推理与证明教案及说明
数学教案 北师大版选修2-2 同步备课-第1章 推理与证明学案第1节归纳与类比
§1归纳与类比1.1 归纳推理学习目标核心素养1.了解归纳推理的含义,能利用归纳推理进行简单的推理.(重点)2.了解归纳推理在数学发展中的作用.(难点) 1.通过归纳推理概念的学习,体现了数学抽象的核心素养.2.通过归纳推理的应用的学习,体现了逻辑推理的核心素养.1.归纳推理的定义根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性,这种推理方式称为归纳推理.2.归纳推理的特征归纳推理是由部分到整体,由个别到一般的推理.思考:由归纳推理得到的结论一定是正确的吗?[提示]不一定正确.因为归纳推理是由部分到整体、由个别到一般的推理,其结论还需要证明其正确性.1.下列关于归纳推理的说法错误的是( )①归纳推理是由一般到一般的推理过程;②归纳推理是一种由特殊到特殊的推理;③归纳推理得出的结论具有或然性,不一定正确;④归纳推理具有由具体到抽象的认识功能.A.①②B.②③C.①③ D.③④A[归纳推理是由特殊到一般的推理,故①②不正确,易知③④均正确,故选A.]2.若空间中n个不同的点两两距离都相等,则正整数n的取值( )A.至多等于3 B.至多等于4C.等于5 D.大于5B [n =2时,可以;n =3时,为正三角形,可以;n =4时,为正四面体,可以;n =5时,为四棱锥,侧面为正三角形,底面为菱形且对角线长与边长相等,不可能.]3.由集合{a 1},{a 1,a 2},{a 1,a 2,a 3},……的子集个数归纳出集合{a 1,a 2,a 3,…,a n }的子集个数为________.2n[集合{a 1}有两个子集和{a 1},集合{a 1,a 2}的子集有,{a 1},{a 2},{a 1,a 2}共4个子集,集合{a 1,a 2,a 3}有8个子集,由此可归纳出集合{a 1,a 2,a 3,…,a n }的子集个数为2n个.]数式中的归纳推理+b 10=( )A .28B .76C .123D .199(2)已知f(x)=x1-x ,设f 1(x)=f(x),f n (x)=f n -1(f n -1(x))(n>1,且n∈N +),则f 3(x)的表达式为________,猜想f n (x)(n∈N +)的表达式为________.思路探究:(1)记a n+b n=f(n),观察f(1),f(2),f(3),f(4),f(5)之间的关系,再归纳得出结论. (2)写出前几项发现规律,归纳猜想结果.(1)C (2)f 3(x)=x 1-4x f n (x)=x 1-2n -1x [(1)记a n +b n =f(n),则f(3)=f(1)+f(2)=1+3=4;f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11.通过观察不难发现f(n)=f(n -1)+f(n -2)(n∈N+,n≥3),则f(6)=f(4)+f(5)=18;f(7)=f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;f(10)=f(8)+f(9)=123.所以a 10+b 10=123. (2)f 1(x)=f(x)=x1-x,f 2(x)=f 1(f 1(x))=x 1-x 1-x 1-x =x1-2x ,f 3(x)=f 2(f 2(x))=x 1-2x 1-2·x 1-2x=x1-4x,由f 1(x),f 2(x),f 3(x)的表达式,归纳f n (x)=x1-2n -1x.]已知等式或不等式进行归纳推理的方法1.要特别注意所给几个等式(或不等式)中项数和次数等方面的变化规律; 2.要特别注意所给几个等式(或不等式)中结构形式的特征; 3.提炼出等式(或不等式)的综合特点; 4.运用归纳推理得出一般结论.1.经计算发现下列不等式:2+18<210, 4.5+15.5<210,3+2+17-2<210,……根据以上不等式的规律,试写出一个对正实数a ,b 都成立的条件不等式:________.当a +b =20时,有a +b<210,a ,b∈R + [从上面几个不等式可知,左边被开方数的和均为20,故可以归纳为a +b =20时,a +b<210.]数列中的归纳推理【例2】 (1)在数列{a n }中,a 1=1,a n +1=-1a n +1,则a 2 019等于( )A .2B .-12C .-2D .1(2)古希腊人常用小石子在沙滩上摆成各种形状来研究数,如图:由于图中1,3,6,10这些数能够表示成三角形,故被称为三角形数,试结合组成三角形数的特点,归纳第n 个三角形数的石子个数.思路探究:(1)写出数列的前几项,再利用数列的周期性解答.(2)可根据图中点的分布规律归纳出三角形数的形成规律,如1=1,3=1+2,6=1+2+3;也可以直接分析三角形数与n 的对应关系,进而归纳出第n 个三角形数.C [(1)a 1=1,a 2=-12,a 3=-2,a 4=1,…,数列{a n }是周期为3的数列,2 019=673×3,∴a 2 019=a 3=-2.](2)[解] 法一:由1=1, 3=1+2, 6=1+2+3, 10=1+2+3+4,可归纳出第n 个三角形数为1+2+3+…+n =n (n +1)2.法二:观察项数与对应项的关系特点如下:项数 1 2 3 4 对应项1×222×323×424×52分析:各项的分母均为2,分子分别为相应项数与相应项数加1的积. 归纳:第n 个三角形数的石子数应为n (n +1)2.数列中的归纳推理在数列问题中,常常用到归纳推理猜测数列的通项公式或前n 项和. (1)通过已知条件求出数列的前几项或前几项和;(2)根据数列中的前几项或前几项和与对应序号之间的关系求解; (3)运用归纳推理写出数列的通项公式或前n 项和公式.2.已知数列{a n }满足a 1=1,a n +1=2a n +1(n =1,2,3,…). (1)求a 2,a 3,a 4,a 5; (2)归纳猜想通项公式a n . [解] (1)当n =1时,知a 1=1, 由a n +1=2a n +1, 得a 2=3,a 3=7,a 4=15,a 5=31.(2)由a 1=1=21-1,a 2=3=22-1,a 3=7=23-1,a 4=15=24-1,a 5=31=25-1, 可归纳猜想出a n =2n-1(n∈N +).几何图形中的归纳推理1.某商场橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有一层,就一个球;第2,3,4,…堆最底层(第一层)分别按如图所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以f(n)表示第n 堆的乒乓球总数,试求f(1),f(2),f(3),f(4)的值.[提示] 观察图形可知,f(1)=1,f(2)=4,f(3)=10,f(4)=20. 2.上述问题中,试用n 表示出f(n)的表达式.[提示] 由题意可得:下一堆的个数是上一堆个数加下一堆第一层的个数,即f(2)=f(1)+3;f(3)=f(2)+6;f(4)=f(3)+10;…;f(n)=f(n -1)+n (n +1)2.将以上(n -1)个式子相加可得 f(n)=f(1)+3+6+10+…+n (n +1)2=12[(12+22+…+n 2)+(1+2+3+…+n)] =12⎣⎢⎡⎦⎥⎤16n (n +1)(2n +1)+n (n +1)2=n (n +1)(n +2)6.【例3】 有两种花色的正六边形地面砖,按如图的规律拼成若干个图案,则第6个图案中有菱形纹的正六边形的个数是( )A .26B .31C .32D .36思路探究:解答本题可先通过观察、分析找到规律,再利用归纳得到结论. B [法一:有菱形纹的正六边形个数如下表:图案 123 … 个数6 1116…由表可以看出有菱形纹的正六边形的个数依次组成一个以6为首项,以5为公差的等差数列,所以第6个图案中有菱形纹的正六边形的个数是6+5×(6-1)=31.法二:由图案的排列规律可知,除第一块无纹正六边形需6个有纹正六边形围绕(图案1)外,每增加一块无纹正六边形,只需增加5块菱形纹正六边形(每两块相邻的无纹正六边形之间有一块“公共”的菱形纹正六边形),故第6个图案中有菱形纹的正六边形的个数为:6+5×(6-1)=31.]在题干不变的条件下,第6个图案中周围的边有多少条? [解] 各个图形周围的边的条数如下表:图案123…边条数18 26 34 …由表可知,周围边的条数依次组成一个以18为首项,8为公差的等差数列,解得第6个图形周围的边的条数为18+8×(6-1)=58条.归纳推理在图形中的应用策略通过一组平面或空间图形的变化规律,研究其一般性结论,通常需形状问题数字化,展现数字之间的规律、特征,然后进行归纳推理.解答该类问题的一般策略是:3.根据图中线段的排列规则,试猜想第8个图形中线段的条数为________.509 [分别求出前4个图形中线段的数目,发现规律,得出猜想.图形①到④中线段的条数分别为1,5,13,29,因为1=22-3,5=23-3,13=24-3,29=25-3,因此可猜想第8个图形中线段的条数应为28+1-3=509.]1.归纳推理是由部分到整体、由个别到一般的推理.(1)由归纳推理得到的结论带有猜测的性质,所以“前提真而结论假”的情况是有可能发生的,结论是否正确,需要经过理论证明或实践检验,因此,归纳推理不能作为数学证明的工具.(2)一般地,如果归纳的个别情况越多,越具有代表性,那么推广的一般性命题就越可能为真.(3)归纳推理能够发现新事实,获得新结论,是科学发现的重要手段.通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题.2.归纳推理的思维过程大致是:实验、观察→概括、推广→猜测一般性结论.该过程包括两个步骤: (1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表述的一般性命题(猜想).1.判断(正确的打“√”,错误的打“×”)(1)统计学中,从总体中抽取样本,然后用样本估计总体,这种估计属于归纳推理. (2)由个别到一般的推理称为归纳推理. ( ) (3)由归纳推理所得到的结论一定是正确的. ( )[答案] (1)√ (2)√ (3)× 2.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图需要火柴棒的根数为( ) A .6n -2 B .8n -2 C .6n +2D .8n +2C [a 1=8,a 2=14,a 3=20,猜想a n =6n +2.]3.已知12=16×1×2×3,12+22=16×2×3×5,12+22+32=16×3×4×7,12+22+34+42=16×4×5×9,则12+22+…+n 2=________.(其中n∈N *).16n(n +1)(2n +1) [根据题意归纳出12+22+…+n 2=16n(n +1)(2n +1),下面给出证明:(k +1)3-k 3=3k 2+3k +1,则23-13=3×12+3×1+1,33-23=3×22+3×2+1,……,(n +1)3-n 3=3n 2+3n +1,累加得(n +1)3-13=3(12+22+…+n 2)+3(1+2+…+n)+n ,整理得12+22+…+n 2=16n(n +1)(2n +1).]4.有以下三个不等式:(12+42)(92+52)≥(1×9+4×5)2, (62+82)(22+122)≥(6×2+8×12)2, (202+102)(1022+72)≥(20×102+10×7)2.请你观察这三个不等式,猜想出一个一般性的结论,并证明你的结论. [解] 结论为:(a 2+b 2)(c 2+d 2)≥(ac+bd)2.证明:(a 2+b 2)(c 2+d 2)-(ac +bd)2=a 2c 2+a 2d 2+b 2c 2+b 2d 2-(a 2c 2+b 2d 2+2abcd) =a 2d 2+b 2c 2-2abcd =(ad -bc)2≥0.所以(a2+b2)(c2+d2)≥(ac+bd)2.1.2 类比推理学 习 目 标核 心 素 养1.通过具体实例理解类比推理的意义.(重点) 2.会用类比推理对具体问题作出判断.(难点)1.通过类比推理的意义的学习,体现了数学抽象的核心素养.2.通过应用类比推理对具体问题判断的学习,体现了逻辑推理的核心素养.1.类比推理由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,我们把这种推理过程称为类比推理.类比推理是两类事物特征之间的推理. 2.合情推理合情推理是根据实验和实践的结果、个人的经验和直觉、已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式.合情推理的结果不一定正确.思考:合情推理的结果为什么不一定正确?[提示] 合情推理是由特殊到一般的推理,简单地说就是直接看出来的,没有通过证明,只归纳了一部分,属于不完全归纳,所以不一定正确.1.下面使用类比推理恰当的是( )A .“若a·3=b·3,则a =b ”类比推出“若a·0=b·0,则a =b”B .“(a+b)c =ac +bc”类比推出“(a·b)c=ac·bc”C .“(a+b)c =ac +bc”类比推出“a +b c =a c +bc (c≠0)”D .“(ab)n=a n b n”类比推出“(a+b)n=a n+b n” C [由实数运算的知识易得C 项正确.] 2.下列推理是合情推理的是( ) (1)由圆的性质类比出球的有关性质;(2)由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°; (3)a≥b,b≥c,则a≥c;(4)三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸n 边形内角和是(n -2)×180°.A .(1)(2)B .(1)(3)(4)C .(1)(2)(4)D .(2)(4)C [(1)为类比推理,(2)(4)为归纳推理,(3)不是合情推理,故选C.]3.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质,你认为比较恰当的是________.(填序号)①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等; ③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.①②③ [正四面体的面(或棱)可与正三角形的边类比,正四面体的相邻两面成的二面角(或共顶点的两棱的夹角)可与正三角形相邻两边的夹角类比,故①②③都对.]类比推理在数列中的应用【例1】 在公比为4的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则有T 20T 10,T 30T 20,T 40T 30也成等比数列,且公比为4100.类比上述结论,相应地在公差为3的等差数列{a n }中,若S n 是{a n }的前n 项和.