+4λ,4 2λ-2 2), 又点 C 在抛物线 y2=8x 上,
向量在物理中的应用
向量在物理中的应用
如图4-4-2所示,已知力F与水平方向 的夹角为30°(斜向上),F的大小为50 N, F拉着一个重80 N的木块在摩擦因数μ= 0.02的水平平面上运动了20 m,问F、摩擦 力f所做的功分别为多少?
【思路点拨】 力在位移上所做的功,是向量数量积的物理含 义,要先求出力F,f和位移的夹角.
第四节 平面向量应用举例
1.向量在几何中的应用
(1)证明线段平行或点共线问题,常用共线向量定理:a∥b
⇔____a_=_λ_b_______ ⇔x1y2-x2y1=0(b≠0). (2)证明垂直问题,常用数量积的运算性质: a⊥b⇔____a_·_b=__0______ ⇔x1x2+y1y2=0. (3)平面几何中夹角与线段长度计算,常用①cos〈a,b〉