有限差分方法24差分方程的相容性收敛性和稳定性
有限差分法
![有限差分法](https://img.taocdn.com/s3/m/009a79d428ea81c758f57825.png)
有限差分法finite difference method用差分代替微分,是有限差分法的基本出发点。
是一种微分方程和积分微分方程数值解的方法。
把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。
然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。
如何根据问题的特点将定解区域作网格剖分;如何把原微分方程离散化为差分方程组以及如何解此代数方程组。
此外为了保证计算过程的可行和计算结果的正确,还需从理论上分析差分方程组的性态,包括解的唯一性、存在性和差分格式的相容性、收敛性和稳定性。
对于一个微分方程建立的各种差分格式,为了有实用意义,一个基本要求是它们能够任意逼近微分方程,这就是相容性要求。
另外,一个差分格式是否有用,最终要看差分方程的精确解能否任意逼近微分方程的解,这就是收敛性的概念。
此外,还有一个重要的概念必须考虑,即差分格式的稳定性。
因为差分格式的计算过程是逐层推进的,在计算第n+1层的近似值时要用到第n层的近似值,直到与初始值有关。
前面各层若有舍入误差,必然影响到后面各层的值,如果误差的影响越来越大,以致差分格式的精确解的面貌完全被掩盖,这种格式是不稳定的,相反如果误差的传播是可以控制的,就认为格式是稳定的。
只有在这种情形,差分格式在实际计算中的近似解才可能任意逼近差分方程的精确解。
最常用的方法是数值微分法,比如用差商代替微商等。
另一方法叫积分插值法,因为在实际问题中得出的微分方程常常反映物理上的某种守恒原理,一般可以通过积分形式来表示。
此外还可以用待定系数法构造一些精度较高的差分格式。
龙格库塔龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。
9-5相容性收敛性与稳定性
![9-5相容性收敛性与稳定性](https://img.taocdn.com/s3/m/9d12e14b15791711cc7931b765ce05087632750c.png)
相容性、收敛性
相容性 如果增量函数(x, y, h) 关于 h 连续且满足条件
(x, y,0) f (x, y)
则称单步法与问题(*)相容,也称问题(**)与(*)相容。
收敛性 如果某种数值方法对任意初值 y0 , x a,b 都有
lim
h0
yn
y(x)
则称该数值方法是收敛的。
x a nh
n1
(1
h
2 h 2
2
)
故改进 Euler 法的绝对稳定区域为
1 h 2h2 1
2
梯形公式旳稳定性
梯形公式用于模型方程则为
yn1
yn
h 2
(
yn
yn1)
1
1
h
2
h
yn
2
故其绝对稳定区域为
1 h
2
1 h
1
2
即
1 h 1 h
2
2
Re(h) 0
因此梯形公式是 A―稳定的。
龙格-库塔法旳稳定性
1.0000 1.0000
1.0000
2.0000 2.5000101 2.5000
4.0000 6.2500102 6.2500
8.0000 1.5625102 1.5626101
1.60001013.9063103 3.9063101
3.20231019.7656104 9.7656101
精确解 y e30 x
作业:P264 1(1),4,13 上机试验
h0
lim (1
h0
ha) h
eax
容易验证 y eax 是初值问题的解。
稳定性
例:考察初值问题
差分方程及其稳定性分析
![差分方程及其稳定性分析](https://img.taocdn.com/s3/m/01f63e19cec789eb172ded630b1c59eef9c79a7b.png)
差分方程及其稳定性分析随着科技的不断发展和应用,数学作为一门基础学科,得到了越来越广泛的应用。
其中,差分方程作为一种离散化的微积分,被广泛地运用于电子、天文、生物、经济等领域中的模型计算和分析。
本文将介绍差分方程的基本概念和常见类型,以及如何对其进行稳定性分析。
一、差分方程的基本概念差分方程是指在内插点上的函数值之间的关系方程,其通常形式为:$$x_{n+1} = f(x_n)$$其中,$x_{n}$ 表示第 $n$ 个内插点的函数值,$f$ 是描述$x$ 的随时间变化关系的任意函数。
当然,差分方程还可以有更多的变量和函数,形式也可以更加复杂。
二、差分方程的类型根据差分方程的形式和特征,可将其分为以下几种类型:1、线性差分方程线性差分方程的一般形式为:$$x_{n+1} = ax_n+b$$其中,$a,b$ 为常数,$x_n$ 为第 $n$ 个内插点的函数值。
线性差分方程的求解可以采用常数变易法、特征方程法、生成函数法等多种方法。
2、非线性差分方程非线性差分方程是指其中的关系函数 $f$ 不是线性函数。
一般来说,非线性差分方程更难于求解。
3、线性递推方程线性递推方程是指卷积和形式的一类差分方程。
其形式为:$$x_{n+k} = a_1x_{n+k-1} + a_2x_{n+k-2} + \cdots + a_kx_n$$其中,$a_1,a_2,\cdots,a_k$ 为常数。
