数值计算课后答案2

合集下载

(湖南大学-曾金平《数值计算方法》课后题答案)

(湖南大学-曾金平《数值计算方法》课后题答案)

1习题一1.设x>0相对误差为2%,4x的相对误差。

解:由自变量的误差对函数值引起误差的公式:(())(())'()()()()f x xf x f x xf x f xδδ∆=≈得(1)()f x=11()()*2%1%22x xδδδ≈===;(2)4()f x x=时444()()'()4()4*2%8%xx x x xxδδδ≈===2.设下面各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出他们各有几位有效数字。

(1)12.1x =;(2)12.10x =;(3)12.100x =。

解:由教材9P关于1212.m nx a a a bb b=±型数的有效数字的结论,易得上面三个数的有效数字位数分别为:3,4,53.用十进制四位浮点数计算(1)31.97+2.456+0.1352;(2)31.97+(2.456+0.1352)哪个较精确?解:(1)31.97+2.456+0.1352≈21((0.3197100.245610)0.1352)fl fl⨯+⨯+=2(0.3443100.1352)fl⨯+=0.3457210⨯(2)31.97+(2.456+0.1352)21(0.319710(0.245610))fl fl≈⨯+⨯= 21(0.3197100.259110)fl⨯+⨯=0.3456210⨯易见31.97+2.456+0.1352=0.345612210⨯,故(2)的计算结果较精确。

4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少?2解:设该正方形的边长为x,面积为2()f x x=,由(())(())'()()()()f x xf x f x xf x f xδδ∆=≈解得(())()()'()f x f xxxf xδδ≈=2(())(())22f x x f xx xδδ==0.5%5.下面计算y的公式哪个算得准确些?为什么?(1)已知1x<<,(A)11121xyx x-=-++,(B)22(12)(1)xyx x=++;(2)已知1x>>,(A)y=,(B)y=;(3)已知1x<<,(A)22sin xyx=,(B)1cos2xyx-=;(4)(A)9y=(B)y=解:当两个同(异)号相近数相减(加)时,相对误差可能很大,会严重丧失有效数字;当两个数相乘(除)时,大因子(小除数)可能使积(商)的绝对值误差增大许多。

数值计算方法课后习题答案

数值计算方法课后习题答案

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

数值计算方法与算法第三版课后习题答案

数值计算方法与算法第三版课后习题答案

数值计算方法与算法第三版课后习题答案1. 矩阵乘法问题描述给定两个矩阵A和B,尺寸分别为n×m和m×p,求矩阵A 和矩阵B的乘积矩阵C,尺寸为n×p。

算法实现import numpy as npdef matrix_multiplication(A, B):n, m = A.shapem, p = B.shapeC = np.zeros((n, p))for i in range(n):for j in range(p):for k in range(m):C[i][j] += A[i][k] * B[k][j] return C示例A = np.array([[1, 2], [3, 4]])B = np.array([[5, 6], [7, 8]])C = matrix_multiplication(A, B)print(C)输出结果:[[19. 22.][43. 50.]]2. 数值积分问题描述给定一个函数f(x),以及积分区间[a, b],求函数f(x)在区间[a, b]上的定积分值∫abf(x)dx。

算法实现简单的数值积分算法是采用小梯形法,将区间[a, b]均分成n个子区间,然后计算每个子区间的面积,最后将这些子区间面积相加得到定积分值。

def numerical_integration(f, a, b, n):h = (b - a) / nintegral =0for i in range(n):x1 = a + i * hx2 = a + (i +1) * hintegral += (f(x1) + f(x2)) * h /2 return integral示例import mathf =lambda x: math.sin(x)a =0b = math.pin =100result = numerical_integration(f, a, b, n) print(result)输出结果:1.99983550388744363. 非线性方程求解问题描述给定一个非线性方程f(x) = 0,求方程的根x。

数值计算方法课后习题答案(李庆扬等) (修复的)

数值计算方法课后习题答案(李庆扬等) (修复的)

,。

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x xx x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

数值计算方法习题答案(第二版)(绪论)

数值计算方法习题答案(第二版)(绪论)

数值分析(p11页)4 试证:对任给初值x 0,0)a >的牛顿迭代公式112(),0,1,2,......k ak k x x x k +=+= 恒成立下列关系式:2112(1)(,0,1,2,....(2)1,2,......kk k x k x x k x k +-=-=≥=证明:(1)(21122k k k k k kx a x x x x +-⎫⎛-=+==⎪ ⎝⎭(2) 取初值00>x ,显然有0>k x ,对任意0≥k ,a a x a x x a x x k k k k k ≥+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛+=+2121216 证明:若k x 有n 位有效数字,则n k x -⨯≤-110218, 而()k k k k k x x x x x 288821821-=-⎪⎪⎭⎫⎝⎛+=-+ nnk k x x 2122110215.22104185.28--+⨯=⨯⨯<-∴>≥ 1k x +∴必有2n 位有效数字。

8 解:此题的相对误差限通常有两种解法. ①根据本章中所给出的定理:(设x 的近似数*x 可表示为m n a a a x 10......021*⨯±=,如果*x 具有l 位有效数字,则其相对误差限为()11**1021--⨯≤-l a x x x ,其中1a 为*x 中第一个非零数)则7.21=x ,有两位有效数字,相对误差限为025.010221111=⨯⨯≤--x x e 71.22=x ,有两位有效数字,相对误差限为025.010221122=⨯⨯≤--x x e 3 2.718x =,有两位有效数字,其相对误差限为:00025.010221333=⨯⨯≤--x e x ②第二种方法直接根据相对误差限的定义式求解 对于7.21=x ,0183.01<-e x∴其相对误差限为00678.07.20183.011≈<-x e x 同理对于71.22=x ,有003063.071.20083.022≈<-x e x 对于718.23=x ,有00012.0718.20003.033≈<-x e x备注:(1)两种方法均可得出相对误差限,但第一种是对于所有具有n 位有效数字的近似数都成立的正确结论,故他对误差限的估计偏大,但计算略简单些;而第二种方法给出较好的误差限估计,但计算稍复杂。

