信号检测与估计作业第一二三八章答案
信号检测与估计理论第一章习题讲解
1-9 已知随机变量X 的分布函数为20,0(),011,1X x F x kx x x <⎧⎪=≤≤⎨⎪>⎩求:①系数k ; ②X 落在区间(0.3,0.7)内的概率; ③随机变量X 的概率密度。
解:第①问 利用()X F x 右连续的性质 k =1 第②问{}{}{}()()0.30.70.30.70.70.30.7P X P X F P X F =<<=<≤-=-第③问 201()()0X X xx d F x f x elsedx ≤<⎧==⎨⎩1-10已知随机变量X 的概率密度为()()xX f x ke x -=-∞<<+∞(拉普拉斯分布),求:①系数k ②X 落在区间(0,1)内的概率 ③随机变量X 的分布函数 解: 第①问()112f xd x k ∞-∞==⎰ 第②问 {}()()()211221x x P x X xF x F xfx d x<≤=-=⎰ 随机变量X 落在区间12(,]x x 的概率12{}P x X x <≤就是曲线()y f x =下的曲边梯形的面积。
{}{}()()1010101112P X P X f x dxe -<<=<≤==-⎰第③问()102102xx e x f x e x -⎧≤⎪⎪=⎨⎪>⎪⎩()00()110022111010222xx xxx x x x F x f x dxe dx x ex e dx e dxx e x -∞-∞---∞=⎧⎧≤≤⎪⎪⎪⎪==⎨⎨⎪⎪+>->⎪⎪⎩⎩⎰⎰⎰⎰1-11 某繁忙的汽车站,每天有大量的汽车进出。
设每辆汽车在一天内出事故的概率为0.0001,若每天有1000辆汽车进出汽车站,问汽车站出事故的次数不小于2的概率是多少?,(01)p q λ→∞→→∞→−−−−−−−−→−−−−−−−−→−−−−−−−−→n=1n ,p 0,np=n 成立,0不成立-分布二项分布泊松分布高斯分布汽车站出事故的次数不小于2的概率()()P(2)101k P k P k ≥=-=-= 答案0.1P(2)1 1.1k e -≥=-100.1n p ≥≤实际计算中,只需满足,二项分布就趋近于泊松分布()np!k e P X k k λλλ-===1-12 已知随机变量(,)X Y 的概率密度为(34)0,0(,)0x y XY kex y f x y -+⎧>>⎪=⎨⎪⎩,,其它求:①系数k ?②(,)X Y 的分布函数?③{01,02}P X X <≤<≤?第③问 方法一:联合分布函数(,)XY F x y 性质:若任意四个实数1212,,,a a b b ,满足1212,a a b b ≤≤,则121222111221{,}(,)(,)(,)(,)XY XY XY XY P a X a b Y b F a b F a b F a b F a b <≤<≤=+--{01,02}(1,2)(0,0)(1,0)(0,2)XY XY XY XY P X Y F F F F ⇒<≤<≤=+--方法二:利用(){(,)},XY DP x y D f u v dudv∈∈⎰⎰)(210{01,02},XY P X Y f x y dxdy <≤<≤=⎰⎰1-13 已知随机变量(,)X Y 的概率密度为101,(,)0x y xf x y ⎧<<<=⎨⎩,,其它 ①求条件概率密度(|)X f x y 和(|)Y f y x ?②判断X 和Y 是否独立?给出理由。
信号检测估计理论与识别技术习题参考答案
2-1 1[()]2E x t =,1212(,)3X t t R t t = 2-2 略。
2-3111[()]sin cos 333E x t t t=++12112212121111111(,)sin cos sin cos sin()cos()9999999X R t t t t t t t t t t =+++++++-2-4 [()]0E X t =,20(,)cos R t t w τστ+=2-5 [()]0E X t =,20(,)cos 2a R t t w ττ+= 2-6 略。
2-7 [()]0E X t =,10(,)200R t t τττ⎧=⎪+=⎨⎪≠⎩2-8 1210()()()2cos(10)(21)X X X R R R eτττττ-=+=++,2[()](0)5X E X t R ==,2(0)2X X R σ==2-9 11()()cos 22jw jw X X o G w R e d w e d τττττ∞∞---∞-∞==⎰⎰00()()()22X P w w w w w ππδδ=-++2-10 00()(()())2Y X X aG w G w w G w w =-++2-11 ())()X R u ττ=+-3-1 二元信号统计检测的贝叶斯平均代价C 为110000000100100110111111()()=()()()() ()()()()ij i i j j i C c P H P H H c P H P H H c P H P H H c P H P H H c P H P H H ===+++∑∑ 利用01()1()P H P H =-1101()1()P H H P H H =- 0010()1()P H H P H H =-得平均代价C 为[][]0011010110011011110100101110111000111011000101()1()1()() ()()()1() ()() ()()()()()()C c P H P H H c P H P H H c P H P H H c P H P H H c c c P H H P H c c c c P H H c c P H H =-⎡-⎤+-+⎣⎦+⎡-⎤⎣⎦=+-+⎡-+---⎤⎣⎦3-2 1)由于各假设j H 的先验概率()(0,1,2)j P H j =相等,所以采用最大似然准则。
信号检测与估计填空题集
一、填空题说明填空题(每空1分,共10分)或(每空2分,共20分)二、第1章填空题1.从系统的角度看,信号检测与估计的研究对象是 加性噪声情况信息传输系统中的接收设备 。
从信号的角度看,信号检测与估计的研究对象是 随机信号或随机过程 。
2.信号检测与估计的基本任务:以数理统计为工具,解决接收端信号与数据处理中 信息恢复与获取 问题。
3.信号检测与估计的基本任务:以数理统计为工具,从被噪声及其他干扰污染的信号中 提取、恢复 所需的信息。
4.信号检测是在噪声环境中,判断 信号是否存在或哪种信号存在 。
信号检测分为 参量检测和 非参量检测 。
参量检测是以 信道噪声概率密度已知 为前提的信号检测。
非参量检测是在 信道噪声概率密度为未知 情况下的信号检测。
5.信号估计是在噪声环境中,对 信号的参量或波形 进行估计。
信号估计分为 信号参量估计和 信号波形估计 。
信号参量估计是对 信号所包含的参量(或信息) 进行的估计。
信号波形估计是对 信号波形 进行的估计。
6.信号检测与估计的数学基础:数理统计中贝叶斯统计的 贝叶斯统计决策理论和方法 。
三、第2章填空题1.匹配滤波器是在输入为 确定信号加平稳噪声 的情况下,使 输出信噪比达到最大 的线性系统。
