定积分的简单应用_求体积

合集下载

北师大版数学高二课件 4.3.2 简单几何体的体积

北师大版数学高二课件 4.3.2 简单几何体的体积

梯形绕x轴旋转一周而成的几何体,则该旋转体的体积为V=
bπ[
a
f(x)]
2dx
.
答案
返回
题型探究
重点突破
题型一 简单旋转几何体的体积
例1 求由y=x3,y=0,x=2所围图形绕x轴旋转的旋转体的体积.

Vx=2πy2dx=2πx6dx=
0
0
πx72
7
0
=1278π.
反思与感悟
解析答案
跟踪训练1 求由曲线y=x2,x=y2围成的图形绕y轴旋转形成的几何体的 体积. 解 x1= y,x2=y2,0≤y≤1,
解析答案
课堂小结 1.简单旋转几何体可以看成一个平面图形绕平面内一条直线旋转而成. 2.利用定积分求体积要合理确定被积函数,然后根据图像确定积分上、 下限,要理解其中蕴含的定积分思想.
返回
本课结束
的几何体.如图所示:
因此 V=a A(x)dx
-a
=πab22a (a2-x2)dx=43πab2. -a
反思与感悟
解析答案
跟踪训练2 连接坐标原点O及点P(h,r)的直线、直线x=h及x轴围成一个 直角三角形.将它绕x轴旋转构成一个底半径为r、高为h的圆锥体.计算这个 圆锥体的体积. 解 直角三角形斜边的直线方程为 y=hrx. 所以所求圆锥体的体积为
第四章 §3 定积分的简单应用
4.3.2 简单几何体的体积
学习 目标
1.通过实例,进一步理解定积分的思想. 2.了解定积分在求旋转体的体积方面的简单应用.
栏目 索引

知识梳理 题型探究 当堂检测
自主学习 重点突破 自查自纠
知识梳理
自主学习
知识点 用定积分表示旋转体的体积 旋转体可以看作是由连续曲线y=f(x)、直线x=a、x=b及x轴所围成的曲边

上课用定积分的应用--简单几何体的体积

上课用定积分的应用--简单几何体的体积

两直线y=c与y=d及y轴所围成的曲边梯形绕y轴旋 转一周所成的旋转体的体积为
V d [( y)]2 dy c
【例1】 给定直角边为1的等腰直角三角形,绕一条直 角边旋转一周,得到一个圆锥体.求它的体积.
分析 在直角坐标系中,直角边为1的等腰直角三 角形可以看成是由直线y=x,x=1以及x轴所围成的 平面图形. 在区间[0,1]内插入n-1个分点,使
a
ln a a
(5) b sin xdx cos x b (6) b cos xdx sin x b
a
a
a
a
2.定积分的性质:
b
(1)
1dx b a
a
(2) abkf (x)dx k ab f (x)dx
b
b
b
(3) a [ f1(x) f2 (x)]dx a f1(x)dx a f2 (x)dx
0 x0 x1 x2 L xi1 xi L xn 1
把这个三角形分割成n个垂直于x轴的小梯形,设第I 个小梯形的宽是△xi=xi-xi-1,i=1,2,…n,这个小梯形 绕x轴旋转一周就得到一个厚度是△xi的小圆台当△xi 很小时,第i个小圆台近似于底面半径为xi的小圆柱, 因此,第i个小圆台的体积近似为
(1)画出所要旋转的平面图形;
(2)确定积分变量的范围,即确定积分的上、下限;
(3)确定旋转体体积的表达式(用定积分表示);
(4)求出定积分,即旋转体的体积。
【例2】 如图,求由抛物线y2=8x(y>0)与直线x+y-6=0 及y=0所围成的图形绕x轴旋转一周所得几何体的体积.
[思路探索] 解答本题可先由解析式求出交点坐标. 把组合体分开来求体积.
V
b

空间立体体积的计算方法(1)

空间立体体积的计算方法(1)

数学积分求体积方法概述摘要:定积分在大学数学学习及应用中起着非常重要的作用,一直以来定积分问题就是大学数学学习的重点,也是本科及研究生入学考试重点考察的内容之一,在我们的生活中起着很重要的作用!空间立体体积的计算在日常生活和学习中是十分重要的,对于规则的立体,中学里已有一些求解公式,对于不规则的立体,则需要用高等数学积分法加以解决。

本文总结了几种常见的利用积分求立体体积的方法及案例,通过所学积分学知识建立了更为普遍的立体体积的求解方法和计算公式,同时也介绍了相关的物理方法,并从具体的例题入手充分挖掘了空间立体体积计算的一些思想和方法。

关键词:积分; 空间立体体积; 积分区域; 被积函数引言空间立体体积的计算是生活中常见的问题,对于规则的空间立体体积的计算在中学时就有具体的计算公式,但对于不规则的空间立体体积则难以计算。

本文就主要针对各种形状的空间立体研究计算其体积的简便方法。

其实很多文献对空间立体体积的计算问题都进行了讨论,文献[1]就基本上包括了此问题的所有积分计算方法,并给出了相应的计算公式。

文献[2]-[9]分别从不同方面对各种方法进行了细致说明,并对个别特例进行了深入分析,给出了特殊的积分计算方法。

文献[10]则主要是对部分方法做出了总结,并列出了大量相关例题辅助理解。

以上文献充分体现出积分思想在解题中应用广泛,特别是在计算空间立体体积领域。

如果我们能够在积分学的基础上掌握空间立体体积的计算方法,则能使一些复杂的问题简单化,还易让人接受。

所以我们要分析掌握积分法,以便于解决与此相关的各种复杂问题,特别是各种空间立体体积的计算问题。

空间立体体积的计算是高等数学积分法在几何上的主要应用,其主要思想是将体积表示成定积分或重积分,研究空间立体,确定积分区域及被积函数,然后综合考虑立体特征、积分区域及被积函数特点,选择恰当的积分方法,使空间立体体积的计算简单明了。

本文在上述文献的基础上,总结了中学常见的空间立体体积的计算方法。

高中数学同步教学 第4章 §3 定积分的简单应用

高中数学同步教学 第4章 §3 定积分的简单应用

0
0
=π(12x2-15x5)|01=π(12-15)=π×130=130π.
• 4.由曲线y=x2,直线x=1,x=2与x轴所围成的平面图形绕x
31π 5
轴[解旋析转] 一设周所得所旋得转旋体的转体体积的为 体V,积为________.
则 V=2π(x2)2dx=2πx4dx=5πx5|12=315π.
1
1
互动探究学案
命题方向1 ⇨不分割型平面图形面积的求解
• 典例 1 曲线y=x2与直线y=x所围成的封闭图形16 的面积 为____.
• [思路分析] 从图形上可以看出,所求图形的面积可以转化 为一个三角形与一个曲边三角形面积的差,进而可以用定积 分求出面积.为了确定出积分的上、下限,我们需要求出直 线[解和析抛] 物解线方程的组交yy点==xx的,2,横坐标.
第四章 定积分
• 本章知识概述:本章的主要内容是定积分的概念,计算和简 单应用.
• 教科书通过曲边梯形面积问题,变速直线运动物体的路程问 题,变力做功等问题,充分演示了定积分概念产生的背景以 及定积分概念形成过程中的思路.微积分基本定理为我们 处理积分的计算问题提供了有力工具,教科书主要介绍了求 简单图形的面积和求简单旋转体的体积.
1.平面图形的面积 如果函数 y=f(x)在区间[a,b]上连续且恒有 f(x)≥0,那么定积分b f(x)dx 表
a
示由__直__线__x_=__a_,x_=__b_(_a_≠_b_)_,y_=__0_和__曲__线__y_=__f_(_x)_______所围成的曲边梯形的面积. 2.简单几何体的体积
得 x1=0,x2=1. 故所求图形的面积为
S=1xdx-1x2dx
0
0

§定积分应用之简单旋转体的体积

§定积分应用之简单旋转体的体积

§定积分应⽤之简单旋转体的体积§3.2定积分应⽤之简单旋转体的体积【学习⽬标】1、利⽤定积分的意义和积分公式,求⼀些简单旋转⼏何体体积。

2、数学模型的建⽴及被积函数的确定。

【问题导学】1、复习求曲边梯形⾯积公式?定积分的⼏何意义?微积分基本定理?2、什么是旋转体?学过哪些旋转体?⼀个平⾯图形绕平⾯内的⼀条定直线旋转⼀周,所成的⽴体图形叫旋转体,这条定直线叫做旋转轴。

如:圆柱、圆锥、圆台、球体、球冠。

3、旋转体的体积(1)计算由区间[a 、b ]上的连续曲线y=f(x)、两直线x=a 与x=b及x 轴所围成的曲边梯形绕 x 轴旋转⼀周所成的旋转体的体积:v=π()b2a f x dx (2)类似地可得,由区间[c,d]上的连续曲线 y=f(x),两直线y=c 与y=d 及y 轴所围成的曲边梯形绕y 轴旋转⼀周所成的旋转体的体积:()d2c v y dy π?=?[]【⾃学检测】1、给定直⾓边为1的等腰直⾓三⾓形,绕⼀条直⾓边旋转⼀周,得到⼀个圆锥体. 利⽤定积分的⽅法求它的体积2、⼀个半径为1的球可以看成由曲线y=1-x 2(半圆)与x 轴所围成的区域绕x 轴旋转⼀周得到的,利⽤定积分的⽅法求球的体积3、求曲线y=e x 、x=0、x=12与x 轴围成的平⾯图形绕x 轴旋转⼀周所得旋转体体积【当堂训练】4、求 y = x 2 与 y 2 = x 所围图形绕 x 轴旋转所成的旋转体体积5、将第⼀象限内由x 轴和曲线y 2=6x 与直线x=6所围成的平⾯图形绕x 轴旋转⼀周所得旋转体的体积等于6、求曲线x 轴、y 轴及直线x=1围成的平⾯图形绕x 轴旋转⼀周所得旋转体体积7、求曲线y=1x、x=1、x=2 与x 轴围成的平⾯图形绕x 轴旋转⼀周所得旋转体体积8、求曲线x=1与坐标轴围成的平⾯图形绕x 轴旋转⼀周所得旋转体体积§3.2定积分应⽤之简单旋转体的体积1、3π2、43π3、(1)2e π-4、310π5、108π6、32π7、2π8、2π。