《数值计算方法》课后题答案(湖南大学-曾金平)

《数值计算方法》课后题答案(湖南大学-曾金平)

习题一1.设x >0相对误差为2%,4x 的相对误差。

解:由自变量的误差对函数值引起误差的公式:(())(())'()()()()f x xf x f x x f x f x δδ∆=≈得(1)()f x =11()()*2%1%22x x δδδ≈===;(2)4()f x x =时444()()'()4()4*2%8%x x x x x xδδδ≈===2.设下面各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出他们各有几位有效数字。

(1)12.1x =;(2)12.10x =;(3)12.100x =。

解:由教材9P 关于1212.m nx a a a bb b =±型数的有效数字的结论,易得上面三个数的有效数字位数分别为:3,4,53.用十进制四位浮点数计算 (1)31.97+2.456+0.1352; (2)31.97+(2.456+0.1352)哪个较精确?解:(1)31.97+2.456+0.1352 ≈21((0.3197100.245610)0.1352)fl fl ⨯+⨯+ =2(0.3443100.1352)fl ⨯+=0.3457210⨯(2)31.97+(2.456+0.1352)21(0.319710(0.245610))fl fl ≈⨯+⨯ = 21(0.3197100.259110)fl ⨯+⨯ =0.3456210⨯易见31.97+2.456+0.1352=0.210⨯,故(2)的计算结果较精确。

4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少?解:设该正方形的边长为x ,面积为2()f x x =,由(())(())'()()()()f x xf x f x x f x f x δδ∆=≈解得(())()()'()f x f x x xf x δδ≈=2(())(())22f x x f x x xδδ==0.5%5.下面计算y 的公式哪个算得准确些?为什么?(1)已知1x <<,(A )11121xy x x-=-++,(B )22(12)(1)x y x x =++; (2)已知1x >>,(A )y=,(B )y =; (3)已知1x <<,(A )22sin x y x =,(B )1cos 2xy x-=;(4)(A)9y =(B )y =解:当两个同(异)号相近数相减(加)时,相对误差可能很大,会严重丧失有效数字;当两个数相乘(除)时,大因子(小除数)可能使积(商)的绝对值误差增大许多。

数值计算课后习题答案

数值计算课后习题答案

习 题 一 解 答1.取3.14,3.15,227,355113作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。

分析:求绝对误差的方法是按定义直接计算。

求相对误差的一般方法是先求出绝对误差再按定义式计算。

注意,不应先求相对误差再求绝对误差。

有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。

有了定理2后,可以根据定理2更规范地解答。

根据定理2,首先要将数值转化为科学记数形式,然后解答。

解:(1)绝对误差:e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。

相对误差:3()0.0016()0.51103.14r e x e x x-==≈⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。

而π-3.14=3.14159265…-3.14=0.00159…所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311101022--⨯=⨯所以,3.14作为π的近似值有3个有效数字。

(2)绝对误差:e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。

相对误差:2()0.0085()0.27103.15r e x e x x--==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。

而π-3.15=3.14159265…-3.15=-0.008407…所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211101022--⨯=⨯所以,3.15作为π的近似值有2个有效数字。

(3)绝对误差:22() 3.14159265 3.1428571430.0012644930.00137e x π=-=-=-≈-相对误差:3()0.0013()0.4110227r e x e x x--==≈-⨯有效数字:因为π=3.14159265...=0.314159265 (10)22 3.1428571430.3142857143107==⨯,m=1。

数值分析答案第二章参数估计习题

数值分析答案第二章参数估计习题
数值分析答案第二章参数估计习题数值分析习题解答数值分析课后习题答案参数估计练习题数值分析习题参数估计习题参数估计习题及答案数值分析习题解答pdf数值分析习题集及答案数值分析习题答案
f(x)= () { > − ex λ ) λ 0λ ( x解: λe , x ≥ 0
第二章 参数估计 1.设母体X具有负指数分布,它的分布密度 −λ x 为 λe , x ≥ 0 f(x)= 0, x < 0 其中 λ > 0 。试用矩法求的估计量。 解:x e(λ ) f(x)=
0
1
θ −1
dx =
θ θ +1
X 估计EX
X ∴θ = 1− X
1 e 5.设母体X的密度为 f ( x) = 2σ

x
σ
, −∞ < x < ∞
试求 σ 的最大似然估计;并问所得估计量是 否的无偏估计. ∑x x n 解: n 1 −σ 1 n − σ
i
L = ∏ f ( xi ) = ∏
i =1 i =1
ln L = n ln θ + (θ − 1)∑ ln xi
i
0, 其他 n
i =1
( θ >0 )
n i =1
d ln L n ^= − n = + ∑ ln xi = 0,∴θ θ i dθ ∑ ln xi
i
2矩法估计
EX =

X 用估计EX
+∞
−∞
∫ x ⋅ f ( x)dx = ∫ x ⋅θ ⋅ x
2
给定置信概率1−α 即
P ( x − uα
2
σ/ n
,有 uα ,使
2
P{ u ≤ uα } = 1 − α

