X射线光电子能谱仪实验报告

合集下载

能谱实验实验报告

能谱实验实验报告

一、实验目的1. 了解能谱仪的基本原理和结构;2. 掌握能谱仪的使用方法和操作技巧;3. 学习能谱仪在物质成分分析中的应用。

二、实验原理能谱仪是一种用于分析物质成分的仪器,其原理基于X射线能量色散谱分析。

当X射线照射到样品上时,样品会发出X射线,这些X射线经过能量色散器分离成不同能量的X射线,然后由探测器检测,最后由计算机处理数据,得到样品的元素成分和含量。

三、实验仪器与材料1. 能谱仪一台;2. 样品(如金属、陶瓷等);3. 实验室常用器材(如剪刀、镊子、天平等);4. 计算机及数据采集软件。

四、实验步骤1. 打开能谱仪电源,预热30分钟;2. 将样品放置在样品台上,调整样品与能谱仪的距离,使样品处于最佳检测位置;3. 设置能谱仪参数,如电压、电流、探测器类型等;4. 开始采集数据,观察样品发出的X射线能量色散谱;5. 对采集到的数据进行处理,得到样品的元素成分和含量;6. 比较不同样品的能谱图,分析其成分差异。

五、实验结果与分析1. 样品A的能谱图显示,其主要成分是铁、铜和铝,含量分别为60%、20%和20%;2. 样品B的能谱图显示,其主要成分是钙、硅和铝,含量分别为40%、30%和30%;3. 样品C的能谱图显示,其主要成分是钾、钠和钙,含量分别为50%、20%和30%。

通过对比分析,可以看出,不同样品的能谱图存在明显差异,这与其成分和含量有关。

能谱仪在物质成分分析中具有重要作用,可以快速、准确地获取样品的元素成分和含量。

六、实验讨论1. 实验过程中,要注意样品的放置位置和能谱仪参数的设置,以保证实验结果的准确性;2. 在数据处理过程中,要熟练掌握数据采集软件的操作,以便快速、准确地获取实验数据;3. 实验结果受样品质量、实验环境和操作技能等因素的影响,需要多次重复实验,以减小误差;4. 能谱仪在物质成分分析中的应用非常广泛,如地质勘探、环境监测、医疗诊断等领域,具有很高的实用价值。

七、实验总结本次实验通过学习能谱仪的基本原理和操作方法,掌握了能谱仪在物质成分分析中的应用。

X射线光电子能谱分析

X射线光电子能谱分析

X射线光电子能谱分析(X-ray photoelectron spectroscopy analysis)1887年,Heinrich Rudolf Hertz发现了光电效应。

二十年后的1907年,P.D. Innes用伦琴管、亥姆霍兹线圈、磁场半球(电子能量分析仪)和照像平版做实验来记录宽带发射电子和速度的函数关系。

待测物受X光照射后内部电子吸收光能而脱离待测物表面(光电子),透过对光电子能量的分析可了解待测物组成,XPS主要应用是测定电子的结合能来实现对表面元素的定性分析,包括价态。

XPS(X射线光电子能谱)的原理是用X射线去辐射样品,使原子或分子的内层电子或价电子受激发射出来。

被光子激发出来的电子称为光电子。

可以测量光电子的能量,以光电子的动能为横坐标,相对强度(脉冲/s)为纵坐标可做出光电子能谱图。

从而获得试样有关信息。

X射线光电子能谱因对化学分析最有用,因此被称为化学分析用电子能谱(Electron Spectroscopy for Chemical Analysis)。

其主要应用:1,元素的定性分析。

可以根据能谱图中出现的特征谱线的位置鉴定除H、He以外的所有元素。

2,元素的定量分析。

根据能谱图中光电子谱线强度(光电子峰的面积)反应原子的含量或相对浓度。

3,固体表面分析。

包括表面的化学组成或元素组成,原子价态,表面能态分布,测定表面电子的电子云分布和能级结构等。

4,化合物的结构。

可以对内层电子结合能的化学位移精确测量,提供化学键和电荷分布方面的信息。

5,分子生物学中的应用。

Ex:利用XPS鉴定维生素B12中的少量的Co。

应用举例:1.确定金属氧化物表面膜中金属原子的氧化状态;2.鉴别表面石墨或碳化物的碳;(一)X光电子能谱分析的基本原理:X光电子能谱分析的基本原理:一定能量的X光照射到样品表面,和待测物质发生作用,可以使待测物质原子中的电子脱离原子成为自由电子。

该过程可用下式表示:hn=Ek+Eb+Er 其中: hn:X光子的能量;Ek:光电子的能量;Eb:电子的结合能;Er:原子的反冲能量。

电子能谱XPS实验报告

电子能谱XPS实验报告

实验报告电子能谱实验实验报告一、 实验名称 电子能谱实验 二、 实验目的(1) 了解X 光电子能谱(XPS )测量原理、仪器工作结构及应用; (2) 通过对选定的样品实验,初步掌握XPS 实验方法及谱图分析。

三、 实验原理在现代材料分析中,表面问题是材料研究中很重要的部分。

尤其是在微型材料、超薄 材料、薄膜材料和材料的表面处理等,都离不开表面科学。

而X 光电子能谱(简称XPS )则是一项重要的表面分析方法。

一定能量的X 光作用到样品上,将样品表面原子中的不同能级的电子激发成为自由电子,这些电子带有样品表面信息,具有特征能量,研究这类电子的能量分布,即为X 光电子能谱分析。

(1)光电发射在具体介绍XPS 原理时,先介绍光电发射效应。

光电发射是指,在轨道上运动的电子收到入射的光子的激发而由发射出去成为自由电子的过程。

对于固体样品光电发射的能量关系如下:'b k sa E h E νφ=--(固体)(1)其中b E 为相对于费米能级的结合能,h ν为光子的能量,'k E 为光电子的动能,sa φ为样品的功函数。

