等腰三角形的性质和判定教学设计

合集下载

八年级数学上册《等腰三角形的判定定理》教案、教学设计

八年级数学上册《等腰三角形的判定定理》教案、教学设计
四、教学内容与过程
(一)导入新课,500字
1.教师出示一张等腰三角形图片,引导学生观察并提问:“同学们,你们在生活中见到过这样的图形吗?它有什么特点?”
2.学生回答后,教师总结:“这种两边长度相等的三角形叫做等腰三角形。今天我们要学习如何判断一个三角形是否为等腰三角形。”
3.教师进一步提问:“我们已经知道等腰三角形有两边相等,那么如何用一个简单的定理来判断一个三角形是否为等腰三角形呢?”
b.在解题过程中,需要注意哪些问题?
c.你能举出生活中应用等腰三角形判定定理的例子吗?
2.学生在小组内积极讨论,互相交流想法,共同解决问题。
3.教师巡回指导,给予学生提示和帮助,解答学生的疑问。
4.各小组汇报讨论成果,教师进行点评和总结。
(四)课堂练习,500字
1.教师设计具有代表性的练习题,涵盖等腰三角形的判定定理及性质。
题目:已知等腰三角形ABC,AB=AC,D为BC边上的点,且BD=DC。求证:AD垂直于BC。
要求:学生通过画图、推理、计算等方法,完成证明过程。
3.实践活动:结合生活实际,让学生发现并解决身边的等腰三角形问题。
a.拍摄一张生活中的等腰三角形照片,并简要说明其应用场景。
b.运用等腰三角形的判定定理,测量并计算该等腰三角形的底角、底边长等。
八年级数学上册《等腰三角形的判定定理》教案、教学设计
一、教学目标
(一)知识与技能
1.知道等腰三角形的定义,能够识别并描述等腰三角形的特征。
2.掌握等腰三角形的判定定理,能够运用定理判断一个三角等腰三角形的底角、底边长等。
4.能够运用等腰三角形的判定定理解决实际生活中的问题,提高解决问题的能力。
c.你认为等腰三角形的判定定理在生活中的应用有哪些?

八年级数学上册《等腰三角形的判定》教案、教学设计

八年级数学上册《等腰三角形的判定》教案、教学设计
二、学情分析
八年级的学生已经具备了一定的几何图形认知基础,对三角形的性质有了初步的了解。在此基础上,学生对等腰三角形的判定这一章节内容的学习将更为顺利。然而,学生在几何证明和逻辑推理方面仍存在一定困难,需要教师在教学过程中给予关注和引导。此外,学生对数学学习的兴趣和积极性存在差异,部分学生对几何学习缺乏自信,教师应关注这一现象,采取差异化教学策略,激发学生的学习兴趣和自信心。通过对本章节的学习,使学生能够更好地理解和运用等腰三角形的判定方法,提高几何图形的解题能力,为后续学习打下坚实基础。
4.教学拓展:
-结合实际生活中的等腰三角形实例,让学生体会数学与生活的联系,提高学生的应用意识。
-引导学生探索等腰三角形与其他几何图形之间的关系,如等腰三角形与圆、正方形等,拓展学生的知识视野。
-组织课后研究性学习活动,鼓励学生自主探究等腰三角形的更多性质和应用,培养学生的探究精神。
四、教学内容与过程
3.生活实践题:让学生观察生活中的等腰三角形,并记录下来,分析它们的特点和应用。例如,观察三角尺、衣架、桥梁等,将观察结果以文字或图片形式进行展示。
4.小组合作研究:以小组为单位,选择以下课题进行研究,并在下一节课上进行汇报。
a.等腰三角形与等边三角形的关系。
b.等腰三角形在生活中的应用。
c.等腰三角形的判定方法在解决实际问题时的重要性。
讨论结束后,各小组汇报讨论成果,教师点评并给予指导。
(四)课堂练习
设计以下练习题,检验学生对等腰三角形判定方法的理解和应用:
1.判断以下三角形是否为等腰三角形,并说明理由。
2.已知等腰三角形的底和腰长,求底角和顶角的度数。
3.已知等腰三角形的底角,求顶角的度数。
学生在练习过程中,教师巡回指导,解答学生疑问,帮助学生掌握解题方法。

《等腰三角形》 教学设计

《等腰三角形》 教学设计

《等腰三角形》教学设计一、教学目标1、知识与技能目标学生能够理解等腰三角形的定义和性质,掌握等腰三角形的判定方法,并能运用这些知识解决简单的几何问题。

2、过程与方法目标通过观察、操作、猜想、论证等活动,培养学生的逻辑推理能力和创新思维能力,提高学生的动手实践能力和合作交流能力。

3、情感态度与价值观目标让学生在探索等腰三角形的过程中,体验数学的乐趣,感受数学的严谨性和逻辑性,培养学生的审美情趣和对数学的热爱之情。

二、教学重难点1、教学重点等腰三角形的性质和判定方法。

2、教学难点等腰三角形性质和判定的证明过程,以及等腰三角形中三线合一性质的应用。

三、教学方法讲授法、演示法、讨论法、探究法四、教学过程1、导入新课通过展示一些等腰三角形的实物图片,如等腰三角形的建筑、等腰三角形的旗帜等,引导学生观察这些图片,提出问题:“这些图形有什么共同特点?”从而引出本节课的主题——等腰三角形。

2、讲授新课(1)等腰三角形的定义教师结合图片,给出等腰三角形的定义:有两边相等的三角形叫做等腰三角形。

相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

(2)等腰三角形的性质①让学生动手制作一个等腰三角形的纸片,通过对折,观察等腰三角形的对称性,得出等腰三角形是轴对称图形,对称轴是顶角平分线所在的直线。

②引导学生猜想等腰三角形的性质:等腰三角形的两腰相等;等腰三角形的两个底角相等;等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。

③证明等腰三角形的性质对于性质②,引导学生作顶角的平分线,利用三角形全等证明两个底角相等。

对于性质③,分别证明顶角平分线、底边上的中线、底边上的高互相重合。

(3)等腰三角形的判定提出问题:“如果一个三角形有两个角相等,那么这两个角所对的边有什么关系?”引导学生进行猜想和证明,得出等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。

苏教版九年级上册数学《等腰三角形的性质和判定》教学设计

苏教版九年级上册数学《等腰三角形的性质和判定》教学设计

苏教版九年级上册数学《等腰三角形的性质和判定》教学设计课题:3.1等腰三角形的性质和判定义务教育课程标准实验教科书数学(苏科版)九年级上册第一章第1节【设计说明】本节课是苏科版教材九(上)第一章《图形与证明(二)》的第1节,从知识本身来看,学生在八年级时曾利用轴对称性发现了等腰三角形的相关性质,因此,学生对于结论很熟悉;从证明过程来看,由于在学习《图形与证明(一)》时已接触过有条理地思考与表达,因此,用综合法书写证明过程的基本格式学生也并不陌生;从活动经验来看,学生已初步体验到观察、操作、实验、猜想得到的结论有时是不全面的、不深入的,甚至是错误的,已体会到证明的必要性,但这些感受还是较肤浅的,并且刚上九年级的学生其演绎推理的能力还比较薄弱,思维的广阔性、严密性、灵活性比较欠缺。

因此,本节课的教学是从学生原有的认知基础出发,以学生自主探索、合作交流为主要方式,让学生经历数学知识的形成与应用的过程。

具体来说,一是要通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在思维积极的状态中进行主动探究,发现证明等腰三角形的性质和判定定理的证明思路,明确“怎么想”与“怎么写”之间的关系;二是通过此探索活动进一步理解合情推理和演绎推理都是获得数学结论的重要途径,体会证明的必要性,发展学生合乎逻辑的思考和有条理地表达能力;三是通过设计思考一个命题的逆命题的真假和对例题的拓展,引导学生发现数学结论的另一个途径,教会学善于从正反两个不同的角度研究问题;四是通过积累活动经验,进一步理解“观察——猜想——概括——论证”这一数学发现的过程,同时为后续的有关三角形、四边形中相关定理的证明提供了经验储备和证明依据。

