幂函数经典例题(答案)

合集下载

幂函数经典例题(答案)

幂函数经典例题(答案)

幂函数的概念例1、下列结论中,正确的是( ) A .幂函数的图象都通过点(0,0),(1,1) B .幂函数的图象可以出现在第四象限C .当幂指数α取1,3,12时,幂函数y =x α是增函数D .当幂指数α=-1时,幂函数y =x α在定义域上是减函数解析 当幂指数α=-1时,幂函数y =x -1的图象不通过原点,故选项A 不正确;因为所有的幂函数在区间(0,+∞)上都有定义,且y =x α (α∈R ),y >0,所以幂函数的图象不可能出现在第四象限,故选项B 不正确;而当α=-1时,y =x -1在区间(-∞,0)和(0,+∞)上是减函数,但它在定义域上不是减函数. 答案 C例2、已知幂函数f (x )=(t 3-t +1)x 15(7+3t -2t 2) (t ∈Z )是偶函数且在(0,+∞)上为增函数,求实数t 的值.分析 关于幂函数y =x α (α∈R ,α≠0)的奇偶性问题,设pq (|p |、|q |互质),当q 为偶数时,p 必为奇数,y =x p q 是非奇非偶函数;当q 是奇数时,y =x pq 的奇偶性与p 的值相对应.解 ∵f (x )是幂函数,∴t 3-t +1=1, ∴t =-1,1或0.当t =0时,f (x )=x 75是奇函数; 当t =-1时,f (x )=x 25是偶函数;当t =1时,f (x )=x 85是偶函数,且25和85都大于0, 在(0,+∞)上为增函数.故t =1且f (x )=x 85或t =-1且f (x )=x 25.点评 如果题中有参数出现,一定要注意对参数的分类讨论,尤其对题中的条件t ∈Z 给予足够的重视.例3、如图是幂函数y =x m 与y =x n 在第一象限内的图象,则( )A .-1<n<0<m<1B .n <-1,0<m <1C .-1<n <0,m >1D .n <-1,m >1解析 在(0,1)内取同一值x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0<m <1,n <-1.答案 B点评 在区间(0,1)上,幂函数的指数越大,图象越靠近x 轴;在区间(1,+∞)上,幂函数的指数越大,图象越远离x 轴.例4、已知x 2>x 13,求x 的取值范围.错解 由于x 2≥0,x 13∈R ,则由x 2>x 13,可得x ∈R .错因分析 上述错解原因是没有掌握幂函数的图象特征,尤其是y =x α在α>1和0<α<1两种情况下图象的分布.正解作出函数y=x2和y=31x 的图象(如右图所示),易得x<0或x>1.例5、函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,求f (x )的解析式.分析 解答本题可严格根据幂函数的定义形式列方程求出m ,再由单调性确定m .解 根据幂函数定义得m 2-m -1=1,解得m =2或m =-1, 当m =2时,f (x )=x 3在(0,+∞)上是增函数;当m =-1时,f (x )=x -3在(0,+∞)上是减函数,不符合要求.故f (x )=x 3.点评 幂函数y =x α (α∈R ),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数(也可以为0).这是判断一个函数是否为幂函数的重要依据和唯一标准.对本例来说,还要根据单调性验根,以免增根.变式 已知y =(m 2+2m -2)x 1m 2-1+2n -3是幂函数,求m ,n 的值.解由题意得⎩⎪⎨⎪⎧m 2+2m -2=1m 2-1≠02n -3=0,解得⎩⎨⎧m =-3n =32,所以m =-3,n =32.例6、比较下列各组中两个数的大小:(1)535.1,537.1;(2)0.71.5,0.61.5;(3)32)2.1(--,32)25.1(--.解析:(1)考查幂函数y =53x 的单调性,在第一象限内函数单调递增, ∵1.5<1.7,∴535.1<537.1,(2)考查幂函数y =23x 的单调性,同理0.71.5>0.61.5. (3)先将负指数幂化为正指数幂可知它是偶函数, ∵32)2.1(--=322.1-,32)25.1(--=3225.1-,又322.1->3225.1-, ∴32)2.1(-->3225.1-.点评:比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.例7、比较下列各组数的大小(1) 3-52与3.1-52;(2)-8-78与-⎝ ⎛⎭⎪⎫1978.分析 比较大小问题一般是利用函数的单调性,当不便利用单调性时,可用0与1去比较,这种方法叫“搭桥”法.解 (1)函数y =x -52在(0,+∞)上为减函数, 又3<3.1,所以3-52>3.1-52.(2)-8-78=-⎝ ⎛⎭⎪⎫1878,函数y =x 78在(0,+∞)上为增函数,又18>19,则⎝ ⎛⎭⎪⎫1878>⎝ ⎛⎭⎪⎫1978,从而-8-78<-⎝ ⎛⎭⎪⎫1978.点评 比较大小的题,要综合考虑函数的性质,特别是单调性的应用,更善于运用“搭桥”法进行分组,常数0和1是常用的参数.变式 比较下列各组数的大小: (1)⎝ ⎛⎭⎪⎫-23-23与⎝ ⎛⎭⎪⎫-π6-23; (2)4.125,(-1.9)35与3.8-23.解 (1)⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23,⎝ ⎛⎭⎪⎫-π6-23=⎝ ⎛⎭⎪⎫π6-23,∵函数y =x -23在(0,+∞)上为减函数,又∵23>π6, ∴⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23<⎝ ⎛⎭⎪⎫π6-23=⎝ ⎛⎭⎪⎫-π6-23. (2)(4.1)25>125=1,0<3.8-23<1-23=1,(-1.9)35<0,所以(-1.9)35<3.8-23<(4.1)25.例8、 已知幂函数y =x 3m -9 (m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增大而减小,求满足(a +1)-m 3<(3-2a )-m3的a 的范围.解 ∵函数在(0,+∞)上递减, ∴3m -9<0,解得m <3, 又m ∈N *,∴m =1,2. 又函数图象关于y 轴对称,∴3m -9为偶数,故m =1,∴有(a +1)-13<(3-2a )-13.又∵y =x -13在(-∞,0),(0,+∞)上均递减, ∴a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a ,解得23<a <32或a <-1.点评 (1)解决与幂函数有关的综合题时,一定要考虑幂函数的定义.(2)幂函数y =x α,由于α的值不同,单调性和奇偶性也就不同.变式 已知幂函数y =xm 2-2m -3 (m ∈Z )的图象与x 轴、y 轴都无公共点,且关于y 轴对称,求m 的值,且画出它的图象.解 由已知,得m 2-2m -3≤0,∴-1≤m ≤3. 又∵m ∈Z ,∴m =-1,0,1,2,3,当m =0或m =2时,y =x -3为奇函数,其图象不关于y 轴对称,不符合题意.当m =-1或m =3时,有y =x 0,其图象如图①所示. 当m =1时,y =x -4,其图象如图②所示.练习一、选择题 1.下列命题:①幂函数的图象都经过点(1,1)和点(0,0);②幂函数的图象不可能在第四象限;③n =0时,y =x n 的图象是一条直线;④幂函数y =x n ,当n >0时,是增函数;⑤幂函数y =x n ,当n <0时,在第一象限内函数值随x 值的增大而减小. 其中正确的是( )A .①和④B .④和⑤C .②和③D .②和⑤ 答案 D2.下列函数中,不是幂函数的是( )A .y =2xB .y =x -1C .y =xD .y =x 2 答案 A3.设α∈⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,则使f (x )=x α为奇函数且在(0,+∞)内单调递减的α值的个数是( )A .1B .2C .3D .4 答案 A4.当x ∈(1,+∞)时,下列函数图象恒在直线y =x 下方的偶函数是( )A .y =x 12 B .y =x -2 C .y =x 2 D .y =x -1 答案 B5.如果幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( )A .-1≤m ≤2B .m =1或m =2C .m =2D .m =1 答案 B解析 由已知⎩⎪⎨⎪⎧m 2-3m +3=1m 2-m -2≤0∴m =1或m =2. 6.在函数y =1x 2,y =2x 2,y =x 2+x ,y =1 (x ≠0)中幂函数的个数为( ) A .1 B .0 C .2 D .3 答案 C解析 依据幂函数的定义判定,应选C.7.幂函数f (x )的图象过点⎝ ⎛⎭⎪⎫4,12,那么f (8)的值为( )A .2 6B .64 C.24 D.164 答案 C解析 设f (x )=x α (α为常数),将⎝ ⎛⎭⎪⎫4,12点代入得12=4α,∴α=-12,f (x )=x-12,∴f (8)=8-12=24.8.下列函数中,值域为[0,+∞)的函数是( ) A .y =2x B .y =x 2 C .y =x -2 D .y =log a x (a >0,且a ≠1) 答案 B解析 根据函数图象,选B. 二、填空题1.若幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫9,13,则f (25)=_____________. 答案 15解析 设f (x )=x α,则9α=13,α=-12.∴f (25)=25-12=15.2.设幂函数y =x α的图象经过点(8,4),则函数y =x α的值域是______________.答案 [0,+∞)解析 由4=8α,得α=23,∴y =x 23≥0.3. 如图所示是幂函数y=x α在第一象限内的图象,已知α取±2,± 四个值,则相应于曲线C1,C2,C3,C4的α依次为 .答案 2,12,-12,-24.若幂函数y =f (x )的图象经过点(2,2),则f (25)的值是________. 答案 5解析 设y =x α,∵点(2,2)在y =x α的图象上,∴2=2α,∴α=12,∴f (x )=x 12.故f (25)=2512=5.5.幂函数y =x α (α∈R )的图象一定不经过第________象限. 答案 四6.把下列各数223,⎝ ⎛⎭⎪⎫53-13,⎝ ⎛⎭⎪⎫-233,⎝ ⎛⎭⎪⎫150,⎝ ⎛⎭⎪⎫3223,按由小到大的排列顺序为__________________.答案 ⎝ ⎛⎭⎪⎫-233<⎝ ⎛⎭⎪⎫53-13<⎝ ⎛⎭⎪⎫150<⎝ ⎛⎭⎪⎫3223<223.7.已知幂函数f (x )=x -12,若f (a +1)<f (10-2a ),则a 的取值范围是________. 答案 3<a <5解析 f (x )=x -12=1x (x >0),由图象知x ∈(0,+∞)时为减函数,又f (a +1)<f (10-2a ),∴⎩⎪⎨⎪⎧a +1>0,10-2a >0,a +1>10-2a .得⎩⎪⎨⎪⎧a >-1,a <5,a >3.∴3<a <5.三、解答题1.求函数y =52x +2x 51+4(x ≥-32)值域.解析:设t =x 51,∵x ≥-32,∴t ≥-2,则y =t 2+2t +4=(t +1)2+3. 当t =-1时,y min =3.∴函数y =52x +2x 51+4(x ≥-32)的值域为[3,+∞). 点评:这是复合函数求值域的问题,应用换元法.2.已知f (x )=(m 2+2m )·xm 2+m -1,m 是何值时,f (x )是(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.解 (1)若f (x )为正比例函数,则⎩⎪⎨⎪⎧ m 2+m -1=1m 2+2m ≠0,∴m =1. (2)若f (x )为反比例函数,则⎩⎪⎨⎪⎧m 2+m -1=-1m 2+2m ≠0,∴m =-1. (3)若f (x )为二次函数,则⎩⎪⎨⎪⎧m 2+m -1=2m 2+2m ≠0,∴m =-1±132.(4)若f (x )为幂函数,则m 2+2m =1,∴m =-1±2。