光电发射示意图如下:原子能级结合能b E 对于原子来说是特征的,具有特异性,可以用它来标识原子及原子能级。

由样品发射的光电子最终将会被探测器俘获,对于探测器有如下能量关系:b k sp E h E νφ=--(探测器)(2)式中,sp φ为探测器的功函数。

如下图所示:(二)化学位移XPS 在进行定量分析的时候,有一项很重要的应用就是化学态分析,其中包括化学位移和化学能移。

化学位移是指由于原子处于不同的化学环境而引起的结合能的位移(b E ∆)。

如化合过程+X+Y=X Y -,X 、Y 因电子的转移引起结合能的变化。

相应的电子能谱也会发生改变,通过这种方法,还可以区别同一类原子处于何种能态,这为表面分析提供了很大的便利。

(三)X 光电子能谱仪原理示意图如下图所示,由X 射线源发出的X 射线入射到样品表面,激发出自由光电子。

材料试验方法X射线衍射X射线光电子能谱

材料试验方法X射线衍射X射线光电子能谱
Page 38
根据晶粒大小还可以计算出晶胞的堆 垛层数
N=D101/d101=21.5/0.352=61
根据晶粒大小,还可以计算纳米粉体 的比表面积
当已知纳米材料的晶体密度r和晶粒大小 利用公式s=6/rD进行比表面计算
Page 39
小角X射线衍射
在纳米多层膜材料中,两薄膜层材料反 复重叠,形成调制界面 周期良好的调制界面,产生相干衍射, 形成明锐的衍射峰 对于制备良好的小周期纳米多层膜可以 用小角度XRD方法测定其调幅周期 大周期多层膜调制界面的XRD衍射峰因衍 射角度太小而无法观察
Testing & Fra bibliotekaterials
标准卡片索引的使用
• 数字索引 Hanawalt法,是一种按d 值强弱顺序编排的数字索引,对完全未 知待测样品进行相分析时使用。
• 字母索引 戴维 K法,已知样品中 某些元素做相分析时用,先推测出可能 的化合物,然后根据英文名称查对确定。
图5 X射线衍射法对矿物中药磁石的物相分析图谱
Page 42
已二胺处理前后粘土的XRD曲线
处理土的晶面间距(d001)由原来的
13.1Å膨胀到14.0Å说明有机阳离子与 粘土晶层间的水合阳离子进行了交换
Page 43
应力的测定
残余应力是指当产生应力的各种因素不复 存在时,由于形变,相变,温度或体积变 化不均匀而存留在构件内部并自身保持平 衡的应力
3. 平均晶粒尺寸测定
D = k / cos ( 谢乐方程 )
其中:D为晶粒的尺寸(单位为Å ,系垂直于hkl晶面 方向的晶粒大小); 为衍射峰的布拉格角; 为X射线波长(单位为Å ); 为衍射峰的宽度(弧度单位); k为常数(与的定义有关, 用积分宽计算晶粒大小时,k = 1; 用半高宽计算时,则取k = 0.9。

XPS实验报告

XPS实验报告

X射线光电子能谱实验报告一、实验目的1.学习和了解X射线光电子能谱的基本原理;2.学习使用X射线光电子能谱仪测量待测样品的谱图并进行解析。

二、实验原理1、光电效应(光致发射/光电离)如下图⽰。

不同能级上的电⼦具有不同的结合能。

当⼀束能量为hν的⼊射光⼦与样品中的原⼦相互作⽤时,单个光⼦把全部能量交给原⼦中某壳层(能级)上⼀个受束缚的电⼦。

如果光⼦的能量⼤于,电⼦将脱离原来受束缚的能级,剩余的能量转化为电⼦的结合能Eb该电⼦的动能(E)。

k光⼦与材料相互作⽤时,从原⼦中各个能级发射出的光电⼦数目是不同的,有⼀定的⼏率。

光电效应的⼏率⽤光电截⾯s表⽰:某能级的电⼦对⼊射光⼦的有效能量转移⾯积,或⼀定能量的光⼦从某个能级激发出⼀个光电⼦的⼏率。

光电效应截⾯s越⼤,说明该能级上的电⼦越容易被光激发。

与同原⼦其他壳层上的电⼦相⽐,它的光电⼦峰的强度就⼤。

2、俄歇电⼦的发射在X射线照射下,原⼦中的⼀个内层电⼦发⽣光致电离发射后,在内层留下⼀个空位(原⼦成了离⼦,处于激发态)激发态离⼦向低能转化发⽣驰豫:(1)通过辐射跃迁释放能量,产⽣X射线荧光。

波⻓在X射线区,能量为两个能级的能量差。

(2)通过⾮辐射跃迁使另⼀个电⼦激发成为⾃由电⼦。

此电⼦为俄歇电⼦。

3、原⼦能级的划分原⼦中单个电⼦的运动状态可以⽤量⼦数n,l,ml ,ms来表⽰主量⼦数n:电⼦的能量主要取决于n。

n的取值为1,2,3,…,等整数;分别对应着K,L,M,N…等壳层;角量⼦数l:决定了电⼦云的⼏何形状。

l的取值为0,1,2,…,(n-1),等整数;对应着s,p,d,f等能级。

磁量⼦数ml :决定了电⼦云在空间伸展的⽅向,在给定l,ml后,可以取在区间[-l,+l]内的任何整数,共有(2l+1)个。

⾃旋量⼦数m s:表⽰电⼦绕其⾃⾝轴的旋转取向,与上述3个量⼦数⽆关;只能取+½或者-½两个值。

原子中电子既有轨道运动又有自旋运动。

X射线光电子能谱分析

X射线光电子能谱分析

X射线光电子能谱分析X射线光电子能谱分析(X-ray photoelectron spectroscopy,简称XPS)是一种用来表征材料表面元素化学状态和电子能级分布的表征技术。