数值计算方法(宋岱才版)课后答案

数值计算方法(宋岱才版)课后答案

第一章 绪论一 本章的学习要求(1)会求有效数字。

(2)会求函数的误差及误差限。

(3)能根据要求进行误差分析。

二 本章应掌握的重点公式(1)绝对误差:设x 为精确值,x *为x 的一个近似值,称e x x **=-为x *的绝对误差。

(2)相对误差:r e e x***=。

(3)绝对误差限:e x x ε***==-。

(4)相对误差限:r x x xxεε*****-==。

(5)一元函数的绝对误差限:设一元函数()()()0,df f x f x dx εε***⎛⎫==⋅ ⎪⎝⎭则。

(6)一元函数的相对误差限:()()1r df f x dx f εε****⎛⎫=⋅ ⎪⎝⎭。

(7)二元函数的绝对误差限:设一元函数()()(),0,f f x y f y y εε***⎛⎫∂==⋅ ⎪∂⎝⎭则。

(8)二元函数的相对误差限:()()()1r f f f x y x y f εεε******⎡⎤⎛⎫∂∂⎛⎫⎢⎥=⋅+⋅ ⎪ ⎪∂∂⎝⎭⎢⎥⎝⎭⎣⎦。

三 本章习题解析1. 下列各数都是经过四舍五入得到的近似值,(1)试指出它们有几位有效数字,(2)分别估计1123A X X X ***=及224X A X **=的相对误差限。

12341.1021,0.031,385.6,56.430x x x x ****====解:(1)1x *有5位有效数字,2x *有2位有效数字,3x *有4位有效数字,4x *有5位有效数字。

(2)1111123231312123,,,,A A AA x x x x x x x x x x x x ∂∂∂====∂∂∂由题可知:1A *为1A 的近似值,123,,x x x ***分别为123,,x x x 近似值。

所以()()111rA A Aεε***=()()()12311111123A A A x x x A X X X εεε*******⎡⎤⎢⎥=++⎢⎥⎢⎥⎣⎦⎛⎫⎛⎫⎛⎫∂∂∂ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭43123131212311111010100.215222x x x x x x x x x **-**-**-***⎡⎤=⨯⨯+⨯⨯+⨯⨯=⎢⎥⎣⎦()222222424441,,,X A Ax A X x x x x ∂∂===-∂∂则有同理有2A *为2A 的近似值,2x *,4x *为2x ,4x 的近似值,代入相对误差限公式:()()222rA A Aεε***=()()24212224A A X X A X X εε*****⎡⎤⎢⎥=+⎢⎥⎢⎥⎣⎦⎛⎫⎛⎫∂∂ ⎪ ⎪∂∂⎝⎭⎝⎭()33542224411*********X X X X X **--***⎡⎤⎢⎥=⨯⨯+⨯⨯=⎢⎥⎣⎦2. 正方形的边长大约为100cm ,怎样测量才能使其面积误差不超过21cm ? 解:设正方形的边长为x ,则面积为2S x =,2dsx dx=,在这里设x *为边长的近似值,S *为面积的近似值:由题可知:()()1ds s x dx εε***=≤⎛⎫ ⎪⎝⎭即:()21x x ε**⋅≤ 推出:()10.005200xcm ε*≤=。

数值计算课后规范标准答案2

数值计算课后规范标准答案2

习 题 二 解 答1.用二分法求方程x 3-2x 2-4x-7=0在区间[3,4]内的根,精确到10-3,即误差不超过31102-⨯。

分析:精确到10-3与误差不超过10-3不同。

解:因为f(3)=-10<0,f(4)=9>0,所以,方程在区间[3,4]上有根。

由34311*1022222n n n n n n b a b a x x -----≤===<⨯ 有2n-1>1000,又为210=1024>1000, 所以n =11,即只需要二分11次即可。

x *≈x 11=3.632。

指出:(1)注意精确度的不同表述。

精确到10-3和误差不超过10-3是不同的。

(2)在计算过程中按规定精度保留小数,最后两次计算结果相同。

如果计算过程中取4位小数,结果取3位,则如下表:(3)用秦九韶算法计算f(x n )比较简单。

1*.求方程x 3-2x 2-4x-7=0的隔根区间。

解:令32247y x x x =---, 则2344322()()y x x x x '=--=+-当23443220()()y x x x x '=--=+-=时,有12223,x x =-=。

函数单调区间列表分析如下:因为214902150327(),()y y -=-<=-<,所以方程在区间223(,)-上无根; 因为21490327()y -=-<,而函数在23(,)-∞-上单调增,函数值不可能变号,所以方程在该区间上无根;因为2150()y =-<,函数在(2,+∞)上单调增,所以方程在该区间上最多有一个根,而(3)=-10<0,y(4)=9>0,所以方程在区间(3,4)有一个根。

所以,该方程有一个根,隔根区间是(3.4)。

2.证明1sin 0x x --=在[0,1]内有一个根,使用二分法求误差不大于41102-⨯的根,需要迭代多少次?分析:证明方程在指定区间内有一个根,就是证明相应的函数在指定区间有至少一个零点。

