第1讲 随机抽样
第01讲 随机抽样、统计图表 (精练)(教师版)
由 知,100名学生中“锻炼达人”有10人,其中男生8人,女生2人,从10人中按性别分层抽取5人参加体育活动,则男生抽取4人,女生抽取1人.
2.(2022·全国·高一课时练习)某大型企业针对改善员工福利的 , , 三种方案进行了问卷调查,调查结果如下:
层次的男生有 (人),女生有18人,男生人数少于女生,选项 错误;
层次的女生人数最少,选项 正确.
故选:ABD.
三、填空题
11.(2022·全国·高一课时练习)经问卷调查,某班学生对摄影分别持“喜欢”、“不喜欢”和“一般”三种态度,其中持“一般”态度的比持“不喜欢”态度的多 人.按分层抽样的方法从全班选出部分学生参加摄影讲座,如果选出的是 位“喜欢”摄影的同学、 位“不喜欢”摄影的同学和 位持“一般”态度的同学,则全班学生中“喜欢”摄影的人数比全班学生人数的一半还多______人.
西部地区学生 20人,题中的说法正确;
②新生的人数较多,不适合用简单随机抽样的方法抽取人数,题中的说法错误;
③西部地区学生小刘被选中的概率为 ,题中的说法正确;
④中部地区学生小张被选中的概率为 ,题中的说法错误;
综上可得,正确的说法是①③.
本题选择B选项.
6.(2022·全国·高一课时练习)某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号,001,002,……,699,700.从中抽取70个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是
32 21 18 34 2978 64 54 07 3252 42 06 44 3812 23 43 56 7735 78 90 56 42
简单随机抽样-高中数学知识点讲解
简单随机抽样1.简单随机抽样【知识点的认识】1.定义:一般地,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.特点:(1)有限性:总体个体数有限;(2)逐个性:每次只抽取一个个体;(3)不放回:抽取样本不放回,样本无重复个体;(4)等概率:每个个体被抽到的机会相等.(如果从个体数为N 的总体中抽取一个容量为n 的样本,则每个个体푛被抽取的概率等于푁)3.适用范围:总体中个数较少.4.注意:随机抽样不是随意或随便抽取,随意或随便抽取都会带有主观或客观的影响因素.【常用方法】1.抽签法(抓阄法)一般地,从个体总数为N 的总体中抽取一个容量为k 的样本,步骤为:(1)编号:将总体中所有个体编号(号码可以为 1﹣N);(2)制签:将编号写在形状、大小相同的号签上(可用小球、卡片、纸条等制作);(3)搅匀:将号签放在同一个箱子中进行均匀搅拌;(4)抽签:每次从箱中取出 1 个号签,连续抽取k 次;(5)取样:从总体中取出与抽到号签编号一致的个体.2.随机数表法.○随机数表:由 0﹣9 十个数字所组成,其中的每个数都是用随机方法产生的,这样的表称为随机数表.实现步骤:(1)编号:对总体中所有个体编号(每个号码位数一致);(2)选数:在随机数表中任选一个数作为开始;(3)取数:从选定的起始数沿任意方向取数(不在号码范围内的数、重复出现的数不取),直到取满为止;(4)取样:根据所得的号码从总体中抽取相应个体.【命题方向】以基本题(中、低档题)为主,多以选择题、填空题的形式出现,以实际问题为背景,综合考查学生学习基础知识、应用基础知识、解决实际问题的能力.(1)考查简单随机抽样的特点例:用简单随机抽样的方法从含有 100 个个体的总体中依次抽取一个容量为 5 的样本,则个体m 被抽到的概率为()1111A.100B.20C.99D.50分析:依据简单随机抽样方式,总体中的每个个体被抽到的概率都是一样的,再结合容量为 5,可以看成是抽 5 次,从而可求得概率.1解答:一个总体含有 100 个个体,某个个体被抽到的概率为,100∴以简单随机抽样方式从该总体中抽取一个容量为 5 的样本,1则指定的某个个体被抽到的概率为100× 5 =1.20故选:B.点评:不论用哪种抽样方法,不论是“逐个地抽取”,还是“一次性地抽取”,总体中的每个个体被抽到的概率都是一样的,体现了抽样方法具有客观公平性.(2)判断抽样方法是否为简单随机抽样常见与分层抽样、系统抽样对比,注意掌握各种抽样方法的区分.例:下面的抽样方法是简单随机抽样的是()A.在某年明信片销售活动中,规定每 100 万张为一个开奖组,通过随机抽取的方式确定号码的后四位为 2709 的2/ 4B.某车间包装一种产品,在自动包装的传送带上,每隔 30 分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取 2 人、14 人、4 人了解学校机构改革的意见D.用抽签法从 10 件产品中选取 3 件进行质量检验.分析:从所给的四个选项里观察因为抽取的个体间的间隔是固定的;得到A、B 不是简单随机抽样,因为总体的个体有明显的层次,C 不是简单随机抽样,D 是简单随机抽样.解答:A、B 不是简单随机抽样,因为抽取的个体间的间隔是固定的;C 不是简单随机抽样,因为总体的个体有明显的层次;D 是简单随机抽样.故选D.点评:本题考查简单随机抽样,考查分层抽样,考查系统抽样,是一个涉及到所学的所有抽样的问题,注意发现各种抽样的特点,分析清楚抽样的区别.(3)考查简单随机抽样的抽样方法操作例:利用随机数表法对一个容量为 500 编号为 000,001,002,…,499 的产品进行抽样检验,抽取一个容量为 10 的样本,若选定从第 12 行第 5 列的数开始向右读数,(下面摘取了随机数表中的第 11 行至第 15 行),根据下图,读出的第 3 个数是()A.841B.114C.014D.146分析:从随机数表 12 行第 5 列数开始向右读,最先读到的 1 个的编号是 389,再向右三位数一读,将符合条件的选出,不符合的舍去,继续向右读取即可.解答:最先读到的 1 个的编号是 389,向右读下一个数是 775,775 它大于 499,故舍去,再下一个数是 841,舍去,再下一个数是 607,舍去,再下一个数是 449,再下一个数是 983.舍去,再下一个数是 114.读出的第 3 个数是 114.故选B.点评:本题主要考查了抽样方法,随机数表的使用,在随机数表中每个数出现在每个位置的概率是一样的,所以每个数被抽到的概率是一样的,属于基础题.。
第九章 第一节 随机抽样1
第 一 节
抓 基 础 明 考 向
随 机 抽 样
提 能 力
教 你 一 招
我 来 演 练
[备考方向要明了] 考 什 么 1.理解随机抽样的必要性和重要性. 2.会利用简单随机抽样方法从总体中抽取样本,了解分层
抽样和系统抽样的方法.
返回
怎 么 考
返回
40 解:设共有x名,则 x ×150=6. ∴x=1 000名. ∴该校四个专业学生共有1 000名.
返回
[巧练模拟]—————(课堂突破保分题,分分必保!)
5.(2012· 东北三校联考)某工厂生产甲、乙、丙三种型 号的产品,产品数量之比为3∶5∶7,现用分层抽 样的方法抽出容量为n的样本,其中甲种产品有18 件,则样本容量n=________.
6 x 设高二年级抽取x人,则有30=40,解得x=8.
[答案] B
返回
[例4] (2011· 山东高考)某高校甲、乙、丙、丁四个专
业分别有150、150、400、300名学生.为了解学生的 就业倾向,用分层抽样的方法从该校这四个专业共抽 取40名学生进行调查,应在丙专业抽取的学生人数为 ________.
A.与第几次抽样有关,第一次抽到的可能性最大
B.与第几次抽样有关,第一次抽到的可能性最小
C.与第几次抽样无关,每一次抽到的可能性相等 D.与第几次抽样无关,与抽取几个样本有关
返回
解析:由随机抽样的特点知某个体被抽到的可能性与 第几次抽样无关,每一次抽到的可能性相等.
答案:C
返回
[冲关锦囊] 1.一个抽样试验能否用抽签法,关键看两点:一是抽签 是否方便; 二是号签是否易搅匀,一般地当总体容 量和样本容量都较小时可用抽签法. 2.用简单随机抽样法抽出的个体带有随机性,个体间无
第1节 随机抽样
第1节随机抽样知识梳理1.简单随机抽样(1)定义:设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样的方法:抽签法和随机数法.2.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样.(2)应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样.1.不论哪种抽样方法,总体中的每一个个体入样的概率都是相同的.2.分层抽样是按比例抽样,每一层入样的个体数为该层的个体数乘抽样比.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)简单随机抽样每个个体被抽到的机会不一样,与先后有关.()(2)抽签法中,先抽的人抽中的可能性大.()(3)简单随机抽样是一种不放回抽样.()(4)分层抽样中,每个个体被抽到的可能性与层数及分层有关.()答案 (1)× (2)× (3)√ (4)×2.在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5000名居民的阅读时间的全体是( )A .总体B .个体C .样本的容量D .从总体中抽取的一个样本答案 A解析 由题目条件知,5000名居民的阅读时间的全体是总体;其中每1名居民的阅读时间是个体;从5000名居民某天的阅读时间中抽取的200名居民的阅读时间是从总体中抽取的一个样本,样本容量是200.3.一个公司共有N 名员工,下设一些部门,要采用等比例分层抽样的方法从全体员工中抽取样本容量为n 的样本,已知某部门有m 名员工,那么从该部门抽取的员工人数是________.答案 nm N解析 每个个体被抽到的概率是n N ,设这个部门抽取了x 个员工,则x m =n N ,∴x=nm N .4.(2020·上饶一模)总体由编号为00,01,02,…,48,49的50个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第6行的第9列和第10列数字开始从左到右依次选取两个数字,则选出的第3个个体的编号为( ) 附:第6行至第9行的随机数表如下:26357900337091601620388277574950321149197306491676778733997467322748619871644148708628888519162074770111163024042979799196835125A .3B .16C .38D .20答案 D解析 按随机数表法,从随机数表第6行的第9列和第10列数字开始从左到右依次选取两个数字,超出00~49及重复的不选,则编号依次为33,16,20,38,49,32,…,则选出的第3个个体的编号为20,故选D.5.(2020·百校大联考)在新冠肺炎疫情期间,大多数学生都进行网上上课.我校高一、高二、高三共有学生1800名,为了了解同学们对“钉钉”授课软件的意见,计划采用分层抽样的方法从这1800名学生中抽取一个容量为72的样本.若从高一、高二、高三抽取的人数恰好是从小到大排列的连续偶数,则我校高三年级的人数为()A.800 B.750 C.700 D.650答案D解析设从高三年级抽取的学生人数为2x人,则从高二、高一年级抽取的人数分别为2x-2,2x-4.由题意可得2x+(2x-2)+(2x-4)=72,∴x=13.设我校高三年级的学生人数为N,且高三抽取26人,由分层抽样,得N1800=2672,∴N=650(人).6.(2018·全国Ⅲ卷改编)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样和分层抽样,则最合适的抽样方法是________.答案分层抽样解析因为不同年龄段的客户对公司的服务评价有较大差异,所以需按年龄进行分层抽样,才能了解到不同年龄段的客户对公司服务的客观评价.考点一简单随机抽样及其应用1.下面的抽样方法是简单随机抽样的是()A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见D .用抽签方法从10件产品中选取3件进行质量检验答案 D解析 A ,B 不是简单随机抽样,因为抽取的个体间的间隔是固定的;C 不是简单随机抽样,因为总体中的个体有明显的层次;D 是简单随机抽样.故选D.2.用简单随机抽样的方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性分别是( )A.110,110B.310,15C.15,.310D.310,310答案 A解析 在抽样过程中,个体a 每一次被抽中的概率是相等的,因为总体容量为10,故个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性均为110,故选A.3.(多选题)(2021·聊城模拟)要考察某种品牌的850颗种子的发芽率,利用随机数表法抽取50颗种子进行实验.先将850颗种子按001,002,…,850进行编号,如果从随机数表第2行第2列的数开始并向右读,下列选项中属于最先检验的4颗种子中一个的是________(下面抽取了随机数表第1行至第3行).( ) 03 47 43 73 86 36 96 47 36 61 46 98 63 71 62 33 26 16 80 45 60 11 14 10 95 97 74 94 67 74 42 81 14 57 20 42 53 32 37 32 27 07 36 07 51 24 51 79 89 73 16 76 62 27 66 56 50 26 71 07 32 90 79 78 53 13 55 38 58 59 88 97 54 14 10A .774B .946C .428D .572答案 ACD解析 依据题意可知:向右读数依次为:774,946,774,428,114,572,042,533,…所以最先检验的4颗种子符合条件的为:774,428,114,572,结合选项知选ACD.感悟升华 1.