它利用X射线照射材料表面,测量和分析材料表面光电子的能谱,通过分析能谱图可以得到有关材料的化学组成、表面化学键的种类和键长、元素的电子与核心电子之间的相互作用等信息。

本文将对X射线光电子能谱分析技术的原理、仪器设备及应用领域进行详细介绍。

X射线光电子能谱分析的原理可以用以下几个步骤来概括:首先,用X射线照射材料表面,激发材料表面的原子和分子。

然后,从激发的原子和分子中发射出光电子。

这些光电子的能量与产生它们的原子或分子的能级差有关。

最后,测量和分析这些光电子的能谱,从而得到材料表面的化学组成和电子能级分布信息。

为了进行X射线光电子能谱分析,需要使用专门的仪器设备,包括X射线源、能量分辨光电子能谱仪和电子能谱仪。

X射线源通常使用非常亮的单晶或多晶X射线管。

光电子能谱仪用来测量光电子的能谱,并将所获得的信号转化为能谱图。

电子能谱仪则用来检测、放大和记录电子能谱图。

X射线光电子能谱分析可以在多个领域应用,具有广泛的研究意义和实际应用价值。

在材料科学领域,它可以用来表征材料表面的成分和化学状态,研究材料的性质和行为;在表面科学领域,它可以研究表面的形貌和变化,探索表面的特性和反应;在催化剂和材料化学领域,它可以分析催化剂的表面状态和反应过程;在电子器件和光学器件领域,它可以研究界面和界面化学反应的机理等。

总结起来,X射线光电子能谱分析是一种非常重要的表征技术,可以提供关于材料表面的成分、化学状态和电子能级分布等信息。

通过XPS技术,可以探索材料的性质、表面的形貌以及材料的化学反应机理等,对于材料科学、表面科学、催化剂和电子光学器件等领域的研究和应用具有重要意义。

X射线光电子能谱分析

X射线光电子能谱分析

光电子能谱仪实验技术
要获得高分辨谱图和 减少伴峰的干扰,可以采 用射线单色器来实现。即 用球面弯曲的石英晶体制 成,能够使来自X射线源 的光线产生衍射和“聚 焦”,从而去掉伴线等, 并降低能量宽度,提高谱 仪的分辨率。
双阳极X射线源示意图
光电子能谱仪实验技术
光电子能谱仪实验技术
XPS谱图的表示 1. XPS谱图的表示
(2)背底或伴峰:如光电子(从产生处向表面)输 送过程中因非弹性散射(损失能量)而产生的 能量损失峰,X射线源的强伴线产生的伴 峰,俄歇电子峰等。
光电子能谱仪实验技术
(3)背底峰的特点 在谱图中随着结合能的增加,背底电子的强度逐渐上升 。
XPS谱图的背底随结合能值的变化关系
光电子能谱仪实验技术
3. XPS峰强度的经验规律 (1)主量子数小的壳层
电子能谱常用激发源
光电子能谱仪实验技术
➢ XPS采用能量为1000~1500ev 的射线源,能激发内 层电子。各种元素内层电子的结合能是有特征性 的,因此可以用来鉴别化学元素;
➢ UPS采用 16~41ev的真空光电子作激发源。 与X射 线相比能量较低,只能使原子的价电子电离,用 于研究价电子和能带结构的特征。
XPS现象基于爱因斯坦于1905年揭示的光电效应,爱因斯坦由于这方面的工作被 授予1921年诺贝尔物理学奖;
X射线是由德国物理学家伦琴(Wilhelm Conrad Rö ntgen,l845-1923)于 1895年发现的,他由此获得了1901年首届诺贝尔物理学奖。
X射线光电子能谱( XPS ,全称为Xray Photoelectron Spectroscopy)是一
➢ AES大都用电子作激发源,因为电子激发得到的 俄歇电子谱强度较大。

X射线光电子能谱演示实验

X射线光电子能谱演示实验

实验报告 X射线光电子能谱演示实验36一、实验目的通过X射线光电子能谱(XPS, X-ray Photoelectron Spectroscopy)的理论、仪器工作原理、测试方法及简单图谱分析方法的学习,了解并掌握该表面分析测试手段的特点及应用。

二、实验内容1.了解XPS设备基本组成、XPS样品的准备;2.了解测试参数的设定、样品测试过程;3.学习图谱分析方法:元素化学状态分析、元素定量分析。

三、实验原理已知光源MgKα激发光能量E K=1253.6eV,光电子动能E K可由XPS仪器测试得到,仪器逸出功φ为常数,由XPS基本方程E K = hν - E B - φ计算可得到固体中电子的结合能E B。

由元素的结合能可确定元素的化学状态。

由元素灵敏度因子法,由元素谱峰的强度I及相对灵敏度因子S,按下式可确定某元素A的相对原子浓度C A(%)。

四、实验步骤1. 了解实验仪器组成:2. 样品预处理:(1)溶剂清洗或长时间抽真空除表面污染物;(2)氩离子刻蚀除表面污物;(3)擦磨、刮剥和研磨;(4)真空加热。

3. 样品安装:将头发丝样品用导电胶带黏在样品托上。

4. 校正样品电荷:(1)消除法:用电子中和枪或在导电样品托上制备超薄样品;(2)矫正法:镀金法、外标法、内标法、二次内标法、混合法、氩注入法等。

5. 抽真空。

6. 测样。

五、实验结果及讨论1.通过头发丝的特征图谱可以得到,该样品含有:C、O、Si三种元素。

表1 发丝样品表面元素XPS测试数据六、思考题1.XPS表面分析为什么需要超高真空?答:XPS涉及到X射线光束与待分析的样品表面的相互作用,测量光电子。

若入射束要到达样品并要检测到出射的电子,则其在样品区域中的平均自由程必须大于所涉及到的仪器的物理尺寸,否则散射会引起实验结果的失真。

要在物理上实现这一尺度,就意味着需使用真空。

根据气体动力学基本理论,对于几十厘米量级尺度的设备,压力需在10-7到10-8 torr高真空范围内(空气中~1 μm)。

X射线光电子能谱分析

X射线光电子能谱分析

X射线光电子能谱分析X射线光电子能谱(X-ray photoelectron spectroscopy, XPS)是一种重要的表面分析技术,广泛应用于物质表面成分、电子态和化学状态的研究。

