极限思想的探讨

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

引言

极限的思想是近代数学的一种重要思想.所谓极限的思想,是指用极限概念分析问题和解决问题的一种数学思想.极限思想蕴含着丰富的辩证法思想,是唯物辩证法的对立统一规律在数学领域中的完美应用,同时也为辩证法论证世界提供了丰富的表现例证.有了极限思想,常数和变数、有限和无限、精确和近似、任意和确定、抽象和具体、量变与质变、直线与曲线等矛盾问题在这里都得到了完美的科学体现和辩证的统一.用极限思想解决问题的一般步骤可概括为:对于被考察的未知量,先设法构思一个与它有关的变量,确认这变量通过无限过程的结果就是所求的未知量;最后用极限计算来得到这结果.

极限思想作为一种哲学和数学思想,其发展经历了思想萌芽、理论发展和理论完善时期.在其漫长曲折的演变历程中,布满了众多哲学家和数学家们的奋斗足迹,闪烁着人类智慧的光芒.极限理论的形成为微积分提供了理论基础,为人类认识无限提供了强有力的工具,它从方法论上凸显出来高等数学不同于初等数学的魅力,是近现代数学发展的一种重要思想和数学方法.理清极限思想的发展过程,熟练掌握极限解题方法,揭示极限思想的核心内容与哲学思想的内在联系,对理解和解决数学史和数学哲学史上的一些疑难问题问将有重大的帮助.

1 产生与发展

庞加莱说过:能够作出数学发现的人,是具有感受数学中的秩序、和谐、对称、整齐和神秘美等能力的人,而且只限于这种人.一切数学概念都来自于社会实践,经过千锤百炼从而被提炼为概念,再经过使用、推敲、充实、拓展,不断完善为经典的理论.毫无疑问,极限也是社会实践的产物.

1.1 极限思想的产生

极限思想的产生可以追溯到古代,战国时代哲学家庄周所著的《庄子.天下篇》中就有关于原始的极限思想的应用:“一尺之棰,日取其半,万世不竭”.意思是一尺长的木棒,第一天取去一半,剩下二分之一尺,第二天再取去二分之一尺的一半,剩下四分之一尺…….按照这样的分法分下去,长度越来越小,但无论多小,永远分不完.也就是说随着分割的次数增加,棰会越来越短 ,长度接近于零,但又永远不会等于零.墨家观点与惠施不同,提出一个“非半”的命题,墨子说“非半弗,则不动,说在端”.意思是说将一线段按一半一半地无限分割下去,就必将出现一个不能再分割的“非半”,这个“非半”就是点.墨家有无限分割最后会达到一个“不可分”的思想,名家则有“无限分割”的思想.名家的命题论述了有限长度“无限可分”性,墨家的命题指出了无限分割的变化和结果.显然名家和墨家的讨论,对数学理论的发展具有巨大推动作用.已反映出极限思想的萌芽,这无疑成为极限概念产生的丰厚的沃土.但从现有的史料来看,这种思想主要局限于哲学领域,还没有应用到数学上,更加谈不上应用极限的方法来解决数学问题.

公元3世纪,我国魏晋时期的数学家刘徽在注释《九章算术》时创立了有名的“割圆术”.他创造性地将极限思想应用到数学领域.所谓割圆术,具体的方法是把圆周分割得越细,内接多边形的边数越多,其内接正多边形的周长就越是接近圆周.如此不断地分割下去,一直到圆周无法再分割为止,当到了圆内接正多边形的边数无限多的时候,它的周长就与圆周几乎“吻合”,进而完全一致了.刘徽将正多边形的面积算到了3072边形,由此求出的圆周率为3.1416,是当时世界上最早也是最准确的数据.后来祖冲之用这个方法把圆周率的值计算到小数点后七位,这种对于某个值无限接近的思想就是后来建立极限概念的基础.

在国外,古希腊时期也有极限思想.古希腊的巧辩派中有相当一批人对几何

三大问题感兴趣.安提芬在研究“化圆为方”的问题时想到用边数不断增加的内接正多边形来接近圆面积,当多边形的边数不断加倍时内接正多边形与圆周之间存在的空隙就被逐渐“穷竭”,不过没有具体计算的记载.

公元前4世纪,古希腊数学家欧多克斯创立了较严格的确定面积和体积的一般方法—“穷竭法”,这种方法假定量的无限可分性,并且以下面命题为基础:“如果从任何量中减去一个不小于它的一半的部分,从余部中再减去不小于他的一半的另一部分,等等,则最后将留下一个小于任何给定的同类量的量.”应用穷竭法,欧多克斯正确地证明了“圆面积与直径的平方成正比例”以及“球的体积与直径的立方成正比例等结论”.欧多克斯的穷竭法,也已体现出了极限论思想.

古希腊最伟大的数学家阿基米德巧妙地运用欧多克斯等人的穷竭法,通过严密的计算,解决了求几何图形的面积、体积、曲线长、计算二值等大量的计算问题.它突破了传统的有限运算,采用了无限逼近的思想,将需要求积的量分成许多微小单元,再利用另一组容易计算总和的微小单元来进行比较,他的无穷小量概念到17世纪被牛顿作为微积分的基础.

由此,我们可以看到在数学无穷思想发展之初,古人就己在极限领域开创了一个光辉的起点.

1.2极限思想的发展

极限思想的进一步发展是与微积分的建立紧密相连的.16世纪的欧洲处于资本主义萌芽时期,生产力发展,生产和技术中大量的问题,只用初等数学的方法已经无法解决,这就要求数学突破传统常量范围,来提供能够用以描述和研究运动、变化过程的新工具,这是促进极限发展的社会背景.

16世纪,荷兰人斯泰文在考察三角形重心的过程中借助几何直观用极限思想思考问题,将极限概念向前推进了一步,但极限思想仍只停留在思想的层面,没有形成系统的理论体系.

进入17世纪,特别是牛顿在建立微积分的过程中,由于极限没有准确的概念,也就无法确定无穷小的概念,利用无穷小运算时,牛顿做出了自相矛盾的推导:在用“无穷小”作分母进行除法时,无穷小量不能为零;而在一些运算中又把无穷小量看作零,约掉那些包含它的项,从而得到所要的公式,显然这种数学推导在逻辑上是行不通的.那么,无穷小量是零还是非零?这个问题困然牛顿也困扰着与

x +,()()00y f x x f x =+-,则( ()()(00,0

0lim

lim x x f x x f x y

f x x

→→+-==导数是函数增量y 与自变量增量x 之比

y

x

的极限函数关于自变量的平均变化率,而导数(),0f x 则为f 在0x 处关于)式极限不存在,则称f 在点0x 处不可导.可见,微分学的基本概念,试证()

lim f a

相关文档
最新文档