(完整版)周期信号傅里叶级数

合集下载

§3.1 周期信号的傅里叶级数展开

§3.1 周期信号的傅里叶级数展开

F0 a0
Fn
1 2
(an
jbn )
F
n
1 2
(an
jbn )
n 1, 2,3, n 1, 2,3,
信号与系统
一、周期信号的傅立叶级数
例: 将图示周期矩形脉冲信号展成指数形式傅立叶级数
f t
A
解: 直接代入公式有
T
T
22
t
Fn
1 T
T 2
T
f (t)e-jn0tdt
1 T
2
Ae - jn0t dt
信号与系统
一、周期信号的傅立叶级数
例:将图示的对称方波信号展成三角形式傅立叶级数
f t
1
0 T/2 T
t
1
解:直接代入公式有
a0
1 T
T 0
f
(t)dt
0
信号与系统
一、周期信号的傅立叶级数
直接代入公式有
T
T
an
2 T
2 T
f
(t) cosn0tdt
2 T
0
(1) cosn0tdt
T
2 T
T
an
4 T
2 0
f (t) cos(n0t)dt
n为奇数时
T
bn
4 T
2 0
f
(t) sin(n0t)dt
n为奇数时
奇半对称信号的第二个半周 波形为第一个半周波的负值。 进行傅立叶级数展开时只含 有奇次谐波项,所以奇半波 对称信号有时称为奇谐信号。
信号与系统
二、周期信号的对称性与傅立叶系数
满足狄里赫利条件的不连续函数,在所有不连续点上,级数的总和等于左
右极限和的平均值。

周期函数的傅里叶级数

周期函数的傅里叶级数



t
A:脉冲幅度
2 :三角函数公共周期 1
第一步:首先展开为三角形式的傅立叶级数

f(t)是偶函数
T 2 T 2
bn=0

a
0
2 T

2 2 2 A f (t ) dt 2 Adt T T
2 T an T 2T 2
n sin 2A n 2 A T 2 A Sa( n ) f (t ) cos n1tdt sin n n T T T T T
设 f (t ) 是周期为T的函数
a0 f (t ) 2 n 1
an cos n1t bn sin n1t
f ( t )dt
2 a0 T
2 an T 2 bn T

t1
t 1 T
t1

t 1 T
f ( t ) cos n 1 tdt f ( t ) sin n 1 tdt
a0 f (t ) 2 n 1
an cos n1t bn sin n1t
An an bn
2 2
a0 An cos(n1t n ) 2 n 1
an cos n1t bn sin n1t an bn An cos n1t An sin n1t An An An cos(n1t n )
T 2 0
§ 周期信号的傅立叶级数
An
E
11
31
51
4E 25 2
4 T 2E 2 2 an t cos n1tdt (1 ) 0 T T T T T 8E t 1 2 2 2[ sin n1t 0 sin 1tdt] 0 n T n1 1

3-1周期信号的傅里叶级数

3-1周期信号的傅里叶级数

iii) bn
f (t ),sin n1t sin n1t ,sin n1t

t0 T1
t0
f (t ) sin n1tdt T1 2
哈尔滨工业大学自动化测试与控制系
信号与系统—signals and systems
2.对于周期函数 f (t ) ,由于 a0 , a n , bn积分值与积 分区间起始点无关(只要积分区间大小为T1),故在 t , f (t ) 均可以展成傅立叶级数
E T1
n

01
2
4



0
2
4



2 谱线间隔 1 ( ) T1 2 零值点频率
哈尔滨工业大学自动化测试与控制系
信号与系统—signals and systems
指数形式:f t
n


Fn e jn1t
n1 jn1t Sa( 2 )e n
常用完备正交函数集: i)三角函数集: 2 sin 0t ,sin 20t ,,1, cos 0t , cos 20t , (t0 , t0 ) 0 ii)复指数函数集:1, e j0t , e j0t , e j 20t , e j 20t ,
f(t)=C1 sin w1t+C3 sin w3 t+C6 sin w6 t
c2k 1 cos[(2k 1)1t 2k 1 ]
vii)偶次谐波分量:2 f1 , 4 f1 , 6 f1 , ... 对应的
c2 k cos(2k1t 2 k )
viii)直流分量:c0
哈尔滨工业大学自动化测试与控制系
信号与系统—signals and systems