本文将从XPS的原理、仪器构成、数据分析以及应用等方面进行详细介绍。

XPS原理基于光电效应,即当材料表面受到X射线照射后,光电子从表面脱离。

这些脱离的光电子具有一定的动能,其动能与被照射材料的原子核和电子状态相关。

通过测量脱离光电子的动能和相应的能谱,可以获得材料表面的成分和电子结构等信息。

XPS仪器通常由X射线源、光学系统、光电子能谱仪以及数据采集与分析系统组成。

X射线源通常采用非常纯净的铝或镁,通过加热产生X射线,其能量通常在0.5-2.5 keV范围内。

光学系统将X射线聚焦在材料表面,使其与表面相互作用。

此外,还需要一个真空系统以及样品调节装置,以保证实验过程的可靠性。

在光电子能谱仪中,光电子在进入光学透镜之后,通过缝隙进入光谱学荧光屏,其中光电子会击中荧光屏产生荧光,然后荧光被光电二极管或者多道采集系统接收。

通过测量光谱的能量分布,可以得到XPS的能谱图像。

数据采集与分析系统用于处理和分析得到的XPS数据。

根据样品组成和光电子的能量分布,可以识别和测量各种元素的化学状态和含量。

此外,还可以通过能级分别效应等技术,研究材料的表面电子结构和化学键性质。

XPS在材料科学和表面化学等领域具有广泛的应用。

首先,XPS被广泛应用于材料表面组分分析。

通过测量光电子的能量分布,可以确定元素的存在和相对含量,从而判断材料的组成。

其次,XPS可以提供元素的化学状态信息,即原子与其他元素的化学键类型和性质。

这对于研究各种材料的界面和表面反应具有重要意义。

此外,XPS还可以通过研究表面电荷分布和电子能带结构等信息,研究材料的电子结构与性质。

总结来说,X射线光电子能谱是一种重要的表面分析技术,可以提供材料的组分、化学状态以及电子结构等信息。

能谱材料实验报告(3篇)

能谱材料实验报告(3篇)

第1篇一、实验目的1. 了解能谱材料的基本原理和应用。

2. 掌握能谱分析的基本方法和技术。

3. 学习如何通过能谱分析确定材料中的元素成分及其化学状态。

4. 提高对材料科学实验操作技能的掌握。

二、实验原理能谱分析是一种利用高能电子或X射线照射材料,激发出光电子或俄歇电子,通过分析这些电子的能量分布来获取材料表面或内部元素成分和化学状态的方法。

常见的能谱分析技术包括X射线光电子能谱(XPS)和俄歇电子能谱(AES)。

X射线光电子能谱(XPS)原理:当X射线照射到材料表面时,会激发出光电子。

这些光电子的能量与其所对应的原子轨道中的电子结合能有关,通过测量光电子的能量,可以确定材料表面的元素成分及其化学状态。

俄歇电子能谱(AES)原理:当材料表面受到电子或X射线的激发时,会发射出俄歇电子。

俄歇电子的能量与其所对应的原子轨道中的电子结合能有关,通过测量俄歇电子的能量,可以确定材料中的元素成分及其化学状态。

三、实验仪器与材料1. 仪器:- X射线光电子能谱仪- 俄歇电子能谱仪- 样品台- 样品夹具- 计算机及数据采集系统2. 材料:- 待测样品- 标准样品四、实验步骤1. 准备样品:将待测样品固定在样品台上,确保样品表面平整、干净。

2. XPS分析:- 对样品进行X射线照射,激发出光电子。

- 测量光电子的能量分布,通过对比标准样品的能谱,确定样品中的元素成分及其化学状态。

3. AES分析:- 对样品进行电子或X射线照射,激发出俄歇电子。

- 测量俄歇电子的能量分布,通过对比标准样品的能谱,确定样品中的元素成分及其化学状态。

4. 数据处理与分析:- 对采集到的数据进行分析,包括能谱拟合、峰面积计算等。

- 将分析结果与标准样品进行对比,确定样品中的元素成分及其化学状态。

五、实验结果与分析1. XPS分析结果:- 样品表面元素成分:X、Y、Z等。

- 元素化学状态:X2p、Y3d、Z4f等。

2. AES分析结果:- 样品表面元素成分:X、Y、Z等。

(完整版)X射线光电子能谱分析

(完整版)X射线光电子能谱分析
Ek = hν- EB –Ws
结合能( EB):电子克服原子核束缚和周围电子的作 用,到达费米能级所需要的能量。
XPS的基本原理
2. 光电离几率和XPS的信息深度 (1)光电离几率 ➢ 定义
光电离几率(光电离截面):一定能量的光子在与原 子作用时,从某个能级激发出一个电子的几率; ➢ 影响因素 与电子壳层平均半径,入射光子能量,原子序数有 关;
➢ AES大都用电子作激发源,因为电子激发得到的 俄歇电子谱强度较大。
光电子能谱仪实验技术
1.X射线激发源
XPS中最常用的X射线源主要由灯丝、栅极和阳极 靶构成。
X射线源的主要指标是强度和线宽,一般采用K 线,因为它是X射线发射谱中强度最大的。在X射线 光电子能谱中最重要的两个X射线源是Mg和Al的特征 K射线.
种基于光电效应的电子能谱,它是利 用X射线光子激发出物质表面原子的内 层电子,通过对这些电子进行能量分 析而获得的一种能谱。
这种能谱最初是被用来进行化学分析 ,因此它还有一个名称,即化学分析
电子能谱( ESCA,全称为Electron Spectroscopy for Chemical Analysis)
XPS的基本原理
化学位移 1. 定义
由于化合物结构的变化和元素氧化状态的变化引 起谱峰有规律的位移称为化学位移 2. 化学位移现象起因及规律 (1)原因
内层电子一方面受到原子核强烈的库仑作用而具 有一定的结合能,另一方面又受到外层电子的屏蔽 作用。因而元素的价态改变或周围元素的电负性改 变,则内层电子的结合能改变。
XPS的基本原理
➢ 与氧化态关系
光电子能谱仪实验技术
光电子能谱仪的结构 电子能谱仪主要由激发源、电子能量分析
光电子能谱仪实验技术

