平面向量的概念及线性运算讲义

合集下载

第五章 §5.1 平面向量的概念及线性运算-2025高中数学大一轮复习讲义人教A版

第五章 §5.1 平面向量的概念及线性运算-2025高中数学大一轮复习讲义人教A版

§5.1平面向量的概念及线性运算课标要求1.理解平面向量的意义、几何表示及向量相等的含义.2.掌握向量的加法、减法运算,并理解其几何意义及向量共线的含义.3.了解向量线性运算的性质及其几何意义.知识梳理1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小称为向量的长度(或称模).(2)零向量:长度为0的向量,记作0.(3)单位向量:长度等于1个单位长度的向量.(4)平行向量:方向相同或相反的非零向量,也叫做共线向量,规定:零向量与任意向量平行.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算法则(或几何意义)运算律加法交换律:a +b =b +a ;结合律:(a +b )+c =a +(b +c )减法a -b =a +(-b )数乘|λa |=|λ||a |,当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0λ(μa )=(λμ)a ;(λ+μ)a =λa +μa ;λ(a +b )=λa +λb3.向量共线定理向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa .常用结论1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即A 1A 2—→+A 2A 3—→+A 3A 4—→+…+A n -1A n ———→=A 1A n —→,特别地,一个封闭图形,首尾连接而成的向量和为零向量.2.在△ABC 中,D 为BC 的中点,则AD →=12(AB →+AC →).3.在△ABC 中,点P 满足PA →+PB →+PC →=0⇔P 为△ABC 的重心,AP →=13(AB →+AC →).4.对于任意两个向量a ,b ,都有||a |-|b ||≤|a ±b |≤|a |+|b |.自主诊断1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)若向量a 与b 同向,且|a |>|b |,则a >b .(×)(2)单位向量都相等.(×)(3)任一非零向量都可以平行移动.(√)(4)起点不同,但方向相同且模相等的向量是相等向量.(√)2.下列命题正确的是()A .零向量是唯一没有方向的向量B .若|a |=|b |,则a =b 或a =-bC .向量AB →与BA →是平行向量D .平行向量不一定是共线向量答案C解析A 项,零向量是有方向的,其方向是任意的,故A 错误;B 项,|a |=|b |说明a ,b 的长度相等,不能判断它们的方向,故B 错误;C 项,向量AB →与BA →方向相反,是平行向量,故C 正确;D 项,平行向量就是共线向量,故D 错误.3.(必修第二册P10T4改编)(多选)下列各式化简结果正确的是()A.AB →+AC →=BC→B.AM →+MB →+BO →+OM →=AM →C.AB →+BC →-AC →=0D.AB →-AD →-DC →=BC →答案BC4.(必修第二册P16T3改编)已知e 1,e 2为平面内两个不共线的向量,MN →=2e 1-3e 2,NP →=λe 1+6e 2,若M ,N ,P 三点共线,则λ=________.答案-4解析因为M ,N ,P 三点共线,所以存在实数k 使得MN →=kNP →,即2e 1-3e 2=k (λe 1+6e 2),又e 1,e 2为平面内两个不共线的向量,=kλ,3=6k ,解得λ=-4.题型一平面向量的基本概念例1(1)(多选)下列说法正确的是()A .若a =b ,b =c ,则a =cB .若四边形ABCD 满足AB →=DC →,则四边形ABCD 是平行四边形C .若a ∥b ,b ∥c ,则a ∥cD .与非零向量a 共线的单位向量为±a |a |答案ABD解析对于A ,由相等向量的定义知,A 正确;对于B ,因为AB →=DC →,所以AB ∥DC 且AB =DC ,则四边形ABCD 是平行四边形,故B 正确;对于C ,若b =0,则由a ∥b ,b ∥c ,无法得到a ∥c ,故C 错误;对于D ,由单位向量和共线向量定义可知与非零向量a 共线的单位向量为±a|a |,故D 正确.(2)如图,在等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F 分别在两腰AD ,BC上,EF 过点P ,且EF ∥AB ,则下列等式中成立的是()A.AD →=BC →B.AC →=BD →C.PE →=PF →D.EP →=PF→答案D解析方法一(排除法)AD →,BC →不共线,AC →,BD →不共线,故A ,B 错误;PE →,PF →方向相反,C 错误;故选D.方法二在等腰梯形ABCD 中,AD →,BC →不平行,AC →,BD →不平行,故A ,B 错误;∵AB ∥CD ,∴PD PB =CD AB =PC PA,∴PB PD =PAPC ,则PB +PD PD =PA +PC PC ,即BD PD =AC PC ,即PD BD =PC AC ,∵EF ∥AB ,∴PE AB =PD BD =PC AC =PF AB,∴PE =PF ,即P 为EF 的中点,∴EP →=PF →,故C 错误,D 正确.思维升华平行向量有关概念的四个关注点(1)非零向量的平行具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.(4)a|a |是与非零向量a 同方向的单位向量.跟踪训练1(1)(多选)下列关于向量的说法正确的是()A .若|a |=0,则a =0B .若向量AB →与CD →是共线向量,则A ,B ,C ,D 四点必在同一条直线上C .