材料力学第四节弯曲内力

合集下载

材料力学课件04弯曲内力

材料力学课件04弯曲内力

影响线的绘制方法
静力法
通过平衡条件,将单位集中荷载作用 于简支梁上,绘制弯矩图或剪力图。
机动法
利用梁的微段运动特性,通过几何关 系绘制影响线。
影响线的应用实例
确定最不利荷载位置
通过比较不同位置的荷载值,确定最不利荷载位置,以便进行结 构设计。
校核承载能力
根据影响线确定最不利荷载位置的弯矩值,校核梁的承载能力是否 满足设计要求。
02
在桥梁、建筑、机械等领域中,需要根据剪力和弯矩的分布规律进行结构设计, 确保结构的承载能力和稳定性。同时,在设计过程中还需要考虑材料的力学性能 、施工方法等因素,以满足工程实际需求。
剪力和弯矩的分布规律实验验证
为了验证剪力和弯矩的分布规律,需 要进行相关的实验验证。通过实验可 以测量梁在不同弯曲程度下的剪力和 弯矩值,并与理论分析结果进行比较 。
集中载荷下的简化和计算
总结词
集中载荷作用下,弯曲内力可以直接通过载 荷和支撑反力计算。
详细描述
在集中载荷作用下,梁的弯曲内力可以通过 将载荷与支撑反力相乘得到。这种方法适用 于载荷作用点明确的情况,计算过程简单明 了。
特殊情况下的简化和计算
要点一
总结词
某些特殊情况下,可以利用梁的对称性和载荷特性简化弯 曲内力的计算。
03
弯曲内力的大小与梁的截面尺寸、形状、材料属性 以及外力矩的大小和方向有关。
弯曲内力的类型
正应力
垂直于截面的应力,主要引起梁的弯曲变形 。
剪应力
与截面相切的应力过程中,梁截面上同时存在正应力和 剪应力,其中对梁的强度和稳定性影响最大 的应力。
弯曲内力分析的重要性
弯矩
由于弯曲变形产生的内力矩,其分布规律与梁的截面形状和弯曲方式有关。在梁的中部,弯矩通常为 负值,表示梁的上侧受压、下侧受拉;在梁的支座处,弯矩通常为正值,表示梁的上侧受拉、下侧受 压。

材料力学第四章 弯曲内力

材料力学第四章 弯曲内力

§4-4 剪力、弯矩和荷载集度之间的关系 二、内力图特征
外力 情况
FQ
q(x)=0
q(x)=C<0 C
FQ FQ

F
m C
FQ图
特征
① ②
x


x
F

⑤ ④ ① ② ③
FQ
x x x x x
C ①


x
水平直线
③1 ③3 ③2
向下斜直线
C 处有突变 与F 方向一致

C 处无变化
② ③ ①
M图
特征
M
x
x2
x 72 8 x 88
x 3.6m

x1
dM ( x) FQ ( x)dx
x1
M 2 M1 FQ ( x)dx
x1
M1 0 M 2 72 2 144kN m CB段 F 72kN Q3 FQ4 72 20 8 88kN M3 72 2 160 16kN m M 4 20 2 20 2 1 80kN m
第4章 弯曲内力
例题5
q0 A
1 2 q0l
试作图示悬臂梁的剪力图和弯矩图
q (x) 一次直线
x
解: 1、求x截面荷载集度
B
l
q0 q ( x ) (l x ) l
2、列内力方程
二次曲线
FQ
1 2 6 q0l
三次曲线
M
1 1 q0 FQ ( x) q ( x)(l x) (l x) 2 2 2 l 1 1 M ( x) q( x)(l x) (l x) 2 3 q0 (l x)3 6l

