人教版初中数学三角形技巧及练习题附答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.如图,在 , ,以 为圆心,任意长为半径画弧,分别交 , 于点 , ,再分别以 , ,为圆心,大于 长为半径画弧,两弧交于点 ,作弧线 ,交 于点 .已知 , ,则 的长为()
A. B. C. D.
【答案】C
【解析】
【分析】
直接利用基本作图方法得出AE是∠CAB的平分线,进而结合全等三角形的判定与性质得出AC=AD,再利用勾股定理得出AC的长.
B.若 , , ,则AC2+AB2≠CB2,故△ABC不是直角三角形;
C.若BC:AC:AB=3:4:5,则BC2+AC2=AB2,故△ABC是直角三角形;
D.若∠A:∠B:∠C=3:4:5,则∠C<90°,故△ABC不是直角三角形;
故答案为:C.
【点睛】
本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
8.如图,直线 ,点 、 分别在直线 、 上, ,若点C在直线b上, ,且直线a和b的距离为3,则线段 的长度为( )
A. B. C.3D.6
【答案】D
【解析】
【分析】
过C作CD⊥直线a,根据30°角所对直角边等于斜边的一半即可得到结论.
【详解】
过C作CD⊥直线a,∴∠ADC=90°.
∵∠1=45°,∠BAC=105°,∴∠DAC=30°.
考点:全等三角形的判定与性质.
12.满足下列条件的是直角三角形的是()
A. , , B. , ,
C. D.
【答案】C
【解析】
【分析】
要判断一个角是不是直角,先要知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.
【详解】
A.若BC=4,AC=5,AB=6,则BC2+AC2≠AB2,故△ABC不是直角三角形;
本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.
3.如图,点 是 的内心, 、 是 上的点,且 , ,若 ,则 ()
A. B. C. D.
【答案】C
【解析】
【分析】
根据题意,连接OA,OB,OC,进而求得 , ,即∠CBO=∠CMO,∠OBA=∠ONA,根据三角形内角和定理即可得到∠MON的度数.
由于 ,
根据勾股定理的逆定理得: 不是直角三角形;
的三边分别是: = , = , = ;
由于 ,
根据勾股定理的逆定理得: 是直角三角形;
因此有两个直角等三角形;
故选C.
【点睛】
本题主要考查了勾股定理和勾股定理的逆定理,能灵活运用所学知识是解题的关键.
15.在直角三角形中,自锐角顶点引的两条中线为 和 ,则这个直角三角形的斜边长是( )
【详解】
如图,连接OA,OB,OC,
∵点 是 的内心,
∴ ,
∵CM=CB,OC=OC,
∴ ,
∴ ,
同理可得: ,
∴ ,
∵ ,
∴ ,
∴ ,
故选:C.
【点睛】
本题主要考查了三角形全等的性质及判定,三角形的内角和定理及角度的转换,熟练掌握相关辅助线的画法及三角形全等的判定是解决本题的关键.
4.如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=( )
【分析】
根据题中的网格,先运用勾股定理计算出各个三角形的边长,再根据勾股定理的逆定理判断是否为直角三角形即可.
【详解】
设网格的小正方形的边长是1,
由勾股定理(两直角边的平方等于斜边的平方)可知,
的三边分别是:AB= ,AC= ,BC= ;
由于 ,
根据勾股定理的逆定理得: 是直角三角形;
的三边分别是: = , = , = ;
故选:C.
【点睛】
本题考查了正方形的性质、全等三角形的性质和等腰三角形的性质,解题的关键是求得 的面积.
7.如图,AB是⊙O的直径,弦CD⊥AB于点M,若CD=8 cm,MB=2 cm,则直径AB的长为()
A.9 cmB.10 cmC.11 cmD.12 cm
【答案】B
【解析】
【分析】
由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.
【详解】
过点E作ED⊥AB于点D,由作图方法可得出AE是∠CAB的平分线,
∵EC⊥AC,ED⊥AB,
∴EC=ED=3,
在Rt△ACE和Rt△ADE中,

∴Rt△ACE≌Rt△ADE(HL),
∴AC=AD,
∵在Rt△EDB中,DE=3,BE=5,
∴BD=4,
设AC=x,则AB=4+x,
故在Rt△ACB中,
∵CD=3,∴AC=2CD=6.