【教学目标】1.能证明等腰三角形的性质定理和判定定理;了解分析与思考的方法。

2.经历思考、猜想以及对操作活动的合理性进行证明的过程,不断感受证明的必要性,同时积累数学活动经验,发展逻辑推理能力。

初中数学初二数学上册《等腰三角形的判定定理》教案、教学设计

初中数学初二数学上册《等腰三角形的判定定理》教案、教学设计
-例如,展示等腰三角形在建筑、艺术等领域的应用,让学生感受到数学与生活的紧密联系。
2.运用探究式教学法,引导学生通过观察、猜想、验证等过程,自主发现等腰三角形的判定定理。
-教师提供丰富的学习资源,如几何画板、实际模型等,帮助学生直观地理解等腰三角形的性质。
3.开展小组合作学习,让学生在交流、讨论中加深对判定定理和性质的理解,培养合作意识和团队精神。
2.拓展阅读:查阅相关资料,了解等腰三角形在生活中的应用,如建筑、艺术等领域。将所学知识与实际生活相结合,提高数学应用意识。
3.小组讨论:针对本节课的难点和重点,小组内展开讨论,总结学习方法,分享解题心得。培养团队合作精神,提高沟通交流能力。
4.课后反思:请同学们撰写一篇课后反思,内容包括对本节课知识的理解、学习过程中的困惑、解题方法的总结等。通过反思,提高自我认知,促进学习方法的改进。
(一)教学重点
1.等腰三角形的判定定理:学生需要掌握如何判断一个三角形是否为等腰三角形,理解并运用判定定理。
2.等腰三角形的性质:学生应学会运用性质解决相关问题,如求底边长、底角、腰长等。
3.实际问题中的应用:培养学生将等腰三角形知识应用于解决生活中的问题。
(二)教学难点
1.判定定理的理解与运用:学生对判定定理的理解可能存在困难,需要通过实例和练习加深理解。
初中数学初二数学上册《等腰三角形的判定定理》教案、教学设计
一、教学目标
(一)知识与技能
1.理解等腰三角形的定义,掌握等腰三角形的判定定理。
2.能够运用等腰三角形的判定方法判断给定三角形是否为等腰三角形。
3.学会运用等腰三角形的性质解决相关问题,如求等腰三角形的底边长、底角、腰长等。
4.能够运用等腰三角形的判定与性质解决实际生活中的问题,提高数学应用能力。

等腰三角形性质教学设计(共5篇)

等腰三角形性质教学设计(共5篇)

等腰三角形性质教学设计(共5篇)第1篇:等腰三角形性质教学设计等腰三角形的性质教学设计一、教学目标(一)、知识目标1、了解等腰三角形的两底角相等,底边上的高、中线及顶角平分线三线合一的性质,并能运用它们进行相关的论证和计算。

2、理解等腰三角形和等边三角形性质定理之间的联系。

(2)、能力目标1、培养学生“转化”的数学思要及应用意识,初步了解作辅助线的规律及“分类讨论”的思要。

2、培养学生进行独立思考,提高了独立解决问题的能力。

(三)、德育目标通过本节课教学,激发学生探索在实际生活中和数学相关的现实问题,使学生认识到数学源于实践应用于实践的辩证唯物主义观点,培养学生学习数学的兴趣。

二、教学重难点1、教学着重:等腰三角形的性质定理及其证明。

2、教学难点:问题的证明及等腰三角形中常用添辅助线的方法。

三、教学用具三角板、圆规、投影胶片、投影仪、计算机等。

四、教学过程课的导入:(一)、三角形按边怎样分类?(三角形、不等边三角形、等腰三角形、腰和底不相等的等腰三角形、等边三角形) (二)、什么叫等腰三角形?指出等腰三角形的腰、底、顶角、底角.有两边相等的三角形叫等腰三角形.(三)、一般三角形有那些性质?(两边之和大于第三边.三次内角的和等于180°).(四)、图片展示等腰三角形在日常生活中的实例。

新课讲解(一)、动手实验,发现结论请学生折叠事先准备好的等腰三角形,观察除两腰相等外,它的两次底角还有什么关系?(二)、(电脑或几何画板演示)结论:折叠等腰三角形或改变等腰三角形的腰长后,两底角之间依旧坚持相等关系。

(三)、证明结论,得出性质1、性质定理的证明。

(1)学生找出文字命题的题设、结论、画图,换成符号语言。

(2)引导学生寻找辅助线、如何添加辅助线。

(3)电脑显示证明过程。

(4)说明“等边对等角”的作用。

2、推论1的证明。

(1)进一步启发学生得到“等腰三角形三线合一”的性质。

(2)说明这条性质的作用,总结等腰三角形中常用辅助线的添加方法。

八年级数学上册《等腰三角形的性质和判定定理》优秀教学案例

八年级数学上册《等腰三角形的性质和判定定理》优秀教学案例
二、教学目标
(一)知识与技能
1.理解并掌握等腰三角形的定义、性质及判定定理,能够运用相关性质解决实际问题。
2.学会运用等腰三角形的性质进行图形的画法和构造,提高几何作图能力。
3.能够运用等腰三角形的判定定理,判断一个三角形是否为等腰三角形,并给出合理的证明。
4.掌握等腰三角形在实际生活中的应用,如建筑、设计等领域,提高知识运用能力。
五、案例亮点
1.创设生活化情境,紧密联系实际
本教学案例的最大亮点之一是充分联系学生的生活实际,创设丰富多样的教学情境。通过引入生活中的实例,如建筑、艺术、交通标志等,让学生在实际问题中感知、探索等腰三角形的性质和判定定理。这种教学方式既激发了学生的学习兴趣,又使他们认识到数学知识在现实生活中的重要性,增强了学习的针对性和实用性。
小组合作学习是本章节教学的重要环节。我将根据学生的知识水平、性格特点等进行合理分组,确保每个小组的成员在合作学习中能够发挥各自的优势。通过小组讨论、合作探究等形式,让学生在互动交流中共同解决问题,提高他们的沟通能力和团队协作精神。同时,关注每个学生的学习进度,及时给予个别辅导,使全体学生都能在小组合作学习中得到提高。
2.以问题为导向,培养思维能力
本案例以问题为导向,设计了富有启发性和挑战性的问题,引导学生进行思考、探索。这种教学策略有助于培养学生的问题意识,提高他们分析问题和解决问题的能力。同时,鼓励学生提出自己的疑问,充分调动了他们的学习积极性,促学习在本案例中得到了充分体现。学生通过小组讨论、合作探究等形式,共同解决问题,提高了沟通能力和团队协作精神。同时,教师关注每个学生的学习进度,给予个别辅导,确保了小组合作学习的效果。
四、教学内容与过程
(一)导入新课
在导入新课环节,我将利用学生已经学习的三角形知识作为切入点,通过以下步骤引导学生进入等腰三角形的学习:

等腰三角形的性质的教学设计

等腰三角形的性质的教学设计

等腰三角形的性质的教学设计教学设计:等腰三角形的性质一、教学目标通过本堂课的学习,学生能够:1. 了解等腰三角形的定义和性质;2. 能够判断一个三角形是否为等腰三角形,并说明理由;3. 掌握等腰三角形的基本性质;4. 运用等腰三角形的性质解决问题。