ch3.周期信号的傅里叶级数展开

ch3.周期信号的傅里叶级数展开

周期信号的傅里叶级数展开:1. 三角形式: 周期信号()f t ,周期T ,基波频率12w Tπ=,所构成的完备正交函数集:三角函数集{}11cos ,sin nwt nwt ; ()0111()cos sin n n n f t a a nw t b nw t ∞==++∑其中:2021()TT a f t dt T -=⎰2122()cos TT n a f t nw tdt T -=⎰2122()sin TT n b f t nw tdt T -=⎰ 注意: (1) 展开条件:狄利赫利条件 (2) 另外一种形式:011()cos()nn n f t c cnw t ϕ∞==++∑其中:00c a =n c =nn nb tg a φ=-(3)物理意义: (4)幅度谱和相位谱2. 指数形式: 完备正交函数集 :复指数函数集{}1jnw t e1()jnw tnn f t F e∞=-∞=∑其中1221()Tjnw t T n F f t e dt T --=⎰注意:(1)幅度谱和相位谱nj n n F F e φ= :偶谱和奇谱与三角形式间的关系(2)两种级数间的关系 3. 函数()f t 满足对称性的级数展开: (1) 偶函数:011()cos n n f t a a nw t ∞==+∑0n b =或011()cos()n n n f t c c nw t ϕ∞==++∑,00c a =||n n c a =0,0,0n n n a a ϕπ>⎧=⎨<⎩(2)奇函数:11()sin n n f t b nw t ∞==∑00n a a ==或011()cos()n n n f t c c nw t ϕ∞==++∑,00c =||n n c b =,02,02nn nb b πϕπ⎧->⎪⎪=⎨⎪<⎪⎩(3)奇谐函数:()()2T f t f t =-±其傅里叶级数展开式中仅含奇次谐波分量,即: 0240a a a ====2460b b b ====4. 典型周期矩形脉冲的傅里叶级数信号()f t ,周期为T ,脉宽为τ,脉幅为E(1)三角形式011()cos nn f t a anw t ∞==+∑0n b =其中:2202211()T T E a f t dt Edt T T Tτττ--===⎰⎰211222cos 2n E a E nw tdt Sa nw T T ττττ-⎛⎫== ⎪⎝⎭⎰ 谐波形式:011()cos()n n n f t c c nw t φ∞==++∑其中:00c a =n nc a =, {0,0,0n n n a a ϕπ>=<(2)指数形式:1()jnw t n n f t F e ∞=-∞=∑其中:11222211()T jnw tjnw t T n F f t e dt Ee dt T T ττ---==⎰⎰112E Sa nw T ττ⎛⎫=⎪⎝⎭(3)幅度谱和相位谱的特点 谱线间隔和频谱宽度二.傅里叶变换 ()()jwt F w f t e dt ∞--∞=⎰1()()2jwt f t F w e dw π∞-∞=⎰特点:(1)()()()j w F w F w e ϕ=幅频函数和相频函数(2)变换条件:|()|f t dt ∞-∞<∞⎰ (3)()f t 也是由许多频率分量构成三.常见信号的傅里叶变换对 单边指数衰减信号,0()0,0t e t f t t α-⎧>=⎨<⎩,0α> ↔1()F w jw α=+ 双边指数衰减信号||,0(),0t t te tf t ee t ααα--⎧>==⎨<⎩ ↔222()F w w αα=+矩形脉冲(),2f t E tτ=<↔ ()()2F w E Sa w ττ=符号函数()sgn()f t t = ↔2()F w jw=冲击函数()()f t t δ= ↔ ()1F w = ()()f t t δ'=↔ ()F w jw =()()()n f t t δ=↔ ()()nF w jw = 直流信号()1f t = ↔ ()()2F w w πδ=()f t jt =-↔ ()()2F w w πδ'=()()nf t jt =-↔()()()2n F w w πδ=阶跃信号()()f t u t = ↔()1()F w w jwπδ=+四.傅里叶变换的性质 1.线性性2.奇偶虚实性:()f t 为实函数()()()cos ()sin jwtF w f t edt f t wtdt j f t wtdt ∞∞∞--∞-∞-∞==-⎰⎰⎰(1)()f t 为实偶函数,虚部()()sin 0X w f t wtdt ∞-∞==⎰ (2)()f t 为实奇函数,实部()()cos 0R w f t wtdt ∞-∞==⎰3. 对称性4.时移性5. 尺度变换:时域压缩,频谱扩张 时域扩张,频谱压缩 时域反褶,频谱反褶6.频移性:00()()jw tF f t e F w w ⎡⎤=-⎣⎦[][]001()cos ()()2F f t wt F w w F w w =-++[][]001()sin ()()2F f t wt F w w F w w j=--+ 7.时域微分:[]()()F f t jwF w '=()()()()n nF f t jw F w ⎡⎤=⎣⎦8.频域微分:[]()()F jtf t F w '-=()()()()n n F jt f t F w ⎡⎤-=⎣⎦9.时域卷积:()()()1212()F f t f t F w F w *=⎡⎤⎣⎦ 10.频域卷积:五.周期信号的傅里叶变换:(1) 周期信号的傅里叶级数展开式:1()jnw tnn f t F e ∞=-∞=∑(2) 周期信号的傅里叶变换:1()2()nn F w F w nw πδ∞=-∞=-∑特点:(ⅰ)频谱为冲击谱 (ⅱ)强度为2n F π(ⅲ)谱线位于谐波处(1nw )(ⅳ)()1120211()|Tjnw t jwt T n w nw F f t e dt f t e dt T T∞--=-∞-==⎰⎰()101|w nw F w T==其中:0()f t 为周期信号的第一个脉冲, ()0F w 为0()f t 的傅里叶变换。