三、稳定性分析差分方程作为一种离散化的微积分,常常代表系统的动态演化过程。
因此,判断差分方程的解在过程中是否保持稳定性非常重要。
下面将介绍两种常见的差分方程稳定性分析方法。
1、线性稳定性分析法线性稳定性分析法是指对线性差分方程的解进行稳定性分析。
对于一般型的线性差分方程:$$\Delta x_{n+1} = a\Delta x_n$$其中,$\Delta x_n = x_{n+1} - x_n$,$a$ 为常数。
通过求解特征方程 $r-1=ar$,求得 $a$ 的值,便可判断差分方程解的稳定性。
有限差分方法(2010-07-19)
![有限差分方法(2010-07-19)](https://img.taocdn.com/s3/m/31d07e8c0c22590103029d25.png)
椭圆型微分方程的有限差分法 主讲: 谭 林基本思想(步骤):(1) 将求解区域(无限个点)限制在有限个离散点上,一般可通过网格剖分获得。
(2) 在离散点处,将求微分问题(无限计算问题)近似化为求若干(相邻)离散点上函数值的线性组合问题(有限计算问题),一般利用数值微商(分)(不同有限元法)。
形成所谓的差分方程。
(3) 差分方程的适定性、收敛性和稳定性分析。
(4) 差分方程的解法。
下面以两点边值问题为例介绍有限差分法全过程一、常见的有限差分方法 (1) 直接差分法模型问题1:椭圆型方程第一边值问题。
⎪⎩⎪⎨⎧==<<=+-=,)( ,)(a ,22βαb u a u b x f qu dx ud Lu 其中,],[,0)(),(,b a I x q I C f q =≥∈ 模型问题2:⎪⎩⎪⎨⎧==<<=++-=,)( ,)(a ,)(βαb u a u bx f qu dx du r dx du p d d Lu 其中,],[,0)(),(,,,0],[min 1b a I x q I C f q r p p I C p =≥∈>≥∈○1首先对模型问题1 讨论其有限差分方法的基本步骤 ●求解区域的离散化做均匀网格剖分:b x x x a N =<<<=Λ10其中,分点ih x x i +=0剖分步长n ab h -=● 在节点i x 处,对微分方程离散化22()ii x d uqu f x dx -+= )(12 )()(2)(344222211h O dx u d h dx u d h x u x u x u ii i i i +⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+--+有[]112()2()():()()()i i i i i i i u x u x u x Lu qu x hf x R u +--+=-+=+其中2434()()12i ih d u R u O h dx ⎡⎤=-+⎢⎥⎣⎦记u 在节点N k x k )1(0,=数值解为 N k u k )1(0,=, 则有1)1(1 ,2:211-==++--=-+N i f u q hu u u u L i i i i i i i h (*1)比较知)()(:)(u R x f x u L i i i h +=所以[]()()i h i i R u L u x Lu =-表示用差分算子h L 代替微分算子L 产生的误差称之为(局部)截断误差。
偏微(03)相容性收敛性稳定性
![偏微(03)相容性收敛性稳定性](https://img.taocdn.com/s3/m/6b87bb1fa76e58fafab00385.png)
−u
n j
改写为 u
n+1 j
Lh 是一个依赖于τ 和h的线性算子 的线性算子
h τ n n n = u j − aλ u j + 1 − u j ↔
+a
u
n j +1
−u
n j
=0
(
)
u
n+1 j
= Lh u
n j
u
= Lh u = u n − aλ u n+1 − u n j j j
n j
定 义 平 移 Iu j = u j Tu j = u j + 1 T −1 u j = u j − 1
∆ − x v ( x , t ) = v ( x , t ) − v ( x − ∆x , t ) .
2.1 有限差分格式的截断误差 中心差分
1 1 δ t v ( x , t ) = v x , t + ∆t − v x , t − ∆t , 2 2 1 1 δ x v ( x , t ) = v x + ∆x , t − v x − ∆x , t . 2 2
T ( x j , t n ) = Su( x j , t n ) − Lu( x j , t n )
不在边界上的任意一点 ( x j , t n )定义截断误差为
T x j , tn =
(
)
u( x j , t n+1 ) − u( x j , t n )
τ
−a
u( x j +1 , t n ) − 2u( x j , t n ) + u( x j −1 , t n ) h2
有限差分法
![有限差分法](https://img.taocdn.com/s3/m/5e79e0cdbe23482fb5da4c3d.png)