二、教学准备1. 教师准备:(1) 相关教学课件;(2) 等腰三角形模型;(3) 图形板书。

2. 学生准备:(1) 笔记本和书写工具;(2) 教材和练习册。

三、教学过程步骤一:导入(5分钟)教师利用课件中的图片展示一些常见的图形,引出等腰三角形的概念。

并通过提问的方式,激发学生对等腰三角形的认知。

步骤二:概念讲解(10分钟)教师讲解等腰三角形的定义:在一个三角形中,如果两边边长相等,我们称这个三角形为等腰三角形。

然后,教师通过教材的例题,引导学生发现等腰三角形内部的角度特点。

步骤三:性质总结(15分钟)教师引导学生通过观察和分析,总结出等腰三角形的性质,并进行板书整理。

学生可以利用教材上的例题、练习题,并和同伴进行讨论,加深对等腰三角形性质的理解。

步骤四:性质应用(15分钟)教师通过一些实际问题,引导学生运用等腰三角形的性质解决问题。

学生可以在小组内探讨解题思路,并进行展示和讨论。

教师可以通过个别辅导,帮助学生理解和掌握解题方法。

步骤五:拓展延伸(10分钟)教师可以给学生一些较难的拓展题目,让学生运用所学等腰三角形的性质解决。

教师可以利用课件和实物模型进行演示,帮助学生理解和掌握。

步骤六:归纳总结(5分钟)教师和学生共同总结课堂所学内容,强化学生对等腰三角形的定义和性质的记忆。

四、课堂小结通过本堂课的学习,我们了解了等腰三角形的定义和性质。

我们已经学会如何判断一个三角形是否为等腰三角形,并且掌握了等腰三角形的基本性质。

我们还学会了如何运用等腰三角形的性质解决问题。

五、课后作业请完成教材上的相关练习题,加深对等腰三角形性质的掌握和运用。

六、教学反思教师在本节课中,通过引导学生观察和分析,让学生主动发现等腰三角形的性质。

人教版八年级数学上册13.3等腰三角形的判定(教案)

人教版八年级数学上册13.3等腰三角形的判定(教案)
在实践活动方面,我发现学生在分组讨论和实验操作过程中表现出很高的积极性。但在成果展示环节,有些同学的表达能力还有待提高。为了改善这一情况,我计划在今后的教学中,多组织一些类似的活动,鼓励学生积极参与,提高他们的表达能力和团队合作精神。
关于小组讨论,我认为自己在引导和启发学生思考方面还有很大的提升空间。在接下来的教学中,我会更加注重培养学生的批判性思维,鼓励他们提出问题、解决问题,并勇于分享自己的观点。
人教版八年数学上册13.3等腰三角形的判定(教案)
一、教学内容
本节课选自人教版八年级数学上册第十三章第三节,主要教学内容包括:
1.等腰三角形的定义:两边相等的三角形称为等腰三角形;
2.等腰三角形的性质:等腰三角形的底角相等,底边上的中线、高和角平分线互相重合;
3.等腰三角形的判定定理:在同一三角形中,若两边相等,则这两边所对的角相等。
2.教学难点
-理解等腰三角形性质的应用:学生在理解性质本身后,往往难以将其应用到具体的几何问题中。
-判定定理的逆向运用:学生通常在直接应用判定定理时较为熟练,但在逆向运用时,即已知角相等推断边相等的情况下,可能会感到困惑。
-解决含有等腰三角形元素的复杂几何问题:这类问题往往需要学生综合运用多个几何知识点,对学生的综合分析能力要求较高。
其次,关于等腰三角形的判定定理,我觉得自己在讲解时可以更加生动形象。例如,可以使用动态几何软件或实物模型来展示定理的实际应用,让学生更直观地理解判定定理的原理。
此外,在教学难点部分,我应该更加关注学生的个体差异,针对不同水平的学生进行有针对性的辅导。对于理解能力较强的学生,可以适当增加难度,引导他们深入探索;对于理解能力较弱的学生,则要耐心讲解,帮助他们逐步突破难点。
(二)新课讲授(用时10分钟)

人教版八年级数学上册13.3《等腰三角形的判定》教学设计

人教版八年级数学上册13.3《等腰三角形的判定》教学设计
-通过实例演示和讲解,让学生掌握等腰三角形的判定定理。
-结合实际题目,引导学生运用等腰三角形的性质解题,培养解决问题的能力。
4.合作探究:
-将学生分成小组,讨论等腰三角形在实际问题中的应用,培养学生的合作意识和沟通能力。
-引导学生从不同角度分析问题,培养学生的发散思维。
5.练习巩固:
-设计不同难度的练习题,让学生分层练习,巩固所学知识。
2.强调等腰三角形在实际问题中的应用,让学生体会数学与生活的紧密联系。
3.提醒学生注意等腰三角形与其他图形的结合与转化,提高解决问题的能力。
4.鼓励学生在课后继续探索等腰三角形的相关知识,为下一节课的学习做好准备。
五、作业布置
为了巩固本节课所学知识,提高学生对等腰三角形性质的理解和应用能力,特布置以下作业:
2.练习题包括基本概念题、性质应用题、综合提高题等,涵盖本节课的教学内容。
3.学生独立完成练习题,教师对学生的答题情况进行实时反馈,指导学生正确解题。
4.对学生的作业进行批改,及时了解学生的学习情况,为下一步的教学提供参考。
(五)总结归纳
1.引导学生回顾本节课所学内容,总结等腰三角形的定义、判定定理和性质。
1.基础巩固题:
-请同学们完成课本第93页的习题1、2、3。
-选择两道具有代表性的题目,要求学生在课后独立完成,加强对等腰三角形判定定理和性质的理解。
2.实践应用题:
-结合生活实例,设计一道与等腰三角形相关的实际问题,要求学生运用所学知识解决问题。
-鼓励学生思考等腰三角形在建筑、艺术等方面的应用,提高学生的数学素养。
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-等腰三角形Leabharlann 定义及其判定定理的掌握。-运用等腰三角形的性质解决实际问题的能力。

等腰三角形的性质和判定教学计划

等腰三角形的性质和判定教学计划

等腰三角形的性质和判定教学计划(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--等腰三角形的性质和判定教学计划等腰三角形的性质和判定教学计划一、教案背景1、面向学生:初中学科:数学2、课时:13、学生课前准备:(1)回忆等腰三角形的有关性质(2)等腰三角形纸片(3)完成课后习题二、教学课题课题:等腰三角形的性质与判定(1)课堂活动以学生为主体,教师为主导,重点放在如何调动学生的积极性,让学生观察、分析、归纳概括,主动获得知识。

(2)组织学生欣赏图片,激发学生的学习兴趣,让学生获得知识,提高能力。

(3)在教学中,向学生渗透数学思想方法,培养学生说理的能力。

三、教材分析:1、等腰三角形是在三角形知识基础上的继续深入,如何利用学习三角形的过程中已经形成的思路和观点,也是对理解“等腰”这个条件造成的特殊结果的重要之处。

2、等腰三角形是基本的几何图形之一,在今后的几何学习中有着重要的地位,是构成复杂图形的基本单位,等腰三角形的定理为今后有关几何问题的解决提供了有力的工具。

3、对称是几何图形观察和思维的重要思想,也是解决生活中实际问题的常用出发点之一,学好本节知识对加深对称思想的理解有重要意义。

4、例题中的几何运算,是数形结合的思想的初步体验,如何在几何中结合代数的等量思想是教学中应重点研究的问题。

5、如何把握合情推理的书写及重点问题,本课中的例题也进一步做了示范,可以认真研究。

6、本课对学生的动手能力,观察能力都有一定的要求,对培养学生灵活的思维,提高学生解决实际问题的能力都有重要的意义。

7、本课内容安排上难度和强度不高,适合学生讨论,可以充分开展合作学习,培养学生的合作精神和团队竞争的意识。

8、课本为学生提供自主探索的空间,然后在进行证明,将探索和证明有机的结合起来,引导学生不断感受证明的必要性。

四、教学方法本节课采用合作探究的教学方法,在教师的引导下,通过合作探究的方式、发现、分析问题并解决问题,为学生提供从事数学活动的机会,帮助学生进行自主探究与合作交流。

等腰三角形的性质教学设计一等奖(精选13篇)

等腰三角形的性质教学设计一等奖(精选13篇)