天津大学《数值计算方法》在线作业二答案

天津大学《数值计算方法》在线作业二答案
7.反幂法是用来求矩阵()特征值及相应特征向量的一种向量迭代法。
A.按模最大
B.按模最小
C.全部
D.任意一个
?
正确答案:B
8. ()是利用函数的值求自变量的值。
A.三次样条插值
B.反插值
C.分段插值
D.爱尔米特插值
?
正确答案:B
9. A.
B.
C.
D.
?
正确答案:B
10.梯形公式是求解常微分方程的()阶方法。
《数值计算方法》在线作业二
一,单选题
1. A. 1
B. 2
C. 0
D. 3
?
正确答案:A
2.设f(-1)=1,f(0)=3,f(2)=4,则抛物插值多项式中x2的系数为()。
A. -0.5
B. 0.5
C. 2
D. -2
?
正确答案:A
3.求解一阶常微分方程初值问题的梯形公式为()步法。
A.多
B. 2
C. 3
A.错误
B.正确
?
正确答案:A
8.高斯-塞德尔迭代法一定比雅可比迭代法收敛快。()
A.错误
B.正确
?
正确答案:A
9. A.错误
B.正确
?
正确答案:A
10.逐次超松弛迭代法是高斯-赛.正确
?
正确答案:B
A. 2
B. 4
C. 3
D. 5
?
正确答案:A
二,判断题
1.梯形方法是一种隐式的多步法。()
A.错误
B.正确
?
正确答案:A
2.求解微分方程初值问题的向后Euler法是隐式方法。()
A.错误
B.正确

现代数值计算方法习题解答

现代数值计算方法习题解答

现代数值计算方法习题答案习 题 一1、解:根据绝对误差限不超过末位数的半个单位,相对误差限为绝对误差限除以有效数字本身,有效数字的位数根据有效数字的定义来求.因此49×10-2:E = 0.005; r E= 0.0102; 2位有效数字. 0.0490 :E = 0.00005;r E = 0.00102; 3位有效数字. 490.00 :E = 0.005; r E = 0.0000102;5位有效数字. 2、解:722= 3.1428 …… , π = 3.1415 …… ,取它们的相同部分3.14,故有3位有效数字.E= 3.1428 - 3.1415 = 0.0013 ;r E = 14.3E = 14.30013.0 = 0.00041. 3、解:101的近似值的首位非0数字1α= 1,因此有 |)(*x E r |)1(10121−−××=n < = 21× 10-4, 解之得n > = 5,所以 n = 5 . 4、证:)()(1)()(1)(*11**11**x x x nx E x n x E n n n−=≈−−)(11)()(1)()(*****11****x E nx x x n x x x x nx x E x E r nnnn n r =−=−≈=− 5、解:(1)因为=204.4721…… , 又=)(*x E |*x x −| = |47.420−| = 0.0021 < 0.01, 所以 =*x4.47. (2)20的近似值的首位非0数字1α = 4,因此有|)(*x E r |)1(10421−−××=n < = 0.01 , 解之得n > = 3 .所以,=*x 4.47. 6、解:设正方形的边长为x ,则其面积为2x y =,由题设知x 的近似值为*x = 10 c m .记*y 为y 的近似值,则)(20)(20)(2)(*****x E x x x x x y E =−=−= < = 0.1,所以)(*x E< = 0.005 c m . 7、解:因为)()(*1x x nx x E n n −≈−,所以n x nE x x x n xx E x E r nn nr 01.0)()()(*==−≈=. 8、解:9、证:)()()(**t gtE t t gt S S S E =−≈−=t t E gt t t gt S S S S E r )(22/)()(2**=−≈−= 由上述两式易知,结论. 10、解:代入求解,经过计算可知第(3)个计算结果最好.11、解:基本原则为:因式分解,分母分子有理化、三角函数恒等变形…… (1)通分;(2)分子有理化;(3)三角函数恒等变形.12、解: 因为20=x ,41.1*0=x ,所以|*00x x −| < = δ=×−21021于是有|*11x x −| = |110110*00+−−x x | = 10|*00x x −| < =δ10|*22x x −| = |110110*11+−−x x | = 10|*11x x −| < =δ210类推有 |*1010x x −| < =810102110×=δ 即计算到10x ,其误差限为δ1010,亦即若在0x 处有误差限为δ,则10x 的误差将扩大1010倍,可见这个计算过程是不稳定的.习 题 二1、 解:只用一种方法. (1)方程组的增广矩阵为:−−−−11114423243112M M M → −−−−1010411101110112M M M →−−−11041001110112M M M → 31=x , 12=x , 13=x . (2)方程组的增广矩阵为:−−−−−−017232221413M M M → −−247210250413M M M → −−147200250413M M M → 21=x , 12=x, 2/13=x . (3)适用于计算机编程计算.2、 解:第一步:计算U 的第一行,L 的第一列,得611=u 212=u 113=u 114−=u3/1/112121==u a l 6/1/113131==u a l 6/1/114141−==u a l第二步:计算U 的第二行,L 的第二列,得3/1012212222=−=u l a u 3/213212323=−=u l a u 3/114212424=−=u l a u 5/1/)(2212313232=−=u u l a l 10/1/)(2212414242=−=u u l a l第三步:计算U 的第三行,L 的第三列,得10/37233213313333=−−=u l u l a u 10/9243214313434−=−−=u l u l a u 37/9/)(33234213414343−=−−=u u l u l a l第四步:计算U 的第四行,得370/9553443244214414444−=−−−=u l u l u l a u从而,−−−−3101141101421126 =−−137/910/16/1015/16/10013/10001−−−370/95500010/910/37003/13/23/1001126 由b LY =, 解得Y =(6,-3,23/5,-955/370)T . 由Y UX = , 解得X =(1,-1,1,-1)T . 3、(1)解:首先检验系数矩阵的对称正定性,这可以通过计算其各阶顺序主子式是否大于零来判断. 11a = 3 > 0,2223= 2 > 0, 301022123 = 4 > 0,所以系数矩阵是对称正定的.记系数矩阵为A ,则平方根法可按如下三步进行:第一步 分解:A = L L T . 由公式计算出矩阵的各元素:311=l 33221=l 3622=l 3331=l 3632−=l 233=l 因此, L =−23633036332003. 第二步 求解方程组LY = b . 解得Y = (335,36,2)T . 第三步 求解方程组L T X = Y . 解得X =(0,2,1)T .(2)解:首先检验系数矩阵的对称正定性,这可以通过计算其各阶顺序主子式是否大于零来判断.11a = 3 > 0,2223= 2 > 0, 1203022323 = 6 > 0,所以系数矩阵是对称正定的.记系数矩阵为A ,则平方根法可按如下三步进行:第一步 分解:A = L L T . 由公式计算出矩阵的各元素:311=l 33221=l 3622=l 331=l 632−=l 333=l因此, L =−363036332003 . 第二步 求解方程组LY = b . 解得Y = (335,66−,33)T. 第三步 求解方程组L T X = Y . 解得X = (1,21,31)T. 4、解: 对1=i , 2111==a d ;对2=i , 121−=t , 2121−=l ,252−=d ; 对3=i , 131=t , 2732=t ,2131=l , 5732−=l ,5273=d .所以数组A 的形式为:−−−=527572102521002A 求解方程组LY = b . 解得Y = (4,7,569)T .求解方程组DL T X = Y . 解得X = (910,97,923)T .5、解:(1)设A = LU =1010000000000010010015432l l l l5432106000000000600006006u u u u u 计算各元素得: 51=u ,512=l , 1952=u , 1953=l , 19653=u , 65194=l , 652114=u , 211655=l , 2116655=u .求解方程组LY = d . 解得Y = (1,51−,191,651−,211212)T.求解方程组UX = Y . 解得X = (6651509,6651145,665703,665395−,665212)T.(2)设A = LU =100100132l l3211001u u u 计算各元素得:51=u ,512=l ,5242=u ,2453=l ,241153=u . 求解方程组LY = d . 解得Y = (17,553,24115)T. 求解方程组UX = Y . 解得X = (3,2,1)T . 6、证:(1)(2)相同. 因为此方程组的系数矩阵为严格对角占优矩阵,所以雅可比迭代法和相应的高斯-赛德尔迭代法都收敛. (1)雅可比迭代公式:7107271)(3)(2)1(1+−−=+k k k x x x14141)(3)(1)1(2+−−=+k k k x x x329292)(2)(1)1(3+−−=+k k k x x x高斯-赛德尔迭代公式:7107271)(3)(2)1(1+−−=+k k k x x x14141)(3)1(1)1(2+−−=++k k k x x x329292)1(2)1(1)1(3+−−=+++k k k x x x(2)雅可比迭代公式:545152)(3)(2)1(1+−=+k k k x x x 525351)(3)(1)1(2++−=+k k k x x x 5115152)(2)(1)1(3++=+k k k x x x 高斯-赛德尔迭代公式:545152)(3)(2)1(1+−=+k k k x x x 525351)(3)1(1)1(2++−=++k k k x x x5115152)1(2)1(1)1(3++=+++k k k x x x7、(1)证:因为此方程组的系数矩阵为严格对角占优矩阵,所以雅可比迭代法和相应的高斯-赛德尔迭代法都收敛。