对于任意向量a ,b ,必有|a +b |≤|a |+|b |D .若a ∥b ,则存在唯一实数λ,使a =λb 答案AC解析对于A ,若|a |=0,则a =0,故A 正确;对于B ,若向量AB →与CD →是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故B 错误;对于C ,若a ,b 方向相同,则|a +b |=|a |+|b |,若a ,b 方向相反,则|a +b |<|a |+|b |,若a ,b 不共线,根据向量加法的三角形法则及两边之和大于第三边可知|a +b |<|a |+|b |.综上可知对于任意向量a ,b ,必有|a +b |≤|a |+|b |,故C 正确;对于D ,若a ≠0,b =0,则a ∥b ,此时不存在实数λ,使a =λb ,故D 错误.(2)(多选)如图所示,四边形ABCD ,CEFG ,CGHD 是全等的菱形,则下列结论中一定成立的是()A .|AB →|=|EF →|B.AB →与FH →共线C.BD →与EH →共线D.CD →=FG →答案ABD解析由四边形ABCD ,CEFG ,CGHD 是全等的菱形,知|AB →|=|EF →|,即A 正确;由图形可知AB →与FH →的方向相反,CD →与FG →的方向相同且长度相等,即AB →与FH →共线,CD →=FG →,故B ,D 正确;而∠BDE 与∠DEH 不一定相等,BD →与EH →不一定共线,故C 错误.题型二平面向量的线性运算命题点1向量加、减法的几何意义例2若|AB →|=7,|AC →|=4,则|BC →|的取值范围是()A .[3,7]B .(3,7)C .[3,11]D .(3,11)答案C解析由题意知|AB →|=7,|AC →|=4,且|BC →|=|AC →-AB →|,当AC →,AB →同向时,|BC →|取得最小值,|BC →|=|AC →-AB →|=||AC →|-|AB →||=|4-7|=3;当AC →,AB →反向时,|BC →|取得最大值,|BC →|=|AC →-AB →|=||AC →|+|AB →||=|4+7|=11;当AC →,AB →不共线时,3=||AC →|-|AB →||<|BC →|<||AC →|+|AB →||=11,故|BC →|的取值范围是[3,11].命题点2向量的线性运算例3(2022·新高考全国Ⅰ)在△ABC 中,点D 在边AB 上,BD =2DA .记CA →=m ,CD →=n ,则CB →等于()A .3m -2nB .-2m +3nC .3m +2nD .2m +3n答案B解析因为BD =2DA ,所以AB →=3AD →,所以CB →=CA →+AB →=CA →+3AD →=CA →+3(CD →-CA →)=-2CA →+3CD →=-2m +3n .命题点3根据向量线性运算求参数例4(2024·安阳模拟)已知矩形ABCD 的对角线交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2-μ2等于()A .-12B.79C.3-222D.1+22答案A 解析如图,在矩形ABCD 中,DO →=12(DA →+DC →),在△DAO 中,DE →=12(DA →+DO →),∴DE →+12DA →+12DC =34DA →+14DC →=14AB →-34AD →,∴λ=14,μ=-34,∴λ2-μ2=116-916=-12.思维升华平面向量线性运算的解题策略(1)向量求和用平行四边形法则或三角形法则;求差用向量减法的几何意义.(2)求参数问题可以通过向量的运算将向量表示出来进行比较,求参数的值.跟踪训练2(1)如图所示,在平行四边形ABCD 中,AC 与BD 交于点O ,E 是OD 的中点,AE 的延长线交CD 于点F .若AB →=a ,AD →=b ,则AF →等于()A.14a +b B.13a +b C.14a +13b D.13a +13b 答案B解析在平行四边形ABCD 中,AC 与BD 交于点O ,E 是OD 的中点,AE 的延长线交CD于点F ,则△DEF ∽△BEA ,所以DF BA =DE BE =13,则DF BA =DF DC =13,所以DF →=13DC →=13AB →,则AF →=AD →+DF →=13AB →+AD →=13a +b .(2)(2023·聊城模拟)M 是△ABC 内的一点,若BM →=13BA →+λBC →,AM →=12AB →+μAC →,则λ+μ等于()A.76B .1 C.56D.13答案D解析由AM →-BM →=AB →,得AB →=12AB →+μAC →-13BA →-λBC →,所以16AB →=μAC →-λBC →,即AB →=6μAC →-6λBC →=6μAC →+6λCB →,又AB →=AC →+CB →,故μ=λ=16,故λ+μ=13.题型三共线定理及其应用例5(1)(2023·徐州模拟)已知向量a ,b 不共线,向量8a -k b 与-k a +b 共线,则k =________.答案±22解析因为向量a ,b 不共线,向量8a -k b 与-k a +b 共线,所以8a -k b =t (-k a +b )=-kt a +t b ,t ∈R ,=-kt ,k =t ,解得k =±2 2.(2)已知△ABC 的重心为G ,经过点G 的直线交AB 于点D ,交AC 于点E ,若AD →=λAB →,AE →=μAC →,则1λ+1μ=________.答案3解析如图,延长AG 交BC 于点F ,则F 为BC 的中点,AG →=23AF →=13(AB →+AC →),又AB →=1λAD →,AC →=1μAE →,∴AG →=13λAD →+13μAE →,又G ,D ,E 三点共线,∴13λ+13μ=1,即1λ+1μ=3.思维升华利用向量共线定理解题的策略(1)a ∥b ⇔a =λb (b ≠0)是判断两个向量共线的主要依据.