一笔画问题
浅谈一笔画问题
浅谈一笔画问题公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]浅谈一笔画问题摘要:一笔画问题是一个几何问题,传统意义上的几何学是研究图形的形状大小等性质,而存在一些几何问题,它们所研究的对象与图形的形状和线段的长短没关系,而只和线段的数目和它们之间的连接关系有关,比如一笔画问题就是如此。
一笔画问题是一个简单的数学游戏,即平面上由曲线段构成的一个图形能不能一笔画成,使得在每条线段上都不重复例如汉字‘日’和‘中’字都可以一笔画的,而‘田’和‘目’则不能。
关键词:一笔画规律原理早在18世纪,瑞士的着名数学家欧拉就找到了一笔画的规律。
欧拉认为,能一笔画的图形必须是连通图。
连通图就是指一个图形各部分总是有边相连的.但是,不是所有的连通图都可以一笔画的。
能否一笔画是由图的奇、偶点的数目来决定的。
一笔画问题是图论中一个着名的问题。
一笔画问题起源于柯尼斯堡七桥问题。
数学家欧拉在他1736年发表的论文《柯尼斯堡的七桥》中不仅解决了七桥问题,也提出了一笔画定理,顺带解决了一笔画问题。
一般认为,欧拉的研究是图论的开端。
与一笔画问题相对应的一个图论问题是哈密顿问题。
一、一笔画规律数学家欧拉找到一笔画的规律是:(一)凡是由偶点组成的连通图,一定可以一笔画成。
画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图。
(二)凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成。
画时必须把一个奇点为起,,另一个奇点终点。
(三)其他情况的图都不能一笔画出。
(有偶数个奇点除以二便可算出此图需几笔画成)比如附图:(a)为(1)情况,因此可以一笔画成;(b)(c)(d)则没有符合以上两种情况,所以不能一笔画成。
补充:相关名词的含义◎顶点与指数:设一个平面图形是由有限个点及有限条弧组成的,这些点称为图形的顶点,从任一顶点引出的该图形的弧的条数,称为这个顶点的指数。
◎奇顶点:指数为奇数的顶点。
◎偶顶点:指数为偶数的顶点。
不重复的路-一笔画问题
在一笔画过程中,如果起点和终点是同一点,则称该路径为欧拉回路。如果一个 图存在一个遍历其所有边且每条边只遍历一次的路径,则称该路径为欧拉路径。
一笔画问题的数学描述
图论
一笔画问题属于图论的范畴,图论是研究图 的结构、性质和应用的数学分支。在一笔画 问题中,主要关注的是图的连通性和遍历性 。
在计算机图形学中的应用
图形渲染
一笔画问题在计算机图形学中常用于绘制复杂的图形,如地 图、电路图等。通过解决一笔画问题,可以确定从一个点到 另一个点的最短路径,从而高效地渲染图形。
游戏开发
在游戏开发中,一笔画问题也具有广泛应用。例如,在角色 移动、地图导航等方面,可以利用一笔画算法找到不重复的 路径,提高游戏的流畅性和用户体验。
人才培养
为了推动一笔画问题的研究和发展,需要加强人才培养。未来可以加强图论学科的建设, 提高教师的学术水平和教学能力,培养更多具有创新能力和实践精神的人才,为解决一笔 画问题提供人才保障。Leabharlann HANKS感谢观看05
结论
一笔画问题的研究意义
理论意义
一笔画问题作为图论中的经典问题,对于推动图论学科的发展具有重要意义。通过对一笔画问题的研 究,可以深入探讨图论中的连通性、遍历性和最优化等核心问题,为图论学科的理论研究提供支持。
应用价值
一笔画问题在现实生活中具有广泛的应用价值。例如,在地图导航中,如何规划一条不重复的路径; 在电路设计中,如何避免线路交叉;在物流配送中,如何规划最优的送货路线等。因此,一笔画问题 的研究成果可以为这些领域提供理论指导和技术支持。
问题背景
起源
一笔画问题起源于文艺复兴时期 的数学游戏,后来被欧拉等人系 统化并深入研究。
小学奥数 奇妙的一笔画 精选练习例题 含答案解析(附知识点拨及考点)
所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点. 一笔画问题:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点; (4)奇点个数超过两个的图形,一定不能一笔画. 多笔画问题:我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.模块一、判断奇偶点【例 1】 我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?J O I H G FED CBA【考点】一笔画问题 【难度】2星 【题型】解答【解析】 奇点: D H J O 偶点:A B C E F G I 【答案】奇点: D H J O 偶点:A B C E F G I【例 2】 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要 种颜色的旗子,如果贝贝从某营地出发,不走重复路线就 (填“能”或“不能”)完成任务.【考点】一笔画问题 【难度】2星 【题型】填空例题精讲知识点拨4-1-5.奇妙的一笔画【关键词】华杯赛,六年级,初赛,第10题【解析】最少需要3种颜色的旗子。
因为中间的三点连成一个三角形,要使这三点所代表营地两粮相邻,要使相邻营地没有相同颜色的旗子,必须各插一种与其它两点不同颜色的旗子。
小学数学《一笔画》练习题(含答案)精选全文
可编辑修改精选全文完整版小学数学《一笔画》练习题(含答案)什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.所谓一笔画,就是从图形上的某点出发,笔不离开纸,而且每条线都只画一次不准重复.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.判断图形能否一笔画的规律:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点.以另一个奇点作为终点;(4)奇点个数超过两个的图形,一定不能一笔画.(一) 一笔画以及多笔画【例1】 观察下面的图形,说明哪些图可以一笔画完,哪些不能,为什么?对于可以一笔画的图形,指明画法.(f)(e)(d)JIH G F ED C BAJ K IHGFED CB A分析:(a )图:可以一笔画,因为只有两个奇点A 、B ;画法为A →头部→翅膀→尾部→翅膀→嘴. (b )图:不能一笔画,因为此图不是连通图.(c )图:不能一笔画,因图中有四个奇点:A 、B 、C 、D.(d )图:可以一笔画,因为只有两个奇点;画法为:A →C →D →A →B →E →F →G →H →I →J →K →B. (e )图:可以一笔画,因为没有奇点;画法可以是:A →B →C →D →E →F →G →H →I →J →B →D →F →H →J →A.(f )图:不能一笔画出,因为图中有八个奇点.[注意]在上面能够一笔画出的图中,画法并不是惟一的.事实上,对于有两个奇点的图来说,任一个奇点都可以作为起点,以另一个奇点作为终点;对于没有奇点的图来说,任一个偶点都可以作为起点,最后仍以这点作为终点.