数值计算课后全部答案(整合)

数值计算课后全部答案(整合)

目录第一章-----------------------------------------1 第二章-----------------------------------------4 第三章-----------------------------------------9 第四章-----------------------------------------15 第五章-----------------------------------------20 第六章-----------------------------------------27 第七章-----------------------------------------30第一章数值计算中的误差习题一1.1 下列各近似数的绝对误差限是最末位的半个单位,试指出它们各有几位有效数字。

1x =-3.105 , 2x =0.001, 3x =0.100, 4x =253.40, 5x =5000, 6x =5⨯310.答案:4,1,3,6,4,1.1.2 设100>*x >10,x 是*x 的有五位有效数字的的近似数,求x 的绝对误差限。

答案:当10<x<100时,因为有5位有效数字,所以绝对误差限为0.005. 1.3 求下列各近似数的相对误差限和有效数字位数: 1) 123x x x ++,2) 124x x x 3) 24x x 答案:()10.0005e x ≤()20.0005e x ≤()30.0005e x ≤ ()40.005e x ≤ ()50.5e x ≤ ()60.5e x ≤1)()()()()123123e x x x e x e x e x ++=++≤()()()123e x e x e x ++3221.5100.15100.510---≤⨯=⨯≤⨯2123()0.1510x x x ε-++=⨯123123123()()0.0004993...0.0004994r x x x e x x x x x x ε++++==≤++123x x x ++=-3.004 精确到小数点后两位,所以有三位有效数字。

数值计算方法答案第2版 Doc2

数值计算方法答案第2版 Doc2

Generated by Foxit PDF Creator © Foxit Software http://www.foxiห้องสมุดไป่ตู้ For evaluation only.
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
Generated by Foxit PDF Creator © Foxit Software For evaluation only.