周期信号的傅里叶级数表

周期信号的傅里叶级数表
17
分量e j0t 可表示为
1
0
cos 0t
1 2
(e
j0t
e
j0tபைடு நூலகம்
)
表示为
1
1
2
2
0 0 0
因此,当把周期信号 x(t)表示为傅里叶级数
x(t) ake jk0t时,就可以将 x(t) 表示为 k
a1a0 a1
a3a2
a2 a3
0 0
这样绘出的图
称为频谱图
18
频谱图其实就是将 a随k 频率的分布表示出来,
14
有 x(t) ake jk0t , k 0, 1, 2
k
显然 x(也t)是以
为2周 期的。该级数就是傅里叶级
0
数, 称为a傅k 立叶级数的系数。
这表明用傅里叶级数可以表示连续时间周期信号,
即: 连续时间周期信号可以分解成无数多个复指数谐 波分量。
例1:
x(t)
cos 0t
1 e j0t 2
6
3.1历史的回顾 (A Historical Perspective)
任何科学理论, 科学方法的建立都是经过许多人 不懈的努力而得来的, 其中有争论, 还有人为之献 出了生命。历史的经验告诉我们, 要想在科学的 领域有所建树,必须倾心尽力为之奋斗。今天我 们将要学习的傅立叶分析法,也经历了曲折漫长 的发展过程,刚刚发布这一理论时,有人反对, 也有人认为不可思议。但在今天,这一分析方法 在许多领域已发挥了巨大的作用。
即: x(t) akeskt
k
同理: x(n)
ak
Z
n k
k
y(t) ak H (sk )eskt
k

周期信号的傅里叶级数表

周期信号的傅里叶级数表

傅里叶级数与复变函数的关系
傅里叶级数可以看作是复数域中的三角函数,即复数域中的正弦和余弦。在复数域中,正弦和余弦函数表现为复指数函数的 形式。
复数的使用使得傅里叶级数的系数可以表示为实数,从而简化了计算。此外,复数的共轭也提供了相位信息,这在信号处理 中非常重要。
傅里叶级数与小波分析的关系
小波分析是傅里叶分析的进一步发展,它提供了更灵活的时频分析工具。小波变 换可以看作是傅里叶变换的一种扩展,它允许我们在不同的频率段使用不同的基 本函数。
三角函数形式
傅里叶级数的另一种表示形式,利用三角函数来表示周期信号。
傅里叶级数的三角函数形式
01
02
03
正弦形式
余弦形式
系数
傅里叶级数的正弦函数形式,用 于表示只包含正弦波的周期信号。
傅里叶级数的余弦函数形式,用 于表示只包含余弦波的周期信号。
在傅里叶级数中,每个正弦或余 弦函数都对应一个系数,表示该 函数在周期信号中的贡献程度。
03
傅里叶级数的性质
傅里叶级数的收敛性
傅里叶级数在数学上具有收敛性,意味着它可以将一个 周期函数表示为无穷级数,每个项都是正弦或余弦函数。
收敛的速度取决于函数的特性,例如,对于具有快速衰 减的周期函数,傅里叶级数收敛得更快。
傅里叶级数的对称性
傅里叶级数的对称性质是指,对于一个周期函数,其傅里叶级数的正弦和余弦项具有对称性。 这意味着,对于一个给定的周期函数,其傅里叶级数的正弦和余弦项的系数是相同的。
周期信号的傅里叶级 数表
目录
• 傅里叶级数简介 • 周期信号的傅里叶级数表示 • 傅里叶级数的性质 • 傅里叶级数的应用实例 • 傅里叶级数与其他数学工具的关系
01