南京大学-X射线荧光光谱分析报告实验报告材料

南京大学-X射线荧光光谱分析报告实验报告材料

X 荧光分析一.实验目的1.了解能量色散X 荧光分析的原理、仪器构成和基本测量、分析方法。

2.验证莫塞莱定律,并从实验推出屏蔽常数。

3.研究对多道分析器的定标,以及利用X 荧光分析测量位未知样品成分及相对含量的方法。

二.实验原理以一定能量的光子、电子、原子、α粒子或其它离子轰击样品,将物质原子中的内壳层电子击出,产生电子空位,原子处于激发态。

外壳层电子向内壳层跃迁,填补内壳层电子空位,同时释放出跃迁能量,原子回到基态。

跃迁能量以特征X 射线形式释放,或能量转移给另一个轨道电子,使该电子发射出来,即俄歇电子发射。

测出特征X 射线能谱,即可确定所测样品中元素种类和含量。

特征曲线X 射线根据跃迁后电子所处能级可以分为,,K L M 系等;根据电子跃迁前所在能级又可分为βαγβαL L K K K ,,,,等不同谱线。

特征X 谱线的的能量为两壳层电子结合能之差。

因此,所有元素的,K L 系特征X 射线能量在几千电子伏到几十千电子伏之间。

X 荧光分析中激发X 射线的方式一般有三种:(1)用质子、α粒子等离子激发 (2)用电子激发;(3)用X 射线或低能γ射线激发。

我们实验室采用X 射线激发(XIX 技术),用放射性同位素作为激发源的X 光管。

XIX 技术中,入射光子除与样品中原子发生光电作用产生内壳层空位外,还可以发生相干散射和非相干散射(康普顿散射),这些散射光子进入探测器,形成XIX 分析中的散射本底。

另外,样品中激发出的光电子又会产生轫致辐射,但这产生的本底比散射光子本底小得多,且能量也较低,一般在3keV 以下。

所以XIX 能谱特征是:特征X 射线峰叠加在散射光子峰之间的平坦的连续本底谱上。

如图1能谱示意图所示。

图一:能谱示意图测量特征X 射线常用()Si Li 探测器,它的能量分辨率高,适用于多元素同时分析,也可选用()Ge Li 或高纯Ge 探测器,但均价格昂贵。

在X 荧光分析中,对于轻元素(一般指45Z <的元素)通常测其KX 射线,对于重元素(45Z >的元素),因其KX 射线能量较高且比LX 射线强度弱,常测其LX 射线,这样测量的特征X 射线能量一般在20keV 以下。

光电子能谱实验报告

光电子能谱实验报告

光电子能谱实验报告X光电子能谱摘要:本实验用光电子能谱仪,利用AlKα线测量了薄膜的化学成分,得到薄膜的成分为SiO2。

引言:表面科学研究是材料科学研究中一个很重要的部分,尤其是现代材料中的微型材料、超薄材料、薄膜材料、材料的表面处理等等。

光电子能谱实验方法是研究表面科学的一种有效方法,通过光电子能谱,可以了解材料的组分及其含量、分析薄膜的厚度等等。

通过本实验,可以了解X光电子能谱(XPS)的测量原理、仪器工作的结构及应用,并能够初步掌握XPS实验方法及其图谱的分析。

实验原理:一、光电子能谱一定能量的电子、X光、紫外(UV)光等入射到样品上,将样品表面原子中的不同能级的电子激发成自由电子,这些电子带有样品表面的信息,具有特征能量,收集这些电子形成的能谱叫电子能谱,研究这类电子的能量分布即为电子能谱分析。

其中,自由电子是由光子激发而产生的称为光电子能谱,常有的为X光电子能谱(XPS)和紫外光电子能谱(UPS)。

以收集到的光电子的强度为纵坐标、以结合能或者是光电子的动能为横坐标而形成的谱图称为光电子能谱图。

二、光电发射过程及能量关系光子照到样品上,样品吸收一定能量的光子,电子发生越迁,能量比较高的电子脱离样品表面的物理过程称为光电效应,爱因斯坦最先对此进行了解释,并提出了光电效应方程。

简单表示这个过程:+hν+M→M+e(Ek) (1)其中hν为光子能量,M为样品,e为电子,Ek为光电子动能。

图1:光电发射示意图图1中,对于固体存在费米能级,费米能级与自由电子能级之差为固体功函数。

电子从一个原子能级跃迁到自由电子能级所需的能量为结合能。

根据图1不难写出光电过程的能量关系即Einstein关系:Ek+Eb=hν(未考虑功函数)(2)对于固体,必须引入功函数的修正:Eb=hν-Ek-EФ (3)其中:Eb为结合能, EФ为固体功函数。

这样,对于样品为固体的实验,仪器与样品都将有功函数,从而有下列关系:Eb=hν-Ek-EФ (样品)=hν-Ek-EФ (仪器)(4)原子能级的结合能Eb对于某种原子来说是特征的,因此可以通过测定的结合能来标识原子和能级。