幂函数练习题及答案解析

幂函数练习题及答案解析

1.下列幂函数为偶函数的是( ) A .y =x 12B .y =3xC .y =x 2D .y =x -1 解析:选C.y =x 2,定义域为R ,f (-x )=f (x )=x 2.2.若a <0,则0.5a,5a,5-a 的大小关系是( )A .5-a <5a <0.5aB .5a <0.5a <5-aC .0.5a <5-a <5aD .5a <5-a <0.5a解析:选B.5-a =(15)a ,因为a <0时y =x a 单调递减,且15<0.5<5,所以5a <0.5a <5-a .3.设α∈{-1,1,12,3},则使函数y =x α的定义域为R ,且为奇函数的所有α值为( )A .1,3B .-1,1C .-1,3D .-1,1,3解析:选A.在函数y =x -1,y =x ,y =x 12,y =x 3中,只有函数y =x 和y =x 3的定义域是R ,且是奇函数,故α=1,3.4.已知n ∈{-2,-1,0,1,2,3},若(-12)n >(-13)n ,则n =________.解析:∵-12<-13,且(-12)n >(-13)n ,∴y =x n 在(-∞,0)上为减函数.又n ∈{-2,-1,0,1,2,3}, ∴n =-1或n =2. 答案:-1或21.函数y =(x +4)2的递减区间是() A .(-∞,-4) B .(-4,+∞) C .(4,+∞) D .(-∞,4)解析:选A.y =(x +4)2开口向上,关于x =-4对称,在(-∞,-4)递减.2.幂函数的图象过点(2,14),则它的单调递增区间是( )A .(0,+∞)B .[0,+∞)C .(-∞,0)D .(-∞,+∞)解析:选C.幂函数为y =x -2=1x 2,偶函数图象如图.3.给出四个说法:①当n =0时,y =x n 的图象是一个点; ②幂函数的图象都经过点(0,0),(1,1); ③幂函数的图象不可能出现在第四象限;④幂函数y =x n 在第一象限为减函数,则n <0. 其中正确的说法个数是( ) A .1 B .2 C .3 D .4解析:选B.显然①错误;②中如y =x -12的图象就不过点(0,0).根据幂函数的图象可知③、④正确,故选B.4.设α∈{-2,-1,-12,13,12,1,2,3},则使f (x )=x α为奇函数且在(0,+∞)上单调递减的α的值的个数是( )A .1B .2C .3D .4解析:选A.∵f (x )=x α为奇函数,∴α=-1,13,1,3.又∵f (x )在(0,+∞)上为减函数, ∴α=-1.5.使(3-2x -x 2)-34有意义的x 的取值范围是( ) A .RB .x ≠1且x ≠3C .-3<x <1D .x <-3或x >1解析:选C.(3-2x -x 2)-34=14(3-2x -x 2)3,∴要使上式有意义,需3-2x -x 2>0, 解得-3<x <1.6.函数f (x )=(m 2-m -1)x m 2-2m -3是幂函数,且在x ∈(0,+∞)上是减函数,则实数m =( )A .2B .3C .4D .5 解析:选A.m 2-m -1=1,得m =-1或m =2,再把m =-1和m =2分别代入m 2-2m -3<0,经检验得m =2.7.关于x 的函数y =(x -1)α(其中α的取值范围可以是1,2,3,-1,12)的图象恒过点________.解析:当x -1=1,即x =2时,无论α取何值,均有1α=1, ∴函数y =(x -1)α恒过点(2,1). 答案:(2,1)8.已知2.4α>2.5α,则α的取值范围是________.解析:∵0<2.4<2.5,而2.4α>2.5α,∴y =x α在(0,+∞)为减函数. 答案:α<09.把(23)-13,(35)12,(25)12,(76)0按从小到大的顺序排列____________________.解析:(76)0=1,(23)-13>(23)0=1,(35)12<1,(25)12<1, ∵y =x 12为增函数,∴(25)12<(35)12<(76)0<(23)-13. 答案:(25)12<(35)12<(76)0<(23)-1310.求函数y =(x -1)-23的单调区间.解:y =(x -1)-23=1(x -1)23=13(x -1)2,定义域为x ≠1.令t =x -1,则y =t -23,t ≠0为偶函数.因为α=-23<0,所以y =t -23在(0,+∞)上单调递减,在(-∞,0)上单调递增.又t =x-1单调递增,故y =(x -1)-23在(1,+∞)上单调递减,在(-∞,1)上单调递增.11.已知(m +4)-12<(3-2m )-12,求m 的取值范围. 解:∵y =x -12的定义域为(0,+∞),且为减函数. ∴原不等式化为⎩⎪⎨⎪⎧m +4>03-2m >0m +4>3-2m ,解得-13<m <32.∴m 的取值范围是(-13,32).12.已知幂函数y =x m 2+2m -3(m ∈Z )在(0,+∞)上是减函数,求y 的解析式,并讨论此函数的单调性和奇偶性.解:由幂函数的性质可知m 2+2m -3<0⇒(m -1)(m +3)<0⇒-3<m <1, 又∵m ∈Z ,∴m =-2,-1,0.当m =0或m =-2时,y =x -3, 定义域是(-∞,0)∪(0,+∞). ∵-3<0,∴y =x -3在(-∞,0)和(0,+∞)上都是减函数,又∵f (-x )=(-x )-3=-x -3=-f (x ),∴y =x -3是奇函数.当m =-1时,y =x -4,定义域是(-∞,0)∪(0,+∞).∵f (-x )=(-x )-4=1(-x )4=1x4=x -4=f (x ), ∴函数y =x -4是偶函数.∵-4<0,∴y =x -4在(0,+∞)上是减函数,又∵y =x -4是偶函数,∴y =x -4在(-∞,0)上是增函数.1.下列函数中,其定义域和值域不同的函数是( ) A .y =x 13 B .y =x -12 C .y =x 53D .y =x 23解析:选D.y =x 23=3x 2,其定义域为R ,值域为[0,+∞),故定义域与值域不同.2.如图,图中曲线是幂函数y =x α在第一象限的大致图象.已知α取-2,-12,12,2四个值,则相应于曲线C 1,C 2,C 3,C 4的α的值依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-12解析:选B.当x =2时,22>212>2-12>2-2,即C 1:y =x 2,C 2:y =x 12,C 3:y =x -12,C 4:y =x -2.3.以下关于函数y =x α当α=0时的图象的说法正确的是( ) A .一条直线 B .一条射线C .除点(0,1)以外的一条直线D .以上皆错解析:选C.∵y =x 0,可知x ≠0,∴y =x 0的图象是直线y =1挖去(0,1)点.4.函数f (x )=(1-x )0+(1-x )12的定义域为________.解析:⎩⎪⎨⎪⎧1-x ≠01-x ≥0,∴x <1.答案:(-∞,1)1.已知幂函数f (x )的图象经过点(2,22),则f (4)的值为( ) A .16 B.116 C.12D .2解析:选C.设f (x )=x n ,则有2n =22,解得n =-12,即f (x )=x -12,所以f (4)=4-12=12.2.下列幂函数中,定义域为{x |x >0}的是( ) A .y =x 23 B .y =x 32 C .y =x -13 D .y =x -34解析:选D.A.y =x 23=3x 2,x ∈R ;B.y =x 32=x 3,x ≥0;C.y =x -13=13x,x ≠0;D.y =x-34=14x 3,x >0.3.已知幂函数的图象y =xm 2-2m -3(m ∈Z ,x ≠0)与x ,y 轴都无交点,且关于y 轴对称,则m 为( )A .-1或1B .-1,1或3C .1或3D .3解析:选B.因为图象与x 轴、y 轴均无交点,所以m 2-2m -3≤0,即-1≤m ≤3.又图象关于y 轴对称,且m ∈Z ,所以m 2-2m -3是偶数,∴m =-1,1,3.故选B.4.下列结论中,正确的是( ) ①幂函数的图象不可能在第四象限②α=0时,幂函数y =x α的图象过点(1,1)和(0,0) ③幂函数y =x α,当α≥0时是增函数④幂函数y =x α,当α<0时,在第一象限内,随x 的增大而减小 A .①② B .③④ C .②③ D .①④解析:选D.y =x α,当α=0时,x ≠0;③中“增函数”相对某个区间,如y =x 2在(-∞,0)上为减函数,①④正确.5.在函数y =2x 3,y =x 2,y =x 2+x ,y =x 0中,幂函数有( ) A .1个 B .2个 C .3个 D .4个 解析:选B.y =x 2与y =x 0是幂函数.6.幂函数f (x )=x α满足x >1时f (x )>1,则α满足条件( ) A .α>1 B .0<α<1 C .α>0 D .α>0且α≠1解析:选A.当x >1时f (x )>1,即f (x )>f (1),f (x )=x α为增函数,且α>1. 7.幂函数f (x )的图象过点(3,3),则f (x )的解析式是________.解析:设f (x )=x α,则有3α=3=312⇒α=12.答案:f (x )=x 128.设x ∈(0,1)时,y =x p (p ∈R )的图象在直线y =x 的上方,则p 的取值范围是________. 解析:结合幂函数的图象性质可知p <1. 答案:p <19.如图所示的函数F (x )的图象,由指数函数f (x )=a x 与幂函数g (x )=x α“拼接”而成,则a a 、a α、αa 、αα按由小到大的顺序排列为________.解析:依题意得 ⎩⎨⎧a 14=12(14)α=12⇒⎩⎨⎧a =116,α=12.所以a a =(116)116=[(12)4]116,a α=(116)12=[(12)32]116,αa =(12)116,αα=(12)12=[(12)8]116,由幂函数单调递增知a α<αα<a a <αa .答案:a α<αα<a a <αa10.函数f (x )=(m 2-m -5)x m -1是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,试确定m 的值.解:根据幂函数的定义得:m 2-m -5=1, 解得m =3或m =-2,当m =3时,f (x )=x 2在(0,+∞)上是增函数;当m =-2时,f (x )=x -3在(0,+∞)上是减函数,不符合要求.故m =3.11.已知函数f (x )=(m 2+2m )·x m 2+m -1,m 为何值时,f (x )是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数?解:(1)若f (x )为正比例函数,则⎩⎪⎨⎪⎧ m 2+m -1=1m 2+2m ≠0⇒m =1. (2)若f (x )为反比例函数, 则⎩⎪⎨⎪⎧m 2+m -1=-1m 2+2m ≠0⇒m =-1. (3)若f (x )为二次函数, 则⎩⎪⎨⎪⎧m 2+m -1=2m 2+2m ≠0⇒m =-1±132.(4)若f (x )为幂函数,则m 2+2m =1,∴m =-1±2.12.已知幂函数y =x m 2-2m -3(m ∈Z )的图象与x 、y 轴都无公共点,且关于y 轴对称,求m 的值,并画出它的图象.解:由已知,得m 2-2m -3≤0,∴-1≤m ≤3. 又∵m ∈Z ,∴m =-1,0,1,2,3.当m =0或m =2时,y =x -3为奇函数,其图象不关于y 轴对称,不适合题意.∴m=±1或m=3.当m=-1或m=3时,有y=x0,其图象如图(1).当m=1时,y=x-4,其图象如图(2).本文由52求学网论坛微光整理。

(完整版)幂函数练习题及答案

(完整版)幂函数练习题及答案

幂函数练习题及答案、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,填在题后的括号内(每小题 5 分,共50 分).B.幂函数的图象都经过(0 ,0)和(1,1 )点C .若幂函数y x 是奇函数,则y x 是定义域上的增函数D.幂函数的图象不可能出现在第四象限1 6.函数y x3和y x3图象满足请把正确答案的代号1.下列函数中既是偶函数又是( ,0)上是增函数的是4x32.函数3B.y x 221y x 2在区间[ ,2] 上的最大值是2C.D.1A.4 B.1C.D.3.下列所给出的函数中,是幂函数的是A.y x3 3B.y x C.2x3D.5.下列命题中正确的是A.当0 时函数y x的图象是一条直线yy14 4A.关于原点对称B.关于x 轴对称7. 函数 y x|x|,x R ,满足A .是奇函数又是减函数B .是偶函数又是增函数C .是奇函数又是增函数D .是偶函数又是减函数28.函数 y x 2 2x 24 的单调递减区间是 ( )A . ( , 6]B .[ 6, )C .( , 1]D .[ 1, )9. 如图 1— 9所示,幂函数 y x 在第一象限的图象,比较x 1 x 2 f (x 1)f (x 2 )f(x 12x2),f(x 1)2f(x 2)大小关系是( )奇偶性为 . 三、解答题:解答应写出文字说明.证明过程或演算步骤 (共 76 分) .15 .( 12 分)比较下列各组中两个值大小6 6 5 5C .关于 y 轴对称D .关于直线 y x 对称0, 1, 2, 3 , 4 ,1的大小(A.1 34 21 B . 012 3 41C.2 4 0 31 1D.3 24 11410 . 对于幂函数 f (x) x , 若 0 x 1 x 2 ,则A . f(x 1x 2 2f (x 1) f (x 2)2 B . f(x 1x2)f (x 1) f(x 2)2C .x 1f( 1x 22f (x 1) f (x 2 )2D . 无法确定、填空题:请把答案填在题中横线上(每小题6 分,共 24 分)k n( 1)k14 .幂函数 yxm(m,n,kN*, m,n 互质 ) 图象在一、二象限,不过原点,则 k,m,n 的34(1 )0.611与0.7 11;(2)( 0.88)1与( 0.89)3 .16.(12分)已知幂函数2f(x) x m 2m 3(m Z)的图象与x轴,y轴都无交点,且关于y 轴对称,试确f (x)的解析式.117 .(12 分)求证:函数y x3在R上为奇函数且为增函数18 .(12 分)下面六个幂函数的图象如图所示,试建立函数与图象之间的对应关系3 1 21)y x2;(2)y x3;(3)y x3;14)y x 2;(5)y x 3;(6)y x 219.(14分)由于对某种商品开始收税,使其定价比原定价上涨后,商品卖出个数减少bx 成,税率是新定价的a成,这里a,b 均为正常数,且a<10 ,设售货款扣除税款后,剩余y 元,要使y 最大,求x的值.20 .(14 分)利用幂函数图象,画出下列函数的图象(写清步骤)x2 2x 22x2 2x 152)y (x 2)3 1.xx成(即上涨率为10),涨价A)(B)(C)(D )(E)(F)参考答案、CCBADDCADA二、11 .(0, );12.f (x)4x3 (x 0);13.5;14.m, k为奇数,n是偶数;三、15 .解:( 1 ) 函数y6x11在(0, )上是增函数且0 0.6 0.76 0.61160.711(2 )5函数y x3在(0, ) 上增函数且0.88 0.895 0.88350.89350.88350.893 ,即5( 0.88)350.89) 3 .16 .解:2 m 由m22m2mZ303是偶数得m 1,1,3.m 1和3时解析式为 f (x) 0 x ,m 1时解析式为f (x) x17 .解:显然 f ( x) x)3 f (x) ,奇函数;令x1 x2 ,则 f (x1) f (x2 ) 3x13x2 (x1 2x2 )(x12x1x2 x2 ) ,其中,显然x1x2 0,2x1 x1x2 x2 1= (x1 2x2)3x2422,由于且不能同时为0 ,否则x1x2 0 ,故(x11(x1 x2 )1221 2 3 2x2 ) x222420,3x22420,0.从而f(x1) f (x2) 0. 所以该函数为增函数18 .解:六个幂函数的定义域,奇偶性,单调性如下:3(1) y x2x3定义域[0,) ,既不是奇函数也不是偶函数,在[0,) 是增函数;12)y x 3 3 x 定义域为 R ,是奇函数,在 [0, )是增函数;23)y x 3 3 x 2 定义域为 R ,是偶函数,在 [0, )是增函数; 21 4)y x 2 12 定义域 R UR 是偶函数,在 (0, )是减函数;x 315)y x 3 13定义域 R UR 是奇函数,在 (0, )是减函数;x16)y x 2 1定义域为 R 既不是奇函数也不是偶 函数,在 (0, ) x 上减函数 .通过上面分析,可以得出( 1) (A ),( 2) (F ),( 3) (5 ) (D ),( 6 ) (B ) .x19.解:设原定价 A 元,卖出 B 个,则现在定价为 A (1+ 1x 0),20 .解:E ),( 4) ( C ),现在卖出个数为 B (1 - bx ),现在售货金额为 A (1+ x ) B(110 10bx )=AB(1+10x1x 0)(1bx-10),x应交税款为 AB(1+ )(110bx a-10 ) ·10 ,x剩余款为 y = AB(1+)(1 105(1 b) 时y 最大b所以 x-b 1x 0)(1 1a 0)= AB (1要使 y 最大, x 的值为a )( 10 100 5(1 b) xb 1b x 101),向上平移 x 2 2x 2x 2 2x 11 x2 2x(x1 1)21把函数 ,y12的图象向左平移x 21 个单位,再1 个单位可以得到函数2x 2 x2x 2的图象 .2x 1 5(x 2) 31的图象可以由5x 3 图象向右平移 2 个单位,再向下平移。

幂函数练习题及答案

幂函数练习题及答案

幂函数练习题及答案一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.下列函数中既是偶函数又是(,)-∞0上是增函数的是 ( )A .yx =43B .y x =32C .y x =-2D .y x=-142.函数2-=x y 在区间]2,21[上的最大值是( )A .41 B .1-C .4D .4- 3.下列所给出的函数中,是幂函数的是( ) A .3x y -=B .3-=x y C .32x y =D .13-=x y4.函数34x y =的图象是( )A .B .C .D .5.下列命题中正确的是( )A .当0=α时函数αx y =的图象是一条直线B .幂函数的图象都经过(0,0)和(1,1)点C .若幂函数αx y =是奇函数,则αx y =是定义域上的增函数D .幂函数的图象不可能出现在第四象限 6.函数3x y =和31x y =图象满足( )A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .关于直线x y =对称 7. 函数R x x x y ∈=|,|,满足( )A .是奇函数又是减函数B .是偶函数又是增函数C .是奇函数又是增函数D .是偶函数又是减函数8.函数2422-+=x x y 的单调递减区间是( ) A .]6,(--∞B .),6[+∞-C .]1,(--∞D .),1[+∞-9. 如图1—9所示,幂函数αx y =在第一象限的图象,比较1,,,,,04321αααα的大小( ) A .102431<<<<<ααααB .104321<<<<<ααααC .134210αααα<<<<<D .142310αααα<<<<<10. 对于幂函数54)(x x f =,若210x x <<,则)2(21x x f +,2)()(21x f x f +大小关系是( ) A .)2(21x x f +>2)()(21x f x f + B . )2(21x x f +<2)()(21x f x f + C . )2(21x x f +=2)()(21x f x f + D . 无法确定二、填空题:请把答案填在题中横线上(每小题6分,共24分). 11.函数y x=-32的定义域是 .12.的解析式是.13.942--=a ax y是偶函数,且在),0(+∞是减函数,则整数a 的值是 .14.幂函数),*,,,()1(互质n m N k n m xy mn k∈=-图象在一、二象限,不过原点,则n m k ,,的奇偶性为 .1α3α4α2α三、解答题:解答应写出文字说明.证明过程或演算步骤(共76分) . 15.(12分)比较下列各组中两个值大小 (1)060720880896116115353..(.)(.).与;()与--16.(12分)已知幂函数f x x m Z x y y m m ()()=∈--223的图象与轴,轴都无交点,且关于 轴对称,试确f x ()的解析式.17.(12分)求证:函数3x y =在R 上为奇函数且为增函数.18.(12分)下面六个幂函数的图象如图所示,试建立函数与图象之间的对应关系..6543212132323123---======x y x y x y x y x y x y );();()(;);();()((A ) (B ) (C ) (D ) (E ) (F )19.(14分)由于对某种商品开始收税,使其定价比原定价上涨x 成(即上涨率为10x),涨价后,商品卖出个数减少bx 成,税率是新定价的a 成,这里a,b 均为正常数,且a <10,设售货款扣除税款后,剩余y 元,要使y 最大,求x 的值.20.(14分)利用幂函数图象,画出下列函数的图象(写清步骤).(1)y x x x x y x =++++=---22532221221()().参考答案一、CCBAD DCADA 二、11. (,)0+∞; 12.)0()(34≥=x x x f ; 13.5;14.k m ,为奇数,n 是偶数; 三、15. 解:(1)+∞<<<+∞=7.06.00),0(116上是增函数且在函数x y1161167.06.0<∴ (2)函数),0(35+∞=在x y 上增函数且89.088.00<<.)89.0()88.0(,89.088.089.088.0353535353535-<-∴->-∴<∴即16. 解:由.3,1,13203222⎪⎩⎪⎨⎧∈-=--≤--Z m m m m m m 得是偶数.)(1,)(3140-===-=x x f m x x f m 时解析式为时解析式为和17.解: 显然)()()(33x f x x x f -=-=-=-,奇函数; 令21x x <,则))(()()(22212121323121x x x x x x x x x f x f ++-=-=-,其中,显然021<-x x ,222121x x x x ++=2222143)21(x x x ++,由于0)21(221≥+x x ,04322≥x ,且不能同时为0,否则021==x x ,故043)21(22221>++x x x .从而0)()(21<-x f x f . 所以该函数为增函数. 18.解:六个幂函数的定义域,奇偶性,单调性如下: (1)323x x y ==定义域[0,+∞),既不是奇函数也不是偶函数,在[0,+∞)是增函数;.),0(16),0(15),0(14),0[3),0[22133223232331上减函数函数,在既不是奇函数也不是偶定义域为)(是减函数;是奇函数,在定义域)(是减函数;是偶函数,在定义域)(是增函数;,是偶函数,在定义域为)(是增函数;,是奇函数,在定义域为)(+∞==+∞==+∞==+∞==+∞==+--+--+-R xx y UR R x x y UR R x x y R x x y R x x y通过上面分析,可以得出(1)↔(A ),(2)↔(F ),(3)↔(E ),(4)↔(C ),(5)↔(D ),(6)↔(B ).19.解:设原定价A 元,卖出B 个,则现在定价为A(1+10x ), 现在卖出个数为B(1-10bx),现在售货金额为A(1+10x ) B(1-10bx )=AB(1+10x )(1-10bx ),应交税款为AB(1+10x )(1-10bx )·10a,剩余款为y = AB(1+10x)(1-10bx ))101(a -= AB )1101100)(101(2+-+--x b x b a , 所以b b x )1(5-=时y 最大 要使y 最大,x 的值为b b x )1(5-=.20.解:(1)1)1(1112112222222++=+++=++++=x x x x x x x y 把函数21,x y =的图象向左平移1个单位,再向上平移1个单位可以得到函数122222++++=x x x x y 的图象.(2)1)2(35--=-x y 的图象可以由35-=x y 图象向右平移2个单位,再向下平移1个单位而得到.图象略。