高中数学第一章导数及其应用1定积分的简单应用定积分在物理中的应用素材

高中数学第一章导数及其应用1定积分的简单应用定积分在物理中的应用素材

定积分在物理中的应用摘要:伟大的科学家牛顿,有很多伟大的成就,建立了经典物理理论,比如:牛顿三大定律,万有引力定律等;另外,在数学上也有伟大的成就,创立了微积分.微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。

它是数学的一个基础学科.内容主要包括极限、微分学、积分学及其应用.微分学包括求导数的运算,是一套关于变化率的理论。

它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。

积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。

微积分最重要的思想就是用"微元"与”无限逼近",好像一个事物始终在变化你很难研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。

微积分学是微分学和积分学的总称。

它是一种数学思想,‘无限细分'就是微分,‘无限求和’就是积分。

无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。

微积分堪称是人类智慧最伟大的成就之一.在高中物理中,微积分思想多次发挥了作用.定义:设函数f(x)在[a,b]上有界,在[a,b ]中任意插入若干个分点 a=X0〈X1〈...〈Xn —1<Xn=b 把区间[a ,b ]分成n 个小区间 [X0,X1],..。

[Xn —1,Xn]。

在每个小区间[Xi —1,Xi ]上任取一点ξi(Xi -1≤ξi≤Xi ),作函数值f(ξi )与小区间长度的乘积f(ξi )△Xi ,并作出和()in i ix s ∆=∑=1ξ如果不论对[a,b]怎样分法,也不论在小区间上的点ξi 怎样取法,只要当区间的长度趋于零时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数f (x)在区间[a ,b]上的定积分, 记作: ()dx x f a b⎰即: ()()ini ia bx f I dx x f ∆==∑⎰==11lim ξλ变力沿直线所作的功设物体在连续变力F(x )作用下沿x 轴从x=a 移动到x=b ,力的方向与运动方向平行,求变力所作的功.在[a ,b]上任取子区间[x ,x+dx ],在其上所作的功元素为()dx x F dW =因此变力F (x )在区间[a,b ]上所作的功为()dx x F W b a⎰=例1.在一个带+q 电荷所产生的电场作用下,一个单位正电荷沿直线从距离点电荷a 处移动到b 处(a 〈b ),求电场力所做的功。

定积分法求体积

定积分法求体积

定积分法求体积
求解一个空间图形的体积,最常见的方法就是通过定积分来求解。

这种方法适用于复杂图形,可以把它们拆解成更简单的形状,从而通过数学计算得出它们的体积。

下面我们以一个例子来说明定积分法求解体积的过程。

假设我们要求解一个半径为4,高为8的圆柱体的体积。

首先,我们可以将这个圆柱体分成若干个无限小的棱柱体。

然后,我们就可以计算出棱柱体的体积,再将所有棱柱体的体积相加,就可以得到圆柱体的总体积。

由于圆柱体的底面形状为圆形,所以我们需要用到圆的面积公式:圆面积=πr²。

下面,我们用数学计算的方式来求解圆柱体的体积。

首先,我们可以找出棱柱体的高度h,由于圆柱体是等高的,所以棱柱体的高度h 也应该是8。

然后,我们再找出所有棱柱体的底面积。

由于圆柱体的半径为4,所以底面积应该为π×4²=16π。

接下来,我们就可以用定积分公式来计算圆柱体的总体积。

定积分公式为:∫ab S(x)dx,其中S(x)为x=a到x=b之间图形的面积。

我们可以把圆柱体分成若干个底面积为16π的棱柱体。

设其宽度为dx,长度为radius,则其体积为S(x)dx=16πdx。

那么,圆柱体的总体积为:
V=∫0^8 16πdx=16π∫0^8 dx=16π×(8-0)=128π
所以,圆柱体的体积为128π。

总之,通过定积分法可以方便地求解空间图形的体积,由于方法简单,精度高,因此广泛应用于科学、工程等领域的计算中。

定积分的应用研究

定积分的应用研究

特 别, 若
,可得球的体积公式为
(三)利用定积分求平行截面面积已知的立体的体积 例5 一平面经过半径为R的圆柱体的底圆中心,并与底面交成 角 ,计算这平面截圆柱体所得立体的体积.
解 截面面积
体积微元
所求体积:
二、定积分在经济中的应用
(一)利用定积分由变化率求总量
例6已知某产品总产量的变化率为 第5天到第10天产品的总产量。
梯形面积的方法,可以求出旋转体的体积
为体积微元。故所求旋转体的体积为
同 理 可得
由连续曲线
,直线y=c,y=d 及y轴所围成的曲边梯形
绕y 轴旋转 一周所 成的旋 转体的 体积为
例4求 椭 圆
分 别 绕x 轴 与y 轴 旋 转 而 得 的旋 转 体 的 体
积。
解 (1 )由 椭 圆 的方 程

,上半椭圆绕 x轴
(下 转第 293页 )
291
2010年第5期 总第100期
佳木斯教育学院学报
Journal of Jiamusi Education Institute
No.5. 2010 Sum 100
失自我,判断力下降。这个时候要注重对学生进行基本理论、基本 观点的教育,如进行当前的政治经济形势,当前国家关系与我国外 交,社会发展的一般规律等方面教育。宏观的理论认知可以指导微 观生活,这样他们站在一个比较高的角度来看待历史沿革,准确了 解当前社会发展情况,进而形成符合客观实际的、积极向上的形势 与政策观。高年级学生经过一段时间的大学生生活与学习,思想成熟 了许多,大多有着正确的社会认知和价值判断,这个阶段可以采用邀 请校外专家、学者、学校党政领导等开设形势与政策报告会、专题讲 座等形式解读当前形势与政策热点等,满足大学生对当下现实的认知 欲望。此时,形势与政策教育还可以结合社会实践、生产实习、暑期 三下乡等形式加深大学生对社会的了解,实现形势与政策的内化。

北师大版高中数学选修2-2第四章《定积分》定积分的简单应用(三)利用定积分求简单几何体的体积 课件

北师大版高中数学选修2-2第四章《定积分》定积分的简单应用(三)利用定积分求简单几何体的体积 课件



五、教后反思:
2013-4-2
2013-4-2
∴所求“冰激凌”的体积为:
12 1 4 224 2 2 (2 x ) dx ( x 6) dx (cm) 3 4 2 3 0
2013-4-2
变式引申:某电厂冷却塔外形如图所示,双曲线的一部分绕 其中轴(双曲线的虚轴)旋转所成的曲面,其中A,A’是双曲 线的顶点,C,C’是冷却塔上口直径的两个端点,B,B’ 是 下底直径的两个端点,已知 AA’=14m,CC’=18m,BB’=22m,塔高20m.
x
2013-4-2
分析:解此题的关键是如何建立数学模型。将 其轴载面按下图位置放置,并建立坐标系。则 A,B坐标可得,再求出直线AB和抛物线方程, “冰激凌”可看成是由抛物线弧OB和线段AB 绕X轴旋转一周形成的。
解:将其轴载面按下图位置放
置,并建立如图的坐标系。则 A(12,0), (4,4) B
(1)建立坐标系,并写出该曲线方程. (2)求冷却塔的容积(精确到10m3塔壁厚度不计, 取3.14) 2 2 x y (1) 1 49 98
8 2 8
C’ A’ A

1 2 ( 2)V x dy ( y 49)dy 12 12 2 B’ 2013-4-2

S侧 2 f ( x) 1 [ f ' ( x)]2 dx
V f
a
b
2
x dx,即可求旋转体体积的值。
(三)、课堂小结:求体积的过程就是对定 积分概念的进一步理解过程,总结求旋转体 体积公式步骤如下:1.先求出 y f x b 的表达式;2.代入公式 V f 2 x dx a ,即可求旋转体体积的值。 (四)、作业布置:课本P90页练习题中2;习题 4-3中6、7

4.3.2定积分的简单应用(二)简单几何体的体积

4.3.2定积分的简单应用(二)简单几何体的体积
北师大版高中数学选修2-2第四 章《定积分》
4.3.2 利用定积分求简单 几何体的体积
一、教学目标 1、理解定积分概念形成过程的思想;2、会根据该思想 求简单旋转体的体积问题。 二、 学法指导 本节内容在学习了平面图形面积计算之后的更深层次的 研究,关键是对定积分思想的理解及灵活运用, 建立起正确的数学模型,根据定积分的概念解决体积问 题。 三、教学重难点: 重点:利用定积分的意义和积分公式表解决一些简单的 旋转体的体积问题; 难点;数学模型的建立及被积函数的确定。 四、教学方法:探究归纳,讲练结合 五、教学过程
(一)、复习: (1)、定积分的几何意义是什么? (2)、微积分基本定理是什么? (3)、求曲边梯形面积的方法是什么?
旋转体就是由一个平面图形绕这平面内一条直线旋转一 周而成的立体图形.这直线叫做旋转轴.
( 1)
圆 柱
圆 锥
( 2)
( 3)
圆 台
由连续曲线 y f ( x ) 、直线 x a 、 x b 及 方法: x轴所围成的曲边梯形绕 x轴旋转一周而成的 (1)分割; (2)以直代曲; (3)求和; (4)逼近。 旋转体,体 V 为多少?
,设抛物线弧OB所在的抛物线方程为: 2 y 2 px ,
代入
2
B(4,4) 求得:p 2 ∴抛物线方程为:
y 4x (
y 0) 设直线AB的方程为:
1 ∴直线AB的方程为:y x 6 2
x qy 12 ,代入 B(4,4) 求得:q 2
∴所求“冰激凌”的体积为:
12 1 4 224 2 2 (2 x ) dx ( x 6) dx (cm) 3 4 2 3 0
(三)、课堂小结:

定积分在几何,物理学中的简单应用

定积分在几何,物理学中的简单应用

定积分在几何,物理学中的简单应用
定积分是一种常见的数学工具,用来解决许多几何和物理问题。

它可以在几何学、物理学中解决积分、面积和容积计算题中应用。

首先,定积分在几何学中的简单应用。

比如,如果我们要计算一个几何图形的面积,则可以通过定积分来计算。

它可以计算任意形状的几何图形的面积,比如三角形、椭圆、圆形等。

它的应用范围非常广泛,比如可以用它来计算面积、周长、体积等。

其次,定积分也可以用在物理学中。

比如,如果我们要计算一个物体在多次不同力作用之下移动的路程,可以用定积分来计算。

它可以帮助我们精确地计算物体受力作用前后的距离,也可以帮助我们精确计算弹性作用力等。

最后,定积分也可以应用于物理学的温度问题中。

比如,我们可以通过定积分求出一个物体在单位温差下的热量传递,也可以求出一个物体的总热量。

还可以用它求解温度场、热传导率、热导率等问题。

以上是定积分在几何、物理学中的简单应用。

定积分是一种通用而有效的数学工具,在几何、物理学中都有着广泛的应用,不仅可以用来解决相关的面积、容积计算题,而且还可以用来解决物理热力学、温度等问题。

只要我们掌握它的基本使用方法以及它的一些特性和用途,就可以在几何、物理学中更好地应用它来解决其它问题。

- 1 -。

定积分和不定积分举例

定积分和不定积分举例

定积分和不定积分举例定积分和不定积分是微积分的重要概念,它们在实际问题的建模和求解中具有重要的应用。

定积分和不定积分有着密切的关系,但又有着不同的性质和意义。

下面,我们将分别从概念、计算方法和应用角度对定积分和不定积分进行详细介绍。

首先,我们来介绍定积分。

定积分是对函数在一个区间上的“面积”或“积累”进行求解的操作。

它可以用于计算曲线下的面积、函数的平均值以及物理问题中的总量等。

定积分的定义涉及到区间、函数和极限,它表示一个函数在区间上的“累加效应”。

定积分的符号表示为∫,被积函数写在符号的右边,后面紧跟被积区间。

举一个简单的例子,我们考虑求解函数f(x) = x^2在区间[0,2]上的定积分。

根据定积分的定义,我们可以将区间[0,2]分成许多小的区间,并且在每个小区间上计算函数值与x轴之间的“高度×宽度”的面积,并将所有的小面积加和。

通过不断增加小区间的个数,我们可以使得这个和逐渐逼近函数在整个区间上的积累效应。

最终,我们可以得到函数f(x) = x^2在区间[0,2]上的定积分的值为8/3。

接下来,我们介绍不定积分。

不定积分是定积分的逆运算,它表示一个函数的反导函数。

不定积分的符号表示为∫,但是没有指定被积区间。

不定积分求解的结果是一个函数,而不是一个具体的数值。

我们可以通过对函数的求导运算来验证不定积分的结果。

不定积分的一个重要应用是求解函数的原函数,从而进一步计算定积分的值。

举一个简单的例子,我们考虑求解函数f(x) = 2x的不定积分。

根据不定积分的定义,我们需要找到一个函数F(x),使得它的导函数等于2x。

通过对常数函数求导的逆运算,我们可以得到F(x) = x^2 + C,其中C为常数。

因此,函数f(x)的不定积分为∫2x dx = x^2 + C。

在实际应用中,定积分和不定积分有着广泛的应用。

比如,在物理学中,我们可以通过计算函数的定积分来求解物体的位移、速度和加速度等问题。

数学选修2-2定积分的简单应用练习题含答案

数学选修2-2定积分的简单应用练习题含答案

数学选修2-2定积分的简单应用练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 曲线y=sin x与x轴在区间[0, 2π]上所围成阴影部分的面积为()A.−4B.−2C.2D.42. 由直线x=0,x=2,y=0和抛物线x=√1−y所围成的平面图形绕x轴旋转所得几何体的体积为()A.46 15πB.43π C.1615π D.83π3. 由直线x=1,x=2,y=0与抛物线y=x2所围成的曲边梯形的面积为()A.1 3B.53C.73D.1134. 由曲线y=x2+2与y=3x,x=0,x=1所围成的平面图形的面积为()A.5 6B.1C.53D.25. 曲线y=x2和y2=x所围成的平面图形绕x轴旋转一周后,所形成的旋转体的体积为()A.3π10B.π2C.π5D.7π106. 函数y=sin x,y=cos x在区间(π4,5π4)内围成图形的面积为()A.√2B.2√2C.3√2D.4√27. 一物体在力F(x)=3+e2x(x的单位:m,F的单位:N)的作用下,沿着与力F相同的方向,从x=0处运动到x=1处,力F(x)所做的功为()A.(3+e2)JB.(3+12e2)J C.(52+12e2)J D.(2+e2)J8. 由曲线y=√x,y=x−2及x轴所围成的封闭图形的面积是()A.4B.103C.163D.1549. 下列表示图中f(x)在区间[a, b]上的图象与x 轴围成的面积总和的式子中,正确的是( )A.∫f ba (x)dx B.|∫f ba (x)dx|C.∫f c 1a (x)dx +∫f c 2c 1(x)dx +∫f cc 2(x)dxD.∫f c 1a (x)dx −∫f c 2c 1(x)dx +∫f cc2(x)dx10. 直线y =x 与曲线y =√x 3围成的平面图形的面积是.( ) A.14 B.2 C.1D.1211. 设函数f(x)=ax 2+c(a ≠0),若∫f 10(x)dx =f(x 0),0≤x 0≤1,则x 0的值为________.12. y =cos x 与直线x =0,x =π及x 轴围成平面区域面积为________.13. 由曲线y =|x|,y =−|x|,x =2,x =−2合成的封闭图形绕y 轴旋转一周所得的旋转体的体积为V ,则V =________.14. 两曲线x −y =0,y =x 2−2x 所围成的图形的面积是________.15. 由曲线y =x 2和直线x =0,x =1,以及y =0所围成的图形面积是________. 16.若在平面直角坐标系xOy 中将直线y =x 2与直线x =1及x 轴所围成的图形绕x 轴旋转一周得到一个圆锥,则该圆锥的体积V 圆锥=∫π10(x 2)2dx =π12x 3|10=π12据此类比:将曲线y =x 2与直线y =9所围成的图形绕y 轴旋转一周得到一个旋转体,则该旋转体的体积V =________.17. 在直角坐标平面内,由直线x=1,x=2,y=0和曲线y=1所围成的平面区域的x面积是________.18. 在xOy平面上,将抛物线弧y=1−x2(0≤x≤1)、x轴、y轴围成的封闭图形记为D,如图中曲边三角形OAB及内部.记D绕y轴旋转一周而成的几何体为Ω,过点(0, y)(0≤y≤1)作Ω的水平截面,所得截面面积为(1−y)π,试构造一个平放的直三棱柱,利用祖暅原理得出Ω的体积值为________.19. 函数f(x)=x3−x2+x+1在点(1, 2)处的切线与函数g(x)=x2−x围成的图形的面积等于________.2ax2−a2x)dx,则f(a)的最大值为________.20. 已知f(a)=∫(1x2在第一象限内的交点为P.21. 已知曲线C1:y2=2x与C2:y=12(1)求曲线C2在点P处的切线方程;(2)求两条曲线所围成图形的面积S.22. 求由曲线y=x2+2与y=3x,x=0,x=2所围成的平面图形的面积.23. 已知曲线C:y=x2(x≥0),直线l为曲线C在点A(1, 1)处的切线.(1)求直线l的方程;(2)求直线l与曲线C以及x轴所围成的图形的面积.24. 如图一是火力发电厂烟囱示意图.它是双曲线绕其一条对称轴旋转一周形成的几何体,烟囱最细处的直径为10m,最下端的直径为12m,最细处离地面6m,烟囱高14m,试求该烟囱占有空间的大小.(精确到0.1m3)25.(1)已知复数z的共轭复数是z¯,且z⋅z¯−3iz=10,求z;1−3ix所围成的平面图形的面积.(2)求曲线y=√x与直线x+y=2,y=−1326.(1)已知(√x +2√x4)n 展开式的前三项系数成等差数列.求n .(2)如图所示,在一个边长为1的正方形AOBC 内,曲线y =x 2和曲线y =√x 围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),求所投的点落在叶形图内部的概率.27. 求由下列给出的边界所围成的区域的面积: (1)y =sin x(π4≤x ≤π),x =π4,y =0;(2)y =x 2,y =2x 2,x =1;(3)y =x 2,y =√x .28. 求由y =4−x 2与直线y =2x −4所围成图形的面积.29. 已知曲线y =sin x 和直线x =0,x =π,及y =0所围成图形的面积为S 0. (1)求S 0.(2)求所围成图形绕ox 轴旋转所成旋转体的体积.30. 已知函数y =f(x)的图形如图所示,给出y =f(x)与x =10和x 轴所围成图形的面积估计值;要想得到误差不超过1的面积估计值,可以怎么做?31. 已知曲线C:y =√x 和直线:x −2y =0由C 与围成封闭图形记为M . (1)求M 的面积;(2)若M 绕x 轴旋转一周,求由M 围成的体积.32. 已知f(x)为一次函数,且f(x)=x ∫f 20(t)dt +1, (1)求函数f(x)的解析式;(2)若g(x)=x ⋅f(x),求曲线y =g(x)与x 轴所围成的区域绕x 轴旋转一周所得到的旋转体的体积.33. 已知圆锥的高为ℎ,底半径为r ,用我们计算抛物线下曲边梯形面积的思路,推导圆锥体积的计算公式. [提示:(1)用若干张平行于圆锥底面的平面把它切成n 块厚度相等的薄片;(2)用一系列圆柱的体积近似地代替对应的薄片,圆柱的高为ℎn ,底半径顺次为:rn ,2r n,3r n…,(n−1)r n,r ;(3)问题归结为计算和式V(n)=ℎn ×(12+22+...+n 2)×πr 2n 2,当n 越来越大时所趋向的值.].34. 求曲线y =√x(0≤x ≤4)上的一条切线,使此切线与直线x =0,x =4以及曲线y =√x 所围成的平面图形的面积最小.35. 过点(0, 1)作曲线L:y =ln x 的切线,切点为A .又L 与x 轴交于B 点,区城D 由L 、x 轴与直线AB 围成,求区域D 的面积及D 绕x 轴旋转一周所得旋转体的体积.36. 求曲线y =2x −x 2,y =2x 2−4x 所围成图形的面积.37. 已知∫(103ax +1)(x +b)dx =0,a ,b ∈R ,试求ab 的取值范围.38. 