[巩固]判断下列图a、图b、图c能否一笔画.E分析:图a是一个连通的图形,图中只有点A和点F两个奇点,所以它能一笔画,其中一种画法如下:A —M—N—A—F—B—C—B—K—C—D—E—D—L—E—F.‘图b是一个不连通的图形,所以不能一笔画.图c是连通图,图中所有点都是偶点,所以能一笔画.其中一种画法如下:A—B—C—D—E—F—D—A—F —C—A.【例2】右图是某地区所有街道的平面图.甲、乙二人同时分别从A、B出发,以相同的速度走遍所有的街道,最后到达 C.如果允许两人在遵守规则的条件下可以选择最短路径的话,问两人谁能最先到达C?分析:本题要求二人都必须走遍所有的街道最后到达C,而且两人的速度相同.因此,谁走的路程少,谁便可以先到达C.容易知道,在题目的要求下,每个人所走路程都至少是所有街道路程的总和.仔细观察上图,可以发现图中有两个奇点:A和C.这就是说,此图可以以A、C两点分别作为起点和终点而一笔画成.也就是说,甲可以从A出发,不重复地走遍所有的街道,最后到达C;而从B出发的乙则不行.因此,甲所走的路程正好等于所有街道路程的总和,而乙所走的路程则必定大于这个总和,这样甲先到达C.[巩固]在六面体的顶点B和E处各有一只蚂蚁(见右图),它们比赛看谁能爬过所有的棱线,最终到达终点D.已知它们的爬速相同,哪只蚂蚁能获胜?分析:许多同学看不出这是一笔画问题,但利用一笔画的知识,能非常巧妙地解答这道题.这道题只要求爬过所有的棱,没要求不能重复.可是两只蚂蚁爬速相同,如果一只不重复地爬遍所有的棱,而另一只必须重复爬某些棱,那么前一只蚂蚁爬的路程短,自然先到达D点,因而获胜.问题变为从B到D与从E到D哪个是一笔画问题.图中只有E,D两个奇点,所以从E到D可以一笔画出,而从B到D却不能,因此E点的蚂蚁获胜.[数学小游戏] 用一笔画成四条线段把所有的点连起来,怎样画?分析:通过试画,似乎不可以画,但通过仔细观察,对照一笔画的规律,便可发现,若添上两个辅助点,就可画成.如右图:FE DCB ADCBA我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.公式如下: 奇点数÷2=笔画数,即2n ÷2=n.【例3】 判断下列图形能否一笔画.若能,请给出一种画法;若不能,请加一条线或去一条线,将其改成可一笔画的图形.IH G FED CBA 图aH G I KLJ F EDCBA 图b DC HG EFBA图c分析:图a :原图有四个奇点,所以不能一笔画,在B,D 两点之间加一条线后,图中只有两个奇点,故可以一笔画出,如图d 所示.画法:H →A →B →C →D →E →F →I →D →B →I →H →G →F .图b :原图有四个奇点,所以不能用一笔画.去掉K ,L 两点之间的连线,图中只有两个奇点,故 可以一笔画出,如图e 所示.画法:B →C →D →E →F →→J →H →G →I →A →B →K →I →L →E .图c :原图有四个奇点,所以不能用一笔画.在B ,C 两点之间加一条线后,图中只有两个奇点, 故可以一笔画出,如图f 所示.画法:A →E →D →H →A →B →F →C →G →B →C →D注意:a 、b 、c 三个图都是连通的图形,但由于每个图的奇点个数均超过两个,所以都不能一笔画.图dA BCD EFG H IH GI KLJ F EDCB A 图eDC HG EFBA图f[前铺]观察下面的图,看各至少用几笔画成?分析:(1)图中有8个奇点,因此需用4笔画成. (2)图中有12个奇点,需6笔画成. (3)图是无奇点的连通图,可一笔画成.DC BA(2)(1)FEC DB A分析:图(1)中有6个奇点,因此可添上两条(或3条)边后可改为一笔画;又因为这个图中,把这6个奇点任意分为3对后,最多只有两对奇点间有边相连,因此,可去掉两条边后改为一笔画,举例如图(3)~(6).图(2)中有4个奇点,因此,可添上2条(或1条)边后改为一笔画;又因为把奇点按A 与B ,C 与D (或A 与D ,B 与C )分为两对后,每对间均有边相连,因此,可去掉两条(或1条)边后改为一笔画.举例如图(7)~(8).说明:图(6)运用了两种方法,去掉边BC ,添上边AD 与EF.(二)一笔画的实际应用【例5】 18世纪的哥尼斯堡城是一座美丽的城市,在这座城市中有一条布勒格尔河横贯城区,这条河有两条支流在城市中心汇合,汇合处有一座小岛A 和一座半岛D ,人们在这里建了一座公园,公园中有七座桥把河两岸和两个小岛连接起来(如图a).如果游人要一次走过这七座桥,而且对每座桥只许走一次,问如何走才能成功?:这个有趣的问题引起了著名数学家欧拉的注意,他证明了七桥问题中提到的走法根本不存在. 下面,我们考虑如下两个问题:(1)如果再架一座桥,游人能否走遍所有这八座桥?若能,这座桥应架在何处?若不能,请说明理由. (2)架设几座桥可以使游人走遍所有的桥回到出发地?而得到一个由四个点和七条线组成的图形(如图b).在图b 中,点A ,B ,C ,D 四个点均为奇点,显然不能一笔画出这个图形.若将其中的两个奇点改成偶点,即在某两个奇点之间连一条线,这样奇点个数由四个变为两个,此时,图形可以一笔画出.如我们可以选择奇点B ,D ,在B ,D 之间连一条线(架一座桥),如图c .在图c 中只有点A 和C 两个奇点,那么我们可以以A 为起点,C 为终点将图形一笔画出.其中一种画法为:A →C →A →B →A →D →B →D →C所以,如果在河岸B 与小岛D 之间架一座桥,游人就可以不重复地走遍所有的桥.(2)在(1)的基础上,再在另外两个奇点A 与C 之间连一条线(即架一座桥),使这两个奇点也变成偶点,如图d .那么A ,B ,C ,D 四个点均为偶点,所以图d 可以一笔画出,并且可以以任意点为起点,最后 仍回到这个点.其中一种画法为:A →C →A →C →D →A →B →D →B →A这表明:在河岸B 与小岛D 之间架一座桥后,再在小岛A 与河岸C 之间架一座桥,共架设两座桥,就可以使游人不重复地走遍所有的桥并回到出发地.[巩固]如图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸.问:一个散步者能否一次不重复地走遍这七座桥?分析:用点表示小岛与河岸,用连接两点的线表示连接相应两地的桥,如图,有2个奇点,所以该图可以一笔画,即可以一次不重复地走遍这七座桥.例如右下图的走法.EDCBA【例6】 有一个邮局,负责21个村庄的投递工作,右图中的点表示村庄,线段表示道路.邮递员从邮局出发,怎样才能不重复地经过每一个村庄,最后回到邮局?分析:图中有两个奇点,所以该图可以一笔画,但因为邮局所在点为奇点,所以要一笔画就不可能回到邮局.又图中A,B,C,D,E,F,G,H,I,J十点均有4条线段与之相连,如果我们将上图一笔画的话,就要经过以上十点各两次,这也不满足题目的要求,所以要将这些点相连的线段去掉一些,使得与这些点相连的线段均只有两条,并且将两个奇点也变成只有两条线段与之相连,这样得到的图形即可一笔画,又只经过每个点一次,并且可以回到邮局,一种可行路线如下:邮局I JHGF E D C B A 邮局邮局【例7】 右图是某博物馆的平面图,相邻两个展厅之间有一扇门相通,每一个展厅都有一门通往馆外.问参观者能否不重复地一次穿过每一扇门?若能,请找出一条可行路径;若不能,请说明理由.