简单随机抽样需满足:(1)被抽取的样本总体的个体数有限;(2)逐个抽取;(3)是不放回抽取;(4)是等可能抽取.2.简单随机抽样常有抽签法(适用于总体中个体数较少的情况)、随机数法(适用于个体数较多的情况).考点二分层抽样及其应用角度1求某层入样的个体数【例1】某电视台在网上就观众对其某一节目的喜爱程度进行调查,参加调查的一共有20000人,其中各种态度对应的人数如下表所示:人进行详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中应抽取的人数分别为() A.25,25,25,25B.48,72,64,16C.20,40,30,10D.24,36,32,8答案D解析法一因为抽样比为10020000=1200,所以每类人中应抽取的人数分别为4800×1200=24,7200×1200=36,6400×1200=32,1600×1200=8.法二最喜爱、喜爱、一般、不喜欢的比例为4800∶7200∶6400∶1600=6∶9∶8∶2,所以每类人中应抽取的人数分别为66+9+8+2×100=24,96+9+8+2×100=36,86+9+8+2×100=32,26+9+8+2×100=8.角度2求总体或样本容量【例2】(1)(2020·东北三省四校联考)某中学有高中生960人,初中生480人,为了了解学生的身体状况,采用分层抽样的方法,从该校学生中抽取容量为n 的样本,其中高中生有24人,那么n等于()A.12B.18C.24D.36(2)(2021·重庆调研)甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.答案(1)D(2)1800解析(1)根据分层抽样方法知n960+480=24960,解得n=36.(2)由题设,抽样比为80 4800=160.设甲设备生产的产品为x件,则x60=50,∴x=3000.故乙设备生产的产品总数为4800-3000=1800.感悟升华 1.求某层应抽个体数量:按该层所占总体的比例计算.2.已知某层个体数量,求总体容量或反之求解:根据分层抽样就是按比例抽样,列比例式进行计算.3.分层抽样的计算应根据抽样比构造方程求解,其中“抽样比=样本容量总体容量=各层样本数量各层个体数量”.【训练】(1)(2020·郴州二模)已知我市某居民小区户主人数和户主对户型结构的满意率分别如图1和图2所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取30%的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为()A.240,18B.200,20C.240,20D.200,18(2)(2021·合肥模拟)某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种,10种,30种,20种,现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是________.答案(1)A(2)6解析(1)样本容量n=(250+150+400)×30%=240,抽取的户主对四居室满意的人数为150×30%×40%=18.(2)抽样比为2040+10+30+20=15,则抽取的植物油类种数是10×15=2,抽取的果蔬类食品种数是20×15=4,所以抽取的植物油类与果蔬类食品种数之和是2+4=6.A级基础巩固一、选择题1.(多选题)(2021·武汉调研)下列抽样方法不是简单随机抽样的是()A.从平面直角坐标系中抽取5个点作为样本B.某可乐公司从仓库中的1000箱可乐中一次性抽取20箱进行质量检查C.某连队从120名战士中,挑选出50名最优秀的战士去参加抢险救灾活动D.从10个手机中逐个不放回地随机抽取2个进行质量检验(假设10个手机已编号)答案AC解析对于A,平面直角坐标系中有无数个点,这与要求总体中的个体数有限不相符,故A中的抽样方法不是简单随机抽样;对于B,一次性抽取与逐个不放回地抽取是等价的,故B中的抽样方法是简单随机抽样;对于C,挑选的50名战士是最优秀的,不符合简单随机抽样的等可能性,故C中的抽样方法不是简单随机抽样;对于D,易知D中的抽样方法是简单随机抽样.2.(多选题)(2020·泰安质检)某公司生产三种型号的轿车,产量分别为1500辆,6000辆和2000辆.为检验该公司的产品质量,公司质监部门要抽取57辆进行检验,则下列说法正确的是()A.应采用分层随机抽样抽取B.应采用抽签法抽取C.三种型号的轿车依次应抽取9辆,36辆,12辆D.这三种型号的轿车,每一辆被抽到的概率都是相等的答案ACD解析因为是三种型号的轿车,个体差异明显,所以采用分层抽样,选项A正确;因为总体量较大,故不宜采用抽签法,选项B错误;抽样比为571500+6000+2000=3500,三种型号的轿车依次应抽取9辆,36辆,12辆,选项C正确.分层抽样中,每一个个体被抽到的可能性相同.故选项D正确.故答案为ACD.3.(2020·首都师范大学附属中学月考)从某班50名同学中选出5人参加户外活动,利用随机数表法抽取样本时,先将50名同学按01,02,…,50进行编号,然后从随机数表的第1行第5列和第6列数字开始从左往右依次选取两个数字,则选出的第5个个体的编号为()(注:表为随机数表的第1行与第2行)A.24答案A解析由题知,从随机数表的第1行第5列和第6列数字开始,由表可知依次选取43,36,47,46,24.4.(多选题)(2021·襄阳联考)某中学高一年级有20个班,每班50人;高二年级有30个班,每班45人.甲就读于高一,乙就读于高二.学校计划从这两个年级中共抽取235人进行视力调查,下列说法中正确的有()A.应该采用分层随机抽样法B.高一、高二年级应分别抽取100人和135人C.乙被抽到的可能性比甲大D.该问题中的总体是高一、高二年级的全体学生的视力答案ABD解析由于各年级的年龄段不一样,因此应采用分层抽样法.由于比例为23520×50+30×45=110,因此高一年级1000人中应抽取100人,高二年级1350人中应抽取135人,甲、乙被抽到的可能性都是110,因此只有C不正确,故应选ABD.5.如图是调查某学校高三年级男女学生是否喜欢数学的等高条形图,阴影部分的高表示喜欢数学的频率.已知该年级男、女生各500名(所有学生都参加了调查),现从所有喜欢数学的学生中按分层抽样的方式抽取32人,则抽取的男生人数为()A.16 B.32 C.24 D.8答案C解析由题中等高条形图可知喜欢数学的女生和男生的人数比为1∶3,,所以抽取的男生人数为24.故选C.6.某中学400名教师的年龄分布情况如图,现要从中抽取40名教师作样本,若用分层抽样方法,则40岁以下年龄段应抽取()A.40人B.200人C.20人D.10人答案C解析由题图知,40岁以下年龄段的人数为400×50%=200,若采用分层抽样应抽取200×40400=20(人).7.(多选题)(2021·淄博模拟)港珠澳大桥是中国境内一座连接中国香港、广东珠海和中国澳门的桥隧工程,因其超大的建筑规模、空前的施工难度以及顶尖的建造技术闻名世界,为内地前往香港的游客提供了便捷的交通途径,某旅行社分年龄统计了大桥落地以后,由香港大桥实现内地前往香港的老中青旅客的比例分别为5∶2∶3,现使用分层抽样的方法从这些旅客中随机抽取n名,若青年旅客抽到60人,则()A .老年旅客抽到100人B .中年旅客抽到20人C .n =200D .被抽到的老年旅客以及中年旅客人数之和超过200人答案 AC解析 由题意,香港大桥实现内地前往香港的老中青旅客的比例分别为5∶2∶3,若青年旅客抽到60人,现使用分层抽样的方法从这些旅客中随机抽取n 名,所以60n =35+2+3,解得n =200人,则老年旅客抽到60×53=100人,中年旅客抽到60×23=40人,则老年旅客和中年旅客人数之和为160.8.(2020·北京东城区模拟)某机构对青年观众是否喜欢跨年晚会进行了调查,人数如表所示:“不喜欢”的男性青年观众中抽取了6人,则n =( )A .12B .16C .24D .32答案 C解析 由分层抽样的性质得:630=n 30+30+10+50,解得n =24.故选C.二、填空题9.假设要考察某公司生产的500克袋装牛奶的三聚氰胺是否超标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,将800袋牛奶按000,001,…,799进行编号,若从随机数表第7行第8列的数开始向右读,则得到的第4个样本个体的编号是________(下面摘取了随机数表第7行至第9行).解析由随机数表知,前4个样本的个体编号分别是331,572,455,068. 10.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=________.答案13解析依题意得360=n120+80+60,故n=13.11.(2020·海南质检)《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱,欲以钱数多少衰出之,问各几何?”其意为:“今有甲带了560钱,乙带了350钱,丙带了180钱,三人一起出关,共需要交关税100钱,依照钱的多少按比例出钱”,则乙应出(所得结果四舍五入,保留整数)钱数为________.答案32解析因为甲持560钱,乙持350钱,丙持180钱,甲、乙、丙三人一起出关,关税共100钱.要按照各人带钱多少的比例进行关税.则乙应付:100560+350+180×350=3212109≈32钱.12.某企业三月中旬生产A,B,C三种产品共3000件,根据分层抽样的结果,企业统计员制作了如下的统计表格.由于不小心,表格中A,C产品的有关数据已被污染看不清楚,统计员记得A产品的样本容量比C产品的样本容量多10件,根据以上信息,可得C产品的数量是________.答案800解析设A,C产品数量分别为x件、y件,则由题意可得⎩⎪⎨⎪⎧x +y +1300=3000,(x -y )×1301300=10,解得⎩⎨⎧x =900,y =800. B 级 能力提升13.我国古代数学算经十书之一的《九章算术》有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣( )A .104人B .108人C .112人D .120人 答案 B解析 由题意知,抽样比为 3008100+7488+6912=175,所以北乡遣175×8100=108(人).14.下列抽取样本的方式属于简单随机抽样的个数为( ) ①从无限多个个体中抽取100个个体作为样本.②盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里. ③从20件玩具中一次性抽取3件进行质量检验.④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛. A .0 B .1 C .2 D .3 答案 A解析 ①不是简单随机抽样,因为被抽取样本的总体的个数是无限的,而不是有限的;②不是简单随机抽样.因为它是有放回抽样;③不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取;④不是简单随机抽样.因为不是等可能抽样.故选A.15.甲、乙两所学校高三年级分别有1200人,1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:则A.12,7B.10,7C.10,8D.11,9答案B解析从甲校抽取110×12001200+1000=60(人),从乙校抽取110×12001200+1000=50(人),故x=10,y=7.16.某工厂的三个车间在12月份共生产了3600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从第一、二、三车间抽取的产品数分别为a,b,c,且a,b,c构成等差数列,则第二车间生产的产品数为________.答案1200解析因为a,b,c成等差数列,所以2b=a+c.所以a+b+c3=b.所以第二车间抽取的产品数占抽样产品总数的13.根据分层抽样的性质,可知第二车间生产的产品数占总数的13,即为13×3600=1200.。
9.1.1简单随机抽样第1课时课件(人教版)
学习目标
新课讲授
课堂总结
1.正确理解总体、个体、样本、普查、抽样调查的概念
2.理解简单随机抽样的概念,掌握抽签法和随机数法的 一般步骤
学习目标
新课讲授
课堂总结
知识点1:统计的相关概念及抽样的必要性
在现实生活中,我们经常会接触到各种统计数据.
统计学是通过收集数据和分析数据来认识未知现象的一门科学. 为解决问题奠定基础
说明:如果生成的随机数有重复,即同一编号多次被抽到,可以剔除重 复的编号并重新产生随机数,直到产生不同的编号个数等于样本数.
学习目标
新课讲授
课堂总结
随机数的产生
1.用随机实验生成随机数
准备10个大小质地一样的小球,小球上分别写上数字0,1,2,…9,放 在不透明的盒子中, 当编号是三位的时候,有放回抽取3次,抽前充分搅拌,第一、二、三 次号作摸到数字分别作为百、十、个位数.
如果抽取是放回的,叫做放回简单随机抽样; 如果抽取是不放回的,称为不放回简单随机抽样. 效率更高
通过简单随机抽样获得的样本称为简单随机样本. 如没特殊说明,本章所称简单随机抽样指不放回简单随机抽样.
学习目标
新课讲授
课堂总结
例1 下面的抽样方法是简单随机抽样吗?为什么? (1)从无数个个体中抽取20个个体作为样本;× 总体的个数不是有限的 (2)从50台冰箱中一次性抽取5台冰箱进行质量检查;× 不是逐个抽取 (3)某班有40名同学,指定个子最高的5名同学参加学校组织的篮 球赛; × 不是等可能抽样 (4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无 放回地抽出6个号签. √
问题:一家家具厂要为树人中学高一年级制作课桌椅,他们事先想了解全体高 一年级学生的平均身高,以便设定可调节课桌椅的标准高度.已知树人中学高一 年级有712名学生,如果要通过简单随机抽样的方法调查高一年级学生的平均 身高,应该怎样抽取样本?