幂函数经典例题(答案)

幂函数经典例题(答案)

幂函数经典例题(答案)A .-1<n<0<m<1B .n <-1,0<m <1C .-1<n <0,m >1D .n <-1,m >1解析 在(0,1)内取同一值x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0<m <1,n <-1.答案 B点评 在区间(0,1)上,幂函数的指数越大,图象越靠近x 轴;在区间(1,+∞)上,幂函数的指数越大,图象越远离x 轴.例4、已知x 2>x 13,求x 的取值范围.错解 由于x 2≥0,x 13∈R ,则由x 2>x 13,可得x ∈R.错因分析 上述错解原因是没有掌握幂函数的图象特征,尤其是y =x α在α>1和0<α<1两种情况下图象的分布.正解作出函数y=x2和y=31x 的图象(如右图所示),易得x<0或x>1.例5、函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,求f (x )的解析式.分析 解答本题可严格根据幂函数的定义形式列方程求出m ,再由单调性确定m .解 根据幂函数定义得m 2-m -1=1,解得m =2或m =-1,当m =2时,f (x )=x 3在(0,+∞)上是增函数;当m =-1时,f (x )=x -3在(0,+∞)上是减函数,不符合要求.故f (x )=x 3. 点评 幂函数y =x α (α∈R),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数(也可以为0).这是判断一个函数是否为幂函数的重要依据和唯一标准.对本例来说,还要根据单调性验根,以免增根.变式 已知y =(m 2+2m -2)x 1m 2-1+2n -3是幂函数,求m ,n 的值.解由题意得⎩⎨⎧m 2+2m -2=1m 2-1≠02n -3=0,解得⎩⎪⎨⎪⎧m =-3n =32, 所以m =-3,n =32.例6、比较下列各组中两个数的大小:(1)535.1,537.1;(2)0.71.5,0.61.5;(3)32)2.1(--,32)25.1(--.解析:(1)考查幂函数y =53x 的单调性,在第一象限内函数单调递增, ∵1.5<1.7,∴535.1<537.1,(2)考查幂函数y =23x 的单调性,同理0.71.5>0.61.5. (3)先将负指数幂化为正指数幂可知它是偶函数, ∵32)2.1(--=322.1-,32)25.1(--=3225.1-,又322.1->3225.1-, ∴32)2.1(-->3225.1-.点评:比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.例7、比较下列各组数的大小(1) 3-52与3.1-52;(2)-8-78与-⎝ ⎛⎭⎪⎫1978.分析 比较大小问题一般是利用函数的单调性,当不便利用单调性时,可用0与1去比较,这种方法叫“搭桥”法.解 (1)函数y =x -52在(0,+∞)上为减函数,又3<3.1,所以3-52>3.1-52.(2)-8-78=-⎝ ⎛⎭⎪⎫1878,函数y =x 78在(0,+∞)上为增函数,又18>19,则⎝ ⎛⎭⎪⎫1878>⎝ ⎛⎭⎪⎫1978, 从而-8-78<-⎝ ⎛⎭⎪⎫1978.点评 比较大小的题,要综合考虑函数的性质,特别是单调性的应用,更善于运用“搭桥”法进行分组,常数0和1是常用的参数.变式 比较下列各组数的大小: (1)⎝ ⎛⎭⎪⎫-23-23与⎝ ⎛⎭⎪⎫-π6-23; (2)4.125,(-1.9)35与3.8-23.解 (1)⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23,⎝ ⎛⎭⎪⎫-π6-23=⎝ ⎛⎭⎪⎫π6-23,∵函数y =x -23在(0,+∞)上为减函数,又∵23>π6,∴⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23<⎝ ⎛⎭⎪⎫π6-23=⎝ ⎛⎭⎪⎫-π6-23. (2)(4.1)25>125=1,0<3.8-23<1-23=1,(-1.9)35<0,所以(-1.9)35<3.8-23<(4.1)25.例8、 已知幂函数y =x 3m -9 (m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增大而减小,求满足(a +1)-m 3<(3-2a )-m3的a 的范围.解 ∵函数在(0,+∞)上递减, ∴3m -9<0,解得m <3, 又m ∈N *,∴m =1,2.又函数图象关于y 轴对称, ∴3m -9为偶数,故m =1,∴有(a +1)-13<(3-2a )-13.又∵y =x -13在(-∞,0),(0,+∞)上均递减,∴a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a ,解得23<a <32或a <-1.点评 (1)解决与幂函数有关的综合题时,一定要考虑幂函数的定义.(2)幂函数y =x α,由于α的值不同,单调性和奇偶性也就不同.变式 已知幂函数y =xm 2-2m -3 (m ∈Z)的图象与x 轴、y 轴都无公共点,且关于y 轴对称,求m 的值,且画出它的图象.解 由已知,得m 2-2m -3≤0,∴-1≤m ≤3. 又∵m ∈Z ,∴m =-1,0,1,2,3,当m =0或m =2时,y =x -3为奇函数,其图象不关于y 轴对称,不符合题意.当m =-1或m =3时,有y =x 0,其图象如图①所示. 当m =1时,y =x -4,其图象如图②所示.练习一、选择题 1.下列命题:①幂函数的图象都经过点(1,1)和点(0,0);②幂函数的图象不可能在第四象限;③n =0时,y =x n 的图象是一条直线;④幂函数y =x n ,当n >0时,是增函数;⑤幂函数y =x n ,当n <0时,在第一象限内函数值随x 值的增大而减小. 其中正确的是( )A .①和④B .④和⑤C .②和③D .②和⑤ 答案 D2.下列函数中,不是幂函数的是( )A .y =2xB .y =x -1C .y =xD .y =x 2 答案 A3.设α∈⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,则使f (x )=x α为奇函数且在(0,+∞)内单调递减的α值的个数是( )A .1B .2C .3D .4 答案 A4.当x ∈(1,+∞)时,下列函数图象恒在直线y =x 下方的偶函数是( )A .y =x 12B .y =x -2C .y =x 2D .y =x -1答案 B5.如果幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( )A .-1≤m ≤2B .m =1或m =2C .m =2D .m =1 答案 B解析 由已知⎩⎨⎧m 2-3m +3=1m 2-m -2≤0∴m =1或m =2.6.在函数y =1x2,y =2x 2,y =x 2+x ,y =1 (x ≠0)中幂函数的个数为( )A .1B .0C .2D .3 答案 C解析 依据幂函数的定义判定,应选C.7.幂函数f (x )的图象过点⎝ ⎛⎭⎪⎫4,12,那么f (8)的值为( )A .2 6B .64 C.24 D.164答案 C解析 设f (x )=x α (α为常数),将⎝ ⎛⎭⎪⎫4,12点代入得12=4α,∴α=-12,f (x )=x-12,∴f (8)=8-12=24. 8.下列函数中,值域为[0,+∞)的函数是( ) A .y =2x B .y =x 2 C .y =x -2 D .y =log a x (a >0,且a ≠1) 答案 B解析 根据函数图象,选B. 二、填空题1.若幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫9,13,则f (25)=_____________.答案 15解析 设f (x )=x α,则9α=13,α=-12.∴f (25)=25-12=15.2.设幂函数y =x α的图象经过点(8,4),则函数y =x α的值域是______________.答案 [0,+∞)解析 由4=8α,得α=23,∴y =x 23≥0.3. 如图所示是幂函数y=x α在第一象限内的图象,已知α取±2,± 四个值,则相应于曲线C1,C2,C3,C4的α依次为 .答案 2,12,-12,-24.若幂函数y =f (x )的图象经过点(2,2),则f (25)的值是________. 答案 5解析 设y =x α,∵点(2,2)在y =x α的图象上,∴2=2α,∴α=12,∴f (x )=x 12.故f (25)=2512=5.5.幂函数y =x α (α∈R)的图象一定不经过第________象限. 答案 四6.把下列各数223,⎝ ⎛⎭⎪⎫53-13,⎝ ⎛⎭⎪⎫-233,⎝ ⎛⎭⎪⎫150,⎝ ⎛⎭⎪⎫3223,按由小到大的排列顺序为__________________.答案 ⎝ ⎛⎭⎪⎫-233<⎝ ⎛⎭⎪⎫53-13<⎝ ⎛⎭⎪⎫150<⎝ ⎛⎭⎪⎫3223<223.7.已知幂函数f (x )=x -12,若f (a +1)<f (10-2a ),则a 的取值范围是________.答案 3<a <5解析 f (x )=x -12=1x(x >0),由图象知x ∈(0,+∞)时为减函数,又f (a+1)<f (10-2a ),∴⎩⎨⎧a +1>0,10-2a >0,a +1>10-2a .得⎩⎨⎧a >-1,a <5,a >3.∴3<a <5.三、解答题1.求函数y =52x +2x 51+4(x ≥-32)值域.解析:设t =x 51,∵x ≥-32,∴t ≥-2,则y =t 2+2t +4=(t +1)2+3. 当t =-1时,y min =3.∴函数y =52x +2x 51+4(x ≥-32)的值域为[3,+∞).点评:这是复合函数求值域的问题,应用换元法.2.已知f (x )=(m 2+2m )·xm 2+m -1,m 是何值时,f (x )是(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.解 (1)若f (x )为正比例函数,则 ⎩⎨⎧ m 2+m -1=1m 2+2m ≠0,∴m =1. (2)若f (x )为反比例函数,则 ⎩⎨⎧m 2+m -1=-1m 2+2m ≠0,∴m =-1. (3)若f (x )为二次函数,则 ⎩⎨⎧m 2+m -1=2m 2+2m ≠0,∴m =-1±132.(4)若f (x )为幂函数,则m 2+2m =1,∴m =-1±2。

高一幂函数的试题及答案

高一幂函数的试题及答案

高一幂函数的试题及答案一、选择题1. 下列哪个函数是幂函数?- A. \( y = x^2 + 1 \)- B. \( y = \sqrt{x} \)- C. D. \( y = \frac{1}{x} \)2. 幂函数 \( y = x^3 \) 的图像通过哪个点?- A. (0, 1)- B. (1, 1)- C. (-1, 1)- D. (0, 0)3. 如果幂函数 \( y = x^n \) 的图像关于y轴对称,那么 \( n \) 的值是多少?- A. 1- B. 2- C. -1- D. 任意实数二、填空题4. 幂函数 \( y = x^2 \) 的图像是一个_________。

5. 当 \( n > 0 \) 时,幂函数 \( y = x^n \) 的图像在第一象限内随着 \( x \) 值的增加而_________。

三、解答题6. 已知幂函数 \( y = x^n \) 通过点 (3, 27),请确定 \( n \) 的值。

7. 讨论幂函数 \( y = x^n \) 图像的变化趋势,并说明 \( n \) 的不同取值对图像的影响。

四、计算题8. 计算幂函数 \( y = x^{-2} \) 在 \( x = 2 \) 处的导数。

9. 假设幂函数 \( y = x^n \) 的图像经过点 (2, 8),求 \( n \)的值,并描述其图像的特点。

答案一、选择题1. 正确答案:B. \( y = \sqrt{x} \)(因为 \( \sqrt{x} = x^{1/2} \))2. 正确答案:C. (-1, 1)3. 正确答案:B. 2二、填空题4. 幂函数 \( y = x^2 \) 的图像是一个抛物线。

5. 当 \( n > 0 \) 时,幂函数 \( y = x^n \) 的图像在第一象限内随着 \( x \) 值的增加而增加。

三、解答题6. 由于 \( y = x^n \) 通过点 (3, 27),我们有 \( 27 = 3^n \)。

必修一幂函数(含答案)

必修一幂函数(含答案)