2.匹配滤波的目的是从含有噪声的接收信号中,尽可能 抑制噪声,提高信噪比 。
3.匹配滤波器的作用:一是使滤波器 输出有用信号成分尽可能强 ;二是 抑制噪声,使滤波器输出噪声成分尽可能小 。
4.匹配滤波器的传输函数与输入 确定信号频谱的复共轭 成正比,与输入 平稳噪声的功率谱密度 成反比。
3.匹配滤波器传输函数的幅频特性与输入 确定信号的幅频特性成 正比,与输入 平稳噪声的功率谱密度 成反比。
4.物理不可实现滤波器也称作非因果滤波器:是指 物理上不可能实现或不满足因果规律 的滤波器。
5.物理不可实现匹配滤波器的冲激响应)(t h 满足: 0)(≠t h , ∞<<∞-t 。
《信号检测与估计》第二章习题解答
E[x]
=
0
,
R(t, t
+τ
)
=
R(τ
)
=
a2 2
cos ω0τ
即数学期望与时间无关,自相关函数仅与时间间隔有关,故 X (t) 为广义平稳随机过程
2.7 设有状态连续,时间离散的随机过程 X (t) = sin(2πAt),式中, t 只能取正整数,即 t = 1,2,3,L ,
A 为在区间 (0,1) 上均匀分布的随机变量,试讨论 X (t)的平稳性。
cos
t2
+
1 9
sin
t2
cos t1
=
1 9
+
1 9
sin
t1
+
1 9
cos
t1
+
1 9
sin
t2
+
1 9
cos t2
+
1 9
cos(t1
-
t2
)+
1 9
sin(t1
+
t2
)
2.4 随机过程 X (t)为 X (t) = A cosω0t + B sin ω0t
[ ] [ ] 式中,ω0 是常数,A 和 B 是两个相互独立的高斯随机变量,而且 E[A] = E[B] = 0 ,E A2 = E B2 = σ 2 。
1 ↔ e−aτ u(τ )
jω + a
所以
RX (τ ) = ⎜⎜⎝⎛
1 e− 3
3τ −
1e 3
3τ + 1 e− 22
2τ − 1 e 22
2τ ⎟⎟⎠⎞u(τ )
平均功率
信号检测与估计 张明友 第一二三八章答案
时间:6月16日(星期一)晚上6:30-8:30 地点:六教104室(上课教室)试卷共8题,其中4题属于教材第一章内容,其余4题分别的其他章节。
请同学们对匹配滤波器,离散卡尔曼滤波,离散维纳滤波,高斯白噪声下确知信号的检测,K -L 展开,高斯白噪声信道中的单参量信号估计等内容重点关注。
1.1 (付柏成 20060150)在例1.2中,设噪声均方差电压值为σ=2v ,代价为f c =2,m c =1。
信号存在的先验概率P =0.2。
试确定贝叶斯意义下最佳门限β,并计算出相应的平均风险。
解:根据式(1-15),可以算出00.8280.21f mQc Pc ⨯Λ===⨯ 而判决门限2201ln 0.52ln88.822βσ=+Λ=+= 根据式(1-21)可知平均风险1010Pr 0.2r 0.8R Qr r =+=+01100.2(|)0.8(|)m f c P D H c P D H =+ 而011(|)(|)D P D H p x H dx =⎰1100(|)(|)D P D H p x Hdx =⎰而212(1)(|)]2x p x H σ-=-202(|)]2x p x H σ=-所以20112(1)(|)(|)]2D D x P D H p x H dx dx σ-==-⎰⎰22(1)]2x dx βσ-=-⎰=17.82()()(3.91)22β-Φ=Φ=Φ 同理1121002(|)(|)]2D D x P D H p x H dx dx σ==-⎰⎰22)2x dx βσ∞=- 8.821()1()1(4.41)22β=-Φ=-Φ=-Φ 所以0.21(3.91)0.82[1(4.41)]R =⨯⨯Φ+⨯⨯-Φ 1.2 (关瑞东 20060155)假定加性噪声()n t 服从均值为零,方差为的正态分布。
此时,两个假设为01:()():()1()H x t n t H x t n t ==+我们根据()x t 的两次独立测量值12,x x 作判断,则12,x x 是统计独立的,在假设1H 下其均值为1a =1,在假设0H 下均值为0a =0,因而在两种假设下它们的联合概率密度函数可写为22/221()(|)(2)exp()2nn i k k i x a p x H πσσ-=-=-∑ (0,1;2)k n == 于是,似然比等于22011012210()(|)()exp[](|)2n ii a a n a a p x H x x p x H σσ=--Λ==-∑如果0()x Λ≥Λ,则选择假设1H ,否则选择假设0H 。
信号检测与估计理论
第2章 信号检测与估计理论的基础知识 内容提要
三. 离散随机信号的函数
1.一维雅可比特变别换是, 简单线性 的函 变数 。 换时 2. N维雅可比变换。
四. 连续随机信号
1任 .tk 时 意刻采 x (tk) 样 (x k ; tk)所 k ( 1 ,2 , 得 ,N )的 样 概 本 率 函数描述。
平均似然 广 比 义 检 似 验 然 ,比-检 皮验 尔和 逊奈 检曼 验的基
和方法。
第3章 信号状态的统计检测理论 例题解答
例3.1 设二元信号检测的模信型号为
H 0: x1n H1: x2n
其中 观,测n噪 服声 从对称三 如3 角 图 .1(a)分 所布 。 示,
若似然 1 ,求 比最 检 图 佳 测 示 判 门 计 判 P ( 决 H 限 算 1|H 0 决 )。 式域
也相互统计独立。
七. 信号模型及统计特性
确知信号 (未和 )知 参随 量机 ; 信 随号 机参量信性 号描 的述 统
第2章 信号检测与估计理论的基础知识 例题解答
例 2.1设离散x随 服机 从信 对号 称 其 三 概 角 率 分 密 布 度 , 函
p(x)
11|x| a a2
axa (a0)
0
其他
第3章 信号状态的统计检测理论 内容提要
一.信号状态统计检测 的理 基论 本概念
信号状态观 的测 假信 设号 , 的数 概合 ,率理 密判 判 度决 决 函,结果 与判决概最 率佳 , 判决的概 。念
二.二元信号状态统计 的检 三测 个准则
贝叶斯最 检小 测平 准均 则准 错 , 奈 则 误 曼 , 皮 概尔 率逊 检 测准则的概 检 念 验 、 判 似 决 然 为 式 比 最 、简 化判 简决 能 式
《信号检测与估计》第八章习题解答
y10 = 15 代入上式,得
N
NN
∑∑ ∑∑ ∑ β
=
N xi yi − xi yi
i =1
i =1 i =1
N
N i =1
xi2
−
⎜⎛ ⎜⎝
N i =1
xi
⎟⎞2 ⎟⎠
= 10 × 476 − 55 × 64 10 × 385 − 55 × 55
=
248 165
N
N
∑ ∑ α
=
i =1
yi
−β
i =1
解:略
8.6 设观测量 z = x + v , v 是均值为零,方差为 1 的高斯随机变量。 2
-2-
《信号检测与估计》习题解答
1)求 x 的最大似然估计。
⎧0
2)若已知
x
的概率密度为
f
(t )
=
⎪ ⎨1 ⎪⎩ 4
−x
e4
x>0 ,求 x 的最大后验估计。
x<0