如果允许关闭某一扇门,问参观者能否不重复地穿过每一扇开着的门?分析:我们把展厅A,B,C,D,E 及馆外F 看成某个图中的点,把两个展厅之间的门看作是连接表示这两个展厅的点的线.根据题中条件知,馆外F 与A ,B ,C ,D ,E 各展厅相通,这样将点F 与点A ,B ,C ,D ,E 用线连接;展厅A 与展厅B ,C ,D 相通,将点A 与点B ,C ,D 用线连接;展厅B 除与A 相通外,它还与D ,E 展厅相通,将B 与D ,E 连接;除此之外,展厅C ,D 相通,展厅D ,E 相通,将点C ,D 连接,再将点D ,E 连接(如图a).于是本题要解决的问题就变成了能否将图a 一笔画的问题.可以看出:图a 中共有六个点,其中有四个奇点,它们分别为C ,D ,E ,F ,由一笔画的规律可知,图a 不能一笔画.也就是说,参观者不能够不重复地一次穿过每一扇门.如果允许关闭某一扇门,这相当于在图a 中去掉一条线,那么参观者就有可能不重复地一次穿过每一扇门.我们知道,在图a 中有四个奇点C ,D ,E ,F 为了把图a 改成一笔画图形,我们设法减少奇点个数,使奇点数变为两个.为此,我们可以去掉一条连接两个奇点的线,如去掉E 与F 间的连线,相应的图a 就变成了图b .在图b 中,除了原来的C 和D 是奇点外,其余点全部是偶点,故图b 可以一笔画.其中一种画法为:C →F →D →E →B →F →A →B →D →A →C →D .上面的分析表明,如果关闭连接E 、F 两展厅之间的门,参观者就可以不重复地一次穿过每一扇开着的门. 本题与七桥问题类似,只是将行人过桥换成了参观者穿过每一扇门.我们将这个问题转化为一笔画问题来研究.[前铺]右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走? FFF F E C D BA EB A分析:我们将每个展室看成一个点,室外看成点E ,将每扇门看成一条线段,两个展室间有门相通表示两个点间有线段相连,于是得到下图.能否不重复地穿过每扇门的问题,变为下图是否一笔画问题.EDC BA图中只有A ,D 两个奇点,是一笔画,所以答案是肯定的,应该从A 或D 展室开始走. 【例8】 已知长方体木块的长是80厘米,宽40厘米,高80厘米(如右图),并且要求蜘蛛在爬行过程中只能前进,不能后退,同一条棱不能爬两次.请问这只蜘蛛最多要爬行多少厘米?分析:图中八个顶点均为奇点,所以不能一笔画,要使其能一笔画,至少要去掉三条棱,使上图只有两个奇点,就可以满足一笔画的条件.长方体的棱长总和一定,(80+80+40)×4=800(厘米),因此去掉的三条棱越短,蜘蛛爬过的距离就越远.所以我们去掉三条棱长为40厘米的棱,于是可知,蜘蛛爬行的最远距离为: 800-40×3=680(厘米).蜘蛛的爬行路径为:G →F →C →D →G →H →A →B →E →H(如右图).[注意]这是一个立体图形,它有八个顶点,我们把长方体的棱看作顶点与顶点之间的连线,蜘蛛只能前进不能后退,并且每一条棱不能爬两次,这实质上是一个一笔画问题.【例9】 右图是某小区的街道分布图,街道长度如图所示(单位:公里),图中各点表示不同楼的代号.一辆垃圾清扫车从垃圾站(垃圾站位于C 楼与D 楼之间的P 处)出发要清扫完所有街道后仍回到垃圾站,问怎样走路线最短,最短路线是多少公里?分析:为了少走冤枉路和节省时间,题目中要求最短路线,根据一笔画原理,我们知道一笔画路线就是最短路线.本题要求清扫车从P点出发,仍回到P 点.通过观察上图可知,图中有六个奇点,根据一笔画规律可知,清扫车想清扫完所有街道而又不走重复的路是不可能的.要使清扫车从P 点出发,最后仍回到P 点,就必须把图中所有的奇点都变成偶点,即在两奇点之间添加一条线.在实际问题中,就是清扫车在哪些街道上重复走的问题,由于每条街道的长度不同,因此需要我们考虑清扫车重复走哪条街道才使总路线最短.为使六个奇点都变成偶点,我们可以有下图中的四种方法表示清扫车所走的重复路线,其中填虚线的地方表示的是重复路线.重复的路程分别为:图a :2×2+3=7;图b :3+4×2=11;图C :3×3=9; 图d :3+6×2=15.显然,重复走的路线最短,总路程就最短.从上述计算中就可找到最短路线图,即下面四个图中的图a .408080H G F ED C BA804080H GFED CBA图b 图a图d图c在图a 中,所有点均为偶点,是一笔画图形.清扫车可按如下路径走:P →D →G →D →E →F →G →H →L →H →C →B →L →M →A →B →C →P ,全程为:(1+2+4+2)×2+3×5+2×2+3=40(公里).【例10】 邮递员李文投送邮件的街道以及街道的长度如右图所示(单位:千米),每天小李要从邮局出发,走遍所有街道后回到邮局.请你帮他设计一条最短路线,并计算出这条路线有多少千米?分析:本题仍可以用一笔画图形的方法来解决.在图a 中共有六个奇点E ,F ,G ,H ,I ,J ,把这些奇点配对,每对之间用虚线连接(如图a),其中要用到D 点,这样图中就没有奇点了,从而可以不重复地走遍所有的街道.由于邮递员李文要重复走一些路段,因此重复走的路越短越好,即添上去的重复线段的总长度越短越好.在图a 中H 与E 之间有重叠,这样势必会增加李文所走路程的长度,应作调整.经调整后,将重叠部分去掉便得图b .在图b 的圈形闭路IHGJI 中,I ,J ,G ,H 各点没有连线时是奇点,连线后变成偶点,增加长度为50×2=100千米.而如果连IJ 和HG ,增加的长度仅为10×2=20,由此可知图b 需继续作调整,改成图c ,这种连接方法是最好的,它使李文行走的路线最短.根据以上分析,为了保证添上去的线段之和最短,应遵循下面的两条原则:(1)连线不能有重叠的线段;(2)在每一个圈形闭路上,连线长度之和不能超过 这个闭路总圈长的一半.经过分析可以知道,图c 的连接方法能使邮递员李文行走路线最短,而且能保证李文从邮局出发又回到邮局.这时他的行走路线为:邮局→A →I →J →I →H →G →H →E →D →F →D →G →J →B →C →D →E →邮局 他行走的全程为: (50+15)×4+20×4+10×6+20×2=440(千米).图a图b图c[小结]本题中采用的方法叫做“奇偶点图上作业法”,用这种方法来确定最短路线比较简便实用.此方法可以用下面的口诀来描述:画出路线图,确定奇偶点;奇点对对连,连线不重叠;闭路添连线.不得过半圈.[巩固]右图是某地区街道的平面图,图上的数字表示那条街道的长度.清晨,洒水车从A 出发,要洒遍所有的街道,最后再回到A.问:如何设计洒水路线最合理? 分析:这又是一个最短路线的问题.通过分析可以知道:在洒水路线中,K 是中间点,因此必须成为偶点,这样洒水车必须重复走KC 这条边(如下左图).至此,奇点的个数并未减少,仍是6个.容易得出,洒水车必须重复走的路线有:GF 、IJ 、BC.即洒水路线如下右图.全程45+3+6=54(里).1. (例1)判断下列各图能否一笔画.图aG I H F ECD BA图bF ED CBA分析:图a 中九个点全是偶点,因此可以一笔画,其中一种画法为:A →F →B →G →C →H →D →E →H →l →→F →G →l →E →A .图b 中A ,B ,C ,D 四个点均为奇点,故不可以一笔画.