(2)若a 与b 不共线且λa =μb ,则λ=μ=0.(3)已知O ,A ,B 是不共线的三点,且OP →=mOA →+nOB →(m ,n ∈R ),则A ,P ,B 三点共线的充要条件是m +n =1.跟踪训练3(1)(2023·绵阳模拟)已知平面向量a ,b 不共线,AB →=4a +6b ,BC →=-a +3b ,CD →=a +3b ,则()A .A ,B ,D 三点共线B .A ,B ,C 三点共线C .B ,C ,D 三点共线D .A ,C ,D 三点共线答案D解析对于A ,BD →=BC →+CD →=-a +3b +(a +3b )=6b ,则AB →,BD →不共线,故A 不正确;对于B ,AB →与BC →不共线,故B 不正确;对于C ,BC →与CD →不共线,故C 不正确;对于D ,AC →=AB →+BC →=4a +6b +(-a +3b )=3a +9b =3CD →,即AC →∥CD →,又AC →与CD →有公共点C ,则A ,C ,D 三点共线,故D 正确.(2)如图,在△ABC 中,AN →=12NC →,P 是BN 的中点,若AP →=mAB →+14AC →,则实数m 的值是________.答案14解析因为AN →=12NC →,所以AC →=3AN →,因为AP →=mAB →+14AC →=mAB →+34AN →,且B ,P ,N 三点共线,所以m +34=1,所以m =14.课时精练一、单项选择题1.(2023·广州模拟)如图,在正六边形ABCDEF 中,AF →-ED →+EF →+2AB →等于()A .0 B.AB →C.AD → D.CF→答案A解析因为六边形ABCDEF 为正六边形,所以AF →-ED →+EF →+2AB →=CD →+DE →+EF →+2AB →=CF →+2AB →=0.2.如图,e 1,e 2为互相垂直的单位向量,向量a +b +c 可表示为()A .2e 1-3e 2B .3e 1-2e 2C .2e 1+3e 2D .3e 1+2e 2答案D解析由题意得a =e 1+2e 2,b =e 1-2e 2,c =e 1+2e 2,所以a +b +c =e 1+2e 2+e 1-2e 2+e 1+2e 2=3e 1+2e 2.3.若a ,b 为非零向量,则“a |a |=b|b |”是“a ,b 共线”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件答案B解析依题意,“a |a |=b|b |”表示与a ,b 同向的单位向量是相等向量,能推出“a ,b 共线”,所以充分性成立;“a ,b 共线”可能同向共线、也可能反向共线,所以“a ,b 共线”不能推出“a |a |=b|b |”,所以必要性不成立.4.(2024·银川模拟)已知向量a ,b 不共线,且c =x a +b ,d =a +(2x -1)b ,若c 与d 方向相反,则实数x 的值为()A .1B .-12C .1或-12D .-1或-12答案B 解析因为c 与d 方向相反,所以存在k ∈R ,使得d =k c ,且k <0,即a +(2x -1)b =kx a +k b ,因为向量a ,b =1,=2x -1,整理可得x (2x -1)=1,即2x 2-x -1=0,解得x =-12或x =1.又k <0,所以x <0,故x =-12.5.已知O ,A ,B 三点不共线,点P 为该平面内一点,且OP →=OA →+AB →|AB →|,则()A .点P 在线段AB 上B .点P 在线段AB 的延长线上C .点P 在线段AB 的反向延长线上D .点P 在射线AB 上答案D 解析由OP →=OA →+AB →|AB →|,得OP →-OA →=AB →|AB →|,所以AP →=1|AB →|·AB →,所以点P 在射线AB 上.6.如图所示,△ABC 内有一点G 满足GA →+GB →+GC →=0,过点G 作一直线分别交AB ,AC 于点D ,E .若AD →=xAB →,AE →=yAC →(xy ≠0),则1x +1y等于()A .4B .3C .2D .1答案B 解析因为GA →+GB →+GC →=0,所以G 为△ABC 的重心,所以AG →=13(AB →+AC →)=tAD →+(1-t )AE →=txAB →+(1-t )yAC →,所以tx =13,(1-t )y =13,所以1x +1y=3t +3(1-t )=3.二、多项选择题7.下列各式中能化简为AD →的是()A .-(CB →+MC →)-(DA →+BM →)B .-BM →-DA →+MB→C .(AB →-DC →)-CB→D.AD →-(CD →+DC →)答案ACD 解析对于A ,-(CB →+MC →)-(DA →+BM →)=-(CB →+MC →+DA →+BM →)=-(CB →+BM →+MC →+DA →)=-DA →=AD →,故A 正确;对于B ,-BM →-DA →+MB →=MB →-DA →+MB →=AD →+2MB →,故B 错误;对于C ,(AB →-DC →)-CB →=AB →-DC →-CB →=AB →+CD →+BC →=AD →,故C 正确;对于D ,AD →-(CD →+DC →)=AD →-0=AD →,故D 正确.8.如图,在四边形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =2AD =2DC ,E 为BC 边上一点,且BC→=3EC →,F 为AE 的中点,则()A.BC →=-12AB →+AD →B.AF →=13AB →+13AD →C.BF →=-23AB →+13AD →D.CF →=16AB →-23AD →答案ABC 解析∵AB ∥CD ,AB =2DC ,∴BC →=BA →+AD →+DC →=-AB →+AD →+12AB →=-12AB →+AD →,故A 正确;∵BC →=3EC →,∴BE →=23BC →=-13AB →+23AD →,∴AE →=AB →+BE →=AB →-13AB →+23AD =23AB →+23AD →,又F 为AE 的中点,∴AF →=12AE →=13AB →+13AD →,故B 正确;∴BF →=BA →+AF →=-AB →+13AB →+13AD →=-23AB →+13AD →,故C 正确;∴CF →=CB →+BF →=BF →-BC →=-23AB →+13AD →-12AB →+=-16AB →-23AD →,故D 错误.