试写出相应的结论,判断该结论是否正确,并加以证明.思路探究:结合已知等比数列的特征可类比等差数列每隔10项和的有关性质.[解] 数列S 20-S 10,S 30-S 20,S 40-S 30也是等差数列,且公差为300.该结论是正确的.证明如下: ∵等差数列{a n }的公差d =3, ∴(S 30-S 20)-(S 20-S 10)=(a 21+a 22+…+a 30)-(a 11+a 12+…+a 20)同理可得:(S 40-S 30)-(S 30-S 20)=300,所以数列S 20-S 10,S 30-S 20,S 40-S 30是等差数列,且公差为300.1.本例是由等比类比等差,你能由等差类比出等比结论吗?完成下题:设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n (T n ≠0),则T 4,_______,_______,T 16T 12成等比数列.T 8T 4 T 12T 8[等差数列类比于等比数列时,和类比于积,减法类比于除法,可得类比结论为:设等比数列{b n }的前n 项积为T n ,则T 4,T 8T 4,T 12T 8,T 16T 12成等比数列.]2.在本例条件不变的情况下,你能写出一个更为一般的结论吗?(不用论证)[解] 对于任意k∈N +,都有数列S 2k -S k ,S 3k -S 2k ,S 4k -S 3k 是等差数列,且公差为k 2d.1.在等比数列与等差数列的类比推理中,要注意等差与等比、加与乘、减与除、乘法与乘方的类比特点.2.类比推理的思维过程观察、比较→联想、类推→猜测新的结论.即在两类不同事物之间进行对比,找出若干相同或相似之处后,推测这两类事物在其他方面的相同或相似之处.1.在等差数列{a n }中,如果m ,n ,p ,r∈N +,且m +n +p =3r ,那么必有a m +a n +a p =3a r ,类比该结论,写出在等比数列{b n }中类似的结论,并用数列知识加以证明.[解] 类似结论如下:在等比数列{b n }中,如果m ,n ,p ,r∈N +,且m +n +p =3r ,那么必有b m b n b p=b 3r .证明如下:设等比数列{b n }的公比为q ,则b m =b 1q m -1,b n =b 1q n -1,b p =b 1qp -1,b r =b 1qr -1,于是b m b n b p =b 1qm -1·b 1qn -1·b 1q p -1=b 31qm +n +p -3=b 31q3r -3=(b 1qr -1)3=b 3r ,故结论成立.类比推理在几何中的应用【例2】 如图所示,在平面上,设h a ,h b ,h c 分别是△ABC 三条边上的高,P 为△ABC 内任意一点,P 到相应三边的距离分别为p a ,p b ,p c ,可以得到结论p a h a +p b h b +p ch c=1.证明此结论,通过类比写出在空间中的类似结论,并加以证明.思路探究:三角形类比四面体,三角形的边类比四面体的面,三角形边上的高类比四面体以某一面为底面的高.[解] p a h a =12BC·p a12BC·h a =S △PBCS △ABC,同理,p b h b =S △P AC S △ABC ,p c h c =S △PABS △ABC .∵S △PBC +S △PAC +S △PAB =S △ABC ,∴p a h a +p b h b +p c h c =S △PBC +S △PAC +S △PAB S △ABC=1. 类比上述结论得出以下结论:如图所示,在四面体ABCD 中,设h a ,h b ,h c ,h d 分别是该四面体的四个顶点到对面的距离,P 为该四面体内任意一点,P 到相应四个面的距离分别为p a ,p b ,p c ,p d ,可以得到结论p a h a +p b h b +p c h c +p dh d=1.证明:p a h a =13S △BCD ·p a13S △BCD ·h a =V PBCDV ABCD,同理,p b h b =V PACD V ABCD ,p c h c =V PABD V ABCD ,p d h d =V PABCV ABCD .∵V PBCD +V PACD +V PABD +V PABC =V ABCD , ∴p a h a +p b h b +p c h c +p d h d =V PBCD +V PACD +V PABD +V PABCV ABCD=1.1.在本例中,若△ABC 的边长分别为a ,b ,c ,其对角分别为A ,B ,C ,那么由a =b·cos C+c·cos B 可类比四面体的什么性质?[解] 在如图所示的四面体中,S 1,S 2,S 3,S 分别表示△PAB,△PBC,△PCA,△ABC 的面积,α,β,γ依次表示平面PAB ,平面PBC ,平面PCA 与底面ABC 所成二面角的大小.猜想S =S 1·cos α+S 2·cos β+S 3·cos γ.2.在本例中,若r 为三角形的内切圆半径,则S △=12(a +b +c)r ,请类比出四面体的有关相似性质.[解] 四面体的体积为V =13(S 1+S 2+S 3+S 4)r(r 为四面体内切球的半径,S 1,S 2,S 3,S 4为四面体的四个面的面积.1.平面图形与空间图形类比平面图形 点 线 边长 面积 线线角 三角形 空间图形线面面积体积二面角四面体2.类比推理的一般步骤(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质推测另一类事物的性质,得出一个明确的结论.类比推理在其他问题中的应用1.鲁班发明锯子的思维过程为:带齿的草叶能割破行人的腿,“锯子”能“锯”开木材,它们在功能上是类似的.因此,它们在形状上也应该类似,“锯子”应该是齿形的.你认为该过程为归纳推理还是类比推理?[提示] 类比推理.2.已知以下过程可以求1+2+3+…+n 的和.因为(n +1)2-n 2=2n +1, n 2-(n -1)2=2(n -1)+1, ……22-12=2×1+1,有(n +1)2-1=2(1+2+…+n)+n , 所以1+2+3+…+n =n 2+2n -n 2=n (n +1)2.类比以上过程试求12+22+32+…+n 2的和. [提示] 因为(n +1)3-n 3=3n 2+3n +1, n 3-(n -1)3=3(n -1)2+3(n -1)+1, ……23-13=3×12+3×1+1,有(n +1)3-1=3(12+22+…+n 2)+3(1+2+3+…+n)+n , 所以12+22+…+n 2=13⎝ ⎛⎭⎪⎫n 3+3n 2+3n -3n 2+5n 2=2n 3+3n 2+n 6=n (n +1)(2n +1)6.【例3】 已知椭圆具有性质:若M ,N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM ,PN 的斜率k PM ,k PN 都存在时,那么k PM 与k PN 之积是与点P 的位置无关的定值,试写出双曲线x2a 2-y2b2=1(a>0,b>0)具有类似特征的性质,并加以证明. 思路探究:双曲线与椭圆类比→椭圆中的结论 →双曲线中的相应结论→理论证明[解] 类似性质:若M ,N 为双曲线x 2a 2-y2b 2=1(a>0,b>0)上关于原点对称的两个点,点P 是双曲线上任意一点,当直线PM ,PN 的斜率k PM ,k PN 都存在时,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明如下:设点M ,P 的坐标分别为(m ,n),(x ,y),则 N(-m ,-n).因为点M(m ,n)是双曲线上的点, 所以n 2=b 2a 2m 2-b 2.同理y 2=b 2a2x 2-b 2,则k PM ·k PN =y -n x -m ·y +n x +m =y 2-n 2x 2-m 2=b 2a 2·x 2-m 2x 2-m 2=b2a2(定值).1.两类事物能进行类比推理的关键是两类对象在某些方面具备相似特征.2.进行类比推理时,首先,找出两类对象之间可以确切表达的相似特征.然后,用一类对象的已知特征去推测另一类对象的特征,从而得到一个猜想.2.我们知道: 12=1,22=(1+1)2=12+2×1+1, 32=(2+1)2=22+2×2+1, 42=(3+1)2=32+2×3+1, ……n 2=(n -1)2+2(n -1)+1,将以上各式的左右两边分别相加,整理得n 2=2×[1+2+3+…+(n -1)]+n , 所以1+2+3+…+(n -1)=n (n -1)2.类比上述推理方法写出求12+22+32+…+n 2的表达式的过程. [解] 已知: 13=1,23=(1+1)3=13+3×12+3×1+1, 33=(2+1)3=23+3×22+3×2+1, 43=(3+1)3=33+3×32+3×3+1, ……n 3=(n -1)3+3(n -1)2+3(n -1)+1, 将以上各式的左右两边分别相加,得(13+23+…+n 3)=[13+23+…+(n -1)3]+3[12+22+…+(n -1)2]+3[1+2+…+(n -1)]+n , 整理得n 3=3(12+22+…+n 2)-3n 2+3[1+2+…+(n -1)]+n , 将1+2+3+…+(n -1)=n (n -1)2代入整理可得12+22+…+n 2=2n 3+3n 2+n 6,即12+22+…+n 2=n (2n +1)(n +1)6.1.类比推理的特点(1)类比推理是从人们已经掌握的事物的特征,推测被研究的事物的特征,所以类比推理的结果具有猜测性,不一定可靠.(2)类比推理以旧的知识作基础,推测新的结果,具有发现的功能,因此类比在数学发现中具有重要作用,但必须明确,类比并不等于论证.2.类比推理与归纳推理的比较 归纳推理类比类推相同点 根据已有的事实,经过观察、分析、比较、联想,提出猜想,都属于归纳推理不 同 点特点 由部分到整体,由个别到一般 由特殊到特殊推理过程 从一类事物中的部分事物具有的属性,猜测该类事物都具有这种属性两类对象具有类似的特征,根据其中一类对象的特征猜测另一类对象具有相应的类似特征1.下列说法正确的是( )A .由合情推理得出的结论一定是正确的B .合情推理必须有前提有结论C .合情推理不能猜想D .合情推理得出的结论不能判断正误B [根据合情推理可知,合情推理必须有前提有结论.]2.已知扇形的弧长为l ,半径为r ,类比三角形的面积公式S =底×高2,可知扇形面积公式为( )A.r22 B.l 22 C.lr 2D .无法确定C [扇形的弧长对应三角形的底,扇形的半径对应三角形的高,因此可得扇形面积公式S =lr2.]3.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.1∶8 [由平面和空间的知识,可知面积之比与边长之比成平方关系,在空间中体积之比与棱长之比成立方关系,故若两个正四面体的棱长的比为1∶2,则它们的体积之比为1∶8.]4.在计算“1×2+2×3+…+n(n +1)”时,有如下方法:先改写第k 项:k(k +1)=13[k(k +1)(k +2)-(k -1)k·(k+1)],由此得1×2=13(1×2×3-0×1×2),2×3=13(2×3×4-1×2×3),……n(n +1)=13[n(n +1)(n +2)-(n -1)n(n +1)],相加得1×2+2×3+…+n(n +1)=13n(n +1)(n +2).类比上述方法,请你计算“1×3+2×4+…+n(n +2)”,将其结果写成关于n 的一次因式的积的形式.[解] 1×3=16×(1×2×9-0×1×7),2×4=16×(2×3×11-1×2×9),3×5=16×(3×4×13-2×3×11),……n(n +2)=16[n(n +1)(2n +7)-(n -1)n(2n +5)],各式相加,得1×3+2×4+3×5+…+n(n +2)=16n(n +1)(2n +7).。
高中数学第三章推理与证明1.1.2类比推理教案含解析北师大版选修1_2
1.2 类比推理类比推理三角形有下面两个性质:(1)三角形的两边之和大于第三边; (2)三角形的面积等于高与底乘积的12.问题1:你能由三角形的这两个性质推测空间四面体的性质吗?试写出来. 提示:(1)四面体任意三个面的面积之和大于第四个面的面积; (2)四面体的体积等于底面积与高乘积的13.问题2:由三角形的性质推测四面体的性质体现了什么?提示:由一类事物的特征推断另一类事物的类似特征,即由特殊到特殊.定义特征由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,把这种推理过程称为类比推理. 类比推理是两类事物特征之间的推理.合情推理合情推理的含义(1)合情推理是根据实验和实践的结果、个人的经验和直觉、已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式.(2)归纳推理和类比推理是最常见的合情推理.1.类比推理是从人们已经掌握了的事物特征,推测正在被研究中的事物的特征.所以类比推理的结果具有猜测性,不一定可靠;2.类比推理以旧的知识作为基础,推测新的结果,具有发现功能.平面图形与空间几何体的类比[例1] (1)圆心与弦(非直径)中点的连线垂直于弦; (2)与圆心距离相等的两弦长相等; (3)圆的周长C =πd (d 是直径); (4)圆的面积S =πr 2.[思路点拨] 先找出相似的性质再类比,一般是点类比线、线类比面、面积类比体积. [精解详析] 圆与球有下列相似的性质:(1)圆是平面上到一定点的距离等于定长的所有点构成的集合;球面是空间中到一定点的距离等于定长的所有点构成的集合.(2)圆是平面内封闭的曲线所围成的对称图形;球是空间中封闭的曲面所围成的对称图形.通过与圆的有关性质类比,可以推测球的有关性质.圆球圆心与弦(非直径)中点的连线垂直于弦 球心与截面(不经过球心的小圆面)圆心的连线垂直于截面与圆心距离相等的两条弦长相等与球心距离相等的两个截面的面积相等圆的周长C =πd 球的表面积S =πd 2圆的面积S =πr 2球的体积V =43πr 3[一点通] 解决此类问题,从几何元素的数目、位置关系、度量等方面入手,将平面几何的相关结论类比到立体几何中,相关类比点如下:平面图形 立体图形 点 点、线 直线 直线、平面 边长 棱长、面积面积 体积 三角形 四面体 线线角 面面角 平行四边形平行六面体圆球1.下面类比结论错误的是( )A .由“若△ABC 一边长为a ,此边上的高为h ,则此三角形的面积S =12ah ”类比得出“若一个扇形的弧长为l ,半径为R ,则此扇形的面积S =12lR ”B .由“平行于同一条直线的两条直线平行”类比得出“平行于同一个平面的两个平面平行”C .由“在同一平面内,垂直于同一条直线的两条直线平行”类比得出“在空间中,垂直于同一个平面的两个平面平行”D .由“三角形的两边之和大于第三边”类比得出“凸四边形的三边之和大于第四边” 解析:选C 只有C 中结论错误,因为两个平面还有可能相交.2.如图所示,在△ABC 中,射影定理可表示为a =b ·cos C +c ·cos B ,其中a ,b ,c 分别为角A ,B ,C 的对边,类比上述定理,写出对空间四面体性质的猜想.