等比数列专题(有答案)doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等比数列选择题
1.已知公比大于1的等比数列{}n a 满足2420a a +=,38a =.则数列()
{}
1
11n n n a a -+-的
前n 项的和为( )
A .()23
82133n n +--
B .()23
182155n n +---
C .()2382133
n n ++-
D .()23182155
n n +-+-
2.已知各项均为正数的等比数列{}n a ,若543264328a a a a +--=,则7696a a +的最小值为( ) A .12
B .18
C .24
D .32
3.已知各项不为0的等差数列{}n a 满足2
6780a a a -+=,数列{}n b 是等比数列,且
77b a =,则3810b b b =( )
A .1
B .8
C .4
D .2
4.已知等比数列{}n a 的各项均为正数,公比为q ,11a >,676712a a a a +>+>,记
{}n a 的前n 项积为n
T
,则下列选项错误的是( ) A .01q <<
B .61a >
C .121T >
D .131T >
5.已知正项等比数列{}n a 满足11
2
a =
,2432a a a =+,又n S 为数列{}n a 的前n 项和,则5S =( )
A .
312
或112
B .
31
2
C .15
D .6 6.若1,a ,4成等比数列,则a =( ) A .1
B .2±
C .2
D .2-
7.等比数列{}n a 中11a =,且14a ,22a ,3a 成等差数列,则()*n
a n N n
∈的最小值为( ) A .
16
25
B .
49
C .
12
D .1
8.已知数列{}n a 满足:11a =,*1()2
n
n n a a n N a +=∈+.则 10a =( ) A .
11021
B .
11022 C .1
1023
D .1
1024
9.公比为(0)q q >的等比数列{}n a 中,1349,27a a a ==,则1a q +=( )
A .1
B .2
C .3
D .4
10.各项为正数的等比数列{}n a ,478a a ⋅=,则2122210log log log a a a +++=( )
A .15
B .10
C .5
D .3
11.已知等比数列{}n a 的前n 项和为2,2n S a =,公比2q ,则5S 等于( )
A .32
B .31
C .16
D .15
12.在数列{}n a 中,12a =,对任意的,m n N *
∈,m n m n a a a +=⋅,若
1262n a a a ++⋅⋅⋅+=,则n =( )
A .3
B .4
C .5
D .6
13.在数列{}n a 中,32a =,12n n a a +=,则5a =( ) A .32
B .16
C .8
D .4
14.明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有
大吕=大吕=
太簇.据此,可得
正项等比数列{}n a 中,k a =( )
A .n -
B .n -
C .
D . 15.已知数列{}n a ,{}n b 满足12a =,10.2b =,111
2
33
n n n a b a ++=+
,113
44
n n n b a b +=
+,则使0.01n n a b -<成立的最小正整数n 为( ) A .5
B .7
C .9
D .11
16.在流行病学中,基本传染数R 0是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.初始感染者传染R 0个人,为第一轮传染,这R 0个人中每人再传染R 0个人,为第二轮传染,…….R 0一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.假设新冠肺炎的基本传染数0 3.8R =,平均感染周期为7天,设某一轮新增加的感染人数为M ,则当M >1000时需要的天数至少为( )参考数据:lg38≈1.58 A .34
B .35
C .36
D .37
17.若一个数列的第m 项等于这个数列的前m 项的乘积,则称该数列为“m 积列”.若各项均为正数的等比数列{a n }是一个“2022积数列”,且a 1>1,则当其前n 项的乘积取最大值时,n 的最大值为( ) A .1009
B .1010
C .1011
D .2020
18.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12
(,)33,记为第一次操作;再将剩下的两个区间1[0,]3,2[,1]3
分别