第三章周期信号的傅里叶级数表示

第三章周期信号的傅里叶级数表示

1、复指数傅里叶级数
sk =jk0,即:
eskt e jk0t , k 0, 1, 2,L
一个周期为T的周期信号x(t) 的复指数傅里叶级数:
x(t) ake jk0 t k
0 2 / T
其中系数 ak一般来说是 k0 的复函数。
e jk0t , k 0, 1, 2, 成谐波关系的复指数信号集
0
xˆ4
a4e j 40t
a4e j 40t
0
x(t) ake jk0 t
k
k
即:x(t) a0 xˆ1(t) xˆ3(t) xˆ5(t)
xˆ1 xˆ3 xˆ5 xˆ9 xˆ19
a0 xˆ1 xˆ3 a0 xˆ1 xˆ3 xˆ5 a0 xˆ1 xˆ7 a0 xˆ1 xˆ19 a0 xˆ1 xˆ99 x(t)
est 是连续LTI系统的特征函数
zn 是离散LTI系统的特征函数
对一个特定 sk 或 zk , H (sk )或 H (z就k ) 是对应的特征值。
7
4、将一个信号分解为特征函数(复指数信号) 的线性加权和
如果一个LTI系统的输入信号(连续/离散)可以分解 为复指数信号的线性加权和:
x(t) ak e skt
因此xn可以分解为n个不同的特征函数的线性加权和其傅里叶级数只需对连续n个独立k值求和记为352傅里叶级数系数的确定两边同乘以并在n内求和范围同的取值其中周期内求和为一个周期正弦信号在以下推导供学有余力同学参考36离散时间周期信号周期为n的傅里叶级数是一个有限项级数n个不同的复指数信号求和但a本身是一个周期为n的周期信号
T x(t)e jn0tdt T
0
0
ak e e jk0t jn0t dt

信号与系统 第三章 周期信号的傅里叶级数展开

信号与系统 第三章 周期信号的傅里叶级数展开
1 T
2 n 2

T1
f (t ) dt

F ( n1 )
左边是周期信号f(t)在一个周期里的平均功率(即单位时间内的能量)
2 2 1 1 2 jnt F ( n ) e dt F ( n ) dt F ( n ) 而同时有 T 1 1 1 T1 1 T1 T1
n 1
——余弦形式
x(t ) d 0 d n sin( n1t n )
n 1
——正弦形式
(1). f (t ) a0 an cosnt bn sin nt
n1

三角函数形式
(2). f (t ) A0 An cos(nt n )
而无物理意义。将来可以看出,指数函数形式比正弦函数形式在数 学上处理起来要方便的多。
§3.2 周期矩形脉冲的谱线特点
x(t )
E

T1

t
2 2
T1
脉冲为 ,脉冲高度为E,周期为T1
1 21 1 E 1 jn1t jn1t 2 X (n1 ) T1 x(t )e dt E e dt e jn1t T1 2 T1 2 T1 jn1 jn jn 1 2E 1 1 2 2 e sin(n1 ) e jn1T1 2 n1T1 sin(n1 ) E E 2 Sa (n1 ) T1 n T1 2 1 2
电子信息与电气工程学院
本章内容
连续时间周期信号的傅立叶级数表示 周期矩形脉冲的谱线特点
§3.1 连续时间周期信号的傅立叶级数表示
{1, cos n1t ,sin n1t} n=1,2, , 是一个完备的正交函数集

周期信号的分解-傅里叶级数

周期信号的分解-傅里叶级数

傅里叶级数
傅里叶级数是一种将周期信号分 解为不同频率的正弦和余弦函数 的数学方法。
三角函数系
傅里叶级数使用正弦和余弦函数 作为基底,将周期信号表示为这 些函数的线性组合。
频谱分析
通过傅里叶级数,可以分析周期 信号的频谱,了解信号中各个频 率分量的强度和分布。
周期信号的频谱分析
频谱图
频谱图是用来表示周期信 号中各个频率分量强度的 图形,横轴表示频率,纵 轴表示幅度。
傅里叶级数的发展经历了多个阶段, 包括早期的数学证明和后来的完善, 最终成为数学和工程领域中分析周期 信号的重要工具。
傅里叶级数的应用领域
1 2 3
通信领域
傅里叶级数用于信号处理和调制解调,例如在频 分复用(FDM)和调频(FM)中分析信号的频 谱特性。
振动分析
傅里叶级数用于分析机械振动,通过将振动信号 分解为不同频率的分量,可以研究振动的模式和 频率成分。
图像处理
傅里叶变换在图像处理中广泛应用,通过将图像 信号表示为傅里叶级数,可以实现图像的滤波、 去噪、压缩等处理。
02 傅里叶级数的数学基础
三角函数和正弦函数三角Fra bibliotek数包括正弦函数、余弦函数、正切函数 等,它们在周期信号的分解中起着关 键作用。
正弦函数
正弦函数是周期函数,其基本周期为 $2pi$,在信号处理中常用于描述周 期信号。
周期信号的频谱分析
频谱分析
通过将周期信号分解为不同频率的正弦波分量,可以分析信号中各频率分量的 幅度和相位。
频谱密度函数
描述了信号中各频率分量的分布情况,其图形称为频谱图或频谱密度图。
傅里叶级数的收敛性
傅里叶级数
是一个无穷级数,可以用来表示任何周期信号。