能谱仪实验报告

能谱仪实验报告

能谱仪实验报告能谱仪实验报告一、实验目的1.了解能谱仪的构造、工作原理和基本参数。

2.掌握Geiger-Muller计数器的基本工作原理。

3.利用能谱仪研究放射性样品的辐射性质和核能级结构。

4.掌握能谱的测量方法和测量数据的处理方法。

二、实验原理1.能谱仪的构造(1)光电倍增管光电倍增管由光电阴极、几个极靴、若干个百叶窗和若干个二次倍增极等组成。

光电阴极:将光子能量转化为电子能量。

极靴:增强电子输出。

百叶窗:阻挡光电子。

二次倍增极:将收集到的电子倍增。

(2)能量分析器能量分析器由若干个圆筒形电极等构成,其中一个圆筒形电极充当入口狭缝,一个圆筒形电极充当出口狭缝,其余几个圆筒形电极连接不同高压。

(3)单道分析器单道分析器由一个多路开关和一个计数器构成,将接收到的信号输入到计数器中。

2.工作原理当入射射线穿过入口狭缝后,在强电场的作用下,它们会将电离气体分子电离,产生电离电子,电离电子在电场的作用下形成一个电流,电流和粒子的能量有关,经过放大、多次测量和重复,得到一个精确的能量谱。

3.基本参数(1)能量分辨本领:能谱仪分辨测量出的辐射能量中的能级能量峰值与峰值之间的分辨能力,常用能量分辨本领来评价能谱仪的性能。

(2)计数效率:表示利用能谱仪在一定时间内所测得的有效计数数与实际产生的辐射剂量之比,在能谱测量中计数效率是一个非常重要的参数。

(3)峰位:表示能量分辨本领,也是能谱中不同能量发射峰的位置。

(4)全能位置:获得有效计数的最高能量。

(5)平均扫描时间:截取一个完整的能谱所需的时间,其值应该比能谱内容时间小很多。

三、实验装置与实验步骤1.实验装置能谱仪主要由光电倍增管、能量分析器、单道分析器、高压电源、样品架等组成。

实验装置如下图所示:![image.png](attachment:image.png)2.实验步骤(1)实验前的准备确认仪器连接正确,并调整得到最佳工作状态。

将样品架固定到能谱仪的样品台上。

109-教学案例-X射线光电子能谱分析

109-教学案例-X射线光电子能谱分析

天津大学精品课程-材料现代研究方法材料X射线光电子能谱数据处理及分峰的分析实例例:将剂量为1×107ions/cm2,能量为45KeV的碳离子注入单晶硅中,然后在1100C退火2h进行热处理。

对单晶硅试样进行XPS测试,试对其中的C1s高分辨扫瞄谱进行解析,以确定各种可能存在的官能团。

分析过程:1、在Origin中处理数据图1将实验数据用记事本打开,其中C1s表示的是C1s电子,299.4885表示起始结合能,-0.2500表示结合能递减步长,81表示数据个数。

从15842开始表示是光电子强度。

从15842以下数据选中Copy到Excel软件B列中,为光电子强度数据列。

同时将299.4885Copy到Excel软件A列中,并按照步长及个数生成结合能数据,见图2。

图2 将生成的数据导入Origin软件中,见图3。

图3此时以结合能作为横坐标,光电子强度作为纵坐标,绘出C1s谱图,检查谱图是否有尖峰,如果有,那是脉冲,应把它们去掉,方法为点Origin 软件中的Data-Move Data Points,然后按键盘上的↓或↑箭头去除脉冲。

本例中的实验数据没有脉冲,无需进行此项工作。

将column A和B中的值复制到一空的记事本文档中(即成两列的格式,左边为结合能,右边为峰强),并存盘,见图4。

图42、打开XPS Peak,引入数据:点Data----Import(ASCII),引入所存数据,则出现相应的XPS谱图,见图5、图6。

图5图63、选择本底:点Background,因软件问题, High BE和Low BE的位置最好不改,否则无法再回到Origin,此时本底将连接这两点,Type可据实际情况选择,一般选择Shirley 类型,见图7。

图74、加峰:点Add peak,出现小框,在Peak Type处选择s、p、d、f等峰类型(一般选s),在Position处选择希望的峰位,需固定时则点fix前小方框,同法还可选半峰宽(FWHM)、峰面积等。

X射线光电子能谱分析分析

X射线光电子能谱分析分析

一、X射线光电子能谱的测量原理X射线光电子能谱(X-ray photoelectron Spectroscopy,简称XPS)也就是化学分析用电子能谱(Electron Spectroscopy for Chemical Analysis,简称ESCA),它是目前最广泛应用的表面分析方法之一,主要用于成分和化学态的分析。

用单色的X射线照射样品,具有一定能量的入射光子同样品原子相互作用,光致电离产生了光电子,这些光电子从产生之处输运到表面,然后克服逸出功而发射,这就是X射线光电子发射的三步过程。

用能量分析器分析光电子的动能,得到的就是x射线光电子能谱。

根据测得的光电子动能可以确定表面存在什么元素以及该元素原子所处的化学状态,这就是x射线光电子谱的定性分析。

根据具有某种能量的光电子数量,便可知道某种元素在表面的含量,这就是x射线光电子谱的定量分析。

为什么得到的是表面信息呢?这是因为:光电子发射过程的后两步,与俄歇电子从产生处输运到表面然后克服逸出功而发射出去的过程是完全一样的,只有深度极浅范围内产生的光电子,才能够能量无损地输运到表面,用来进行分析的光电子能量范围与俄歇电子能量范围大致相同。

所以和俄歇谱一样,从X射线光电子谱得到的也是表面的信息,信息深度与俄歇谱相同。

如果用离子束溅射剥蚀表面,用X射线光电子谱进行分析,两者交替进行,还可得到元素及其化学状态的深度分布,这就是深度剖面分析。

X射线电子能谱仪、俄歇谱仪和二次离子谱仪是三种最重要的表面成分分析仪器。

X射线光电子能谱仪的最大特色是可以获得丰富的化学信息,三者相比,它对样品的损伤是最轻微的,定量也是最好的。

它的缺点是由于X射线不易聚焦,因而照射面积大,不适于微区分析。

不过近年来这方面已取得一定进展,分析者已可用约100 μm直径的小面积进行分析。

最近英国VG公司制成可成像的X射线光电子谱仪,称为“ESCASCOPE”,除了可以得到ES-CA谱外,还可得到ESCA像,其空间分辨率可达到10μm,被认为是表面分析技术的一项重要突破。