等腰三角形的性质教学设计一等奖(精选13篇)等腰三角形的性质教学设计一等奖(精选一三篇)作为一名无私奉献的老师,常常要根据教学需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。

怎样写教学设计才更能起到其作用呢?以下是小编为大家收集的等腰三角形的性质教学设计一等奖(精选一三篇),希望对大家有所帮助。

等腰三角形的性质教学设计一等奖1一、教材分析1、教材的地位与作用:本节课内容是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的。

使学生学会分析、学会证明,在培养学生的思维能力和推理能力等方面有重要的作用。

通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。

它所倡导的“观察———发现———猜想———论证”的数学思想方法是今后研究数学的基本思想方法。

等腰三角形的性质也是论证两个角相等、两条线段相等、两条直线垂直的重要依据,因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。

2、教学目标:知识技能:理解掌握等腰三角形的性质;运用等腰三角形的性质进行证明和计算。

过程方法:通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力。

解决问题:通过观察等腰三角形的对称性,及运用等腰三角形的性质解决有关的问题,提高学生观察、分析、归纳、运用知识解决问题的能力,发展应用意识。

情感态度:通过引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

(根据教材内容的地位与作用及教学目标,因此我将把本节课的重点确定为:等腰三角形的性质的探究和应用。

由于对文字语言叙述的几何命题的证明要求严格且步骤繁琐,此时八年级学生还没有深刻的理解和熟练的掌握,因此我将把本节课的难点定为:等腰三角形性质的推理证明。

等腰三角形的性质与判定教案

等腰三角形的性质与判定教案

等腰三角形的性质与判定教案引言:等腰三角形是初中数学的重要概念之一,它具有独特的性质和判定方法。

本教案将介绍等腰三角形的性质以及判定等腰三角形的方法,帮助学生深入理解该概念。

教案分为以下三个部分:等腰三角形的定义与性质、等腰三角形的判定方法、练习与实例分析。

一、等腰三角形的定义与性质1. 等腰三角形的定义:等腰三角形是指两条边相等的三角形。

2. 等腰三角形的性质:a. 等腰三角形的两底角相等。

b. 等腰三角形的腰是底边上距离顶点最近的边,也是两腿的夹角平分线。

c. 等腰三角形的高是从顶点到底边的垂线段,同时也是两腿的中线。

二、等腰三角形的判定方法1. 根据两边相等判定:当两边相等时,可以判定为等腰三角形。

2. 根据角度关系判定:a. 当两底角相等时,可以判定为等腰三角形。

b. 当一个角是等腰三角形的顶角,并且该角的两边相等时,也可以判定为等腰三角形。

3. 利用等腰三角形的性质进行判定:如果可以证明一个三角形的两边相等,且两边之间的角相等,则可以判定为等腰三角形。

三、练习与实例分析1. 练习题一:根据已给的图形,判定是否是等腰三角形,并给出理由。

(在此插入题目的图形)2. 练习题二:给出一个三角形的两边和一个角度,判断是否可以构成等腰三角形。

如果可以,请构造出这样的等腰三角形。

实例分析:现有一个三角形ABC,已知边AB与边AC的长度相等,角BAC 的大小为60°,请判断三角形ABC是否为等腰三角形,并给出理由。

解析:根据已知条件可得边AB = 边AC,并且角BAC = 60°。

根据等腰三角形的定义和性质,我们得知边AB = 边AC,即两边相等;同时角BAC为等腰三角形的顶角,并且该角的两边相等。

因此,可以判断三角形ABC为等腰三角形。

结论:通过本教案的讲解与实例分析,我们了解了等腰三角形的定义、性质以及判定方法。

等腰三角形在数学中具有重要地位,并且在几何学的应用中有着广泛的应用。

初中数学等腰三角形的性质教案优秀9篇

初中数学等腰三角形的性质教案优秀9篇

初中数学等腰三角形的性质教案优秀9篇初中数学等腰三角形的性质教案篇一教学重点:认识等腰三角形和等边三角形以及它们的特征教学目标:1、让学生在实际操作中认识等腰三角形和等边三角形,知道等腰三角形边和角的名称,知道等腰三角形两个底角相等,等边三角形3个内角相等。

2、让学生在探索图形特征以及相关结论的活动中,进一步发展空间观念,锻炼思维能力。

3、让学生在学习活动中,进一步产生对数学的好奇心,增强动手能力和创新意识。

教学准备:长方形、正方形纸,剪刀、尺等教学过程:一、复习:关于三角形,你有那些知识?1、按角分成三种角2、三个内角和是180度算第三个角的度数,如果是一般三角形,那就用180去减;如果是直角三角形,那就是90去减二、认识等腰三角形1、比较老师手边的两块三角板,他们有什么相同?(都是直角三角形)有什么不同?(其中有一块三角板的两条边相等,两个角相等;而另一块三角板的角和边都不相同。

)指出:像这种两条边相等的三角形,我们叫它等腰三角形2、折一折、剪一剪取一张长方形纸,对折;画出它的对角线,沿对角线剪开;展开观察:这样剪出来的三角形就是我们今天要认识的等腰三角形。

想一想:为什么要对折后再剪呢?(这样剪出来的两条边肯定是相等的。

)除了两条边是相等的,还有什么也是相等的?你是怎么知道的?初中数学等腰三角形的性质教案篇二教学目标1、掌握证明的基本步骤和书写格式。

2、经历“探索-发现-猜想-证明”的过程。

能够用综合法证明直角三角形的有关性质定理和等边三角形的判定定理。

教学重点等边三角形的。

判定定理和直角三角形的性质定理。

教学难点能够用综合法证明等边三角形的判定定理和直角三角形的性质定理。

教学方法教学后记教学内容及过程一、定理:一个角等于60°的等腰三角形是等边三角形1.引导学生回忆上节课的内容,让学生思考:等腰三角形满足什么条件时便成为等边三角形?让学生对普遍联系和相互转化有一个感性的认识。

2.肯定学生的回答,并让学生进一步思考:有一个角是60°的等腰三家形是等边三角形吗?组织学生交流自己的想法。

等腰三角形的判定与性质-教案

等腰三角形的判定与性质-教案

教学过程一、复习预习1、什么是等腰三角形?2、你会画一个等腰三角形吗?并把你画的等腰三角形栽剪下来。

3、试用折纸的办法回忆等腰三角形有哪些性质二、知识讲解考点/易错点1如图△ABC中AB=AC请你说说等腰三角形的性质有哪些?1、等腰三角形两底角相等(等边对等角),2、等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(三线合一)。

考点/易错点2据三线合一,作这条辅助线有几种说法?有三种。

1、作顶角平分线2、底边上的高3、底边上的中线考点/易错点3等腰三角形的判定:1、等角对等边2、两边相等三、例题精析【例题1】【题干】如图位于在海上A、B两处的两艘救生船接到O处的遇险报警,当时测得∠A=∠B。

如果这两艘救生船以同样的速度同时出发,能不能大约同时赶到出事地点(不考虑风浪因素)?【答案】解:如图作AB边上的高OC,由∠ ACO= ∠ BCO,∠ A= ∠ B, OC=OC得△ACO≌ △ BCO(AAS)∴ OA=OB从而肯定两艘救生船以同样的速度同时出发,大约能同时赶到出事地点。