解:略
8.7 已知一个平稳高斯过程的 N 个独立样本 zi, i = 1,2,LN 。
8.2 令观测样本由
xi = s + ωi (i = 1,L,N )
给定,其中 ωi 是一个零均值的高斯白噪声,其方差为 1。证明:s 的极大似然估计是无偏的和一致 的。
解:设观测矢量为 x = [x1, x2,L, xN ]T ,则其联合概率密度函数为
( ) ( ) f x s =
1
∑ , −
e
1 2
⎟⎞2 ⎠
⎤ ⎥ ⎥⎦
[ ] lim E (sˆ − s)2
n→∞
=
lim
n→∞
信号检测及估计试题-答案(不完整版)
信号检测及估计试题-答案(不完整版)一、概念:1. 匹配滤波器。
概念:所谓匹配滤波器是指输出判决时刻信噪比最大的最佳线性滤波器。
应用:在数字信号检测和雷达信号的检测中具有特别重要的意义。
在输出信噪比最大准则下设计一个线性滤波器是具有实际意义的。
2. 卡尔曼滤波工作原理及其基本公式(百度百科)首先,我们先要引入一个离散控制过程的系统。
该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:X(k)=A X(k-1)+B U(k)+W(k)再加上系统的测量值:Z(k)=H X(k)+V(k)上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。
A和B是系统参数,对于多模型系统,他们为矩阵。
Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。
W(k)和V(k)分别表示过程和测量的噪声。
他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。
对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。
下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类似上一节那个温度的例子)。
首先我们要利用系统的过程模型,来预测下一状态的系统。
假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:X(k|k-1)=A X(k-1|k-1)+B U(k) (1)式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。
到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance还没更新。
我们用P表示covariance:P(k|k-1)=A P(k-1|k-1) A’+Q (2)式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。
《信号检测与估计》第三章习题解答
∞ β
f
(x
|
H
0
)dx
+
P(H1
)C01
β −∞
f (x | H1)dx
∫ ∫ = 0.8
∞ − x2
e 8 dx +
0.4
β − (x−1)2 e 8 dx
2 2π β
2 2π −∞
3.3
只用一次观测值
x
对下面两个假设作出选择,H
0
:样本
x
为零均值,方差
σ
2 0
的高斯变量;H
1
:
样本
x
为零均值,方差 σ12 的高斯变量,且 σ12
dt
=
1 2
⎡ ⎢1 − ⎣
erf
⎜⎜⎝⎛
β 2σ
⎟⎟⎠⎞⎥⎦⎤
∫ β (q0 ) =
β −∞
∫ ∫ 1
− (x−1)2 e 2σ 2 dx = 1 −
2π σ
∞ β
1 2π σ
− (x −1)2 e 2σ 2
dx
=1−
1 2
⎜⎛ ⎜⎜⎝
2 π
∞ β −1
2σ
e−t
2
dt
⎟⎞ ⎟⎟⎠
=
1−
1 2
⎡ ⎢1 − ⎣
《信号检测与估计》习题解答
《信号检测与估计》第三章习题解答
3.1 在二元数字通信系统中,发送端等概发送 2V 和 0V 的脉冲信号,信道上迭加的噪声服从均值
为零,方差为σ 2 的正态分布,试用最大后验概率准则对接收信号进行判决。
解:由于
P(H1)
=
P(H 0
)
=
1 2
,且
信号检测与估计简答题集
一、简答题注释简答题(每题5分,共20分)或(每题4分,共20分)二、第1章简答题1.从系统和信号的角度看,简述信号检测与估计的研究对象。
答:从系统的角度看,信号检测与估计的研究对象是加性噪声情况信息传输系统中的接收设备。
从信号的角度看,信号检测与估计的研究对象是随机信号或随机过程。
2.简述信号检测与估计的基本任务和所依赖的数学基础。
答:解决信息传输系统接收端信号与数据处理中信息恢复与获取问题,或从被噪声及其他干扰污染的信号中提取、恢复所需的信息。
信号检测与估计所依赖的数学基础是数理统计中贝叶斯统计的贝叶斯统计决策理论和方法。
3.概述信号在传输过程中与噪声混叠在一起的类型。
答:信号在传输过程中,噪声与信号混杂在一起的类型有3种:噪声与信号相加,噪声与信号相乘(衰落效应),噪声与信号卷积(多径效应)。
与信号相加的噪声称为加性噪声,与信号相乘的噪声称为乘性噪声,与信号卷积的噪声称为卷积噪声。
加性噪声是最常见的干扰类型,也是最基本的,因为乘性噪声和卷积噪声的情况均可转换为加性噪声的情况。
三、第2章简答题1.简述匹配滤波器概念及其作用。
答:匹配滤波器是在输入为确定信号加平稳噪声的情况下,使输出信噪比达到最大的线性系统。
匹配滤波器的作用:一是使滤波器输出有用信号成分尽可能强;二是抑制噪声,使滤波器输出噪声成分尽可能小,减小噪声对信号处理的影响。
2.根据匹配滤波器传输函数与输入确定信号及噪声的关系,简述匹配滤波器的原理。
答:匹配滤波器传输函数等于输入确定信号频谱的复共轭除以输入平稳噪声的功率谱密度,再附加相位项T ω-,其中T 为输入确定信号的持续时间或观测时间。
由于匹配滤波器传输函数的幅频特性与输入确定信号的幅频特性成正比,与输入噪声的功率谱密度成反比;对于某个频率点,信号越强,该频率点的加权系数越大,噪声越强,加权越小。
从而起到加强信号,抑制噪声的作用。
对于信号,匹配滤波器的相频特性与输入信号的相位谱互补,使输入信号经过匹配滤波器以后,相位谱将全部被补偿掉。
信号检测与估计作业参考(电子科大)
对于两种假设下的条件概率密度函数为
则似然比
p(x | H0) =
1 2π σ
e−
x2 2σ 2
;
p(x
|
H1)
=
1
e−
(
x −1)2 2σ 2
2π σ
有贝叶斯准则得
Λ(x) =
p(x | H1)
2 x−1
= e 2σ 2
p(x | H0)
Λ0 =
p(H0 ) ⋅ c10 − c00 p(H1) c01 − c11
4
(2)与 β 相应的各假设先验概率。
解:
(1)求判决门限 β :
由题设可得相应假设的似然函数 p(x | H1) 和 p(x | H0 )
⎧
⎪ ⎪
p(
x
|
H1
)
=
⎨
⎪ ⎪⎩
p(
x
|
H
0
)
=
1
− ( x−1)2
e 2σ 2
2π σ
1
− x2
e 2σ 2
2π σ
则相应的似然比为
Λ(x) =
p(x | H1)
(2)相应的检测概率 P(D1|H1) .