有限差分法有限差分法finite difference method微分方程和积分微分方程数值解的方法。
基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。
然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。
有限差分法的主要内容包括:如何根据问题的特点将定解区域作网格剖分;如何把原微分方程离散化为差分方程组以及如何解此代数方程组。
此外为了保证计算过程的可行和计算结果的正确,还需从理论上分析差分方程组的性态,包括解的唯一性、存在性和差分格式的相容性、收敛性和稳定性。
对于一个微分方程建立的各种差分格式,为了有实用意义,一个基本要求是它们能够任意逼近微分方程,这就是相容性要求。
另外,一个差分格式是否有用,最终要看差分方程的精确解能否任意逼近微分方程的解,这就是收敛性的概念。
此外,还有一个重要的概念必须考虑,即差分格式的稳定性。
因为差分格式的计算过程是逐层推进的,在计算第n+1层的近似值时要用到第n层的近似值,直到与初始值有关。
前面各层若有舍入误差,必然影响到后面各层的值,如果误差的影响越来越大,以致差分格式的精确解的面貌完全被掩盖,这种格式是不稳定的,相反如果误差的传播是可以控制的,就认为格式是稳定的。
只有在这种情形,差分格式在实际计算中的近似解才可能任意逼近差分方程的精确解。
关于差分格式的构造一般有以下3种方法。
最常用的方法是数值微分法,比如用差商代替微商等。
另一方法叫积分插值法,因为在实际问题中得出的微分方程常常反映物理上的某种守恒原理,一般可以通过积分形式来表示。
此外还可以用待定系数法构造一些精度较高的差分格式。
有限差分法
![有限差分法](https://img.taocdn.com/s3/m/8f4b2b3731126edb6f1a104d.png)
有 限 差 分 法流体运动的控制方程多为偏微分方程,在复杂的情况下不存在解析解。
但是对于一些简单的情况存在解析解,偏微分方程的解析解可用精确的数学表达式表示,该表达式给出了因变量在整个定义域中的连续变化状况。
有限差分法(Finite Difference Method ,FDM )是数值计算中比较经典的方法,由于其计算格式直观且计算简便,因此被广泛地应用在计算流体力学中。
有限差分法首先将求解区域划分为差分网格,变量信息存储在网格节点上,然后将偏微分方程的导数用差商代替,代入微分方程的边界条件,推导出关于网格节点变量的代数方程组,通过求解代数方程组,获得偏微分方程的近似解。
偏微分方程被包含离散点未知量的代数方程所替代,这个代数方程能求出离散节点处的变量,这种离散方法叫做有限差分法。
2.1有 限 差 分 逼 近2.1.1 有限差分网格 由于有限差分法求解的是网格节点上的未知量值,因此首先介绍有限差分网格。
图2.1 – 1是x-y 平面上的矩形差分网格示意图。
在x 轴方向的网格间距为△x ,在y 轴方向的网格间距为△y ,网格的交点称为节点,计算变量定义在网格节点上。
称△x 和△y 为空间步长,△x 一般不等于△y ,且△x 和△y 也可以不为常数。
取各方向等距离的网格,可以大大简化数学模型推导过程,并且经常会取得更加精确的数值解。
本章作为计算流体力学入门知识,假设沿坐标轴的各个方向网格间距分别相等,但是并不要求各方向的网格间距一致。
例如假设△x 和△y 是定值,但是不要求△x 等于△y 。
在图2.1 - 1中,网格节点在x 方向用i 表示,在y 方向用j 表示。
因此,假如(i ,j )是点P 在图2.1 – 1中的坐标,那么,点P 右边的第一个点的就可以用(i+1,j )表示;在P 左边的第一个点的就可以用(i —1,j )表示;点P 上边的第一个点的就可以用(i ,j+1)表示;点P 下边的第一个点的就可以用(i ,j —1)表示。
差分方程稳定性
![差分方程稳定性](https://img.taocdn.com/s3/m/1c0df1aad1f34693daef3ee6.png)
(10)
二阶方程的上述结果可以找到n阶线 形方程,即稳定平衡的条件是特征 方程—— n 次代数方程的根 λ i ( i = 1, 2 ,..., n ) 均有 | λ i |< 1 考虑到高阶方程和方程组的相互转化, 这个条件与(5)、(6)给出的结论是 一致的。
最后讨论一阶非线形差分方程
容易看出,可以用变量代换方法将方程 (1)的平衡点的稳定性问题转换为:
x k +1 + ax k = 0
(2)
的平衡点 x * = 0的稳定性问题。
而对于方程(2),因为其解显然可表为
x k = ( a ) k x 0 , k = 1, 2 ,...
所以立即可知当且仅当
(3)
| a |< 1
(4)
时方程(2)的平衡点(从而方程(1)的平衡点) 才是稳定的
顺便指出, 顺便指出,
对于 n 维向量 x ( k ) 和 n × n 常数 矩陈 A 构成的方程组
x(k + 1) + Ax(k ) = 0
λi , (i = 1,2,..., n )均有
(5)
其平衡点稳定的< 1
(12)
(12)是(11)的近似线形方程
x*也是( )的平衡点。 12
关于线形方程(12)的稳定平衡点 的讨论已由(1)——(4)给出