图c 中,只有A,C 为奇点,故可一笔画.其中一种画法为:A →D →E →C →H →N →G →M →F →A →B →C .2. (例3)下列各图至少要用几笔画完?分析:(1)4笔;(2)4笔;(3)2笔;(4)1笔;(5)1笔;(6)1笔.3.(例6)右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?分析:把每个展室看作一个结点,整个展厅的外部也看作一个点,两室之间有门相通,可以看作两点之间有边相连.这样,展厅的平面图就转化成了我们数学中的图,一个实际问题也就转化为这个图(如下图)能否一笔画成的问题了,即能否从A出发,一笔画完此图,最后再回到A.上图(b)中,所有的结点都是偶点,因此,一定可以以A作为起点和终点而一笔画完此图.也即游人可以从入口进,一次不重复地穿过所有的门,最后从出口出来.下面仅给出一种参观路线:A→E→B→C→E→F→C→D→F→A.4.(例7)一辆清洁车清扫街道,每段街道长1公里,清洁车由A出发,走遍所有的街道再回到A.怎样走路程最短,全程多少公里?分析:清洁车走的路径为: ABCNPBCDEFMNEFGHOLMHOIJKPLJKA. 即:清洁车必须至少重复走4段1公里的街道,如下图.最短路线全程为28公里.5.(例10)一个邮递员的投递范围如右图,图上的数字表示各段街道的长度.请你设计一条最短的投递路线,并求出全程是多少?分析:邮递员的投递路线如下图,即:路线为:ABCDEDOBOMNLKLGLNEFGHIMOJIJA.最短路线的全程为39+9=48.。
小学数学一笔画课件
THANKS FOR WATCHING
感谢您的观看
03
一笔画问题的解题方法
逐步推理法
总结词
通过逐步推理,按照一定的逻辑顺序,确定笔画的路径。
详细描述
逐步推理法是一种常用的解题方法,它通过逐步分析图形的特点和规律,推断出 笔画的路径。这种方法需要有一定的逻辑推理能力,对于一些较为复杂的图形, 需要仔细分析其结构,找出正确的笔画路径。
奇偶点分析法
拉回路是指一条通过图形的每条边且每条边只通过一次的闭合路径。
02
奇点与偶点
在图形中,如果一个节点发出的线条数是奇数,则该节点称为奇点;如
果一个节点发出的线条数是偶数,则该节点称为偶点。
03
哈密顿路径和哈密顿回路
哈密顿路径是指一条通过图形的每条边且每条边只通过一次的路径,但
不一定是闭合路径;哈密顿回路是指一条通过图形的每条边且每条边只
计算机科学
一笔画问题在计算机科学 中也有广泛应用,例如在 计算机图形学、算法设计 等领域。
实际应用
一笔画问题在现实生活中 也有很多应用,如地图的 绘制、电路设计、交通规 划等。
02
一笔画问题的数学原理
欧拉公式
欧拉公式
对于一个连通图,其边数和顶点数的关系可以用公式(V - E + F = 2)来表示,其中(V)表示顶点数,(E)表示边数,(F)表示面 数。这个公式是解决一笔画问题的重要依据。
问题的能力。
创新的一笔画问题
总结词
创意问题,挑战性
VS
详细描述
创新的一笔画问题通常涉及更为复杂和创 意的图形,如不规则多边形、立体图形等 ,这类问题旨在激发学生的创造力和挑战 精神。同时,这类问题也可能涉及到数学 中的其他知识点,如平面几何、立体几何 等。
一笔画问题
在行测考试中,图形推理中的一笔画问题,一直都是考生在考试中容易失分的题目。
其实主要问题存在于几个方面。
一、考生无法判断,什么样的图形考查的是一笔画;二、对一笔画图形的判断方法不了解。
接下来,中公教育专家卢志喜会从这两个方面给大家揭开一笔画的神秘面纱。
一、什么样的图形是一笔画图形定义:一笔画图形是一个图形从起点到终点可由一笔画成而中间没有间断,一笔画图形点可以重复,而线不可以重复。
一笔画图形具有两个比较明显的特点。
①图形相异;②图形简单;③图形一部分。
因此考生在复习图形推理时,除了要掌握相异图形常考的考点,点、线之外,还要掌握一笔画。
在复习备考的过程中首先要掌握一些简单的一笔画图形。
例如:长方形、正方形、三角形、五角星、圆。
当出现这些基本图形,或者在简单图形上增减了部分线条时,有一定的敏感性。
二、如何判断一个图形是否是一笔画图形方法一、奇偶点判断法奇点:从一个点引出的线条数为奇数;偶点:从一点引出的线条数为偶数。
规律:⒈凡是奇点数为2或者0的图形,一定可以一笔画成。
画时必须把一个奇点为起点,另一个奇点终点。
(利用奇点数判断,图形必须是一部分,比如“回”,奇点数为0,但是不能一笔画)2.其他情况的图都不能一笔画出。
(有偶数个奇点除以二便可算出此图需几笔画成。
)利用奇偶点法判断下列几个图形是否为一笔画图形,非一笔画图形需几笔画成?分析:图形1.奇点数为2,偶点为2,可以一笔画成。
图2.奇点为0,偶点为3,可一笔画。
图3.奇点为6,偶点为0,三笔可画成。
图4.奇点为0,偶点为10,可一笔画。
图5.奇点为4,偶点为5,可2笔画。
图6.奇点为4,可2笔画。
奇偶点判断法规律适合一切一笔画图形。
方法二、区域连通法规律:1、平面内区域可以构成两两连通的区域(表示图形没有单独的出头的线条),且区域之间属于单连通,这样的图形可以一笔画。
(单连通表示从一个区域到另一个区域只有唯一的路径,且经过的区域不能重复)利用区域连通法,判断下列几个图形是否为一笔画图形?分析:首先对图形进行区域划分,如下:图1.区域1到区域2是单连通,可以一笔画。
一笔画问题
一笔画问题1.下面的各个小图形都是由点和线组成的.请你仔细观察后回答:①与一条线相连的有哪些点?②与二条线相连的有哪些点?③与三条线相连的有哪些点?④与四条线或四条以上的线相连的有哪些点?2.若把与奇数条线相连的点叫做奇点,把与偶数条线相连的点叫偶点,那么请你回答:②有0个奇点(即全部是偶点)的连通图形一定可以一笔画出来(画时可以以任一点为起点,最后必能回到该点),这句话对吗?③只有两个奇点的连通图形也能一笔画出来,但要注意画时必须以一个奇点为起点,而以另一个奇点为终点,这句话对吗?④奇点个数超过两个的图形不能一笔画出来.这句话对吗?5.从画图过程的角度,进一步理解所发现的一些规律.习题解答1.解:见下图①与一条线相连的点有:(在图中画成黑点,下同.)②与两条线相连的点有:③与三条线相连的点有:④与四条及四条以上的线相连的点有:2.解:①有0个奇点(即全部是偶点)的图形是:(1)、(5)、(10);②有2个奇点的图形是:(2)、(3)、(6)、(7);③有4个奇点的图形是:(4)、(9)有6个奇点的图形是:(8).④(1)~(10)是连通图形,(11)不是连通图形.3.解:①一笔画有:(1)、(5)、(10)、(2)、(3)、(6)、(7).②不能一笔画出的图形是:(4)、(8)、(9)、(11).4.解:①对;②对;③对;④对.5.解:(略)请看书.一天,小明做完作业正在休息,收音机中播放着轻松、悦耳的音乐.他拿了支笔,信手在纸上写了“中”、“日”、“田”几个字.突然,他脑子里闪出一个念头,这几个字都能一笔写出来吗?他试着写了写,“中”和“日”可以一笔写成(没有重复的笔划),但写到“田”字,试来试去也没有成功.下面是他写的字样.(见下图)这可真有意思!由此他又联想到一些简单的图形,哪个能一笔画成,哪个不能一笔画成呢?下面是他试着画的图样.