【解析】等腰三角形的判定【例题2】【题干】下列关于等腰三角形的性质叙述错误的是()A、等腰三角形两底角相等B、等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合C、等腰三角形是中心对称图形D、等腰三角形是轴对称图形【答案】解:A、等腰三角形两底角相等,故本选项正确;B、等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合,故本选项正确;C、等腰三角形不是中心对称图形,故本选项错误;D、等腰三角形是轴对称图形,故本选项正确.故选C.【解析】根据等腰三角形的性质:等腰三角形两底角相等(等边对等角),等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合(三线合一),等腰三角形是轴对称图形但不是中心对称图形,即可求得答案.【例题3】【题干】如果等腰三角形两边长是6cm和3cm,那么它的周长是()A、9cmB、12cmC、15cm或12cmD、15cm【答案】解:当6为腰,3为底时,6-3<6<6+3,能构成等腰三角形,周长为5+5+3=13;当3为腰,6为底时,3+3=6,不能构成三角形.故选D.【解析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长.根据三角形三边关系定理列出不等式,确定是否符合题意.【例题4】【题干】如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A 运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是等腰三角形时,运动的时间是()A、2.5秒B、3秒C、3.5秒D、4秒【答案】解:设运动的时间为x,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ 是等腰三角形时,AP=AQ ,即20﹣3x=2x ,解得x=4.故选D .【解析】设运动的时间为x ,则AP=20﹣3x ,当APQ 是等腰三角形时,AP=AQ ,则20﹣3x=2x ,解得x 即可.【例题5】【题干】如图,在网格中有一个直角三角形(网格中的每个小正方形的边长均为1个单位长度),若以该三角形一边为公共边画一个新三角形与原来的直角三角形一起组成一个等腰三角形,要求新三角形与原来的直角三角形除了有一条公共边外,没有其它的公共点,新三角形的顶点不一定在格点上,那么符合要求的新三角形有( )A .4个B .6个C .7个D .9个【答案】解:根据题意可知:以原三角形每条边为底边分别可以画出两个新三角形与原来的直角三角形一起组成一个等腰三角形,故3×2=6,同时,还可以以原直角三角形斜边为腰画出一个新三角形与原来的直角三角形一起组成一个等腰三角形,∴符合要求的新三角形有7个, 故选C .【解析】根据题意进行分析可知:以原三角形每条边为底边分别可以画出两个新三角形与原来的直角三角形一起组成一个等腰三角形即有6个,以原直角三角形斜边为腰画出一个新三角形与原来的直角三角形一起组成一个等腰三角形,从而得出结论.【例题6】【题干】如图,在ABC △中,13AB AC ==,10BC =,点D 为BC 的中点,DE AB ⊥,垂足为点E ,则DE 等于( )A .1013 B .1513 C .6013 D .7513【答案】解:连接AD .∵AB =AC ,D 是BC 的中点,∴AD ⊥BC ,BD =CD = 21×10=5 ∴AD =22513- =12.∵△ABC 的面积是△ABD 面积的2倍. ∴2•21AB •DE = 21•BC •AD , ∴ DE =1321210⨯⨯=1360. 故选C .【解析】可用面积相等求出DE 的长,知道三边的长,可求出BC 边上的高,连接AD ,△ABC的面积是△ABD 面积的2倍.【例题7】【题干】如图,△ABC 中,以B 为圆心,BC 长为半径画弧,分别交AC 、AB 于D ,E 两点,并连接BD ,DE .若∠A=30°,AB=AC ,则∠BDE 的度数为何( )E DBAE DBAA、45B、52.5C、67.5D、75【答案】解;∵AB=AC,∴∠ABC=∠ACB,∵∠A=30°,∴∠ABC=∠ACB=(180﹣30)=75°,∵以B为圆心,BC长为半径画弧,∴BE=BD=BC,∴∠BDC=∠ACB=75°,∴∠CBD=180﹣75﹣75=30°,∴∠DBC=75﹣30=45°,∴∠BED=∠BDE=(180﹣45)=67.5°.故选C.【解析】根据AB=AC,利用三角形内角和定理求出∠ABC的度数,再利用等腰三角形的性质和三角形内角和定理求出∠DBC=45°,然后即可求出∠BDE的度数.【例题8】【题干】在正方形网格图①.图②中各画一个等腰三角形.要求:每个等腰三角形的一个顶点为格点A,其余顶点从格点B.C.D.E.F.G.H中选取,并且所画的两个三角形不全等.【答案】解:【解析】可以以正方形的对边的顶点为等腰三角形的两个底边的顶点,以这两点连线的中垂线经过的点为顶角顶点,即可作出等腰三角形.四、课堂运用【基础】1.如图,矩形ABCD中,AB<BC,对角线AC、BD相交于点O,则图中的等腰三角形有()A、2个B、4个C、6个D、8个分析:本题需先根据矩形的性质得出OA=OB=OC=OD,从而得出图中等腰三角形中的个数,即可得出正确答案.答案:解:∵矩形ABCD中,AB<BC,对角线AC、BD相交于点O,∴OA=OB=OC=OD,∴图中的等腰三角形有△AOB、△AOD、△COD、△BOC四个.故选B.2.等腰三角形的两条边长分别为3、6,那么它的周长为()A.15B.12C.12或15D.不能确定分析:根据等腰三角形的性质和三角形的三边关系,可求出第三条边长,即可求得周长;解答:解:∵当腰长为3时,3+3=6,显然不成立;∴腰长为6,∴周长为6+6+3=15.故选A.3.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC的中点.若DE=5,则AB的长为.分析:根据垂线的性质推知△ADC 是直角三角形;然后在直角三角形ADC 中,利用直角三角形斜边上的中线是斜边的一半,求得AC =10;最后由等腰三角形ABC 的两腰AB =AC ,求得AB =10. 解答:解:∵在△ABC 中,AD ⊥BC ,垂足为D ,∴△ADC 是直角三角形;∵E 是AC 的中点.∴DE =21AC (直角三角形的斜边上的中线是斜边的一半);又∵DE =5,AB =AC , ∴AB =10;故答案为:10.4. 如图,在△ABC 中,AB =AC ,∠A =40°,则△ABC 的外角∠BCD = 110 度.分析:根据等腰三角形的性质得到∠B =∠ACB ,根据三角形的内角和定理求出∠B ,∠根据三角形的外角性质即可求出答案.解答:解:∵AB =AC ,∴∠B =∠ACB ,∵∠A =40°,∴∠B =∠ACB =12(180°﹣∠A )=70°, ∴∠BCD =∠A +∠B =40°+70°=110°,故答案为:110.【巩固】1. 如图,在△ABC 中,AB=AC ,∠A=36°,AB 的垂直平分线DE 交AC 于D ,交AB 于E ,下述结论错误的是( )A 、BD 平分∠ABCB 、△BCD 的周长等于AB+BCC 、AD=BD=BCD 、点D 是线段AC 的中点分析:由在△ABC 中,AB=AC ,∠A=36°,根据等边对等角与三角形内角和定理,即可求得∠ABC 与∠C 的度数,又由AB 的垂直平分线是DE ,根据线段垂直平分线的性质,即可求得AD=BD ,继而求得∠ABD 的度数,则可知BD 平分∠ABC;可得△BCD 的周长等于AB+BC ,又可求得∠BDC的度数,求得AD=BD=BC,则可求得答案;注意排除法在解选择题中的应用.解答:解:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C==72°,∵AB的垂直平分线是DE,∴AD=BD,∴∠ABD=∠A=36°,∴∠DBC=∠ABC﹣∠ABD=72°﹣36°=36°=∠ABD,∴BD平分∠ABC,故A正确;∴△BCD的周长为:BC+CD+BD=BC+CD+AD=BC+AC=BC+AB,故B正确;∵∠DBC=36°,∠C=72°,∴∠BDC=180°﹣∠DBC﹣∠C=72°,∴∠BDC=∠C,∴BD=BC,∴AD=BD=BC,故C正确;∵BD>CD,∴AD>CD,∴点D不是线段AC的中点,故D错误.故选D.2.等腰三角形的周长为14,其一边长为4,那么,它的底边为 .分析:已知的边可能是腰,也可能是底边,应分两种情况进行讨论.解答:解:当腰是4时,则另两边是4,6,且4+4>6,6﹣4<4,满足三边关系定理,当底边是4时,另两边长是5,5,5+4>5,5﹣4<5,满足三边关系定理,∴该等腰三角形的底边为4或6,故答案为:4或6.3. 如图,在△ABC中,AB=AC,CD平分∠ACB,∠A=36°,则∠BDC的度数为72°.分析:由AB=AC,CD平分∠ACB,∠A=36°,根据三角形内角和180°可求得∠B等于∠ACB,并能求出其角度,在△DBC求得所求角度.解答:解:∵AB=AC,CD平分∠ACB,∠A=36°,∴∠B=(180°﹣36°)÷2=72°,∠DCB=36°.∴∠BDC=72°.故答案为:72°.4.如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.