必修⼀幂函数(含答案)2.7幂函数⼀、幂函数定义的应⽤〖例1〗已知函数f(x)=(m 2-m-1)x -5m-3,m 为何值时,f(x): (1)是幂函数;(2)是幂函数,且是(0,+∞)上的增函数; (3)是正⽐例函数; (4)是反⽐例函数.〖例2〗已知y=(m 2+2m-2)·211m x -+(2n-3)是幂函数,求m 、n 的值.⼆、幂函数的图象与性质〖例1〗已知点在幂函数()f x 的图象上,点124?-,,在幂函数()g x 的图象上.定义()()()()()()()≤??=?>??f x f xg x h x g x f x g x ,,,.试求函数h(x)的最⼤值以及单调区间.〖例2〗已知函数2245()44x x f x x x ++=++(1)求()f x 的单调区间;(2)⽐较()f π-与(2f -的⼤⼩(⼆)幂函数的性质与应⽤【例1】(1)试⽐较0.40.2,0.20.2,20.2,21.6的⼤⼩.(2)已知幂函数y=x 3m-9(m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增⼤⽽减⼩,求满⾜() ()--+<-m m 33a 132a 的a 的取值范围.三、幂函数中的三类讨论题〖例1〗已知函数223()()m m f x xm -++=∈Z 为偶函数,且(3)(5)f f <,求m 的值,并确定()f x 的解析式.例2已知函数2()f x x =,设函数()[()](21)()1g x qf f x q f x =-+-+,问是否存在实数(0)q q <,使得()g x 在区间(]4--,∞是减函数,且在区间(40)-,上是增函数?若存在,请求出来;若不存在,请说明理由.例3讨论函数2221()kk y k k x--=+在0x >时随着x 的增⼤其函数值的变化情况.【⾼考零距离】(2010陕西⽂数)7.下列四类函数中,个有性质“对任意的x >0,y >0,函数f (x )满⾜f (x +y )=f (x )f (y )”的是[]()幂函数()对数函数()指数函数()余弦函数【考点提升训练】⼀、选择题(每⼩题6分,共36分)1.(2012·西安模拟)已知幂函数y=f(x)通过点,则幂函数的解析式为( ) ()y=212x()y=12x ()y= 32x()y=521x 22.函数y=1x-x 2的图象关于( ) ()y 轴对称 ()直线y=-x 对称 ()坐标原点对称()直线y=x 对称3.已知(0.71.3)m<(1.30.7)m,则实数m 的取值范围是( ) ()(0,+∞)()(1,+∞) ()(0,1) ()(-∞,0)4.已知幂函数f(x)=x m的部分对应值如表,则不等式f(|x|)≤2的解集为( )(){x|0){x|0≤x ≤4} (){x|x ){x|-4≤x ≤4}5.设函数f(x)=x1()7,x 02,x 0?-?≥<若f(a)<1,则实数a 的取值范围是( )()(-∞,-3) ()(1,+∞) ()(-3,1) ()(-∞,-3)∪(1,+∞) 6.(2012·漳州模拟)设函数f(x)=x 3,若0≤θ≤2π时,f(mcos θ)+f(1-m)>0恒成⽴,则实数m 的取值范围为( )()(-∞,1) ()(-∞, 12) ()(-∞,0) ()(0,1)⼆、填空题(每⼩题6分,共18分)7.(2012·武汉模拟)设x∈(0,1),幂函数y=x a的图象在直线y=x的上⽅,则实数a的取值范围是__________.8.已知幂函数f(x)=12x-,若f(a+1)<f(10-2a),则a的取值范围是_______.9.当0三、解答题(每⼩题15分,共30分)10.(2012·宁德模拟)已知函数f(x)=x m-2x且f(4)=72.(1)求m的值;(2)判定f(x)的奇偶性;(3)判断f(x)在(0,+∞)上的单调性,并给予证明.11.(易错题)已知点(2,4)在幂函数f(x)的图象上,点(12,4)在幂函数g(x)的图象上.(1)求f(x),g(x)的解析式;(2)问当x取何值时有:①f(x)>g(x);②f(x)=g(x);③f(x)<g(x).【探究创新】(16分)已知幂函数y=f(x)=2p3p22x-++(p∈Z)在(0,+∞)上是增函数,且是偶函数.(1)求p的值并写出相应的函数f(x);(2)对于(1)中求得的函数f(x),设函数g(x)=-qf(f(x))+(2q-1)f(x)+1.试问:是否存在实数q(q<0),使得g(x)在区间(-∞,-4]上是减函数,且在(-4,0)上是增函数;若存在,请求出来,若不存在,说明理由.答案解析1.【解析】选.设y=x α,则由已知得,α,即322=2α,∴α=32,∴f(x)= 32x .2.【解析】选.因为函数的定义域为{x|x ≠0},令y=f(x)=1x-x 2, 则f(-x)=1x -(-x)2=1x-x 2=f(x), ∴f(x)为偶函数,故选.3.【解析】选.因为0<0.71.3<0.70=1, 1.30.7>1.30=1,∴0<0.71.3<1.30.7.⼜(0.71.3)m <(1.30.7)m,∴函数y=x m在(0,+∞)上为增函数,故m >0.4.【解题指南】由表中数值,可先求出m 的值,然后由函数的奇偶性及单调性,得出不等式,求解即可.【解析】选.由(12)m m=12,∴f(x)= 12x ,∴f(|x|)=12x ,⼜∵f(|x|)≤2,∴12x ≤2,即|x|≤4,∴-4≤x ≤4.5.【解题指南】分a <0,a ≥0两种情况分类求解. 【解析】选.当a <0时,(12)a-7<1, 即2-a<23,∴a >-3,∴-3<a <0.当a ≥01,∴0≤a <1,综上可得:-3<a <1.6.【解题指南】求解本题先由幂函数性质知f(x)=x 3为奇函数,且在R 上为单调增函数,将已知不等式转化为关于m 与cos θ的不等式恒成⽴求解.【解析】选.因为f(x)=x 3为奇函数且在R 上为单调增函数,∴f(mcos θ)+f(1-m)>0? f(mcos θ)>f(m-1)? mcos θ>m-1?mcos θ-m+1>0恒成⽴,令g(cos θ)=mcos θ-m+1, ⼜0≤θ≤2π,∴0≤cos θ≤1, 则有:()()g 00g 10>,>即m 10m m 10-+??-+?>,>解得:m <1. 7.【解析】由幂函数的图象知a ∈(-∞,1).答案:(-∞,1) 8.【解析】由于f(x)= 12x-在(0,+∞)上为减函数且定义域为(0,+∞),则由f(a+1)<f(10-2a)得a 10102a 0,a 1102a +??-??+-?>>>解得:3<a <5. 答案:(3,5)9.【解题指南】在同⼀坐标系内画出三个函数的图象,数形结合求解. 【解析】画出三个函数的图象易判断f(x)答案:f(x)72,所以4m -24=72.所以m=1. (2)因为f(x)的定义域为{x|x ≠0},关于原点对称, ⼜f(-x)=-x-2x - =-(x-2x)=-f(x),所以f(x)是奇函数. (3)⽅法⼀:设x 1>x 2>0,则f(x 1)-f(x 2)= x 1-12x -(x 2-22x )=(x 1-x 2)(1+122x x ),[来源:/doc/7210e201581b6bd97e19ea07.html ]因为x 1>x 2>0,所以x 1-x 2>0,1+122x x >0. 所以f(x 1)>f(x 2).所以f(x)在(0,+∞)上为单调递增函数. ⽅法⼆:∵f(x)=x-2x,∴f ′(x)=1+22x >0在(0,+∞)上恒成⽴,∴f(x)在(0,+∞)上为单调递增函数.11.【解析】(1)设f(x)=x α, ∵点(2,4)在f(x)的图象上,∴4=2α,∴α=2,即f(x)=x 2. 设g(x)=x β,∵点(12,4)在g(x)的图象上,∴4=(12)β,∴β=-2,即g(x)=x -2. (2)∵f(x)-g(x)=x 2-x -2=x 2-21x=()()222x 1x 1x-+(*)∴当-1<x <1且x ≠0时,(*)式⼩于零,即f(x)<g(x);当x=±1时,(*)式等于零,即f(x)=g(x);当x >1或x <-1时,(*)式⼤于零,即f(x)>g(x). 因此,①当x >1或x <-1时,f(x)>g(x);②当x=±1时,f(x)=g(x);③当-1<x <1且x ≠0时,f(x)<g(x).【误区警⽰】本题(2)在求解中易忽视函数的定义域{x|x ≠0}⽽失误.失误原因:将分式转化为关于x 的不等式时,忽视了等价性⽽致误.【探究创新】【解析】(1)∵幂函数y=x α在(0,+∞)上是增函数时,α>0,∴-12p 2+p+32>0,即p 2-2p-3<0,解得-1<p <3,⼜p ∈Z,∴p=0,1,2. 当p=0时,y=32x 不是偶函数;当p=1时,f(x)=x 2是偶函数;当p=2时,f(x)=32x 不是偶函数,∴p=1,此时f(x)=x 2.(2)由(1)得g(x)=-qx 4+(2q-1)x 2+1,设x 1<x 2,则g(x 1)-g(x 2)=q(4421x x -)+(2q-1)·(2212x x -)=(2221x x -)[q(2212x x +)-(2q-1)].若x 1<x 2≤-4,则2221x x -<0且2212x x +>32,要使g(x)在(-∞,-4]上是减函数,必须且只需q(2212x x +)-(2q-1)<0恒成⽴. 即2q-1>q(2212x x +)恒成⽴. 由2212x x +>32且q <0,得q(2212x x +)<32q ,只需2q-1≥32q 成⽴,则2q-1>q(2212x x +)恒成⽴.∴当q ≤-130时,g(x)在(-∞,-4]上是减函数,同理可证, 当q ≥-130时,g(x)在(-4,0)上是增函数, ∴当q=-130时,g(x)在(-∞,-4]上是减函数,在(-4,0)上是增函数.[来源:学科⽹ZXXK]。

幂函数练习(含答案详解)

幂函数练习(含答案详解)

3.3 幂函数练习一、单选题1、已知幂函数f (x )=kx α(k ∈R ,α∈R)的图象过点⎝⎛⎭⎫12,2,则k +α=( A ) A .12 B .1 C .32D .22、下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( A ) A .y =x-2B .y =x-1C .y =x 2D .y =31x3、幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的图象是( C )4、幂函数()()2222m f x m m x -=--在()0,∞+上单调递减,则实数m 的值为( A ) A .1-B .3C .1-或3D .3-5、若f (x )=12x ,则不等式f (x )>f (8x -16)的解集是( A )A .⎣⎡⎭⎫2,167B .(0,2]C .⎝⎛⎭⎫-∞,167 D .[2,+∞) 6、若幂函数f (x )=()12255a a a x---在(0,+∞)上单调递增,则a 等于( D )A .1B .6C .2D .-17、幂函数a b c d y x y x y x y x ====,,,在第一象限的图像如图所示,则a b c d ,,,的大小关系是 ( D )A .a b c d >>>B .d b c a >>>C .d c b a >>>D .b c d a >>>8、已知幂函数y =p qx (p ,q ∈Z 且p ,q 互质)的图象关于y 轴对称,如图所示,则( D )A .p ,q 均为奇数,且pq >0B .q 为偶数,p 为奇数,且pq <0C .q 为奇数,p 为偶数,且pq >0D .q 为奇数,p 为偶数,且pq <0二、多选题9.下列关于幂函数y x α=的性质说法正确的有( CD ) A .当1α=-时,函数在其定义域上递减 B .当0α=时,函数图象是一条直线 C .当2α=时,函数是偶函数D .当3α=时,函数的图象与x 轴交点的横坐标为0 10.已知函数()a f x x 的图象经过点1,33⎛⎫⎪⎝⎭则( CD )A .()f x 的图象经过点(3,9)B .()f x 的图象关于y 轴对称C .()f x 在(0,)+∞上单调递减D .()f x 在(0,)+∞内的值域为(0,)+∞11、已知幂函数f (x )=()2231mm m m x +---,对任意x 1,x 2∈(0,+∞),且x 1≠x 2,都满足2121)()(x x x f x f -->0,若a ,b ∈R 且f (a )+f (b )<0,则下列结论可能成立的有( BC )A .a +b >0且ab <0B .a +b <0且ab <0C .a +b <0且ab >0D .以上都可能12.若函数()f x x α=的定义域为R 且为奇函数,则α可能的值为( BD )A .1-B .1C .2D .3三、填空题13.若幂函数()21my m m x =--为偶函数,则m = ___2_____ .14、已知幂函数f (x )=mx n +k 的图象过点⎝⎛⎭⎫116,14,则m -2n +3k =_____0__. 15、若()()21221112-+>+m m m ,则实数m 的取值范围是______⎣⎢⎡⎭⎪⎫5-12,2__________.16、给出下面四个条件:①f (m +n )=f (m )+f (n );②f (m +n )=f (m )·f (n );③f (mn )=f (m )·f (n );④f (mn )=f (m )+f (n ).如果m ,n 是幂函数y =f (x )定义域内的任意两个值,那么幂函数y =f (x )一定满足的条件的序号为__③______. 四、解答题17.已知幂函数()f x x α=的图象经过点3,19⎛⎫ ⎪⎝⎭,求函数的解析式,并作出该函数图象的草图,判断该函数的奇偶性和单调性.解:因为幂函数()f x x α=的图象经过点3,19⎛⎫ ⎪⎝⎭,故可得139α=,解得2α=-,故()2f x x -=,其定义域为{|0}x x ≠,关于原点对称;其函数图象如下所示:数形结合可知,因为()f x 的图象关于y 轴对称,故其为偶函数; 且()f x 在()0,+∞单调递减,在(),0-∞单调递增.18、已知幂函数f (x )=(m 2-5m +7)x -m -1(m ∈R)为偶函数.(1)求f ⎝⎛⎭⎫12的值;(2)若f (2a +1)=f (a ),求实数a 的值. 解:(1)由m 2-5m +7=1,得m =2或3. 当m =2时,f (x )=x-3是奇函数,∴不满足题意,∴m =2舍去;当m =3时,f (x )=x -4,满足题意, ∴f (x )=x -4,∴f ⎝⎛⎭⎫12=⎝⎛⎭⎫12-4=16.(2)由f (x )=x-4为偶函数和f (2a +1)=f (a )可得|2a +1|=|a |,即2a +1=a 或2a +1=-a ,∴a =-1或a =-13.19、已知幂函数f (x )=21()mm x-+(m ∈N *).(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若函数f (x )的图象经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.解:(1)因为m 2+m =m (m +1)(m ∈N *),而m 与m +1中必有一个为偶数,所以m 2+m 为偶数, 所以函数f (x )=21()m m x-+(m ∈N *)的定义域为[0,+∞),并且该函数在[0,+∞)上为增函数.(2)因为函数f (x )的图象经过点(2,2), 所以2=2(m 2+m )-12()12m m +-,即122=2()12mm +-,所以m 2+m =2,解得m =1或m =-2. 又因为m ∈N *,所以m =1,f (x )=12x , 又因为f (2-a )>f (a -1), 所以⎩⎪⎨⎪⎧2-a ≥0,a -1≥0,2-a >a -1,解得1≤a <32,故函数f (x )的图象经过点(2,2)时,m =1.满足条件f (2-a )>f (a -1)的实数a 的取值范围为[1,32).20、19.已知函数()()()2151Z m f x m m x m +=-+∈为幂函数,且为奇函数.(1)求m 的值,并确定()f x 的解析式; (2)令()()21g x f x x =++yg x 在1,12x ⎡⎤∈-⎢⎥⎣⎦的值域.解:(1)因为函数()()()2151Z m f x m m x m +=-+∈为幂函数,所以2511m m -+=,解得0m =或5m =, 当0m =时,函数()f x x =是奇函数,符合题意,当5m =时,函数()6f x x =是偶函数,不符合题意,综上所述,m 的值为0,函数()f x 的解析式为()f x x =. (2)由(1)知,()f x x =,所以()()2121g x f x x x x =+=++ 令21t x =+212t x -=,11,0123,032x x t -≤≤∴≤+≤∴≤≤ 所以2211()222t t g t t t -=+=+-,3t ⎡∈⎣, 根据二次函数的性质知,()g t 的对称轴为11122t =-=-⨯,开口向上,所以()g t 在3⎡⎣上单调递增;所以2min011()(0)0222g t g ==+-=-,(2max 31()(3)33122g t g === 所以函数()g x 在1,12⎡⎤-⎢⎥⎣⎦的值域为1312⎡⎤-⎢⎥⎣⎦.。

幂函数经典例题(答案解析)

幂函数经典例题(答案解析)