数值计算方法丁丽娟课后习题答案

数值计算方法丁丽娟课后习题答案

数值计算方法丁丽娟课后习题答案【篇一:北京理工大学数值计算方法大作业数值实验1】)书p14/4分别将区间[?10,10]分为100,200,400等份,利用mesh或surf命令画出二元函数的三维图形。

z=|??|+ ??+?? +??++??【matlab求解】[x,y]=meshgrid(-10:0.1:10);a=exp(-abs(x));b=cos(x+y);c=1./(x.^2+y.^2+1);z=a+b+c;mesh(x,y,z);[x,y]=meshgrid(-10:0.05:10);a=exp(-abs(x));b=cos(x+y);c=1./(x.^2+y.^2+1);z=a+b+c;mesh(x,y,z);[x,y]=meshgrid(-10:0.025:10); a=exp(-abs(x));b=cos(x+y);c=1./(x.^2+y.^2+1);z=a+b+c;mesh(x,y,z);(二)书p7/1.3.2数值计算的稳定性(i)取= ??c语言程序—不稳定解 +=ln1.2,按公式=?? (n=1,2,…) #includestdio.h#includeconio.h#includemath.hvoid main(){float m=log(6.0)-log(5.0),n;int i;i=1;printf(y[0]=%-20f,m); while(i20){n=1/i-5*m;printf(y[%d]=%-20f,i,n);m=n;i++;if (i%3==0) printf(\n); }getch();}(ii) c语言程序—稳定解≈??[ ??+?? +?? ??+??按公式 =??(??)#includestdio.h#includeconio.h#includemath.hvoid main(){float m=(1/105.0+1/126.0)/2,n; k=n,n-1,n-2,…)(【篇二:北京理工大学数值计算方法大作业数值实验4】 p260/1考纽螺线的形状像钟表的发条,也称回旋曲线,它在直角坐标系中的参数方程为= ?????????????????? ?? ??????????= ?????????????? ??曲线关于原点对称,取a=1,参数s的变化范围[-5,5],容许误差限分别是,,和。

数值计算方法课后习题答案吕同富

数值计算方法课后习题答案吕同富

数值计算方法课后习题答案吕同富【篇一:《数值计算方法》(二)课程教学大纲】txt>课程编号: l124008课程类别:专业必修学分数: 3 学时数:48 适用专业:信息与计算科学应修(先修)课程:数学分析、高等代数一、本课程的地位和作用数值分析(二)为数值分析课程的第二部分,它是信息与计算科学专业的一门专业必修课。

主要内容包括函数最佳逼近、数值积分、数值微分、常微分方程数值解法。

通过本课程的学习,学生将初步具备用计算机去有效地解决实际问题的能力。

二、本课程的教学目标通过本课程的学习,使学生了解和掌握求解函数最佳逼近、数值积分、数值微分、常微分方程等问题所涉及的各种常用的数值计算方法、数值方法的构造原理及适用范围。

本课程坚持理论与实践教学并重的原则,理论上主要讲述求解函数最佳逼近、数值积分、数值微分、常微分方程等问题的基本理论和基本方法。

与此同时,通过上机实验加深学生对各种计算方法的理解,为今后用计算机去有效地解决实际问题打下基础。

三、课程内容和基本要求(“*”记号标记难点内容,“▽”记号标记重点内容,“▽*”记号标记既是重点又是难点的内容)第六章函数最佳逼近 1.教学基本要求(1)理解:几类常用的正交多项式。

(2)掌握:最佳一致逼近和最佳平方逼近。

(3)掌握:曲线拟合的最小二乘法。

2.教学内容(1)*正交多项式。

(2)▽*最佳一致逼近。

(3)▽最佳平方逼近。

(4)正交多项式的逼近性质。

(5)▽曲线拟合的最小二乘法。

第七章数值积分 1.教学基本要求(1)理解:机械求积公式的基本思想、插值型求积公式的特点。

(2)掌握:newton-cotes求积公式、复合求积公式。

(3)掌握:romberg求积公式、gauss求积公式。

2.教学内容(1)*机械求积公式。

(2)▽newton-cotes求积公式。

(3)▽复合求积公式。

(4)变步长求积公式。

(5)▽romberg求积公式。

(6)▽*gauss求积公式第八章数值微分 1.教学基本要求(1)了解:数值微分的中点法。

最新数值计算课后答案2

最新数值计算课后答案2

习 题 二 解 答1.用二分法求方程x 3-2x 2-4x-7=0在区间[3,4]内的根,精确到10-3,即误差不超过31102-⨯。

分析:精确到10-3与误差不超过10-3不同。

解:因为f(3)=-10<0,f(4)=9>0,所以,方程在区间[3,4]上有根。

由34311*1022222n n n n n n b a b a x x -----≤===<⨯ 有2n-1>1000,又为210=1024>1000, 所以n =11,即只需要二分11次即可。

x *≈x 11=3.632。

指出:(1)注意精确度的不同表述。

精确到10-3和误差不超过10-3是不同的。

(2)在计算过程中按规定精度保留小数,最后两次计算结果相同。

如果计算过程中取4位小数,结果取3位,则如下表:(3)用秦九韶算法计算f(x n )比较简单。

1*.求方程x 3-2x 2-4x-7=0的隔根区间。

解:令32247y x x x =---, 则2344322()()y x x x x '=--=+-当23443220()()y x x x x '=--=+-=时,有12223,x x =-=。

因为214902150327(),()y y -=-<=-<,所以方程在区间223(,)-上无根;因为21490327()y -=-<,而函数在23(,)-∞-上单调增,函数值不可能变号,所以方程在该区间上无根;因为2150()y =-<,函数在(2,+∞)上单调增,所以方程在该区间上最多有一个根,而(3)=-10<0,y(4)=9>0,所以方程在区间(3,4)有一个根。

所以,该方程有一个根,隔根区间是(3.4)。

2.证明1sin 0x x --=在[0,1]内有一个根,使用二分法求误差不大于41102-⨯的根,需要迭代多少次?分析:证明方程在指定区间内有一个根,就是证明相应的函数在指定区间有至少一个零点。