而当 | f / ( x * ) |≠ 1时方程(11)与(12) 平衡点的稳定性相同, 于是得到当
(13) x 时,对于非线形方程(11), * 是稳定的;
| f / ( x * ) |< 1
差分方程的稳定性
本节主要是介绍差分方程稳定性的知识 差分方程的平衡点及其稳定性的慨念与微分方程 的有关概念是一致的 ,例如一阶线形常系数差 分方程: (1) x k +1 + ax k = b , k = 0 ,1,... 的平衡点由 解得:
差分方程的相容性收敛性和稳定性课件
![差分方程的相容性收敛性和稳定性课件](https://img.taocdn.com/s3/m/a6da0afa68dc5022aaea998fcc22bcd126ff423a.png)
相容性的判定方法
通过分析差分方程的形式和系数,可以判断其是否具有相容 性。
判断差分方程是否具有相容性的方法通常包括检查该方程是 否满足一定的数学性质,例如,是否具有一致的形式和系数 。此外,还可以通过求解该差分方程的初始值问题来验证其 相容性。
近似解。
有限元法的优势
有限元法能够处理复杂的几何形 状和边界条件,且能够处理非线 性问题,因此在工程领域应用广
泛。
06
差分方程的实际应用案例
在物理中的应用
1 2
量子力学
差分方程在量子力学中用于描述粒子在势能场中 的行为,例如在求解薛定谔方程时,差分法是一 种常用的数值解法。
热传导方程
在求解一维或二维的热传导方程时,可以使用差 分法将偏微分方程转化为差分方程进行求解。
3
波动方程
在处理波动问题时,如声波、电磁波等,差分法 可以用来模拟波的传播和干涉现象。
在金融中的应用
股票价格模型
差分方程可以用于描述股 票价格的变动规律,例如 著名的几何布朗运动模型 就是一种差分方程。
期货价格模型
在期货定价理论中,差分 方程被用来描述未来价格 的变化趋势,为投资者提 供决策依据。
图形法
通过绘制差分方程的解的 图像,观察其随时间的演 化趋势。
比较法
通过比较差分方程与已知 稳定或不稳定方程的性质 ,判断其稳定性。
稳定性的应用
控制工程
稳定性是控制系统的重要性能指 标,决定了系统的动态行为。
差分格式的稳定性与收敛性
![差分格式的稳定性与收敛性](https://img.taocdn.com/s3/m/87220e8d26fff705cc170a59.png)
差分格式的稳定性与收敛性1 基本概念所谓稳定性问题是指在数值计算过程中产生的误差的积累和传播是否受到控制.在应用差分格式求近似解的过程中,由于我们是按节点逐次递推进行,所以误差的传播是不可避免的,如果差分格式能有效的控制误差的传播,使它对于计算结果不会产生严重的影响,或者说差分方程的解对于边值和右端具有某种连续相依的性质,就叫做差分格式的稳定性.差分格式的收敛性是指在步长h 足够小的情况下,由它所确定的差分解m u 能够以任意指定的精度逼近微分方程边值问题的精确解()m u x .下面给出收敛性的精确定义:设{}m u 是差分格式定义的差分解,如果当0h → 并且m u x →时,有()0m u u x -→,则称此格式是收敛的.2 差分方程的建立对于二阶边值问题'''()(),,(),(),Lu u q x u f x a x b u a u b αβ⎧≡-+=<<⎨==⎩ (1) 其中()q x 、[](),,()0.f x C a b q x ∈≥将区间[],a b 分成N 等份,记分点为,0,1,,,m x a mh m N =+=⋅⋅⋅ 这里步长b a h N-=.利用泰勒公式,得''1121[(()2()()]()m m m m m u x u x u x u x R h+--+=- (2) 其中 2(4)11(),(,)12m m m m m h R u x x ξξ-+=-∈(3) 把式(2)代入式(1)中的微分方程,有1121()[(()2()()]()()h m m m m m m L u x u x u x u x q x u x h+-≡--++ ()m m f x R =+ (4) 略去余项m R ,便得到(1)式中的微分方程在内部节点m x 的差分方程;再考虑到式(1)中的边界条件,就得到边值问题(1)的差分方程11201(2)()(),,,,h m m m m m m m N L u u u u q x u f x a x b h u u αβ+-⎧≡--++=<<⎪⎨⎪==⎩(5) 解线性代数方程组(5),得()m u x 的近似值m u .01,,,N u u u ⋅⋅⋅称为边值问题(1)的差分解.从上面的推导过程可以看出,在节点m x 建立差分方程的关键是在该点用函数()u x 的二阶中心差商代替二阶导数,最后用差分算子h L 代替微分算子L 就产生差分方程(5).记 ()()()m m h m R u Lu x L u x =-,称()m R u 是用差分算子h L 代替微分算子L 所产生的截断误差.