高考数学一轮总复习课件:随机抽样、用样本估计总体
6.(2020·天津)从一批零件中抽取 80 个,测量其直径(单位: mm),将所得数据分为 9 组:[5.31,5.33),[5.33,5.35),…,[5.45, 5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽 取的零件中,直径落在区间[5.43,5.47)内的个数为( B )
n 的样本进行调查,其中从丙车间的产品中抽取了 3 件,则 n=
(D ) A.9
B.10
C.12
D.13
【解析】 由分层抽样可得630=2n60,解得 n=13.
【讲评】 进行分层抽样的相关计算时,常利用以下关系式 巧解:
①总样体本的容个量数nN=该层该抽层取的的个个体体数数; ②总体中某两层的个体数之比等于样本中这两层抽取的个 体数之比.
5.对某商店一个月内每天的顾客人数进行了统计,得到样本 的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( A )
A.46,45,56 B.46,45,53 C.47,45,56 D.45,47,53
解析 从茎叶图中可以看出样本数据的中位数为中间两个数的 平均数,即45+2 47=46,众数是 45,极差为 68-12=56,故选择 A.
状元笔记
(1)一个抽样试验能否用抽签法,关键看两点:一是制签是否 方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都 较小时可用抽签法.
(2)在使用随机数表时,如遇到取两位数或三位数,可从选择 的随机数表中的某行某列的数字计起,每两个或每三个作为一个 单位,自左向右选取,有超过总体号码或出现重复号码的数字舍 去.
个最高分、1 个最低分,得到 7 个有效评分.7 个有效评分与 9 个
原始评分相比,不变的数字特征是( A )
简单随机抽样(第1课时(人教A版2019必修第二册)
可以剔除重复的编号并重新产生随机数,直到产生的不同
编号个数等于样本所需要的人数.
比较随机数法与抽
签法,它们各有什
么优点和缺点?
新知探索
(1)用随机试验生成随机数
准备10个大小、质地一样的小球,小球上分别写上数字0,1,2,…,9,
把它们放入一个不透明的袋中.从袋中有放回摸取3次,每次摸取前充分搅拌,
第二步,将60个号码分别写在60张外形完全相同的纸条上,并揉成团,制成号签;
第三步,将60个号签放入一个不透明的盒子里,充分搅匀;
第四步,从盒子中逐个抽取10个号签,并记录上面的编号;
第五步,所得号码对应的学生就是志愿小组的成员.
练习
方法技巧:
一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是号签
3.某工程从1000件产品中抽出40件进行质量合格检查,样本是40.(
)
4.抽签法和随机数法都适用于总体容量和样本容量较小时的抽样.(
)
)
)
5.利用随机数法抽取样本时,若一共有总体容量为100,则给每一个分别个体编号
为1,2,3,…,100.(
)
答案:√,×,×,√,×.
新知探索
辨析2:下列调查方式中,适合用普查的是(
并把第一、二、三次摸到的数字分别作为百、十、个位数,这样就生成了一个
三位随机数.如果这个三位数在1—712范围内,就代表对应编号的学生被抽中,
否则舍弃编号,这样产生的随机数可能会有重复.
新知探索
(2)用信息技术生成随机数
①用计算器生成随机数
进入计算器的计算模式(不同的计算器型号可能会有不同),调出生成随机
A.调查春节联欢晚会的收视率
B.了解某渔场中青鱼的平均质量
第1讲随机抽样
3.分层抽样 (1)定义:在抽样时,将总体分成互不交叉的层,然后按照 一定的比例,从各层独立地抽取一定数量的个体,将各层 取出的个体合在一起作为样本,这种抽样方法叫做分层抽 样. (2)分层抽样的应用范围: 当总体是由差异明显的几个部分组成时,往往选用分层抽 样.
4.分层抽样的步骤
(1)分层:将总体按某种特征分成若干部分; (2)确定比例:计算各层的个体数与总体的个体数的比; (3)确定各层应抽取的样本容量; (4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样 的方法抽取),综合每层抽样,组成样本.
考向三
分层抽样
【例3】某市电视台在因特网上征集电视节目的现场参与观 众,报名的共有1 2000人,分别来自4个城区,其中东城区 2 400人,西城区4 600人,南城区3 800人,北城区1 200人, 从中抽取60人参加现场节目,应当如何抽取?
【反思与悟】 (1)一个抽样试验能否用抽签法,关键看两点: 一是抽签是否方便;二是号签是否易搅匀,一般地,当总 体容量和样本容量都较小时可用抽签法. (2)随机数表中共随机出现0,1,2,…,9十个数字,也就是说, 在表中的每个位置上出现各个数字的机会都是相等的.在 使用随机数表时,如遇到三位数或四位数时,可从选择的 随机数表中的某行某列的数字计起,每三个或每四个作为 一个单位,自左向右选取,有超过总体号码或出现重复号 码的数字舍去.
解 法一 (抽签法)将100件轴承编号为1,2,…,100,并 做好大小、形状相同的号签,分别写上这100个数,将这些 号签放在一起,进行均匀搅拌,接着连续抽取10个号签, 然后测量这10个号签对应的轴的直径. 法二 (随机数表法)将100件轴承编号为00,01,02,…,99, 在随机数表中选定一个起始位置,如取第21行(见随机数表) 第1个数开始,选取10个为68,34,30,13,70,55,74,30,77,40,这 10件即为所要抽取的样本.
简单随机抽样(教学课件)高一数学(人教A版2019必修第二册)
生的平均身高等.要正确阅读并理解这些数据,需要具备一些统计学的知
识.
统计的研究对象是数据,核心是通过数据分析研究和解决问题,因
此,首先要设法获取与问题有关的数据,从而为解决问题奠定基础.
温故知新
统计的相关概念
名称
定义
总体
所要 考察对象 的全体叫作总体
)
A.要求总体的个体数有限
B.从总体中逐个抽取
C.每个个体被抽到的机会不一样
D.这是一种不放回抽样
【解答】解:根据随机抽样的定义可知,要求总体的
个体数有限,为了保证抽样的公平性,
要求每个个体被抽到的机会是相同的.从总体
中逐个抽取,这是一种不放回抽样.
综合以上几点可知C错误.
故选:C.
变式训练
下列抽样方法是简单随机抽样的是(
过程,直到抽足所需要人数.
比较随机数法与抽签法,它们各有什么优点和缺点?
(1)随机数法的概念:
利用随机数工具产生的随机数进行抽样方法,叫做随机数法.
(2)随机数法的步骤:
①将总体的个体编号;
②在产生的随机数选择数字;
③读数获取样本号码.
如果生成的随机数有重复,即同与编号被多次抽到,
可以剔除重复的编号并重新产生随机数,直到产生的
个”抽取,故不是简单随机抽样;
故选:C.
解题技巧
判断所给的抽样是否为简单随机抽样的依据是简单随机抽样
的四个特征:
上述四点特征,如果有一点不满足,就不是简单随机抽样.
典例分析
题型二 抽签法的应用
例2.用抽签法从50个个体中选出5个个体,则共需制作号签的
个数为(
新人教A版高中数学必修2第九章统计的第一节第一课时—简单随机抽样-经典教学设计
(3)通过调查历城二中高一学生的平均身高来估计济南市高一学生的平均身高,请你写出此次调查的总体,个体样本和样本容量。
通过熟悉的生活情境引入普查、抽样调查的适用范围,回顾总体、样本、个体、样本容量的概念。
通过提问,从学生熟悉的具体问题入手,迅速吸引学生的注意力,体会到了抽样调查的必要性。
2.简单随机抽样的特点:
总体有限,逐个抽取,等概率抽样。
3.简单随机抽样的方法:
抽签法和随机数法
学生回顾本节课所学知识点。
小结本节课知识点,加深对知识点的记忆理解。总结提炼,理清脉络,有利于帮助学生建构知识体系,起到画龙点睛的作用。
6.课后作业
1.一个学生在一次竞赛中要回答的8道题是这样产生的:从15道物理题中随机抽3道;从20道化学题中随机抽3道;从12道生物题中随机抽2道.选用合适的方法确定这个学生所要回答的三门学科的题的序号(物理题的编号为1~15,化学题的编号为16~35,生物题的编号为36~47).
此处设计遵循由特殊到一般的认知规律,让学生在观察中归纳,在具体问题中进行总结,自然而然地形成简单随机抽样的概念,培养数学抽象的学科核心素养,最终实现突破难点的目的。
2.实践探究,形成概念
请小组在全班范围内交流,教师在学生回答基础上完善补充,得到下列结论:
(1)一般地,设一个总体含有N(N为正整数)个个体,从中逐个不放回地抽取n(1≤n<N)个个体作为样本,每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做不放回简单随机抽样。如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做放回简单抽样。
第十五章_第1讲_随机抽样和样本估计总体
图 15-1-2
考点1 随机抽样及其应用 例 1:现要完成下列3项抽样调查:①从 10 盒酸奶中抽取 3 盒进行食品卫生检查.②科技报告厅有 32 排,每排有 40 个座位, 有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,
(1)频率分布直方图的绘制按照前面的要点预览 的步骤进行.值得注意的是,在频率分布直方图中,纵轴表示 “频组率 距”,数据落在各小组内的频率用小矩形的面积表示,各小
矩形的面积总和等于 1. (2)由频率分布直方图估计样本的数字特征时:①众数为频率
用样本估计总体 是统计学的重要 思想.从总体中如 何抽取样本,以及 如何研究样本数 据是本节需要掌 握的主要内容.根 据总体的特点可 采取合适的抽样 方式,然后从列 表,画图途径来体 现样本数据特征, 而样本的数字特 征则是其客观体 现,从而进一步去
估计总体特征.
1.总体、个体、样本 把所考察对象的某一个数值指标的全体构成的集合看成总 体,构成总体的每一个元素为个体,从总体中随机抽取若干个个 体构成的集合叫做总体的一个样本. 2.随机抽样 抽样时保证每一个个体都可能被抽到,每一个个体被抽到的 机会是__均__等__的__,满足这样的条件的抽样是随机抽样.
8.茎叶图 在样本数据较少、较为集中,且位数不多时,用茎叶图表示
数据的效果较好,它较好的保留了原始数据信息,方便记录与表 示.茎是中间的一列数,叶是从茎的旁边生长出来的数.
9.样本数字特征 (1)众数:在一组数据中,出现次数最多的数据叫做这组数据 的众数. (2)中位数:将一组数据按大小依次排列,把处在_最__中__间__位置 的一个数据(或最中间两个数据的平均数)叫做这组数据的中__位__数__.