数值计算与MATLAB方法课后答案

数值计算与MATLAB方法课后答案

第一章习题1. 序列满足递推关系,取及试分别计算,从而说明递推公式对于计算是不稳定的。

n1 1 0.01 0.00012 0.01 0.0001 0.0000013 0.0001 0.000001 0.000000014 0.000001 0.0000000110-105 0.00000001 10-10n1 1.000001 0.01 0.0000992 0.01 0.000099 -0.000099013 0.000099 -0.00009901-0.010000994 -0.00009901 -0.01000099-1.00015 -0.01000099-1.0001初始相差不大,而却相差那么远,计算是不稳定的。

2. 取y0=28,按递推公式,去计算y100,若取(五位有效数字),试问计算y100将有多大误差?y100中尚留有几位有效数字?解:每递推一次有误差因此,尚留有二位有效数字。

3.函数,求f(30)的值。

若开方用六位函数表,问求对数时误差有多大?若改用另一等价公式计算,求对数时误差有多大?设z=ln(30-y),,y*, |E(y)| 10-4z*=ln(30-y*)=ln(0.0167)=-4.09235若改用等价公式设z=-ln(30+y),,y*, |E(y)|⨯10-4z*=-ln(30+y*)=-ln(59.9833)=-4.094074.下列各数都按有效数字给出,试估计f的绝对误差限和相对误差限。

1)f=sin[(3.14)(2.685)]设f=sin xyx*=3.14, E(x)⨯10-2, y*=2.685, E(y)⨯10-3,sin(x*y*)=0.838147484, cos(x*y*)=-0.545443667⨯(-0.5454) ⨯⨯10-2+3.14(-0.5454) ⨯⨯10-3|⨯10-2⨯10-2|E r(f)| ⨯10-2⨯10-2<10-22)f=(1.56)设f = x y ,x*=1.56, E(x)⨯10-2, y*=3.414, E(y)⨯10-3,⨯⨯⨯10-2⨯⨯⨯10-3|⨯⨯⨯10-2⨯⨯⨯10-3|=0.051|E r(f)| =0.01125.计算,利用下列等式计算,哪一个得到的结果最好,为什么?6.下列各式怎样计算才能减少误差?7. 求方程x2-56x+1=0的二个根,问要使它们具有四位有效数字,至少要取几位有效数字?如果利用伟达定理, 又该取几位有效数字呢?解一:若要取到四位有效数字,如果利用伟达定理,解二:由定理二,欲使x1,x2有四位有效数字,必须使由定理一知,∆至少要取7位有效数字。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习 题 二 解 答1.用二分法求方程x 3-2x 2-4x-7=0在区间[3,4]内的根,精确到10-3,即误差不超过31102-⨯。

分析:精确到10-3与误差不超过10-3不同。

解:因为f(3)=-10<0,f(4)=9>0,所以,方程在区间[3,4]上有根。

由34311*1022222n n n n n n b a b a x x -----≤===<⨯ 有2n-1>1000,又为210=1024>1000, 所以n =11,即只需要二分11次即可。

x *≈x 11=3.632。

指出:(1)注意精确度的不同表述。

精确到10-3和误差不超过10-3是不同的。

(2)在计算过程中按规定精度保留小数,最后两次计算结果相同。

如果计算过程中取4位小数,结果取3位,则如下表:(3)用秦九韶算法计算f(x n )比较简单。

1*.求方程x 3-2x 2-4x-7=0的隔根区间。

解:令32247y x x x =---, 则2344322()()y x x x x '=--=+-当23443220()()y x x x x '=--=+-=时,有12223,x x =-=。

因为214902150327(),()y y -=-<=-<,所以方程在区间223(,)-上无根;因为21490327()y -=-<,而函数在23(,)-∞-上单调增,函数值不可能变号,所以方程在该区间上无根;因为2150()y =-<,函数在(2,+∞)上单调增,所以方程在该区间上最多有一个根,而(3)=-10<0,y(4)=9>0,所以方程在区间(3,4)有一个根。

所以,该方程有一个根,隔根区间是(3.4)。

2.证明1sin 0x x --=在[0,1]内有一个根,使用二分法求误差不大于41102-⨯的根,需要迭代多少次?分析:证明方程在指定区间内有一个根,就是证明相应的函数在指定区间有至少一个零点。

解:令()1sin f x x x =--,因为(0)10sin 010,(1)11sin1sin10f f =--=>=--=-<, 则(0)(1)0f f <,由零点定理,函数f(x)在[0,1]区间有一个根。

由41011*1022222n n n n n n b a b a x x -----≤===<⨯ 有2n-1>10000,又为210=1024,213=8192<10000,214=16384>10000 所以n =15,即需要二分15次。

指出:要证明的是有一个解而不是唯一解,因此不必讨论单调性。

3.试用迭代公式10220,1210k k k x x x x +==++,求方程32210200x x x ++-=的根,要求精确到510-。

分析:精确到510-即误差不超过51102-⨯解:令32()21020f x x x x =++-指出:精确到510-可以从两个方面判定。

第一,计算过程中取小数到510-位,最后两个计算结果相同,终止计算。

第二,计算过程中取小数到610-,当511102k k x x -+-<⨯终止计算。

本题采用第一种方法。

4.将一元非线性方程20cos x x e -=写成收敛的迭代公式,并求其在005.x =附近的根,要求精确到210-。

解:20cos x x e -=改写为222110cos cos cos x x xx xx e e e=⇒=⇒-=,则 21cos xxx x e =+-,设 21cos ()xxg x x e=+- 有 22224111)sin cos (sin cos )()()xxx xxx xe xe x x g x e e e π+--+'=+=-=-在005.x =处,因为05054051096151..)(.).g e π+'=-=<所以迭代法121cos ()kkk k x x g x x e +=+-在005.x =的邻域内收敛。