XPS实验报告

XPS实验报告

1 了解X 射线光电子能谱的产生原理;2 掌握X 射线光电子能谱的定性分析和定量分析依据;3 了解X 射线光电子能谱仪的基本结构;4 掌握X 射线光电子能谱的谱图处理和分析过程。

固体表面分析业已发展为一种常用的仪器分析方法,特殊是对于固体材料的分析和元素化学价态分析。

目前常用的表面成份分析方法有:X 射线光电子能谱(XPS) , 俄歇电子能谱(AES),静态二次离子质谱(SIMS)和离子散射谱(ISS)。

AES 分析主要应用于物理方面的固体材料科学的研究,而XPS 的应用面则广泛得多,更适合于化学领域的研究。

SIMS 和ISS 由于定量效果较差,在常规表面分析中的应用相对较少。

但近年随着飞行时间质谱(TOF-SIMS)的发展,使得质谱在表面分析上的应用也逐渐增加。

下面主要介绍X 射线光电子能谱的实验方法。

X 射线光电子能谱(XPS)也被称作化学分析用电子能谱(ESCA)。

该方法是在六十年代由瑞典科学家Kai Siegbahn 教授发展起来的。

由于在光电子能谱的理论和技术上的重大贡献,1981 年,Kai Siegbahn 获得了诺贝尔物理奖。

三十多年的来,X 射线光电子能谱无论在理论上和实验技术上都已获得了长足的发展。

XPS 已从刚开始主要用来对化学元素的定性分析,业已发展为表面元素定性、半定量分析及元素化学价态分析的重要手段。

XPS 的研究领域也再也不局限于传统的化学分析,而扩展到现代迅猛发展的材料学科。

目前该分析方法在日常表面分析工作中的份额约50%,是一种最主要的表面分析工具。

在XPS 谱仪技术发展方面也取得了巨大的发展。

在X 射线源上,已从原来的激发能固定的射线源发展到利用同步辐射获得X 射线能量单色化并连续可调的激发源;传统的固定式X 射线源也发展到电子束扫描金属靶所产生的可扫描式X 射线源;X 射线的束斑直径也实现了微型化,最小的束斑直径已能达到 6 微米大小, 使得XPS 在微区分析上的应用得到了大幅度的加强。

X射线荧光光谱分析实验报告

X射线荧光光谱分析实验报告

X射线荧光光谱分析实验报告一、实验目的1.了解能量色散X荧光分析的原理、仪器构成和基本测量、分析方法。

2.验证莫塞莱定律,并从实验推出屏蔽常数。

3.研究对多道分析器的定标,以及利用X荧光分析测量位未知样品成分及相对含量的方法。

二、实验原理以一定能量的光子、电子、原子、粒子或其它离子轰击样品,将物质原子中的内壳层电子击出,产生电子空位,原子处于激发态。

外壳层电子向内壳层跃迁,填补内壳层电子空位,同时释放出跃迁能量,原子回到基态。

跃迁能量以特征X射线形式释放,或能量转移给另一个轨道电子,使该电子发射出来,即俄歇电子发射。

测出特征X射线能谱,即可确定所测样品中元素种类和含量。

特征曲线X射线根据跃迁后电子所处能级可以分为K,L,M系等:根据电子跃迁前所在能级又可分为Ka,KB,Ky,La,Ls等不同谱线。

特征X谱线的的能量为两壳层电子结合能之差。

因此,所有元素的K,L 系特征X射线能量在几干电子伏到几十干电子伏之间。

X荧光分析中激发X射线的方式一般有三种:(1)用质子、0粒子等离子激发(2)用电子激发;(3)用X射线或低能y射线激发。

我们实验室采用X射线激发(XX技术),用放射性同位素作为激发源的X光管。

XX技术中,入射光子除与样品中原子发生光电作用产生内壳层空位外,还可以发生相干散射和非相干散射(康普顿散射),这些散射光子进入探测器,形成XⅨ分析中的散射本底。

另外,样品中激发出的光电子又会产生轫致辐射,但这产生的本底比散射光子本底小得多,且能量也较低,一般在3kV以下。

所以XIX能谱特征是:特征X 射线峰叠加在散射光子峰之间的平坦的连续本底谱上。

测量特征X射线常用S(L)探测器,它的能量分辨率高,适用于多元素同时分析,也可选用Ge(Li)或高纯Ge探测器,但均价格昂贵。

在X荧光分析中,对于轻元素(一般指Z<45的元素通常测其KX 射线对于重元素Z>45的元素),因其KX射线能量较高且比LX射线强度弱,常测其LX射线,这样测量的特征X射线能量一般在20kV以下。

X射线光电子能谱仪实验报告

X射线光电子能谱仪实验报告

X射线光电子能谱仪实验报告X-射线光电子能谱仪的分析应用一、工作原理:X-Ray样品电离出光电子能量分析器光电子长生过程记录不同能量的电子数量检测器e-hv(X-ray)A(中性分子或原子)+hv(X-ray)A+(激发态离子)+e-(光电子)二、主要用途:1.固体样品的表面组成分析,化学状态分析,取样深度为~3nm2.元素成分的深度分析(角分辨方式和氩离子刻蚀方式)3.可进行样品的原位处理AES:1.可进行样品表面的微区选点分析(包括点分析,线分析和面分析)2.可进行深度分析适合:纳米薄膜材料,微电子材料,催化剂,摩擦化学,高分子材料的表面和界面研究三、主要研究领域:(1)TiO2纳米光催化以及在空气和水净化方面的应用;(2)汽车尾气净化催化剂新型金属载体的研究;(3)纳米药物载体及靶向药物的研究;(4)纳米导电陶瓷薄膜材料的研究;(5)纳米杂化超硬薄膜材料及摩擦化学的研究;(6)纳米发光材料及纳米分析化学研究;(7)有机电致发光材料的表面化学研究;(8)纳米材料在香烟减毒净化上的应用研究;(9)无机纳米杀菌与抗菌材料及其在饮用水净化上的作用;(10)电解水制氧电极材料的研究四、XPS分析特点:可以分析除H和He以外的所有元素。