求下列曲线所围成图形的面积:曲线y=cos x,x=π2,x=3π2,y=0.39. 求曲线y=sin x与直线x=−π2,x=5π4,y=0所围成的平面图形的面积.40. 如图,直线y=kx分抛物线y=x−x2与x轴所围图形为面积相等的两部分,求k的值.参考答案与试题解析数学选修2-2定积分的简单应用练习题含答案一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 1.【答案】 D【考点】定积分在求面积中的应用 【解析】由积分的几何意义可得,S =2∫sin π0xdx ,即可得出结论. 【解答】解:由积分的几何意义可得,S =2∫sin π0xdx =(−cos x)|0π=4. 故选:D . 2.【答案】 A【考点】用定积分求简单几何体的体积 【解析】由题意此几何体的体积可以看作是∫π20(1−x 2)2dx ,求出积分即得所求体积. 【解答】解:由题意几何体的体积; ∫π20(1−x 2)2dx=π(x −23x 3+15x 5)|02=π(2−23×23+15×25) =4615π 故选A . 3. 【答案】 C【考点】定积分在求面积中的应用 【解析】先根据题意画出区域,然后依据图形利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可. 【解答】解:直线x =1,x =2,y =0与抛物线y =x 2所围成的曲边梯形的面积为S =∫x 221dx =13x 3|12=83−13=73,故选:C .4.【答案】 A【考点】定积分的简单应用 【解析】因为所求区域均为曲边梯形,所以使用定积分方可求解,然后求出曲线y =x 2+2与y =3x 的交点坐标,然后利用定积分表示所围成的平面图形的面积,根据定积分的定义解之即可. 【解答】解:联立{y =x 2+2y =3x,解得x 1=1,x 2=2∴ S =∫(10x 2+2−3x)d x =[13X 3+2X −32X 2]01=56 故选:A 5.【答案】 A【考点】用定积分求简单几何体的体积 【解析】欲求曲线y =x 2和y 2=x 所围成的平面图形绕x 轴旋转一周后所形成的旋转体的体积,可利用定积分计算,即求出被积函数y =π(x −x 4)在0→1上的积分即可. 【解答】解:设旋转体的体积为V ,则v =∫π10(x −x 4)dx =π(12x 2−15x 5)|01=3π10.故旋转体的体积为:3π10. 故选A . 6. 【答案】 B【考点】定积分在求面积中的应用 【解析】根据定积分的几何意义,所求面积为S =∫(5π4π4sin x −cos x)dx ,然后利用公式求出sin x −cos x 的原函数F(x),算出F(5π4)−F(π4)的值,即为所求图形的面积. 【解答】解:根据题意,所求面积为S =∫(5π4π4sin x −cos x)dx =(−cos x −sin x +C)|π45π4 (其中C 为常数) ∴ S =(−cos 5π4−sin5π4+C)−(−cos π4−sin π4+C)=(√22+√22+C)−(−√22−√22+C)=2√2 故选B 7.【答案】 C【考点】定积分的简单应用 【解析】先根据题意建立关系式∫(103+e 2x )dx ,然后根据定积分的计算法则求出定积分的值即可. 【解答】解:根据题意可知F(x)所做的功为∫(103+e 2x )dx =(3x +12e 2x )|01=3+12e 2−12=52+12e 2故选C .8.【答案】 B【考点】定积分在求面积中的应用 【解析】根据定积分的几何意义,先求出积分的上下限,即可求出所围成的图形的面积 【解答】解:联立直线y =x −2,曲线y =√x 构成方程组,解得{x =4,y =2,联立直线y =x −2,y =0构成方程组,解得{x =2,y =0,如图所示:∴曲线y=√x,y=x−2及x轴所围成的封闭图形的面积S=∫√x40dx−∫(42x−2)dx=2x32|04 −(1x2−2x)|24=163−2=103.故选B.9.【答案】D【考点】定积分在求面积中的应用定积分定积分的简单应用【解析】先根据定积分的几何意义可知将区间[a, b]分成三段,然后利用上方曲线方程减下方的曲线方程,求积分即为面积,从而求出所求.【解答】解:根据定积分的几何意义可知将区间[a, b]分成三段利用上方曲线方程减下方的曲线方程,求积分即为面积S=∫fc1a (x)dx−∫fc2c1(x)dx+∫fcc2(x)dx故选:D10.【答案】D【考点】定积分在求面积中的应用【解析】先画出画出直线y=x与曲线y=√x3围成的平面图形,然后求出交点横坐标得到积分上下限,然后利用定积分表示出图形的面积,根据定积分的运算法则进行求解即可.【解答】解:画出直线y=x与曲线y=√x3围成的平面图形图形关于原点对称,交点的横坐标为−1,1∴直线y=x与曲线y=√x3围成的平面图形的面积是∫(1−1√x3−x)dx=2∫(1√x3−x)dx=2(34x43−12x2)|01=2(34−12−0)=12故选D .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 11.【答案】 √33【考点】定积分的简单应用 【解析】求出定积分∫f 10(x)dx ,根据方程ax 02+c =∫f 10(x)dx 即可求解.【解答】解:∵ f(x)=ax 2+c(a ≠0),∴ f(x 0)=∫f 10(x)dx =[ax 33+cx]01=a3+c .又∵f(x 0)=ax 02+c .∴ x 02=13,∵ x 0∈[0, 1]∴ x 0=√33. 12.【答案】2【考点】定积分在求面积中的应用 【解析】本题利用直接法求解,根据三角函数的对称性知,曲线y =cos x 与直线x =0,x =π所围成的平面区域的面积S 为:曲线y =cos x 与直线x =0,x =π2所围成的平面区域的面积的两倍,最后结合定积分计算面积即可. 【解答】解:根据对称性,得:曲线y =cos x 与直线x =0,x =π所围成的平面区域的面积S 为:曲线y =cos x 与直线x =0,x =π2所围成的平面区域的面积的两倍, ∴ S =2∫cos π20xdx =2 故答案为2.13.【答案】323π【考点】旋转体(圆柱、圆锥、圆台)用定积分求简单几何体的体积【解析】作出曲线围成的封闭图象,根据旋转得到旋转体的结构即可得到结论.【解答】解:曲线y=|x|,y=−|x|,x=2,x=−2合成的封闭图形绕y轴旋转一周所得的旋转体为底面半径为2,高为4的圆柱,去掉2个底面半径为2,高为2的圆锥,则对应的体积为π×42−2×13π×22×2=16π−16π3=323π,故答案为:323π14.【答案】92【考点】定积分在求面积中的应用【解析】先根据题意画出区域,然后依据图形得到积分上限为3,积分下限为0,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.【解答】解:先根据题意画出图形,得到积分上限为3,积分下限为0;两曲线x−y=0,y=x2−2x所围成的图形的面积是∫(33x−x2)dx而∫(303x−x2)dx=(32x2−13x3)|03=272−9=92∴曲边梯形的面积是92故答案为92.15. 【答案】13【考点】定积分在求面积中的应用 【解析】作出两个曲线的图象,求出它们的交点,由此可得所求面积为函数y =x 2在区间[0, 1]上的定积分的值,再用定积分计算公式加以运算即可得到本题答案. 【解答】解:∵ 曲线y =x 2和直线L:x =1的交点为A(1, 1),∴ 曲线C:y =x 2、直线L:x =1与x 轴所围成的图形面积为 S =∫x 210dx =13x 3|01=13.故答案为:13.16. 【答案】81π2【考点】用定积分求简单几何体的体积 【解析】根据类比推理,结合定积分的应用,即可求出旋转体的体积. 【解答】解:根据类比推理得体积V =∫π90(√y)2dy =∫π90ydy =12πy 2|09=81π2,故答案为:81π2.17.【答案】 ln 2【考点】定积分在求面积中的应用 【解析】先根据所围成图形的面积利用定积分表示出来,然后根据定积分的定义求出面积即可. 【解答】解:由题意,S =∫1x 21dx =ln x|12=ln 2.故答案为:ln 2. 18. 【答案】√34π 【考点】用定积分求简单几何体的体积 【解析】(1−y)π看作是把一个底面边长为1,高为π的直三棱柱平放得到的,根据祖暅原理,每个平行水平面的截面积相等,故它们的体积相等,即可得出结论. 【解答】解:(1−y)π看作是把一个底面边长为1,高为π的直三棱柱平放得到的, 根据祖暅原理,每个平行水平面的截面积相等,故它们的体积相等, 即Ω的体积为π⋅√34=√34π. 故答案为√34π. 19. 【答案】92【考点】定积分在求面积中的应用 【解析】求出函数的切线方程,利用积分的几何意义即可求出区域的面积. 【解答】解:函数的导数为f′(x)=3x 2−2x +1,则在(1, 2)处的切线斜率k =f′(1)=3−2+1=2, 则对应的切线方程为y −2=2(x −1),即y =2x , 由{y =x 2−x y =2x,解得x =3或x =0,则由积分的几何意义可得阴影部分的面积S =∫(302x −x 2+x)dx =(32x 2−13x 3)| 30 =92,故答案为:92.20. 【答案】29【考点】定积分的简单应用 【解析】先根据定积分的运算公式求出f(a)的解析式,然后利用二次函数的图象和性质即可求出f(a)的最大值. 【解答】解:f(a)=∫(102ax 2−a 2x)dx =(23ax 3−12a 2x 2)|01=23a −12a 2∴ 当a =23时,f(a)取最大值,最大值为29 故答案为:29三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 ) 21.【答案】解:(1)∵ 交点为P(2,2),∴ 曲线C 2的导函数为:y ′=x ∴ 切点坐标为(2,2),故该点的切线方程为:2x −y −2=0. (2)两曲线交点坐标(0,0),(2,2), S ∈∫(√2x −12x 2)20dx =43.【考点】定积分在求面积中的应用利用导数研究曲线上某点切线方程 【解析】 此题暂无解析 【解答】解:(1)∵ 交点为P(2,2),∴ 曲线C 2的导函数为:y ′=x ∴ 切点坐标为(2,2),故该点的切线方程为:2x −y −2=0. (2)两曲线交点坐标(0,0),(2,2), S ∈∫(√2x −12x 2)20dx =43. 22. 