第1讲 随机抽样、用样本估计总体
第1讲随机抽样、用样本估计总体一、知识梳理1.随机抽样(1)简单随机抽样①定义:一般地,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),且每次抽取时总体内的各个个体被抽到的机会都相等,就称这样的抽样方法为简单随机抽样.②常用方法:抽签法和随机数法.(2)分层抽样①定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.②适用范围:适用于总体由差异比较明显的几个部分组成时.2.统计图表(1)频率分布直方图的画法步骤①求极差(即一组数据中最大值与最小值的差);②决定组距与组数;③将数据分组;④列频率分布表;⑤画频率分布直方图.(2)频率分布折线图和总体密度曲线①频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图;②总体密度曲线:随着样本容量的增加,作图时所分组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.3.样本的数字特征(1)众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数.(2)中位数:把n 个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.(3)平均数:把a 1+a 2+…+a n n称为a 1,a 2,…,a n 这n 个数的平均数. (4)标准差与方差:设一组数据x 1,x 2,x 3,…,x n 的平均数为x -,则这组数据的标准差和方差分别是s = 1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2], s 2=1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2].常用结论1.不论哪种抽样方法,总体中的每一个个体入样的概率是相同的.2.会用三个关系频率分布直方图与众数、中位数与平均数的关系(1)最高的小长方形底边中点的横坐标即是众数.(2)中位数左边和右边的小长方形的面积和是相等的.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.3.巧用四个有关的结论(1)若x 1,x 2,…,x n 的平均数为x -,那么mx 1+a ,mx 2+a ,…,mx n +a 的平均数为m x-+a ;(2)数据x 1,x 2,…,x n 与数据x ′1=x 1+a ,x ′2=x 2+a ,…,x ′n =x n +a 的方差相等,即数据经过平移后方差不变;(3)若x 1,x 2,…,x n 的方差为s 2,那么ax 1+b ,ax 2+b ,…,ax n +b 的方差为a 2s 2;(4)s 2=1n ∑n i =1 (x i -x -)2=1n ∑n i =1x 2i-x -2,即各数平方的平均数减去平均数的平方. 二、教材衍化1.某校为了解学生学习的情况,采用分层抽样的方法从高一2 400人、高二2 000人、高三n 人中,抽取90人进行问卷调查.已知高一被抽取的人数为36,那么高三被抽取的人数为________.解析:由分层抽样可得 2 4002 400+2 000+n×90=36,则n =1 600,所以高三被抽取的人数为 1 6002 400+2 000+1 600×90=24. 答案:242.已知一组数据6,7,8,8,9,10,则该组数据的方差是________.答案:533.某仪器厂从新生产的一批零件中随机抽取40个检测,如图是根据抽样检测后零件的质量(单位:克)绘制的频率分布直方图,样本数据分8组,分别为[80,82),[82,84),[84,86),[86,88),[88,90),[90,92),[92,94),[94,96],则样本的中位数在第________组.解析:由题图可得,前四组的频率为(0.037 5+0.062 5+0.075+0.1)×2=0.55,则其频数为40×0.55=22,且第四组的频数为40×0.1×2=8,故中位数落在第4组.答案:4一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)简单随机抽样是一种不放回抽样.()(2)在抽签法中,先抽的人抽中的可能性大.()(3)一组数据的方差越大,说明这组数据的波动越大.()(4)在频率分布直方图中,小矩形的面积越大,表示样本数据落在该区间内的频率越大.()(5)频率分布表和频率分布直方图是一组数据频率分布的两种形式,前者准确,后者直观.()(6)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数的估计值.()答案:(1)√(2)×(3)√(4)√(5)√(6)√二、易错纠偏常见误区|(1)随机数表法的规则不熟出错;(2)频率分布直方图识图不清;1.假设要考察某公司生产的狂犬疫苗的剂量是否达标,现用随机数法从500支疫苗中抽取50支进行检验,利用随机数表抽取样本时,先将500支疫苗按000,001, (499)行编号,若从随机数表第7行第8列的数开始向右读,则抽取的第3支疫苗的编号为________.(下面摘取了随机数表的第7行至第9行)84 42 17 53 3157 24 55 06 8877 04 74 47 6721 76 33 50 2583 92 12 06 7663 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 0744 39 52 38 7933 21 12 34 2978 64 56 07 8252 42 07 44 3815 51 00 13 4299 66 02 79 54解析:由题意得,从随机数表第7行第8列的数开始向右读,符合条件的前三个编号依次是331,455,068,故抽取的第3支疫苗的编号是068.答案:0682.我市某校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是15,则该班的学生人数是________.解析:依题意得,成绩低于60分的相应的频率等于(0.005+0.01)×20=0.3,所以该班的学生人数是15÷0.3=50.答案:50考点一随机抽样(基础型)复习指导| 1.理解随机抽样的必要性和重要性.2.学会用简单随机抽样的方法从总体中抽取样本.3.通过对实例的分析,了解分层抽样的方法.核心素养:数据分析1.(2020·重庆中山外国语学校模拟)如饼图,某学校共有教师120人,从中选出一个30人的样本,其中被选出的青年女教师的人数为()A.12B.6C.4D.3解析:选D .青年教师的人数为120×30%=36,所以青年女教师为12人,故青年女教师被选出的人数为12×30120=3.故选D . 2.(2020·武汉市武昌区调研考试)已知某射击运动员每次射击击中目标的概率都为80%.现采用随机模拟的方法估计该运动员4次射击至少3次击中目标的概率:先由计算器产生0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;再以每4个随机数为一组,代表4次射击的结果.经随机模拟产生了如下20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281据此估计,该射击运动员4次射击至少3次击中目标的概率为________.解析:4次射击中有1次或2次击中目标的有:0371,6011,7610,1417,7140,所以所求概率P =1-520=1520=0.75. 答案:0.753.一支田径队有男运动员56人,女运动员m 人,用分层抽样抽出一个容量为n 的样本,在这个样本中随机取一个当队长的概率为128,且样本中的男队员比女队员多4人,则m =________.解析:由题意知n =28,设其中有男队员x 人,女队员有y 人.则⎩⎪⎨⎪⎧x +y =28,x -y =4,56m =x y .解得x =16,y =12,m =42.答案:42(1)抽签法与随机数法的适用情况①抽签法适用于总体中个体数较少的情况,随机数法适用于总体中个体数较多的情况.②一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.(2)分层抽样问题类型及解题思路①求某层应抽个体数量,根据该层所占总体的比例计算.②已知某层个体数量,求总体容量,根据分层抽样即按比例抽样,列比例式进行计算.③确定是否应用分层抽样:分层抽样适用于总体中个体差异较大的情况.考点二样本的数字特征(应用型)复习指导| 1.通过实例理解样本数据的标准差的意义和作用,学会计算数据的标准差.2.能根据实际问题的需求合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释.核心素养:数据分析、数学运算(1)在一次歌咏比赛中,七位裁判为一选手打出的分数如下:90,89,90,95,93,94,93.去掉一个最高分和一个最低分后,所剩数据的平均数与方差分别为( )A .92,2.8B .92,2C .93,2D .93,2.8(2)(2020·盐城模拟)已知一组数据x 1,x 2,x 3,x 4,x 5的方差是2,则数据2x 1,2x 2,2x 3,2x 4,2x 5的标准差为________.【解析】 (1)由题意得所剩数据:90,90,93,94,93.所以平均数x -=90+90+93+94+935=92. 方差s 2=15[(90-92)2+(90-92)2+(93-92)2+(93-92)2+(94-92)2]=2.8. (2)由s 2=1n i =1n (x i -x -)2=2,则数据2x 1,2x 2,2x 3,2x 4,2x 5的方差是8,标准差为2 2. 【答案】 (1)A (2)2 2【迁移探究】 (变条件)本例(2)增加条件“x 1,x 2,x 3,x 4,x 5的平均数为2”,求数据2x 1+3,2x 2+3,2x 3+3,2x 4+3,2x 5+3的平均数和方差.解:数据2x 1+3,2x 2+3,2x 3+3,2x 4+3,2x 5+3的平均数为2×2+3=7,方差为22×2=8.众数、中位数、平均数、方差的意义及常用结论(1)平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述波动大小.(2)方差的简化计算公式:s2=1n[(x21+x22+…+x2n)-n x-2],或写成s2=1n(x21+x22+…+x2n)-x-2,即方差等于原数据平方的平均数减去平均数的平方.1.(2020·昆明市诊断测试)高铁、扫码支付、共享单车、网购被称为中国的“新四大发明”,为评估共享单车的使用情况,选了n座城市作试验基地.这n座城市共享单车的使用量(单位:人次/天)分别为x1,x2,…,x n,下面给出的指标中可以用来评估共享单车使用量的稳定程度的是()A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数解析:选B .平均数、中位数可以反映一组数据的集中程度;方差、标准差可以反映一组数据的波动大小,同时也反映这组数据的稳定程度.故选B .2.(2020·甘肃、青海、宁夏联考)从某小学随机抽取100名同学,将他们的身高(单位:厘米)分布情况汇总如下:A .119.3B .119.7C .123.3D .126.7解析:选C .由题意知身高在(100,110],(110,120],(120,130]内的频率依次为0.05,0.35,0.3,前两组频率和为0.4,组距为10,设中位数为x ,则(x -120)×0.310=0.1,解得x ≈123.3.故选C .3.一组数据1,10,5,2,x ,2,且2<x <5,若该数据的众数是中位数的23倍,则该数据的方差为________.解析:根据题意知,该组数据的众数是2,则中位数是2÷23=3,把这组数据从小到大排列为1,2,2,x ,5,10,则2+x2=3,解得x =4,所以这组数据的平均数为 x -=16×(1+2+2+4+5+10)=4,方差为s 2=16×[(1-4)2+(2-4)2×2+(4-4)2+(5-4)2+(10-4)2]=9.答案:9考点三 频率分布直方图(应用型)复习指导| 1.通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图,体会它们各自的特点.2.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性.核心素养:直观想象、数据分析角度一求样本的频率、频数(2020·福建五校第二次联考)某服装店对过去100天其实体店和网店的销售量(单位:件)进行了统计,制成频率分布直方图如下:(1)若将上述频率视为概率,已知该服装店过去100天的销售中,实体店和网店销售量都不低于50的概率为0.24,求过去100天的销售中,实体店和网店至少有一边销售量不低于50的天数;(2)若将上述频率视为概率,已知该服装店实体店每天的人工成本为500元,门市成本为1 200元,每售出一件利润为50元,求该实体店一天获利不低于800元的概率.【解】(1)由题意知,网店销售量不低于50共有(0.068+0.046+0.010+0.008)×5×100=66(天),实体店销售量不低于50共有(0.032+0.020+0.012×2)×5×100=38(天),实体店和网店销售量都不低于50的天数为100×0.24=24,故实体店和网店至少有一边销售量不低于50的天数为66+38-24=80.(2)由题意,设该实体店一天售出x件,则获利为(50x-1 700)元,50x-1 700≥800⇒x ≥50.记该实体店一天获利不低于800元为事件A,则P(A)=P(x≥50)=(0.032+0.020+0.012+0.012)×5=0.38.故该实体店一天获利不低于800元的概率为0.38.角度二求样本的数字特征(2019·高考全国卷Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【解】(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.(1)频率、频数、样本容量的计算方法①频率组距×组距=频率;②频数样本容量=频率,频数频率=样本容量,样本容量×频率=频数.(2)频率分布直方图中数字特征的计算①最高的小长方形底边中点的横坐标即是众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.1.在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个长方形的面积和的25,且样本容量为140,则中间一组的频数为( )A .28B .40C .56D .60解析:选B .设中间一组的频数为x ,因为中间一个小长方形的面积等于其他8个长方形的面积和的25,所以其他8组的频数和为52x ,由x +52x =140,解得x =40.2.(2020·武昌区调研考试)对参加某次数学竞赛的1 000名选手的初赛成绩(满分:100分)作统计,得到如图所示的频率分布直方图.(1)根据直方图完成以下表格;(2)); (3)如果从参加初赛的选手中选取380人参加复赛,那么如何确定进入复赛选手的成绩? 