分析:(1)由AB=AC,根据等腰三角形的两底角相等得到∠B=∠C=30°,再根据三角形的内角和定理可计算出∠BAC=120°,而∠DAB=45°,则∠DAC=∠BAC-∠DAB=120°-45°;(2)根据三角形外角性质和得到∠ADC=∠B+∠DAB=75°,而由(1)得到∠DAC=75°,再根据等腰三角形的判定可得DC=AC,这样即可得到结论.解答:(1)解:∵AB=AC,∴∠B=∠C=30°,∵∠C+∠BAC+∠B=180°,∴∠BAC=180°-30°-30°=120°,∵∠DAB=45°,∴∠DAC=∠BAC-∠DAB=120°-45°=75°;(2)证明:∵∠DAB=45°,∴∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC,∴DC=AC,∴DC=AB.【拔高】1.如图,将等腰直角△ABC沿BC方向平移得到△A1B1C1.若与△A1B1C1重叠部分面积为2,则BB1分析:重叠部分为等腰直角三角形,设B1C=2x,则B1C边上的高为x,根据重叠部分的面积列方程求x,再求BB1.解答:解:设B1C=2x,根据等腰三角形的性质可知,重叠部分为等腰直角三角形, 则B 1C 边上的高为x ,∴12×x×2x=2,解得,∴BB 1=BC ﹣B 12. 如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD ,DF=DE ,则∠E= 15 度.分析:根据等边三角形三个角相等,可知∠ACB=60°,根据等腰三角形底角相等即可得出∠E 的度数.解答:解:∵△ABC 是等边三角形, ∴∠ACB =60°,∠ACD =120°, ∵CG=CD ,∴∠CDG=30°,∠FDE =150°, ∵DF=DE , ∴∠E=15°. 故答案为:15.3. 如图,在△ABC 中,AB =AC ,D 为BC 边上一点,∠B =30°,∠DAB =45°.(1)求∠DAC 的度数; (2)求证:DC =AB .分析:(1)由AB =AC ,根据等腰三角形的两底角相等得到∠B =∠C =30°,再根据三角形的内角和定理可计算出∠BAC =120°,而∠DAB =45°,则∠DAC =∠BAC ﹣∠DAB =120°﹣45°; (2)根据三角形外角性质和得到∠ADC =∠B +∠DAB =75°,而由(1)得到∠DAC =75°,再根据等腰三角形的判定可得DC =AC ,这样即可得到结论. 解答:(1)解:∵AB =AC , ∴∠B =∠C =30°, ∵∠C +∠BAC +∠B =180°, ∴∠BAC =180°﹣30°﹣30°=120°, ∵∠DAB =45°,∴∠DAC =∠BAC ﹣∠DAB =120°﹣45°=75°; (2)证明:∵∠DAB =45°, ∴∠ADC =∠B +∠DAB =75°, ∴∠DAC =∠ADC , ∴DC =AC , ∴DC =AB .4. 某园艺公司对一块直角三角形的花圃进行改造.测得两直角边长为6m 、8m .现要将其扩建成等腰三角形,且扩充部分是以8m 为直角边的直角三角形...........求扩建后的等腰三角形花圃的周长.分析:原题并没有给出图形,要根据题意画出符合题意的图形,画出图形后,可知本题实际上应三类情况讨论:一是将△ABC 沿直线AC 翻折180°后,得等腰三角形ABD ,如图1;二是延长BC 至点D ,使CD =4,则BD =AB =10,得等腰三角形ABD ,如图2;三是作斜边AB 的中垂线交BC 的延长线于点D ,则DA =DB ,得等腰三角形ABD ,如图3.先作出符合条件的图形后,再根据勾股定理进行求解即可.解答:分三类情况讨论如下:(1)如图1所示,原来的花圃为Rt△ABC ,其中BC =6m ,AC =8m ,∠ACB =90°.由勾股定理易知AB =10m ,将△ABC 沿直线AC 翻折180°后,得等腰三角形ABD ,此时,AD =10m ,CD =6m .故扩建后的等腰三角形花圃的周长为12+10+10=32(m ).(2)如图2,因为BC =6m ,CD =4m ,所以BD =AB =10m ,在Rt△ACD 中,由勾股定理得AD =2284 =45,此时,扩建后的等腰三角形花圃的周长为45+10+10=20+45(m ).(3)如图3,设△ABD 中DA =DB ,再设CD =x m ,则DA =(x +6)m ,在Rt△ACD 中,由勾股定理得x 2+82=(x +6)2,解得x =37∴扩建后等腰三角形花圃的周长=10+2(x +6)=380(m ).课程小结课后作业【基础】1. 如图,在△ABC 中,AB =AC ,∠B =40°,则∠A = 100° .考点等腰三角形的性质;三角形内角和定理分析:由AB =AC ,根据等腰三角形的性质得到∠B =∠C =40°,再利用三角形的内角和为180°即可求出∠A .解答:解:∵AB =AC ,∴∠B =∠C =40°,∴∠A =180°﹣40°﹣40°=100°.故答案为:100°C46C图3x6C2. 如图,在△ABC中,AB=AC,点D为BC边的中点,∠BAD=20°,则∠C=.分析:由已知条件,利用等边三角形三线合一的性质进行求解.解答:解:∵AB=CA,∴△ABC是等腰三角形,∵D是BC边上的中点,∴AD平分∠BAC,∵∠BAD=20°.∴∠C=90°﹣20°=70°.故答案为:70°.3.如图,在△ABC中,AB=AC,∠A=80°,E,F,P分别是AB,AC,BC边上一点,且BE=BP,CP=CF,则∠EPF=度.分析:根据在△ABC中,AB=AC,∠A=80°,利用三角形内角和定理求出∠B=∠C=50°,再利用BE=BP,求出∠B,然后即可求得∠EPF,即可解题.解答:解:∵在△ABC中,AB=AC,∠A=80°,∴∠B=∠C=50°,∵BE=BP,∴∠B=∠EPB=65°,同理,∠FPC=65°,∠EPF=180°﹣65°﹣65°=50°.故答案为:50°.【巩固】1.如图所示,在△ABC中,AB=AC,∠B=50°,则∠A= 80°.分析:根据等腰三角形的性质,∠B=∠C=50°,然后根据三角形内角和定理就可推出∠A 的度数解答:解:∵在△ABC中,AB=AC,∠B=50°∴∠C=50°∴∠A=180°﹣50°﹣50°=80°故答案为80°.2. 如图,△ABC中,AB=AC,AD、CD分別是△ABC两个外角的平分线.求证:AC=AD;分析:根据角平分线的性质得出∠FAD=∠B,以及AD∥BC,再利用∠D=∠ACD,证明AC=AD;解答:证明:(1)∵AB=AC,∴∠B=∠BCA,∵AD平分∠FAC,∴∠FAD=∠B,∴AD∥BC,∴∠D=∠DCE,∵CD平分∠ACE,∴∠ACD=∠DCE,∴∠D=∠ACD,∴AC=AD;3.已知:如图,在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC,求证:AB=AC.分析:根据在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC,求证△AED≌△ADC,然后利用等量代换即可求的结论.解答:证明:∵AD平分∠EDC,∴∠ADE=∠ADC,∵DE=DC,∴△AED≌△ADC,∴∠C=∠E,∵∠E=∠B.∴∠C=∠B,∴AB=AC.4.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.分析:(1)ED是AC的垂直平分线,可得AE=EC;∠A=∠C;已知∠A=36,即可求得;(2)△ABC中,AB=AC,∠A=36°,可得∠B=72°又∠BEC=∠A+∠ECA=72°,所以,得BC=EC=5;解答:解:(1)∵DE垂直平分AC,∴CE=AE,∴∠ECD=∠A=36°;(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∴∠BEC=∠A+∠ECD=72°,∴∠BEC=∠B,∴BC=EC=5.答:(1)∠ECD的度数是36°;(2)BC长是5.【拔高】1.腰长为5,一条高为4的等腰三角形的底边长为6或2或4.分析:根据不同边上的高为4分类讨论即可得到本题的答案.解答:解:①如图1当AB=AC=5,AD=4,则BD=CD=3,∴底边长为6;②如图2.当AB=AC =5,CD =4时,则AD =3, ∴BD =2,∴BC =2242 =52, ∴此时底边长为52; ③如图3:当AB=AC =5,CD =4时,则AD=3, ∴BD =8, ∴BC =45,∴此时底边长为45. 故答案为:6或52或45.2. 如图,已知∠AOB=α,在射线OA 、OB 上分别取点OA 1=OB 1,连接A 1B 1,在B 1A 1、B 1B 上分别取点A 2、B 2,使B 1B 2=B 1A 2,连接A 2B 2…按此规律上去,记∠A 2B 1B 2=θ1,∠A 3B 2B 3=θ2,…,∠A n+1B n B n+1=θn ,则(1)θ1= ; (2)θn = .分析:设∠A 1B 1O=x ,根据等腰三角形性质和三角形内角和定理得α+2x=180°,x=180°﹣θ1,即可求得θ1=1802α︒+;同理求得θ2=11802θ︒+;即可发现其中的规律,按照此规律即可求得答案.解答:解:(1)设∠A 1B 1O=x , 则α+2x=180°,x=180°﹣θ1, ∴θ1=1802α︒+;(2)设∠A 2B 2B 1=y ,则θ2+y=180°,θ1+2y=180°, ∴θ2=11802θ︒+; … θn =11802n θ-︒+. 故答案为别为:θ1=1802α︒+;θn =()211802n nα-⋅︒+.。