解:
(1)求最佳判决门限 β
单个样本所对应的似然函数为:
p(xi | H0 ) =
1 2π σ
− xi2
e 2σ 2
;
p( xi
|
H1)
=
1
− ( xi −2)2
e 2σ 2
2π σ
由于样本相互独立且服从正态分布,则可得此时依据 M 个独立样本所得似然函数为:
>
1 2
信号检测与估计理论第一章习题讲解
信号检测与估计理论第一章习题讲解1-9已知随机变量某的分布函数为0F某(某)k某21,某0,0某1,某1求:①系数k;②某落在区间(0.3,0.7)内的概率;③随机变量某的概率密度。
解:第①问利用F某(某)右连续的性质k=1第②问P0.3某0.7PF0.7F00.某3.3某.70.7P0dF某(某)2某第③问f某(某)d某00某1ele1-10已知随机变量某的概率密度为f某(某)ke普拉斯分布),求:某(某)(拉①系数k②某落在区间(0,1)内的概率③随机变量某的分布函数解:第①问f某某1d某11k2F2某F1某某1第②问P某2某某2f某d某随机变量某落在区间(某1,某2]的概率P{某1某某2}就是曲线yf某下的曲边梯形的面积。
P0某1P0某1f某d某0111e12第③问1某e2f某1e某2某0某0F某某f(某)d某1某某0e21某某01e2某0某1某ed某201e某d某某1e某d某022某01-11某繁忙的汽车站,每天有大量的汽车进出。
设每辆汽车在一天内出事故的概率为0.0001,若每天有1000辆汽车进出汽车站,问汽车站出事故的次数不小于2的概率是多少?(0-1)分布n,p0,np=二项分布泊松分布n成立,p,q0不成立高斯分布汽车站出事故的次数不小于2的概率P(k2)1Pk0Pk10.1P(k2)11.1e答案P某k=n=1实际计算中,只需满足n10kek!p0.1,二项分布就趋近于泊松分布=np1-12已知随机变量(某,Y)的概率密度为(3某4y)kef某Y(某,y)0,某0,y0,其它求:①系数k?②(某,Y)的分布函数?③P{0某1,0某2}?第③问方法一:联合分布函数F某Y(某,y)性质:若任意四个实数a,a,b,b,满足1212a1a2,b1b2,则P{a1某a2,b1Yb2}F某Y(a2,b2)F某Y(a1,b1)F某Y(a1,b2)F某Y(a2,b1)P{0某1,0Y2}F某Y(1,2)F某Y(0,0)F某Y(1,0)F某Y(0,2)方法二:利用P{(某,y)D}f某Yu,vdudvD20P{0某1,0Y2}0f某Y某,yd某dy11-13已知随机变量(某,Y)的概率密度为1,0某1,y某f(某,y)0,其它①求条件概率密度f某(某|y)和fY(y|某)?②判断某和Y是否独立?给出理由。
2014年信号检测与估计各章作业参考答案(1~9章)
第二章 随机信号及其统计描述1.求在实数区间[]b a ,内均匀分布的随机变量X 均值和方差。
解: 变量X 的概率密度 ⎪⎪⎩⎪⎪⎨⎧≤≤-=其他,,01)(b x a a b x p均值 []⎰∞∞-+===2)(ba dx x xp X E m X方差 ⎰∞∞--=-=12)()()(222a b dx x p m x X Xσ2.设X 是具有概率密度函数)(x p 的随机变量,令x 的函数为0),exp(>-=a ax y试求随机变量y 的概率密度函数)(y p 。
解: 反函数0,ln 1>-=a y ax 雅可比式为 aydy dx J 1-==所以 0),ln 1(1)ln 1()(>-=-⋅=a y ap ay y a p J y p 4. 随机过程)(t X 为)sin()cos()(00t B t A t X ωω+=式中,0ω是常数,A 和B 是两个互相独立的高斯随机变量,而且0][][==B E A E ,222][][σ==B E A E 。
求)(t X 的均值和自相关函数。
7. 设有状态连续、时间离散的随机过程)2sin()(t t X Ω=π,式中t 只能取正整数,即 ,3,2,1=t ,而Ω为在区间)1,0(上均匀分布的随机变量,试讨论)(t X 的平稳性。
8.平稳随机过程)(t X 的自相关函数为1)10cos(22)(10++=-τττe R X ,求)(t X 均值、二阶原点矩和方差。
解: 可按公式求解[])()0(,)0()(,)(222∞-==∞=X X X X X X R R R t X E R m σ。
但在求解周期性分量时,不能得出)(∞R ,为此把自相关函数分成两部分: ()12)10cos(2)()()(1021++=+=-τττττeR R R X X X由于)10cos(2)(1ττ=X R 的对应的随机过程为 是随机变量为常数,ϕϕA t A t X ),10cos()(1+=所以[]0)(1=t X E而对于12)(102+=-ττeR X ,有1)(2=∞X R ,即[]1)(2±=t X E所以[][][]1)()()(21±=+=t X E t X E t X E 可理解为1)(=∞X R从而有 []5)0()(2==X R t X E ,)()0(2∞-=X X X R R σ=4因此)(t X 的均值、二阶原点矩和方差分别为[]1)(±=t X E []5)(2=t X E 42=X σ9. 若随机过程)(t X 的自相关函数为)cos(21)(0τωτ=X R ,求)(t X 的功率谱密度。
2021年信号检测与估计各章作业参考答案(1~9章)
其中 是常数, 是 上均匀分布的随机参量; 是高斯白噪声。
(a)求判决公式及最正确接收机结构形式。
(b)如果 ,证明最正确接收机可用 作为检验统计量,并对此加以讨论。
解:〔a〕设 是均值为0、功率谱密度为 的正态白噪声,那么有
由于
所以
按照贝叶斯准那么
或者
两边取对数得到
最正确接
因此 的均值、二阶原点矩和方差分别为
9.假设随机过程 的自相关函数为 ,求 的功率谱密度。
解:自相关函数与功率谱密度函数是一对傅立叶变换对,所以有
利用欧拉公式,可得
11.平稳随机过程 具有如下功率谱密度
求 的相关函数 及平均功率 。
解:
而自相关函数 与功率谱密度 是一对傅立叶变换,
〔b〕不管是否有条件 ,
都可选 作为检验统计量。
当 时,由于
所以判决规那么为
第六章多重信号检测
思考题1:为何要进行多重信号的检测?