解:如图所示,在四面体P ABC 中,S 1,S 2,S 3,S 分别表示△PAB ,△PBC ,△PCA ,△ABC 的面积,α,β,γ依次表示平面PAB ,平面PBC ,平面PCA 与底面ABC 所成二面角的大小.我们猜想射影定理类比推理到三维空间,其表现形式应为S =S 1·cos α+S 2·cos β+S 3·cos γ.定义、定理与性质的类比[例2][精解详析] ①两实数相加后,结果是一个实数,两向量相加后,结果仍是向量; ②从运算律的角度考虑,它们都满足交换律和结合律, 即:a +b =b +a ,a +b =b +a ,(a +b )+c =a +(b +c ),(a +b )+c =a +(b +c ); ③从逆运算的角度考虑,二者都有逆运算,即减法运算, 即a +x =0与a +x =0都有唯一解,x =-a 与x =-a ;④在实数加法中,任意实数与0相加都不改变大小,即a +0=a .在向量加法中,任意向量与零向量相加,既不改变该向量的大小,也不改变该向量的方向,即a +0=a .[一点通] 运用类比推理常常先要寻找合适的类比对象,本例中实数加法的对象为实数,向量加法的对象为向量,且都满足交换律与结合律,都存在逆运算,而且实数0与零向量0分别在实数加法和向量加法中占有特殊的地位.因此我们可以从这四个方面进行类比.3.试根据等式的性质猜想不等式的性质并填写下表.等式不等式a =b ⇒a +c =b+c① a =b ⇒ac =bc ② a =b ⇒a 2=b 2③答案:①a >b ⇒a +c >③a >b >0⇒a 2>b 2(说明:“>”也可改为“<”)4.已知等差数列{a n }的公差为d ,a m ,a n 是{a n }的任意两项(n ≠m ),则d =a n -a mn -m,类比上述性质,已知等比数列{b n }的公比为q ,b n ,b m 是{b n }的任意两项(n ≠m ),则q =________.解析:∵a n =a m qn -m,∴q =⎝ ⎛⎭⎪⎫a n a m 1n -m.答案:⎝ ⎛⎭⎪⎫a n a m 1n -m1.类比推理先要寻找合适的类比对象,如果类比的两类对象的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的结论就越可靠.2.归纳推理与类比推理都是合情推理.归纳推理是从特殊过渡到一般的思想方法,类比推理是由此及彼和由彼及此的联想方法,归纳和类比离不开观察、分析、对比、联想,许多数学知识都是通过归纳与类比发现的.1.下列哪个平面图形与空间图形中的平行六面体作为类比对象较合适( ) A .三角形 B .梯形 C .平行四边形D .矩形解析:选C 从构成几何图形的几何元素的数目、位置关系、度量等方面考虑,用平行四边形作为平行六面体的类比对象较为合适.2.设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c;类比这个结论可知:四面体P ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为r ,四面体P ABC 的体积为V ,则r =( )A.VS 1+S 2+S 3+S 4B.2VS 1+S 2+S 3+S 4C.3V S 1+S 2+S 3+S 4 D.4VS 1+S 2+S 3+S 4解析:选C 设内切球的球心为O ,所以可将四面体P ABC 分为四个小的三棱锥,即O ABC ,O PAB ,O PAC ,O PBC ,而四个小三棱锥的底面积分别是四面体P ABC 的四个面的面积,高是内切球的半径,所以V =13S 1r +13S 2r +13S 3r +13S 4r =13(S 1+S 2+S 3+S 4)r ,∴r =3VS 1+S 2+S 3+S 4.3.已知{b n }为等比数列,b 5=2,则b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为( )A .a 1a 2a 3…a 9=29B .a 1+a 2+…+a 9=29C .a 1a 2…a 9=2×9D .a 1+a 2+…+a 9=2×9解析:选D 类比等比数列{b n }中b 1b 2b 3…b 9=b 95,可得在等差数列{a n }中a 1+a 2+…+a 9=9a 5=9×2.4.类比三角形中的性质: ①两边之和大于第三边; ②中位线长等于底边长的一半; ③三内角平分线交于一点. 可得四面体的对应性质:①任意三个面的面积之和大于第四个面的面积;②过四面体的交于同一顶点的三条棱的中点的平面面积等于该顶点所对的面面积的14;③四面体的六个二面角的平分面交于一点. 其中类比推理方法正确的有( ) A .① B .①② C .①②③D .都不对解析:选C 以上类比推理方法都正确,需注意的是类比推理得到的结论是否正确与类比推理方法是否正确并不等价,方法正确结论也不一定正确.5.在△ABC 中,D 为BC 的中点,则AD ―→=12()AB ―→+AC ―→ ,将命题类比到四面体中去,得到一个命题为:______________________________________..解析:平面中线段的中点类比到空间为四面体中面的重心,顶点与中点的连线类比顶点和重心的连线.答案:在四面体A BCD 中,G 是△BCD 的重心,则AG ―→=13()AB ―→+AC ―→+AD ―→ 6.运用下面的原理解决一些相关图形的面积问题:如果与一条固定直线平行的直线被甲、乙两个封闭的图形所截得的线段的比都为k ,那么甲的面积是乙的面积的k 倍.你可以从给出的简单图形①②中体会这个原理.现在图③中的两个曲线方程分别是x 2a 2+y 2b2=1(a >b>0)与x 2+y 2=a 2,运用上面的原理,图③中椭圆的面积为__________.解析:由于椭圆与圆截y 轴所得线段之比为b a, 即k =b a,所以椭圆面积S =πa 2·b a=πab . 答案:πab7.在Rt △ABC 中,若∠C =90°,则cos 2A +cos 2B =1,在空间中,给出四面体性质的猜想.解:如图,在Rt △ABC 中,cos 2A +cos 2B =⎝ ⎛⎭⎪⎫b c 2+⎝ ⎛⎭⎪⎫a c 2=a 2+b2c 2=1.于是把结论类比到四面体P A ′B ′C ′中,我们猜想,三棱锥P A ′B ′C ′中,若三个侧面PA ′B ′,PB ′C ′,PC ′A ′两两互相垂直,且分别与底面所成的角为α,β,γ,则cos 2α+cos 2β+cos 2γ=1.8.在公比为4的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则T 20T 10,T 30T 20,T 40T 30也成等比数列,且公比为4100;类比上述结论,相应地在公差为3的等差数列{a n }中,若S n 是{a n }的前n 项和.(1)写出相应的结论,判断该结论是否正确,并加以证明; (2)写出该结论一个更为一般的情形(不必证明).解:(1)在公差为3的等差数列{a n }中,若S n 是{a n }的前n 项和,则数列S 20-S 10,S 30-S 20,S 40-S 30也是等差数列,且公差为300.该结论是正确的.证明如下:∵等差数列{a n }的公差d =3, ∴(S 30-S 20)-(S 20-S 10)=(a 21+a 22+…+a 30)-(a 11+a 12+…+a 20) =10d +10d +…+10d =100d =300,10个同理可得:(S 40-S 30)-(S 30-S 20)=300,所以数列S 20-S 10,S 30-S 20,S 40-S 30是等差数列,且公差为300. (2)在公差为d 的等差数列{a n }中, 若S n 是{a n }的前n 项和, 则对于任意k ∈N +, 数列S 2k -S k ,S 3k -S 2k ,S 4k -S 3k 也成等差数列,且公差为k 2d .9.先阅读下列不等式的证法,再解决后面的问题:已知a 1,a 2∈R ,a 1+a 2=1,求证a 21+a 22≥12.证明:构造函数f (x )=(x -a 1)2+(x -a 2)2, 则f (x )=2x 2-2(a 1+a 2)x +a 21+a 22=2x 2-2x +a 21+a 22. 因为对一切x ∈R ,恒有f (x )≥0,所以Δ=4-8(a 21+a 22)≤0,所以a 21+a 22≥12.(1)若a 1,a 2,…,a n ∈R ,a 1+a 2+…+a n =1,请写出上述结论的推广式; (2)类比上述证法,对你推广的结论加以证明. 解:(1)若a 1,a 2,…,a n ∈R ,a 1+a 2+…+a n =1, 求证:a 21+a 22+…+a 2n ≥1n.(2)证明:构造函数f (x )=(x -a 1)2+(x -a 2)2+…+(x -a n )2,则f (x )=nx 2-2(a 1+a 2+…+a n )x +a 21+a 22+…+a 2n =nx 2-2x +a 21+a 22+…+a 2n . 因为对一切x ∈R ,恒有f (x )≥0, 所以Δ=4-4n (a 21+a 22+…+a 2n )≤0.。
高考数学第十三章推理与证明第84课演绎推理教案
演绎推理一、教学目标1.理解演绎推理的基本方法;2.会运用演绎推理进行一些简单的推理;3.了解合情推理和演绎推理之间的区别和联系。
二、基础知识回顾与梳理回顾要求1.阅读教材选修1-2第36~38页(理科:选修2-2第70~72页),熟悉并搞清以下概念:大前提、小前提、结论,试举例说明.2.演绎推理的特点是什么?对比归纳、类比的特点,它们有什么不同?3. 在教材上空白处做以下题目:第39页(理科:第72页)练习第3、4题.要点解析1.演绎推理是由一般到特殊的推理,数学的证明过程主要是通过演绎推理进行的,只要采用的演绎推理的大前提、小前提和推理形式是正确的,其结论一定是正确.2. 演绎推理的一般模式是三段论:⑴大前提---已知的一般原理;⑵小前提---所研究的特殊情况;⑶结 论---根据一般原理,对特殊情况做出的判断.应用“三段论”解决问题时,首先应该明确什么是大前提和小前提,但为了叙述简洁,如果大前提是显然的,则可以省略.3. 三段论推理的依据,用集合的观点来理解: 若集合M 的所有元素都具有性质P,S 是M 的一个子集,那么S 中所有元素也都具有性质P.4. 合情推理和演绎推理在发现、证明每一个数学结论的过程中都起着非常重要的作用.在数学结论及其证明思路的发现中,主要依靠合情推理.而数学结论的证明、数学体系的建立,则主要依靠演绎推理.因此在数学学科的发展中,这两种推理都是不可缺少的.【教学建议】:知识梳理通过指导学生在课前复习回顾教材的内容和典型例题或练习,再由教师在课堂上帮助学生复习相关概念,最后由学生举出具体实例巩固概念。
三、诊断练习1、教学处理:课前由学生自主完成3道小题,并要求将解题过程扼要地写在学习笔记栏。
课前抽查批阅部分同学的解答,了解学生的思路及主要错误。
将知识问题化,通过问题驱动,使教学言而有物,帮助学生内化知识,初步形成能力。
点评时要简洁,要点击要害.2、诊断练习点评题1:把“函数25y x =+的图象是一条直线”恢复成完全三段论为: .【分析与点评】(1)问学生演绎推理的主要形式是什么?三段论式推理.(2)此题省略了什么?只有结论,无大小前提.大前提: 一次函数(0)y kx b k =+≠的图象是一条直线; 小前提: 函数25y x =+是一次函数; 结论: 函数25y x =+的图象是一条直线题2:将以下三段论补充完整: (大前提),a b αα⊥⊥ (小前提)//a b (结论)【分析与点评】(1)大前提提供了一个一般性的原理,比如定义、公理、定理等.此题得大前提是垂直于同一个平面的两条直线平行。
高中数学教案 选修1-2教案 第二章 推理与证明 2.2.2反证法
2.2.2 反证法教学要求:结合已经学过的数学实例,了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.教学重点:会用反证法证明问题;了解反证法的思考过程.教学难点:根据问题的特点,选择适当的证明方法.教学过程:一、复习准备:1. 讨论:三枚正面朝上的硬币,每次翻转2枚,你能使三枚反面都朝上吗?(原因:偶次)2. 提出问题:平面几何中,我们知道这样一个命题:“过在同一直线上的三点A、B、C不能作圆”. 讨论如何证明这个命题?3. 给出证法:先假设可以作一个⊙O过A、B、C三点,则O在AB的中垂线l上,O又在B C的中垂线m上,即O是l与m的交点。
但∵A、B、C共线,∴l∥m(矛盾)∴过在同一直线上的三点A、B、C不能作圆.二、讲授新课:1. 教学反证法概念及步骤:①练习:仿照以上方法,证明:如果a>b>0,那么ba>②提出反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.证明基本步骤:假设原命题的结论不成立→从假设出发,经推理论证得到矛盾→矛盾的原因是假设不成立,从而原命题的结论成立应用关键:在正确的推理下得出矛盾(与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等).方法实质:反证法是利用互为逆否的命题具有等价性来进行证明的,即由一个命题与其逆否命题同真假,通过证明一个命题的逆否命题的正确,从而肯定原命题真实.注:结合准备题分析以上知识.2. 教学例题:①出示例1:求证圆的两条不是直径的相交弦不能互相平分.分析:如何否定结论?→如何从假设出发进行推理?→得到怎样的矛盾?与教材不同的证法:反设AB、CD被P平分,∵P不是圆心,连结O P,则由垂径定理:O P⊥AB,O P⊥CD,则过P有两条直线与OP垂直(矛盾),∴不被P平分.②出示例2:. (同上分析→板演证明,提示:有理数可表示为/m n)/m n=(m,n为互质正整数),从而:2(/)3m n =,223m n =,可见m 是3的倍数.设m =3p (p 是正整数),则 22239n m p ==,可见n 也是3的倍数.这样,m , n 就不是互质的正整数(矛盾). /m n =. ③ 练习:如果1a +为无理数,求证a 是无理数.提示:假设a 为有理数,则a 可表示为/p q (,p q 为整数),即/a p q =.由1()/a p q q +=+,则1a +也是有理数,这与已知矛盾. ∴ a 是无理数.3. 小结:反证法是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确. 注意证明步骤和适应范围(“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征的问题)三、巩固练习: 1. 练习:2. 作业:。
人教A版高中数学选修1-2《二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理》优质课教案_18