【答案】解:联立{y =x 2+2y =3x,解得x 1=1,x 2=2∴ S =∫(10x 2+2−3x)d x +∫(213x −x 2−2)d x =[13X 3+2X −32X 2]01+[32X 2−13X 3−2X]12=1【考点】定积分的简单应用 【解析】因为所求区域均为曲边梯形,所以使用定积分方可求解. 【解答】解:联立{y =x 2+2y =3x,解得x 1=1,x 2=2∴ S =∫(10x 2+2−3x)d x +∫(213x −x 2−2)d x =[13X 3+2X −32X 2]01+[32X 2−13X 3−2X]12=1 23. 【答案】解:(1)由y′=2x ,则切线l 的斜率k =y′|x=1=2×1=2,切线l 的方程为y −1=2(x −1)即2x −y −1=0;(2)如图,所求的图形的面积s =∫x 2120dx +∫[112x 2−(2x −1)]dx =112.【考点】定积分在求面积中的应用利用导数研究曲线上某点切线方程【解析】(1)根据导数的几何意义即可求出切线方程;(2)根据定积分的几何意义即可求出所围成的图形的面积. 【解答】解:(1)由y′=2x ,则切线l 的斜率k =y′|x=1=2×1=2,切线l 的方程为y −1=2(x −1)即2x −y −1=0;(2)如图,所求的图形的面积s =∫x 2120dx +∫[112x 2−(2x −1)]dx =112.24.【答案】解:由题意,将烟囱横截面按照如图放置,建立坐标系如图,双曲线的短轴长为2A =10,并且过(−6, 6),所以双曲线方程为y 225−11x 225×36=1,所以V =π∫(8−611x 236+25)dx =1659.2m 3【考点】用定积分求简单几何体的体积 双曲线的特性【解析】由题意建立坐标系,得到如图的双曲线,烟囱最细处的直径为10m 即2a =10,最下端的直径为12m ,最细处离地面6m ,即双曲线经过(−6, 6),烟囱高14m ,即自变量范围为−6到8,由此利用定积分的值得到体积. 【解答】解:由题意,将烟囱横截面按照如图放置,建立坐标系如图,双曲线的短轴长为2A =10,并且过(−6, 6), 所以双曲线方程为y 225−11x 225×36=1,所以V =π∫(8−611x 236+25)dx =1659.2m 325.【答案】解:(1)设z =a +bi (a,b ∈R ), 则z ¯=a −bi ,∴ z ⋅z ¯−3iz =a 2+b 2+3b −3ai . 又∵ z ⋅z ¯−3iz =101−3i =1+3i , ∴ {a 2+b 2+3b =1,−3a =3,解得 {a =−1,b =0,或{a =−1,b =−3,∴ z =−1或z =−1−3i . (2)由{y =√x ,x +y =2,解得{x =1,y =1,即曲线y =√x 与直线x +y =2的交点坐标为(1,1), 同理可得,曲线y =√x 与直线y =−13x 的交点坐标为(0,0),直线x +y =2与直线y =−13x 的交点坐标为(3,−1),所以围成的平面图形的面积为: S =∫(√x +13x)10dx +∫(2−x +13x)31dx=(23x 32+16x 2)|01+(2x −13x 2)|13=136.【考点】 复数的运算 共轭复数复数代数形式的混合运算 定积分在求面积中的应用 【解析】 此题暂无解析 【解答】解:(1)设z =a +bi (a,b ∈R ), 则z ¯=a −bi ,∴ z ⋅z ¯−3iz =a 2+b 2+3b −3ai . 又∵ z ⋅z ¯−3iz =101−3i =1+3i , ∴ {a 2+b 2+3b =1,−3a =3,解得 {a =−1,b =0,或{a =−1,b =−3,∴ z =−1或z =−1−3i . (2)由{y =√x ,x +y =2,解得{x =1,y =1,即曲线y =√x 与直线x +y =2的交点坐标为(1,1), 同理可得,曲线y =√x 与直线y =−13x 的交点坐标为(0,0), 直线x +y =2与直线y =−13x 的交点坐标为(3,−1),所以围成的平面图形的面积为: S =∫(√x +13x)10dx +∫(2−x +13x)31dx=(23x 32+16x 2)|01+(2x −13x 2)|13=136.26. 【答案】解:(1)∵ (√x 2x4)n 展开式的前三项系数成等差数列,∴ C n 0+C n 2(12)2=2C n 1⋅12…∴ 1+n(n−1)2×14=n ,整理得n 2−9n +8=0,n 1=1(舍) n 2=8…(2)所投的点落在叶形图内记为事件A ,由几何概型的概率公式得: P(A)=叶形图面积AOBC 的面积=∫(10√x−x 2)dx1=(23x 32−13x 3)|01=13…【考点】二项式定理的应用定积分在求面积中的应用 等差数列的性质几何概型计算(与长度、角度、面积、体积有关的几何概型) 【解析】(1)由题意可得,C n 0+C n 2(12)2=2C n 1⋅12,解关于n 的方程即可;(2)由几何概型的概率公式可知,需求叶形图的面积,利用定积分∫(10√x −x 2)dx 可求叶形图的面积,从而使问题解决. 【解答】解:(1)∵ (√x 2√x4)n 展开式的前三项系数成等差数列,∴ C n 0+C n 2(12)2=2C n 1⋅12…∴1+n(n−1)2×14=n,整理得n2−9n+8=0,n1=1(舍)n2=8…(2)所投的点落在叶形图内记为事件A,由几何概型的概率公式得:P(A)=叶形图面积AOBC的面积=∫(1√x−x2)dx1=(23x32−13x3)|01=13…27.【答案】利用S=∫ππ4sin xdx=(−cos x)|π4π=1+√22.利用S=∫10(2x2−x2)dx=23x3|01−13x3|01=13.由于{y=x2y=√x,解得{x=0y=0或{x=1y=1,所以S=∫10(√x−x2)dx=23x32|01−13x3|01=23−13=13.【考点】定积分的简单应用【解析】首先求出被积函数的原函数,进一步利用定积分知识求出结果.【解答】利用S=∫ππ4sin xdx=(−cos x)|π4π=1+√22.利用S=∫10(2x2−x2)dx=23x3|01−13x3|01=13.由于{y=x2y=√x,解得{x=0y=0或{x=1y=1,所以S=∫10(√x−x2)dx=23x32|01−13x3|01=23−13=13.28.【答案】解:由y=4−x2与直线y=2x−4联立,可得交点(−4, −12),(2, 0),∴y=4−x2与直线y=2x−4所围成图形的面积S=∫(2−44−x2−2x+4)dx=(−13x3−x2+8x)|−42=36.【考点】定积分在求面积中的应用【解析】先联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出y=4−x2与直线y=2x−4所围成图形的面积,即可求得结论.【解答】解:由y=4−x2与直线y=2x−4联立,可得交点(−4, −12),(2, 0),∴y=4−x2与直线y=2x−4所围成图形的面积S=∫(2−44−x2−2x+4)dx=(−13x 3−x 2+8x)|−42=36.29. 【答案】解:(1)S 0=∫sin π0xdx =[−cos x]0π=(−cos π)−(−cos 0)=1+1=2 (2)V =π∫sin 2π0xdx =π[x2−14sin 2x]0π=π(π2−14×0)=π22【考点】用定积分求简单几何体的体积 定积分在求面积中的应用【解析】(1)根据题意可知曲线y =sin x 和直线x =0,x =π,及y =0所围成图形的面积为S 0=∫sin π0xdx ,解之即可;(2)所围成图形绕ox 轴旋转所成旋转体的体积为V =π∫sin 2π0xdx ,根据定积分的定义解之即可. 【解答】解:(1)S 0=∫sin π0xdx =[−cos x]0π=(−cos π)−(−cos 0)=1+1=2 (2)V =π∫sin 2π0xdx=π[x 2−14sin 2x]0π=π(π2−14×0)=π2230.【答案】解:设f(x)=ax 3+bx 2+cx +d ,则f′(x)=3ax 2+2bx +c , 由图象可知{ f(0)=0f(1)=1f′(4)=0f′(7)=0,即{ d =0a +b +c =0c 3a =28−2b 3a =11,解得{ a =2137b =−33137c =168137d =0, ∴ f(x)=2137x 3−33137x 2+168137x . ∴ S =∫f 100(x)dx =(2137×x 44−33137×x 33+168137×x 22)|10≈17.5. 若要想得到误差不超过1的面积估计值,可使用分段函数求出f(x)的解析式,然后使用定积分求出面积. 【考点】定积分在求面积中的应用 【解析】设f(x)=ax 3+bx 2+cx +d ,利用待定系数法确定函数关系式,利用定积分求出面积估计值;若要误差小可分段求出f(x)的解析式,然后使用定积分求出面积. 【解答】解:设f(x)=ax 3+bx 2+cx +d ,则f′(x)=3ax 2+2bx +c ,由图象可知{ f(0)=0f(1)=1f′(4)=0f′(7)=0,即{ d =0a +b +c =0c 3a =28−2b 3a =11,解得{ a =2137b =−33137c =168137d =0, ∴ f(x)=2137x 3−33137x 2+168137x . ∴ S =∫f 100(x)dx=(2137×x 44−33137×x 33+168137×x 22)|10≈17.5. 若要想得到误差不超过1的面积估计值,可使用分段函数求出f(x)的解析式,然后使用定积分求出面积. 31. 【答案】解:(1)曲线C:y =√x 和直线:x −2y =0联立,可得交点坐标为(4, 2),则 S =∫(40√x −12x)dx =(23x 32−x 24)|04=43;(2)V =∫[40π(√x)2−π(x2)2]dx =π(x 22−x 312)|04=8π3.【考点】用定积分求简单几何体的体积 旋转体(圆柱、圆锥、圆台)【解析】(1)求得交点坐标,可得积分区间,即可求M 的面积; (2)旋转一周所得旋转体的体积应该用定积分来求.【解答】 解:(1)曲线C:y =√x 和直线:x −2y =0联立,可得交点坐标为(4, 2),则 S =∫(40√x −12x)dx =(23x 32−x 24)|04=43; (2)V =∫[40π(√x)2−π(x2)2]dx=π(x 22−x 312)|04=8π3.32.