材料力学-第四章 弯曲内力

材料力学-第四章 弯曲内力
7 . 线是一条在该纵向对称面内的平面曲线,这种弯曲称为平面弯曲
(Internal forces in beams)
纵向对称面
F1
F2
梁的轴线
A B
FRB
FRA
梁变形后的轴线与 外力在同一平面内
8
(Internal forces in beams)
4.梁的力学模型的简化(Representing a real structure by an idealized model) (1) 梁的简化 通常取梁的轴线来代替梁。
m dx
15
+
FS
m
FS
m
-
dx
m
FS
(Internal forces in beams)
2.弯矩符号
(Sign convention for bending moment)
+
M m
M
当dx 微段的弯曲下凸(即该段的下半部 受拉 )时,横截面m-m上的弯矩为正;
m
(受拉)
当dx 微段的弯曲上凸(即该段的下半 部受压)时,横截面m-m上的弯矩为负.
12
(Internal forces in beams)
§4-2 梁的剪力和弯矩 (Shear- force and bending- moment in beams)
一、内力计算(Calculating internal force)
[举例] 已知 如图,F,a,l. 求距A端x处截面上内力. 解: 求支座反力
3
(Internal forces in beams)
§4-1 基本概念及工程 (Basic concepts and example problems)

材料力学——4梁的弯曲内力

材料力学——4梁的弯曲内力
通常取梁的轴线来代替梁。
2. 载荷简化 作用于梁上的载荷(包括支座反力)可简化为三种类型:
集中力、集中力偶和分布载荷。
3. 支座简化 ①固定铰支座
2个约束,1个自由度。 如:桥梁下的固定支座,止 推滚珠轴承等。
②可动铰支座 1个约束,2个自由度。
如:桥梁下的辊轴支座,滚 珠轴承等。
③固定端
3个约束,0个自由度。
M
MM
M


使梁下凹为正,向上凸为负
[例] 一简支梁受力如图所示。试求C截面(跨中截面)
上的内力。
M1 2qa2 q
M2 2qa2
A
B
C
FAy
a
4a
a
FBy
解: 1、根据平衡条件求支座反力
MA 0 MB 0
FBy 3qa FAy qa
2、求C截面(跨中截面)上的内力
M1 2qa2 q
由Fy 0, 得到:
钢的密度为:7.8g/cm³,液体的密度为:1g/cm³ ,液面高 0.8m,外伸端长 1m,试求贮液罐的计算简图。
解:
q — 均布力
1m
3m
1m
q
mg L
Vg
L
A1L1g
A2L 2g
L
A11g A2 2g
Dt 1g
[R2
1 2
R2
(
sin
)]
2
g
106.30 1.855rad
3.14 1 0.01 7800 9.8 [3.14 0.5 2
1. 弯曲: 杆受垂直于轴线的外力或外力偶矩矢的作用时,轴 线变成了曲线,这种变形称为弯曲。
2. 梁:以弯曲变形为主的 构件通常称为梁。

材料力学4弯曲内力

材料力学4弯曲内力
平面曲线仍与外力共面。
目录
§4-2 受弯杆件的简化
计算简图:
分析梁的内力、变形都在计算简图上进行。梁的简化包括:
1、构件几何形状的简化 将梁简化为杆,用轴线表示。
2、支座的简化 活动铰支座
固定铰支座
固定端
3、载荷的简化
集中载荷 分布载荷(常见的为均布载荷) 集中力偶
目录
工程实例——受弯构件的力学简图
P
( a< x2 < l )
ab l 2
1 Mmax 4 Pl
观察:集中力作用点、无载荷
M
( x2
)
FB
(l
x2 )
a l
P(l
x2 )
3)作Fs、M 图
( a ≤x2≤ l )
作用的梁段剪力图、弯矩图的形态
Fs
max
a l
1 qa 2
M1

右侧
qa
a 2
+FB0
Fs2 左侧
+FA

qa + FB
qa
Fs2 qa
M2 — qa a 1 qa2
右侧
右侧
22
Fs P横向外力 左上、右下,外力为正
一侧
力的集大中小力;作弯用矩点相的等左。、右所邻以M截,O=面不为一上截考侧面的m虑的剪O集形(力中P心不力) 相作左等用外顺,力点右(相逆的偶差(剪上) 矩集凹力为弯中。正曲)
车削工件
目录
§4-1 弯曲的概念和实例
火车轮轴
目录
§4-1 弯曲的概念和实例
弯曲特点 以弯曲变形为主的杆件通常称为梁
目录
常见受弯构件的横截 面都有竖直对称轴 y
纵向对称面:
轴线x 和竖直对称 轴y 所确定的平面。