2.1.2演绎推理教学设计整体设计教材分析《演绎推理》是高中数学中的基本思维过程,是根据一个或几个已知的判断来确定一个新的判断的思维过程,也是人们学习和生活中经常使用的思维方式,是正确进行逻辑推理必不可少的基础知识,是高考热点.演绎推理具有证明结论、整理和构建知识体系的作用,是公理体系中的基本推理方法.本节内容相对比较抽象,教学中应紧密结合已学过的生活实例和数学实例,让学生了解演绎推理的含义,并在上一节学习的基础上,了解合情推理与演绎推理之间的联系与差异,同时纠正推理过程中可能犯的典型错误,增强学生的好奇心,激发出潜在的创造力,使学生能正确应用合情推理和演绎推理去进行一些简单的推理,证明一些数学结论.课时划分1课时.教学目标1.知识与技能目标了解演绎推理的含义,了解合情推理与演绎推理之间的联系与差别,能正确地运用演绎推理,进行简单的推理.2.过程与方法目标了解和体会演绎推理在日常生活和学习中的应用,培养学生的逻辑推理能力,使学生学会观察,大胆猜想,敢于归纳、挖掘其中所包含的推理思路和思想;明确演绎推理的基本过程,提高学生的创新能力.3.情感、态度与价值观通过本节课的学习,体验推理源于实践,又应用于实践的思想,激发学生学习的兴趣,培养学生勇于探索、创新的个性品质.重点难点重点:正确地运用演绎推理进行简单的推理证明.难点:了解合情推理与演绎推理之间的联系与差别.教学过程引入新课观察与思考:新学期开始了,班里换了新的老师,他们是林老师、王老师和吴老师,三位老师分别教语文、数学、英语.已知:每个老师只教一门课;林老师上课全用汉语;英语老师是一个学生的哥哥;吴老师是一位女教师,她比数学老师活泼.问:三位老师各上什么课?活动设计:让学生带着浓厚的兴趣,先独立思考,然后小组交流.引导分析:启发学生把自己的思考过程借助于下列表格展示出来,从而解决问题.注意与学生交流.学情预测:开始学生的回答可能不全面、不准确,但在其他学生的不断补充、纠正下,会趋于准确.活动结果:林老师——数学,王老师——英语,吴老师——语文.设计意图本着“兴趣是最好的老师”的原则,结合生活中具体的实例,激发学生学习的兴趣,让学生体会“数学来源于生活”,创造和谐积极的学习气氛,体会演绎推理的现实意义.探究新知判断下列推理是合情推理吗?分析推理过程,明确它们的推理形式.(1)所有的金属都能导电,铜是金属,所以,铜能够导电.(2)一切奇数都不能被2整除,(2100+1)是奇数,所以,(2100+1)不能被2整除.(3)三角函数都是周期函数,tanα是三角函数,所以,tanα是周期函数.活动设计:学生口答,教师板书.学情预测:学生积极思考片刻,有学生举手回答且回答准确.活动结果:以上推理不是合情推理,它们的推理形式如下:(1)所有的金属都能导电,第一段铜是金属,第二段所以,铜能够导电.第三段(2)一切奇数都不能被2整除,第一段(2100+1)是奇数,第二段所以,(2100+1)不能被2整除.第三段(3)三角函数都是周期函数,第一段tanα是三角函数,第二段所以,tanα是周期函数.第三段提出问题:对于上面的三个推理,它们的推理形式有什么特点?活动设计:学生独立思考,并自由发言.学情预测:通过观察和分析,学生有足够的能力来解决上面所提问题.活动结果:上面的例子都有三段,是以一般的判断为前提,得出一些个别的、具体的判断:(1)所有的金属都能导电,大前提铜是金属,小前提所以,铜能够导电.结论(2)一切奇数都不能被2整除,大前提(2100+1)是奇数,小前提所以,(2100+1)不能被2整除.结论(3)三角函数都是周期函数,大前提tanα是三角函数,小前提所以,tanα是周期函数.结论教师:演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.1.演绎推理是由一般到特殊的推理;2.“三段论”是演绎推理的一般模式,包括(1)大前提——已知的一般原理;(2)小前提——所研究的特殊情况;(3)结论——根据一般原理,对特殊情况做出的判断.设计意图通过对演绎推理概念的学习,体会以“三段论”模式来说明演绎推理的特点,从中概括出演绎推理的推理过程,对演绎推理是一般到特殊的推理有一个直观的认识,训练和培养学生的演绎推理能力.理解新知提出问题:在应用“三段论”进行推理的过程中,得到的推理结论一定正确吗?为什么?例如:(1)所有阔叶植物都是落叶的,葡萄树是阔叶植物,所以,葡萄树都是落叶的.(2)因为所有边长都相等的凸多边形是正多边形,而菱形是所有边长都相等的凸多边形,所以菱形是正多边形.(3)英雄难过美人关,我难过美人关,所以,我是英雄.活动设计:学生独立思考,先有学生自由发言,然后教师小结并形成新知.学情预测:学生们在积极思考,对(2)(3)两个小题的结论产生分歧,意见不统一.活动结果:(1)推理形式正确,前提正确,结论正确.(2)推理形式正确,大前提错误,结论错误.(3)推理形式错误(大、小前提没有连接起来),结论错误.教师:通过上面的学习,学生们对演绎推理和“三段论”模式都有了更深的了解,其中特别注意:(1)三段论的基本格式M—P(M是P)(大前提)S—M(S是M)(小前提)S—P(S是P)(结论)(2)三段论推理的依据,用集合的观点来理解:若集合M的所有元素都具有性质P,S 是M的一个子集,那么S中所有元素也都具有性质P.(3)在演绎推理中,只有前提和推理形式都正确,结论才是正确的.设计意图通过所举的例子,教师可以了解学生对演绎推理和三段论模式的理解程度,明确概念的内涵和外延,加深理解,及时更正学生在认识推理中产生的错误和偏差.提出问题:合情推理与演绎推理有什么区别与联系?活动设计:学生独立思考,先由学生自由发言,然后教师小结并形成新知.活动结果:设计意图通过比较合情推理与演绎推理的区别与联系,有助于学生更清晰地理解和掌握这两种推理方法,并能灵活应用.运用新知例1如图,在锐角三角形ABC 中,AD ⊥BC ,BE ⊥AC ,D ,E 是垂足,求证:AB 的中点M 到D ,E 的距离相等.思路分析:根据三段论的推理过程进行证明.证明:(1)因为有一个内角是直角的三角形是直角三角形,——大前提 在△ABC 中,AD ⊥BC ,即∠ADB =90°,——小前提 所以△ABD 是直角三角形.——结论(2)因为直角三角形斜边上的中线等于斜边的一半,——大前提 因为DM 是直角三角形ABD 斜边上的中线,——小前提 所以DM =12AB.——结论同理EM =12AB.所以DM =EM.点评:通过对上述问题的证明,挖掘其中包含的推理思路,使学生明确演绎推理的基本过程,突出演绎推理中的“大前提”“小前提”和“结论”.巩固练习由①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据“三段论”推理得出一个结论,则这个结论是( )A .正方形的对角线相等B .平行四边形的对角线相等C .正方形是平行四边形D .其他 答案:A例2证明函数f(x)=-x 2+2x 在(-∞,1)内是增函数.思路分析:证明本例所依据的大前提是:在某个区间(a ,b)内,如果f ′(x)>0,那么函数y =f(x)在这个区间内单调递增.小前提是f(x)=-x 2+2x 在(-∞,1)内有f ′(x)>0,这是证明本例的关键. 证明:f ′(x)=-2x +2,因为当x ∈(-∞,1)时,有1-x>0, 所以f ′(x)=-2x +2=2(1-x)>0,于是,根据“三段论”,可知f(x)=-x 2+2x 在(-∞,1)内是增函数.点评:通过对上述问题的证明,挖掘其中包含的推理思路,使学生明确演绎推理的基本过程,并加深对演绎推理的认识.教师:许多学生能写出证明过程,但不一定非常清楚证明的逻辑规则,因此在表述证明过程时往往显得杂乱无章,通过这两个例子的教学,应当使这种状况得到改善.变练演编(1)已知a ,b ,m 均为正实数,且b<a ,求证:b a <b +ma +m.(2)已知△ABC 的三条边分别为a ,b ,c ,则1+ <1+.思路分析:(1)中根据演绎推理的证明过程进行证明;(2)中不必证明,答案不唯一. 证明:(1)不等式两边乘以同一个正数,不等式仍成立,——大前提 b<a ,m>0,——小前提 所以mb<ma.——结论不等式两边加上同一个数,不等式仍成立,——大前提 mb<ma ,ab =ab ,——小前提所以ab +mb<ab +ma ,即b(a +m)<a(b +m).——结论 不等式两边除以同一个正数,不等式仍成立,——大前提 b(a +m)<a(b +m),a(a +m)>0,——小前提所以,b (a +m )a (a +m )<a (b +m )a (a +m ),即b a <b +m a +m .——结论(2)c 1+c <a +b 1+a +b (答案不唯一,例如a1+a <c +b 1+c +b). 点评:通过证明(1)中不等式成立,感知条件与结论的不唯一性,例如:已知a ,b ,m 均为正实数,若a<b ,求证:a b <a +mb +m.(2)中加强学生思维的灵活性、分析问题的深刻性.活动设计:学生讨论交流并回答问题,老师对不同的合理答案给予肯定,将所有发现的结论一一列举,并由学生予以评价.设计意图通过变练演编,使学生对演绎推理的认识不断加深,同时培养学生逻辑思维的严谨性. 达标检测1.下列表述正确的是( )①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A .①②③B .②③④C .②④⑤D .①③⑤2.有这样一段演绎推理“有些有理数是真分数,整数是有理数,则整数是真分数”,结论显然是错误的,是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误3.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内的所有直线;已知直线平面α,直线平面α,直线b ∥平面α,则直线b ∥直线a ”,结论显然是错误的,这是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误 答案:1.D 2.C 3.A课堂小结1.知识收获:(1)演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理,对特殊情况做出的判断.2.方法收获:利用演绎推理判断进行证明的方法与步骤:①找出大前提;②找出小前提;③根据“三段论”推出结论.3.思维收获:培养和训练学生严谨缜密的逻辑思维.布置作业课本本节练习1、2、3.补充练习基础练习1.把“函数y=x2+x+1的图象是一条抛物线”恢复成三段论.2.下面说法正确的有()(1)演绎推理是由一般到特殊的推理;(2)演绎推理得到的结论一定是正确的;(3)演绎推理的一般模式是“三段论”形式;(4)演绎推理的结论的正误与大前提、小前提和推理形式有关.A.1个B.2个C.3个D.4个3.下列几种推理过程是演绎推理的是()A.5和22可以比较大小B.由平面三角形的性质,推测空间四面体的性质C.东升高中高二年级有15个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人D.预测股票走势图4.已知△ABC,∠A=30°,∠B=60°,求证:a<b.证明:∵∠A=30°,∠B=60°,∴∠A<∠B,∴a<b,画线部分是演绎推理的()A.大前提B.小前提C.结论D.三段论5.用演绎推理法证明y=x是增函数时的大前提是______.答案:1.解:二次函数的图象是一条抛物线(大前提),函数y=x2+x+1是二次函数(小前提),所以,函数y=x2+x+1的图象是一条抛物线(结论).2.C 3.A 4.B 5.增函数的定义拓展练习6.S为△ABC所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC.求证:AB⊥BC.证明:如图,作AE⊥SB于E.∵平面SAB⊥平面SBC,∴AE⊥平面SBC,∴AE⊥BC.又∵SA⊥平面ABC,∴SA⊥BC.∵SA∩AE=A,SA⊂平面SAB,AE⊂平面SAB,∴BC⊥平面SAB.∵AB⊂平面SAB,∴AB⊥BC.设计说明由于这节课概念性、理论性较强,一般的教学方式会使学生感到枯燥乏味,为此,激发学生的学习兴趣是上好本节课的关键.教学中始终要注意以学生为主,让学生在自我思考、相互交流中去总结概念“下定义”,去体会概念的本质属性.学生对于演绎推理和三段论的理解,需要经过一定时间的体会,先给出学生常见问题的解决步骤,结合以前所学的知识来解决问题,在教学中经常借助这些概念表达、阐述和分析问题.引导学生从日常生活中的推理问题出发,激发学生的学习兴趣,结合学生熟知的旧知识归纳新知识,同时在应用新知的过程中,将所学的知识条理化,使学生的认知结构更趋于合理.备课资料例1小王、小刘、小张参加了今年的高考,考完后在一起议论.小王说:“我肯定考上重点大学.”小刘说:“重点大学我是考不上了.”小张说:“要是不论重点不重点,我考上肯定没问题.”发榜结果表明,三人中考取重点大学、一般大学和没考上大学的各有一个,并且他们三个人的预言只有一个人是对的,另外两个人的预言都同事实恰好相反.可见() A.小王没考上,小刘考上一般大学,小张考上重点大学B.小王考上一般大学,小刘没考上,小张考上重点大学C.小王没考上,小刘考上重点大学,小张考上一般大学D.小王考上一般大学,小刘考上重点大学,小张没考上解析:根据推理知识得出结论.答案:C例2已知直线l、m,平面α、β,且l⊥α,m∥β,给出下列四个命题:(1)若α∥β,则l⊥m;(2)若l⊥m,则α∥β;(3)若α⊥β,则l∥m;(4)若l∥m,则α⊥β.其中正确命题的个数是()A.1 B.2C.3 D.4解析:根据演绎推理的定义,逐一判断结论的正误.由直线和平面、平面和平面平行和垂直的判定定理、性质定理,可知应选B.答案:B点评:以准确、完整地理解条件为基础,才能判断命题的正误.例3函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是______.解析:根据函数的性质进行判断.∵函数y=f(x)在(0,2)上是增函数,∴0<x+2<2,即-2<x<0.∴函数y=f(x+2)在(-2,0)上是增函数.又∵函数y=f(x+2)是偶函数,∴函数y=f(x+2)在(0,2)上是减函数.由图象可得f(2.5)>f(1)>f(3.5).故应填f(2.5)>f(1)>f(3.5).答案:f(2.5)>f(1)>f(3.5)点评:根据函数的基本性质,结合三段论的推理模式可得.例4已知lg2=m,计算lg0.8.分析:利用所学的推理知识解决问题.解:lga n=nlga(a>0),——大前提lg8=lg23,——小前提lg8=3lg2.——结论lg ab=lga-lgb(a>0,b>0),——大前提lg0.8=lg 810,——小前提所以lg0.8=lg8-1=3lg2-1=3m-1.——结论点评:找出三段论的大前提与小前提即可得到答案.设计者:李效三2018年5月22日星期二。
_高中数学第二章推理与证明1
• 4.其他演绎推理形式 • (1)假言推理:“若p⇒q,p真,则q真”. • (2)关系推理:“若aRb,bRc,则aRc”R表示一种传递性关系
,如a∥b,b∥c⇒a∥c,a≥b,b≥c⇒a≥c等. • 注:假言推理、关系推理在新课标中未给定义,但这种推理
形式是经常见到的,为表述记忆方便,我们也一块给出,以 供学生扩展知识面.