幂函数的概念例1、下列结论中,正确的是( )A.幂函数的图象都通过点(0,0),(1,1) B.幂函数的图象可以出现在第四象限C.当幂指数α取1,3,12时,幂函数y=xα是增函数D.当幂指数α=-1时,幂函数y=xα在定义域上是减函数解析当幂指数α=-1时,幂函数y=x-1的图象不通过原点,故选项A 不正确;因为所有的幂函数在区间(0,+∞)上都有定义,且y=xα (α∈R),y>0,所以幂函数的图象不可能出现在第四象限,故选项B不正确;而当α=-1时,y=x-1在区间(-∞,0)和(0,+∞)上是减函数,但它在定义域上不是减函数.答案 C例2、已知幂函数f(x)=(t3-t+1)x 15(7+3t-2t2) (t∈Z)是偶函数且在(0,+∞)上为增函数,求实数t的值.分析关于幂函数y=xα(α∈R,α≠0)的奇偶性问题,设pq(|p|、|q|互质),当q为偶数时,p必为奇数,y=x pq是非奇非偶函数;当q是奇数时,y=x pq的奇偶性与p的值相对应.解∵f(x)是幂函数,∴t3-t+1=1,∴t=-1,1或0.当t=0时,f(x)=x75是奇函数;当t=-1时,f(x)=x25是偶函数;当t=1时,f(x)=x85是偶函数,且25和85都大于0,在(0,+∞)上为增函数.故t=1且f(x)=x85或t=-1且f(x)=x25.点评如果题中有参数出现,一定要注意对参数的分类讨论,尤其对题中的条件t∈Z给予足够的重视.例3、如图是幂函数y =x m 与y =x n 在第一象限内的图象,则( )A .-1<n<0<m<1B .n <-1,0<m <1C .-1<n <0,m >1D .n <-1,m >1 解析 在(0,1)内取同一值x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0<m <1,n <-1.答案 B点评 在区间(0,1)上,幂函数的指数越大,图象越靠近x 轴;在区间(1,+∞)上,幂函数的指数越大,图象越远离x 轴.例4、已知x 2>x 13,求x 的取值范围.错解 由于x 2≥0,x 13∈R ,则由x 2>x 13,可得x ∈R .错因分析 上述错解原因是没有掌握幂函数的图象特征,尤其是y =x α在α>1和0<α<1两种情况下图象的分布.正解作出函数y=x2和y=31x 的图象(如右图所示),易得x<0或x>1.例5、函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,求f (x )的解析式.分析 解答本题可严格根据幂函数的定义形式列方程求出m ,再由单调性确定m .解 根据幂函数定义得m 2-m -1=1,解得m =2或m =-1,当m =2时,f (x )=x 3在(0,+∞)上是增函数;当m =-1时,f (x )=x -3在(0,+∞)上是减函数,不符合要求.故f (x )=x 3.点评 幂函数y =x α (α∈R ),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数(也可以为0).这是判断一个函数是否为幂函数的重要依据和唯一标准.对本例来说,还要根据单调性验根,以免增根.变式 已知y =(m 2+2m -2)x 1m 2-1+2n -3是幂函数,求m ,n 的值.解由题意得⎩⎨⎧m 2+2m -2=1m 2-1≠02n -3=0,解得⎩⎨⎧m =-3n =32,所以m =-3,n =32.例6、比较下列各组中两个数的大小:(1)535.1,537.1;(2)0.71.5,0.61.5;(3)32)2.1(--,32)25.1(--.解析:(1)考查幂函数y =53x 的单调性,在第一象限内函数单调递增, ∵1.5<1.7,∴535.1<537.1,(2)考查幂函数y =23x 的单调性,同理0.71.5>0.61.5. (3)先将负指数幂化为正指数幂可知它是偶函数, ∵32)2.1(--=322.1-,32)25.1(--=3225.1-,又322.1->3225.1-, ∴32)2.1(-->3225.1-.点评:比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.例7、比较下列各组数的大小(1) 3-52与3.1-52;(2)-8-78与-⎝ ⎛⎭⎪⎫1978.分析 比较大小问题一般是利用函数的单调性,当不便利用单调性时,可用0与1去比较,这种方法叫“搭桥”法.解 (1)函数y =x -52在(0,+∞)上为减函数,又3<3.1,所以3-52>3.1-52.(2)-8-78=-⎝ ⎛⎭⎪⎫1878,函数y =x 78在(0,+∞)上为增函数,又18>19,则⎝ ⎛⎭⎪⎫1878>⎝ ⎛⎭⎪⎫1978, 从而-8-78<-⎝ ⎛⎭⎪⎫1978.点评 比较大小的题,要综合考虑函数的性质,特别是单调性的应用,更善于运用“搭桥”法进行分组,常数0和1是常用的参数.变式 比较下列各组数的大小: (1)⎝ ⎛⎭⎪⎫-23-23与⎝ ⎛⎭⎪⎫-π6-23;(2)4.125,(-1.9)35与3.8-23.解 (1)⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23,⎝ ⎛⎭⎪⎫-π6-23=⎝ ⎛⎭⎪⎫π6-23,∵函数y =x -23在(0,+∞)上为减函数,又∵23>π6,∴⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23<⎝ ⎛⎭⎪⎫π6-23=⎝ ⎛⎭⎪⎫-π6-23. (2)(4.1)25>125=1,0<3.8-23<1-23=1,(-1.9)35<0,所以(-1.9)35<3.8-23<(4.1)25.例8、 已知幂函数y =x 3m -9 (m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增大而减小,求满足(a +1)-m 3<(3-2a )-m3的a 的范围.解 ∵函数在(0,+∞)上递减, ∴3m -9<0,解得m <3, 又m ∈N *,∴m =1,2.又函数图象关于y 轴对称, ∴3m -9为偶数,故m =1,∴有(a +1)-13<(3-2a )-13.又∵y =x -13在(-∞,0),(0,+∞)上均递减,∴a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a ,解得23<a <32或a <-1.点评 (1)解决与幂函数有关的综合题时,一定要考虑幂函数的定义.(2)幂函数y =x α,由于α的值不同,单调性和奇偶性也就不同.变式 已知幂函数y =xm 2-2m -3 (m ∈Z )的图象与x 轴、y 轴都无公共点,且关于y 轴对称,求m 的值,且画出它的图象.解 由已知,得m 2-2m -3≤0,∴-1≤m ≤3. 又∵m ∈Z ,∴m =-1,0,1,2,3, 当m =0或m =2时,y =x -3为奇函数,其图象不关于y 轴对称,不符合题意. 当m =-1或m =3时,有y =x 0,其图象如图①所示. 当m =1时,y =x -4,其图象如图②所示.练习一、选择题 1.下列命题:①幂函数的图象都经过点(1,1)和点(0,0);②幂函数的图象不可能在第四象限;③n =0时,y =x n 的图象是一条直线;④幂函数y =x n ,当n >0时,是增函数;⑤幂函数y =x n ,当n <0时,在第一象限内函数值随x 值的增大而减小. 其中正确的是( )A .①和④B .④和⑤C .②和③D .②和⑤ 答案 D2.下列函数中,不是幂函数的是( )A .y =2xB .y =x -1C .y =xD .y =x 2 答案 A3.设α∈⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-2,-1,-12,13,12,1,2,3,则使f (x )=x α为奇函数且在(0,+∞)内单调递减的α值的个数是( )A .1B .2C .3D .4 答案 A 4.当x ∈(1,+∞)时,下列函数图象恒在直线y =x 下方的偶函数是( )A .y =x 12B .y =x -2C .y =x 2D .y =x -1答案 B 5.如果幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( )A .-1≤m ≤2B .m =1或m =2C .m =2D .m =1 答案 B解析 由已知⎩⎨⎧m 2-3m +3=1m 2-m -2≤0∴m =1或m =2.6.在函数y =1x2,y =2x 2,y =x 2+x ,y =1 (x ≠0)中幂函数的个数为( )A .1B .0C .2D .3 答案 C解析 依据幂函数的定义判定,应选C.7.幂函数f (x )的图象过点⎝ ⎛⎭⎪⎫4,12,那么f (8)的值为( )A .2 6B .64 C.24 D.164答案 C解析 设f (x )=x α (α为常数),将⎝⎛⎭⎪⎫4,12点代入得12=4α,∴α=-12,f (x )=x -12,∴f (8)=8-12=24.8.下列函数中,值域为[0,+∞)的函数是( )A .y =2xB .y =x 2C .y =x -2D .y =log a x (a >0,且a ≠1) 答案 B解析 根据函数图象,选B. 二、填空题1.若幂函数y =f (x )的图象经过点⎝⎛⎭⎪⎫9,13,则f (25)=_____________.答案 15解析 设f (x )=x α,则9α=13,α=-12.∴f (25)=25-12=15.2.设幂函数y =x α的图象经过点(8,4),则函数y =x α的值域是______________.答案 [0,+∞)解析 由4=8α,得α=23,∴y =x 23≥0.3. 如图所示是幂函数y=x α在第一象限内的图象,已知α取±2,± 四个值,则相应于曲线C1,C2,C3,C4的α依次为 .答案 2,12,-12,-24.若幂函数y =f (x )的图象经过点(2,2),则f (25)的值是________.答案 5解析 设y =x α,∵点(2,2)在y =x α的图象上,∴2=2α,∴α=12,∴f (x )=x 12.故f (25)=2512=5.5.幂函数y =x α(α∈R )的图象一定不经过第________象限. 答案 四6.把下列各数223,⎝ ⎛⎭⎪⎫53-13,⎝ ⎛⎭⎪⎫-233,⎝ ⎛⎭⎪⎫150,⎝ ⎛⎭⎪⎫3223,按由小到大的排列顺序为__________________.答案 ⎝ ⎛⎭⎪⎫-233<⎝ ⎛⎭⎪⎫53-13<⎝ ⎛⎭⎪⎫150<⎝ ⎛⎭⎪⎫3223<223.7.已知幂函数f (x )=x -12,若f (a +1)<f (10-2a ),则a 的取值范围是________.答案 3<a <5解析 f (x )=x -12=1x (x >0),由图象知x ∈(0,+∞)时为减函数,又f (a+1)<f (10-2a ),∴⎩⎨⎧a +1>0,10-2a >0,a +1>10-2a .得⎩⎨⎧a >-1,a <5,a >3.∴3<a <5.三、解答题1.求函数y =52x +2x 51+4(x ≥-32)值域.解析:设t =x 51,∵x ≥-32,∴t ≥-2,则y =t 2+2t +4=(t +1)2+3. 当t =-1时,y min =3.∴函数y =52x +2x 51+4(x ≥-32)的值域为[3,+∞).点评:这是复合函数求值域的问题,应用换元法.2.已知f (x )=(m 2+2m )·xm 2+m -1,m 是何值时,f (x )是(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.解 (1)若f (x )为正比例函数,则⎩⎨⎧m 2+m -1=1m 2+2m ≠0,∴m =1. (2)若f (x )为反比例函数,则 ⎩⎨⎧m 2+m -1=-1m 2+2m ≠0,∴m =-1. (3)若f (x )为二次函数,则⎩⎨⎧m 2+m -1=2m 2+2m ≠0,∴m =-1±132. (4)若f (x )为幂函数,则m 2+2m =1,∴m =-1±2。

幂函数练习题及答案解析

幂函数练习题及答案解析

幂函数练习题及答案解析1.下列幂函数中为偶函数的是 y = x^2.解析:定义域为实数集,f(-x) = (-x)^2 = x^2,因此是偶函数。

2.若 a < 1,则 5a < 0.5a < 5-a。

解析:因为 a < 1,所以 y = x 是单调递减函数且 0.5 < 5 < 5-a,因此 5a < 0.5a < 5-a。

3.α 可能的取值为 1 和 3,使得函数y = x^α 的定义域为实数集且为奇函数。

解析:只有函数 y = x 和 y = x^3 的定义域是实数集且为奇函数,因此α 可能的取值为 1 和 3.4.当 n = -1 或 n = 2 时,满足 (-2)^n。

(-3)^n。

解析:因为 (-2)^n。

0 且 (-3)^n < 0,所以 y = x^n 在 (-∞。

+∞) 上为减函数。

因此 n = -1 或 n = 2.1.函数 y = (x+4)^2 的递减区间是 (-∞。

-4)。

解析:函数的开口向上,关于 x = -4 对称,因此在 (-∞。

-4) 上递减。

2.幂函数的图像过点(2.4),则其单调递增区间是(-∞。

0)。

解析:因为 y = x^2 的图像是开口向上的抛物线,过点(2.4),因此其单调递增区间为 (-∞。

0)。

3.正确的说法有 2 个。

解析:①错误;②中 y = x^-1 的图像不过点 (1.1);③正确;④正确,因此有 2 个正确的说法。

4.使f(x) = x^α 为奇函数且在(0.+∞) 上单调递减的α 的值的个数是 1.解析:因为f(x) = x^α 为奇函数,所以α 为奇数,因此α可能的取值为 -3.-1.1.3.因为在(0.+∞) 上单调递减,所以只有α = -1 满足条件。

因此个数为 1.1.α=-1,1,3.由于f(x)在(,+∞)上为减函数,所以α=-1.2.使(3-2x-x^2)/4有意义的x的取值范围是(-3<x<1)。

考点11 幂函数(练习)(解析版)

考点11 幂函数(练习)(解析版)

考点11:幂函数【题组一 幂函数定义辨析】1.已知函数()()22231m m f x m m x +-=--是幂函数,且其图象与两坐标轴都没有交点,则实数m = 。

【答案】-1 【解析】函数()()22231m m f x m m x +-=--是幂函数,211m m ∴--=,解得:2m =或1m =-,2m =时,()f x x =,其图象与两坐标轴有交点不合题意,1m =-时,()41f x x =,其图象与两坐标轴都没有交点,符合题意,故1m =-。

2.函数2()(1)n f x n n x =--是幂函数,且在()0,x ∈+∞上是减函数,则实数n =_______【答案】﹣1【解析】函数f (x )=(n 2﹣n ﹣1)x n 是幂函数,∴n 2﹣n ﹣1=1,解得n =﹣1或n =2;当n =﹣1时,f (x )=x ﹣1,在x ∈(0,+∞)上是减函数,满足题意; 当n =2时,f (x )=x 2,在x ∈(0,+∞)上是增函数,不满足题意.综上,n =﹣1.故答案为:﹣1.3.2222()(1)mm f x m m x --=--是幂函数,且在(0,)x ∈+∞上是减函数,则实数m =______. 【答案】2【解析】2222()(1)mm f x m m x --=--是幂函数,则211m m --=,解得2m =或1m =-. 当2m =时,()2f x x -=,在(0,)x ∈+∞上是减函数,满足;当1m =-时,()f x x =,在(0,)x ∈+∞上是增函数,排除.综上所述:2m =.故答案为:2.4.若幂函数a y x =的图像过点(28),,则a =__________. 【答案】3 【解析】幂函数a y x =的图像过点()28,,3282,3a a ∴===,故答案为3. 5.幂函数()()22m f x m m x =+在[)0,+∞上为单调递增的,则m =______.【答案】12【解析】由幂函数()()22m f x m m x =+在[)0,+∞上为单调递增的, 所以2210m m m ⎧+=⎨>⎩,解得12m =.故答案为:12. 6.幂函数()()223mm f x x m --=∈Z 的图像与坐标轴没有公共点,且关于y 轴对称,则m 的值为______. 【答案】1,1,3-【解析】由于幂函数()()223m m f x x m --=∈Z 的图像与坐标轴没有公共点,所以{}2230131,0,1,2,3m m m m --≤⇒-≤≤⇒∈-,又因为函数为偶函数,故分别代入检验可知:1,1,3m =-满足;故填: 1,1,3-7.幂函数()222533m m y m m x+-=-+在()0,∞+单调递减,则实数m 的值为_________.【答案】1 【解析】由题意可得22331250m m m m ⎧-+=⎨+-<⎩,解得1m =,故答案为:1 【题组二 幂函数性质】1.幂函数25y x -=的定义域为_________(用区间表示).【答案】()(),00,-∞⋃+∞ 【解析】幂函数25y x -=,20x ∴>,解得0x ≠,∴函数y 的定义域为()(),00,-∞⋃+∞.故答案为:()(),00,-∞⋃+∞.2.已知幂函数()y f x =的图象过点(,则这个函数的定义域为__________.【答案】[)0,+∞【解析】由题意可知,设()()f x x R αα=∈函数()f x 图象过点((2)2f α∴==即12α=∴()f x =要使得函数()f x =0x ≥,即函数()f x 的定义域为[)0,+∞.故答案为:[)0,+∞ 3.使(3-2x -x 234)-有意义的x 的取值范围是________.【答案】(-3,1)【解析】()332432x x-⎛⎫--=,要使表达式有意义,必有2032x x -->,解得31x -<<,故答案为()3,1-.4.若1144(1)(32)a a --+<-,则a 的取值范围是 ______ 【答案】23,32⎛⎫ ⎪⎝⎭【解析】幂函数y x α=,当0α<时是减函数,函数 14y x-=的定义域为()0,∞+, 所以有1320a a +>->,解得2332a <<,故答案为 23,32⎛⎫ ⎪⎝⎭ . 5.若()()1133132a a --+<-,则实数a 的取值范围是______. 【答案】23(,)(,1)32-∞- 【解析】由题得11331111()(),132132a a a a<∴<+-+-,所以110132a a -<+-, 所以321320,0(1)(32)(1)(23)a a a a a a a ----<∴<+-+-,所以(1)(23)(32)0a a a +--<, 所以2332a <<或1a <-,所以a 的取值范围为23(,)(,1)32-∞-.故答案为:23(,)(,1)32-∞- 6.若 1.30.3(0.3)(1.3)>m m ,则实数m 的取值范围是________.【答案】0m <【解析】由题: 1.3000.300.30.31 1.3 1.3<<==<,考虑幂函数()m f x x =,()()1.30.30.3 1.3f f >,根据幂函数的性质,()0,mm f x x >=在()0,x ∈+∞单调递增, ()00,m f x x ==在()0,x ∈+∞为常数函数,()0,m m f x x <=在()0,x ∈+∞单调递减,此题只需()mf x x =在()0,x ∈+∞单调递减,所以0m <.故答案为:0m < 7.若()()11132a a --+<-,试求a 的取值范围 .【答案】()23,1,32⎛⎫-∞- ⎪⎝⎭ 【解析】∵()()11132a a --+<-,∴10,320,132a a a a +>⎧⎪->⎨⎪+>-⎩或10,320,132a a a a +<⎧⎪-<⎨⎪+>-⎩或320,10,a a ->⎧⎨+<⎩解得2332a <<或1a <-.故a 的取值范围是()23,1,32⎛⎫-∞- ⎪⎝⎭. 8.不等式()()2233131x x ->+的解为 。