解:(1)填表如下:(2)平均数为55×0.05+65×0.15+75×0.35+85×0.35+95×0.1=78, 方差s 2=(-23)2×0.05+(-13)2×0.15+(-3)2×0.35+72×0.35+172×0.1=101. (3)进入复赛选手的成绩为80+350-(380-100)350×10=82(分),所以初赛成绩为82分及其以上的选手均可进入复赛.(说明:回答82分以上,或82分及其以上均可)[基础题组练]1.某班有34位同学,座位号记为01,02,…,34,用下面的随机数表选取5组数作为参加青年志愿者活动的五位同学的座号.选取方法是从随机数表第一行的第6列数字开始,由左到右依次选取两个数字,则选出来的第4个志愿者的座号是( )49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 A .23B .09C .02D .16解析:选D .从随机数表第一行的第6列数字3开始,由左到右依次选取两个数字,不超过34的依次为21,32,09,16,17,故第4个志愿者的座号为16.2.(2020·陕西汉中重点中学联考)某机构对青年观众是否喜欢跨年晚会进行了调查,人数如下表所示:若在“不喜欢的男性青年观众”中抽取了6人,则n =( )A .12B .16C .20D .24解析:选D .由题意得3030+10+30+50=30120=6n,解得n =24.故选D .3.(2019·高考全国卷Ⅱ)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( )A .中位数B .平均数C .方差D .极差解析:选A .记9个原始评分分别为a ,b ,c ,d ,e ,f ,g ,h ,i (按从小到大的顺序排列),易知e 为7个有效评分与9个原始评分的中位数,故不变的数字特征是中位数,故选A .4.(多选)某学生5次考试的成绩(单位:分)分别为85,67,m ,80,93,其中m >0.若该学生在这5次考试中成绩的中位数为80,则得分的平均数可能为( )A .70B .75C .80D .85解析:选ABC .已知的四次成绩按照由小到大的顺序排列为67,80,85,93,该学生这5次考试成绩的中位数为80,则m ≤80,所以平均数85+67+m +80+935≤81,可知平均数可能为70,75,80,不可能为85.故选ABC .5.(多选)从某地区年龄在25~55岁的人员中,随机抽取100人,了解他们对今年两会热点问题的看法,绘制出频率分布直方图,如图所示,则下列说法正确的是( )A .抽取的100人中,年龄在40~45岁的人数大约为20B .抽取的100人中,年龄在35~45岁的人数大约为40C .抽取的100人中,年龄在40~50岁的人数大约为50D .抽取的100人中,年龄在35~50岁的人数大约为60解析:选AD .根据频率分布直方图的性质得(0.01+0.05+0.06+a +0.02+0.02)×5=1,解得a =0.04,所以抽取的100人中,年龄在40~45岁的大约为0.04×5×100=20,所以A 正确;年龄在35~45岁的人数大约为(0.06+0.04)×5×100=50,所以B 不正确;年龄在40~50岁的人数大约为(0.04+0.02)×5×100=30,所以C 不正确;年龄在35~50岁的人数大约为(0.06+0.04+0.02)×5×100=60,所以D 正确.故选AD .6.(2020·开封市定位考试)某工厂生产A ,B ,C 三种不同型号的产品,产品数量之比为k ∶5∶3,现用分层抽样的方法抽出一个容量为120的样本,已知A 种型号产品共抽取了24件,则C 种型号产品抽取的件数为________.解析:依题意得24120=k k +5+3,解得k =2,所以C 种型号产品抽取的件数为32+5+3×120=36.答案:367.甲、乙、丙、丁四人参加某运动会射击项目的选拔赛,四人的平均成绩和方差如下表所示:从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是________.解析:由题表中数据可知,丙的平均环数最高,且方差最小,说明技术稳定,且成绩好.答案:丙8.对某市“四城同创”活动中800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为[25,30)的数据不慎丢失,则依据此图可得:(1)[25,30)年龄组对应小矩形的高度为________;(2)据此估计该市“四城同创”活动中志愿者年龄在[25,35)的人数为________.解析:设[25,30)年龄组对应小矩形的高度为h,则5×(0.01+h+0.07+0.06+0.02)=1,解得h=0.04.则志愿者年龄在[25,35)年龄组的频率为5×(0.04+0.07)=0.55,故志愿者年龄在[25,35)年龄组的人数约为0.55×800=440.答案:(1)0.04(2)4409.某校1 200名高三年级学生参加了一次数学测验(满分为100分),为了分析这次数学测验的成绩,从这1 200人的数学成绩中随机抽取200人的成绩绘制成如下的统计表,请根据表中提供的信息解决下列问题:(1)求a、b、c(2)如果从这1 200名学生中随机抽取一人,试估计这名学生该次数学测验及格的概率P (注:60分及60分以上为及格);(3)试估计这次数学测验的年级平均分.解:(1)由题意可得,b =1-(0.015+0.125+0.5+0.31)=0.05,a =200×0.05=10,c =200×0.5=100.(2)根据已知,在抽出的200人的数学成绩中,及格的有162人.所以P =162200=0.81. (3)这次数学测验样本的平均分为x -=16×3+32.1×10+55×25+74×100+88×62200=73, 所以这次数学测验的年级平均分大约为73分.10.为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制图如下:每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.(1)根据图中数据写出甲公司员工A 在这10天投递的快递件数的平均数和众数;(2)根据图中数据估算两公司的每位员工在该月所得的劳务费.解:(1)甲公司员工A 在这10天投递的快递件数的平均数为36,众数为33.(2)根据题图中数据,可估算甲公司的每位员工该月所得劳务费为 4.5×36×30=4 860(元),易知乙公司员工B 每天所得劳务费X 的可能取值为136,147,154,189,203,所以乙公司的每位员工该月所得劳务费约为110×(136×1+147×3+154×2+189×3+203×1)×30=165.5×30=4 965(元). [综合题组练]1.(2020·安徽五校联盟第二次质检)数据a 1,a 2,a 3,…,a n 的方差为σ2,则数据2a 1,2a 2,2a 3,…,2a n 的方差为( )A .σ22B .σ2C .2σ2D .4σ2解析:选D .设a 1,a 2,a 3,…,a n 的平均数为a ,则2a 1,2a 2,2a 3,…,2a n 的平均数为2a ,σ2=(a 1-a )2+(a 2-a )2+(a 3-a )2+…+(a n -a )2n. 则2a 1,2a 2,2a 3,…,2a n 的方差为(2a 1-2a )2+(2a 2-2a )2+(2a 3-2a )2+…+(2a n -2a )2n=4×(a 1-a )2+(a 2-a )2+(a 3-a )2+…+(a n -a )2n=4σ2.故选D . 2.(多选)新闻出版业不断推进供给侧结构性改革,深入推动优化升级和融合发展,持续提高优质出版产品供给,实现了行业的良性发展.下面是2015年至2019年我国新闻出版业和数字出版业营收情况,则下列说法正确的是( )A .2015年至2019年我国新闻出版业和数字出版业营收均逐年增加B .2019年我国数字出版业营收超过2015年我国数字出版业营收的2倍C .2019年我国新闻出版业营收超过2015年我国新闻出版业营收的1.5倍D .2019年我国数字出版业营收占新闻出版业营收的比例未超过三分之一解析:选ABD .根据图示数据可知A 正确;1 935.5×2=3 871<5 720.9,故B 正确;16 635.3×1.5=24 952.95>23 595.8,故C 不正确;23 595.8×13≈7 865>5 720.9,故D 正确.故选ABD .3.甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图:(1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价.解:(1)由题图可得甲、乙两人五次测试的成绩分别为甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分.x -甲=10+13+12+14+165=13; x -乙=13+14+12+12+145=13, s 2甲=15[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4; s 2乙=15[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8. (2)由s 2甲>s 2乙,可知乙的成绩较稳定. 从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.4.(2020·广州市调研测试)某蔬果经销商销售某种蔬果,售价为每千克25元,成本为每千克15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价以每千克10元处理完.根据以往的销售情况,按[0,100),[100,200),[200,300),[300,400),[400,500]进行分组,得到如图所示的频率分布直方图.(1)根据频率分布直方图计算该种蔬果日需求量的平均数x -(同一组中的数据用该组区间中点值代表);(2)该经销商某天购进了250千克该种蔬果,假设当天的需求量为x 千克(0≤x ≤500),利润为y 元.求y 关于x 的函数关系式,并结合频率分布直方图估计利润y 不小于1 750元的概率.解:(1)x -=50×0.001 0×100+150×0.002 0×100+250×0.003 0×100+350×0.0025×100+450×0.001 5×100=265.故该种蔬果日需求量的平均数为265千克.(2)当日需求量不低于250千克时,利润y =(25-15)×250=2 500(元),当日需求量低于250千克时,利润y =(25-15)x -(250-x )×5=15x -1 250(元),所以y =⎩⎨⎧15x -1 250,0≤x <2502 500,250≤x ≤500, 由y ≥1 750,得200≤x ≤500,所以P (y ≥1 750)=P (200≤x ≤500)=0.003 0×100+0.002 5×100+0.001 5×100=0.7. 故估计利润y 不小于1 750元的概率为0.7.。
第二章第一节简单随机抽样
第二章第一节简单随机抽样一、重点难点:1.正确理解随机抽样的概念,会描述抽签法、随机数表法的一般步骤.2.能够根据样本的具体情况选择适当的方法进行抽样.二、知识点讲解:一、简单随机抽样的概念:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。
思考:简单随机抽样的每个个体入样的可能性为多少?(n/N)二、抽签法和随机数法:1、抽签法一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
抽签法的一般步骤:(1)将总体的个体编号;(2)连续抽签获取样本号码.思考:你认为抽签法有什么优点和缺点;当总体中的个体数很多时,用抽签法方便吗?解析:操作简便易行,当总体个数较多时工作量大,也很难做到“搅拌均匀”2、随机数法利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法.怎样利用随机数表产生样本呢?下面通过例子来说明,假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,可以按照下面的步骤进行。
第一步,先将800袋牛奶编号,可以编为000,001, (799)第二步,在随机数表中任选一个数,例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行)。
16 22 77 94 39 49 54 43 54 82 17 37 93 23 7884 42 17 53 31 57 24 55 06 88 77 04 74 47 6763 01 63 78 59 16 95 55 67 19 98 10 50 71 7533 21 12 34 29 78 64 56 07 82 52 42 07 44 3857 60 86 32 44 09 47 27 96 54 49 17 46 09 6287 35 20 96 43 84 26 34 91 6421 76 33 50 25 83 92 12 06 7612 86 73 58 07 44 39 52 38 7915 51 00 13 42 99 66 02 79 5490 52 84 77 27 08 02 73 43 28第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;继续向右读,得到916,由于916>799,将它去掉,按照这种方法继续向右读,又取出567,199,507,…,依次下去,直到样本的60个号码全部取出,这样我们就得到一个容量为60的样本。
第1部分 第一章 § 2 2.1 简单随机抽样
0,1,…,19.
第二步,将号码分别写在一张纸条上,揉成团,制成 号签. 返回
第三步,将得到的号签放入一个不透明的袋子中,并 充分搅匀. 第四步,从袋子中逐个抽取5个号签,并记录上面的 编号. 第五步,所得号码对应的5架钢琴就是要抽取的对象. [一点通] 利用抽签法抽取样本时应注意以下问题: (1)编号时,如果已有编号(如学号、标号等)可不必重新 编号.(例如该题中这20架钢琴事先有号可不编号)
(2)读数时,编号为两位,两位读取,编号为三位,
则三位读取,如果出现重号,则跳过,接着读取.
(3)当题目所给的编号位数不一致时,不便于直接从
随机数表中读取,这时需要对号码作适当的调整使新编
号位数相同.
返回
5.从10个篮球中任取一个,检查其质量,用随机数法抽取 样本,则应编号为 A.1,2,3,4,5,6,7,8,9,10 B.-5,-4,-3,-2,-1,0,1,2,3,4 C.10,20,30,40,50,60,70,80,90,100 ( )
返回
2.实施步)准备“ 抽签 ”的工具,实施“ 抽签 ”; (3)对样本中每一个个体进行测量或调查.
返回
为了检验某种产品的质量,决定从120件产品中抽取10
件进行检验.检查人员先将120件产品标号为 001,002,003,…,120.然后从随机数表中的某一行、某一列 按某一方向读取,凡不在001~120中的数跳过去不读,前面 已经读过的数也跳过去不读,按照此规则直到取足样本为
返回
某班班长为了从班内50人中选出一人参加春季游园活动, 他将全班同学进行编号,然后将编号置于某一纸箱,搅匀后, 请学习委员从中任意抽出一个,确定出参加游园的人选.
问题1:班长的做法公平吗?