材料力学考研复习资料第4章弯曲内力

材料力学考研复习资料第4章弯曲内力

M eb l
发生在C截面右侧
思考:对称性与反对称性
FA
F
FB
A
B C
l/2
l/2
Fs
F/2
x
F/2
x
M
Fl/4
FA
Me
FB
A
B C
l/2
l/2
Fs
Me l
x
Me/2
M
Me/2
x
结论:
• 结构对称、外力对称时,弯矩图为正对称, 剪力图为反对称
• 结构对称、外力反对称时,弯矩图为反对称, 剪力图为正对称
34
A1 2
34
Bx
内力
FS M
1—1 -P -Pa
2—2 2P -Pa
3—3 2P Pa
4—4 2P -2Pa
3、在集中力作用处,剪力值发生突变,突变值= 集中力大小;
在集中力偶作用处,弯矩值发生突变,突变值= 集中力偶矩大小。
例 图示简支梁受到三角形分布荷载的作用,最大荷
载集度为q0,试求截面C上的内力。
1 FS1
M1 Fa ( 顺 )
截面2—2
Fy 0 FS2 FA F 0
F
C2 2 M2
FA 2 FS2
FS2 FA F 2F MC2 0 M2 F a 0
M 2 Fa ( 顺 )
y
Me =3Fa
F
1A2 3 4
B
1 2 34
x
a
a
FA
2a
FB
截面3—3 F
C33 M3
1 8
ql
FSB左
1 ql 8
剪力方程为常数,剪力图为
水平线。
M图:

材料力学第四章弯曲内力优秀课件

材料力学第四章弯曲内力优秀课件
工程中的弯曲构件 梁的内力及其与外力的相互关系 剪力方程与弯矩方程 载荷集度、剪力、弯矩之间的微分关系 剪力图与弯矩图 刚架的内力与内力图 结论与讨论
剪力方程与弯矩方程
•剪力、弯矩方程:剪力、弯矩沿梁轴(x轴)变化的解析表达式。
为了建立剪力方程和弯矩方程,必须首先建立Oxy坐标系,其
中O为坐标原点,x坐标轴与梁的轴线一致,坐标原点O一般取在梁
M C F A a a 2 q l0 a a 3 q 6 0 la q 6 0 a l3
思考:是否可以将梁上的分布荷载全部用静力等效后的合 力代替来求截面C的内力?
例题
建立剪力弯矩方程,并画 剪力弯矩图
q
qa2
A
B
C
a
a
x
可以不求支反力 建立坐标 建立剪力弯矩方程:
FS=-qx (0 x a) M=-qx2/2 (0 x < a)
工程中的弯曲构件
•常见静定梁
简支梁:一端固定铰支、另 一端可动铰支的梁
悬臂梁:一端固定、另一 端自由的梁
F F
外伸梁:具有一个或两个
外伸部分的简支梁
F
F
•静不定梁
约束反力数超过有效平衡方程数的梁( Ch12 研究)
常用梁截面
纵向对称面
P1
P2 纵向对称面 P1
P2 变形前
平面弯曲概念
变形后
例题
图示简支梁受到三角形分布荷载的作用,最大荷载集度为q0, 试求截面C上的内力。
y
q0l/2
q0
A
B
a
C
x
解:先求支反力 FA
l
FB
MA0 FBlq20l23l 0 MB0 FAlq20l3l 0