三、填空题9.已知在四边形ABCD 中,AB →=12DC →,且|AD →|=|BC →|,则四边形ABCD 的形状是________.答案等腰梯形解析由AB →=12DC →,可得AB ∥CD 且AB =12DC ,所以四边形ABCD 是梯形,又因为|AD →|=|BC →|,所以梯形ABCD 的两个腰相等,所以四边形ABCD 是等腰梯形.10.(2023·徐州模拟)已知单位向量e 1,e 2,…,e 2024,则|e 1+e 2+…+e 2024|的最大值是________,最小值是________.答案20240解析当单位向量e 1,e 2,…,e 2024方向相同时,|e 1+e 2+…+e 2024|取得最大值,|e 1+e 2+…+e 2024|=|e 1|+|e 2|+…+|e 2024|=2024;当单位向量e 1,e 2,…,e 2024首尾相连时,e 1+e 2+…+e 2024=0,所以|e 1+e 2+…+e 2024|的最小值为0.11.(2023·佛山模拟)等腰直角△ABC 中,点P 是斜边BC 上一点,若AP →=4AB →|AB →|+AC →|AC →|,则△ABC 的面积为________.答案252解析如图,过点P 作AB ,AC 的垂线交AB ,AC 分别于点E ,F ,由于AP →=4AB →|AB →|+AC →|AC →|,所以AE →=4AB →|AB →|,AF →=AC →|AC →|,则|AE →|=4,|AF →|=1,所以在等腰直角△ABC 中,PE =1,BE =1,所以AB =5,故△ABC 的面积S =12×5×5=252.12.(2024·盐城模拟)如图,已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,CD 上,且满足BE →=EC →,CD →=2CF →,则|AE →+AF →|=________.答案3解析因为BE →=EC →,所以AE →=AB →+BE →=AB →+12AD →,又因为CD →=2CF →,所以AF →=AD →+DF →=12AB →+AD →,所以|AE →+AF →|=32|AB →+AD →|=32|AC →|,又因为∠BAD =120°,所以∠ADC =60°,所以△ADC 为等边三角形,所以AC =AD =2,所以|AE →+AF →|=32|AC →|=32×2=3.四、解答题13.(2023·青岛模拟)如图,在矩形ABCD 中,DE →=2EC →,BF →=2FC →,AC 与EF 交于点N.(1)若CN →=λAB →+μAD →,求λ+μ的值;(2)设AE →=a ,AF →=b ,试用a ,b 表示AC →.解(1)依题意,设EN →=tEF →,CN →=CE →+EN →=CE →+tEF →=CE →+t (CF →-CE →)=(1-t )CE →+tCF →=-(1-t )3AB →-t 3AD →,又CN →=λAB →+μAD →,=-1-t 3,=-t 3,解得λ+μ=-13.(2)因为AC →=AB →+AD →,AE →=23AB →+AD →,AF →=AB →+23AD →,所以AE →+AF →=53(AB →+AD →)=53AC →,所以AC →=35a +35b .14.如图所示,在△ABC 中,D ,F 分别是BC ,AC 的中点,AE →=23AD →,AB →=a ,AC →=b.(1)用a ,b 表示AE →,BE →;(2)求证:B ,E ,F 三点共线.(1)解在△ABC 中,D ,F 分别是BC ,AC 的中点,则AD →=AB →+BD →=AB →+12BC →=AB →+12(AC →-AB →)=12AB →+12AC →=12a +12b ,故AE →=23AD →=13a +13b ,BE →=AE →-AB →=13a +13b -a =13b -23a .(2)证明因为BE →=13b -23a =13(b -2a ),BF →=AF →-AB →=12b -a =12(b -2a ),所以BE →=23BF →,所以BE →∥BF →,又BE →,BF →有公共点B ,所以B ,E ,F 三点共线.15.(2023·扬州模拟)设点O 是面积为4的△ABC 内部一点,且有OA →+3OB →+4OC →=0,则△BOC的面积为()A .1B.34C.12D.14答案C 解析如图,∵OA →+3OB →+4OC →=0,∴-17OA →=37OB →+47OC →,设-17OA →=OD →,则OD →=37OB →+47OC →,即B ,C ,D 三点共线,∴|OD →||AD →|=S △BOC S △ABC =18,∴S △BOC =4×18=12.16.如图,已知A ,B ,C 是圆O 上不同的三点,CO 与AB 交于点D (点O 与点D 不重合),若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的取值范围是________.答案(1,+∞)解析因为CO 与AB 交于点D ,所以O ,C ,D 三点共线,所以OC →与OD →共线,设OC →=mOD →,则m >1,因为OC →=λOA →+μOB →,所以mOD →=λOA →+μOB →,可得OD →=λm OA →+μmOB →,因为A ,B ,D 三点共线,所以λm +μm=1,可得λ+μ=m >1,所以λ+μ的取值范围是(1,+∞).。