由式(2),二阶中心差商代替二阶导数所产生的截断误差m R ,从式(4)和式(5)可以得出(())m h m m R L u x u =-,m R 称为差分方程(5)的截断误差.3 讨论差分方程组(5)的解的稳定性与收敛性引理3.1(极值原理) 设01,,,N u u u ⋅⋅⋅是一组不全相等的数,记01{,,,}N S u u u =⋅⋅⋅,11(),1,2,,1,h m m m m m m m L u a u b u c u m N -+=++=⋅⋅⋅- (6) 其中0,0,0,.m m m m m m b a c b a c ><<≥+(1) 若0(1,2,,1)h m L u m N ≤=⋅⋅⋅-,则不能在121,,,N u u u -⋅⋅⋅中取到S 中正的最大值;(2) 若0(1,2,,1)h m L u m N ≥=⋅⋅⋅-,则不能在121,,,N u u u -⋅⋅⋅中取到S 中负的最小值.证 首先用反证法证明(1).假设在121,,,N u u u -⋅⋅⋅中取到S 中正的最大值,记为M ,那么{}0max 0m m NM u ≤≤=>,由于S 中的数不全相等,一定存在某个(11)i i N ≤≤-,使得i u M =,并且1i u -与1i u +中至少有一个小于M .于是11()h i i i i i i i L u a u bu c u -+=++11i i i i i b M a u c u -+=++()0i i i b M a c M >++≥这与0h i L u ≤矛盾,从而(1)得证.同理可证明(2).现在运用极值原理论证差分方法的稳定性及收敛性.定理3.2 差分方程组(5)的解m u 满足{}111max ,()()max ,1,2,,1,2m m m m m N u x a b x f m N αβ≤≤-≤+--=⋅⋅⋅- (7) 证 把方程组 00,1,2,,1,,h m N L u m N u u αβ==⋅⋅⋅-⎧⎨==⎩和 0,1,2,,1,0h m m N L u f m N u u ==⋅⋅⋅-⎧⎨==⎩的解分别记为(1)m u 和(2)m u ,其中差分算子h L 由式(5)定义,则方程组(5)的解m u 为(1)(2)m m m u u u =+ (8)由极值原理可知 {}(1)max ,,1,2,,1m u m N αβ≤=⋅⋅⋅-. (9)接下来再估计(2)m u ,考虑差分方程11201(2),1,2,,1,0m m m N v v v M m N h u u +-⎧--+==⋅⋅⋅-⎪⎨⎪==⎩(10)其中 {}0max m m NM f ≤≤= 容易验证该微分方程是从边值问题'',()()0v M v a v b ⎧-=⎨==⎩ (11) 得到的,而在此边值问题的解是 ()()()2M v x x a b x =--. 因为()v x 是x 的二次函数,它的四阶导数为零,从式(2)、(3)看到()v x 在点m x 的二阶中心差商与''()m v x 相等,因此差分方程(10)的解等于边值问题(11)的解,即()()()02m m m m M v v x x a b x ==--≥. 另一方面,(2)(2)(2)(2)00()0,0,h m m h m h m m m m N N L v u L v L u q v M f v u v u ±=±=+±≥±=±=由极值原理可知 (2)0,m mv u ±≥ 即 (2)()(),1,2,, 1.2m m m m M u v x a b x m N ≤=--=⋅⋅⋅-(12) 综合式(8)、(9)、(12)就得到式(7).定理3.2表明差分方程(5)的解关于边值问题(1)的右端项和边值问题是稳定的,亦即当f 、α、β有一个小的改变时,所引起的差分解的改变也是小的.定理3.3 设()u x 是边值问题(1)的解,m u 是差分方程(5)的解,则22(4)()()max (),1,2,, 1.96m m a x b b a u x u h u x m N ≤≤--≤=⋅⋅⋅-(13) 证 记 ()m m m u x u ε=-,由式(3)、(4)、(5)可知0,1,2,,1,0,h m m N L R m N εεε==⋅⋅⋅-⎧⎨==⎩ 其中m R 由式(3)定义.从定理3.2得111()()max 2m m m m m N x a b x R ε≤≤-≤-- 22(4)()max ().96a xb b a h u x ≤≤-≤ 式(13)给出了差分方程(5)的解的误差估计,而且表明当0h →差分解收敛到原边值问题的解,收敛速度为2h .4 小结收敛性和稳定性是从不同角度讨论差分法的精确情况,稳定性主要是讨论初值的误差和计算中的舍入误差对计算结果的影响,收敛性则主要讨论推算公式引入的截断误差对计算结果的影响.使用既收敛有稳定的差分格式才有比较可靠的计算结果,这也是讨论收敛性和稳定性的重要意义.参考文献[1] 李瑞遐、何志东.微分方程数值方法,上海:华东理工大学出版社[2] 黄明游、冯果忱.数值分析(下册)北京:高等教育出版社,2008[3] 杨大地、王开荣.数值分析.北京:科学出版社,2006[4] 袁东锦.计算方法——数值分析.南京:南京师范大学出版社.2007[5] 李清扬等.数值分析(第4版).武汉:华中科技大学出版社.2006。
有限差分方程
![有限差分方程](https://img.taocdn.com/s3/m/301184cbbb0d4a7302768e9951e79b896902686a.png)
有限差分方程
(最新版)
目录
1.有限差分方程的定义
2.有限差分方程的性质
3.有限差分方程的应用