典型周期信号的傅里叶级数

典型周期信号的傅里叶级数

三周期三角脉冲信号的傅里叶级数求解
周期三角脉冲信号,是偶函数。 f (t ) 解: 它是偶函数 E
bn 0
T1 2 T1 2
0
t
可求出傅里叶级数的系数a0,an, 留给同学们做。
其傅里叶级数表达式为: E 4E 1 1 f (t ) 2 cos( w1t ) cos(3w1t ) cos(5w1t ) 2 9 25 E 4E 1 n 2 2 sin 2 ( ) cos( nw1t ) 2 n 1 n 2 此信号的频谱只包含直流、基波及奇次谐波分量,谐波的幅度 以1/n2的规律收敛。
五、周期全波余弦信号的傅里叶级数求解
周期全波余弦信号,是偶函数。 解:令余弦信号为 f (t )
E
2 f1 (t ) E cos( w0t ) w0 T0 则,全波余弦信号为:
T 10 T1 2
T1 2
T1
t
f (t ) f1 (t ) E cos( w0t )
其傅里叶级数表达式为: 2E 4E 1 1 1 f (t ) cos( 2w1t ) cos( 4w1t ) cos(6w1t ) 3 15 35 2E 4E 1 (1) n 1 2 cos( 2nw0t ) n 1 4n 1 此信号的频谱只包含直流、基波及偶次谐波分量,谐波的幅度 以1/n2的规律收敛。

cos(n1t )
(2)周期矩形脉冲信号的幅度、相位谱
1 周期矩形脉冲信号的幅度频谱中收敛规律为 , n为其频带宽度B B , Bf
E T1
Cn
n

2

4

nw1

3.2.1 周期信号的频谱周期信号的频谱分析——傅里叶级数

3.2.1  周期信号的频谱周期信号的频谱分析——傅里叶级数

4
狄利克雷(Dirichlet)条件 条件1:在一周期内,如果有间断点存在,则间断点的 数目应是有限个。
条件2:在一周期内,极大值和极小值的数目应是有 限个;
条件3:在一周期内,信号绝对可积;
5
狄利克雷(Dirichlet)条件1:例1 不满足条件1的例子如下图所示,这个信号的周期 为8,它是这样组成的:后一个阶梯的高度和宽度是前一 个阶梯的一半。可见在一个周期内它的面积不会超过8, 但不连续点的数目是无穷多个。
0
1
1
0
1
2 1
2 1
指数形式的频谱图
F n 1
0.15
n
0.5
1.12
1
1.12
0.5
2 1
0.15 2 1
1
0.25
2 1 1
0
1
1
0
0.15
2 1
0.25
21
四.总结
(1)周期信号f(t)的傅里叶级数有两种形式

满足离散性,谐波性不满足收敛性,频带无限宽
26
一.频谱结构
f (t ) E
/ 2
脉宽为 脉冲高度为E 周期为T1
T1
/2
T1
t
1. 指数函数形式的谱系数
2. 频谱特点
27
1.指数形式的谱系数
1 F ( n 1 ) T1
1 = T1
jn 1 t

T1
T1
2 2
f ( t )e jn1t d t
bn n tg a n
1
关于的偶函数(实际 n 取正值) 关于的奇函数(实际 n 取正值) 关于的偶函数 关于 的奇函数

傅里叶变换(周期和非周期信号)

傅里叶变换(周期和非周期信号)

例1的频谱图
周期信号的傅里叶变换——傅里叶级数
2、指数形式的傅里叶级数
式中,
f (t) Fne jn0t n
1
Fn T
T
2 T
f (t )e jn0tdt
2
证明
- n
傅里叶复系数
周期信号的傅里叶变换——傅里叶级数
2、指数形式的傅里叶级数
式中,
f (t) Fne jn0t n
1
Fn T
A
T1
2 A sin n1
n1 n
2
cos n1t
A
T1
2A sin
1
2
cos1t
A
sin
1
cos 21t
2A sin
3
31
2
cos 31t
......
2. 指数形式的傅里叶级数
周期矩形脉冲
f (t) Fne jn1t n
Fn
1 T1 A T1
T1
2 T1
f (t )e jn1tdt
2. T不变,τ减小,则频谱的幅度也将减小,谱线密度 保持不变,但包络过零点的间隔将增大。
A
F0 T
Back
非周期信号的傅立里叶变换
两个重要公式:
f ( t ) F( ) : F( ) f ( t )e jtdt
F( ) f (t ):
F -1F( ) f ( t ) 1 F( )e jtd
1、 三角函数式傅里叶级数
若周期函数 f (t) 满足狄里赫利( Dirichlet)条件:
(1)在任意周期内存在有限个第一类间断点; (2)在任意周期内存在有限个的极值点; (3)在任意周期上是绝对可积的,即