(见下图)经过反复试画,小明得到了初步结论:图中的(1)、(3)、(5)能一笔画成;(2)、(4)、(6)不能一笔画成.真奇怪!小明发现,简单的笔画少的图不一定能一笔画得出来.而复杂的笔画多的图有时反倒能够一笔画出来,这其中隐藏着什么奥秘呢?小明进一步又提出了如下问题:如果说一个图形是否能一笔画出不决定于图的复杂程度,那么这事又决定于什么呢?能不能找到一条判定法则,依据这条法则,对于一个图形,不论复杂与否,也不用试画,就能知道是不是能一笔画成?先从最简单的图形进行考察.一些平面图形是由点和线构成的.这里所说的“线”,可以是直线段,也可以是一段曲线.而且为了明显起见,图中所有线的端点或是几条线的交点都用较大的黑点“●”表示出来了.首先不难发现,每个图中的每一个点都有线与它相连;有的点与一条线相连,有的点与两条线相连,有的点与3条线相连等等.其次从前面的试画过程中已经发现,一个图能否一笔画成不在于图形是否复杂,也就是说不在于这个图包含多少个点和多少条线,而在于点和线的连接情况如何——一个点在图中究竟和几条线相连.看来,这是需要仔细考察的.第一组(见下图)(1)两个点,一条线.每个点都只与一条线相连.(2)三个点.两个端点都只与一条线相连,中间点与两条线连.第一组的两个图都能一笔画出来.(但注意第(2)个图必须从一个端点画起)第二组(见下图)(1)五个点,五条线.A点与一条线相连,B点与三条线相连,其他的点都各与两条线相连.(2)六个点,七条线.(“日”字图)A点与B点各与三条线相连,其他点都各与两条线相连.第二组的两个图也都能一笔画出来,如箭头所示那样画.即起点必需是A点(或B点),而终点则定是B点(或A点).第三组(见下图)(1)四个点,三条线.三个端点各与一条线相连,中间点与三条线相连.(2)四个点,六条线.每个点都与三条线相连.(3)五个点,八条线.点O与四条线相连,其他四个顶点各与三条线相连.第三组的三个图形都不能一笔画出来.第四组(见下图)(1)这个图通常叫五角星.五个角的顶点各与两条线相连,其他各点都各与四条线相连.(2)由一个圆及一个内接三角形构成.三个交点,每个点都与四条线相连(这四条线是两条线段和两条弧线).(3)一个正方形和一个内切圆构成.正方形的四个顶点各与两条线相连,四个交点各与四条线相连.(四条线是两条线段和两条弧线).第四组的三个图虽然比较复杂,但每一个图都可以一笔画成,而且画的时候从任何一点开始画都可以.第五组(见下图)(1)这是“品”字图形,它由三个正方形构成,它们之间没有线相连.(2)这是古代的钱币图形,它是由一个圆形和中间的正方形方孔组成.圆和正方形之间没有线相连.第五组的两个图形叫不连通图,显然不能一笔把这样的不连通图画出来.进行总结、归纳,看能否找出可以一笔画成的图形的共同特点,为方便起见,把点分为两种,并分别定名:把和一条、三条、五条等奇数条线相连的点叫做奇点;把和两条、四条、六条等偶数条线相连的点叫偶点,这样图中的要么是奇点,要么是偶点.提出猜想:一个图能不能一笔画成可能与它包含的奇点个数有关,对此列表详查:从此表来看,猜想是对的.下面试提出几点初步结论:①不连通的图形必定不能一笔画;能够一笔画成的图形必定是连通图形.②有0个奇点(即全部是偶点)的连通图能够一笔画成.(画时可以任一点为起点,最后又将回到该点).③只有两个奇点的连通图也能一笔画成(画时必须以一个奇点为起点,而另一个奇点为终点);④奇点个数超过两个的连通图形不能一笔画成.最后,综合成一条判定法则:有0个或2个奇点的连通图能够一笔画成,否则不能一笔画成.能够一笔画成的图形,叫做“一笔画”.用这条判定法则看一个图形是不是一笔画时,只要找出这个图形的奇点的个数来就能行了,根本不必用笔试着画来画去.看看下面的图可能会加深你对这条法则的理解.从画图的过程来看:笔总是先从起点出发,然后进入下一个点,再出去,然后再进出另外一些点,一直到最后进入终点不再出来为止.由此可见:①笔经过的中间各点是有进有出的,若经过一次,该点就与两条线相连,若经过两次则就与四条线相连等等,所以中间点必为偶点.②再看起点和终点,可分为两种情况:如果笔无重复地画完整个图形时最后回到起点,终点和起点就重合了,那么这个重合点必成为偶点,这样一来整个图形的所有点必将都是偶点,或者说有0个奇点;如果笔画完整个图形时最后回不到起点,就是终点和起点不重合,那么起点和终点必定都是奇点,因而该图必有2个奇点,可见有0个或2个奇点的连通图能够一笔画成.。
一笔画问题
一笔画问题
1.瑞士大数学家欧拉在七桥问题的过程中,发现了一笔画原理,这一原理被命名为“欧拉定理”:
(1)能一笔画的图形必须是连通的。
(2)凡是只由偶顶点组成的连通图形,一定可以一笔画出,画时可以由任一偶顶点为起点,最后仍回到这点。
(3)凡是只有两个奇顶点的连通图形一定可以一笔画出,画时必须以一个奇顶点为起点,以另一个奇顶点为终点。
(4)奇顶点个数超过两个的图形不能一笔画出。
2.能一笔画出的图形的奇顶点数目是2或0,如果图形有奇顶点2N(n为正整数)个,那么图形最少要用N笔画出。
一笔画问题及解决策略
一笔画问题及解决策略一、问题提出一笔画是一个大问题,为了更好的解决这个问题,我们从生活提出一笔画问题。
我们先看一个公路检查员的问题:他为了检查几个城市之间的若干公路,希望在这些城市和公路组成的公路系统中找出一条路线,使他能不重复地恰好通过每条公路一次,而经过每个城市的次数不限.这就是拓扑学中的数学问题。
二、问题解决(一) 数学化我们把这问题数学化,以点表示城市,以弧表示公路,这样构成的网络图就表示某个简单公路系统。
(二)点线图用点线图表示四个不同的公路系统。
如图所示:(三)一笔画的含义一个图形由一笔构成叫一笔画.对于平面图形的一笔画与多笔画问题,通常的几何方法是无能为力的,因为一个图形能否一笔画,与图形的大小、形状等几何概念都没有关系,而是与图形中线段的数目及连接关系有关,我们可以随意地将图形拉伸、压缩或弯曲,甚至在保持端点不动的前提下,还可以将某些线段“搬家”,只要图形的整体结构不变,能否一笔画的性质也就不会改变.(四)一笔画图形的判别著名的哥尼斯堡七桥问题实质上就是一个一笔画问题。
欧拉最终证明了这个图形是不能一笔画成的,并在关于七桥问题的报告中得到了任一网络图能否一笔画的判别法则。
1。
必要条件一个网络图是由有限个点和有限条曲线组成的平面图形,这些点和线分别称为网络的顶点和弧。
如果从网络的一个顶点出发,一条弧连着一条弧地把所有的弧都画出,且每条弧都只画一次,而经过每个顶点的次数不限,就称该网络能一笔画.当一个网络能一笔画时,只有两种情形:一是开放图形,只有起点和终点的指数为奇数,其余顶点的指数均为偶数;二是封闭图形,所有顶点的指数均为偶数。
我们称指数为奇数的顶点为奇顶点,指数为偶数的顶点为偶顶点,那么当一个网络能一笔画时,奇顶点个数必为0或2,所以,连通且奇顶点的个数是0或2,是一个网络图能一笔画的必要条件。
(1)。
凡是由偶点组成的连通图,一定可以一笔画成.画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图。
一笔画问题
故事发生在18世纪的哥尼斯堡城.流经那里的一条 河中有两个小岛,还有七座桥把这两个小岛与河岸 联系起来,
那里风景优美,游人众多.在这美丽的地方, 人们议论着一个有趣的问题:一个游人怎样 才能不重复地一次走遍七座桥,最后又回到 出发点呢?