幂函数练习题及答案解析

幂函数练习题及答案解析

1.下列幂函数为偶函数的是( ) A .y =x 12B .y =3xC .y =x 2D .y =x -1 解析:选C.y =x 2,定义域为R ,f (-x )=f (x )=x 2.2.若a <0,则0.5a,5a,5-a 的大小关系是( )A .5-a <5a <0.5aB .5a <0.5a <5-aC .0.5a <5-a <5aD .5a <5-a <0.5a解析:选B.5-a =(15)a ,因为a <0时y =x a 单调递减,且15<0.5<5,所以5a <0.5a <5-a .3.设α∈{-1,1,12,3},则使函数y =x α的定义域为R ,且为奇函数的所有α值为( )A .1,3B .-1,1C .-1,3D .-1,1,3解析:选A.在函数y =x -1,y =x ,y =x 12,y =x 3中,只有函数y =x 和y =x 3的定义域是R ,且是奇函数,故α=1,3.4.已知n ∈{-2,-1,0,1,2,3},若(-12)n >(-13)n ,则n =________.解析:∵-12<-13,且(-12)n >(-13)n ,∴y =x n 在(-∞,0)上为减函数.又n ∈{-2,-1,0,1,2,3}, ∴n =-1或n =2. 答案:-1或21.函数y =(x +4)2的递减区间是() A .(-∞,-4) B .(-4,+∞) C .(4,+∞) D .(-∞,4)解析:选A.y =(x +4)2开口向上,关于x =-4对称,在(-∞,-4)递减.2.幂函数的图象过点(2,14),则它的单调递增区间是( )A .(0,+∞)B .[0,+∞)C .(-∞,0)D .(-∞,+∞)解析:选C.幂函数为y =x -2=1x 2,偶函数图象如图.3.给出四个说法:①当n =0时,y =x n 的图象是一个点; ②幂函数的图象都经过点(0,0),(1,1); ③幂函数的图象不可能出现在第四象限;④幂函数y =x n 在第一象限为减函数,则n <0. 其中正确的说法个数是( ) A .1 B .2 C .3 D .4解析:选B.显然①错误;②中如y =x -12的图象就不过点(0,0).根据幂函数的图象可知③、④正确,故选B.4.设α∈{-2,-1,-12,13,12,1,2,3},则使f (x )=x α为奇函数且在(0,+∞)上单调递减的α的值的个数是( )A .1B .2C .3D .4解析:选A.∵f (x )=x α为奇函数,∴α=-1,13,1,3.又∵f (x )在(0,+∞)上为减函数, ∴α=-1.5.使(3-2x -x 2)-34有意义的x 的取值范围是( ) A .RB .x ≠1且x ≠3C .-3<x <1D .x <-3或x >1解析:选C.(3-2x -x 2)-34=14(3-2x -x 2)3,∴要使上式有意义,需3-2x -x 2>0, 解得-3<x <1.6.函数f (x )=(m 2-m -1)x m 2-2m -3是幂函数,且在x ∈(0,+∞)上是减函数,则实数m =( )A .2B .3C .4D .5 解析:选A.m 2-m -1=1,得m =-1或m =2,再把m =-1和m =2分别代入m 2-2m -3<0,经检验得m =2.7.关于x 的函数y =(x -1)α(其中α的取值范围可以是1,2,3,-1,12)的图象恒过点________.解析:当x -1=1,即x =2时,无论α取何值,均有1α=1, ∴函数y =(x -1)α恒过点(2,1). 答案:(2,1)8.已知2.4α>2.5α,则α的取值范围是________.解析:∵0<2.4<2.5,而2.4α>2.5α,∴y =x α在(0,+∞)为减函数. 答案:α<09.把(23)-13,(35)12,(25)12,(76)0按从小到大的顺序排列____________________.解析:(76)0=1,(23)-13>(23)0=1,(35)12<1,(25)12<1, ∵y =x 12为增函数,∴(25)12<(35)12<(76)0<(23)-13. 答案:(25)12<(35)12<(76)0<(23)-1310.求函数y =(x -1)-23的单调区间.解:y =(x -1)-23=1(x -1)23=13(x -1)2,定义域为x ≠1.令t =x -1,则y =t -23,t ≠0为偶函数.因为α=-23<0,所以y =t -23在(0,+∞)上单调递减,在(-∞,0)上单调递增.又t =x-1单调递增,故y =(x -1)-23在(1,+∞)上单调递减,在(-∞,1)上单调递增.11.已知(m +4)-12<(3-2m )-12,求m 的取值范围. 解:∵y =x -12的定义域为(0,+∞),且为减函数. ∴原不等式化为⎩⎪⎨⎪⎧m +4>03-2m >0m +4>3-2m ,解得-13<m <32.∴m 的取值范围是(-13,32).12.已知幂函数y =x m 2+2m -3(m ∈Z )在(0,+∞)上是减函数,求y 的解析式,并讨论此函数的单调性和奇偶性.解:由幂函数的性质可知m 2+2m -3<0⇒(m -1)(m +3)<0⇒-3<m <1, 又∵m ∈Z ,∴m =-2,-1,0.当m =0或m =-2时,y =x -3, 定义域是(-∞,0)∪(0,+∞). ∵-3<0,∴y =x -3在(-∞,0)和(0,+∞)上都是减函数,又∵f (-x )=(-x )-3=-x -3=-f (x ),∴y =x -3是奇函数.当m =-1时,y =x -4,定义域是(-∞,0)∪(0,+∞).∵f (-x )=(-x )-4=1(-x )4=1x4=x -4=f (x ), ∴函数y =x -4是偶函数.∵-4<0,∴y =x -4在(0,+∞)上是减函数,又∵y =x -4是偶函数,∴y =x -4在(-∞,0)上是增函数.1.下列函数中,其定义域和值域不同的函数是( ) A .y =x 13 B .y =x -12 C .y =x 53D .y =x 23解析:选D.y =x 23=3x 2,其定义域为R ,值域为[0,+∞),故定义域与值域不同.2.如图,图中曲线是幂函数y =x α在第一象限的大致图象.已知α取-2,-12,12,2四个值,则相应于曲线C 1,C 2,C 3,C 4的α的值依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-12解析:选B.当x =2时,22>212>2-12>2-2,即C 1:y =x 2,C 2:y =x 12,C 3:y =x -12,C 4:y =x -2.3.以下关于函数y =x α当α=0时的图象的说法正确的是( ) A .一条直线 B .一条射线C .除点(0,1)以外的一条直线D .以上皆错解析:选C.∵y =x 0,可知x ≠0,∴y =x 0的图象是直线y =1挖去(0,1)点.4.函数f (x )=(1-x )0+(1-x )12的定义域为________.解析:⎩⎪⎨⎪⎧1-x ≠01-x ≥0,∴x <1.答案:(-∞,1)1.已知幂函数f (x )的图象经过点(2,22),则f (4)的值为( ) A .16 B.116 C.12D .2解析:选C.设f (x )=x n ,则有2n =22,解得n =-12,即f (x )=x -12,所以f (4)=4-12=12.2.下列幂函数中,定义域为{x |x >0}的是( ) A .y =x 23 B .y =x 32 C .y =x -13 D .y =x -34解析:选D.A.y =x 23=3x 2,x ∈R ;B.y =x 32=x 3,x ≥0;C.y =x -13=13x,x ≠0;D.y =x-34=14x 3,x >0.3.已知幂函数的图象y =xm 2-2m -3(m ∈Z ,x ≠0)与x ,y 轴都无交点,且关于y 轴对称,则m 为( )A .-1或1B .-1,1或3C .1或3D .3解析:选B.因为图象与x 轴、y 轴均无交点,所以m 2-2m -3≤0,即-1≤m ≤3.又图象关于y 轴对称,且m ∈Z ,所以m 2-2m -3是偶数,∴m =-1,1,3.故选B.4.下列结论中,正确的是( ) ①幂函数的图象不可能在第四象限②α=0时,幂函数y =x α的图象过点(1,1)和(0,0) ③幂函数y =x α,当α≥0时是增函数④幂函数y =x α,当α<0时,在第一象限内,随x 的增大而减小 A .①② B .③④ C .②③ D .①④解析:选D.y =x α,当α=0时,x ≠0;③中“增函数”相对某个区间,如y =x 2在(-∞,0)上为减函数,①④正确.5.在函数y =2x 3,y =x 2,y =x 2+x ,y =x 0中,幂函数有( ) A .1个 B .2个 C .3个 D .4个 解析:选B.y =x 2与y =x 0是幂函数.6.幂函数f (x )=x α满足x >1时f (x )>1,则α满足条件( ) A .α>1 B .0<α<1 C .α>0 D .α>0且α≠1解析:选A.当x >1时f (x )>1,即f (x )>f (1),f (x )=x α为增函数,且α>1. 7.幂函数f (x )的图象过点(3,3),则f (x )的解析式是________.解析:设f (x )=x α,则有3α=3=312⇒α=12.答案:f (x )=x 128.设x ∈(0,1)时,y =x p (p ∈R )的图象在直线y =x 的上方,则p 的取值范围是________. 解析:结合幂函数的图象性质可知p <1. 答案:p <19.如图所示的函数F (x )的图象,由指数函数f (x )=a x 与幂函数g (x )=x α“拼接”而成,则a a 、a α、αa 、αα按由小到大的顺序排列为________.解析:依题意得 ⎩⎨⎧a 14=12(14)α=12⇒⎩⎨⎧a =116,α=12.所以a a =(116)116=[(12)4]116,a α=(116)12=[(12)32]116,αa =(12)116,αα=(12)12=[(12)8]116,由幂函数单调递增知a α<αα<a a <αa .答案:a α<αα<a a <αa10.函数f (x )=(m 2-m -5)x m -1是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,试确定m 的值.解:根据幂函数的定义得:m 2-m -5=1, 解得m =3或m =-2,当m =3时,f (x )=x 2在(0,+∞)上是增函数;当m =-2时,f (x )=x -3在(0,+∞)上是减函数,不符合要求.故m =3.11.已知函数f (x )=(m 2+2m )·x m 2+m -1,m 为何值时,f (x )是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数?解:(1)若f (x )为正比例函数,则⎩⎪⎨⎪⎧ m 2+m -1=1m 2+2m ≠0⇒m =1. (2)若f (x )为反比例函数, 则⎩⎪⎨⎪⎧m 2+m -1=-1m 2+2m ≠0⇒m =-1. (3)若f (x )为二次函数, 则⎩⎪⎨⎪⎧m 2+m -1=2m 2+2m ≠0⇒m =-1±132.(4)若f (x )为幂函数,则m 2+2m =1,∴m =-1±2.12.已知幂函数y =x m 2-2m -3(m ∈Z )的图象与x 、y 轴都无公共点,且关于y 轴对称,求m 的值,并画出它的图象.解:由已知,得m 2-2m -3≤0,∴-1≤m ≤3. 又∵m ∈Z ,∴m =-1,0,1,2,3.当m =0或m =2时,y =x -3为奇函数,其图象不关于y 轴对称,不适合题意.∴m=±1或m=3.当m=-1或m=3时,有y=x0,其图象如图(1).当m=1时,y=x-4,其图象如图(2).本文由52求学网论坛微光整理。