第二章 推理与证明
2.1 合情推理与演绎推理
2.1.2 演绎推理
目标导航
• 理解演绎推理的概念,掌握演绎推理的形式,并能用它们进行 一些简单的推理,了解合情推理与演绎推理的联系与区别.
重点难点
• 重点:演绎推理的含义及演绎推理规则. • 难点:演绎推理的应用.
新知导学
1.演绎推理
• 日常生活中我们经常接触这样的推理形式:“所有金属都导 电,因为铁是金属,所以铁导电”,它是合情推理吗?这种 推理形式正确吗?
• (2)利用集合知识说明“三段论”:若集合M的所有元素都具有 性质P,S是M的一个子集,那么 __S_中__所__有__元__素__也__都__具__有__性__质__P__.
• (3)为了方便,在运用三段论推理时,常常采用省略大前提或 小前提的表述方式.对于复杂的论证,总是采用一连串的三段 论,把前一个三段论的___结__论___作为下一个三段论的前提.
互动探究
1.演绎推理的基本形式——三段论
• 例题1 用三段论的形式写出下列演绎推理. • (1)菱形的对角线相互垂直,正方形是菱形,所以正方形的对
角线相互垂直. • (2)若两角是对顶角,则此两角相等,所以若两角不相等,则
此两角不是对顶角. • [分析] 即写出推理的大前提、小前提、结论.大前提可能
环小数,所以e是无理数. • [答案] (1)a=-8,(2)无限不循环小数都是无理数
高中数学必修课教案函数的极限与连续的推理与证明
高中数学必修课教案函数的极限与连续的推理与证明高中数学必修课教案:函数的极限与连续的推理与证明导言:函数是数学中一个重要的概念,它可以描述不同变量之间的关系。
在高中数学必修课程中,学生需要学习函数的极限与连续,这是进一步理解函数性质与应用的基础。
本教案将以极限与连续为核心内容,通过推理与证明的方式展示相关知识点。
通过本教案的学习,学生将掌握函数的极限定义、极限的运算规律以及连续函数的特性和证明方法。
一、函数的极限1. 极限的引入极限是描述函数在某一点附近的取值趋势的概念。
通过接近或逼近的方式,我们可以研究函数在某一点的表现。
2. 极限的定义函数f(x)在x=a处的极限为L,表示为lim[x→a] f(x) = L,当且仅当对于任意给定的ε>0,存在δ>0,对于所有满足0<|x-a|<δ的x值,都有|f(x)-L|<ε。
3. 极限的性质(1)极限唯一性:如果函数f(x)在x=a处的极限存在,则极限唯一。
(2)四则运算性质:设lim[x→a] f(x) = A,lim[x→a] g(x) = B,则(i) lim[x→a] [f(x)±g(x)] = A±B(ii) lim[x→a] [f(x)·g(x)] = A·B(iii) lim[x→a] [f(x)/g(x)] = A/B (其中B≠0)4.无穷小与无穷大(1)无穷小:当x趋近于某个数a时,如果f(x)的极限是0,则称f(x)为x→a时的一个无穷小。
(2)无穷大:当x趋近于某个数a时,如果f(x)的极限不存在或者无穷大,则称f(x)为x→a时的一个无穷大。
二、连续函数的定义与性质1. 连续函数的定义函数f(x)在点x=a处连续,表示为f(a)=lim[x→a] f(x)存在且等于f(a)。
2. 连续函数的性质(1)基本初等函数的连续性:多项式函数、指数函数、对数函数、三角函数及其反函数在其定义域内都是连续函数。
数学推理与证明 richard hammack 概述说明
数学推理与证明richard hammack 概述说明1. 引言1.1 概述数学推理与证明是数学领域中非常重要的概念和技巧。
通过逻辑推理与论证,我们可以从已知的条件出发,得出结论,并确保其正确性。
在数学研究和应用中,推理和证明起到指导思考、解决问题以及建立新知识的关键作用。
1.2 文章结构本文将探讨数学推理与证明的基本原理和方法,并以数学教育界著名人物Richard Hammack为例,介绍他对此领域的贡献。
首先,我将对数学推理和证明进行定义和解释,强调其重要性以及与现实生活之间的联系。
然后,我会简要介绍Richard Hammack的背景和成就,并着重介绍他所撰写的《Book of Proof》一书对数学教育产生的影响。
接下来,我将深入探讨数学推理和证明的基本原理和方法,包括公理与定理之间关系、直接证明与间接证明的比较评价,以及归纳法与反证法在推理过程中的应用。
最后,在结论部分我们将总结文章主要观点,并给予Richard Hammack及其作品以评价,同时展望数学推理与证明在未来的发展前景。
1.3 目的通过撰写这篇长文,我们旨在帮助读者更好地理解数学推理与证明的基本原理和方法,并且展示Richard Hammack在数学教育领域中的突出贡献。
同时,我们希望引发对于数学推理与证明未来发展前景的思考,并为读者提供一定的启示和思路。
通过对该主题进行全面而深入的探讨,我们有信心能够激发读者对于数学和逻辑思维的兴趣,进一步提升他们在这个领域中的知识水平和技能。
2. 数学推理与证明2.1 数学推理的定义数学推理是指通过逻辑和推导从已知的事实或前提出发,得出新的结论或命题。
它是数学思维和研究的核心要素之一,也是数学解题和证明过程中必不可少的步骤。
数学推理包括直接推理、间接推理、归纳法、反证法等多种形式。
2.2 数学证明的重要性数学证明是确保数学结论正确性与有效性的关键过程。
通过证明,我们能够确定一个命题是否成立,对于解决问题和扩展数学知识具有重要意义。
高考数学备考推理与证明复习教案
推理与证明【最新考纲透析】1.合情推理与演绎推理(1)了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;(2)了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;(3)了解合情推理和演绎推理之间的联系和差异。
2.直接证明与间接证明(1)了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点;(2)了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点。
3.数学归纳法了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。
【核心要点突破】要点考向1:合情推理考情聚焦:1.合情推理能够考查学生的观察、分析、比较、联想的能力,在高考中越来越受到重视;2.呈现方式金榜经,属中档题。
考向链接:1.归纳推理是由部分到整体,由个别到一般的推理,在进行归纳时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论;2.类比推理是由特殊到特殊的推理,是两类类似的对象之间的推理,其中一个对象具有某个性质,则另一个对象也具有类似的性质。
在进行类比时,要充分考虑已知对象性质的推理过程,然后类比推导类比对象的性质。
例1:(2010·福建高考文科·T16)观察下列等式:① cos2a=22cos a -1;② cos4a=84cos a - 82cos a + 1; ③ cos6a=326cos a - 484cos a + 182cos a - 1;④ cos8a=1288cos a - 2566cos a + 1604cos a - 322cos a + 1;⑤ cos10a= m 10cos a - 12808cos a + 11206cos a + n 4cos a + p 2cos a - 1.可以推测,m – n + p = .【命题立意】本题主要考查利用合情推理的方法对系数进行猜测求解.【思路点拨】根据归纳推理可得.【规范解答】观察得:式子中所有项的系数和为1,m 12801120n p 11∴-+++-=,m n p 162∴++=,又9p 10550,m 2512=⨯===,n 400∴=-,m n p 962∴-+=.【答案】962.要点考向2:演绎推理考情聚焦:1.近几年高考,证明题逐渐升温,而其证明主要是通过演绎推理来进行的;2.主要以解答题的形式呈现,属中、高档题。
2023年高考数学(理科)一轮复习课件——推理与证明
常用结论
1.合情推理包括归纳推理和类比推理,其结论是猜想,不一定正确,若要确定 其正确性,则需要证明.
2.在进行类比推理时,要从本质上去类比,只从一点表面现象去类比,就会犯 机械类比的错误.
3.分析法是执果索因,实际上是寻找使结论成立的充分条件;综合法是由因导 果,就是寻找已知的必要条件.
4.用反证法证题时,首先否定结论,否定结论就是找出结论的反面的情况,然 后推出矛盾,矛盾可以与已知、公理、定理、事实或者假设等相矛盾.
B.3(2n+2) D.(n+2)(n+3)
索引
解析 由已知中的图形可以得到: 当n=1时,图形的顶点个数为12=3×4, 当n=2时,图形的顶点个数为20=4×5, 当n=3时,图形的顶点个数为30=5×6, 当n=4时,图形的顶点个数为42=6×7,…… 由此可以推断:第n个图形的顶点个数为(n+2)(n+3).
,则8 771用算筹应表
示为( ) C
中国古代的算筹数码
A.
B.
C.
D.
索引
解析 由算筹的定义,得
所以8 771用算筹应表示为
.
索引
(2)“正三角形的内切圆半径等于此正三角的高的31”,拓展到空间,类比平面
几何的上述结论,则正四面体的内切球半径等于这个正四面体的高的( C )
1
1
A.2
B.3
1
1
索引
感悟提升
1.归纳推理问题的常见类型及解题策略 (1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号. (2)与式子有关的推理.观察每个式子的特点,注意纵向对比,找到规律. (3)与图形变化有关的推理.合理利用特殊图形归纳推理出结论,并用赋值检验 法验证其真伪性. 2.类比推理常见的情形有:平面与空间类比;低维与高维类比;等差与等比数 列类比;运算类比(加与乘,乘与乘方,减与除,除与开方).数的运算与向量运 算类比;圆锥曲线间的类比等. 3.演绎推理是从一般到特殊的推理,其一般形式是三段论,应用三段论解决问 题,应当首先明确什么是大前提和小前提.