4.有限差分方程的求解方法
正文
有限差分方程是一种数学模型,它主要用于描述离散系统的演化。
在计算机科学和工程领域,有限差分方程被广泛应用,因为它可以方便地用于数值计算和模拟。
有限差分方程的性质包括稳定性、一致性和收敛性。
稳定性是指当系统受到微小扰动时,系统能够恢复到原状态。
一致性是指方程的解在所有时间点上都能够保持一致。
收敛性是指当差分的大小无限减小时,方程的解能够趋近于真实解。
有限差分方程在许多领域都有应用,例如在生态学中,它可以用来描述种群的数量变化;在物理学中,它可以用来描述物体的运动;在经济学中,它可以用来描述市场的变化。
求解有限差分方程的方法有多种,其中最常见的方法是欧拉法和改进欧拉法。
欧拉法是一种数值求解方法,它通过在一定时间内对系统进行微分和积分来求解方程。
改进欧拉法是欧拉法的一种改进,它通过增加积分的步数来提高求解的精度。
除了欧拉法和改进欧拉法,还有其他一些求解有限差分方程的方法,例如龙格库塔法和阿达姆斯法。
龙格库塔法是一种高精度的数值求解方法,它通过在每个时间步长内对系统进行多次微分和积分来求解方程。
阿达姆
斯法是一种自适应的数值求解方法,它通过自动调整积分的步数来提高求解的精度。
有限差分方程是一种重要的数学模型,它被广泛应用于计算机科学和工程领域。
差分方法基础
![差分方法基础](https://img.taocdn.com/s3/m/c2f31720482fb4daa58d4ba9.png)
第二讲 有限差分法基本原理一般的流体控制方程都是非线性的偏微分方程。
在绝大多数情况下,这些偏微分方程无法得到精确解;而CFD 就是通过采用各种计算方法得到这些偏微分方程的数值解,或称近似解。
当然这些近似解应该满足一定的精度。
目前,主要采用的CFD 方法是有限差分法和有限体积法。
本讲主要介绍有限差分法,它也是下一讲中的有限体积法的基础[1]。
有限差分法求解流动控制方程的基本过程是:首先将求解区域划分为差分网格,用有限个网格点代替连续的求解域,将待求解的流动变量(如密度、速度等)存储在各网格点上,并将偏微分方程中的微分项用相应的差商代替,从而将偏微分方程转化为代数形式的差分方程,得到含有离散点上的有限个未知变量的差分方程组。
求出该差分方程组的解,也就得到了网格点上流动变量的数值解。
2.1 差分和逼近误差由于通常数字计算机只能执行算术运算和逻辑运算,因此就需要一种用算术运算来处理函数微分运算的数值方法。
而有限差分法就是用离散网格点上的函数值来近似导数的一种方法。
设有x 的解析函数)(x f y =,从微分学知道函数y 对x 的导数为 xx f x x f x y dx dy x x ∆-∆+=∆∆=→∆→∆)()(lim lim 00 (2-1) dy 、dx 分别是函数及自变量的微分,dx dy /是函数对自变量的导数,又称微商。
相应地,上式中的x ∆、y ∆分别称为自变量及函数的差分,x y ∆∆/为函数对自变量的差商。
在导数的定义中x ∆是以任意方式逼近于零的,因而x ∆是可正可负的。
在差分方法中,x ∆总是取某一小的正数。
这样一来,与微分对应的差分可以有三种形式:向前差分 )()(x f x x f y -∆+=∆向后差分 )()(x x f x f y ∆--=∆中心差分 )21()21(x x f x x f y ∆--∆+=∆上面谈的是一阶导数,对应的称为一阶差分。
对一阶差分再作一阶差分,就得到二阶差分,记为y 2∆。
拉克斯等价定理
![拉克斯等价定理](https://img.taocdn.com/s3/m/e187d8eeab00b52acfc789eb172ded630b1c9823.png)
拉克斯等价定理:
拉克斯等价性定理(Lax equivalence theorem )揭示差分方程相容性、稳定性与收敛性三者之间关系的重要定理。
该定理表述为:对于适定的线性偏微分方程组初值问题,一个与之相容的线性差分格式收敛的充分必要条件是该格式是稳定的。
该定理以美国数学家拉克斯(Lax , P. D.)命名,利用这一定理,可把困难的收敛性研究转化成对相容性与稳定性的讨论。
在数值分析中,拉克斯等价性定理是偏微分方程数值解的有限差分法的基本定理。
它表明,对于一个良好的线性初始值问题的一致的有限差分法,当且仅当它是稳定的时候,该方法是收敛的。
定理的重要性在于,尽管有限差分法的解与收敛偏微分方程是一致的,但通常难以确定,因为数值方法是由递推关系定义的,而微分方程涉及可微的功能。
然而,有限差分方法近似正确的偏微分方程的要求是直接验证的,并且稳定性通常比收敛更容易显示(并且在任何情况下都需要显示舍入误差不会破坏计算)。
因此,收敛通常通过拉克斯等价定理来表示。
在这种情况下的稳定性意味着在迭代中使用的矩阵的矩阵范数最多是一致的,称为(实用的)Lax-Richtmyer稳定性。
通常,为了方便而采取冯·诺依曼的稳定性分析,尽管冯·诺依曼稳定仅在某些情况下意味着Lax-Richtmyer的稳定性。
这个定理是由于彼得·拉克斯。
有时被称为Lax-Richtmyer定理,彼得·拉克斯(Robert Lax)和罗伯特·里奇特(Robert D. Richtmyer)
之后。
04有限差分法.ppt