材料力学课件ppt-4弯曲内力

材料力学课件ppt-4弯曲内力
2.确定控制面 在集中力和集中力偶作用处的两侧截面以及支座反力
内侧截面均为控制面。即A、C、D、E、F、B截面。
目录
29
§4-5 载荷集度、剪力和弯矩间的关系
1kN.m
A
CD E F B
3.建立坐标系
0.89 kN= FAY
FS (kN)
O
0.89
1.5m
2kN
1.5m
1.5m
1.11
(+)
(-)
MA A FAy a
qa/2 Fs
M qa2/2
(-)
(+)
载荷集度、剪力和弯矩间的关系
qa
例题4-8试画出图示有中间
q
铰梁的剪力图和弯矩图。
D
B
C
a
a
FBy
qa
解:1.确定约束力 从铰处将梁截开
qa
(+)
(-)
qa/2 qa2/2
(-)
MA FAy
FDy
q
FDy qa / 2
FDy FBy
FBy 3qa / 2
FSE
FBy
F 3
FAy
5F 3
O
ME
分析右段得到:
FAy
FBy
ME
O
FSE
Fy 0 FSE FBy 0
FBy
FSE
FBy
F 3
Mo 0
3a M E FBy 2 Fa
3Fa ME 2
目录
18
§4-3 剪力和弯矩
FBy
F 3
FAy
5F 3
FAy
FBy
FSE
FAy
2F
截面上的剪力等于截 面任一侧外力的代数和。

第四章弯曲内力

第四章弯曲内力
§4.3 剪力和弯矩
材料力学
一.弯曲内力的含义
设有一简支梁AB,受集中力F作用。现 分析距A端为x处的横截面m-m上的内力。
a mF b
A
B
xm L
材料力学
a mF b
A
F Ay
A F Ay
xm L
m
oM
x
Fs
m
材料力学
1.根据平衡条件求支座反力
Fb
Fa
B
FAy L
FBy L
FBy 2.求m-m截面上的内力
材料力学
M 2Pa - Px (a x 2a)
弯曲内力/剪力方程和弯矩方程 剪力图和弯矩图
2.作梁的剪力图和弯矩图
AB段:
FS ( x) 0 M Pa
m=Pa
P
A
(0 x a)
(0 x a)
B
C
a
a
BC段:
FS ( x) P M 2Pa - Px
(a x 2a)
剪力图: Fs
x
弯矩图: M
x
材料力学
绘制剪力图和弯矩图的注意事项:
1.横坐标要与杆件长度相对应; 2.纵坐标要标明数值大小及正负; 3.纵坐标大小要成比例; 4.是一条连续的图线,不能间断; 5.在图上要画出阴影线.
材料力学
练习一:悬臂梁受力如图所示,列出梁的剪力 方程和弯矩方程, 作出梁的剪力图和弯矩图, 并求出梁的FSmax和Mmax 及其所在截面位置。
材料力学
弯曲内力/剪力和弯矩
如以右侧梁作为研究对象,则:
Fy 0
q
M
Fs q 2a FBy 0
C
Fs

材料力学 第四章 弯曲内力

材料力学  第四章  弯曲内力
M 2 10kN.m
3-3截面
Fy 0; FA Fs 3 P 0
Fs3 7kN
M3 0; M 3 FA 2 0
M 3 10kN.m
F=12kN
1 A1
23 2D 3
2m
2m
q=2kN/m 4
B C4 2m
2
A FA
2 Fs2 M2
P=12kN
A
3 3
M3
FA
Fs3
F=12kN
建立剪力与弯矩方程,画剪力与弯矩图
解:1. 支反力计算
FCy qa,
MC
qa2 2
2. 建立剪力与弯矩方程
AB 段
BC 段
FS1 qx1
M1
qx12 2
(0 x1 a) (0 x1 a)
FS2 qa (0 x2 a)
M2
qax2
qa2 2
(0 x2 a)
§4–4 剪力、弯矩与分布荷载集度间的关系
AB 段
BC 段
FS1 qx1
M1
qx12 2
(0 x1 a) (0 x1 a)
FS2 qa (0 x2 a)
M2
qax2
qa2 2
(0 x2 a)
3. 画剪力与弯矩图
剪力图:
FS1 qx1
FS2 qa
弯矩图:
M1
qx12 2
M2
qax2
qa2 2
剪力弯矩最大值:
FS max qa
简单静定梁:
悬臂梁
简支梁
外伸梁
§4-2 剪力和弯矩
FS-剪力
M-弯矩
剪力-作用线位于所切横截面的内力。 弯矩-矢量位于所切横截面的内力偶矩。