数学竞赛教案:数学推理与证明能力的培养
数学竞赛教案:数学推理与证明能力的培养一、引言数学竞赛作为一项全球范围内受到重视的活动,在学生们的学习生涯中具有重要意义。
其中,数学推理与证明能力的培养是数学竞赛中的核心要素之一。
本文将探讨如何通过教案设计和教学实践来培养学生的数学推理与证明能力,提高他们在数学竞赛中的表现。
二、为什么数学推理与证明能力重要?1. 培养逻辑思维能力:数学推理和证明要求学生通过逻辑思考和分析,找到问题的解决方法,并合理证明其正确性。
这种训练可以提高学生的逻辑思维能力,使他们更善于思考问题,抽象概括规律。
2. 培养创造性思维:在推理和证明过程中,学生需要运用已有知识来构建新的解决方案或证明思路。
这样的训练可以培养学生的创造性思维,并鼓励他们独立思考、寻找新颖想法。
3. 提高问题解决能力:数学竞赛中经常涉及复杂问题,必须通过推理和证明才能解决。
培养学生的数学推理与证明能力有助于提高他们解决问题的能力,培养出色的问题解决者。
三、教案设计与实施为了达到培养学生数学推理与证明能力的目标,需要通过合理的教案设计和实施来引导学生进行训练。
1. 知识准备在开始推理和证明训练之前,首先要确保学生对基础知识有扎实的掌握。
可以通过提供适当的复习材料和梳理重点知识点来帮助学生建立坚实的数学基础。
2. 理论指导在开始推理和证明训练之前,应该向学生介绍相关的数学定理、规律和思考方法。
同时,可以通过具体案例分析来展示这些概念在实际问题中如何应用,并鼓励学生自主思考。
3. 分级训练根据学生不同的水平和能力,可以将推理和证明训练划分为不同难度级别。
初级阶段可以从简单概念出发,逐渐引导学生掌握基本思路和方法;进阶阶段可以向学生提供更复杂的问题,鼓励他们运用所学知识进行推理和证明。
4. 多样化教学手段在教学过程中,多样化的教学手段可以激发学生的兴趣和思考。
例如,通过讨论、小组合作、游戏等形式培养学生的合作能力和创造性思维。
5. 及时反馈与总结在训练过程中,及时给予学生反馈是至关重要的。
小学数学教学备课教案逻辑推理与数学证明的基本方法
小学数学教学备课教案逻辑推理与数学证明的基本方法小学数学教学备课教案:逻辑推理与数学证明的基本方法教学目标:通过本节课的学习,学生将能够了解逻辑推理和数学证明的基本概念和方法,并能够运用所学知识解决一些简单的数学问题。
教学时间:1课时(40分钟)教学内容和教学步骤:一、导入(5分钟)1. 向学生介绍本节课的主题:“逻辑推理与数学证明的基本方法”,并询问学生对于这个主题有什么了解。
2. 引导学生回顾上节课所学的基本数学概念,如数字的大小比较、基本算术运算等。
二、逻辑推理的概念和基本方法(15分钟)1. 导入一个简单的情境,例如:“小明说他昨天去了公园,那么他是不是昨天旷课了?”引导学生分析这个情境,并讨论推理出结论的依据。
2. 介绍逻辑推理的概念和基本方法,包括“前提”、“推理规则”和“结论”等概念。
3. 示范一个逻辑推理的例子,并引导学生进行合理的推理和判断。
三、数学证明的概念和基本方法(15分钟)1. 引入一个简单的数学问题,如:“如何证明一个三角形是等边三角形?”让学生尝试思考并提出解决问题的方法。
2. 介绍数学证明的概念和基本方法,包括“假设”、“推理过程”和“结论”等概念。
3. 示范一个数学证明的例子,如“证明所有直角三角形的斜边长等于两直角边平方和的平方根”,并引导学生进行合理的证明过程。
四、练习与巩固(5分钟)1. 提供几个简单的逻辑推理和数学证明题目,让学生独立思考并解答。
2. 随机选几名学生上台展示他们的解答过程和结论,并进行讨论和评价。
五、小结和反思(5分钟)1. 总结本节课所学的内容,并强调逻辑推理和数学证明在数学学习中的重要性。
2. 鼓励学生在日常生活中运用逻辑推理和数学证明的方法解决问题,并提出可能遇到的困难和解决方案。
教学评价方式:1. 观察学生在课堂上的参与度和表现情况。
2. 收集学生在练习和巩固环节中的解答情况,并进行评估。
教学反思与调整:通过观察学生在课堂上的反应和解答情况,及时调整教学方法和步骤,确保学生对逻辑推理和数学证明的基本方法有清晰的理解和掌握。
推理小学数学教案推理
推理小学数学教案推理
主题: 推理与逻辑
目标:
1.学生能够运用推理和逻辑思维解决数学问题
2.学生能够分析问题、找出规律并得出结论
3.学生能够灵活运用推理和逻辑思维解决生活中的问题
教学内容:
1.推理和逻辑的基本概念
2.推理和逻辑思维在数学中的应用
3.推理和逻辑思维在日常生活中的应用
教学步骤:
1. 导入: 通过展示一道简单的数学推理题目引起学生的兴趣和思考,激发学生对推理和逻辑的认识和学习兴趣。
2. 概念讲解: 介绍推理和逻辑的基本概念,如前提,推断,结论等,并通过示例讲解让学生更好地理解这些概念。
3. 练习: 让学生进行一些简单的练习,通过分析问题,找出规律并得出结论,培养学生的推理和逻辑思维能力。
4. 应用: 结合实际生活中的例子让学生应用推理和逻辑思维解决问题,提高学生的综合运用能力。
5. 总结: 总结本节课学习的内容,强调推理和逻辑思维在数学和生活中的重要性,并鼓励学生多加练习,提高自己的推理能力。
作业: 让学生回家完成一些相关练习题,巩固本节课所学内容,并督促他们应用所学知识解决生活中的问题。
扩展: 鼓励学生积极参加数学推理比赛或者参与推理游戏,提高他们的推理和逻辑思维能力。
评价: 通过观察学生的表现、听取学生的反馈以及批改作业来评价学生对推理和逻辑的掌握情况,并针对性地指导学生的学习和提高。
高三数学(第01课 简易逻辑集合推理与证明)基础教案
第01课 简易逻辑、集合、推理与证明一、课前预习:1、已知集合A={x|x=2n —l ,n∈Z},B={x|x 2一4x<0},则A ∩B= ___ 2、“11x<”是“ lg 0x >成立”的 ______条件(填人“充分不必要’’或“必要不充分,,或“充要”或“既不充分也不必要”).3、已知集合{}},12,3,1{,,32--==m B m A 若B A ⊆,则实数m 的值为 _____ 4、若命题“2,10x R x ax ∃∈++<”是真命题,则实数a 的取值范围是 _______ 5、已知U 为实数集,集合{|02},{|1}M x x N x y x =<<==-,则()U MC N = __________6、下列命题中真命题的个数有 ___ 个(1)2,10x R x x ∀∈-+>(2){}1,1,0,10x x ∀∈-+>(3)3,x N x x ∃∈≤使7、命题“不存在x R ∈,使得20x ≥”的否定是 ____________8、满足集合{1,2,3}M{1,2,3,4,5}的集合M 的个数为 ___________9、已知集合{}{}0,1,M x x x Ry y y R =≠∈≠∈,集合{0P x x =<或01x <<或}1,x x R >∈,则集合M 与P 之间的关系是 ___________10、设p :”正数a 的平方根不等于0”,则在命题p 及其逆命题、否命题、逆否命题这四个命题中,真命题的个数是 _________11、已知a ,b 为不共线的向量,设条件M :⊥-()b a b ;条件N :对一切x ∈R ,不等式x --≥a b a b 恒成立.则M 是N 的 _________ 条件.12、已知1=1,1+2=3,1+2+3=6,1+2+3+4=10,…,1+2+3+…+n=(1)2n n +,观察下面立方和:33333333331,12,123,1234,++++++两者对比,试归纳出立方和的求和公式:___________13、在Rt ABC ∆中,两直角边分别为a 、b ,设h 为斜边上的高,则222111h a b=+,由此类比:三棱锥S ABC-中的三条侧棱SA 、SB 、SC 两两垂直,且长度分别为a 、b 、c ,设棱锥底面ABC 上的高为h ,则 ____________14、用反证法证明命题“),(*∈⋅Z b a b a 是偶数,那么a ,b 中至少有一个是偶数.”那么 反设的内容是 _____________ 二、例题例1、已知集合{}0822≤--=x x x A ,{}R m m m x m x x B ∈≤-+--=,03)32(22(1)若]4,2[=⋂B A ,求实数m 的值;(2)设全集为R ,若B C A R ⊆,求实数m 的取值范围。
高中数学第二章推理与证明2.1.2类比推理教案新人教A版选修2
2.1.2 类比推理一、教学目标1.通过对已学知识的回顾,认识类比推理这一种合情推理的基本方法,并把它用于对问题的发现中去。
2.类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质,类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。
3.正确认识合情推理在数学中的重要作用,养成从小开始认真观察事物、分析问题、发现事物之间的质的联系的良好个性品质,善于发现问题,探求新知识。
认识数学在日常生产生活中的重要作用,培养学生学数学,用数学,完善数学的正确数学意识。
二、教学重点:了解合情推理的含义,能利用类比进行简单的推理。
了解归纳推理的含义,能利用归纳进行简单的推理。
教学难点:用类比进行推理,做出猜想。
三、教学方法:教具准备:与教材内容相关的资料。
课时安排:1课时四、教学过程一.问题情境从一个传说说起:春秋时代鲁国的公输班(后人称鲁班,被认为是木匠业的祖师)一次去林中砍树时被一株齿形的茅草割破了手,这桩倒霉事却使他发明了锯子.他的思路是这样的:茅草是齿形的;茅草能割破手.我需要一种能割断木头的工具;它也可以是齿形的.这个推理过程是归纳推理吗?二.数学活动我们再看几个类似的推理实例。
例1、试根据等式的性质猜想不等式的性质。
等式的性质:猜想不等式的性质:(1) a=b⇒a+c=b+c; (1) a>b⇒a+c>b+c;(2) a=b⇒ ac=bc; (2) a>b⇒ ac>bc;(3) a=b⇒a2=b2;等等。
(3) a>b⇒a2>b2;等等。
问:这样猜想出的结论是否一定正确?例2、试将平面上的圆与空间的球进行类比.圆的定义:平面内到一个定点的距离等于定长的点的集合.球的定义:到一个定点的距离等于定长的点的集合.圆 球弦←→截面圆 直径←→大圆周长←→表面积面积←→体积 等的两截面圆不等,距球心较近的截面圆较大☆上述两个例子均是这种由两个(两类)对象之间在某些方面的相似或相同,推演出他们在其他方面也相似或相同;或其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理.类比推理的一般步骤:⑴ 找出两类对象之间可以确切表述的相似特征;⑵ 用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想;⑶ 检验猜想。
数学教案 北师大版选修2-2 同步备课-第1章 推理与证明学案第2节综合法与分析法
§2 综合法与分析法2.1 综合法学习目标核心素养1.了解综合法的思考过程、特点.(重点) 2.会用综合法证明数学命题.(难点) 1.通过对综合法概念和思维过程的理解的学习,培养逻辑推理的核心素养.2.通过对综合法应用的学习,提升逻辑推理和数学建模的核心素养.1.综合法的定义从命题的条件出发,利用定义、公理、定理及运算法则,通过演绎推理,一步一步地接近要证明的结论,直到完成命题的证明,这种思维方法称为综合法.2.综合法证明的思维过程用P表示已知条件、已知的定义、公理、定理等,Q表示所要证明的结论,则综合法的思维过程可用框图表示为:P⇒Q1→Q1⇒Q2→Q2⇒Q3→…→Q n⇒Q思考:综合法的证明过程属于什么思维方式?[提示]综合法是由因导果的顺推思维.1.综合法是从已知条件、定义、定理、公理出发,寻求命题成立的( )A.充分条件B.必要条件C.充要条件D.既不充分又不必要条件[答案] B2.在△ABC中,若sin Asin B<cos Acos B,则△ABC一定是( )A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形C[由条件可知cos Acos B-sin Asin B=cos(A+B)=-cos C>0,即cos C<0,∴C为钝角,故△ABC 一定是钝角三角形.]3.命题“函数f(x)=x-xln x在区间(0,1)上是增函数”的证明过程“对函数f(x)=x-xln x求导,得f′(x)=-ln x,当x∈(0,1)时,f′(x)=-ln x>0,故函数f(x)在区间(0,1)上是增函数”,应用了________的证明方法.综合法[证明过程符合综合法的证题特点,故为综合法.]用综合法证明三角问题【例1】 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2asin A =(2b -c)sin B +(2c -b)sin C.(1)求证:A 的大小为60°;(2)若sin B +sin C = 3.证明:△ABC 为等边三角形.思路探究:(1)利用正弦定理将角与边互化,然后利用余弦定理求A. (2)结合(1)中A 的大小利用三角恒等变形证明A =B =C =60°. [证明] (1)由2asin A =(2b -c)sin B +(2c -b)sin C , 得2a 2=(2b -c)b +(2c -b)c , 即bc =b 2+c 2-a 2, 所以cos A =b 2+c 2-a 22bc =12,所以A =60°.