高一数学《概率与统计》
考点1:抽样方法一.随机抽样随机抽样:满足每个个体被抽到的机会是均等的抽样,共有三种经常采用的随机抽样方法:1.简单随机抽样:从元素个数为N 的总体中不放回地抽取容量为n 的样本,如果每一次抽取时总体中的各个个体有相同的可能性被抽到,这种抽样方法叫做简单随机抽样.简单随机抽样是最简单、最基本的抽样方法.⑴抽出办法:①抽签法:用纸片或小球分别标号后抽签的方法.②随机数表法:随机数表是使用计算器或计算机的应用程序生成随机数的功能生成的一张数表.表中每一位置出现各个数字的可能性相同.随机数表法是对样本进行编号后,按照一定的规律从随机数表中读数,并取出相应的样本的方法.⑵简单随机抽样必须具备下列特点:①简单随机抽样要求被抽取的样本的总体个数N 是有限的. ②简单随机样本数n 小于等于样本总体的个数N . ③简单随机样本是从总体中逐个抽取的. ④简单随机抽样是一种不放回的抽样.⑤简单随机抽样的每个个体被抽取的可能性均为nN.<教师备案>样本获取分为两种,一种是全面统计,一种是样本统计.全面统计的例子非常多,比如美国大选,每个州的选民都是通过投票选出每个州的负责人.也就是每个人都表达了自己的意见.再比如我们调查学生是海淀还是非海淀,我们也是给每个学生打了电话,访谈出结果,每个同学也都表达了自己的意见.再比如一些小事,像一群人中午的时候讨论去哪吃饭,每个人都可以说自己喜欢的地方.全面统计的好处在于无遗漏,数据准确无偏差,但是缺点也很明显,那就是非常的繁琐、麻烦.对于大数据的处理很无力,所以我们需要有样本统计. 样本统计的意义就是从一个大数据中抽取数据样本分析,通过对样本的分析来估计原数据的性质.于是首要的问题就是如何抽样.一个合理的抽样方法的基本要求是“平等”,也就是每个个体被抽取的可能性是相同的.比如我们发现,老师选出的学生代表很可能不能真正代表全体同学的意见,因为老师选取的一定是自己比较熟悉的学生,这类学生平时一定非常活跃.而对于一些比较内向,“存在感”比较低的同学来说,老师可能就不会关注,被选中的可能性就会降低.由此可以推知,人为的抽样一般是不靠谱的.再比如,现在很多的新闻都有网上的调查,有的媒体通过网上调查的数据来分析广大人民对新闻的反馈.这样的调查也是不靠谱的,因为网上调查反映出来的大多是经常上网的人的意见,而对于平时不上网的人就没有调查,所以这样的抽样也是不合理的.最常见的合理抽样方式是“抓阄”,这可以保证每个个体都能“等可能”的被选中.当然抓阄的方式有很多,比如很多时候我们不需要每个人都去抓一次,我们可以把每个人编一个号,然后由一个人来抽号就可以了.比如我们常见的彩票大致就是这个原理.不过需要注意的是彩票里面的等可能是对彩票是等可能的,对人不一样,因为一个人可以买很多彩票.6.1随机抽样知识点睛第6讲概率默统计类<教师备案>老师在讲完简单随机抽样后可以让学生做例1的【铺垫】⑴,本小题主要是让学生理解什么是总体,什么是个体,什么是样本容量,因为简单随机抽样比较简单,而且在后边要讲的系统抽样和分层抽样中都要用到,所以这里就不再详细讲解了.2.系统抽样:将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,由于抽样间隔相等,又被称为等距抽样.⑴抽出办法:从元素个数为N的总体中抽取容量为n的样本,如果总体容量能被样本容量整除,设Nkn=,先对总体进行编号,号码从1到N,再从数字1到k中随机抽取一个数s作为2(1)s k s k s n k+++-,,,个数,这样就得到容量为n的样本.如果总体容量不能被样本容量整除,可随机地从总体中剔除余数,然后再按系统抽样方法进行抽样.⑵系统抽样时,当总体个数N恰好是样本容量n的整数倍时,取Nkn=;若Nn不是整数时,先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量n的机会相等,因而整个抽样过程中每个个体被抽取的机会仍然相等为nN.<教师备案>随着数量的增大,抓阄的方式效率会比较低.当然,随着现在计算机的发展,数据量很大的时候也是可以通过“选号”的方式进行随机抽样.课本上提到的系统抽样其实现在已经不怎么使用了.不过作为传统意义下的抽样方法,我们还是有必要介绍一下.系统抽样的核心是“选出代表”,每个代表会直接代表一个群体的意见.系统抽样的方式分为两种,一种是横向抽样,也就是我们教科书上的抽样方式,这种例子非常多,比如军训的时候,可能我们出现过“一到三”报数,这样就把我们分成了“一”“二”“三”三个组,然后就可以随机选一个数“一”,然后所有的“一”就被选中了.同样的道理,我们对1000人,选取一个100人的样本,那么我们就需要把总数分成100组,每组10个人,然后让第一组的人抓阄(为的是随机抽样),比如“4”抓到,那么每一组的“4”就被选中了.另一种系统抽样的方式是“纵向抽样”,它出现的原理是这样的:原始的系统抽样方法会造成直观上的不公平.比如我们1000人里面选100人去叙利亚旅游,大家肯定都不愿意去,第一组的人抓阄之后,由于第一组的4号被选中,那么每一组的4号就都被选中了,其他组的4号会认为被第一组的4号连累,因为他们是“被”选中的.虽然从可能性上说,这没有道理,不过直观上确实有点“躺枪”的意思.于是人们改变了方式,也就是纵向系统抽样.比如现在我们还是1000人里面选100人去叙利亚,我们把所有人分成10组,每组100人,然后每组自行推举一个代表上台抓阄,被选中的人所在的组,整组都被选中.这样我们每个组都有人去抓阄,也就实现了直观上的公平.但是在可能性的角度,横向和纵向抽样都是“等可能”的,没有本质区别.<教师备案>老师在讲完系统抽样后就可以让学生做例1的铺垫⑵,例1⑵以及尖子班拓展⑵,这几个题都是系统抽样,老师可以选择几个让学生做做,不一定都让学生做,老师自己选择.3.分层抽样:当总体有明显差别的几部分组成时,要反映总体情况,常采用分层抽样,使总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样,这种抽样方法叫做分层抽样.分层抽样的样本具有较强的代表性,而且各层抽样时,可灵活选用不同的抽样方法,应用广泛.<教师备案>简单随机抽样(抓阄)和系统抽样都是绝对意义上的公平,但是分层抽样就是相对意义上的公平,因为我们人为的干扰了抽样的过程.不过现实意义之下我们统计数据必须进行分层,否则统计数据会闹出笑话.常见的一个就是我家房子10平米,后来搬过来一个邻居,房子面积是100平米,那么我家的生活状况有没有改变.实际上没有,但是统计数字可能告诉你,你们的平均面积增加了.现实生活中,很多的统计需要分层,比如统计收入水平的时候需要分不同的城市,统计生育问题的时候要分城市和农村,统计化妆品消费水平的时候要分性别等等.所以分层抽样就是为了保证每个层面上的公平性,我们按照每个层次占到总体的多少来分配选取的比例.这里老师可以开发更多的统计实例,一定要讲出现实意义来.<教师备案>老师在讲完分层抽样后可以让学生做例1的铺垫⑶,例1⑶以及目标班专用⑷,让学生熟练掌握分层抽样,因为在以后考试和北京高考中,三个抽样重点考察分层抽样.老师在讲完三个抽样后一定要让学生明白什么情况下用什么抽样,这个时候就可以让学生做例1⑴,尖子班拓展⑴.【铺垫】⑴为了了解参加运动会的2000名运动员的年龄情况,从中抽取100名运动员;就这个问题,下列说法中正确的有()个①2000名运动员是总体;②每个运动员是个体;③所抽取的100名运动员是一个样本;④样本容量为100;⑤每个运动员被抽到的概率相等A.1B.2C.3D.4⑵从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是()A.510152025,,,,B.313233343,,,,C.12345,,,,D.2461632,,,,⑶某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4B.5C.6D.7【解析】⑴ B;④⑤正确,①②③错误⑵ B;⑶ C;20(1020)640103020+⨯=+++.【例1】三种抽样⑴现有以下两项调查:①某装订厂装订图书36000册,要求检验员从中抽取500册图书,检查其装订质量状况;②某市有大型、中型与小型的商店共1500家,三者数量之比为1:5:9.为了调查全市商店每日零售额情况,抽取其中15家进行调查.完成①、②这两项调查宜采用的抽样方法依次是()A.简单随机抽样法,分层抽样法B.分层抽样法,简单随机抽样法C.分层抽样法,系统抽样法D.系统抽样法,分层抽样法⑵用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第1组中用抽签的方法确定的号码是.⑶某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为235∶∶.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有16件.那么此样本的容量n=.⑷(目标班专用)某校有500名学生,A型血的有125人,B型血的有125人,AB型血的有50人,为了研究血型与色弱有没有关系,要从中抽取一个20人的样本,按分层抽样,O型血应抽取的人数为人.【解析】⑴ D;①是系统抽样;②明显是分层抽样;⑵6;不妨设第1组抽出的号码为x,则第16组应抽出的号码是815126x⨯+=,∴6x=.⑶80;A种型号的产品占总体的比例是210,则样本容量1016802n=⨯=.⑷该学校O型血的人数为50012512550200---=,按照分层抽样的抽样比相等得:500:20200:x=,解得8x=,即O型血应抽取的人数为8人.经典精讲<教师备案>学习了抽样后,需要对收集的这些有代表性的样本数据进行研究,找出有用的信息,然后用这些样本来估计总体.这种估计一般分成两种,一种是用样本的频率分布估计总体的分布,另一种是用样本的数字特征估计总体的数字特征.用来估计的图表和方法有很多种,本版块在初中的基础上来学习频率分布直方图、茎叶图和方差.考点2:频率分布直方图1.列出样本数据的频率分布表和频率分布直方图的步骤: ①计算极差:找出数据的最大值与最小值,计算它们的差;②决定组距与组数:取组距,用极差组距决定组数;③决定分点:决定起点,进行分组;④列频率分布表:对落入各小组的数据累计,算出各小组的频数,除以样本容量,得到各小组的频率.⑤绘制频率分布直方图:以数据的值为横坐标,以频率组距的值为纵坐标绘制直方图,知小长方形的面积=组距×频率组距=频率.2.频率分布折线图:将频率分布直方图各个长方形上边的中点用线段连接起来,就得到频率分布折线图,一般把折线图画成与横轴相连,所以横轴左右两端点没有实际意义.3.总体密度曲线:样本容量不断增大时,所分组数不断增加,分组的组距不断缩小,频率分布直方图可以用一条光滑曲线()y f x =来描绘,这条光滑曲线就叫做总体密度曲线.总体密度曲线精确地反映了一个总体在各个区域内取值的规律.<教师备案>这里主要介绍的就是样本分析方法,直方图就是很重要的一种.其实直方图的形成过程就是把数据按大小排序,然后分段截取数据.实际生活中最常见的方法就是“画正字”,比如我们收到了一组数据是学生的跳绳次数,我们就可以把次数分成若干组,然后一个一个数据看落在了哪个组里,利用“画正字”的方式看出每组里有几个数,最后画出直方图.直方图的主要作用是看出数据的分布变化趋势,很容易表示大量数据,缺点是原始数据不能在图上表示出来.通过例2的学习,让学生可以由给出的频率分布直方图算出各组数据的频率和频数,理解横纵坐标代表的意义.频率分布折线图和总体密度曲线不需要深究,在频率分布直方图的基础上,简单介绍即可.【例2】 频率分布直方图⑴某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[]540,中,其频率分布直方图如图所示,则其抽样的100根中,长度在[)3035,内的频率为______,有______根棉花纤维的长度小于20mm .经典精讲知识点睛6.2用样本估计总体y 510152025303540长度(mm)0.010.020.030.040.050.06频率组距⑵(目标班专用)某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间, 将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;……第六组,成绩大于等于18秒且小于等于19秒.