直到1836年,瑞士著名的数学家欧拉才证明了 这个问题的不可能性。 欧拉解决这个问题的方法非常巧妙.他认为: 人们关心的只是一次不重复地走遍这七座桥,而 并不关心桥的长短和岛的大小,因此,岛和岸都 可以看作一个点,而桥则可以看成是连接这些点 的一条线.这样,一个实际问题就转化为一个几何 图形(如下图)能否一笔画出的问题了。
图⑴
偶点个数
能否一笔画
图⑵
图⑶
图⑷
奇点个数
偶点个数
能否一笔画
图(5)
图(6)
图பைடு நூலகம்7)
一个连通的图形,我们要根据图形中奇点的个数来 判断能否一笔画成: (1)凡没有奇点,只有偶点的图形,一定可以一 笔画成。画时可从任意偶点起笔,最后仍回到这点。
(2)凡只有两个奇点的图形,一定可以一笔画成。 画时要以一个奇点为起点,另一个奇点为终点。
任何图形都是由点、线组成,图形中的点可以 分为偶点和奇点两大类。
凡是从一个点出发的线的 数目是偶数的叫偶点 。 凡是从一个点出发的线的 数目是奇数的叫奇点 。
A
A是偶点。
B B是奇点。
下面哪些是奇点,哪些是偶点?
● ●
●
1.奇点
2.奇点
3.奇点
● ●
●
4.偶点
5.偶点
6.偶点
请找出每个图的奇点、偶点个数。试着画一画,看 能否一笔画成,再完成表格,从中你能发现什么规律? 奇点个数
一笔画问题
第一讲: 一笔画问题【例1】下面这些图形,哪个能一笔画?哪个不能一笔画?并说一说每个图形有几个单数点和双数点(2)1、下面这些图形,哪个能一笔画?哪个不能一笔画?并说一说每个图形有几个单数点和双数点【例2】数一数下列图形单数点与双数点的个数,并说出一笔画图形与单数点和双数点的关系。
1、下面的图形能否一笔画完成?为什么?(1) O (2)B D(3)【例2】下面的图形能不能一笔画?如果能怎么画?1、下面的图形能不能一笔画?如果能怎么画?【例3】下面的图形能不能一笔画?如果能怎么画?12、34、、、【例4】下图(图1)能否一笔画成,若不能,你能用什么方法把它改成能够一笔画成的图形?1、将下列各图改成一笔画。
【例5】邮递员叔叔要向一个居民小区送信,怎么样走才能少走重复路,使每天走的路尽可能短?1.下图是一个小区中花园的平面图,你能一次不重复地走完所有的路吗?入口和出口应该设计在哪儿呢?2.下面是“儿童乐园”平面图,出口应没在哪里才能不重复地走遍每条路?1.数一数下面图形有几个单数点?2.下列图形能一笔画成吗?为什么?3.甲、乙两辆车同时以相同的速度分别从A 、B 出发,哪辆车能最先行驶完所有的路线?4.园林工人在花园浇花,怎样才能不重复地走遍每一条小路?第 二 讲:巧填竖式【例1】在方框里填上合适的数,使算式成立。
□ 4+ 2 □8 9练习1:下面题中各图形分别表示多少?(1) 7 ☆ (2) ☆ 9 + □ 4 + 6 59 7 8 □(3) 6 △ (4) 1 ☆ 3 + △ ☆ + □ ☆9 7 1 9 5【例2】猜一猜,每个汉字各表示什么数字?学 学— 4 生8学=( ) 生=( )练习2: 想一想,每个汉字和图形各表示什么数字?(1)我爱 4—学数学我=()爱=( )数=()学=()(2)☆○☆—☆☆7 9 0☆=( ) ○=( )(3) 8 5 4—○○○○○○=( )【例3】在□里填合适的数,使算式成立。
小学奥数教程:奇妙的一笔画_全国通用(含答案)
所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点. 一笔画问题:(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点; (3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点,以另一个奇点为终点; (4)奇点个数超过两个的图形,一定不能一笔画. 多笔画问题:我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.模块一、判断奇偶点【例 1】 我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?J O I H G FED CBA【考点】一笔画问题 【难度】2星 【题型】解答 【解析】 奇点: D H J O 偶点:A B C E F G I 【答案】奇点: D H J O 偶点:A B C E F G I【例 2】 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要 种颜色的旗子,如果贝贝从某营地出发,不走重复路线就 (填“能”或“不能”)完成任务.【考点】一笔画问题 【难度】2星 【题型】填空 【关键词】华杯赛,六年级,初赛,第10题 【解析】 最少需要3种颜色的旗子。
因为中间的三点连成一个三角形,要使这三点所代表营地两粮相邻,要使相邻营地没有相同颜色的旗子,必须各插一种与其它两点不同颜色的旗子。
小学二年级奥数:一笔画问题
我们刚才画的图形都有几个交点? 几个双数点?几个单数点?
一个图形能否一笔画成,关键在于图 中单数点的多少。 (1)凡是图形中没有单数点的一定可以 一笔画成。 (2)凡是图形中只有一个或者两个单数 点,一定可以一笔画成。画时必须从一个 单数点为起点,以另一单数点为终点。 (3)凡是图形中单数点的个数多于两个 时,此图肯定是不能一笔画成。
图1 图2 图3
连通的图形有可能一笔画
图4 图5
你能用一笔画出下列图形吗?
两条相交的线处都有一个交点。
数一数下列图形各有几个交点?
(ቤተ መጻሕፍቲ ባይዱ4 )个
( 2 )个
( 9 )个
( 5 )个
交点分为两种
( 1 )从这点出发的线的数目 是双数的,叫双数点(偶点)。 ( 2 )从这点出发的线的数目
是单数的,叫单数点(奇点)。
甲乙两个邮递员去送信,两人以同样的速 度走遍所有的街道,甲从A点出发,乙从 B点出发,最后都回到邮局(C)。如果 要选择最短的线路,谁先回到邮局?
乙
邮 局
甲
根据今天学习知识,先判断下列图 形能不能一笔画成?再想一想该从 哪里开始画?最后再动手画画看。
脑筋急转弯: 想一想 一笔能写出1000吗?
一笔画问题
你能一笔画出来吗?
不重复的路
——一笔画
“一笔画”是指笔不 离开纸,而且每条线 都只画一次不准重复 而画成的图形。
“ 一笔 画 ”是一种 有 趣的数学游戏,那么什 么样的图形可以一笔画 成呢?试一试,画一画, 发挥你的想象力,发现 一笔画的规律。
下列图形能否一笔画
不连通的图形不能一笔画
下列哪些图形能一笔画出来,哪些不能?
判断下列图形能否一笔画
一笔画问题中偶点和奇点分别指什么
⼀笔画问题中偶点和奇点分别指什么
⼀笔画问题中偶点和奇点分别指什么?
奇点:从这⼀点出发的线段数为奇数条
偶点:从这⼀点出发的线段数为偶数条
⼀笔画中可以有0个奇数点(就是在⼀幅图中,没有奇数点,全部为偶数点,如图⼆)或者2个奇数点
⼀笔画问题就是判断奇点的个数,要是0或2,就可以⼀笔完成,⼤于2,就不能了,还可以做推⼴,⽐如奇点数为4,要2笔;为6,要3笔
⽽且在存在奇点的情况下,⼀定要从奇点出发。
如下图,圆圈所⽰即为偶点;⽅框所⽰,即为奇点。
左图奇点数为2,可以⼀笔画;图⼆没有奇点(就是所谓0奇点),也可以⼀笔画完成。
1.⼀笔画问题中的奇点和偶点是什么,如何判断这个是不是奇
点,是不是偶点,它们有什么特点?