《平面向量》第1讲 平面向量的概念和线性运算

《平面向量》第1讲 平面向量的概念和线性运算

小结
1. 基本概念.
2. 向量的线性运算(加法、减法、数乘).
运算结果仍然是一个向量.
3. 两个向量共线的充要条件.
三点共线的应用.
一.向量的基本概念
[例题1]. 下列说法正确的是 .
(1).0 的方向是任意的;
(2).0// a;
(3). 0 0;
(4).0 a a 0 a;
(5). 0 0; (6).0 a 0.
二.向量的线性运算
[例题2]. 设O是正六边形ABCDEF的中点. (1) 与 OA 相等的向量有 (2) 设 AC a, BD b, 请用这两个向量表示 CD . .
课题:
向量的基本概念与线性运算
知识点1.向量的基本概念
(1) 既有大小,又有方向的量叫向量. (2) 长度为0的向量叫零向量. (3) 长度等于1的向量单位向量.
[ [
Y Y
] ]
[ (4) 方向相同的非零向量叫平行向量. [ (5) 平行向量又叫共线向量. [ [ (6) 长度相等的向量叫相等向量.
BC CD
(2) 证明:A、B、D三点共线.
(3) 试确定实数k,使k a+b和a+k b共线.
二.向量的线性运算
变式1. 设 a , b 是两个非零的不共线向量 . 且向量 a , b 的起点相同,当t= 时,
1 ab 三个向量 a , tb, 3


的终点共线 .
二.向量的线性运算
(7) 方向相反的向量叫相反向量.
[
Y ] N ] Y ] N ] N ]
知识点2、向量的线性运算.
类型 加 法 代数运算
几何运算
a
坐标运算