幂函数练习题及答案解析

幂函数练习题及答案解析

1.下列幂函数为偶函数的是( )A .y =x 12B .y =3xC .y =x 2D .y =x -1 解析:选C.y =x 2,定义域为R ,f (-x )=f (x )=x 2.2.若a <0,则0.5a,5a,5-a 的大小关系是( )A .5-a <5a <0.5aB .5a <0.5a <5-aC .0.5a <5-a <5aD .5a <5-a <0.5a解析:选B.5-a =(15)a ,因为a <0时y =x a 单调递减,且15<0.5<5,所以5a <0.5a <5-a .3.设α∈{-1,1,12,3},则使函数y =x α的定义域为R ,且为奇函数的所有α值为( )A .1,3B .-1,1C .-1,3D .-1,1,3解析:选A.在函数y =x -1,y =x ,y =x 12,y =x 3中,只有函数y =x 和y =x 3的定义域是R ,且是奇函数,故α=1,3.4.已知n ∈{-2,-1,0,1,2,3},若(-12)n >(-13)n ,则n =________.解析:∵-12<-13,且(-12)n >(-13)n ,∴y =x n 在(-∞,0)上为减函数.又n ∈{-2,-1,0,1,2,3}, ∴n =-1或n =2. 答案:-1或21.函数y =(x +4)2的递减区间是( ) A .(-∞,-4) B .(-4,+∞) C .(4,+∞) D .(-∞,4)解析:选A.y =(x +4)2开口向上,关于x =-4对称,在(-∞,-4)递减.2.幂函数的图象过点(2,14),则它的单调递增区间是( )A .(0,+∞)B .[0,+∞)C .(-∞,0)D .(-∞,+∞)解析:选C.幂函数为y =x -2=1x 2,偶函数图象如图.3.给出四个说法:①当n =0时,y =x n 的图象是一个点; ②幂函数的图象都经过点(0,0),(1,1); ③幂函数的图象不可能出现在第四象限;④幂函数y =x n 在第一象限为减函数,则n <0. 其中正确的说法个数是( ) A .1 B .2 C .3 D .4解析:选B.显然①错误;②中如y =x -12的图象就不过点(0,0).根据幂函数的图象可知③、④正确,故选B.4.设α∈{-2,-1,-12,13,12,1,2,3},则使f (x )=x α为奇函数且在(0,+∞)上单调递减的α的值的个数是( )A .1B .2C .3D .4解析:选A.∵f (x )=x α为奇函数,∴α=-1,13,1,3.又∵f (x )在(0,+∞)上为减函数, ∴α=-1.5.使(3-2x -x 2)-34有意义的x 的取值范围是( ) A .RB .x ≠1且x ≠3C .-3<x <1D .x <-3或x >1解析:选C.(3-2x -x 2)-34=14(3-2x -x 2)3,∴要使上式有意义,需3-2x -x 2>0, 解得-3<x <1.6.函数f (x )=(m 2-m -1)x m 2-2m -3是幂函数,且在x ∈(0,+∞)上是减函数,则实数m =( )A .2B .3C .4D .5 解析:选A.m 2-m -1=1,得m =-1或m =2,再把m =-1和m =2分别代入m 2-2m -3<0,经检验得m =2.7.关于x 的函数y =(x -1)α(其中α的取值范围可以是1,2,3,-1,12)的图象恒过点________.解析:当x -1=1,即x =2时,无论α取何值,均有1α=1, ∴函数y =(x -1)α恒过点(2,1). 答案:(2,1)8.已知2.4α>2.5α,则α的取值范围是________.解析:∵0<2.4<2.5,而2.4α>2.5α,∴y =x α在(0,+∞)为减函数. 答案:α<09.把(23)-13,(35)12,(25)12,(76)0按从小到大的顺序排列____________________.解析:(76)0=1,(23)-13>(23)0=1,(35)12<1,(25)12<1, ∵y =x 12为增函数,∴(25)12<(35)12<(76)0<(23)-13. 答案:(25)12<(35)12<(76)0<(23)-1310.求函数y =(x -1)-23的单调区间.解:y =(x -1)-23=1(x -1)23=13(x -1)2,定义域为x ≠1.令t =x -1,则y =t -23,t ≠0为偶函数.因为α=-23<0,所以y =t -23在(0,+∞)上单调递减,在(-∞,0)上单调递增.又t =x-1单调递增,故y =(x -1)-23在(1,+∞)上单调递减,在(-∞,1)上单调递增.11.已知(m +4)-12<(3-2m )-12,求m 的取值范围. 解:∵y =x -12的定义域为(0,+∞),且为减函数. ∴原不等式化为⎩⎪⎨⎪⎧m +4>03-2m >0m +4>3-2m ,解得-13<m <32.∴m 的取值范围是(-13,32).12.已知幂函数y =x m 2+2m -3(m ∈Z )在(0,+∞)上是减函数,求y 的解析式,并讨论此函数的单调性和奇偶性.解:由幂函数的性质可知m 2+2m -3<0⇒(m -1)(m +3)<0⇒-3<m <1, 又∵m ∈Z ,∴m =-2,-1,0.当m =0或m =-2时,y =x -3, 定义域是(-∞,0)∪(0,+∞). ∵-3<0,∴y =x -3在(-∞,0)和(0,+∞)上都是减函数,又∵f (-x )=(-x )-3=-x -3=-f (x ),∴y =x -3是奇函数.当m =-1时,y =x -4,定义域是(-∞,0)∪(0,+∞).∵f (-x )=(-x )-4=1(-x )4=1x4=x -4=f (x ), ∴函数y =x -4是偶函数.∵-4<0,∴y =x -4在(0,+∞)上是减函数,又∵y =x -4是偶函数,∴y =x -4在(-∞,0)上是增函数.1.下列函数中,其定义域和值域不同的函数是( )A .y =x 13B .y =x -12C .y =x 53D .y =x 23解析:选D.y =x 23=3x 2,其定义域为R ,值域为[0,+∞),故定义域与值域不同.2.如图,图中曲线是幂函数y =x α在第一象限的大致图象.已知α取-2,-12,12,2四个值,则相应于曲线C 1,C 2,C 3,C 4的α的值依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-12解析:选B.当x =2时,22>212>2-12>2-2,即C 1:y =x 2,C 2:y =x 12,C 3:y =x -12,C 4:y =x -2.3.以下关于函数y =x α当α=0时的图象的说法正确的是( ) A .一条直线 B .一条射线C .除点(0,1)以外的一条直线D .以上皆错解析:选C.∵y =x 0,可知x ≠0,∴y =x 0的图象是直线y =1挖去(0,1)点.4.函数f (x )=(1-x )0+(1-x )12的定义域为________.解析:⎩⎪⎨⎪⎧1-x ≠01-x ≥0,∴x <1.答案:(-∞,1)1.已知幂函数f (x )的图象经过点(2,22),则f (4)的值为( ) A .16 B.116 C.12D .2解析:选C.设f (x )=x n ,则有2n =22,解得n =-12,即f (x )=x -12,所以f (4)=4-12=12.2.下列幂函数中,定义域为{x |x >0}的是( )A .y =x 23 B .y =x 32 C .y =x -13D .y =x -34解析:选D.A.y =x 23=3x 2,x ∈R ;B.y =x 32=x 3,x ≥0;C.y =x -13=13x,x ≠0;D.y =x-34=14x 3,x >0.3.已知幂函数的图象y =xm 2-2m -3(m ∈Z ,x ≠0)与x ,y 轴都无交点,且关于y 轴对称,则m 为( )A .-1或1B .-1,1或3C .1或3D .3解析:选B.因为图象与x 轴、y 轴均无交点,所以m 2-2m -3≤0,即-1≤m ≤3.又图象关于y 轴对称,且m ∈Z ,所以m 2-2m -3是偶数,∴m =-1,1,3.故选B.4.下列结论中,正确的是( ) ①幂函数的图象不可能在第四象限②α=0时,幂函数y =x α的图象过点(1,1)和(0,0) ③幂函数y =x α,当α≥0时是增函数④幂函数y =x α,当α<0时,在第一象限内,随x 的增大而减小 A .①② B .③④ C .②③ D .①④解析:选D.y =x α,当α=0时,x ≠0;③中“增函数”相对某个区间,如y =x 2在(-∞,0)上为减函数,①④正确.5.在函数y =2x 3,y =x 2,y =x 2+x ,y =x 0中,幂函数有( ) A .1个 B .2个 C .3个 D .4个 解析:选B.y =x 2与y =x 0是幂函数.6.幂函数f (x )=x α满足x >1时f (x )>1,则α满足条件( ) A .α>1 B .0<α<1 C .α>0 D .α>0且α≠1解析:选A.当x >1时f (x )>1,即f (x )>f (1),f (x )=x α为增函数,且α>1. 7.幂函数f (x )的图象过点(3,3),则f (x )的解析式是________.解析:设f (x )=x α,则有3α=3=312⇒α=12.答案:f (x )=x 128.设x ∈(0,1)时,y =x p (p ∈R )的图象在直线y =x 的上方,则p 的取值范围是________. 解析:结合幂函数的图象性质可知p <1. 答案:p <19.如图所示的函数F (x )的图象,由指数函数f (x )=a x 与幂函数g (x )=x α“拼接”而成,则a a 、a α、αa 、αα按由小到大的顺序排列为________.解析:依题意得 ⎩⎨⎧a 14=12(14)α=12⇒⎩⎨⎧a =116,α=12.所以a a =(116)116=[(12)4]116,a α=(116)12=[(12)32]116,αa =(12)116,αα=(12)12=[(12)8]116,由幂函数单调递增知a α<αα<a a <αa .答案:a α<αα<a a <αa10.函数f (x )=(m 2-m -5)x m -1是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,试确定m 的值.解:根据幂函数的定义得:m 2-m -5=1, 解得m =3或m =-2,当m =3时,f (x )=x 2在(0,+∞)上是增函数;当m =-2时,f (x )=x -3在(0,+∞)上是减函数,不符合要求.故m =3.11.已知函数f (x )=(m 2+2m )·x m 2+m -1,m 为何值时,f (x )是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数?解:(1)若f (x )为正比例函数,则⎩⎪⎨⎪⎧ m 2+m -1=1m 2+2m ≠0⇒m =1. (2)若f (x )为反比例函数, 则⎩⎪⎨⎪⎧m 2+m -1=-1m 2+2m ≠0⇒m =-1. (3)若f (x )为二次函数, 则⎩⎪⎨⎪⎧m 2+m -1=2m 2+2m ≠0⇒m =-1±132.(4)若f (x )为幂函数,则m 2+2m =1,∴m =-1±2.12.已知幂函数y =x m 2-2m -3(m ∈Z )的图象与x 、y 轴都无公共点,且关于y 轴对称,求m 的值,并画出它的图象.解:由已知,得m 2-2m -3≤0,∴-1≤m ≤3. 又∵m ∈Z ,∴m =-1,0,1,2,3.当m =0或m =2时,y =x -3为奇函数,其图象不关于y 轴对称,不适合题意.∴m=±1或m=3.当m=-1或m=3时,有y=x0,其图象如图(1).当m=1时,y=x-4,其图象如图(2).本文由52求学网论坛微光整理。

高一数学幂函数试题答案及解析

高一数学幂函数试题答案及解析

高一数学幂函数试题答案及解析1.若函数是幂函数,则的值为()A.B.C.D.【答案】A【解析】由题意,得,解得.【考点】幂函数的解析式.2.计算等于()A.B.C.D.【答案】B【解析】。

故选B。

【考点】指数幂的运算点评:本题运用指数幂的运算公式:,。

3.已知幂函数的图象过点 .【答案】3【解析】幂函数形式为,其过点,则,求得,。

【考点】幂函数点评:幂函数的形式是。

本题需先确定幂函数的解析式。

4.当时,幂函数为减函数,则实数( )A.m=2B.m=-1C.m=2或m=-1D.【答案】A【解析】因为,当时,幂函数为减函数,所以或,解得,m=2,故选B。

【考点】本题主要考查幂函数的概念及其性质。

点评:简单题,注意形如为常数)的函数是幂函数。

5.(本小题12分)已知函数是幂函数且在上为减函数,函数在区间上的最大值为2,试求实数的值。

【答案】【解析】解:因为函数是幂函数且在上为减函数,所以有,解得,——————————5’①当是的单调递减区间,————————7’②当,解得——————————9’③,解得————————11’综合①②③可知————————12’【考点】幂函数与二次函数点评:解决的关键是对于常见的基本初等函数性质的熟练运用,属于基础题。

6.已知幂函数在增函数,则的取值范围 .【答案】(0,10)【解析】根据已知表达式可知,幂函数在增函数,首先分析对数式y=lga中真数大于零,即a>0,同时要满足在增函数,说明了幂指数为正数,即1-lga>0,得到lga<1=lg10,a<10,这样结合a>0,可知实数a的取值范围是(0,10)。

【考点】本试题主要是考查了幂函数的单调性与幂指数的正负之间的关系的应用,属于基础题。

点评:解决该试题关键是理解幂函数在y轴右侧的单调性是增,说明了幂指数为正,如果在y轴右侧为减,说明幂指数为负数。

同时对数真数大于零是易忽略点。

7.幂函数的图象过点(2, ), 则它的单调递增区间是()A.(-∞, 0)B.[0, +∞)C.(0, +∞)D.(-∞, +∞)【答案】A【解析】因为幂函数过点(2, ),所以=,即。

幂函数练习题及答案

幂函数练习题及答案

幂函数练习题及答案一、选择题1. 幂函数\( f(x) = x^a \)中,当\( a \)为负数时,函数的图像在哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:D2. 幂函数\( y = x^{-1} \)的图像是:A. 一条直线B. 一条曲线C. 两条曲线D. 无法确定答案:C3. 下列哪个幂函数在\( x = 0 \)处有定义?A. \( y = x^{-1} \)B. \( y = x^{-2} \)C. \( y = x^{1/2} \)D. \( y = x^2 \)答案:D二、填空题4. 幂函数\( y = x^n \)的图像,当\( n \)为奇数时,关于____对称。

答案:y轴5. 幂函数\( y = x^3 \)的图像在\( x = 0 \)处的切线斜率为____。

答案:0三、解答题6. 已知幂函数\( f(x) = x^a \),当\( x = 2 \)时,\( f(x) = 4 \),求\( a \)的值。

解:根据题意,\( f(2) = 2^a = 4 \),由于\( 2^2 = 4 \),所以\( a = 2 \)。

7. 幂函数\( y = x^n \)的图像在第一象限内,且在\( x = 1 \)处的导数为2,求\( n \)的值。

解:由于幂函数的导数为\( y' = n \cdot x^{n-1} \),将\( x = 1 \)代入得\( y' = n \)。

由题意知\( n = 2 \)。

四、计算题8. 求幂函数\( y = x^3 - 3x^2 + 2 \)在\( x = 2 \)处的值。

解:将\( x = 2 \)代入幂函数得\( y = 2^3 - 3 \cdot 2^2 + 2= 8 - 12 + 2 = -2 \)。

9. 已知幂函数\( y = x^a \)在\( x = 1 \)处的值为1,求\( a \)的值。

幂函数习题带答案

幂函数习题带答案

练习:1.在第一象限内,函数y =x 2(x ≥0)与y =x 12的图象关于________对称.解析:∵y =x 2,x ≥0与y =x 12互为反函数,∴两函数图象关于y =x 对称.答案:直线y =x2.函数f (x )=(m 2-m -5)x m -1是幂函数,且当x ∈(0,+∞)时,f (x )是单调增函数,则m 的值为________.解析:根据幂函数的定义得:m 2-m -5=1,解得m =3或m =-2,当m =3时,f (x )=x 2在(0,+∞)上是单调增函数; 当m =-2时,f (x )=x -3在(0,+∞)上是单调减函数,不符合要求.故m =3.答案:33.函数f (x )=(1-x )0+(1-x )12的定义域为________. 解析:由题意,1-x ≠0且1-x ≥0,所以x <1. 答案:(-∞,1)4.如图,曲线C 1与C 2分别是函数y =x m 与y =x n 在第一象限内的图象,则m ,n 与0的大小关系是________.解析:由图象可知,两函数在第一象限内递减,故m <0,n <0.取x =2,则有2m >2n ,故n <m <0.答案:n <m <05.函数f (x )=x 1m 2+m +1(m ∈N +)为________函数. (填“奇”,“偶”,“奇且偶”,“非奇非偶”)解析:∵m ∈N +,∴m 2+m +1=m (m +1)+1为奇数, ∴f (x )为奇函数.答案:奇6.下面4个图象都是幂函数的图象,函数y =x -23的图象是________.解析:∵y =x -23为偶函数,且x ≠0,在(0,+∞)上为减函数,故符合条件的为②.答案:②7.写出下列四个函数:①y =x 13;②y =x -13;③y =x -1;④y =x 23.其中定义域与值域相同的是________.(写出所有满足条件的函数的序号)解析:函数y =x 13的定义域与值域都为R ;函数y =x -13与y =x -1的定义域与值域都为(-∞,0)∪(0,+∞);函数y =x 23的定义域为R ,值域为[0,+∞).答案:①②③8.已知函数f (x )=x -m +3(m ∈N *)是偶函数,且f (3)<f (5),求m 的值,并确定f (x )的函数解析式.解:(1)由f (3)<f (5),得3-m +3<5-m +3,所以(35)-m +3<1=(35)0. 因为y =(35)x 是减函数, 所以-m +3>0.解得,m <3.又因为m ∈N *,所以m =1或2;当m =2时,f (x )=x -m +3=x 为奇函数,所以m =2舍去.当m =1时,f (x )=x -m +3=x 2为偶函数,所以m =1,此时f (x )=x 2.9.已知函数f (x )=x 2+1x 2. (1)判断f (x )的奇偶性;(2)求f (x )的单调区间与最小值.解:(1)因为x ≠0,且f (-x )=(-x )2+1(-x )2=x 2+1x 2=f (x ), 所以f (x )是偶函数.(2)设x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 1)-f (x 2)=x 21+1x 21-x 22-1x 22=(x 21-x 22)+1x 21-1x 22=(x 21-x 22)(1-1x 21x22). 因为0<x 1<x 2,所以x 21-x 22<0.又当0<x 1<x 2<1时,1-1x 21x 22<0,。

幂函数的运算专项练习50题(有答案)

幂函数的运算专项练习50题(有答案)

幂函数的运算专项练习50题(有答案)以下是50道关于幂函数运算的练题,每题都有详细的答案供参考。

1. 计算 2^3。

答案:2^3 = 8。

2. 计算 (-3)^4。

答案:(-3)^4 = 81。

3. 计算 (4^2)^3。

答案:(4^2)^3 = 4^6 = 4096。

4. 计算 (2^3)(2^4)。

答案:(2^3)(2^4) = 2^(3+4) = 2^7 = 128。

5. 计算 (2^3)^4。

答案:(2^3)^4 = 2^(3*4) = 2^12 = 4096。

6. 计算 (2^3)/2。

答案:(2^3)/2 = 2^(3-1) = 2^2 = 4。

7. 计算 (2^4)/(2^2)。

答案:(2^4)/(2^2) = 2^(4-2) = 2^2 = 4。

8. 计算 (-5^2)-3.答案:(-5^2)-3 = (-25)-3 = -28。

9. 计算 (-5)^2-3.答案:(-5)^2-3 = 25-3 = 22。

10. 计算 (-2)^3-(-2)^2.答案:(-2)^3-(-2)^2 = -8-4 = -12。

11. 计算 (-3)^2-(-3)^3.答案:(-3)^2-(-3)^3 = 9-(-27) = 36。

12. 计算 (2^3)^2/2^2.答案:(2^3)^2/2^2 = 2^6/2^2 = 64/4 = 16。

13. 计算 (2^3)^2/2^3.答案:(2^3)^2/2^3 = 2^6/2^3 = 64/8 = 8。

14. 计算 (2^3)^2-(2^2)^3.答案:(2^3)^2-(2^2)^3 = 2^6-2^6 = 64-64 = 0。

...(以下省略)这些练题旨在帮助您熟悉幂函数的运算规则和性质,通过练可以更好地掌握幂函数的计算方法。

每一题都有详细的答案解析,如果您有任何疑问或需要进一步讲解,请随时向我提问。

祝您练习顺利!。

幂函数练习题及答案

幂函数练习题及答案

幂函数练习题及答案幂函数练习题及答案幂函数是数学中常见的一种函数形式,它的表达式为y = ax^n,其中a和n为常数,x为自变量。

幂函数在实际问题中具有广泛的应用,例如物理学中的力学问题、经济学中的需求曲线等。

下面将给出一些幂函数的练习题及其答案,帮助读者更好地理解和掌握幂函数的性质和应用。

1. 练习题:已知函数y = 2x^3,求当x取值为2时,y的值是多少?解答:将x = 2代入函数表达式中,得到y = 2*(2^3) = 2*8 = 16。

因此,当x取值为2时,y的值为16。

2. 练习题:已知函数y = 5x^(-2),求当x取值为0.5时,y的值是多少?解答:将x = 0.5代入函数表达式中,得到y = 5*(0.5^(-2)) = 5*(1/0.5^2) =5*(1/0.25) = 5*4 = 20。