解:由⼀点引出的线段为奇数个,则这个点为奇点由⼀点引出的线段为偶数个,则这个点为偶点
⼀个图形判断能否被⼀笔画下来,关键是看奇点的个数:
当奇点为0个或者2个时(不可能为⼀个,奇点都是成对出现),可以被⼀笔画下来,反之则不能。
3.奇点的个数是0或2的图形可以⼀笔画。
例如“ ⼝”的每个点都有2条线,那么这4个点都是偶数点,奇点为0,所以可以⼀笔画。
“⼀”有2个点,每个点有⼀条线,所以这两个点
都是奇点,奇点个数为2,所以可以⼀笔画。
奇点,偶点简单说就是看这个点上连接的有⼏条线。
连接奇数条线的点就是奇
点,连接偶数条线的就是偶点。
一笔画欧拉定理
一笔画欧拉定理一笔画欧拉定理:连接世界的线条一笔画欧拉定理,也被称为欧拉路径定理或七桥问题,是数学中一项经典的问题。
该问题的核心是,是否可能通过一个图中的每条边恰好经过一次,且不重复,最终回到起点。
这个问题源于18世纪瑞士的柯尼斯堡市,柯尼斯堡市由七座桥连接着两岸,人们思考着如何能够一次性地经过每座桥一次。
欧拉定理的解决,引领了图论的发展,并为后世的研究提供了重要的启示。
它不仅仅是一项数学问题,更是一种思维方式,代表着人类对于连接和探索的渴望。
首先,让我们来了解一下欧拉定理的基本概念。
在图论中,图是由节点(也称为顶点)和边组成的一种抽象结构。
一笔画问题中,节点表示地点,而边则表示连接这些地点的路径。
而所谓“一笔画”,就是通过一条线条将所有的节点连接起来,而且每个节点只经过一次。
欧拉定理告诉我们,一个图能够一笔画的条件是:只有零个或两个节点的度数是奇数,其余节点的度数都是偶数。
度数是指与一个节点相连的边的数量。
这个定理的证明是基于欧拉路径的存在性以及其特点的推导。
那么,为什么欧拉定理如此重要呢?首先,欧拉定理为图论提供了一个重要的研究基础。
图论是一门研究节点和边之间关系的数学学科,它在计算机科学、电子工程、通信网络等领域有广泛的应用。
欧拉定理为图论的发展提供了一个重要的起点,为后续的研究奠定了基础。
其次,欧拉定理的解决也启发了人们对于连接和探索的思考。
在欧拉定理的背后,我们看到了人类对于连接世界的渴望。
人类历史上,无论是地理探险、交通建设还是互联网的发展,都在不断地寻求连接的方式。
欧拉定理的解决,让我们明白了连接并不仅仅是一种物理的行为,更是一种思维方式和哲学观念。
欧拉定理还启发了我们对于问题解决的思考方式。
在解决欧拉路径问题时,我们需要不断地观察、分析和推理,找到一种满足条件的解决方案。
这种思考方式在现实生活中同样适用,我们可以借鉴欧拉定理的思想,通过观察、分析和推理来解决各种复杂的问题。
此外,欧拉定理的应用也不仅仅局限于数学领域。
一笔画的数学原理
一笔画的数学原理一笔画是一种经典的解谜游戏,游戏规则是在不重复经过已经画出的线条的情况下,连接所有的点。
这看起来非常简单,但实际上涉及到了很多数学原理。
首先,我们可以从图论的角度来看待这个问题。
将每个点看做图中的一个节点,将连接两个点的线条看做图中的一条边。
那么,一笔画的问题就转化成了在图中找到一条欧拉回路。
欧拉回路是指通过每条边恰好一次,回到起点的路径。
如果图中有一条欧拉回路,那么就可以通过一笔画将所有点相连。
但是,并不是所有的图都存在欧拉回路。
欧拉回路存在的条件是:图中所有节点的度数都是偶数或者只有两个点的度数是奇数,其余节点的度数都是偶数。
因此,如果我们想要确定一个图是否可以通过一笔画连接所有点,就需要先判断它是否满足欧拉回路的条件。
此外,如果一个图不是连通的,也就是说其中存在两个及以上的子图,那么每个子图都需要满足欧拉回路的条件,才能通过一笔画连接所有点。
除了图论,数学中的拓扑学也与一笔画有关。
拓扑学研究的是空间形态的不变性,而一笔画也是在二维平面上进行的空间变换。
因此,一笔画问题被认为是拓扑学中的一个经典问题。
最后,值得一提的是,一笔画问题还涉及到了数学中的图染色问题。
如果我们将每个点看做一个节点,将通过线条相连的节点看做相邻节点,那么我们可以给每个节点染上一种颜色。
如果图中不存在相邻两点颜色相同的情况,那么这个图就是二分图。
而二分图可以通过一笔画将每种颜色的节点连接起来。
综上所述,一笔画问题是一个非常有趣的数学问题,它涉及到了图论、拓扑学和图染色等多个数学分支。
通过研究一笔画问题,我们可以深入了解这些数学原理,并能够更好地理解数学中的空间形态问题。
一年级思维训练一笔画问题
一笔画问题
在纸上描一下,你们能把下面的图形一笔画出来吗?
例【1】下面这些图形,哪个能一笔画?哪个不能一笔画?
(1) (2)(3)(4)
例【2】下面各图能否一笔画成?
(1)(2) (3)
例【3】下面的图形,哪些能一笔画出?哪些不能一笔画出?
例【4】 下图中,图(1)至少要画几笔才能画成?
综合练习: 1、下面的图形能否一笔画成,标出画法。
2、判断图中的三个图形,哪个图形能一笔画?为什么?请把能一笔画出的图形的画法用字母和箭头表示出来。
3、小民学画小汽车,如图所示,他能不能一笔画成功?如果能,请标出画法。
如果不能,那么需加哪一条线段?
A O
B C D
(1)
4、下图是某地区所有街道的平面图。
甲、乙二人同时分别从A、B出发,以相同的速度走遍所有的街道,最后到达C.如果允许两人在遵守规则的条件下可以选择最短路径的话,问两人谁能最先到达C?
5、图5中的每一个图形,最少需要几笔画出?请你按所得的结论一一画出.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一笔画问题
画一个图案,如果用笔既不重复也不遗漏,纸不离笔,一笔画成,那么就称这个图案是一笔画图案.
现在我们来研究的问题是:
(1)怎样的图案才能一笔画成?
(2)如果一个图案能一笔画成,那么该从哪里起笔到哪里收笔?
需提醒大家的是,这些问题与图案中的“奇点”的个数有关.何谓奇点呢?
我们知道,任何图案都是由线条(直线或曲线)连成的.在图案中,由三条或三条以上的方向各不相同的线连接在一起的点叫做图案点,通过图案点的线是奇数条就称奇点(当然,通过图案点的线是偶数条就称偶点,现在只需回答前面的问题而与偶点无关).例如,在下面各图案中的奇点个数见统计表(请读者对照图案辨认奇点).
统计表:
接着就请读者朋友拿起你的笔来逐个试画以上各图案,看能否一笔画成,将结论填在统计表内.并注意体会能一笔画的图案应该怎样画.
最后,请根据上表归纳出前面两个问题的答案.
【规律】
(1)奇点数为0或2的图案可以一笔画成.奇点数多于2的图案不能一笔画成.
(2)画奇数为0的图案时,可以选择任意点起笔都能一笔画成;画奇数为2的图案时,必须选择其中的一个奇点起笔,而到另一个奇点收笔才能一笔画成.
【练习】
1.下面各图案,能一笔画出来吗?试一试.
2.容易看出,下面的两个图案都不能一笔画成,请在每个图案上各补画一条线就能使新图案一笔画成了.会吗?
3.这是大数学家欧拉曾经研究过的一个著名数学问题----七桥问题.
东普士的多尼斯堡城中有一条横贯城区的河流,河上有两个岛,两岸和两岛之间共架有七座桥、如下图所示:
问人们能不重复地走遍这七座桥吗?
4.回龙州公园的游览点与路线示意图如下.如果要使游人游完所有的游览点而不重复行走的路线,请问入口处和出口处应该设在什么位置?