课件7:§5.1 平面向量的概念及线性运算

课件7:§5.1 平面向量的概念及线性运算

线 AE 的比为 AM∶ME=2∶1,
∴A→B+A→C=2A→E=mA→M=23mA→E,∴23m=2,∴m=3. [答案] B
方法感悟 平面向量线性运算问题的常见类型及解题策略 (1)向量加法或减法的几何意义.向量加法和减法均适合三角形法则. (2)求已知向量的和.一般共起点的向量求和用平行四边形法则;求差用 三角形法则;求首尾相连向量的和用三角形法则. (3)求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示 出来,进行比较求参数的值.
[答案] A
2.给出下列命题:
①两个具有公共终点的向量,一定是共线向量;
②两个向量不能比较大小,但它们的模能比较大小;
③λa=0(λ 为实数),则 λ 必为零;
④λ,μ 为实数,若 λa=μb,则 a 与 b 共线.
其中错误的命题的个数为( )
A.1
B.2
C.3
D.4
[解析] ①错误,两向量共线要看其方向而不是起点或终点.②正确,因 为向量即有大小,又有方向,故它们不能比较大小,但它们的模均为实 数,故可以比较大小.③错误,当 a=0 时,不论 λ 为何值,λa=0.④错 误,当 λ=μ=0 时,λa=μb=0,此时 a 与 b 可以是任意向量.故选 C.
§5.1 平面向量的概念及线性运算
考点自主回扣
[知识梳理]
1.向量的有关概念
名称
定义
备注
向量
具有 大小 和 方向 的量; 平面向量是自由
向量的大小叫作向量的长度 向量
(或 模 )
零向量 长度等于零的向量;其方向不确定
记作 0
给定一个非零向量 a,与 a 同向
非零向量 a 的单位
单位向量
且 模为 1 的向量,叫作向量 a 的单位向

第1讲 平面向量的概念及线性运算

第1讲 平面向量的概念及线性运算
第五章 平面向量、复数
第1讲 平面向量的概念及线性运算
1
2
必备知识
核心考点
自主排查
师生共研
3
高 考 总 复 习
课标要求
考情分析
1.了解向量的实际背景,理解平面向量
的概念和两个向量相等的含义,理解向 虽然近两年在本讲没有直接命
量的几何表示.
题,但在考查其他知识点时,
2.掌握向量加法、减法的运算,理解其
形为(
A.平行四边形
)
B.菱形
C.矩形

D.梯形
解析:选C.因为 = −,可得 = ,所以四边形是平行四
边形.
又 − = + ,可得 = ,
所以平行四边形的对角线相等,
因此四边形是矩形.故选C.
37
高 考 总 复 习
A. +
B. −
C. −

)
D. +
解析:选C. = + = + = + ( − ) = − .
故选C.
高 考 总 复 习
3.(人教A版必修第二册P22T4改编)化简:

(1) − + + =____;
经常涉及向量的加法、减法及
几何意义.
数乘运算以及它们的几何意义.
3.掌握向量的数乘运算及其几何意义,
预计2025年高考仍会考查线性
理解两个向量共线的含义.
运算,题型以选择题、填空题
4.了解向量线性运算的性质及其几何意
为主,难度属中、低档.
义.
PART
1
必备知识
第五章
自主排查
5