相邻元素的同种能级的谱线相隔较远,相互干扰较少,元素定性的标识性强。

能够观测化学位移,化学位移同原子氧化态、原子电荷和官能团有关。

化学位移信息是利用XPS进行原子结构分析和化学键研究的基础。

可作定量分析,即可测定元素的相对浓度,又可测定相同元素的不同氧化态的相对浓度。

是一种高灵敏超微量表面分析技术,样品分析的深度约为20?,信-8g,绝对灵敏度高达10-号来自表面几个原子层,样品量可少至1018g。

五、XPS谱图的解释步骤:(1)在XPS谱图中首先鉴别出C1s、O1s、C(KLL) 和O(KLL)的谱峰(通常比较明显)。

(2)鉴别各种伴线所引起的伴峰。

(3)先确定最强或较强的光电子峰(或俄歇电子峰),再鉴定弱的谱线。

XPS实验报告

XPS实验报告

XPS实验报告电子能谱实验实验日期:2009-11-30 报告人:张丽颖(***-*****0007)组员:邓春凤、代庆娥、刘丽娜实验内容:一、实验目的(1) 了解X光电子能谱(XPS)测量原理、仪器工作结构及应用;(2) 通过对选定的样品实验,初步掌握XPS实验方法及谱图分析。

二、实验原理1、光电发射过程光子照射到样品上,被样品表面原子的电子吸收,逸出样品表面。

2、光电子能谱一定能量的电子、X光、UV等入射到(作用到)样品上,将样品表面原子中的不同能级的电子激发成自由电子,这些电子带有样品表面信息,具有特征能量,研究这类电子的能量分布,即为电子能谱分析。

而以光子激发出自由电子得到的电子能谱称为光电子能谱,用X 光激发得到的光电子能谱就叫做XPS。

3、能量关系光电发射有:hν+M →M++e(Ek),其中,hν是入射光子,M是样品原子,Ek是光电子动能。

得到能量关系(Einstein 关系):Ek = hν- Eb → Eb= hν-Ek-φsa (固体),其中,hν是光子能量,Eb是结合能(相对于费米能级EF),Ek是光电子动能,φsa是固体样品功函数。

实际实验中是将样品与分析器相连接地,二者处于相同电位上,能量关系如图1所示,光电子结合能又可表示为:Eb=hv-Ek’-φsa ........ 样品=hv-Ek-φsp .........仪器其中φsp是仪器功函数。

4、化学态分析物理位移:由于物理因素而引起的结合能位移为物理位移,如相变,固体热效应,荷电效应等。

其中荷电效应是由于样品光电子的逸出使样品电位升高,对后续实验产生的光电子有吸引作用,导致测量得到的结合能高于实际值。

化学位移:由于原子处于不同的化学环境而引起的结合能的位移(ΔEb)为化学位移。

结合能化学位移变化规律:(a) 同一元素中,1s, 2s, 2p1/2, 2p3/2, 3s, 3p1/2, 3p3/2, 3d5/2, 3d3/2, ....结合能变小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

X-射线光电子能谱仪的分析应用
一、工作原理:
X-Ray
样品
电离出光电子
能量分析器
光电子长生过程
记录不同能量的电子数量
检测器
e-
hv(X-ray)
A(中性分子或原子)+hv(X-ray)
A+(激发态离子)+e-(光电子)
二、主要用途:
1.固体样品的表面组成分析,化学状态分析,取样深度为~3nm
2.元素成分的深度分析(角分辨方式和氩离子刻蚀方式)
3.可进行样品的原位处理
AES: 1.可进行样品表面的微区选点分析(包括点分析,线分析和面分析)
2.可进行深度分析适合: 纳米薄膜材料,微电子材料,催化剂,摩擦化学,高分子材料的表面和界面研究
三、主要研究领域:
(1)TiO2纳米光催化以及在空气和水净化方面的应用;
(2)汽车尾气净化催化剂新型金属载体的研究;
(3)纳米药物载体及靶向药物的研究;
(4)纳米导电陶瓷薄膜材料的研究;
(5)纳米杂化超硬薄膜材料及摩擦化学的研究;
(6)纳米发光材料及纳米分析化学研究;
(7)有机电致发光材料的表面化学研究;
(8)纳米材料在香烟减毒净化上的应用研究;
(9)无机纳米杀菌与抗菌材料及其在饮用水净化上的作用;
(10)电解水制氧电极材料的研究
四、XPS分析特点:
• 可以分析除H和He以外的所有元素。

• 相邻元素的同种能级的谱线相隔较远,相互干扰较少,元素定性的标识性强。

• 能够观测化学位移,化学位移同原子氧化态、原子电荷和官能团有关。

化学位移信息是利用XPS进行原子结构分析和化学键研究的基础。

• 可作定量分析,即可测定元素的相对浓度,又可测定相同元素的不同氧化态的相对浓度。

• 是一种高灵敏超微量表面分析技术,样品分析的深度约为20Å,信
-8g,绝对灵敏度高达10-号来自表面几个原子层,样品量可少至10
18g。

五、XPS谱图的解释步骤:
(1)在XPS谱图中首先鉴别出C1s、O1s、C(KLL) 和O(KLL)的谱峰(通常比较明显)。

(2)鉴别各种伴线所引起的伴峰。

(3)先确定最强或较强的光电子峰(或俄歇电子峰),再鉴定弱的谱线。

相关文档
最新文档