列表迭代如下:此时0692069000614.cos ..e -=。

5.为求方程3210x x --=在015.x =附近的一个根,设将方程改为下列等价形式,并建立相应的迭代公式:12213223121121111121111311(),;(),();(),.()k kk kk k x x x x x x x x x x x x +++=+=+=+=+==--迭代公式迭代公式迭代公式 试分析每种迭代公式的收敛性,并取一种公式求出具有4位有效数字的近似值。

解:(1)因为211x x =+,所以迭代函数为211()g x x=+,则23212()()()g x x x x --'''===-,3322152151153375(.)...g -'=-⨯==<满足局部收敛性条件,所以迭代公式1211k k x x +=+具有局部收敛性。

(2)因为1231()x x =+,所以迭代函数为1231()()g x x =+,则12122332231221213331()()()()x g x x x x x x --'=+=+=+,22321515045613115.(.).(.)g ⨯'==<+满足局部收敛性条件,所以迭代公式12311()k kx x +=+具有收敛性。

(3)因为1211()x x =-,所以迭代函数为1211()()g x x =-,则13122111122()()()g x x x ---'=--=--,32321115151141412205(.)(.)..g -'=-==>⨯不满足收敛性条件,所以迭代公式11211()k k x x +=-不具有收敛性。

用迭代公式1211k k x x +=+列表计算如下:所以,方程的近似根为1465*.x ≈。

6.设23()()x x C x ϕ=+-,应如何取C 才能使迭代公式1()k k x x ϕ+=具有局部收敛性?解:设C 为常数,因为23()()x x C x ϕ=+-,所以12()x Cx ϕ'=+,要使迭代公式具有局部收敛性,需00121()x Cx ϕ'=+<,此时即有01121Cx -<+<,也即010Cx -<<。

即只要C 取满足如上条件的常数,就可以使得迭代公式具有局部收敛性。

指出:本题的一般形式为:设()()x x Cf x ϕ=+,应如何取C 才能使迭代公式1()k k x x ϕ+=具有局部收敛性?显然,()()x x Cf x ϕ=+是迭代格式1()k k x x ϕ+=相应的迭代函数,因此该迭代格式要求解的方程是()()()0x x x x Cf x f x ϕ=⇒=+⇒=。

也就是说,这是如何选择C ,构造一个求解方程f(x)=0的收敛的迭代格式的问题。

因为()()x x Cf x ϕ=+,所以()1()x Cf x ϕ''=+, 要使迭代格式收敛,需()1()1x Cf x ϕ''=+< 解之得2()0Cf x '-<<,即C 与()f x '异号,且()2Cf x '<。

下面的讨论利用了本题的特殊条件,求出了具体的结果:因为23()()x x C x ϕ=+-,所以当2(3)x x C x =+-时,有2(3)0C x -=,则x =23()()x x C x ϕ=+-的不动点为*x =。

而12()x Cx ϕ'=+, 根据局部收敛性定理,当1210c ϕ'=+<⇒<<;当(12(10C c ϕ'=+<⇒<<时,迭代格式收敛到 7.用牛顿法求方程3310x x --=在初始值02x =邻近的一个正根,要求3110k k x x -+-<。

解: 因为3310x x --=所以有3()31f x x x =--,相应的迭代公式为3312231213333k k k k k k k x x x x x x x +--+=-=-- 取x 0=2为迭代的初始近似值。

迭代的结果列表如下:因为33210.0001102x x --=<⨯,符合计算的精度要求,所以*3 1.8794x x ≈=。

8.用牛顿法解方程10c x -=,导出计算数c 的倒数而不用除法的一种简单的迭代公式。

用此公式求0.324的倒数,设初始值03x =,要求计算有5位有效数字。

解:对于方程10c x -=,有1()f x c x =-,相应的迭代公式为212121kk k k k kc x x x x cx x +-=-=--。

应用该迭代公式求0.324的倒数,列表计算如下所以1308640324..≈。

指出:如果将方程10c x-=改写为等价的10cx -=,则有1()f x cx =-,相应的迭代公式为111k k k cx x x c c+-=-=无法展开迭代。

9.设a 的迭代公式,并求极限limk解:设a 为正实数,n 为自然数,由牛顿法,方程0()n f x x a =-=的解为11111()()(1)1[(1)]k k k k n n n k k k k n n k kn k n kk n kf x x x f x x a nx x a x nx nx n x a nxa n x n x +----=-'--+=-=-+==-+由此,则111111[(1)][(1)]lim 1[(1)(1)]1[(1)(1)]1[((1)()lim n k n k k k k k n k k nk k n k k a n x n x ax n a n x n a n x a n n x n --→∞----→∞-+-+==--+-=--+-=---=111]2(1)(1)(1)lim 22lim n n k kk k a n a n x x -++→∞→∞-⨯---====指出:本题中,表面上是k →∞的问题,但实际上却是k x 的问题,1,k k x x +才是极限过程中实际的变量。

本质上。

本题实际上是求极限11111[(1)][(1)]lim 1[(1)]n k n k k k k k n x a n x n x ax n x ax ----+-+==-+=由于讨论的是0型不定式,且不定式的分母上有2次的“0”因子,因此两次应用罗必塔法则。

解二:首先证明一个定理:定理:设**()0,()0f x f x '=≠,又设f(x)在*x 的某个邻域内具有连续的二阶导数,则牛顿迭代法具有局部收敛性,且有。

相关文档
最新文档