第1节 平面向量的概念及线性运算--2025年高考数学复习讲义及练习解析

第1节 平面向量的概念及线性运算--2025年高考数学复习讲义及练习解析

第一节平面向量的概念及线性运算课标解读考向预测1.理解平面向量的意义、几何表示及向量相等的含义.2.掌握向量的加法、减法运算,并理解其几何意义及向量共线的含义.3.了解向量线性运算的性质及其几何意义.预计2025年高考对本节内容的考查会以线性运算、共线向量定理为主,主要以选择题、填空题的形式出现,难度属中、低档.必备知识——强基础1.向量的有关概念名称定义表示向量在平面中,既有大小又有方向的量用a ,b ,c ,…或AB →,BC →,…表示向量的模向量a 的大小,也就是表示向量a 的有向线段AB →的长度(或称模)|a |或|AB →|零向量长度为0的向量用0表示单位向量长度等于1个单位的向量用e 表示,|e |=1平行向量方向相同或相反的非零向量(或称共线向量)a ∥b 相等向量长度相等且方向相同的向量a =b相反向量长度相等,方向相反的向量向量a 的相反向量是-a说明:零向量的方向是不确定的、任意的.规定:零向量与任一向量平行.2.向量的线性运算向量运算法则(或几何意义)运算律加法交换律:a +b =01b +a ;结合律:(a +b)+c =02a+(b +c )减法a -b =03a +(-b )数乘|λa |=|λ||a |,当λ>0时,λa 的方向与a 的方向04相同;当λ<0时,λa 的方向与a 的方向05相反;当λ=0时,λa =060λ(μa )=07(λμ)a ;(λ+μ)a =08λa +μa ;λ(a +b )=09λa +λb3.向量共线定理向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使得b =λa .提醒:当a ≠0时,定理中的实数λ才唯一.1.一般地,首尾顺次相接的多个向量的和等于从第一个向量的起点指向最后一个向量的终点的向量,即A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n =A 1A n →.特别地,一个封闭图形,首尾连接而成的向量和为零向量.2.若F 为线段AB 的中点,O 为平面内任意一点,则OF →=12OA →+OB →).3.若A ,B ,C 是平面内不共线的三点,则PA →+PB →+PC →=0⇔P 为△ABC 的重心,AP →=13(AB→+AC →).4.若OA →=λOB →+μOC →(λ,μ为常数),则A ,B ,C 三点共线的充要条件是λ+μ=1.5.对于任意两个向量a ,b ,都有||a |-|b ||≤|a ±b |≤|a |+|b |.1.概念辨析(正确的打“√”,错误的打“×”)(1)|a |与|b |是否相等,与a ,b 的方向无关.()(2)若向量a 与b 同向,且|a |>|b |,则a >b .()(3)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.()(4)起点不同,但方向相同且模相等的向量是相等向量.()答案(1)√(2)×(3)×(4)√2.小题热身(1)如图,D ,E ,F 分别是△ABC 各边的中点,则下列结论错误的是()A .EF →=CD →B .AB →与DE →共线C .BD →与CD →是相反向量D .AE →=12|AC →|答案D解析AE →=12AC →,故D 错误.故选D.(2)(人教B 必修第二册6.2.1例3改编)设向量a ,b 不共线,向量λa +b 与a +2b 共线,则实数λ=________.答案12解析∵λa +b 与a +2b 共线,∴存在实数μ使得λa +b =μ(a +2b )=μ,=2μ,=12,=12.(3)(人教A 必修第二册6.2例6改编)已知▱ABCD 的对角线AC 和BD 交于点O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________.(用a ,b 表示)答案b -a -a -b解析如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b .(4)(人教A 必修第二册习题6.2T10改编)若a ,b 满足|a |=3,|b |=5,则|a +b |的最大值为________,最小值为________.答案82解析|a +b |≤|a |+|b |=3+5=8,当且仅当a ,b 同向时取等号,所以|a +b |max =8.又|a +b |≥||a |-|b ||=|3-5|=2,当且仅当a ,b 反向时取等号,所以|a +b |min =2.考点探究——提素养考点一平面向量的有关概念例1(多选)下列命题中的真命题是()A .若|a |=|b |,则a =bB .若A ,B ,C ,D 是不共线的四点,则“AB →=DC →”是“四边形ABCD 为平行四边形”的充要条件C .若a =b ,b =c ,则a =cD .a =b 的充要条件是|a |=|b |且a ∥b 答案BC解析A 是假命题,两个向量的长度相等,但它们的方向不一定相同;B 是真命题,∵AB →=DC →,∴|AB →|=|DC →|且AB →∥DC →,又A ,B ,C ,D 是不共线的四点,∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则|AB →|=|DC →|,AB →∥DC →且AB →,DC →方向相同,因此AB →=DC →;C 是真命题,∵a =b ,∴a ,b 的长度相等且方向相同,又b =c ,∴b ,c 的长度相等且方向相同,∴a ,c 的长度相等且方向相同,故a =c ;D 是假命题,当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.故选BC.【通性通法】平面向量有关概念的四个关注点关注点一非零向量的平行具有传递性关注点二共线向量即为平行向量,它们均与起点无关关注点三向量可以平移,平移后的向量与原向量是相等向量关注点四a|a |是与a 同方向的单位向量【巩固迁移】1.(多选)下列命题正确的是()A .零向量是唯一没有方向的向量B .零向量的长度等于0C .若a ,b 都为非零向量,则使a |a |+b|b |=0成立的条件是a 与b 反向共线D .若a ∥b ,b ∥c ,则a ∥c 答案BC解析零向量是有方向的,其方向是任意的,故A 错误;由零向量的定义知,零向量的长度为0,故B 正确;因为a |a |与b |b |都是单位向量,所以只有当a |a |与b|b |是相反向量,即a 与b 反向共线时才成立,故C 正确;若b =0,则不共线的a ,c 也有a ∥0,c ∥0,故D 错误.