![04有限差分法.ppt](https://img.taocdn.com/s3/m/53e903b5f121dd36a32d82dd.png)
n Rj
O t x
2
无条件稳定
2.一维混合问题
u 2u 2 0 t x u x ,0 F x u a, t t u b, t t
0 x b, t 0, 0
对于[a,b]区间的内点,可以构造以上各种格式。 如四点显式
例:驱动腔内的流体流动。
3.网格划分
x h y l xi ih
-----称为步长。
u x, y u i , j
xi , y j i, j
y j jl
4.差分格式 将u在(i,j)附近展成Taylor级数
ui 1, j ui , j ui 1, j ui , j 1 2u 1 3u u h 2 h 2 3 h 3 ... 2 x 3! x x i , j i, j i, j 1 2u 1 3u u h 2 h 2 3 h 3 ... 2 x 3! x x i , j i, j i, j
-----中心差分式
O h 表示具有二阶精度。
2
两Taylor展式相加
2u 1 ui 1, j 2ui , j ui 1, j O h 2 x 2 h2 i, j
有限差分方法24差分方程的相容性收敛性和稳定性
![有限差分方法24差分方程的相容性收敛性和稳定性](https://img.taocdn.com/s3/m/27d17d5833687e21af45a9bb.png)
2.4.1 相容性(Consistency )
• 差分方程相容性是讨论当 t , x 0 时,差分方程逼近于微分方 程的程度,因此,相容性是讨论差分方程和微分方程的关系。
• 定义:对于一足够光滑函数 u ,若时间步长 t ,空间步长 x n R 趋近于0时,差分方程截断误差 j 对于每一点 x j , t n 都趋近于
•
n
n
当 t , x 0时,上等式右侧所有项都趋近0,差分方程趋近 于原微分方程,即FTCS差分方程和原方程是相容的。
•
①
关于差分方程相容性需要作以下说明:
相容性是对求解区域内任意一点差分方程逼近于微分方程的 程度,相容性是有限差分算法(包括有限体积算法)首先必 须满足的有效性条件。
②
相容性要求对于求解区域内任意点 x j , t n ,在 t , x 同时趋近于0, 截断误差R n 趋近于0。如果 t , x 不是同时趋近于0或并不趋近于0, j 而是趋近于某值,或结论并不是对每个点
0,则该差分方程 Lun 逼近微分方程 Lu 0,即差分方程与 j 0 微分方程是相容的。 • 差分方程相容性可以通过Taylor展开方法来证明。例如,扩散方 程的FTCS差分格式为:
1 n un u j j
t
n n un 2 u u j 1 j j 1
x
2
0
• 把
定义:在某一个时刻tn存在计算误差 n j ,若在 t n 1时刻满足:
1 n n 0 n k 或 k j j j j
条件,则差分方程是稳定的。 这里定义:
n j
n 2 2 j x
1 2
是某种定义的范数。
有限差分方法
![有限差分方法](https://img.taocdn.com/s3/m/f0467dd426fff705cc170a6c.png)
数学方程的建立
稳定过程: 稳定过程:泊松方程 静电场:电场的散度正比电流密度,等于势场u的梯度 静电场:电场的散度正比电流密度,等于势场 的梯度
静磁场: 静磁场:类似于静电场
√
物理问题和数学方程(2/5) 物理问题和数学方程(2/5)
输运过程: 输运过程:扩散方程 扩散:流体由于不均匀而发生扩散, 扩散:流体由于不均匀而发生扩散,扩散密度正比于 密度的梯度, 密度的梯度,同时满足质量守恒
√
物理问题和数学方程(5/5) 物理问题和数学方程(5/5)
第三类
∂u v (a0u + b0 ) = c0 (rb , t ), a0、b0和c0是已知函数 ∂n Γ 热传导,系统通过表面与外界交换热量: 例:热传导,系统通过表面与外界交换热量:表面 热流 ∂u 正比于表面温度 u 与外界温度 u0 之差,即 之差, ∂n ∂u = k (u − u0 ) ∂n 初始条件 v 在各处的值: 初始瞬间待求函数 u 在各处的值: u t =0 = f1 (r )
拉普拉斯方程
方程( ( , )=0 方程( f(x,y)=0 ) ∂ 2u ∂ 2u ∇ 2u = 2 + 2 = 0 ∂x ∂y 五点差商格式
√
迭代解法(1/6) 迭代解法(1/6)
差分方程组的特点
方程个数等于内点数,每条方程最多含5 方程个数等于内点数,每条方程最多含5个未知项 系数矩阵是稀疏和带状的 跌代法求解:同步法、 跌代法求解:同步法、异步法和逐次超松弛法
边界条件的差分格式
√
一维扩散方程(3/3) 一维扩散方程(3/3)
差分方程组及其求解
0.10
1.000 0.7500
0.08
0.5000 0.2500 0
有限差分方法基础
![有限差分方法基础](https://img.taocdn.com/s3/m/c21c2e600812a21614791711cc7931b765ce7b87.png)
2!
3!
4!
(1-14)
f (x x) f (x) f (x) f (x) x f (x) (x)2 f IV (x) (x)3 O((x)4 )
x
2!
3!
4!