答:利用多重信号检测的优势是可以增加检测系统的信噪比,从而增强系统的检测性能。
思考题3:何谓随机相位相干脉冲串信号和随机相位非相干脉冲串信号?
答:通常把多个脉冲信号组成的一串信号称为脉冲串信号,各个脉冲叫做子脉冲,整个信号叫做脉冲串信号。如果脉冲串信号的初相随机,但各个子脉冲信号的相位一致,那么称之为随机相位相干脉冲串信号。如果各子脉冲信号的相位都是随机变化的,且彼此独立变化,那么称之为随机相位非相干脉冲串信号。
〔1〕求 的最大似然估计。
〔2〕假设 的概率密度
求 的最大后验概率估计。
解:〔1〕由题意可写出似然函数
按最大似然估计方程 ,由此解得
〔2〕当 时,可按最大后验概率方程 求解,得到
信号检测与估计第一章课后答案
22]exp[22228.8)])R pp101022]p x x H ss 22]1x x s +似然函数为221/22()(|)(2/2)exp[]2/2x k x k m a P m H ps s --= (k=1,0)虚警概率100(|)(|)[]/2x x P D H P m H dm erfc bb s ¥==ò漏报概率0111(|)1(|)1[]/2x x P D H P m H dm erfc bb s ¥-=-=-ò平均风险011001Pr (|)(|)f m R Qr Qc P D H Pc P D H =+=+=1[]{1[]}/2/2f m Qc erfc Pc erfc b b s s -+-其中b 为(1)式确定1.3只用一次观测x 来对下面两个假设作选择,0H :样本x 为零均值、方差20s 的高斯变量,1H :样本x 为零均值、方差21s 的高斯变量,且21s >20s 。
根据观测结果x ,确定判决区域0D 和1D 。
画出似然比接收机框图。
1H 为真而选择了0H 的概率如何? 解:(1)似然函数221(|)exp()2*2k k kx P x H s s p -= (k=1,0) 似然比2100220101(|)111exp[()](|)2P x H x P x H s s s s =-³L 判为1H 化简得2220101221002ln 0x s s sb s s s L³=>- (21s >20s ) 判为1H得 1:||D x b ³ 0:||D x b <0L 根据选取准则而定21exp()2bbbbs s p(2s p12s p 222lns ps=b ||1x b > |1b £则||x—bx ³0 判为1H<0 判为0H1001(|)(|)2P D H P x H dx dx bbbbb a --====òò所以得判决区域为1:||||1D x x a £> 0:||1D x a <£1.7 1.7 根据一次观测,用极大极小化检验对下面两个假设做判断根据一次观测,用极大极小化检验对下面两个假设做判断根据一次观测,用极大极小化检验对下面两个假设做判断1H :()1()x t n t =+0H :()()x t n t =设n (t )为零均值和功率为2s 的高斯过程,且00111001,1c c c c ===。
信号与系统第1至8章习题参考解答
《信号与系统》第1~8章习题参考解答第一章 (2)第二章 (13)第三章 (22)第四章 (35)第五章 (48)第六章(无) (56)第七章 (57)第八章 (65)第一章1-4 对于例1-1所示信号,由f (t )求f (−3t − 2),但改变运算顺序,先求f (3t )或先求f (−t ),讨论所得结果是否与原例之结果一致。
解:(1). 例1-1的方法: f (t )→ f (t − 2)→ f (3t − 2)→ f (−3t − 2) (2). 方法二:f (t )→ f (3t )→ 2[3()]3f t − →f (−3t − 2) (3). 方法三:f (t )→f (−t ) →[(2)]f t −+ →f (−3t − 2)方法三:1-5 已知()f t ,为求0()f t at −应按下列哪种运算求得正确结果(式中0t ,a 都为正值)?(1)()f at −左移0t (2)()f at 右移0t (3)()f at 左移0t a (4)()f at −右移0ta解:(4)()f at −右移t a:故(4)运算可以得到正确结果。
注:1-4、1-5 题考察信号时域运算:1-4 题说明采用不同的运算次序可以得到一致的结果; 1-5 题提醒所有的运算是针对自变量t 进行的。
如果先进行尺度变换或者反转变换,再进行移位变换,一定要注意移位量和移位的方向。
1-9 粗略绘出下列各函数式的波形图: (1)()(2)()t f t e u t −=− (2)2()(36)()t t f t e e u t −−=+ (3)3()(55)()t t f t e e u t −−=−(4)()cos(10)[(1)(2)]t f t e t u t u t π−=−−− 解:(1)()(2)()tf t e u t −=−(2)2()(36)()ttf t e eu t −−=+(3)3()(55)()ttf t e eu t −−=−(4)()cos(10)[(1)(2)]tf t e t u t u t π−=−−−1-12 绘出下列各时间函数的波形图,注意它们的区别:(1)[()(1)]−−;t u t u t(2)(1)�;t u t−(3)[()(1)](1)−−+−;t u t u t u t(4)(1)(1)−−;t u t(5)(1)[()(1)]−−−−;t u t u t(6)[(2)(3)]−−−;t u t u t(7)(2)[(2)(3)]t u t u t−−−−。
信号检测估计复习资料
第二章随机信号及其统计描述1.两个随机过程不相关一定独立。
()2.严格的平稳随机过程不一定是宽平稳随机过程。
()3.平稳随机过程的功率谱密度与自相关函数是一对傅里叶变换。
()4.白噪声是一种理想化模型,在实际中是不存在的。
()5.功率谱密度是样本函数x在单位频带内在1欧姆电阻上的平均功率值。
()6.加性噪声按功率谱密度分为()噪声和()噪声。
7.有色噪声的功率谱密度在频率范围内是均匀分布的。
()8.对于白噪声下面哪个量是均匀分布的()。
A.噪声电压B.噪声电流C.噪声功率D.噪声功率谱密度9.在信号检测与估计理论中,通信接收机中的噪声可以近似为平稳随机过程。
()第三章经典检测理论1.什么是二元检测,其本质是什么?画出其理论模型。
2.二元检测中有两类错误的判决概率,两类正确判决概率。
( )3.下面哪种概率是虚警概率()。
A.P(D0|H0)B.P(D1|H0)C.P(D1|H1)D. P(D0|H1)4.二元检测中有先验概率和后验概率,P(H0)是()概率,P(H0|x)是()概率。