故选D.
【点睛】
本题考查了平行线间的距离,含30°角的直角三角形的性质,正确的理解题意是解题的关键.
9.如图,在矩形 中, 将其折叠使 落在对角线 上,得到折痕 那么 的长度为()
A. B. C. D.
【答案】C
【解析】
【分析】
由勾股定理求出AC的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x,则CE= ,利用勾股定理,即可求出x的值,得到BE的长度.
【答案】A
【解析】
【分析】
根据作图过程和等腰三角形的定义进行分析即可.
【详解】
由作图过程可得:CD=CD,DF=EF,CD=CK
所以,是等腰三角形的有△CDK,△CDE,△DEF;△CDF不一定是等腰三角形.
(1)任意取一点K,使点K和点C在AB的两旁.
(2)以点C为圆心,CK长为半径作弧,交AB于点D和E.
(3)分别以点D和点E为圆心,大于 的长为半径作弧,两弧相交于点F.
(4)作直线CF.
则直线CF就是所求作的垂线.根据以上尺规作图过程,若将这些点作为三角形的顶点,其中不一定是等腰三角形的为()
A.△CDFB.△CDKC.△CDED.△DEF
A.65°B.70°C.75°D.80°
【答案】D
【解析】
【分析】
由平行线的性质可求得∠C,在△CDE中利用三角形外的性质可求得∠3.
【详解】
解:∵AB∥CD,
∴∠源自文库=∠1=45°,
∵∠3是△CDE的一个外角,
∴∠3=∠C+∠2=45°+35°=80°,
故选:D.
【点睛】
本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.
【详解】
解:∵四边形ABCD是平行四边形,∴∠D=∠B=48°,
由折叠的性质得:∠D'=∠D=48°,∠D'EC=∠DEC=180°﹣∠D﹣∠ECD=107°,
∴∠AEC=180°﹣∠DEC=180°﹣107°=73°,
∴∠D'EA=∠D'EC﹣∠AEC=107°﹣73°=34°.
故选:B.
【点睛】
【详解】
解:在矩形 中, ,
∴∠B=90°,
∴ ,
由折叠的性质,得AF=AB=3,BE=EF,
∴CF=5 3=2,
在Rt△CEF中,设BE=EF=x,则CE= ,
由勾股定理,得: ,
解得: ;
∴ .
故选:C.
【点睛】
本题考查了矩形的折叠问题,矩形的性质,折叠的性质,以及勾股定理的应用,解题的关键是熟练掌握所学的性质,利用勾股定理正确求出BE的长度.
【详解】
解:连接OD,设⊙O半径OD为R,
∵AB是⊙O的直径,弦CD⊥AB于点M,
∴DM= CD=4cm,OM=R-2,
在RT△OMD中,
OD²=DM²+OM²即R²=4²+(R-2)²,
解得:R=5,
∴直径AB的长为:2×5=10cm.
故选B.
【点睛】
本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.
A.3B.2 C.2 D.6
【答案】D
【解析】
【分析】
根据题意画出图形,利用勾股定理解答即可.
【详解】
设AC=b,BC=a,分别在直角△ACE与直角△BCD中,根据勾股定理得到:
两式相加得:
根据勾股定理得到斜边
故选:D.
【点睛】
考查勾股定理,画出图形,根据勾股定理列出方程是解题的关键.
16.如图,经过直线AB外一点C作这条直线的垂线,作法如下:
5.如图,11∥l2,∠1=100°,∠2=135°,则∠3的度数为()
A.50°B.55°C.65°D.70°
【答案】B
【解析】
【分析】
如图,延长l2,交∠1的边于一点,由平行线的性质,求得∠4的度数,再根据三角形外角性质,即可求得∠3的度数.
【详解】
如图,延长l2,交∠1的边于一点,
∵11∥l2,
∴∠ACD=∠ACB= ∠BCD=25°,
∵EF垂直平分线段BC,
∴FB=FC,
∴∠FBC=∠FCB=25°,
∴∠CFB=180°-25°-25°=130°,
根据对称性可知:∠CFD=∠CFB=130°,
故选:A.