(2)由A +B +C =180°,得B +C =120°,由sin B +sin C =3,得sin B +sin(120°-B)=3, sin B +(sin 120°cos B-cos 120°sin B)=3, 32sin B +32cos B =3, 即sin(B +30°)=1. 因为0°<B<120°, 所以30°<B+30°<150°, 所以B +30°=90°,即B =60°, 所以A =B =C =60°, 即△ABC 为等边三角形.证明三角等式的主要依据1.三角函数的定义、诱导公式及同角基本关系式. 2.和、差、倍角的三角函数公式.3.三角形中的三角函数及三角形内角和定理. 4.正弦定理、余弦定理和三角形的面积公式.1.若sin θ,sin α,cos θ成等差数列,sin θ,sin β,cos θ成等比数列,求证:2cos 2α=cos 2β.[证明] ∵sin θ,sin α,cos θ成等差数列, ∴sin θ+cos θ=2sin α①又∵sin θ,sin β,cos θ成等比数列, ∴sin 2β=sin θcos θ②将②代入①2,得1+2sin 2β=4sin 2α, 又sin 2 β=1-cos 2β2,sin 2α=1-cos 2α2,∴1+1-cos 2β=2-2cos 2α, 即2cos 2α=cos 2β.用综合法证明几何问题【例2】 如图,在四面体BACD 中,CB =CD ,AD⊥BD,E ,F 分别是AB ,BD 的中点.求证: (1)直线EF∥平面ACD ; (2)平面EFC⊥平面BCD.思路探究:(1)依据线面平行的判定定理,欲证明直线EF∥平面ACD ,只需在平面ACD 内找出一条直线和直线EF 平行即可;(2)根据面面垂直的判定定理,欲证明平面EFC⊥平面BCD ,只需在其中一个平面内找出一条另一个面的垂线即可.[证明] (1)因为E ,F 分别是AB ,BD 的中点,所以EF 是△ABD 的中位线,所以EF∥AD,又EF 平面ACD ,AD平面ACD ,所以直线EF∥平面ACD.(2)因为AD⊥BD,EF∥AD,所以EF⊥BD.因为CB =CD ,F 是BD 的中点,所以CF⊥BD.又EF∩CF=F ,所以BD⊥平面EFC. 因为BD平面BCD ,所以平面EFC⊥平面BCD.证明空间位置关系的一般模式本题是综合运用已知条件和相关的空间位置关系的判定定理来证明的,故证明空间位置关系问题,也是综合法的一个典型应用.在证明过程中,语言转化是主旋律,转化途径为把符号语言转化为图形语言或文字语言转化为符号语言.这也是证明空间位置关系问题的一般模式.2.如图,在长方体ABCDA 1B 1C 1D 1中,AA 1=AD =a ,AB =2a ,E ,F 分别为C 1D 1,A 1D 1的中点.(1)求证:DE⊥平面BCE ; (2)求证:AF∥平面BDE. [证明](1)∵BC⊥侧面CDD 1C 1,DE侧面CDD 1C 1,∴DE⊥BC.在△CDE 中,CD =2a ,CE =DE =2a ,则有CD 2=DE 2+CE 2,∴∠D EC =90°,∴DE⊥EC. 又∵BC∩EC=C ,∴DE⊥平面BCE.(2)连接EF ,A 1C 1,设AC 交BD 于点O ,连接EO , ∵EF 12A 1C 1,AO 12A 1C 1, ∴EFAO ,∴四边形AOEF 是平行四边形, ∴AF∥OE. 又∵OE平面BDE ,AF平面BDE ,∴AF∥平面BDE.用综合法证明不等式[探究问题]1.综合法证明不等式的主要依据有哪些? [提示] (1)a 2≥0(a∈R).(2)a 2+b 2≥2ab,⎝ ⎛⎭⎪⎫a +b 22≥ab,a 2+b 2≥(a +b )22.(3)a ,b∈(0,+∞),则a +b 2≥ab ,特别地,b a +ab ≥2.(4)a -b≥0⇔a≥b;a -b≤0⇔a≤b. (5)a 2+b 2+c 2≥ab+bc +ca. (6)b a +ab≥2(a,b 同号,即ab>0).(7)||a|-|b||≤|a+b|≤|a|+|b|(a ,b∈R).左边等号成立的条件是ab≤0,右边等号成立的条件是ab≥0. 2.使用基本不等式证明不等式时,应该注意什么?请举例说明.[提示] 使用基本不等式时,要注意①“一正、二定、三相等”;②不等式的方向性;③不等式的适度,如下例.[题] 已知,a ,b∈(0,+∞),求证:a b +b a≥a + b.若直接使用基本不等式,a b +b a≥2ab ·b a=24ab ,而a +b ≥24ab.从而达不到证明的目的,没掌握好“度”,正确的证法应该是这样的:[证明] ∵a>0,b>0, ∴ab +b ≥2a ,ba +a ≥2b , ∴a b +b +ba +a ≥2a +2b , 即ab +ba≥a + b. 【例3】 已知x>0,y>0,x +y =1,求证:⎝ ⎛⎭⎪⎫1+1x ⎝ ⎛⎭⎪⎫1+1y ≥9.思路探究:解答本题可由已知条件出发,结合基本不等式利用综合法证明. [证明] 法一:因为x>0,y>0,1=x +y≥2xy , 所以xy≤14.所以⎝ ⎛⎭⎪⎫1+1x ⎝ ⎛⎭⎪⎫1+1y =1+1x +1y +1xy =1+x +y xy +1xy =1+2xy ≥1+8=9.法二:因为1=x +y ,所以⎝ ⎛⎭⎪⎫1+1x ⎝ ⎛⎭⎪⎫1+1y =⎝ ⎛⎭⎪⎫1+x +y x ⎝ ⎛⎭⎪⎫1+x +y y =⎝ ⎛⎭⎪⎫2+y x ⎝ ⎛⎭⎪⎫2+x y =5+2⎝ ⎛⎭⎪⎫x y +y x . 又因为x>0,y>0,所以x y +yx ≥2,当且仅当x =y 时,取“=”. 所以⎝ ⎛⎭⎪⎫1+1x ⎝ ⎛⎭⎪⎫1+1y ≥5+2×2=9.1.本例条件不变,求证:1x +1y≥4.[证明] 法一:因为x ,y∈(0,+∞),且x +y =1, 所以x +y≥2xy ,当且仅当x =y 时,取“=”, 所以xy ≤12,即xy≤14,所以1x +1y =x +y xy =1xy ≥4.法二:因为x ,y∈(0,+∞),所以x +y≥2xy>0,当且仅当x =y 时,取“=”, 1x +1y≥21xy>0, 当且仅当1x =1y时,取“=”,所以(x +y)⎝ ⎛⎭⎪⎫1x +1y ≥4. 又x +y =1,所以1x +1y≥4.法三:因为x ,y∈(0,+∞),所以1x +1y =x +y x +x +yy=1+y x +xy+1≥2+2x y ·yx=4, 当且仅当x =y 时,取“=”.2.把本例条件改为“a>0,b>0,c>0”且a +b +c =1,求证:ab +bc +ac≤13.[证明] ∵a>0,b>0,c>0, ∴a 2+b 2≥2ab, b 2+c 2≥2bc, a 2+c 2≥2ac.∴a 2+b 2+c 2≥ab+bc +ca.∴(a+b +c)2=a 2+b 2+c 2+2ab +2bc +2ca ≥3(ab+bc +ac). 又∵a+b +c =1, ∴ab+bc +ac≤13.综合法的证明步骤1.分析条件,选择方向:确定已知条件和结论间的联系,合理选择相关定义、定理等.2.转化条件,组织过程:将条件合理转化,书写出严密的证明过程.特别地,根据题目特点选取合适的证法可以简化解题过程.1.综合法的基本思路综合法的基本思路是“由因导果”,由已知走向求证,即从数学命题的已知条件出发,经过逐步的逻辑推理,最后得到待证结论.其逻辑依据是三段论式的演绎推理方法.2.综合法的特点(1)从“已知”看“可知”,逐步推向“未知”,由因导果,逐步推理,寻找它的必要条件.(2)证明步骤严谨,逐层递进,步步为营,条理清晰,形式简洁,易于表达推理的思维轨迹.(3)由综合法证明命题“若A,则D”的思考过程如图所示:1.判断(正确的打“√”,错误的打“×”)(1)综合法是由因导果的顺推证法.( )(2)综合法证明的依据是三段论.( )(3)综合法的推理过程实际上是寻找它的必要条件.( )(1)√(2)√(3)√[(1)正确.由综合法的定义可知该说法正确.(2)正确.综合法的逻辑依据是三段论.(3)正确.综合法从“已知”看“可知”,逐步推出“未知”,其逐步推理实际上是寻找它的必要条件.]2.已知直线l,m,平面α,β,且l⊥α,mβ,给出下列四个命题:①若α∥β,则l⊥m;②若l⊥m,则α∥β;③若α⊥β,则l⊥m;④若l∥m,则α⊥β.其中正确的命题的个数是( )A.1 B.2C.3 D.4B[若l⊥α,α∥β,则l⊥β,又mβ,所以l⊥m,①正确;若l⊥α,m β,l⊥m,α与β可能相交,②不正确; 若l⊥α,mβ,α⊥β,l 与m 可能平行,③不正确;若l⊥α,l∥m,则m⊥α,又m β,所以α⊥β,④正确.]3.已知p =a +1a -2(a>2),q =2-a 2+4a -2(a>2),则p 与q 的大小关系是________. p>q [p =a -2+1a -2+2≥2(a -2)·1a -2+2=4,-a 2+4a -2=2-(a -2)2<2,∴q<22=4≤p.]4.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n =1,2,3,…).求证:(1)数列⎩⎨⎧⎭⎬⎫S n n 为等比数列;(2)S n +1=4a n .[证明] (1)∵a n +1=n +2n S n ,而a n +1=S n +1-S n ,∴n +2nS n =S n +1-S n , ∴S n +1=2(n +1)n S n ,∴S n +1n +1S n n =2,又∵a 1=1, ∴S 1=1,∴S 11=1,∴数列⎩⎨⎧⎭⎬⎫S n n 是首项为1,公比为2的等比数列.(2)由(1)知⎩⎨⎧⎭⎬⎫S n n 的公比为2,而a n =n +1n -1S n -1(n≥2),∴S n +1n +1=4S n -1n -1=4n -1·a n (n -1)n +1, ∴S n +1=4a n .2.2 分析法学 习 目 标核 心 素 养1.了解分析法的思考过程、特点.(重点) 2.会用分析法证明数学命题.(难点)1.通过对分析法概念和思维过程的理解的学习,培养逻辑推理的核心素养. 2.通过对分析法应用的学习,提升逻辑推理和数学建模的核心素养.1.分析法的定义从求证的结论出发,一步一步地探索保证前一个结论成立的充分条件,直到归结为这个命题的条件,或者归结为定义、公理、定理等,这种思维方法称为分析法.2.分析法证明的思维过程用Q 表示要证明的结论,则分析法的思维过程可用框图表示为: Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件1.用分析法证明:要使①A>B,只需使②C<D.这里①是②的( ) A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件B [根据分析法的特点,寻找的是充分条件,∴②是①的充分条件,①是②的必要条件.] 2.欲证2-3<6-7,只需证( ) A .(2+7)2<(3+6)2B .(2-6)2<(3-7)2C .(2-3)2<(6-7)2D .(2-3-6)2<(-7)2A [欲证2-3<6-7,只需证2+7<3+6,只需证(2+7)2<(3+6)2.]3.将下面用分析法证明a 2+b 22≥ab 的步骤补充完整:要证a 2+b 22≥ab,只需证a 2+b 2≥2ab,也就是证________,即证________,由于________显然成立,因此原不等式成立.[答案] a 2+b 2-2ab≥0 (a -b)2≥0 (a -b)2≥0应用分析法证明不等式【例1】 已知a>b>0,求证:(a -b )28a <a +b 2-ab<(a -b )28b.思路探究:本题用综合法不易解决,由于变形后均为平方式,因此要先将式子两边同时开方,再找出使式子成立的充分条件.[证明] 要证(a -b )28a <a +b 2-ab<(a -b )28b ,只需证(a -b )28a <(a -b )22<(a -b )28b .∵a>b >0,∴同时除以(a -b )22,得(a +b )24a <1<(a +b )24b ,同时开方,得a +b 2a<1<a +b 2b,只需证a +b<2a ,且a +b>2b , 即证b<a ,即证b<a. ∵a>b>0,∴原不等式成立, 即(a -b )28a <a +b 2-ab<(a -b )28b.分析法证题思维过程1.分析法证明不等式的思维是从要证的不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件为已知(或已证)的不等式.2.分析法证明数学命题的过程是逆向思维,即结论⇐…⇐…⇐…已知,因此,在叙述过程中,“要证”“只需证”“即证”等词语必不可少,否则会出现错误.1.已知a>0,求证:a 2+1a 2-2≥a+1a-2.[证明] 要证a 2+1a 2-2≥a+1a-2,只需证a 2+1a 2+2≥a+1a +2,即证⎝⎛⎭⎪⎫a 2+1a 2+22≥⎝ ⎛⎭⎪⎫a +1a+22,即a 2+1a 2+4a 2+1a 2+4≥a 2+1a 2+2 2⎝ ⎛⎭⎪⎫a +1a +4,只需证2a 2+1a 2≥ 2⎝ ⎛⎭⎪⎫a +1a ,只需证4⎝ ⎛⎭⎪⎫a 2+1a 2≥2⎝ ⎛⎭⎪⎫a 2+2+1a 2,即a 2+1a2≥2.