f (x) O(x)
(1-15)
11
第一节 差分原理及逼近误差/逼近误差(2/9)
f (x x) f (x) x f (x) (x)2 f (x) (x)3 f (x) (x)4 f IV (x) O((x)5 ),
t i
t
空间导数用一阶中心差商近似替代,即
n
n i 1
n i 1
x i
2x
则在 (xi ,tn )点旳对流方程就可近似地写作
n1 i
n i
n i 1
n i 1
0
t
2x
(2-2) (2-3) (2-4)
25
第二节 差分方程、截断误差和相容性/截断误差(1/6)
按照前面有关逼近误差旳分析懂得,用时间向前差商替代时间导数时旳误差为 O(t) ,
用空间中心差商替代空间导数时旳误差为 O((x)2 ),因而对流方程与相应旳差分方程之间也存在一种误差,它是
Rin O(t) O((x)2 ) O(t, (x)2 )
(2-5)
这也可由Taylor展开得到。因为
(xi , tn t) (xi , tn ) (xi x, tn ) (xi x, tn )
0
t x
(2-1)
23
第二节 差分方程、截断误差和相容性/差分方程(2/3)
xi x0 ix, i 0,1, 2,
tn nt,
n 0,1, 2,
图2-1 差分网格
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为离散化误差。
定义2:节点 x p , t p 为微分方程求解区域 内任意一点,当
当
n u u 精确解 u ,即 en j j 0 ,则差分方程收敛于微分方程。
x xp , t t p
时,差分方程数值解 u n j 趋近于微分方程
差分方程收敛性有两种证明方法,直接证明法和数值试验法。
•
n
n
当 t , x 0时,上等式右侧所有项都趋近0,差分方程趋近 于原微分方程,即FTCS差分方程和原方程是相容的。
•
①
关于差分方程相容性需要作以下说明:
相容性是对求解区域内任意一点差分方程逼近于微分方程的 程度,相容性是有限差分算法(包括有限体积算法)首先必 须满足的有效性条件。
②
相容性要求对于求解区域内任意点 x j , t n ,在 t , x 同时趋近于0, 截断误差R n 趋近于0。如果 t , x 不是同时趋近于0或并不趋近于0, j 而是趋近于某值,或结论并不是对每个点
2.4.1 相容性(Consistency )
• 差分方程相容性是讨论当 t , x 0 时,差分方程逼近于微分方 程的程度,因此,相容性是讨论差分方程和微分方程的关系。
• 定义:对于一足够光滑函数 u ,若时间步长 t ,空间步长 x n R 趋近于0时,差分方程截断误差 j 对于每一点 x j , t n 都趋近于
计算力学基础
第二章 有限差分方法
2.4 差分方程的相容性、收敛性和稳定性
一个微分方程采用不同的方法可以得到不同的差分方程。那么,
我们要问,对于这些不同的差分方程是否都同样有效,同样可靠,而
且能得到同样的计算结果呢? 答案是否定的。事实上,不同的差分方程和原方程有完全不同的
对应关系,它们具有各自不同的性质,因此,数值结果也完全不同。
一、直接证明法
u u a 0 的FTBS差分格式为: 对流方程 t x
1 n n 0 un (1 r ) u ru , u j j j 1 j ( x j )
(a)
设求解区域内任意一点 x p ,t p ,它的微分方程精确解为u, n n 差分方程解为 u n ,则离散化误差为 e u u j j j ,把差分方 程和微分方程相减可得离散化误差方程:
1 作为t的函数,在 邻域展开成Taylor级数,把 u n t un n j j 1
和 un 作为x的函数,在 x j 邻域展开成Taylor级数: j 1
1 2u 1 3u u n 1 n 2 u j u j t 2 t 3 t 3 (t 4 ) 2 t j 6 t j t j
差分方程收敛性是讨论当 t , x 0 时,差分方程的解和微分
方程的解是否一致性的问题,也就是讨论差分方程的解和微分
方程的解的逼近程度。
n 定义1:差分方程 Lun 的数值解为 ,微分方程的精确 0 u j j n n 解为 u ,它们之间的误差用 en 表示,则 e u u j j 0 称 j
x
j
,t 都成立,则差分方 n
程就不满足相容性条件,差分方程也就不逼近于微分方程。 ③ 相容性条件不仅要求差分方程截断误差R n 趋近于0,而且要求差分方 j 程定解条件截断误差rjn 也同时趋近于0。 ④ 差分格式有两种不同形式的相容性,即无条件相容和有条件相容。
2.4.2 收敛性(Convergence )
在这些差分方程中有些差分方程是有效的、可靠的;些差分方程只有 在一定的条件下是有效的、可靠的;有些差分方程则是完全无效的、 不可靠的。所以,如何判断和分析差分方程有效性和可靠性就成为非 常必要和现实的问题了。 在这一节中我们首先对差分方程有效性的一些基本概念(如相容 性、收敛性、稳定性)作简单介绍,为本章以后各节的分析讨论奠定 基础。
1 u 1 u u n 2 3 4 un u x x 2 3 x (x ) j 1 j 2 x j 6 x j x j
2 3 n n n
n
n
n
1 2u 1 3u u n n 2 u j 1 u j x 2 x 3 x3 (x 4 ) 2 x j 6 x j x j
n
n
n
将 uj
n 1
n n u 和 u 、 j 1 j 1
代入FTCS格式中,即可得到:
u 2u 1 2u 1 3u 2 3 2 t x 2 2 t 2 t 6 t 3 t (t ) (x ) j j
n j
设a≥0, a
t ≤1,则0≤ x
a ≤1,于是有:
t x
e
n 1 j
t n t n 1 a e j a e j 1 O(x, t ) x x t t n 1 a max en a max e j j O( x, t ) j j x x
0,则该差分方程 Lun 逼近微分方程 Lu 0,即差分方程与 j 0 微分方程是相容的。 • 差分方程相容性可以通过Taylor展开方法来证明。例如,扩散方 程的FTCS差分格式为:
1 n un u j j
t
n n un 2 u u j 1 j j 1
x
2
0
• 把
1 n n en (1 r ) e re j j j 1 O(x, t )
(b)
由(b)式可以看出离散化误差方程在形式上和差分方程是完全 相同的,由此可以得到:
e
n 1 j
t n n e a (e j e j 1 ) O(x, t ) x t n t n 1 a e j a e j 1 O(x, t ) x x