等腰三角形的性质教学设计一等奖(精选)

等腰三角形的性质教学设计一等奖(精选)

等腰三角形性质分析
等腰三角形底边上的垂直平分线到两 条腰的距离相等。
等腰三角形底边上任意一点到两腰距 离之和等于一腰上的高(需用等面积 法证明)。
等腰三角形的一腰上的高与底边的夹 角等于顶角的一半。
等腰三角形是轴对称图形,只有一条 对称轴,顶角平分线所在的直线是它 的对称轴,等边三角形有三条对称轴。
引导学生通过小组讨论,探讨等腰三角形在生活中的应用,例如建筑设 计、工程绘图等领域。
让学生分享自己对于等腰三角形性质的理解和应用经验,促进课堂交流 和互动。
教师总结本节课内容
回顾本节课所学的等腰三角形性 质,包括定义、性质定理及其证
明过程。
强调等腰三角形性质在几何学和 实际应用中的重要性,鼓励学生
等腰三角形在几何图形中的应用
研究等腰三角形在几何图形中的应用,例如在建筑设计、工程绘图等领域中的实际应用。 这有助于将数学知识与实际生活相结合,提高学生的数学应用能力。
06
课堂互动环节与小结
学生提问及讨论环节
鼓励学生提出对于等腰三角形性质的问题,如“等腰三角形的两条等边 和对应的两个等角有什么关系?”、“如何证明等腰三角形的底角相 等?”等。
等腰三角形的性质教 学设计一等奖(精选)
目录
• 课程介绍与目标 • 等腰三角形基本概念与性质 • 等腰三角形判定定理及应用 • 等腰三角形面积计算与拓展 • 等腰三角形相关数学问题探讨 • 课堂互动环节与小结
01
课程介绍与目标
课程背景与意义
01
等腰三角形是初中数学中的重要内 容,对于提高学生的几何思维能力 和解决问题的能力具有重要意义。
等腰三角形中的角度关系问题
01
等腰三角形两底角相等
在任何等腰三角形中,两个底角的大小总是相等的,这是由于等腰三角

等腰三角形的性质教学设计【优秀10篇】

等腰三角形的性质教学设计【优秀10篇】

等腰三角形的性质教学设计【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!等腰三角形的性质教学设计【优秀10篇】作为一名优秀的教育工作者,时常需要编写教案,编写教案助于积累教学经验,不断提高教学质量。

八年级数学上册《等腰三角形的性质和判定定理》教案、教学设计

八年级数学上册《等腰三角形的性质和判定定理》教案、教学设计
1.结合学生的认知特点,通过直观的图形演示和实际操作,帮助学生理解等腰三角形的性质和判定定理。
2.注重培养学生的逻辑推理能力,引导他们在解题过程中运用所学知识进行分析、判断和证明。
3.针对学生个体差异,实施分层教学,使每个学生都能在原有基础上得到提高和发展。
4.创设生动活泼的课堂氛围,激发学生的学习兴趣,鼓励他们积极参与课堂讨论和交流,提高合作能力。
-利用几何画板等教学工具,动态展示等腰三角形的性质,增强学生的直观感受。
2.自主性质和判定定理。
-组织学生进行小组讨论,互相交流探究成果,提高合作能力。
3.精讲精练,突破难点
-对等腰三角形的性质和判定定理进行详细讲解,结合具体例题,使学生深入理解。
2.鼓励学生进行拓展学习,提高自主学习能力。
二、学情分析
八年级的学生已经具备了一定的几何图形认知基础,掌握了三角形的基本概念和性质,但对于等腰三角形的深入学习还较为陌生。在此阶段,学生的认知发展正处于从具体形象思维向抽象逻辑思维过渡的关键时期,他们需要通过具体实例和操作来理解和掌握抽象的数学概念。此外,学生在解决问题的过程中,对于几何证明的逻辑推理能力有待提高。因此,在本章节的教学中,应注重以下几点:
八年级数学上册《等腰三角形的性质和判定定理》教案、教学设计
一、教学目标
(一)知识与技能
1.理解并掌握等腰三角形的定义、性质及判定定理,能够运用这些知识解决相关问题。
2.学会使用等腰三角形的性质进行几何证明,提高逻辑思维能力和解题技巧。
3.能够运用等腰三角形的判定定理判断一般三角形的类型,培养观察能力和推理能力。
3.作业完成后,及时进行检查,确保答案正确,并对错题进行订正。
4.家长要关注孩子的学习情况,协助孩子完成作业,并给予适当指导。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形的性质和判定
等腰三角形是一种特殊三角形,它除具有一般三角形所有的性质外,还有许多特殊性,正是由于它的这些特殊性,使得它比一般三角形的应用更广泛。

因此,我们有必要把这部分内容学得更扎实些。

【重点、难点】
重点:等腰三角形的性质与判定。

难点:灵活利用等腰三角形的性质与判定。

关键:掌握好等腰三角形的性质及判定。

【知识要点】
1、等腰三角形的一些重要性质:
①等腰三角形的两底角相等。

这一性质是今后论证两角相等的常用依据之一。

②等腰三角形的顶角平分线,底边上的中线,底边上的高互相重合(“三合一”)。

这一性质是今后论证两条线段相等,两角相等及两直线垂直的重要依据。

2、以上的两条重要性质在教科书中被当作两条重要定理。

除此外,根据等腰三角形的对称性还应有如下重要的性质,虽在证明中不能直接引用,但对于填空、选择则可直接运用,并且这些性质对今后的推理证明都有非常重要的作用。

①等腰三角形两腰上的中线相等
已知:在ΔABC 中,AB=AC,若BD,CE分别是AC,AB边上的中线,则有BD=CE。

证明:∵BD,CE是AB,AC边上的中线(已知)
∴AD=AC,AE=AB(中线定义)
∵AB=AC(已知)
∴AD=AE
在ΔABD和ΔACE中,
∴ΔABD≌ΔACE(SAS)
∴BD=CE(全等三角形对应边相等)。