5.下面哪个为后验概率密度函数()。
A.f(x|H0)B.f(x|H1,a)C.f(a|x)D.f(a)6.经典检测理论中常用的4个检测准则分别为()、()、()和()。
7.最大后验概率准则和最小错误概率准则判决公式是不同的。
()8.最大后验概率准则为何称为理想观测者准则?9.极大极小风险准则是在先验概率未知的情况下,使可能出现的最大风险达到极小的判别准则。
()10.Neyman-Pearson准则规定,在给定( )概率情况下,使得()概率尽可能大。
11.最大后验估计和最大似然估计的使用条件。
12.下面哪种判决准则是时平均风险最小的准则()。
A.最大后验概率准则B.最小错误概率准则C.Bayes准则D.Neyman-Pearson准则13.当先验概率未知和代价函数均未知时,使用的判决准则是Neyman-Pearson准则。
信号检测与估计理论 (复习题解)
第2章 信号检测与估计理论的基础知识 内容提要
五. 线性时不变系统对平稳连续随机信号的响应
1. 输入平稳连续随机信号x(t),响应y(t)也是平稳的。
2. 响应y(t)均值 y H (0)x,自相关函数ry ( ) h( ) h( ) rx ( ), 功率谱密度Py () | H () |2 Px ()。
第2章 信号检测与估计理论的基础知识 内容提要
三. 离散随机信号的函数
1. 一维雅可比变换,特别是简单线性函数时的变换。 2. N维雅可比变换。
四. 连续随机信号
1. 任意tk时刻采样所得样本x(tk ) (xk;tk )(k 1,2, , N )的概率密度 函数描述。
2. 统计平均量:均值,均方值,方差,自相关函数,协方差函数及关系。
图2.1(a)
图2.1(b)
ab y
例2.2
设x ~
N(x
,
2 x
)。若y
2
x
b,
求p(
y)及
y和
2。
y
解:y
2x
b是线性变换,所以y
~
N(
y
,
2 y
)。
反函数 x ( y b) / 2, 雅可比 J d[(y b) / 2]/ dy 1/ 2。所以
p(
y)
1
2
2 x
1
2
exp
(
y
b) / 2
a x a 其他
(a 0)
如图2.1(a )所示。已知x的均值和方差分别为 x
0,
2 x
a2
/ 6。
设y x b,求p( y)及y的均值和方差;当a b 2a时,画出p( y)的函数
信号检测习题解答all
第一章习题1.1 在例1.2中,设噪声均方差电压值为2V σ=,代价为21m f c c ==。
信号存在的先验概率0.2p =。
试确定贝叶斯意义下最佳门限β。
并计算出相应的平均风险。
解:001()0.828()0.2p H cf cm p H β=⋅=⨯=,由式(1-18)有,14ln 88.822V β=+=由教材式(1-20)、(1-21)可得平均风险:22110010101088()()((()|)()|)0.210.2() 1.6()220.2m f x x H H H D H H D H r p r p r p p c p p c e dx e dxerfc ββββ--⋅⋅=+⋅=⋅+⋅⋅=⋅+⎰⎰-=⋅Φ+⋅=1.3 只用一次观测x 来对下面两个假设做选择,0H :样本x 为零均值、方差20σ的高斯变量,1H :样本x 为零均值、方差为21σ的高斯变量,且2210σσ>。
(1)根据观察结果x ,确定判决区域0D 和1D 。
(2)画出似然比接受机框图。
1H 为真而选择了0H 的概率如何? 解:由于ijc ,()jH p 未知,因而选择MAP (最大后验)准则:0H:22002(|)x p x H eσ-⋅=1H:22112(|)x p x H eσ-⋅=2221011()20101(|)()(|)x p x H x ep x H σσσσ--Λ==⋅01Λ=∴当0()x Λ≥Λ,即1220112221102[()ln ]x σσσσσσ≥-时,作1D 判决;当0()x Λ<Λ时,即1220112221102[()ln ]x σσσσσσ<-时,作0D 判决。
(2)似然机接收框图如下:所以,判决1H 为真而选择了0H 的概率为:2212200011000012111(|)(|)[][]x y x xp D H p x H dx edxx x x x x e dy erfc erfc σσσ-⋅-==⎰⎰--==--⎰其中:12212022000112[()ln ]x σσσσσσ=- 1.4 设计一个似然比检验,对下面两个假设做选择。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试卷共8题,其中4题属于教材第一章内容,其余4题分别的其他章节。
请同学们对匹配滤波器,离散卡尔曼滤波,离散维纳滤波,高斯白噪声下确知信号的检测,K -L 展开,高斯白噪声信道中的单参量信号估计等内容重点关注。
1.1(付柏成 20060150)在例1.2中,设噪声均方差电压值为σ=2v ,代价为f c =2,m c =1。
信号存在的先验概率P =0.2。
试确定贝叶斯意义下最佳门限β,并计算出相应的平均风险。
解:根据式(1-15),可以算出00.8280.21f mQc Pc ⨯Λ===⨯ 而判决门限2201ln 0.52ln88.822βσ=+Λ=+=根据式(1-21)可知平均风险1010Pr 0.2r 0.8R Qr r =+=+01100.2(|)0.8(|)m f c P D H c PD H =+ 而011(|)(|)D P D H p x H dx =⎰1100(|)(|)D P D H p x Hdx =⎰而212(1)(|)]2x p x H σ-=-202(|)]2x p x H σ=-所以20112(1)(|)(|)]2D D x P D H p x H dx dx σ-==-⎰⎰22(1)x p []2x dx βσ-=-⎰=17.82()()(3.91)22β-Φ=Φ=Φ同理1121002(|)(|)]2D D x P D H p x H dx dx σ==-⎰⎰22x p ()2x dx βσ∞=-8.821()1()1(4.41)22β=-Φ=-Φ=-Φ所以0.21(3.91)0.82[1(4.41)]R =⨯⨯Φ+⨯⨯-Φ1.2 (关瑞东 20060155)假定加性噪声()n t 服从均值为零,方差为σ2的正态分布。