如果一个图形可以用笔在纸上连续不断而且不重
复地一笔画成,那么这个图形就叫一笔画。
显然,在下面的图形中,(1)(2)不能一笔画成,故不是一笔画,(3)(4)可以一
笔画成,是一笔画。
同学们可能会问:为什么有的图形能一笔画成,有的图形却不能一笔画成呢?一笔画图形有哪些特点?关于这个问题有
一个著名的数学故事——哥尼斯堡七桥问题。
哥尼斯堡是立陶
宛共和国的一座城市,布勒格尔河从城中穿过,河中有两个岛,18世纪时河上共有七座桥连接A,B两个岛以及河的两岸C,D(如下图)。
所谓七桥问题就是:一个散步者要一次走遍这七座桥,每座桥只走一次,怎样走才能成功?
当时的许多人都热衷于解决七桥问题,但是都没成功。
后来,这个问题引起了大数学家欧拉(1707-1783)的兴趣,许多人的不成功促使欧拉从反面来思考问题:是否根本就不存在这样一条路线呢?经过认真研究,欧拉终于在1736年圆满地解决了七桥问题,并发现了一笔画原理。
欧拉是怎样解决七桥问题的呢?因为岛的大小,桥的长短都与问题无关,所以欧拉把A,B两岛以及陆地C,D用点表示,桥用线表示,那么七桥问题就变为右图是否可以一笔画的问题了。
我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点。
如下图中,A,B,C,E,F,G,I
是偶点,D,H,J,O是奇点。
欧拉的一笔画原理是:
(1)一笔画必须是连通的(图形的各部分之间连接在一起);
(2)没有奇点的连通图形是一笔画,画时可以以任一偶点为起点,最后仍回到这点;
(3)只有两个奇点的连通图形是一笔画,画时必须以一个奇点为起点,以另一个奇点为终点;
(4)奇点个数超过两个的图形不是一笔画。
利用一笔画原理,七桥问题很容易解决。
因为图中A,B,C,D都是奇点,有四个奇点的图形不是一笔画,所以一个散步者不可能不重复地一次走遍这七座桥。
顺便补充两点:
(1)一个图形的奇点数目一定是偶数。
因为图形中的每条线都有两个端点,所以图形中所有端点的总数必然是偶数。
如果一个图形中奇点的数目是奇数,那么这个图形中与奇点相连接的端点数之和是奇数(奇数个奇数之
和是奇数),与偶点相连的线的端点数之和是偶数(任意个偶数之和是偶数),于是得到所有端点的总数是奇数,这与前面的结论矛盾。
所以一个图形的奇点数目一定是偶数。
(2)有K个奇点的图形要K÷2笔才能画成。
例如:下页左上图中的房子共有B,E,F,G,I,J六个奇点,所以不是一笔画。
如果我们将其中的两个奇点间的连线去掉一条,那么这两个奇点都变成了偶点,如果能去掉两条这样的连线,使图中的六个奇点变成两个,那么新图形就是一笔画了。
将线段GF和BJ去掉,剩下I和E两个奇点(见右下图),这个图形是一笔画,再添上线段GF和BJ,共需三笔,即( 6 ÷2)笔画成。
一个K(K>1)笔画最少要添加几条连线才能变成一笔画呢?我们知道K笔画有2K个奇点,如果在任意两个奇点之间添加一条连线,那么这两个奇点同时变成了偶点。
如左下图中的B,C两个奇点在右下图中都变成了偶点。
所以只要在K笔画的2K个奇点间添加(K-1)笔就可以使奇点数目减少为2个,从而变成一笔画。
到现在为止,我们已经学会了如何判断一笔画和多笔画,以及怎样添加连线将多笔画变成一笔画。
练习28
1.下列图形分别是几笔画?怎样画?
2.能否用剪刀从左下图中一次连续剪下三个正方形和两个三角形?
3.从A点出发,走遍右上图中所有的线段,再回到A点,怎样走才能使重复走的路程最短?
4.如下图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸。
问:一个散步者能否一次不重复地走遍这七座桥?
显示答案
利用一笔画原理,我们可以解决许多有趣的实际问题。
例1右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由。
如果能,应从哪开始走?
分析与解:我们将每个展室看成一个点,室外看成点E,将每扇门看成一条线段,两个展室间有门相通表示两个点间有线段相连,于是得到右图。
能否不重复地穿过每扇门的问题,变为右图是否一笔画问题。
右图中只有A,D两个奇点,是一笔画,所以答案是肯定的,应该从A或D展室开始走。
例1的关键是如何把一个实际问题变为判断是否一笔画问题,就像欧拉在解决哥尼斯堡七桥问题时做的那样。
例2一个邮递员投递信件要走的街道如下页左上图所示,图中的数字表示各条街道的千米数,他从邮局出发,要走遍各街道,最后回到邮局。
怎样走才能使所走的行程最短?全程多少千米?
分析与解:图中共有8个奇点,必须在8个奇点间添加4条线,才能消除所有奇点,成为能从邮局出发最后返回邮局的一笔画。
在距离最近的两个奇点间添加一条连线,如左上图中虚线所示,共添加4条连线,这4条连线表示要重复走的路,显然,这样重复走的路程最短,全程30千米。
走法参考右上图(走法不唯一)。
例3右图中每个小正方形的边长都是100米。
小明沿线段从A 点到B点,不许走重复路,他最多能走多少米?
分析与解:这道题大多数同学
都采用试画的方法,实际上可以用一笔画原理求解。
首先,图中有8个奇点,在8个奇点之间至少要去掉4条线段,才能使这8个奇点变成偶点;其次,从A点出发到B点,A,B两点必须是奇点,现在A,B都是偶点,必须在与A,B连接的线段中各去掉1条线段,使A,B成为奇点。
所以至少要去掉6条线段,也就是最多能走1800米,走法如下页上图。
或
例2与例3的图中各有8个奇点,都是通过减少奇点个数,将多笔画变成一笔画的问题,但它们采用的方法却完全不同。
因为例2中只要求走遍所有的线段,没有要求不能重复,所以通过添加线段的方法(实际是重复走添加线段的这段路),将奇点变为偶点,使多笔画变成一笔画。
而在例3中,要求不能走重
复的路,所以不能添加线段,只能通过减少线段的方法,将奇点变为偶点,使多笔画变成一笔画。
区别就在于能否重复走!能“重复”就“添线”,不能“重复”就“减线”。
例4在六面体的顶点B和E处各有一只蚂蚁(见右图),它们比赛看谁能爬过所有的棱线,最终到达终点D。
已知它们的爬速相同,哪只蚂蚁能获胜?
分析与解:许多同学看不出这
是一笔画问题,但利用一笔画的知识,能非常巧妙地解答这道题。
这道题只要求爬过所有的棱,没要求不能重复。
可是两只蚂蚁爬速相同,如果一只不重复地爬遍所有的棱,而另一只必须重复爬某些棱,那么前一只蚂蚁爬的路程短,自然先到达D点,因而获胜。
问题变为从B到D与从E到D哪个是一笔画问题。
图中只有E,D两个奇点,所以从E到D可以一笔画出,而从B到D却不能,因此E点的蚂蚁获胜。
练习29
1.邮递员要从邮局出发,走遍左下图(单位:千米)中所有街道,最后回到邮局,怎样走路程最短?全程多少千米?
2.有一个邮局,负责21个村庄的投递工作,右上图中的点表示村庄,线段表示道路。
邮递员从邮局出发,怎样才能不重复地经过每一个村庄,最后回到邮局?
3.一只木箱的长、宽、高分别为5,4,3厘米(见右图),有一只甲虫从A点出发,沿棱爬行,每条棱不允许重复,则甲虫回到A点时,最多能爬行多少厘米?。