【答案】 解:(1)设f(x)=kx +b , ∵ f(x)=x ∫f 20(t)dt +1, ∴ kx +b =x •(kt 22+bt)|02+1,∴ kx +b =(2k +2b)x +1,∴ k =−2,b =1, ∴ f(x)=−2x +1,;2)g(x)=xf(x)=−2x 2+x , ∴ V =π∫[120xf(x)]2dx =π240. 【考点】用定积分求简单几何体的体积定积分【解析】(1)利用待定系数法,结合定积分的定义求函数f(x)的解析式;(2)求出g(x),应用定积分来求旋转体的体积.【解答】解:(1)设f(x)=kx+b,∵f(x)=x∫f2(t)dt+1,∴kx+b=x•(kt22+bt)|02+1,∴kx+b=(2k+2b)x+1,∴k=−2,b=1,∴f(x)=−2x+1,;2)g(x)=xf(x)=−2x2+x,∴V=π∫[120xf(x)]2dx=π240.33.【答案】解:(1)若干张平行于圆锥底面的平面把它切成n块厚度相等的薄片;(2)用一系列圆柱的体积近似地代替对应的薄片,圆柱的高为ℎn ,底半径顺次为:rn,2r n ,3rn…,(n−1)rn,r;(3)问题归结为计算和式V(n)=ℎn ×(12+22+...+n2)×πr2n2,当n越来越大时所趋向的值.(对V求极限V=limn→∞ℎn×(12+22+...+n2)×πr2n2=lim n→∞ℎn⋅16n(n+1)(2n+1)⋅πr2n2=ℎπr26limn→∞2n2+3n+1n2=πr2ℎ3=13S底ℎ故圆锥的体积等于13的圆柱体的体积【考点】用定积分求简单几何体的体积【解析】利用极限的定义进行分割、近似代换和求极限的方法,进行推到【解答】解:(1)若干张平行于圆锥底面的平面把它切成n块厚度相等的薄片;(2)用一系列圆柱的体积近似地代替对应的薄片,圆柱的高为ℎn ,底半径顺次为:rn,2r n ,3rn…,(n−1)rn,r;(3)问题归结为计算和式V(n)=ℎn ×(12+22+...+n2)×πr2n2,当n越来越大时所趋向的值.(对V求极限V=limn→∞ℎn×(12+22+...+n2)×πr2n2=lim n→∞ℎ⋅1n(n+1)(2n+1)⋅πr22=ℎπr26limn→∞2n2+3n+1n2=πr2ℎ3=13S底ℎ故圆锥的体积等于13的圆柱体的体积34.【答案】解:设(x0, y0)为曲线y=√x(0≤x≤4)上任一点,得曲线于该点处的切线方程为:y−y0=2√x −x0)即y=y02+2√x.得其与x=0,x=4的交点分别为(0,y02),(4,y02+2y0)于是由此切线与直线x=0,x=4以及曲线y=√x所围的平面图形面积为:S=∫(4 0y022x√x)dx=2y0+x−163=2√x0x−163应用均值不等式求得x0=2时,S取得最小值.即所求切线即为:y=22+√22.【考点】定积分在求面积中的应用【解析】先根据导数的几何意义求出曲线y=√x(0≤x≤4)上任一点处的切线方程,再求出积分的上下限,然后利用定积分表示出图形面积,最后利用定积分的定义进行求解即可.【解答】解:设(x0, y0)为曲线y=√x(0≤x≤4)上任一点,得曲线于该点处的切线方程为:y−y0=2x −x0)即y=y02+2x.得其与x=0,x=4的交点分别为(0,y02),(4,y02+2y0)于是由此切线与直线x=0,x=4以及曲线y=√x所围的平面图形面积为:S=∫(4 0y022√x√x)dx=2y0+√x−163=2√x0√x−163应用均值不等式求得x0=2时,S取得最小值.即所求切线即为:y=2√2+√22.35.【答案】解:设切线方程为y =kx +1,切点坐标为(a, b), 则{k =1aka +1=b ln a =b ,解得a =e 2,b =2,∴ 切线方程为y =1e 2x +1.将y =0代入y =1e 2x +1得x =−e 2,∴ B(−e 2, 0). ∴区域D 的面积为∫(e 2−e 21e 2x+1)dx −∫ln e 21xdx=x 22e 2+x|e 2−e 2−x(ln x −1)|e 21=2e 2+e 2=3e 2.区域D 绕x 轴旋转一周所得几何体体积为13⋅π⋅22⋅2e 2−π⋅∫(e 21ln x)2dx =8πe 23−π⋅x[(ln x)2−2ln x +2]|e 21=8πe 23−(2e 2−2)⋅π=2πe 23+2π.【考点】用定积分求简单几何体的体积 【解析】求出A 的坐标和切线方程,则所求面积和体积均可用两个定积分的差来表示. 【解答】解:设切线方程为y =kx +1,切点坐标为(a, b), 则{k =1aka +1=b ln a =b,解得a =e 2,b =2,∴ 切线方程为y =1e 2x +1.将y =0代入y =1e 2x +1得x =−e 2,∴ B(−e 2, 0). ∴区域D 的面积为∫(e 2−e 21e 2x+1)dx −∫ln e 21xdx=x 22e 2+x|e 2−e 2−x(ln x −1)|e 21=2e 2+e 2=3e 2.区域D 绕x 轴旋转一周所得几何体体积为13⋅π⋅22⋅2e 2−π⋅∫(e 21ln x)2dx=8πe 23−π⋅x[(ln x)2−2ln x +2]|e 21=8πe 23−(2e 2−2)⋅π=2πe 23+2π.36. 【答案】解:由{y =2x −x 2y =2x 2−4x ,得{x =0y =0或{x =2y =0, ∴ 所求图象的面积为:∫[20(2x −x 2)−(2x 2−4x)]dx =∫(206x −3x 2)dx =(3x 2−x 3)|02=3×22−23=12−8=4. 【考点】定积分在求面积中的应用 【解析】先求出两曲线的交点坐标,利用定积分的应用即可求出对应图形的面积. 【解答】解:由{y =2x −x 2y =2x 2−4x ,得{x =0y =0或{x =2y =0, ∴ 所求图象的面积为:∫[20(2x −x 2)−(2x 2−4x)]dx =∫(206x −3x 2)dx =(3x 2−x 3)|02=3×22−23=12−8=4. 37. 【答案】解:∫(103ax +1)(x +b)dx =∫[103ax 2+(3ab +1)x +b]dx=[ax 3+12(3ab +1)x 2+bx]|01 =a +12(3ab +1)+b =0即3ab +2(a +b)+1=0 设ab =t ∴ a +b =−3t+12则a ,b 为方程x 2+3t+12x +t =0两根△=(3t+1)24−4t ≥0∴ t ≤19或t ≥1∴ a ⋅b ∈(−∞, 19]∪[1, +∞) 【考点】定积分的简单应用 【解析】先根据定积分的运算法则建立a 与b 的等量关系,然后设ab =t 则a +b =−3t+12,再利用构造法构造a ,b 为方程x 2+3t+12x +t =0两根,然后利用判别式可求出a .b 的取值范围. 【解答】解:∫(103ax +1)(x +b)dx =∫[103ax 2+(3ab +1)x +b]dx=[ax 3+12(3ab +1)x 2+bx]|01 =a +12(3ab +1)+b =0即3ab +2(a +b)+1=0 设ab =t ∴ a +b =−3t+12则a ,b 为方程x 2+3t+12x +t =0两根△=(3t+1)24−4t ≥0∴ t ≤19或t ≥1∴ a ⋅b ∈(−∞, 19]∪[1, +∞) 38.【答案】解:根据对称性,得: 曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的平面区域的面积S 为:曲线y =cos x与直线x =π2,x =π所围成的平面区域的面积的二倍, ∴ S =−2∫cos ππ2xdx =−2sin x =2.故曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的面积为2.【考点】定积分在求面积中的应用 【解析】本题利用直接法求解,根据三角函数的对称性知,曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的平面区域的面积S 为:曲线y =cos x 与直线x =π2,x =π所围成的平面区域的面积的二倍,最后结合定积分计算面积即可. 【解答】解:根据对称性,得: 曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的平面区域的面积S 为:曲线y =cos x与直线x =π2,x =π所围成的平面区域的面积的二倍, ∴ S =−2∫cos ππ2xdx =−2sin x =2.故曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的面积为2.39. 【答案】解:s =∫|5π4−π2sin x|dx =−∫sin 0−π2xdx+∫sin π0xdx−∫sin 5π4πxdx=cos x|−π20−cos x|0π+cos x|π5π4=1+2+(−√22+1)=4−√22. 【考点】定积分在求面积中的应用 【解析】求曲线y =sin x 与直线x =−π2,x =5π4,y =0所围成的平面图形的面积【解答】解:s =∫|5π4−π2sin x|dx =−∫sin 0−π2xdx+∫sin π0xdx−∫sin 5π4πxdx=cos x|−π20−cos x|0π+cos x|π5π4=1+2+(−√22+1)=4−√22. 40.【答案】 由 {y =kx y =x −x2 得 {x =1−k y =k −k 2 (0<k <1). 由题设得∫10−k[(x −x 2)−kx]dx =12∫(10x −x 2)dx 即∫10−k[(x −x 2)−kx]dx =12( 12x 2−13x 3)|01=112 ∴ (1−k)3=12 ∴ k =1−√432∴ 直线方程为y =(1−√432)x . 故k 的值为:k =1−√432.【考点】定积分的简单应用 【解析】先由 {y =kx y =x −x 2 得 {x =1−k y =k −k 2 ,根据直线y =kx 分抛物线y =x −x 2与x 轴所围成图形为面积相等的两个部分得∫10−k[(x −x 2)−kx]dx =12∫(10x −x 2)dx 下面利用定积分的计算公式即可求得k 值. 【解答】由 {y =kx y =x −x 2得 {x =1−k y =k −k 2 (0<k <1).由题设得∫10−k[(x −x 2)−kx]dx =12∫(10x −x 2)dx 即∫10−k[(x −x 2)−kx]dx =12( 12x 2−13x 3)|01=112试卷第31页,总31页 ∴ (1−k)3=12 ∴k =1−√432∴ 直线方程为y =(1−√432)x . 故k 的值为:k =1−√432.。