材料力学弯曲内力课件

材料力学弯曲内力课件

FS x
FA
qx
ql 2
qx
0 x l
M
x
FA x
qx
x 2
qlx 2
qx2 2
0 x l
23
2. 列剪力方程和弯矩方程
FS x
FA
qx
ql 2
qx
0 x l
M
x
FA x
qx
x 2
qlx qx2 0 x l
22
3. 作剪力图和弯矩图
24
例4-5 已知:简支梁如图 。求:剪力方程,弯矩 方程,并作剪力图和 弯矩图。
RAx x
RA Fs
80 kN
注意: 以上结论只在该 段梁上无集中力 或集中力偶作用 时才成立。
RC
x
40 kN
x
120 kN.m
M
160 kN.m
39
(4) 在集中力作用点: 剪力图有突变,突变值 即为集中力的数值,突 变的方向沿着集中力的 方向(从左向右观察); 弯矩图在该处为折点。
(5) 在集中力偶作用点: 对剪力图形状无影响; 弯矩图有突变,突变值 即为集中力偶的数值。
剪力
使其作用的一 段梁产生顺时 针转动的剪力 为正。
Fs Fs
弯矩 使梁产生上凹 (下凸)变形的 弯矩为正。
19
2、 剪力方程和弯矩方程.剪力图和弯矩图 剪力方程和弯矩方程实际上是表示梁的
横截面上的剪力和弯矩随截面位置变化的函 数式,它们分别表示剪力和弯矩随截面位置 的变化规律。显示这种变化规律的图形则分 别称为剪力图和弯矩图。
研究CB梁, 受力如图
12
研究CB梁, 受力如图
MC 0
20 103 N m 3 m 2.5 m 5103 N m FBy 5 m 0

第4章 材料力学—弯曲内力

第4章  材料力学—弯曲内力

第四章 弯曲内力§4.1 弯曲的概念和实例 §4.2 受弯杆件的简化 §4.3 剪力和弯矩§4.4 剪力方程和弯矩方向,剪力图和弯矩图 §4.5 载荷集度、剪力和弯矩间的关系 §4.6 静定刚度及平面曲杆的弯曲内力§4.1 弯曲的概念和实例1.实例()()()()⎪⎪⎩⎪⎪⎨⎧轧板机的轧辊镗刀刀杆火车轮轴桥式起重机大梁4321 2.弯曲变形作用于杆件上的垂直于杆件的轴线,使原为直线的轴线变形后成为曲线,这种变形称为弯曲变形。

3.梁——凡以弯曲变形为主的杆件,习惯上称为梁 4.对称弯曲:()()()()⎪⎪⎩⎪⎪⎨⎧曲线向对称面内的一条平面弯曲变形后轴线成为纵对称面内所有外力都作用于纵向称轴的纵向对称面整个杆件有一个包含对横截面有一根对称轴4321§4.2 受弯杆件的简化根据支座及载荷简化,最后可以得出梁的计算简图。

计算简图以梁的轴线和支承来表示梁。

()()()⎪⎩⎪⎨⎧悬臂梁外伸梁简支梁梁的基本形式321:l 称为梁的跨度§4.3 剪力和弯矩(1)求反力:BA AB F F 00=∑M =∑M(2)求内力(截面法)一般来说截面上有剪力F S 和弯矩M (为平衡)001=--=∑s A y F F F F1F F F A S -=(a )()0010=⋅--+=∑x F a x F M M A()a x F x F M--=(b )(3)讨论一般说,在梁的截面上都有剪力F S 和弯矩M ,从式(a )式(b )可以看出,在数值上,剪力F S 等于截面以左所有外力在梁轴线的垂线(y 轴)上投影的代数和;弯矩M 等于截面以左所有外力对截面形心取力矩的代数和,即:⎪⎪⎭⎪⎪⎬⎫==∑∑==左左ni i ni iS M M F F 11 同理,取截面右侧部分为研究对象:⎪⎪⎭⎪⎪⎬⎫==∑∑==右右ni i ni iS M M F F 11 (4)剪力F S 和弯矩M 符号规定无论取左侧,或者取右侧,所得同一截面上的剪力F S 和弯矩M ,不但数值相同,而且符号也一致,符号规定如左图示。