因此,当x取值为0.5时,y的值为20。

3. 练习题:已知函数y = 3x^2,求当y取值为12时,x的值是多少?解答:将y = 12代入函数表达式中,得到12 = 3*(x^2)。

将方程两边同时除以3,得到4 = x^2。

再开平方根,得到x = ±2。

因此,当y取值为12时,x的值为±2。

4. 练习题:已知函数y = 4x^(-1/2),求当y取值为2时,x的值是多少?解答:将y = 2代入函数表达式中,得到2 = 4*(x^(-1/2))。

将方程两边同时除以4,得到1/2 = x^(-1/2)。

两边同时取倒数,得到2 = x^(1/2)。

再平方,得到4 = x。

因此,当y取值为2时,x的值为4。

通过以上练习题的解答,我们可以看到幂函数的特点和性质。

首先,幂函数的自变量可以取任意实数值,但要注意当指数为负数时,自变量不能取0。

其次,幂函数的图像在正数指数时呈现出上升趋势,指数越大,曲线上升得越快;而在负数指数时,图像则呈现下降趋势。

此外,幂函数的图像在指数为偶数时,始终位于x轴的上方,而在指数为奇数时,图像则会穿过x轴。

幂函数经典练习及答案

幂函数经典练习及答案

[基础巩固]1.函数f (x )=x 3的图象( )A .关于直线y =x 对称B .关于x 轴对称C .关于原点对称D .关于y 轴对称解析 ∵f (x )=x 3是奇函数,∴f (x )的图象关于原点对称.答案 C2.若幂函数f (x )的图象经过点⎝⎛⎭⎫2,14,则f ⎝⎛⎭⎫12等于( ) A .4B .2C .12D .14解析 设f (x )=x α,则14=2α,∴α=-2. ∴f (x )=x -2.∴f ⎝⎛⎭⎫12=⎝⎛⎭⎫12-2=22=4.答案 A3.(多选)已知幂函数f (x )的图象经过点⎝⎛⎭⎫27,13,则幂函数f (x )具有的性质是( ) A .在其定义域上为增函数B .在(0,+∞)上单调递减C .奇函数D .定义域为R解析 设幂函数f (x )=x α(α为常数),因为幂函数图象过点⎝⎛⎭⎫27,13,所以由f (x )的性质知,定义域为{x ∈R ,x ≠0},f (x )是奇函数,在(-∞,0),(0,+∞)上均单调递减.答案 BC4.下列幂函数中是奇函数且在(0,+∞)上单调递增的是________(填序号).①y =x 2;②y =x ;③y =x 12;④y =x 3;⑤y =x -1. 解析 由奇偶性的定义知y =x 2为偶函数,y =x 12 =x 既不是奇函数也不是偶函数.由幂函数的单调性知y =x-1在(0,+∞)上单调递减,易知②④满足题意. 答案 ②④5.幂函数y =x-1在[-4,-2]上的最小值为________. 解析 ∵y =x -1在(-∞,0)上单调递减,∴y =x -1在[-4,-2]上递减,∴y =x -1在[-4,-2]上的最小值是-12. 答案 -126.比较下列各题中两个幂的值的大小:解析 (1)∵y =x 12为[0,+∞)上的增函数,又1.1>0.9,∴1.112 >0.912 .[能力提升]7.如图所示,曲线C 1与C 2分别是函数y =x m 和y =x n 在第一象限内的图象,则下列结论正确的是( )A .n <m <0B .m <n <0C .n >m >0D .m >n >0解析 由图象可知,两函数在第一象限内递减,故m <0,n <0.由曲线C 1,C 2的图象可知n <m .答案 A8.函数为幂函数,则该函数为________(填序号).①奇函数;②偶函数;③增函数;④减函数.解析 由为幂函数,得m -1=1,即m =2,则该函数为y =x 2,故该函数为偶函数,在(-∞,0)上是减函数,在(0,+∞)上是增函数.答案 ②9.若(3-2m )12 >(m +1)12 ,则实数m 的取值范围为____________ .解析 考查幂函数y =x 12 ,因为y =x 12 在定义域[0,+∞)上是增函数,所以⎩⎪⎨⎪⎧ 3-2m ≥0,m +1≥0,3-2m >m +1,解得-1≤m <23. 故m 的取值范围为⎣⎡⎭⎫-1,23. 答案 ⎣⎡⎭⎫-1,23 10.已知幂函数y =x 3m -9(m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数是减函数,求满足的a 的取值范围. 解析 ∵函数y =x 3m -9在(0,+∞)上单调递减,∴3m -9<0,解得m <3.又m ∈N *,∴m =1,2.又函数图象关于y 轴对称,∴3m -9为偶数.故m =1.∴a +1>3-2a >0或0>a +1>3-2a或a +1<0<3-2a .解得23<a <32或a <-1. 故a 的取值范围为⎝⎛⎭⎫23,32∪(-∞,-1).[探索创新]11.已知幂函数在(0,+∞)上单调递增,函数g (x )=2x -k .(1)求m 的值;(2)当x ∈[1,2]时,记f (x ),g (x )的值域分别为集合A ,B ,若A ∪B =A ,求实数k 的取值范围.解析 (1)依题意,得(m -1)2=1,解得m =0或m =2.当m =2时,f (x )=x -2在(0,+∞)上单调递减,与题设矛盾,舍去,∴m =0.(2)由(1)可知f (x )=x 2,当x ∈[1,2]时,f (x ),g (x )单调递增,∴A =[1,4],B =[2-k,4-k ].∵A ∪B =A ,∴B ⊆A ,∴⎩⎪⎨⎪⎧2-k ≥1,4-k ≤4,∴0≤k ≤1. ∴实数k 的取值范围是[0,1].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂函数的概念例1、下列结论中,正确的是( ) A .幂函数的图象都通过点(0,0),(1,1) B .幂函数的图象可以出现在第四象限C .当幂指数α取1,3,12时,幂函数y =x α是增函数D .当幂指数α=-1时,幂函数y =x α在定义域上是减函数解析 当幂指数α=-1时,幂函数y =x -1的图象不通过原点,故选项A 不正确;因为所有的幂函数在区间(0,+∞)上都有定义,且y =x α (α∈R ),y >0,所以幂函数的图象不可能出现在第四象限,故选项B 不正确;而当α=-1时,y =x -1在区间(-∞,0)和(0,+∞)上是减函数,但它在定义域上不是减函数.答案 C例2、已知幂函数f (x )=(t 3-t +1)x 15(7+3t -2t 2) (t ∈Z )是偶函数且在(0,+∞)上为增函数,求实数t 的值.分析 关于幂函数y =x α (α∈R ,α≠0)的奇偶性问题,设pq(|p |、|q |互质),当q 为偶数时,p 必为奇数,y =x p q 是非奇非偶函数;当q 是奇数时,y =x pq的奇偶性与p 的值相对应.解 ∵f (x )是幂函数,∴t 3-t +1=1, ∴t =-1,1或0.当t =0时,f (x )=x 75是奇函数;当t =-1时,f (x )=x 25是偶函数;当t =1时,f (x )=x 85是偶函数,且25和85都大于0,在(0,+∞)上为增函数. 故t =1且f (x )=x 85或t =-1且f (x )=x 25.点评 如果题中有参数出现,一定要注意对参数的分类讨论,尤其对题中的条件t ∈Z 给予足够的重视.例3、如图是幂函数y =x m 与y =x n 在第一象限内的图象,则( )A .-1<n<0<m<1B .n <-1,0<m <1C .-1<n <0,m >1D .n <-1,m >1解析 在(0,1)内取同一值x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0<m <1,n <-1.答案 B点评 在区间(0,1)上,幂函数的指数越大,图象越靠近x 轴;在区间(1,+∞)上,幂函数的指数越大,图象越远离x 轴.例4、已知x 2>x 13,求x 的取值范围.错解 由于x 2≥0,x 13∈R ,则由x 2>x 13,可得x ∈R .错因分析 上述错解原因是没有掌握幂函数的图象特征,尤其是y =x α在α>1和0<α<1两种情况下图象的分布.正解作出函数y=x2和y=31x 的图象(如右图所示),易得x<0或x>1.例5、函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,求f (x )的解析式.分析 解答本题可严格根据幂函数的定义形式列方程求出m ,再由单调性确定m .解 根据幂函数定义得m 2-m -1=1,解得m =2或m =-1,当m =2时,f (x )=x 3在(0,+∞)上是增函数;当m =-1时,f (x )=x -3在(0,+∞)上是减函数,不符合要求.故f (x )=x 3. 点评 幂函数y =x α (α∈R ),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数(也可以为0).这是判断一个函数是否为幂函数的重要依据和唯一标准.对本例来说,还要根据单调性验根,以免增根.变式 已知y =(m 2+2m -2)x 1m 2-1+2n -3是幂函数,求m ,n 的值.解由题意得⎩⎪⎨⎪⎧m 2+2m -2=1m 2-1≠02n -3=0,解得⎩⎨⎧m =-3n =32,所以m =-3,n =32.例6、比较下列各组中两个数的大小: (1)535.1,537.1;(2)0.71.5,0.61.5;(3)32)2.1(--,32)25.1(--.解析:(1)考查幂函数y =53x 的单调性,在第一象限内函数单调递增, ∵1.5<1.7,∴535.1<537.1,(2)考查幂函数y =23x 的单调性,同理0.71.5>0.61.5. (3)先将负指数幂化为正指数幂可知它是偶函数, ∵32)2.1(--=322.1-,32)25.1(--=3225.1-,又322.1->3225.1-, ∴32)2.1(-->3225.1-.点评:比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.例7、比较下列各组数的大小(1) 3-52与3.1-52;(2)-8-78与-⎝ ⎛⎭⎪⎫1978.分析 比较大小问题一般是利用函数的单调性,当不便利用单调性时,可用0与1去比较,这种方法叫“搭桥”法.解 (1)函数y =x -52在(0,+∞)上为减函数,又3<3.1,所以3-52>3.1-52.(2)-8-78=-⎝ ⎛⎭⎪⎫1878,函数y =x 78在(0,+∞)上为增函数,又18>19,则⎝ ⎛⎭⎪⎫1878>⎝ ⎛⎭⎪⎫1978, 从而-8-78<-⎝ ⎛⎭⎪⎫1978.点评 比较大小的题,要综合考虑函数的性质,特别是单调性的应用,更善于运用“搭桥”法进行分组,常数0和1是常用的参数.变式 比较下列各组数的大小: (1)⎝ ⎛⎭⎪⎫-23-23与⎝ ⎛⎭⎪⎫-π6-23; (2)4.125,(-1.9)35与3.8-23.解 (1)⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23,⎝ ⎛⎭⎪⎫-π6-23=⎝ ⎛⎭⎪⎫π6-23,∵函数y =x -23在(0,+∞)上为减函数,又∵23>π6,∴⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23<⎝ ⎛⎭⎪⎫π6-23=⎝ ⎛⎭⎪⎫-π6-23.(2)(4.1)25>125=1,0<3.8-23<1-23=1,(-1.9)35<0,所以(-1.9)35<3.8-23<(4.1)25.例8、 已知幂函数y =x 3m -9 (m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增大而减小,求满足(a +1)-m 3<(3-2a )-m3的a 的范围.解 ∵函数在(0,+∞)上递减,∴3m -9<0,解得m <3, 又m ∈N *,∴m =1,2.又函数图象关于y 轴对称, ∴3m -9为偶数,故m =1,∴有(a +1)-13<(3-2a )-13.又∵y =x -13在(-∞,0),(0,+∞)上均递减,∴a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a ,解得23<a <32或a <-1.点评 (1)解决与幂函数有关的综合题时,一定要考虑幂函数的定义.(2)幂函数y =x α,由于α的值不同,单调性和奇偶性也就不同.变式 已知幂函数y =xm 2-2m -3 (m ∈Z )的图象与x 轴、y 轴都无公共点,且关于y 轴对称,求m 的值,且画出它的图象.解 由已知,得m 2-2m -3≤0,∴-1≤m ≤3. 又∵m ∈Z ,∴m =-1,0,1,2,3,当m =0或m =2时,y =x -3为奇函数,其图象不关于y 轴对称,不符合题意.当m =-1或m =3时,有y =x 0,其图象如图①所示. 当m =1时,y =x -4,其图象如图②所示.练习一、选择题 1.下列命题:①幂函数的图象都经过点(1,1)和点(0,0);②幂函数的图象不可能在第四象限;③n =0时,y =x n 的图象是一条直线;④幂函数y =x n ,当n >0时,是增函数; ⑤幂函数y =x n ,当n <0时,在第一象限内函数值随x 值的增大而减小. 其中正确的是( )A .①和④B .④和⑤C .②和③D .②和⑤ 答案 D2.下列函数中,不是幂函数的是( ) A .y =2x B .y =x -1 C .y =x D .y =x 2 答案 A3.设α∈⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,则使f (x )=x α为奇函数且在(0,+∞)内单调递减的α值的个数是( )A .1B .2C .3D .4 答案 A4.当x ∈(1,+∞)时,下列函数图象恒在直线y =x 下方的偶函数是( )A .y =x 12 B .y =x -2 C .y =x 2 D .y =x -1答案 B5.如果幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( )A .-1≤m ≤2B .m =1或m =2C .m =2D .m =1 答案 B解析 由已知⎩⎪⎨⎪⎧m 2-3m +3=1m 2-m -2≤0∴m =1或m =2. 6.在函数y =1x2,y =2x 2,y =x 2+x ,y =1 (x ≠0)中幂函数的个数为( )A .1B .0C .2D .3 答案 C解析 依据幂函数的定义判定,应选C.7.幂函数f (x )的图象过点⎝ ⎛⎭⎪⎫4,12,那么f (8)的值为( )A .2 6B .64 C.24 D.164答案 C解析 设f (x )=x α(α为常数),将⎝⎛⎭⎪⎫4,12点代入得12=4α,∴α=-12,f (x )=x-12,∴f (8)=8-12=24. 8.下列函数中,值域为[0,+∞)的函数是( )A .y =2xB .y =x 2C .y =x -2D .y =log a x (a >0,且a ≠1) 答案 B解析 根据函数图象,选B. 二、填空题1.若幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫9,13,则f (25)=_____________.答案 15解析 设f (x )=x α,则9α=13,α=-12.∴f (25)=25-12=15.2.设幂函数y =x α的图象经过点(8,4),则函数y =x α的值域是______________.答案 [0,+∞)解析 由4=8α,得α=23,∴y =x 23≥0.3. 如图所示是幂函数y=x α在第一象限内的图象,已知α取±2,± 四个值,则相应于曲线C1,C2,C3,C4的α依次为 .答案 2,12,-12,-24.若幂函数y =f (x )的图象经过点(2,2),则f (25)的值是________.答案 5解析 设y =x α,∵点(2,2)在y =x α的图象上,∴2=2α,∴α=12,∴f (x )=x 12.故f (25)=2512=5. 5.幂函数y =x α (α∈R )的图象一定不经过第________象限.答案 四6.把下列各数223,⎝ ⎛⎭⎪⎫53-13,⎝ ⎛⎭⎪⎫-233,⎝ ⎛⎭⎪⎫150,⎝ ⎛⎭⎪⎫3223,按由小到大的排列顺序为__________________.答案 ⎝ ⎛⎭⎪⎫-233<⎝ ⎛⎭⎪⎫53-13<⎝ ⎛⎭⎪⎫150<⎝ ⎛⎭⎪⎫3223<223.7.已知幂函数f (x )=x -12,若f (a +1)<f (10-2a ),则a 的取值范围是________.答案 3<a <5解析 f (x )=x -12=1x (x >0),由图象知x ∈(0,+∞)时为减函数,又f (a +1)<f (10-2a ),∴⎩⎪⎨⎪⎧a +1>0,10-2a >0,a +1>10-2a .得⎩⎪⎨⎪⎧a >-1,a <5,a >3.∴3<a <5.三、解答题1.求函数y =52x +2x 51+4(x ≥-32)值域.解析:设t =x 51,∵x ≥-32,∴t ≥-2,则y =t 2+2t +4=(t +1)2+3. 当t =-1时,y min =3.∴函数y =52x +2x 51+4(x ≥-32)的值域为[3,+∞). 点评:这是复合函数求值域的问题,应用换元法.2.已知f (x )=(m 2+2m )·xm 2+m -1,m 是何值时,f (x )是(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.解 (1)若f (x )为正比例函数,则⎩⎪⎨⎪⎧m 2+m -1=1m 2+2m ≠0,∴m =1. (2)若f (x )为反比例函数,则⎩⎪⎨⎪⎧m 2+m -1=-1m 2+2m ≠0,∴m =-1.(3)若f (x )为二次函数,则⎩⎪⎨⎪⎧m 2+m -1=2m 2+2m ≠0,∴m =-1±132.(4)若f (x )为幂函数,则m 2+2m =1,∴m =-1±2。

相关文档
最新文档