定积分简单例题

定积分简单例题

定积分简单例题定积分简单例题定积分是高等数学中的一个重要概念,它可以用来求解曲线下面的面积、体积、质量等问题。

在本文中,我们将介绍一些关于定积分的简单例题,以帮助读者更好地理解该概念。

一、基本概念在介绍例题之前,我们需要先了解一些基本概念。

定积分是对函数在一定区间内的面积的求和,可以表示为:∫abf(x)dx其中,a和b是区间的两个端点,f(x)是被积函数。

这个式子可以理解为将区间[a,b]划分成无数个小矩形,并将这些小矩形的面积相加得到总面积。

二、例题1:求曲线y=x^2在区间[0,1]内与x轴所围成图形的面积这道题目中,被积函数f(x)=x^2,区间为[0,1]。

根据定积分公式可得:∫01x^2dx= [x^3/3]10= 1/3因此,曲线y=x^2在区间[0,1]内与x轴所围成图形的面积为1/3。

三、例题2:求立方体顶点坐标为(1,1,1)、(1,2,1)、(2,2,1)、(2,1,1)、(1,1,0)、(1,2,0)、(2,2,0)和(2,1,0)的部分的体积这道题目中,我们需要求解的是一个立方体顶点坐标为(1,1,1)、(1,2,1)、(2,2,1)、(2,1,1)、(1,1,0)、(1,2,0)、(2,2,0)和(2,1,0)的部分的体积。

我们可以将这个立方体划分成六个小立方体,并计算其中一个小立方体的体积,然后将六个小立方体的体积相加得到总体积。

假设我们要计算顶点坐标为(1,1,1)、(1,2,1)、(2,2,1)和(2,1,1)所围成的小立方体的体积。

根据定积分公式可得:∫12∫12∫11dxdydz= (x|12|11)(y|22|21)(z|11|01)= 4因此,该小立方体的体积为4。

同理可得其他五个小立方体的体积分别为4。

因此总体积为24。

四、例题3:求曲线y=1/x在区间[1,2]内与x轴所围成图形的面积这道题目中,被积函数f(x)=1/x,区间为[1,2]。

根据定积分公式可得:∫21(1/x)dx= [ln|x|]21= ln2因此,曲线y=1/x在区间[1,2]内与x轴所围成图形的面积为ln2。

积分在计算物体体积和质量等问题中的应用

积分在计算物体体积和质量等问题中的应用

本科学年论文论文题目:积分在计算物体体积和质量等问题中的应用学生XX:学号:专业:班级:指导教师:完成日期:2011年12 月20 日目录内容摘要1关键词1序言2一、定积分的微小元素法31、内容要点32、曲边梯形的面积计算方法,定积分的定义43、计算面积的元素法步骤:4二、空间立体的体积41、平行截面面积为已知的立体体积42、旋转体的体积7三、重积分在几何中的应用10四、重积分在物理学中的应用111、三重积分的概念122.三重积分的定义133、三重积分的物理意义:134、三重积分的性质14五、质量14参考文献16积分在计算物体体积和质量等问题中的应用内容摘要掌握定积分计算基本技巧;并用所学的定积分的微元法(元素法)去解决各种领域中的一些实际问题;掌握用定积分表达和计算一些几何量与物理量(旋转体的体积平行截面面积为已知的立体体积等)。

对于重积分的计算其基本思想是将重积分化为累次积分进行计算.本文首先给出如何应用定积分的微元法(元素法)再到运用定积分解决实际问题,最后引出二重积分,三重积分。

再通过例子研究积分性质在计算实际问题中的应用.关键词:积分体积质量定积分序言用找出未知量的元素(微元)的方法建立这些几何、物理的公式解决实际问题。

运用元素法将一个量表达为定积分的分析方法是解决积分问题的重要思想。

而重积分是一元函数定积分的推广,是多元函数积分学的重要组成部分,在几何学与物理学中都得到了广泛的应用.在几何上,重积分可用来求空间曲面的面积、求空间区域的体积.在物理上,重积分可用来求物体的质量等.但与定积分相比较,重积分的计算除了与被积函数的结构有关外,更大程度上与积分区域的特点有关.下面就针对积分对于计算物体体积和质量的问题进行分析.一、定积分的微小元素法1、内容要点定积分概念的引入,体现了一种思想,它就是:在微观意义下,没有什么“曲、直”之分,曲顶的图形可以看成是平顶的,“不均匀”的可以看成是“均匀”的。

定积分的性质与计算方法

定积分的性质与计算方法

定积分的性质与计算方法定积分是微积分中的一个重要概念,它可以用来计算曲线所夹面积、计算物体的体积、求解解析几何中的定性表达式等问题。

在本文中,我们将介绍定积分的性质和计算方法。

一、定积分的性质:1.若函数f(x)在区间[a,b]上连续,则定积分存在。

也就是说,连续函数一定可积。

2.定积分具有线性性质,即对于任意实数a和b,以及两个连续函数f(x)和g(x),有:∫[a,b](af(x)+bg(x))dx = a∫[a,b]f(x)dx + b∫[a,b]g(x)dx3.若函数f(x)在区间[a,b]上非负且可积,则定积分表示的是曲线f(x)与x轴之间的面积。

4. 定积分的取值与区间的选取无关。

即∫[a,b]f(x)dx =∫[c,d]f(x)dx,只要[a,b]和[c,d]的函数f(x)在二者都是可积函数。

5.若函数f(x)在[a,b]上连续,且在[a,b]内的每个子区间上f(x)的值都大于等于0,则在[a,b]上的定积分不小于0。

也就是说,不会出现整个区间上的定积分为负数的情况。

二、定积分的计算方法:1. 基本积分法:对于一些简单的函数,我们可以直接利用已知的基本积分公式进行计算。

比如∫x^n dx = (1/(n+1))x^(n+1) + C。

2. 反向运用微积分定理:利用微积分基本定理,我们可以求取函数的原函数(也称为不定积分),然后通过减去两个边界条件的原函数,即可求得定积分的结果。

比如∫[a,b]f(x)dx = F(b) - F(a),其中F(x)是f(x)的原函数。

3.凑微分法:当函数难以直接积分时,我们可以通过凑微分来简化积分。

具体方法是,选取合适的函数和常数,使得被积函数可以表示为一个已知函数与该函数对应的导数的乘积。

然后利用换元法将积分转化为一个更容易求解的形式。

4. 分部积分法:分部积分法实质上是对乘积求导公式的反向运用。

对于乘积积分,我们可以利用分部积分法将其转化为两个函数分别求导和积分的问题。

定积分的应用--简单几何体的体积

定积分的应用--简单几何体的体积

11
结论 2
旋转体由曲线x=(y), ya, yb
和y轴围成的平面图形绕y轴旋转一
周后体积V b((y))2dy bx2dy
a
a
精品文档
12
探究3 设两抛物线yx22x,yx2 所围成的图形为M,将M绕x轴旋转一 周所得旋转体的体积V?
精品文档
13
2. 5
2
y x2
1. 5
1
0. 5
fx = -x2+2x
a
精品文档
6
旋转轴是 x 轴的旋转体的体积公式是 V=πb[f(x)]2dx(a<b).
a
精品文档
7
结论 1
由y f (x),xa,xb和x轴围
成的平面图形绕x轴旋转一周,则
V=
b
2
(f (x)) dx
b y2dx
a
a
精品文档
8
练习: 一个半径为 1 的球可看作由曲线y 1x2
与 x 轴所围成的区域(半圆)绕 x 轴旋转一周得到 的,求球的体积。
本节课用定积分解决了 简单旋转体的体积,注意:
1、注意
2、被积函数的平方 3、求体积的一般步骤
精品文档
16
gx = x2
-2
-1
1
2
3
4
-0. 5
yx2 2x
-1
精品文档
14
-1. 5
结论 3
探由y f (x)2和y g(x)2所
围成的图形为M,将M绕
x轴 旋 转 一 周 所 得 旋 转 体
的 体 积 V
b
[
f
(
x)2
g
(x)2
]d x