此时,两个假设为01:()():()1()H x t n t H x t n t ==+我们根据()x t 的两次独立测量值12,x x 作判断,则12,x x 是统计独立的,在假设1H 下其均值为1a =1,在假设0H 下均值为0a =0,因而在两种假设下它们的联合概率密度函数可写22/221()(|)(2)exp()2nn i k k i x a p x H πσσ-=-=-∑ (0,1;2)k n == 于是,似然比等于22011012210()(|)()exp[](|)2n i i a a n a a p x H x x p x H σσ=--Λ==-∑ 如果0()x Λ≥Λ,则选择假设1H ,否则选择假设0H 。
由于指数函数是单调函数,上式两边取对数不影响原来的判决,易得到1121/2H nx i i H x x m x n β=>+==<∑ 式中,x m 为样本平均值,2201010ln ln 1()/2()22a a n a a σσβΛΛ=++=+-为判决门限。
① 划分判决区域0D 和1D 的界面是两维空间的一个曲线,其曲线方程122x x β+=由于统计量x m 是n 个高斯随机变量的线性组合,因而也是高斯分布的,其均值在假设1H 和0H 下分别是1a 和0a ,方差为2/n σ,即2221/221/222()()(|)(2/)exp()()exp()2/x k x k x k m a m a p m H n n πσπσσσ----== ②因而虚警概率和漏报概率分别为100(|)(|)x x P D H p m H dm erfc erfc β∞===⎰011()1(|)1x x P D H p m H dm erfc β∞=-=-=Φ=Φ⎰ ③平均风险可表示为条件代价0r 和1r 对先验概率再平均10Pr R Qr =+其中,01010101010101(|)(|)(|)(|)f m r c P D H c P D H r c P D H c P D H ====1.3(徐世宇 20060175)(1)2020(/)]2x p x H σ=-2121(/)]2x p x H σ=-2201221010(/)exp()(/)22p x H x x p x H σσσσ=-所以001(/)(/)p x H p x H >∧等效于222101221002ln x σσσσσσ<-成立时的判决区域为0D0x =否则判为1D (2)似然比接收框图1H 为真却判为0H 的概率为201121(|)(/)]2x x x x x P D H p x H dx dx σ--==-⎰⎰1.4(姚瑶 20060176) ①由似然比准则()()1100||H P H X P H X >Λ()()0101|| 1Λ<∴H X H P X H P12exp 212122<⎪⎪⎭⎫ ⎝⎛-∴σσπx⎪⎪⎭⎫ ⎝⎛-<222exp 22 σσπx 2222ln2 x -<σπσ σπσ22ln2 22<x σπσ222ln<∴x若1>,则所有值都判为1H若1<,则101 , x H x H⎧<⎪⎪⎨⎪<<⎪⎩判为判为 ②⎪⎪⎭⎫ ⎝⎛-Λ<2202exp 22σσπx 220222ln σσπx -<Λ202222ln2 βσπσ=Λ<x()0 |β-βp x H dx α=⎰α=⇒⎰β-βdx 21αββ=⇒-x 21αββ=⎪⎭⎫⎝⎛--⇒22αβ=⇒1x , x 1 , H H αα⎧<⎪∴⎨<<⎪⎩判为判为1.5(吴芳20060190) (1)由条件可知:1210()()p H p H ==,1001c c =()()22222221102|x p x H e x--Γ=()()22221112|x n nnp x H e x--Γ=所以似然比:()()10|0|1p x H p x H >=Λ=<得:()()222222222221121121x n n nx e x e x--Γ--Γ><所以:()()22222222n n n x ---⎛⎫>Γ ⎪ ⎪<Γ⎝⎭(2)由条件:()12n N P == , ()12n M P ==()()(){}()10|,|p x H p d x p x H ααααΛ=⎰()()()()22222222222222211111220112011221x N x M N M N M x H e x e xx e x H----ΓΓ--Γ⋅+⋅>Λ=Λ=<1.6(骆振兴20060183)解:(1)根据题意,这里采用最大似然准则进行判决,根据X2分布的定义P(X/H k )=X n/2-1e -x/2/[2n/2Г(n/2)] X>0其中,Г(n/2)为X n/2-1e -X 在[0 ∞]上的积分值,则有P(X/H 0)=e -X/2/2 P(X/H 1)=Xe -X/2/4 P(X/H2)=X 2e -X/2/16 P(X/H3)=X 3e -X/2/96当0<=X<2时,P(X/H 0)/P(X/H 1)=2/X>1 P(X/H 0)/P(X/H 2)=8/X 2>1 P(X/H 0)/P(X/H 3)=48/X 3>1所以,当0=<X<2时,选择H 0。
通过相同方法分析得到其他三个检验的情况。
(2)令y=[X 1X 2……X M ]1/M ,因为X1X2……XM 为独立同分布的随机变量,P(y/H k )=[P(X i /H k )]M(1/M)=P(X i /H k )可见y 在四种假设情况下的似然函数与上题相同,所以可用y 替代x 。
1.7(翟海莹20060200) 似然函数为:}2exp{21)|(2220σπσx H x p -=}2)1(exp{21)|(2221σπσ--=x H x p 采用极大极小化准则,根据已知代价因子,有:)|()|(1001H D P H D P =即⎰⎰∞-∞=ββdxH x p dx H x p )|()|(10⎰⎰⎰-∞-∞-∞-=--=-1222222222}2exp{21}2)1(exp{21}2exp{21βββσπσσπσσπσdx x dx x dx x得0)1(=-+ββ即5.0=β又)()(10H P H P =β 1)()(10=+H P H P所以31)(0=H P 32)(1=H P1.8(王钰婷 20060177) 若上题假定,6,30110==c c 则(1)每个假设的先验概率为何值时达到极大极小化风险? (2)根据一次观测的判决区域如何? 