②等腰三角形两腰上的高相等
已知:在ΔABC中,AB=AC,如果BD,CE分别是AC,AB边上的高,那么BD=CE。

同学可以试着证明一下,还用全等三角形去证。

③等腰三角形两底角的平分线相等
已知:在ΔABC中,AB=AC,如果BD,CE分别是∠ABC和∠ACB的平分线,那么BD =CE。

同学可利用全等三角形法证明。

3、等腰三角形的判定
判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)。

已知:如图,在ΔABC中,∠B=∠C,求证:AB=AC。

分析:要想证出AB=AC需构造全等三角形。

考虑学过等腰三角形性质中的“三合一”,我们不妨作顶角的平分线,或过A作AD⊥BC于D。

证明:过A作AD⊥BC于D
∴∠ADB=∠ADC=90°(垂直定义)
在ΔABD和ΔACD中,
∴ΔABD≌ΔACD(AAS)
∴AB=AC(全等三角形对应边相等)。

4、等腰三角形分类
等腰三角形
5、有关等腰三角形周长的计算
给出三角形中两边的数据求周长时,一定要考虑对某一边有两种可能情况:一它可能是腰,二它可能是底。

最后确定具体是腰还是底,就要看得出的三边关系是否符合:任两边之和大于第三边,两边之差小于第三边。

如:已知等腰三角形的两边分别是3cm,5cm,则周长此时有两种情况:11cm或13cm。

当腰长为3cm时,周长为:3cm+3cm+5cm=11cm;当腰长为5cm时,周长为:3cm+5cm+5cm=13cm。

若两边分别是4cm,8cm,则周长只有一种结果,长为20cm(8cm做腰,4cm做底)。

另一种可能是以4cm做腰,8cm做底,此时,4cm+4cm=8cm,不符合任两边之和大于第三边的三角形三边关系,故不能考虑在内。

【例题讲解】
例1:已知:如图,∠A=∠B,CE∥DA,CE交AB于E,求证:CE=CB。

分析:要想CE=CB∠CEB=∠B∠A=∠CEB CE∥DA(已知条件),故可完成证明。

证明:∵CE∥DA(已知)
∴∠A=∠CEB(两直线平行,同位角相等)
又∵∠A=∠B(已知)
∴∠CEB=∠B(等量代换)
∴CE=CB(等角对等边)
例2:如图,已知点D,E在BC上,AB=AC,AD=AE,求证:BD=CE。

分析:这道题证法很多,如果要找全等三角形来证,证明ΔABD≌ΔACE,缺少条件,需首先推出相等的条件,学习了等腰三角形,可以用等腰三角形的性质来考虑,为了把等腰三角形的性质揭示出来,需添加辅助线,作BC上的高,即平分BC又平分DE,证明如下:证明:作AF⊥BC于F,
∵AB=AC(已知)
AD=AE(已知)
AF⊥BC(辅助线作法)
∴BF=CF,DF=EF(等腰三角形底边上的高与底边上的中线互相重合)
∴BD=CE(等式性质)
说明:在证题时要注意选择方法和依据,以简捷为目的,若学习了线段的垂直平分线的性质,角的平分线的性质能直接用这些定理证明线段相等就不需再证一遍三角形全等。

例3:如图,点D,E在AC上,∠ABD=∠CBE,∠A=∠C,求证:BD=BE。

分析:本题只需证出∠BDE=∠BED即可,要证∠BDE=∠BED,而∠BDE=∠A+∠ABD,∠BED=∠C+∠CBE,条件已给出∠A=∠C,∠ABD=∠CBE。

证明:∵D,E在AC上(已知)
∴∠BDE=∠A+∠ABD,∠BED=∠C+∠CBE(三角形的外角等于和它不相邻的两内角的和)
∵∠A=∠C(已知) ∠ABD=∠CBE(已知)
∴∠BDE=∠BED(等式性质)
∴BD=BE(等角对等边)
例4:求证:有两条高相等的三角形是等腰三角形。

分析:这是一文字叙述的证明题,首先要根据题意画出草图,结合图形写出已知、求证,再给予证明。

已知:如图,ΔABC中,CD⊥AB于D,BE⊥AC于E且CD=BE,
求证:AB=AC
证明:∵CD⊥AB于D,BE⊥AC于E(已知)
∴∠ADC=∠AEB=90°(垂直定义)
在ΔABE和ΔACD中,
∴ΔABE≌ΔACD(AAS)
∴AB=AC(全等三角形对应边相等)
例5:已知:在ΔABC中,AB=AC,O是ΔABC内一点,且OB=OC,求证:AO⊥BC。

分析:因为ΔABC为等腰三角形,只需证出AO平分顶角(∠1=∠2)即可,利用等腰三角形“三合一”性质定理证明。

证明:在ΔABO和ΔACO中,
∴ΔABO≌ΔACO(SSS)
∴∠1=∠2(全等三角形对应角相等)
∴AO平分∠BAC,
又∵AB=AC(已知)
∴AO⊥BC(等腰三角形顶角平分线与底边上的高互相重合)
例6:已知:如图,ΔABC是等边三角形,BD是中线,延长BC到E,使CE=CD,求证:DB=DE。

分析:只需证∠DBE=∠E,由于ΔABC为等边三角形,故∠DBE=30°,又CD=CE,故∠CDE=∠E,又∠ACB=∠E+∠CDE=60°,故∠E=30°。

证明:∵ΔABC是等边三角形(已知)
∴∠ABC=∠ACB=60°
∵BD是中线(已知)
∴BD平分∠ABC(等腰三角形底边上的中线与顶角平分线互相重合)
∴∠DBC=30°
又∵CE=CD(已知)
∴∠CDE=∠E(等边对等角)
∵∠DCB=∠CDE+∠E=60°(三角形的一个外角等于和它不相邻的两内角的和)
∴∠E=30°(等式性质)
∴∠DBE=∠E
∴DB=DE(等角对等边)
【巩固练习】
1、填空。

①等腰三角形中,两腰上的中线,顶角的平分线底边。

②若等腰三角形的一个角是时,则这个角可以是顶角,也可以是底角。

若有一个角是时,则这个角一定是顶角。

2、已知:如图,AB=AC,DB=DC,AD的延长线交BC于点E,求证:BE=EC。

3、已知:如图,AB=AE,∠B=∠E,BC=ED,F是CD的中点,求证:AF⊥CD。

4、已知:如图,CD平分∠ACB,AE∥DC,交BC的延长线于点E,求证:ΔACE是等腰三角形。

5、已知:如图,AD=BC,AC=BD,求证:AE=EB。

6、已知:如图,在ΔABC中,AB=AC,E,F分别是AB边和AC边延长线上的点,且BE=CF,EF与BC交于点D,求证:DE=DF。

7、已知:如图,ΔABC中,∠A=2∠C,BD是∠B的平分线,求证:BC=AB+AD。

【巩固练习答案与提示】
1、①相等,垂直平分②锐角,钝角。

2、提示:因ΔABC中,AB=AC,只需证AE平分∠BAC即可,可证ΔABD≌ΔACD。

3、由CF=FD和等腰三角形“三合一”的性质,易想到要证AF⊥CD,可连结AC,AD,然后证AC=AD ,要证AC=AD,可证ΔABC≌ΔAED。

4、
∠CAE=∠E AC=ECΔACE是等腰三角形。

5、ΔABD≌ΔBAC∠ABD=∠BAC AE=EB。

6、
过E作EG∥AF,
∠B=∠EGB
ΔEDG≌ΔFDC DE=DF。

7、
ΔABD≌ΔEBD AD=ED,∠A=∠BED
∠C=∠EDC ED=EC
BC=AB+AD。

相关文档
最新文档