右图是按上述分组方法得到的频率分布直方图,设成绩小于17秒的学生人数占全班总人数的百分比为x ,成绩大于等于15秒且小于17秒的学生人数为y ,则从频率分布直方图中可分析出x 和y 分别为( )秒频率/组距1918171615141300.360.340.180.060.040.02A .0.9,35B .0.9,45C .0.1,35D .0.1,45【解析】 ⑴ 0.1,30;由频率分布直方图可得,长度在[)3035,内的频率为0.0250.1⨯=. 棉花纤维长度小于20mm 的频率为()0.010.010.0450.3++⨯=,则棉花纤维长度小于20mm 的频数为1000.330⨯=根.⑵ (目标班专用)A .考点3:茎叶图<教师备案>当样本数据较少时,可以用样本分析的另一个常用图表方法――茎叶图,这个图主要作用是两组数据的对比.一左一右很容易估计出两组数据的对比状况,而且茎叶图是把所有的数据都列出来,精确性上比直方图要好一点,但是对于数据特征的分析不如直方图直观.可以结合铺垫讲解知识点,并简单复习一下初中学过的中位数、平均数的概念.1.制作茎叶图的步骤:①将数据分为“茎”、“叶”两部分;②将最大茎与最小茎之间的数字按大小顺序排成一列,并画上竖线作为分隔线; ③将各个数据的“叶”在分界线的一侧对应茎处按一定次序同行列出.<教师备案>“按一定次序”一般是按大小顺序,也可以按统计数据的顺序.2.平均数:平均数是指在一组数据中所有数据之和再除以数据的个数.中位数:是指将统计总体当中的各个数据值按大小顺序排列起来,形成一个数列,处于数列中间位置的数据值就称为中位数.当数列的项数为奇数时,处于最中间位置的数据值即为中位数;当项数为偶数时,中位数则为处于中间位置的两个数据值的平均数.知识点睛8964553819261846172852乙甲54535251【铺垫】某班甲、乙两学生的高考备考成绩如下:甲:512554528549536556534541522538 乙:515558521543532559536548527531①用茎叶图表示两学生的成绩;②分别求两学生成绩的中位数和平均分. 【解析】 ①两学生成绩的茎叶图如图所示 ②将甲、乙两学生的成绩从小到大排列为: 甲:512522528534536538541549554556, 乙:515521527531532536543548558559. 从以上排列可知甲学生成绩的中位数为5365385372+=,乙学生成绩的中位数为5325365342+=.甲学生成绩的平均数为1222283436384149545650053710++++++++++=,乙学生成绩的平均数为1521273132364348585950053710++++++++++=.【例3】 茎叶图随机抽取某中学甲,乙两班各10名同学,测量他们的身高(单位:cm ),获得身高数据的茎叶图如图,则下列关于甲,乙两班这10名同学身高的结论正确的是( ) A .甲班同学身高在175以上的人数较多 B .甲班同学身高的中位数较大C .甲班同学身高的平均值较小D .甲、乙班同学身高的平均值一样大 【解析】 C ;甲班同学身高175以上的有3人,乙班有4人,故而A 错误.甲班同学身高的中位数为169,乙班同学身高的中位数为171.5.故而B 错误. 容易计算得知,=170x 甲,=171.1x 乙,故C 对.考点4:统计数据的数字特征<教师备案>分析样本数据时,我们已经学过了众数、中位数和平均数这些概念,它们都可以用来表示统计数据的特征信息,各有利弊.平均数是统计数据一个非常好的特征,它可以利用所有的样本数据,而且比较好算.也正因为平均数利用了所有的数据,所以它容易受到一些极端数据的影响.比如歌唱比赛时,去掉一个最高分和一个最低分,然后再平均,就是为了避免出现个别评委的极端喜恶,尽量体现评分的准确和公正性.再比如公布一个地区的家庭平均收入时,平均数也掩盖了一些极端情况的存在,而这些是不容忽视的.怎么样能反映这些极端情况呢,也就是数据的离散程度呢,从运算方便等各方面考虑,引入了方差或标准差来进行衡量.统计数据的数字特征1.用样本平均数估计总体平均数;用样本标准差估计总体标准差:经典精讲知识点睛乙班甲班98822388900191716159865311822.数据的离散程度可以用极差、方差或标准差来描述:⑴极差又叫全距,是一组数据的最大值和最小值之差,反映一组数据的变动幅度;⑵样本方差描述了一组数据围绕平均数波动的大小,样本的标准差是方差的算术平方根. 一般地,设样本的元素为12n x x x ,,,,样本的平均数为x , 定义样本方差为222212()()()n x x x x x x s n-+-++-=,样本标准差22212()()()n x x x x x x s n-+-++-=,简化公式:22222121()n s x x x nx n ⎡⎤=+++-⎣⎦.<教师备案>这部分其实没有真正的考察,现在最多也就是通过样本的特征直接套用在整体数据上.寒假班对方差只需要初步理解它存在的意义即可,对方差的直观理解放在春季同步班讲解.【例4】 方差甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表1s ,2s ,3s 分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( )甲的成绩乙的成绩 丙的成绩 环数 7 8 9 10 环数 7 8 9 10 环数 7 8 9 10 频数5555频数6446频数4664A .312s s s >>B .213s s s >>C .123s s s >>D .231s s s >>【解析】 B ;根据题中数据计算()()12117585951058.57684941068.52020x x =⨯+⨯+⨯+⨯==⨯+⨯+⨯+⨯=,,()317486961048.520x =⨯+⨯+⨯+⨯=,∴123x x x ==;()()()()22221178.5588.5598.55108.55 1.2520s ⎡⎤=-⨯+-⨯+-⨯+-⨯=⎣⎦, 同理得231.45 1.05s s ==, ∴213s s s >>.<教师备案>概率的定义是一个漫长的过程,最开始就是根据经验,对统计事实的认识.历史上对概率的理解可以分为三个阶段: 第一阶段:大量统计中发生的几率有 多大.比如很多数学家都玩过“扔硬币”这个游戏,而且还统计了结果,如图.大家发现,扔了很多很多次之后,结 果都差不多是正反面各占一半,所以大家认为硬币出正面的概率是50%.可能有人觉得这个做法很无聊,但是这只是概率的现象,是一个经典精讲6.3随机事件概率结果层面的东西,并不是概率的本质.不过现在计算机在估计概率的时候也是用这样的方法进行多次的实验,最终估计出一个结果.第二阶段:人们开始想一些复杂的问题.这里面著名的问题有两个,一个是赌徒分金问题(注:两个赌徒玩掷硬币,规定正面则甲加一分,反面则乙加一分,谁先得到16分谁就可以赢得一袋金币,现在进行到甲:乙=15:12,警察来了,说不让赌了,那么这些金币该怎么分.(【解析】按照15:1的比例分;假设警察没有来,则乙赢的概率为:11111222216⨯⨯⨯=,甲赢的概率为:111111111115222222222216+⨯+⨯⨯+⨯⨯⨯=,∴应该按照15:1的比例分金币),另一个问题是掷两个骰子,至少有一个6的概率(【解析】:1136).这些问题基本上是很难通过实验来得出结论,毕竟情景比较复杂,这就促使人们要从概率的理论角度入手解决.费马在概率的定义方面做出了杰出的贡献,因为他引入了“等可能”这个概念.就是我们需要先认同一些基本的“等可能”的条件,然后再由此出发考虑复杂情况.第三阶段:古典概型有弊端,因为古典概型的必然要求是要把一个事件分解成若干等可能的基本事件,不过有些问题中这件事是做不到的.比如打靶问题.所以才有了几何概型这个概念.之后随着函数论的发展,我们用函数基础定义概率的时候我们就有了新的概率理论.后续的离散型随机变量说的就是这个阶段的问题.建议老师在一开始教学的时候强化概率的直观解释.比如:掷硬币模型,再比如:猜黑白(俗称手心手背).其实这就是利用了概率均等的原理进行的.我们可以想一想,手心手背其实是很有效的一个等概率选取方式.另外,猜拳也是一个非常有效的等概率选取方式.这些概率其实挺难算的,不过我们可以让学生直观的理解概率的意义.同样的问题还有: 【趣题】1.甲乙两个人去公园,公园有10个景点,在这10个景点中两个人各自独立的选取5个,假定甲和乙同时出发,游览每一个景点的时间都是相同的,那么他们在最后一个景点相遇的概率是多少?【解析】下面有三种方法,老师在给学生讲本讲的时候可以讲法一,法二和法三供老师参考:法一:从概率意义的直观理解,考虑甲最后在的一个景点,乙最后在任何一个景点的可能性相同,恰好在甲所在的景点的概率为110.法二:甲最后一个景点为i 号景点的概率都为110,乙最后一个景点为i 号景点的概率也为110()12310i =,,,,故他们最后一个景点为同一个景点的概率为11110101010⨯⨯=.法三:他们参观景点的所有顺序有551010A A 种,每种参观景点的顺序出现的可能性相同,故在最后一个景点相遇的情况有1441099C A A ,故所求概率为1441099551010C A A 1A A 10=. 2.华约的自招考题:4个人传球,每个人都等概率的传给其他人,由甲开始第一次传球,设n 为传球次数,n 次传球后球在甲手里的概率记为n p ,问当n 趋向于无穷的时候,n p 趋向于多少?【解析】下面有两种方法,老师在给学生讲本题的时候可以讲法一,法二供老师参考:法一:从概率意义的直观理解,因为每个人都等可能的传给其他人,所以球在甲手里的概率为14,传n 次球后球在甲手里的概率依然为14.法二:记n A 表示事件“经过n 次传球后,球在甲手中”,12n =⋅⋅⋅,,则有()10P A =,()()()111n n n n n P A P A A P A A +++=+()()1113n n n P A A p +==-. 所以1n p +与n p 的关系式为()1113n n p p +=-,12n =⋅⋅⋅,,① 设11()3n n p p λλ++=-+,对比得14λ=-.于是①式可以变形为1111434n n p p +⎛⎫-=-- ⎪⎝⎭,从而14n p ⎧⎫-⎨⎬⎩⎭是公比为13-的等比数列,其首项为11144p -=-.故有1111443n n p -⎛⎫⎛⎫-=-⨯- ⎪ ⎪⎝⎭⎝⎭,111143n n p -⎡⎤⎛⎫=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,12n =⋅⋅⋅,, ② 由②可得1111lim lim 1434n n n n p -→∞→∞⎡⎤⎛⎫=--=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 另外还可以介绍一些概率不能直观解释的例子:比如生日悖论:世界上任取50个人,他们至少有两个人生日在同一天的概率是多少?请见下图(转自维基百科)由此可见,当取到23个人的时候,概率已经超过了50%,选取50人的时候,概率应该在95%左右.还有一个例子:乒乓球体育比赛中规定:如果双方得分是10:10,那么一方至少要得12分才能获胜,也就是至少比对方多两分.那么这种“延球”制相对于没有延球制度,到底是对强者更有利,还是帮助弱者有更大的机会翻身呢?(【解析】延球制度对强者更有利;假设强者很强,则再比赛一局有可能强者胜也有可能弱者胜,但是再比赛两局或者比赛无穷多局,肯定是强者赢的概率更大),这些其实都是通过直观解释概率比较复杂的问题. 接下来我们可以定义事件:考点5:随机事件的概率一.事件1.必然现象与随机现象必然现象是在一定条件下必然发生某种结果的现象;随机现象是在相同条件下,很难预料哪一种结果会出现的现象.例子:判断以下现象是否为随机现象知识点睛。
第1讲 随机抽样、常用统计图表
4.条形图、折线图及扇形图 (1)条形图:建立直角坐标系,用横轴(横轴上的数字)表示样本数据类 型,用纵轴上的单位长度表示一定的数量,根据每个样本(或某个范 围内的样本)的数量多少画出长短不同的等宽矩形,然后把这些矩形 按照一定的顺序排列起来,将这样一种表达和分析数据的统计图称为 条形图.
8
随机抽样、常用统计图表
15
随机抽样、常用统计图表
《高考特训营》 ·数学 返 回
2.[教材改编](多选题)某高中为了了解本校学生考 入大学一年后的学习情况,对本校上一年考入大学
的同学进行了调查,根据学生所属的专业类型,制
成饼图.现从这些同学中抽出100人进行进一步调 查,已知张三为理学专业,李四为工学专业,
-
使用“组中值”求平均数:x=121.5×0.1+123.5×0.15+125.5×0.4+
127.5×0.2+129.5×0.15=125.8.