《材料力学》第四章 弯曲内力.ppt

《材料力学》第四章 弯曲内力.ppt
列出剪力方程和弯矩方程,并绘制剪力图和弯矩图。 解:(1)求支反力。
FRA 14.5kN, FRB 3.5kN,
(2)用截面法求剪力和弯矩方程。 分CA,AD,DB三段。
CA段
FS x qx 3x 0 x 2m
M x 1 qx2 3 x2 0 x 2m
§4.1 弯曲的概念和实例
杆的轴线将由原来的直线弯成 曲线,这种变形称为弯曲。受 力后以弯曲变形为主的杆件通 常称为梁。
受力特点:外力作用线垂直于杆 的轴线,或在通过杆轴的平面内 受到外力偶作用。 变形特点:直杆的横截面绕横向 轴转动,轴线将由原来的直线弯 成曲线。
全梁有对称面,并且 所有外力都作用在对称面 内的情形。在这种情形下 梁的轴线弯成位于对称平 面内的一条平面曲线,这 种弯曲属于平面弯曲。
FS
n n1 dx
FS+dFS
上述微分关系在绘制FS、M图中的应用结论。
1.梁上某段无载荷时,则该段FS图为水平线, M图为斜直线。
2.某段为均布载荷时,则FS图为斜直线,M图为抛物线。
dFS
剪力图
dx
d 2M dx2
弯矩图
分布载荷q<0时 0 递减(\) 0 上凸 (╭╮)
分布载荷q>0时 0 递增(/)
0 下凸 (╰╯)
3.在集中力P作用处,剪力图为突变(突变值等于集中力P), 弯矩图为折角。
4.在集中力偶m作用处,弯矩图有突变(突变值等于力偶矩m), 剪力图没影响。
5.某截面FS=0,则在该截面弯矩图取极值。
二、用载荷集度、剪力和弯矩间的关系画剪力图与弯矩图
例4.6 外伸梁及其所受载荷如图a示,作梁的剪力图和弯矩图。

材料力学弯曲内力ppt课件

材料力学弯曲内力ppt课件
受均布载荷
8
§4–2 梁的剪力和弯
矩F
F
A
a l
B
A
FAx
FAy
B FB
Fx 0; FAx 0
mA 0; FBl Fa 0,
FB

Fa l
Fy 0; FAy FB F 0,
FAy

F (l a) l
荷载和支座反力皆属外力,下面研究横截面的内力。
9
x
31
根据M、 Fs与q之间的关系画剪力图和弯矩图的步骤如下: ⒈ 取整体,求支座反力(悬臂梁此步可省); ⒉ 将梁分段:凡是集中力、集中力偶作用点 ,分布荷载两端,支座处都应 取作分段点;
⒊ 用截面法求出每段梁两端截面的剪力和弯矩 ,由Fs = 0确定弯矩抛物线顶 点所对应的截面位置,并求出该截面的弯矩值;
M1 2kN.m
17
m1=2kN.m m2=14kN.m
A
1 1
23 23
2 C2
FA m
m
B
FB
m1 A
FA
2 2
M2
Fs2
M3
3 3
B
Fs3
FB
2-2截面
Fy 0; FA Fs2 0
Fs2 3kN
m2 0; M 2 m1 FA 2 0
M 2 8kN.m
10
Fs ⊕
Fs Fs
○ - Fs M

MM
○-
M
剪力正负的规定
弯矩正负的规定
内力通过平衡方程计算。
x A
FAy

Fs M

Fy 0; FAy Fs 0,

材料力学图文 (4)

材料力学图文 (4)