上述不等式显然成立,故原不等式成立.用分析法证明其他问题【例2】 设函数f(x)=ax 2+bx +c(a≠0),若函数y =f(x +1)的图象与f(x)的图象关于y 轴对称,求证:f ⎝ ⎛⎭⎪⎫x +12为偶函数. 思路探究:由于已知条件较为复杂,且不易与要证明的结论联系,故可从要证明的结论出发,利用分析法,从函数图象的对称轴找到证明的突破口.[证明] 要证函数f ⎝ ⎛⎭⎪⎫x +12为偶函数,只需证明其对称轴为直线x =0, 而f ⎝ ⎛⎭⎪⎫x +12=ax 2+(a +b)x +14a +12b +c ,其对称轴为x =-a +b 2a ,因此只需证-a +b2a =0,即只需证a =-b ,又f(x +1)=ax 2+(2a +b)x +a +b +c ,其对称轴为x =-2a +b 2a ,f(x)的对称轴为x =-b 2a ,由已知得x =-2a +b 2a 与x =-b2a 关于y 轴对称,所以-2a +b 2a =-⎝ ⎛⎭⎪⎫-b 2a ,得a =-b 成立,故f ⎝ ⎛⎭⎪⎫x +12为偶函数.分析法证题思路1.分析法是逆向思维,当已知条件与结论之间的联系不够明显、直接或证明过程中所需要用的知识不太明确、具体时,往往采用分析法.2.分析法的思路与综合法正好相反,它是从要求证的结论出发,倒着分析,由未知想需知,由需知逐渐地靠近已知,即已知条件、已经学过的定义、定理、公理、公式、法则等.2.已知1-tan α2+tan α=1,求证:cos α-sin α=3(cos α+sin α).[证明] 要证cos α-sin α=3(cos α+sin α), 只需证cos α-sin αcos α+sin α=3,只需证1-tan α1+tan α=3,只需证1-tan α=3(1+tan α),只需证tan α=-12.∵1-tan α2+tan α=1,∴1-tan α=2+tan α,即2tan α=-1.∴tan α=-12显然成立,∴结论得证.综合法与分析法的综合应用1.综合法与分析法的推理过程是合情推理还是演绎推理?[提示] 综合法与分析法的推理过程是演绎推理,它们的每一步推理都是严密的逻辑推理,从而得到的每一个结论都是正确的,不同于合情推理中的“猜想”.2.综合法与分析法有什么区别?[提示] 综合法是从已知条件出发,逐步寻找的是必要条件,即由因导果;分析法是从待求结论出发,逐步寻找的是充分条件,即执果索因.【例3】 在某两个正数x ,y 之间,若插入一个数a ,则能使x ,a ,y 成等差数列;若插入两个数b ,c ,则能使x ,b ,c ,y 成等比数列,求证:(a +1)2≥(b +1)(c +1).思路探究:可用分析法找途径,用综合法由条件顺次推理,易于使条件与结论联系起来. [证明] 由已知条件得⎩⎪⎨⎪⎧2a =x +y ,b 2=cx ,c 2=by ,消去x ,y 得2a =b 2c +c2b ,且a>0,b>0,c>0.要证(a +1)2≥(b+1)(c +1), 只需证a +1≥(b +1)(c +1), 因(b +1)(c +1)≤(b +1)+(c +1)2,只需证a +1≥b +1+c +12,即证2a≥b+c.由于2a =b 2c +c2b ,故只需证b 2c +c2b≥b+c ,只需证b 3+c 3=(b +c)(b 2+c 2-bc)≥(b+c)bc , 即证b 2+c 2-bc≥bc,即证(b -c)2≥0.因为上式显然成立,所以(a +1)2≥(b+1)(c +1).分析综合法特点综合法推理清晰,易于书写,分析法从结论入手,易于寻找解题思路,在实际证明命题时,常把分析法与综合法结合起来使用,称为分析综合法,其结构特点是根据条件的结构特点去转化结论,得到中间结论Q ;根据结论的结构特点去转化条件,得到中间结论P ;若由P 可推出Q ,即可得证.3.已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,且三个内角A ,B ,C 构成等差数列.求证:1a +b +1b +c =3a +b +c.[证明] 要证1a +b +1b +c =3a +b +c ,即证a +b +c a +b +a +b +c b +c =3,即证c a +b +a b +c=1,只需证c(b +c)+a(a +b)=(a +b)(b +c), 只需证c 2+a 2=ac +b 2. ∵A,B ,C 成等差数列, ∴2B=A +C ,又A +B +C =180°,∴B=60°. ∵c 2+a 2-b 2=2accos B , ∴c 2+a 2-b 2=ac , ∴c 2+a 2=ac +b 2, ∴1a +b +1b +c =3a +b +c成立.1.综合法与分析法的区别与联系区别:综合法 分析法 推理方向 顺推,由因导果 逆推,执果索因 解题思路 探路较难,易生枝节 容易探路, 利于思考(优点) 表述形式 形式简洁,条理清晰(优点)叙述烦琐,易出错 思考的 侧重点侧重于已知条 件提供的信息侧重于结论 提供的信息联系:分析法便于我们去寻找证明思路,而综合法便于证明过程的叙述,两种方法各有所长,因而在解决问题时,常先用分析法寻找解题思路,再用综合法有条理地表达证明过程,将两种方法结合起来运用2.分析综合法常采用同时从已知和结论出发,用综合法拓展条件,用分析法转化结论,找出已知与结论的连结点,从而构建出证明的有效路径.上面的思维模式可概括为下图:1.判断(正确的打“√”,错误的打“×”) (1)分析法就是从结论推向已知.( )(2)分析法的推理过程要比综合法优越. ( ) (3)并不是所有证明的题目都可使用分析法证明.( )(1)× (2)× (3)√ [(1)错误.分析法又叫逆推证法,但不是从结论推向已知,而是寻找使结论成立的充分条件的过程.(2)错误.分析法和综合法各有优缺点.(3)正确.一般用综合法证明的题目均可用分析法证明,但并不是所有的证明题都可使用分析法证明.] 2.若P =a +a +7,Q =a +3+a +4(a≥0),则P ,Q 的大小关系是( ) A .P>Q B .P =QC .P<QD .由a 的取值决定C [当a =1时,P =1+22,Q =2+5,P<Q ,故猜想当a≥0时,P<Q.证明如下:要证P<Q ,只需证P 2<Q 2,只需证2a +7+2a (a +7)<2a +7+2(a +3)(a +4),即证a 2+7a<a 2+7a +12,只需证0<12.∵0<12成立,∴P<Q 成立.]3.设a>0,b>0,c>0,若a +b +c =1,则1a +1b +1c 的最小值为________.9 [因为a +b +c =1,且a>0,b>0,c>0,所以1a +1b +1c =a +b +c a +a +b +c b +a +b +c c=3+b a +a b +c b +b c +a c +ca ≥3+2b a ·a b+2c a ·a c+2c b ·b c=3+6=9.当且仅当a =b =c 时等号成立.]4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.已知2(tan A +tan B)=tan A cos B +tan Bcos A .证明:a +b =2c. [证明] 由题意知2⎝ ⎛⎭⎪⎫sin A cos A +sin B cos B =sin A cos Acos B +sin B cos Acos B,化简得2(sin Acos B +sin Bcos A)=sin A +sin B ,即2sin(A +B)=sin A +sin B , 因为A +B +C =π,所以sin(A +B)=sin(π-C)=sin C. 从而sin A +sin B =2sin C. 由正弦定理得a +b =2c. 命题得证.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章推理与证明
人教A版选修2-2 合情推理(第一课时)——归纳推理
参评教师:中卫市第一中学俞清华
教案说明
一、授课内容的数学本质与教学目标定位
推理是由一个或几个已知的判断推出一个新的判断的思维形式,它不是数学所独有的,它是人们进行思维活动时对特定对象进行反映的基本方式。
思维的基本规律是指思维形式自身的各个组成部分的相互关系的规律,即用概念组成判断,用判断组成推理的规律。
它有4条:即同一律、矛盾律、排中律和充足理由律。
推理通常分为合情推理和演绎推理,本节课所要学习的归纳推理便是合情推
理的一种。
归纳推理是由个别到一般的推理,前提是其结论的必要条件。
首先,归纳推理的前提必须是真实的,否则,归纳就失去了意义。
其次,归纳推理的结论超过了前提所判定的范围,因此在归纳推理中,前提和结论之间的联系不是然的,而是或然的,重在合乎情理。
本节课是本章内容的第一课时,按照新课标的要求,结合学生的具体情况,我制定了如下的教学目标:
【知识与技能】
结合生活实例了解推理含义;掌握归纳推理的结构和特点,能够进行简单的归纳推理;体会归纳推理在数学发现中的作用。
【过程与方法】
通过探索、研究、归纳、总结等方式使归纳推理全方位、立体式的呈现在学生面前,让学生了解数学不单是现成结论的体系,结论的发现也是数学的重要内容,从而形成对数学较为完整的认识;充分培养学生发散思维能力,挖掘学生的创新思维能力。
【情感、态度与价值观】
通过学习本节课培养学生实事求是、力戒浮夸的思维习惯,深化学生对数学意义的理解,激发学习兴趣,认识数学的科学价值、应用价值和文化价值;通过探究学习培
养学生互助合作的学习习惯,形成良好的思维品质和锲而不舍的钻研精神。
二、本节课的地位和作用
学习形式逻辑知识,可以指导我们正确进行思维,准确、有条理地表达思想;可以帮助我们运用语言,提高听、说、读、写的能力;可以用来检查和发现逻辑错误,辨别是非。
同时,学习形式逻辑还有利于掌握各科知识,有助于将来从事各项工作。
推理与证明的学习一直贯穿高中数学的过程中,但在旧教材中一直没有集中系统的阐述,随着科学发展对人才思维水平要求的提高,新课改将这部分内容纳入教材是具有积极的现实意义的。
高中阶段所学习的推理与证明属于数学思维方法的范畴,即把过去渗透在具体数学内容中的思维方法,以集中显性的形式呈现出来,使学生更加明确这些方法,并能在今后的学习中有意识地使用它们,以培养言之有理、言之有据的习惯。
推理不是数学独有的,它广泛地存在于科学发展的过程、生产生活的实践之中,所以在授课时我旁征博引,列举了许多生活中的、科学发展史上的、其他科学中涉及的推理,力求通过学习,使学生架起数学与科学、数学与生活的桥梁,形成严谨的理性思维和科学精神。
三、教学诊断分析
通过大量列举生活、科学中的实例,学生对推理以及归纳推理的含义和结构是很容易理解的,学习过程中可能会在下面几个方面遇到障碍:
1.对归纳推理形式的理解:归纳推理是由个别到一般的推理,那么个别究竟有多少,原则上说能够发现共性并能归纳出一般结论即可,对个体的数目没有严格要求,但是参与归纳的个体的数量越多,归纳得到的结论就越可靠。
2.归纳推理所得结论的或然性可能让学生产生思维上的冲突,归纳推理的结论超出了前提的判定范围,所以必然会导致结果的或然性,但这不是归纳推理的弊端,不能因此否定归纳推理的作用,归纳得到的结论可以有严格的演绎推理来证明。
3.归纳推理的作用:对于归纳推理的作用,不能片面认为“万能”的,也不能由于归纳结论的或然性而否定其在科学中的发现作用,所以通过例题的设置、同学的分析和讨论、教师的必要讲解,要让学生对归纳推理有一个全方位的立体的认识。
四、教法特点与效果分析
在教学过程设计方面根据教学内容我设计了四个教学环节,分别是“创设情境,导入新课”、“合作探究,收获新知”、“课堂回眸,感悟提高”、“布置作业,学以至用”,其中“合作探究,收获新知”是设计的主体,在这里,根据学生的认知能力和认知水平,
我又分成四个学习阶段,分别是“形成概念”、“典例分析”、“巩固提高”,“思维拓展”,逐层递进,突出重点,解决难点。
在过程设计方面我很注重两个方面的问题,一是课程的紧凑性和完整性,所选的例练习题具有典型性,环节之间注意递进性,使得整节课能够环环相扣,层层深入;另一个是注重数学问题与现实生活的紧密结合,在每个教学环节、每个教学过程中,我都设计了不同的生活实例,让学生感觉知识的亲切感和实效性,体现数学的实际应用价值。
在教学过程中,我大力倡导学生自主学习、合作学习和探究学习,如在处理欧拉公式时,为了让学生亲身体会归纳推理的全过程,我不惜花费大量的时间让学生之间完成讨论和研究,并展示他们的研究成果,事实证明学生确实在讨论研究过程中思维得到了拓展和深化。
这样处理的地方还有很多,如概念的形成,思维拓展等等,总之在整个设计中,我作为教师是情境的创造者,过程的引导者和启发者,学生才是学习的主体,是知识的探究者和发现者,在课堂中,尽量多的体现了“以人为本”的教育理念。
我在《归纳推理》这节课中让更多的学生参与到了课堂中来,使用多种教学辅助手段,多媒体课件、实物展台与板书教学相结合,对学生各种感官进行全方位、多层次、全面立体的刺激,达到了较好的教学效果,完成了既定的教学目标,通过学生的课堂感悟,反映出学生对归纳推理的全面的、正确的认识。
但是我也清楚地知道,我的这节课还有许多不成熟的地方,衷心希望借此机会得到各位专家老师的批评指导!。