§4.3 周期信号的傅里叶级数

§4.3  周期信号的傅里叶级数
5
例4-3-1:将图示方波信号f(t)展开为傅里叶级数。
f (t )
1


T

T 2
0
1
T 2
T
3T 2
t
T 0 2 T 2 2 an 2T f (t ) cos(nt )dt T (1) cos(nt )dt 2 1 cos(nt )dt T 2 T 2 T 0 0 T 2 1 2 1 [ sin(nt )] T [sin(nt )] 2 T n T n 0 2
1 1 1 j n Fn An e ( An cos n jAn sin n ) (a n jbn ) 2 2 2
1 T

T 2 T 2
1 f (t ) cos( nt ) d t j T

T 2 T 2
1 f (t ) sin( nt ) d t T
2
2.级数形式
2 周期信号 f t , 周期为 T , 基波角频率为 2F T
n =1基波分量 直流分量
在满足狄氏条件时,可展成

f ( t ) a0 an cos nt bn sin nt
n 1
1
n >1谐波分量
称为三角形式的傅里叶级数,其系数
14
三.两种系数之间的关系及频谱图
1 Fn T
0
T
f (t )e j nt d t
利用欧拉公式
1 T 1 f (t ) cos nt d t j T 0 T 1 a n jbn 2
0
T
f (t ) sin nt d t
Fn
1 T
1 T
0

第三章周期信号的傅里叶级数表

第三章周期信号的傅里叶级数表

2T1 T0
Sa k
2
T0
T1
谱线为离散的(谐波性),在
k0
k
2
T0
时取值,
脉冲周期越大,谱线间隔 0 越小,越密;
各点频谱大小与脉宽 T1 成正比,与周期 T0 成反比;
频谱包络线形状:抽样函数,过零点为最大值为 2T1
T0
主要能量在第一过零点内,第一个零点坐标为:
k 1, kω0T1
k
k
ak
1 T
x(t)e jk0tdt 1
T
T
x(t)e jk(2 T )tdt
T
28
29
解:方法一:直接利用公式进行求解
ak
1 T
x(t)e jk0t dt 1
T
T
x(t)e jk(2 T )t dt
T
方法二:
x(t)
a k e jk0t
a e jk(2 T )t k
k
46
47
48
这两组条件并不完全等价。它们都是傅里叶级 数收敛的充分条件。相当广泛的信号都能满足这 两组条件中的一组,因而用傅里叶级数表示周期 信号具有相当的普遍适用性。
49
50
三 、吉伯斯(Gibbs)现象 满足Dirichlet条件的信号,其傅里叶级数
是如何收敛于 的x。t 特别当 具有xt间
7
补充例题:
例:对单位冲激响应 h(t) 的 (LtT) I系统,其特征函数,
相应的特征值是什么?
解:Q h(t) (t) 的 LTI 系统是恒等系统,所以任何函 数都是它的特征函数,其特征值为 1。
例:如果一个LTI系统的单位冲激响应为, h(t) (t T)

典型周期信号的傅里叶级数

典型周期信号的傅里叶级数

d
X(j)ejt
X(jk0)ej0t
x(t)21 X(j)ejtd1
0
2 T
k 0
0
于是,对非周期信号,有傅里叶变换对:
x(t)
1
2
X( j)ejtd 1

X( j)
x(t)e jtdt
2正
(e j t )
复 杂 信 号 = 系 数 ( ) 基 本 信 号 ( )
系 数 ( ) = 复 杂 信 号 ( 与 ) 基 本 信 号 ( )
F(j)ejtd
F( ) f(t)ejtdt
也是常用的形式
傅立叶变换的理解
周期信号的叶 指级 f数 T(t数 )型 Fn傅 ejn1t表 里明,
n
周期信号可限 以多 分个 解 n 频 1、 为 复率 无 振为 F幅 n的为 指
数分 ejn1t量 的离散和;
非周期信 傅号 里的 叶变 f(t)换 1
周期矩形脉冲信号的三角形式傅里叶级数为
f(t)E T 1 2 T E 1n 1Sa(n 2 1 )cosn1t
F n1 2(anjn b )1 2anE T 1 S(n a 21 )
f(t)的指数形式的傅里叶级数为
f(t)E S(an 1 )ejn 1t
T1 n
2
2、频谱 c0
E T1
规律收. 敛
例1:试将图示周期矩形脉冲信号 展开为(1)三角型和(2)指数型傅里 叶级数。
T
f (t)
A
T
22
t
解(: 1) f (t)是偶函数,故只含 数有 项常 和余弦项。
T
a0T 1
2 T
f(t)d t 2 T
2AdtA