a FS2 FBy l F
0x2 b
(c)
M
2
FBy
x2
bF l
x2
0x2 a
(d)
第4章 弯曲内力
(3)画剪力、弯矩图。根据式(a)、(c)画剪力图(见图
4-11(d));根据式(b)、(d)画弯矩图(见图4-11
(e))。由图可看出,横截面C处的弯矩最大,其值为
M
m
a
x
ab l
F
如果a>b,则CB段的剪力绝对值最大,其值为
3 4
qa,
FB
5 4
qa
第4章 弯曲内力
(2) 计算各指定截面的内力。 对于截面5-5,取该截
面右侧部分为研究对象, 其余各截面均取相应截面左侧部
分为研究对象。 根据静平衡方程可求得:
1-1截面:
FS1
FA
3 4
qa;
M1 FA0
(因为1-1截面从右端无限接近支座A,即Δ→0,以下同样理解。)
2-2截面:
4
如图 4-13c 所示。
第4章 弯曲内力
第4章 弯曲内力
4.1 引言 4.2 梁的计算简图 4.3 弯曲内力及内力图 4.4 剪力、 弯矩与载荷集度间的微分关系 4.5 平面刚架与曲杆的内力
第4章 弯曲内力
4.1 引 言
图 4-1
第4章 弯曲内力
图 4-2
第4章 弯曲内力
图 4-3
第4章 弯曲内力
一般来说, 当杆件承受垂直于轴线的外力, 或在其轴 线平面内作用有外力偶时, 杆的轴线将由直线变为曲线。 以轴线变弯为主要特征的变形形式称为弯曲。 以弯曲为主 要变形的杆件称为梁。
中载荷F的作用。试作梁的剪力图和弯矩图。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
悬臂梁
桥式起重机大梁和火
车轮轴,也可以把两条 钢轨中的一条看作是固 定铰支座,而另一条则 视为可动铰支座。
二、载荷的简化
作用在传动轴上的传动力、 车床主轴上的切削力、割刀上 的切削力等,所以都可以简化 成集中力。吊车梁上的吊重、 火车车厢对轮轴的压力等,也 都可以简化成集中力。
图4.6a是薄板轧机的示意图。 在轧辊与板材的接触长度l0内, 可视为均布载荷(图4.6b)。
第四章 弯曲内力
基本要求:
1.了解弯曲的受力特点和变形特点,及受弯杆件的简化 2.熟练绘制剪力图和弯矩图。
重点:
剪力图和弯矩图的绘制
难点:
剪力图和弯矩图绘制的微分关系法
课时:
4学时
第四章 弯曲的强度计算
§4.1 弯曲的概念和实例 §4.2 受弯杆件的简化 §4.3 剪力和弯矩 §4.4 剪力方程和弯矩方程 剪力图和弯矩图 §4.5 载荷集度、剪力和弯矩间的关系
讨论平面弯曲 时横截面上的 内力、应力和 变形问题
§4.2 受弯杆件的简化
一、支座的几种基本形式 传动轴两端为短滑动轴承
车床主轴约束为滚动轴承
轴承一个简化成固定铰支座, 另一个简化成可动铰支座
简支梁
左端简化固定铰支座, 中部简化为可动铰支座。
外伸梁
车床上的割刀及刀架
割刀的一端用螺钉压 紧固定于刀架上,称 为固定端支座
(3)计算B截面的内力。
Y0 mB=0
FSB=- YB=- 52P MB=0
m FSC
YA
MC
FSB MB YB
求剪力和弯矩的法则如下: (1)计算其约束反力; (2)用截面法求内力。保留一段(左段或右 段),在截面上设出正剪力FS和正弯矩M。 (3)对保留段列平衡方程。然后用∑Y=0求FS; 用∑m0=0求M。一般以该截面的形心作为力矩中心。
剪力图—水平直线;
弯矩图—AC和CB两段皆为斜直线
,在力偶作用处C点有突变。
CB段:x=a,M-MO b
AC段:x=0,M=0x;a, MMOa x=l, M=
l
l0
试作轴的简力图和弯矩图
补例1 解 (1)求支反力。
RA
RB
1ql 2
(2)用截面法求剪力和弯矩方程。
FS
RA-q
x=ql 2
-q
x
例4.2 解 (1)受力分析,画出力学简图。
(2)用截面法求剪力和弯矩方程。
取距原点为x的任意截面,保留 左段。设出正剪力FS和正弯矩M, 列平衡方程得:
∑Y=0, FS=-P 剪力方程 ∑MC=0 , M=-Px 弯矩方程
A
FS
(3)画出FS图与M图。
FS图是一平行于x轴的直线; M图是一斜直线。 只需确定其上两点的数值:
(2)用截面法求剪力和弯矩方程。
l
M
0≤x≤a
CB段: a≤x≤l
M
R
A
x=
Pb l
x
FS
RA-P=Pl b-PPll-b
Pa l
RA
MRAx-Px-a=Pl al-x
RA
(3)画出FS图与M图。
FS图为两段水平直 线,P力处有突变
(2)用截面法求内力。 计算距A为x处的横截面C上的内力。
保留左端,在左段梁上作用着
外力FRA和F1,在C截面上一定存
在着某些内力以维持其平衡,必然
FS
存在着两个内力分量:与横截面
M
平行的FS和内力偶矩M。称内力FS 为剪力,内力偶矩M为弯矩。
FS
由左段平衡条件得x截面的剪力和弯矩
M
Fy 0 FRA F 1F S0 FS FRAF1
§4.1 弯曲的概念和实例
杆的轴线将由原来的直线弯成 曲线,这种变形称为弯曲。受 力后以弯曲变形为主的杆件通 常称为梁。
受力特点:外力作用线垂直于杆 的轴线,或在通过杆轴的平面内 受到外力偶作用。 变形特点:直杆的横截面绕横向 轴转动,轴线将由原来的直线弯 成曲线。
全梁有对称面,并且 所有外力都作用在对称面 内的情形。在这种情形下 梁的轴线弯成位于对称平 面内的一条平面曲线,这 种弯曲属于平面弯曲。
x=0,M=0;x=l,M=-Pl。
F
CS M
例4.3
解 (1)求支反力。
RA= RB= M0/ l
(2)用截面法分段求剪力和弯矩方程。
AC段:
FS RA=MlO
F
S
M FS
0≤x≤a
MRAx=MlO x
RA
M l-x RB
(Ca3≤)Bx段画≤:出l FS图M 与F SM- 图R RB B。= l- M xl= O M lOx- l FS图
M
RAx-q
x
x=qlx-qx2 22 2
(3)画出FS图与M图。
剪力图为一斜直线,
x=0,FS=ql/2;x=l,FS=-ql/2;
弯矩图为一抛物线, 由三点来确定:
x=0及x=l时,M=0; x=l/2, M=ql2/8。
F S
M FS
FS图
补例2 解 (1)求支反力。
RA = Pl b
RB = Pl a
4.1a中起重机大梁的自重也 是均布载荷。
三、静定梁的基本形式
1.简支梁: 一端为固定铰支座、另
一端为活动铰支座的梁。
2.悬臂梁: 一端固定,另
一端为自由的梁。
3.外伸梁:
一个固定铰支座和一个活动 铰支座支承,而且有一端(或两 端)伸出支座以外的梁.
§4.3 剪力和弯矩
如图所示的简支梁,承受集中力F1、F2、F3作用。 (1)求支反力FRA、FRB。
指无限接近于B截面并位于其左侧的截面)。 m=2Pl
解:(1)计算其约束反力;
mA0
- m - P2 lY Bl0
5 YB2 P
mB0 - Y Al- m +P2 l0
YA- 3 2 P
(2)计算C截面的内力。
Y0, YA-FSC = 0, FSC =- 23P
m
P
mC= 0, YA4l-m+MC= 0, M C=183Pl
MO0 M F 1 x a F R x A 0M F Rx A F 1 x a
保留右段,得到数值相同的剪力和弯矩,但方向相反。
FS、M符号规定:
剪力“左上右下” 时为正,反之为负;
弯矩下凸时为正, 反之为负。
FS>0
FS<0
例4.1 图示简支梁AB,试计算C、B截面上的内力(B截面是
§4.4 剪力方程和弯矩方程、剪力图和弯矩图
为了进行强度计算和变形计算,必须知道沿梁轴 线剪力和弯矩的变化规律,最大剪力和最大弯矩 的数值及其所在截面。用图形来表示剪力和弯矩 沿梁轴的变化最为方便,这种图形叫剪力图和弯 矩图。
要画出剪力图与弯矩图,首先应知道剪力FS和弯 矩M随截面位置x的变化规律,称为剪力方程和弯 矩方程。
相关文档
最新文档