解:(1)采用极大极小化准则: 由于,01100==c c ,6,30110==c c ()()1100r H p r H p R +=()()()()1001101100//H D P c H p H D P c H p +==()[]()()()1001101101//1H D P c H p H D P c H p +-()01=∂∂H p R∴ =R ()()10010110//H D P c H D P c =∴极大极小化风险:()()1001/2/H D P H D P R == (a)由上题可知:()⎥⎦⎤⎢⎣⎡-=2202exp 21/σσπx H x p ()()⎥⎦⎤⎢⎣⎡--=22121exp 21/σσπx H x p ∴()()()()[]()10111002011212exp //01H p c H p c x H x p H x p x H H -=Λ<>⎪⎭⎫ ⎝⎛-==Λσ ∴判决规则:x1H H <>()()βσσ=-+=Λ+1120221ln 21ln 21H p H p (b)∴()()()()⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛-Φ==⎪⎭⎫⎝⎛Φ-==⎰⎰σβσβ1//1//01110001D D dx H x p H D P dx H x p H D P ∴由(a)式可得:⎪⎭⎫ ⎝⎛Φ-σβ1⎪⎭⎫⎝⎛-Φ=σβ12即⎪⎭⎫ ⎝⎛-Φσβ⎪⎭⎫ ⎝⎛-Φ=σβ12 (c) 由上(c)式可以计算出β的值 再代入(b)右式:()()βσ=-+11221ln 21H p H p 可求出达到极大极小化风险时,先验概率()()01H p H p 和的值 (2)最后根据判决规则(b)式:x1H H <>β 可得判决区域10D D 和。
1.9 (周杨杨 20060178) 解:由题意得()()()()()⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛-=∑∑=-=-M i i M M i i M x H p x H x p 12222112222022exp 2/2exp 2/σπσσπσ,其中22=σ()()()()⎪⎭⎫ ⎝⎛-==Λ∴∑=Mi ix H x p x 111exp /(1)()001Λ<>ΛH H x()β=+Λ<>=∴∑=1ln 1011MMx m H H Mi ix ()()⎰==101/05.0/D x d Hx p H D P()M M i i M dx dx x 11224exp 4⎪⎪⎭⎫⎝⎛-=∑⎰⎰=∞∞-ββπ Mi i dx x ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=⎰∞βπ4exp 212 Me rf c ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛=2β∴由上式可计算出β的值(2)()()⎰=1111//D x d Hx p H D P()x d x M i i M⎰∑∞=⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫⎝⎛=βπ1242e xp 21=?1.10(季莹莹20060181)应用式(1-6)~(1-8)证明(1-9))|()|()|(r 0101111i i i x H P c x H P c x d +=(1-6)∑=kk i k j j i i j H x p H P H P H x p x H P )|()()()|()|( (1-7))|()|()|(0001010i i i x H P c x H P c x d r += (1-8)0110110010001)()()|()|(Λ∆--≥∆Λc c H P c c H P H x p H x p i i (1-9)式1-9等效于)|()|(01i i x d r x d r ≤即)|()|()|()|(000101010111i i i i x H P c x H P c x H P c x H P c +≤+∑∑∑∑≤+kk i k i kk i k i kk i k i kki k i H x p H P H P H x p c H x p H P H P H x p c H x p H P H P H x p c H x p H P H P H x p c )|()()()|(+)|()()()|()|()()()|()|()()()|(0000110100101111经移项得)()|()()()|()(000010111101H P H x p c c H P H x p c c i i -≥-可得 0110110010001)()()|()|(Λ∆--≥∆Λc c H P c c H P H x p H x p i i1.11 (20060184 虞成磊)试证明例1.12中的最小均方误差估计量αˆ的表达式(1-127)和风险表达式(1-129).p()|x α=p()|αx p()α/p(x )=)}2/()]([exp{)2(22222212γβμσγαπγ+---xnm 其中,222---+=βσγn ,∑==ni i x x n m 11由式1-106得, ⎰∞∞-==]|[)|(ˆx E d x p ααααα由上式得2222222222222222222*)(1)(]|[σβμσββσμσβσββσβμσβσβμσγα++=++=++=+=n nm nm n nm n nm x E x x x xnn m x //2222σβμσβ++= x x xx x x dm m p nm dm m p dx x p R )|(])([)|()ˆ()|()ˆ()(2222}{22αβμσγαααααααα⎰⎰⎰∞∞-∞∞-+-=-=-==xx xx x x dm m p n n m dm m p n n m n n )|(]/)(/)([)|(]//)//([22222222222222ασβμασαβασβμσβασβσβ⎰⎰∞∞-∞∞-+-+-=++-++=|因为)|(αx m p 为高斯分布,αα=]|[x m E ,n m D x /]|[2σα=上式2222242222422222422224)/()(/*)/()/()()|()/()(n n n n n n dm m p n m xx x σβμασσσββσβμασασβαβ+-++=+-++-=⎰∞∞-2222242)/(])([n n nσβσμαβσ+-+=)/()/()/()/(/)()(222222222222224242n n n n n n n n d p R R σββσσβσββσσβσββσααα+=++=++==⎰∞∞-1.12 (高锋20060195) 由()()⎪⎪⎪⎪⎭⎫ ⎝⎛+==⎰∞+∞-n n da a p a R R 2222σββσ 可知(1) 5 ,1 ,122===n βσ时61511151=⎪⎪⎪⎪⎭⎫ ⎝⎛+=R(2) 102=σ时3251011510=⎪⎪⎪⎪⎭⎫ ⎝⎛+=R 可见,2σ增大时,n2σ增大,平均风险R 增大;(3) 50=n 时51150111501=⎪⎪⎪⎪⎭⎫⎝⎛+=R 可见,n 增大时,n2σ减小,平均风险R 减小。