定积分的几何应用

定积分的几何应用

ρ 2 = a 2 cos 2θ
例 6 求心形线r = a (1 + cosθ ) 所围平面图形的 面积( a > 0) .
1 2 解 dA = a (1 + cosθ )2 dθ 2
利用对称性知

1 2 π A = 2 ⋅ a ∫ (1 + cos θ ) 2 dθ 2 0 2 π = a ∫ (1 + 2 cos θ + cos 2 θ )dθ 0 π 1 = 3 πa 2 . 2 3 θ + 2 sinθ + sin 2θ =a 2 4 0 2
定积分几何应用 定积分
一、元素(微元)法 二、平面图形的面积 三、立体的体积 四、平面曲线的弧长 五、旋转曲面的侧面积
一、元素(微元)法
1.回顾曲边梯形求面积的问题 回顾
曲边梯形由连续曲线
y
y = f ( x ) ( f ( x ) ≥ 0) 、
x 轴与两条直线 x = a 、
y = f ( x)
成的图形的面积. 成的图形的面积
解 两曲线的交点
y = x−4
y2 = 2x y = x−4
⇒ ( 2,−2), (8,4).
y2 = 2 x
选 y 为积分变量
y ∈ [−2, 4] −
A = ∫ dA = 18.
−2 4
y2 dA = y + 4 − dy 2
2 参数方程所表示的函数
2)设想把区间[a , b ]分成 n 个小区间,取其中任 ) 个小区间, 一小区间并记为[ x , x + dx ],求出相应于这小区 的近似值.如果 间的部分量 ∆ U 的近似值 如果 ∆ U 能近似地表示 为[a , b ]上的一个连续函数在 x 处的值 f ( x ) 与 dx 的乘积, 的乘积,就把 f ( x )dx 称为量U 的元素且记作 dU ,即 dU = f ( x )dx ;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.2定积分的简单应用(二)
复习:
(1) 求曲边梯形面积的方法是什么?
(2) 定积分的几何意义是什么?
(3) 微积分基本定理是什么?
引入:
我们前面学习了定积分的简单应用——求面积。

求体积问题也是定积分的一个重要应用。

下面我们介绍一些简单旋转几何体体积的求法。

1. 简单几何体的体积计算
问题:设由连续曲线()y f x =和直线x a =,x b =及x 轴围成的平面图形(如图甲)绕x 轴
旋转一周所得旋转体的体积为V ,如何求V ?
分析:
在区间[,]a b 内插入1n -个分点,使0121n n a x x x x x b -=<<<<<=,把曲线
()y f x =(a x b ≤≤)分割成n 个垂直于x 轴的“小长条”,如图甲所示。

设第i 个“小长条”的宽是1i i i x x x -∆=-,1,2,,i n =。

这个“小长条”绕x 轴旋转一周就得到一个厚度是i x ∆的小圆片,如图乙所示。

当i x ∆很小时,第i 个小圆片近似于底面半径为()i i y f x =的小圆柱。


此,第i 个小圆台的体积i V 近似为2()i i i V f x x π=∆
该几何体的体积V 等于所有小圆柱的体积和:
2221122[()()()]n n V f x x f x x f x x π≈∆+∆+
+∆
这个问题就是积分问题,则有: 2
2()()b b
a a V f x dx f x dx ππ==⎰⎰ 归纳:
设旋转体是由连续曲线()y f x =和直线x a =,x b =及x 轴围成的曲边梯形绕x 轴旋转而成,则所得到的几何体的体积为2()b a V f x dx π
=⎰
2. 利用定积分求旋转体的体积
(1) 找准被旋转的平面图形,它的边界曲线直接决定被积函数
(2) 分清端点
(3) 确定几何体的构造
(4) 利用定积分进行体积计算
3. 一个以y 轴为中心轴的旋转体的体积
若求绕y 轴旋转得到的旋转体的体积,则积分变量变为y ,其公式为2()b
a V g y dy π=⎰ 类型一:求简单几何体的体积
例1:给定一个边长为a 的正方形,绕其一边旋转一周,得到一个几何体,求它的体积 思路:
由旋转体体积的求法知,先建立平面直角坐标系,写出正方形旋转轴对边的方程,确定积分上、下限,确定被积函数即可求出体积。

解:以正方形的一个顶点为原点,两边所在的直线为,x y 轴建立如图所示的平面直角坐标
系,如图:BC y a =。

则该旋转体即为圆柱的体积为:
22300|a
a V a dx a x a πππ=⨯==⎰
规律方法:
求旋转体的体积,应先建立平面直角坐标系,设旋转曲线函数为()f x 。

确定积分上、下限,a b ,则体积2()b
a V f x dx π=⎰ 练习1:如图所示,给定直角边为a 的等腰直角三角形,绕y 轴旋转一周,求形成的几何体
的体积。

解:形成的几何体的体积为一圆柱的体积减去一圆锥的体积。

22333001
2|33
a
a V a a y dy a y a πππππ∴=-=-=⎰ 类型二:求组合型几何体的体积
例2:如图,求由抛物线28(0)y x y =>与直线60x y +-=及0y =所围成的图形绕x 轴旋
转一周所得几何体的体积。

思路:
解答本题可先由解析式求出交点坐标。

再把组合体分开来求体积。

解:解方程组28(0)60
y x y x y ⎧=>⎨+-=⎩ 得:24x y =⎧⎨=⎩ 28y x ∴=与直线60x y +-=的交点坐标为(2,4)
所求几何体的体积为:
26220264112(6)1633
V dx x dx πππππ=+-=+=⎰⎰ 规律方法:
解决组合体的体积问题,关键是对其构造进行剖析,
分解成几个简单几何体体积的和或
差,然后,分别利用定积分求其体积。

练习2:求由直线2y x =,直线1x =与x 轴围成的平面图形绕x 轴旋转一周所得旋转体的体
积。

解:旋转体的体积:
1
204(2)3V x dx ππ==⎰ 类型三:有关体积的综合问题:
例3:求由曲线212
y x =与y =x 轴旋转一周所得旋转体的体积。

思路:解题的关键是把所求旋转体体积看作两个旋转体体积之差。

画出草图→确定被积函数的边界→确定积分上、下限
→用定积分表示体积→求定积分
解:曲线212
y x =与y =所围成的平面图形如图所示: 设所求旋转体的体积为V
根据图像可以看出V 等于曲线y =直线2x =与x 轴围成的平面图形绕x 轴旋转一周所得的旋转体的体积(设为1V )减去曲线212
y x =
直线2x =与x 轴围成的平面图形绕x 轴旋转一周所得的旋转体的体积(设为2V ) 22
2221000122|42
V dx xdx x ππππ====⎰⎰ 2
2224522000118|24455V x dx x dx x ππππ⎛⎫===⨯= ⎪⎝⎭⎰⎰ 12812455
V V V πππ=-=-
= 反思:
结合图形正确地把求旋转体体积问题转化为求定积分问题是解决此类问题的一般方法。

练习3:
求由y =229
y x =以及y 轴围成的图形绕x 轴旋转一周所得旋转体的体积。

解:
由229y y x ⎧=⎪⎨=⎪⎩
得:32x y =⎧⎨=⎩ 33400451(1)8110
V x dx x dx πππ=+-=⎰⎰
误区警示:忽略了对变量的讨论而致错
例:已知曲线2y x =,1y x
=和直线0y =,(0)x a a =>。

试用a 表示该四条曲线围成的平面图形绕x 轴旋转一周所形成的几何体的体积。

思路:掌握对定积分的几何意义,不要忽视了对变量a 的讨论。

解:由2
1y x y x ⎧=⎪⎨=⎪⎩
得11x y =⎧⎨=⎩ 由示意图可知:要对a 与1的关系进行讨论:
① 当01a <≤时,224500()5a a V x dx x dx a πππ=
==⎰⎰ ② 当1a >时,2
1220116()5a V x dx dx x a ππππ⎛⎫=+=- ⎪⎝⎭⎰⎰ ∴所得旋转体的体积为5
(01)56(1)5a a V a a
πππ⎧<≤⎪⎪∴=
⎨⎪
->⎪⎩
追本溯源:
利用定积分求旋转体的体积问题的关键在于:
(1) 找准被旋转的平面图形,它的边界曲线直接决定被积函数
(2)分清端点
(3)确定几何体的构造(4)利用定积分进行体积计算。

相关文档
最新文档