14
随机抽样、常用统计图表
《高考特训营》 ·数学 返 回
[强基础·固知识] 1.[易错诊断]判断下列结论是否正确.(请在括号中打“√”或“×”) (1)在简单随机抽样中,每个个体被抽到的机会不一样,与先后顺序有 关.( × ) (2)采用随机数法抽取样本时,个体编号的位数可以不同.( × ) (3)在分层抽样的过程中,哪一层的样本越多,该层中个体被抽到的可 能性越大.( × ) (4)在频率分布直方图中,小长方形的面积越大,表示样本数据落在该 区间的频率越大.( √ )
ห้องสมุดไป่ตู้
《高考特训营》 ·数学 返 回
[梳知识·逐点清] 1.简单随机抽样 (1)定义:一般地,设一个总体含有N个个体,从中无放回地抽取n(n≤N) 个个体作为样本,如果总体内的各个个体被抽到的机会都___相__等_____, 就把这种抽样方法叫作简单随机抽样.这样抽取的样本,叫作简单随机 样本. (2)常用方法:_抽__签__法___和__随__机__数__法___.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章统计、统计案例第1讲随机抽样基础知识整合1.简单随机抽样(1)定义:设一个总体含有N n个个体作为样本(n≤N)这种抽样方法叫做简单随机抽样.(2)(3)抽签法与随机数法的区别与联系抽签法和随机数法都是简单随机抽样方法,但是抽签法适合在总体和样本都较少,容易搅拌均匀时使用,而随机数法除了适合总体和样本都较少的情况外,还适用于总体较多但是需要的样本较少的情况,这时利用随机数法能够快速地完成抽样.2.系统抽样的步骤假设要从容量为N的总体中抽取容量为n的样本.(1)先将总体的N(2)分段.当Nn是整数时,取k=Nn.(3)在第1l(l≤k).(4)按照一定的规则抽取样本.通常是将l加上间隔k得到第2个个体编号09(l+k),再加k得到第3本.3.分层抽样(1)定义:在抽样时,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(2)选用分层抽样.1.不论哪种抽样方法,总体中的每一个个体入样的概率是相同的.2.系统抽样是等距抽样,入样个体的编号相差Nn的整数倍.3.分层抽样是按比例抽样,每一层入样的个体数为该层的个体数乘以抽样比.1.(2019·四川资阳模拟)某班有男生36人,女生18人,用分层抽样的方法从该班全体学生中抽取一个容量为9的样本,则抽取的女生人数为() A.6 B.4C.3 D.2答案 C解析抽取的女生人数为9×18=3,故选C.36+182.对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则()A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3答案 D解析随机抽样包括:简单随机抽样、系统抽样和分层抽样.随机抽样的特点就是每个个体被抽到的概率都相等.故选D.3.(2019·海口调研)某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样方法,抽取4个班进行调查,若抽到的最小编号为3,则抽取的最大编号为()A.15 B.18C.21 D.22答案 C解析系统抽样的抽取间隔为244=6,若抽到的最小编号为3,则抽取到的最大编号为6×3+3=21.故选C.4.(2020·郑州摸底)某电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的一共有20000人,其中各种态度对应的人数如下表所示:的调查,为此要进行分层抽样,那么在分层抽样时,每类人中应抽选的人数分别为()A.25,25,25,25 B.48,72,64,16C.20,40,30,10 D.24,36,32,8答案 D解析因为抽样比为10020000=1200,所以每类人中应抽选的人数分别为4800×1200=24,7200×1200=36,6400×1200=32,1600×1200=8.故选D.5.(2019·广东省七校联考)假设要考察某公司生产的狂犬疫苗的剂量是否达标,现用随机数法从500支疫苗中抽取50支进行检验,利用随机数表抽取样本时,先将500支疫苗按000,001,…,499进行编号,若从随机数表第7行第8列的数开始向右读,则抽取的第3支疫苗的编号为________.(下面摘取了随机数表的第7行至第9行)84 42 17 53 3157 24 55 06 8877 04 74 47 6721 76 33 50 2583 92 12 06 7663 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 0744 39 52 38 7933 21 12 34 2978 64 56 07 8252 42 07 44 3815 51 00 13 4299 66 02 79 54答案068解析由题意,得从随机数表第7行第8列的数开始向右读,符合条件的前三个编号依次是331,455,068,故抽取的第3支疫苗的编号是068.核心考向突破考向一简单随机抽样例1(1)“七乐彩”的中奖号码是从分别标有1,2,…,30的30个小球中逐个不放回地摇出7个小球来按规则确定中奖情况,这种从30个号码中选7个号码的抽样方法是()A.系统抽样法B.抽签法C.随机数法D.其他抽样方法答案 B解析30个小球相当于号签,搅拌均匀后逐个不放回地抽取,是典型的抽签法.故选B.(2)(2019·江西名校模拟)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()C.02 D.01答案 D解析选出来的5个个体的编号依次是08,02,14,07,01,故选D.(1)简单随机抽样需满足:①被抽取的样本总体的个体数有限;②逐个抽取;③是不放回抽取;④是等可能抽取.(2)抽签法与随机数法的适用情况①抽签法适用于总体中个数较少的情况,随机数法适用于总体中个数较多的情况.②一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.[即时训练] 1.某中学开学后从高一年级的学生中随机抽取90名学生进行家庭情况调查,经过一段时间后再次从这个年级随机抽取100名学生进行学情调查,发现有20名同学上次被抽到过,估计这个学校高一年级的学生人数为()A.180 B.400 C.450 D.2000 答案 C解析设这个学校高一年级的学生人数约为x,则90x =20100,∴x=450.故选C.2.福利彩票“双色球”中红色球的号码可从编号为01,02,…,33的33个数中随机选取,某彩民利用下面的随机数表选取6个数作为6个红色球的号码,选取方法是从下列随机数表中第1行第6列的数字开始由左到右依次选取两个数字,则选出来的第6个红色球的号码为()C.02 D.17答案 C解析从随机数表第1行第6列的数字开始由左到右依次选取两个数字,则选出的6个红色球的号码依次为21,32,09,16,17,02,故选出的第6个红色球的号码为02.故选C.考向二分层抽样例2(1)(2019·江西新八校第二次联考)某学校高一年级1802人,高二年级1600人,高三年级1499人,现采用分层抽样的方法从中抽取98名学生参加全国中学生禁毒知识竞赛,则在高一、高二、高三三个年级中抽取的人数分别为() A.35,33,30 B.36,32,30C.36,33,29 D.35,32,31答案 B解析先将每个年级的人数凑整,得高一1800人,高二1600人,高三1500人,则三个年级的人数所占比例分别为1849,1649,1549,因此,各年级抽取人数分别为98×1849=36,98×1649=32,98×1549=30,故选B.(2)(2020·河南百校联盟仿真)2020年夏季来临,某品牌饮料举行夏季促销活动,瓶盖内部分别印有标识A“谢谢惠顾”、标识B“再来一瓶”以及标识C“品牌纪念币一枚”,每箱中印有A,B,C标识的饮料数量之比为3∶1∶2,若顾客购买了一箱(12瓶)该品牌饮料,则兑换“品牌纪念币”的数量为()A.2 B.4C.6 D.8答案 B解析根据题意,得“品牌纪念币一枚”的瓶数占总体的23+1+2=13,则一箱中兑换“品牌纪念币”的数量为13×12=4.分层抽样的步骤(1)将总体按一定标准分层.(2)计算各层的个体数与总体数的比,按各层个体数占总体数的比确定各层应抽取的样本容量.(3)在每一层进行抽样(可用简单随机抽样或系统抽样).[即时训练] 3.(2019·广西南宁二中6月份考试)如下饼图,某学校共有教师120人,从中选出一个30人的样本,其中被选出的青年女教师的人数为()A.12 B.6C.4 D.3答案 D解析青年教师的人数为120×30%=36,所以青年女教师为12人,故青年女教师被选出的人数为12×30=3.故选D.1204.(2019·河北五个一名校联盟第一次诊断)经调查,某市骑行共享单车的老年人、中年人、青年人的比例为1∶3∶6,用分层抽样的方法抽取了一个容量为n的样本进行调查,其中中年人人数为12,则n=()A.30 B.40C.60 D.80答案 B解析由题意,设老年人和青年人人数分别为x,y,由分层抽样,得x∶12∶y =1∶3∶6,解得x=4,y=24,则n=4+12+24=40,故选B.考向三系统抽样例3(1)(2019·全国卷Ⅰ)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是() A.8号学生B.200号学生C.616号学生D.815号学生答案 C=10.因为46解析根据题意,系统抽样是等距抽样,所以抽样间隔为1000100除以10余6,所以抽到的号码都是除以10余6的数,结合选项知应为616.故选C.(2)(2020·河南部分省示范性高中1月份联考)某学校为落实学生掌握社会主义核心价值观的情况,用系统抽样的方法从全校2400名学生中抽取30人进行调查.现将2400名学生随机地从1~2400进行编号,按编号顺序平均分成30组(1~80号,81~160号,…,2321~2400号),若第3组与第4组抽出的号码之和为432,则第6组抽到的号码为()A.416 B.432C.448 D.464答案 A解析设第n组抽到的号码是a n,则{a n}构成以80为公差的等差数列,所以a3=a1+80×2=160+a1,a4=a1+80×3=240+a1,所以a3+a4=2a1+80×5=432,解得a1=16,所以a6=16+80×5=416.故选A.(1)系统抽样适用于元素个数很多且均衡的总体,样本容量也较大.(2)各个个体被抽到的机会均等.(3)总体分组后,在起始部分抽样时采用的是简单随机抽样,一旦起始编号确定,其他编号也就确定了.(4)若总体容量不能被样本容量整除可以先从总体中随机地剔除几个个体,使总体容量能被样本容量整除.(5)样本容量是几就分几段,每段抽取一个个体.[即时训练] 5.将参加夏令营的600名学生按001,002,…,600进行编号.采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分别住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为()A.26,16,8 B.25,17,8C.25,16,9 D.24,17,9答案 B解析由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k(k∈N*)组抽中的号码是3+12(k-1).令3+12(k ,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k-1)≤495,-1)≤300,得k≤1034得1034<k≤42,因此第Ⅱ营区被抽中的人数是42-25=17;第Ⅲ营区被抽中的人数为50-25-17=8.故选B.6.(2019·湖北名校4月模拟)某学校从编号依次为01,02,…,90的90个学生中采用系统抽样(等间距抽样)的方法抽取一个样本,已知样本中来自相邻的两个组的学生的编号分别为14,23,则该样本中来自第四组的学生的编号为________.答案32解析样本间隔为23-14=9,则来自第一组的学生的编号为5,来自第四组的学生的编号为23+9=32.课时作业1.总体容量为524,若采用系统抽样法抽样,当抽样间隔为________时不需要剔除个体()A.3 B.4C.5 D.6答案 B解析当总体容量524能被抽样间隔整除时,不需要剔除个体,显然524能被4整除,不能被3,5,6整除.故选B.2.(2020·陕西榆林二中月考)某方便面生产线上每隔15分钟抽取一包进行检验,该抽样方法为①,从某中学的40名数学爱好者中抽取5人了解学习负担情况,该抽样方法为②,那么①和②分别为()A.①系统抽样,②分层抽样B.①分层抽样,②系统抽样C.①系统抽样,②简单随机抽样D.①分层抽样,②简单随机抽样答案 C解析由随机抽样的特征可知,①为等距抽样,是系统抽样;②是简单随机抽样,故选C.3.(2019.河南十校联考)有一批计算机,其编号分别为001,002,003, (112)为了调查计算机的质量问题,打算抽取4台入样.现在利用随机数表法抽样,在下面随机数表中选第1行第6个数“0”作为开始,向右读,那么抽取的第4台计算机的编号为()C.077 D.058答案 B解析依次可得到需要的编号是076,068,072,021,故抽取的第4台计算机的编号为021.4.(2019·衡水调研)某班共有学生54人,学号分别为1~54号,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号的同学在样本中,那么样本中还有一个同学的学号是()A.10 B.16C.53 D.32答案 B解析该系统抽样的抽样间距为42-29=13,故另一同学的学号为3+13=16.5.(2019·东北三校联考)某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3∶5∶7,现用分层抽样的方法抽出容量为n的样本,其中甲种产品有18件,则样本容量n=()A.54 B.90C.45 D.126答案 B解析依题意得33+5+7×n=18,解得n=90,即样本容量为90.6.(2019·临川模拟)某学校有体育特长生25人,美术特长生35人,音乐特长生40人,用分层抽样的方法从中抽取40人,则抽取的体育特长生、美术特长生、音乐特长生的人数分别为()A.10,14,16 B.9,13,18C.8,14,18 D.9,14,17答案 A解析抽取的体育特长生、美术特长生、音乐特长生的人数分别为2525+35+40×40=10,3525+35+40×40=14,4025+35+40×40=16.故选A.7.利用简单随机抽样,从n个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为13,则在整个抽样过程中,每个个体被抽到的概率为()A.14 B.13 C.514 D.1027答案 C解析根据题意,9n-1=13,解得n=28.故每个个体被抽到的概率为1028=514.8.(2019·惠州模拟)某工厂的一、二、三车间在12月份共生产了3600双皮靴,在出厂前检查这批产品的质量,决定采用分层抽样的方法进行抽取.若从一、二、三车间抽取的产品数分别为a,b,c,且2b=a+c,则二车间生产的产品数为() A.800 B.1000C.1200 D.1500答案 C解析因为2b=a+c,所以从二车间抽取的产品数占抽取产品总数的13,根据分层抽样的性质可知二车间生产的产品数占总数的13,即为3600×13=1200,故选C.9.某学校有教师1221人,现采用系统抽样方法抽取37人进行问卷调查,将1221名教师按1,2,3,4,…,1221随机编号,则抽取的37名教师中,编号落入区间[529,858]的人数为()A.12 B.11C.10 D.9答案 C解析将1221名教师按1,2,3,4,…,1221随机编号,则编号落入区间[529,858]的有330人.使用系统抽样方法从1221人中抽取37人,分段间隔为122137=33,所以抽取的37名教师中,编号落入区间[529,858]的人数为33033=10.故选C.10.某高中的三个兴趣小组的人数分布如下表(每名同学只参加一个小组):中按小组采用分层抽样的方法抽取60人,已知围棋组被抽出16人,则x的值为()A.30 B.60C.80 D.100 答案 B解析由题意,知1660+20=60240+x,解得x=60,故选B.11.(2019·河北衡水中学高一期中)某小学三年级有甲、乙两个班,其中甲班有男生30人、女生20人,乙班有男生25人、女生25人,现在需要各班按男女生分层抽取20%的学生进行某项调查,则两个班共抽取男生的人数是________.答案11解析根据题意,知两个班共抽取男生的人数为30×20%+25×20%=11.12.从编号为1,2,…,59,60的60个产品中,用系统抽样的方法抽取一个样本,已知样本中最大的两个编号为51,57,则第一个入样的编号为________.答案 3解析由最大的两个编号为51,57,知分段间隔为57-51=6,即共抽取了606=10个产品,设第一个入样的编号为x,则x+(10-1)×6=57,解得x=3.13.(2019·浙江五校联考)某报社做了一次关于“什么是新时代的雷锋精神”的调查,在A,B,C,D四个单位回收的问卷数依次成等差数列,且共回收1000份,因报道需要,再从回收的问卷中按单位分层抽取容量为150的样本,若在B 单位抽取30份,则在D单位抽取的问卷是________份.答案60解析由题意,设在A,B,C,D四个单位回收的问卷数分别为a1,a2,a3,a4,在D单位抽取的问卷数为n,则有30a2=1501000,解得a2=200,又a1+a2+a3+a4=1000,即3a2+a4=1000,∴a4=400,∴n400=1501000,解得n=60.14.(2020·厦门模拟)某校高三(2)班现有64名学生,随机编号为0,1,2,…,63,依编号顺序平均分成8组,组号依次为1,2,3,…,8.现用系统抽样方法抽取一个容量为8的样本,若在第1组中随机抽取的号码为5,则在第6组中抽取的号码为________.答案45解析依题意,分组间隔为64=8,因为在第1组中随机抽取的号码为5,所8以在第6组中抽取的号码为5+5×8=45.。