【点睛】
此题考查菱形的性质、线段的垂直平分线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
∴ 即为AB或CD的垂直平分线,
则 , ,
∵正方形 的边长为4,即 ,
∴ ,
设 ,则 ,
∵正方形 的面积与 面积相等,
即 ,解得: ,
∵ 不符合题意,故舍去,
∴ ,则S正方形EFGH ,
∵ , , , 全等,
∴ ,
∵正方形 的面积 , , , , 也全等,
∴ S正方形ABCD− S正方形EFGH ,
人教版初中数学三角形技巧及练习题附答案解析
一、选择题
1.如图,在菱形 中, , 的垂直平分线交对角线 于点 ,垂足为 ,连接 、 ,则 的度数是()
A. B. C. D.
【答案】A
【解析】
【分析】
首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB即可解决问题;
【详解】
∵四边形ABCD是菱形,
AC2+BC2=AB2,
即x2+82=(x+4)2,
解得:x=6,即AC的长为:6.
故答案为:C.
【点睛】
此题主要考查了基本作图以及全等三角形的判定与性质、勾股定理等知识,正确得出BD的长是解题关键.
14.如图为一个 的网格,在 , 和 中,直角三角形有()个
A. B. C. D.
【答案】C
【解析】
A.2B. C. D.
【答案】C
【解析】
【分析】
【详解】
解:如图,连结EG并向两端延长分别交AB、CD于点M、N,连结HF,
∵四边形 为正方形,
∴ ,
∵ 是以 为底的等腰三角形,
∴ ,则点E在AB的垂直平分线上,
∵ ≌ ,
∴ 为等腰三角形,
∴ ,则点G在CD的垂直平分线上,
∵四边形 为正方形,
∴AB的垂直平分线与CD的垂直平分线重合,
10.如图所示,将含有30°角的三角板(∠A=30°)的直角顶点放在相互平行的两条直线其中一条上,若∠1=38°,则∠2的度数()
A.28°B.22°C.32°D.38°
【答案】B
【解析】
【分析】
延长AB交CF于E,求出∠ABC,根据三角形外角性质求出∠AEC,根据平行线性质得出∠2=∠AEC,代入求出即可.
2.如图,在▱ABCD中,E为边AD上的一点,将△DEC沿CE折叠至△D′EC处,若∠B=48°,∠ECD=25°,则∠D′EA的度数为( )
A.33°B.34°C.35°D.36°
【答案】B
【解析】
【分析】
由平行四边形的性质可得∠D=∠B,由折叠的性质可得∠D'=∠D,根据三角形的内角和定理可得∠DEC,即为∠D'EC,而∠AEC易求,进而可得∠D'EA的度数.
∴∠4=180°﹣∠1=180°﹣100°=80°,
由三角形外角性质,可得∠2=∠3+∠4,
∴∠3=∠2﹣∠4=135°﹣80°=55°,
故选B.
【点睛】
本题考查了平行线的性质及三角形外角的性质,熟练运用平行线的性质是解决问题的关键.
6.将一个边长为4的正方形 分割成如图所示的9部分,其中 , , , 全等, , , , 也全等,中间小正方形 的面积与 面积相等,且 是以 为底的等腰三角形,则 的面积为()
【详解】
解:如图,延长AB交CF于E,
∵∠ACB=90°,∠A=30°,
∠ABC=60°,
∵∠1=38°,
∴∠AEC=∠ABC-∠1=22°,
∵GH∥EF,
∴∠2=∠AEC=22°,
故选B.
【点睛】
本题考查了三角形的内角和定理,三角形外角性质,平行线性质的应用,主要考查学生的推理能力.
11.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO= AC;③△ABD≌△CBD,
其中正确的结论有()
A.0个B.1个C.2个D.3个
【答案】D
【解析】
试题解析:在△ABD与△CBD中,

∴△ABD≌△CBD(SSS),
故③正确;
∴∠ADB=∠CDB,
在△AOD与△COD中,

∴△AOD≌△COD(SAS),
∴∠AOD=∠COD=90°,AO=OC,
∴AC⊥DB,
故①②③正确;
故选D.
相关文档
最新文档