3.2 周期信号的傅里叶级数分析

3.2 周期信号的傅里叶级数分析
n=1
1

f (t) = a0 + ∑(an cos nω1t + bn sin nω1t), n为正整数
n=1

1 直流分量: a 0 = T1

t 0 + T1
t0
f ( t ) dt
2 t0 +T1 余弦分量的幅度:n = ∫ a f (t ) cos(nω1t )dt T1 t0
2 正弦分量的幅度: bn = T1
sin(ω1t )
4 T1 a1 = ∫ 2 f (t) cos(ω1t)dt T 0 1
4 T1 b = ∫ 2 f (t) sin( ω1t)dt 1 T 0 1
cos(2ω1t )
sin(2ω1t )

令:Fn = Fn e

jϕn
1 − jϕn 1 = (an − jbn ) F−n = F−n e = (an + jbn ) 2 2
jnwt 1
f (t) = F0 + ∑Fne
n=1
+ ∑F−ne
n=1

− jnwt 1
= ∑Fne
n=0

jnwt 1
+ ∑Fne jnw1t
n=−∞
−1
周期函数: f (t) =
7
周期信号的复数频谱 F0
complex frequency spectrum
F = Fn n − F = c0 0
1 = cn 2
8
周期信号的功率特性
1 t0 +T1 2 周期信号f (t )的平均功率 : P = f (t ) = ∫ f (t )dt T1 t0
2

周期信号的连续时间傅里叶级数

周期信号的连续时间傅里叶级数
傅里叶级数是无穷级数,但只有在满足一定条件下才能收敛。对于周期信号,其傅里叶级数在频域上 是收敛的,即其频谱在无穷大频率处的值趋近于零。在时域上,傅里叶级数在每个周期内的积分值是 有限的,因此也是收敛的。
傅里叶级数的收敛性取决于信号的形状和频率范围。对于具有快速衰减特性的信号,其傅里叶级数可 能具有良好的收敛性;而对于具有缓慢衰减特性的信号,其傅里叶级数可能具有较差的收敛性。在实 际应用中,通常需要对信号进行截断或加窗处理,以提高傅里叶级数的收敛性。
傅里叶级数的重要性和应用价值
信号分析
傅里叶级数提供了将周期信号 分解为正弦和余弦波的方法,
是信号分析中的重要工具。
通信系统
在通信系统中,傅里叶级数用 于信号调制和解调,实现信号 的传输和接收。
控制系统
在控制系统中,傅里叶级数用 于频域分析和系统稳定性分析 。
物理和工程领域
在物理、化学、生物和工程领 域,傅里叶级数用于分析各种
DTFS的主要应用包括信号分析和数字信号处理中的频谱分析。
快速傅里叶变换(FFT)
1
快速傅里叶变换(FFT)是一种高效的计算离散 傅里叶变换(DFT)和其逆变换的算法。
2
FFT的主要思想是将长度为$N$的DFT分解为多 个较短的DFT,然后利用旋转因子的周期性和对 称性来减少计算的复杂度。
3
FFT的出现极大地促进了数字信号处理领域的发 展,使得实时信号处理成为可能。
滤波器设计
滤波器是信号处理中的重要元件,用于提取或抑制特定频率范围的信号。通过傅 里叶级数,可以设计出各种类型的滤波器,如低通、高通、带通和带阻滤波器等 。
滤波器设计在音频处理、图像处理、雷达和通信等领域有广泛应用,例如在音频 处理中可以通过滤波器来消除噪音或增强特定音色。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C e dt T0 n0
j(nk )0t
n =
由{en (t)}的正交性得:
T0
0
e
dt j(nk )0t
T0
[n k]
T0 n=k 0 n不等于k
Ck
1 T
T
2 T
fT (t)e jk 0t dt
2
2. 指数形式傅立叶级数
连续时间周期信号可以用指数形式傅立叶级数表示为
f (t)
bn
2 T
T
2 T
2
f (t)sin n0tdt
(n = 1,2 )
纯余弦形式傅立叶级数
其中
f(t)
a0 2
n1
An
co( s n0t

n
An an2 bn2
n
arctg
bn an
a0 2
称为信号的直流分量,
An cos(n0+ n)称为信号的n次谐波分量。
例题1 试计算图示周期矩形脉冲信号的傅立叶级数展 开式。
Cn e jn0t
jn 2 t
Cn e T
n =
n =
物理含义:周期信号f(t)可以分解为不同频率虚指数信号之和。
其中
Cn
1 T
T
2 T
fT (t)e jn0t dt
(傅立叶系数)
2
n 1 两项的基波频率为f0,两项合起来称为信号的基波分量
n 2 的基波频率为2f0,两项合起来称为信号的2次谐波分量
若 f (t)为实函数,则有 Cn Cn
利用这个性质可以将指数Fourier级数表示写为
1
f (t) C0
Cne jn0t
Cne jn0t
n
n1
C0
Cne jn0t Cne jn0t
Cne jn0t和Cne jn0t共轭
n1
C0 2
Re( Cne jn0t )
n 1

Cn
Cn
1 T
T / 2 f (t)ejn0tdt 1 ( 0 tejn0tdt
T / 2
2 1
1te jn0tdt)
0
1 (te jn0t
2 jn0
0 1
01 e jn0t dt
an
jbn 2
由于C0是实的,所以b0=0,故
C0
a0 2
由此可以推出:
三角形式傅立叶级数
连续时间周期信号三角形式傅立叶级数为:
f
(t)
a0 2
n1
an
cos n0t
bn
n1
sin
n0t
傅里叶系数
其中:a0
2 T
T
2 T
2
f (t)dt
an
2 T
T
2 T
f (t) cosn0tdt
2
(n = 1,2 )
Cn e jn0t
jn 2 t
Cn e T
n =
n =
其中 (傅立叶系数) Cn ?
e jk0t f (t)
C e e jn0t jk0t n
n =
T0 e jk0t f (t)dt T0
0
0
Cn e e dt jn0t jk0t
n =
T0 e jk0t f (t)dt 0
周期信号的频域分析
将信号表示为不同频率正弦分量的线性组合
意义: (1) 从信号分析的角度,将信号表示为不同频率正弦 分量的线性组合,为不同信号之间进行比较提供了途 径。
(2) 从系统分析角度,已知单频正弦信号激励下的 响应,利用迭加特性可求得多个不同频率正弦信号同 时激励下的总响应,而且每个正弦分量通过系统后, 是衰减还是增强一目了然。
连续时间周期信号的频域分析
•连续时间周期信号的傅立叶级数表示 •连续时间傅里叶级数的基本性质 •连续时间周期信号的频谱及其特点 •连续时间周期信号的功率谱
傅里叶生平
1768年生于法国 1807年提出“任何?
周期信号都可用正弦 函数级数表示” 1829年狄里赫利第一 个给出收敛条件 拉格朗日反对发表 1822年首次发表“热 的分析理论”中
T n=
2
注:Sa( n0 2
)
sin( n0 2
n0
)
2

f (t) C0 2 Re( Cne jn0t )
n1
可得,周期方波信号的三角形式傅立叶级数展开式为
f (t) (A / T0 ) (2A / T0 )Sa(n0 / 2) cosn0t n1
若=T/2,则有
fT (t)
A 2
T /2
(2) 在一个周期内只有有限T /个2 不f (连t) 续dt点 ;
(3) 在一个周期内只有有限个极大值和极小值。
注意:条件(1) 为充分条件但不是必要条件; 条件(2)(3)是必要条件但不是充分条件。
2. 指数形式傅立叶级数
连续时间周期信号可以用指数形式傅立叶级数表示为
f (t)
傅立叶的两个最主要的贡献——
“周期信号都?可表示为成谐波关 系的正弦信号的加权和”——傅里 叶的第一个主要论点
“非周期信号都可用正弦信号的加 权积分表示” ——傅里叶的第二个主要论点
一、连续时间周期信号的傅立叶级数表示
1傅. 立周叶期级信数号收展敛开条为件傅立叶级数条件
周期信号fT(t)应满足狄里赫利 Dirichlet条件,即: (1) 绝对可积,即满足
f (t) A
-T
0
T
t
解: 该周期信号f (t)显然满足狄里赫勒的三个条件,
必然存在傅里叶级数展开式。
Cn
1 T
T
2 T
2Leabharlann f (t)ejn0tdt1 T
2
Aejn0tdt
A
T
Sa( n0
2
)
2
因此,周期方波信号的指数形式傅里叶级数展开式为
f (t) Cn e jn0t
n =
A
Sa ( n0 )e jn0t
2A
(c
os0t
1 3
c
os3
0t
1 5
c
os50t
)
例2 试计算图示周期三角脉冲信号的傅立叶级数展开式。
f (t)
-2 1 0 2
t
解: 该周期信号f (t)显然满足狄里赫勒的三个条件,Cn存在
Cn
1 T
T 2 T
f (t)e jn0t dt 1 ( 0 te jn0t dt 2 1
n N 的基波频率为Nf0,两项合起来称为信号的N次谐波分量
连续时间傅里叶级数对:
综合公式 (反变换)
f (t)
Cn e jn0t
jn 2 t
Cn e T
n =
n =
C n
1 T
T
2 T
fT (t )e jn 0t dt
2
Cn 称为傅里叶系数或频谱系数
分析公式 (正变换)
3. 三角形式傅立叶级数
1te jn0t dt)
0
2
1
(te jn0t
0
0 e jn0t dt te jn0t
1
1 e jn0t dt)
2 jn0
1 1
00
1
(n
)2
(cos
n
1)
0
2
T
例2 试计算图示周期三角脉冲信号的傅里叶级数 展开式。
f (t)
-2 1 0 2
t
解: 该周期信号f (t)显然满足狄里赫勒的三个条件,Cn存在
相关文档
最新文档