考点二平面向量的线性运算(多考向探究)考向1平面向量加、减运算的几何意义例2设P 为▱ABCD 对角线的交点,O 为平面ABCD 内的任意一点,则OA →+OB →+OC →+OD →=()A .OP →B .2OP →C .3OP →D .4OP→答案D解析由题意知,P 为AC ,BD 的中点,所以在△OAC 中,OP →=12(OA →+OC →),即OA →+OC →=2OP →,在△OBD 中,OP →=12(OB →+OD →),即OB →+OD →=2OP →,所以OA →+OB →+OC →+OD →=4OP →.故选D.【通性通法】1.平面向量的线性运算技巧(1)不含图形的情况:可直接运用相应运算法则求解.(2)含图形的情况:将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示出来.2.三种运算法则的要点(1)加法的三角形法则要求“首尾连”,平行四边形法则要求“共起点”.(2)减法的三角形法则要求“共起点,连终点,指被减”.(3)数乘运算的结果仍是一个向量,运算过程可类比实数运算.【巩固迁移】2.(2024·山东青岛二中月考)若|AB →|=|AC →|=|AB →-AC →|=2,则|AB →+AC →|=________.答案23解析因为|AB →|=|AC →|=|AB →-AC →|=2,所以△ABC 是边长为2的正三角形,所以|AB →+AC →|为△ABC 的边BC 上的高的2倍,所以|AB →+AC →|=23.考向2平面向量的线性运算例3(2022·新高考Ⅰ卷)在△ABC 中,点D 在边AB 上,BD =2DA ,记CA →=m ,CD →=n ,则CB →=()A .3m -2nB .-2m +3nC .3m +2nD .2m +3n答案B解析CD →=23CA →+13CB →,即CB →=-2CA →+3CD →=-2m +3n .故选B.【通性通法】平面向量的线性运算的求解策略【巩固迁移】3.(2023·江苏南通二模)在平行四边形ABCD 中,BE →=12BC →,AF →=13AE →.若AB →=mDF →+nAE →,则m +n =()A .12B .34C .56D .43答案D解析由题意可得AB →=AE →+EB →=AE →+12DA →=AE →+12(DF →+FA →)=AE→+12(DF →-13AE →)=12DF →+56AE →,所以m =12,n =56,所以m +n =43.故选D.考点三向量共线定理的应用(多考向探究)考向1判定向量共线、三点共线例4设两个非零向量a 与b 不共线.若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A ,B ,D 三点共线.证明∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),∴BD →=BC →+CD →=2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB →,∴AB →,BD →共线,又它们有公共点B ,∴A ,B ,D 三点共线.【通性通法】共线向量定理的三个应用【巩固迁移】4.已知P 是△ABC 所在平面内的一点,若CB →=λPA →+PB →,其中λ∈R ,则点P 一定在()A .△ABC 的内部B .AC 边所在直线上C .AB 边所在直线上D .BC 边所在直线上答案B解析由CB →=λPA →+PB →,得CB →-PB →=λPA →,CP →=λPA →,则CP →,PA →为共线向量,又CP →,PA →有一个公共点P ,所以C ,P ,A 三点共线,即点P 在AC 边所在直线上.故选B.考向2利用向量共线定理求参数例5若a ,b 是两个不共线的向量,已知MN →=a -2b ,PN →=2a +k b ,PQ →=3a -b ,若M ,N ,Q 三点共线,则k =()A .-1B .1C .32D .2答案B解析由题意知,NQ →=PQ →-PN →=a -(k +1)b ,因为M ,N ,Q 三点共线,所以存在实数λ,使得MN →=λNQ →,即a -2b =λ[a -(k +1)b ],解得λ=1,k =1.【通性通法】一般通过构造三角形,利用向量运算的三角形法则进行加法或减法运算,然后通过建立方程(组)即可求得相关参数的值.【巩固迁移】5.如图,在△ABC 中,AD →=λDC →,E 是BD 上一点,若AE →=1116→+14AC →,则实数λ的值为()A .3B .4C .5D .6答案B解析由AD →=λDC →,得AC →=λ+1λAD →,因为AE →=1116AB →+14AC →,所以AE →=1116AB →+14·λ+1λAD →,因为E ,B ,D 三点共线,所以1116+λ+14λ=1,解得λ=4.故选B.课时作业一、单项选择题1.若a ,b 为非零向量,则“a |a |=b|b |”是“a ,b 共线”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件答案B解析a |a |,b |b |分别表示与a ,b 同方向的单位向量,a |a |=b|b |,则有a ,b 共线,而a ,b 共线,则a |a |,b |b |是相等向量或相反向量,所以“a |a |=b|b |”是“a ,b 共线”的充分不必要条件.故选B.2.设a =(AB →+CD →)+(BC →+DA →),b 是一个非零向量,则下列结论不正确的是()A .a ∥bB .a +b =aC .a +b =bD .|a +b |=|a |+|b |答案B解析由题意得,a =(AB →+CD →)+(BC →+DA →)=AC →+CA →=0,且b 是一个非零向量,所以a ∥b成立,所以A 正确;因为a +b =b ,所以B 不正确,C 正确;因为|a +b |=|b |,|a |+|b |=|b |,所以|a +b |=|a |+|b |,所以D 正确.故选B.3.已知AB →=a +5b ,BC →=-3a +6b ,CD →=4a -b ,则()A .A ,B ,D 三点共线B .A ,B ,C 三点共线C .B ,C ,D 三点共线D .A ,C ,D 三点共线答案A解析由题意得BD →=BC →+CD →=a +5b =AB →,又BD →,AB →有公共点B ,所以A ,B ,D 三点共线.故选A.4.(2024·安徽铜陵三模)在平行四边形ABCD 中,M 是CD 边上的中点,则2AM →=()A .AC →-2AB →B .AC →+2AB →C .2AC →-AB →D .2AC →+AB→答案C解析因为M 是平行四边形ABCD 的CD 边上的中点,所以CM →=-12AB →,所以AM →=AC →+CM→=AC →-12AB →,所以2AM →=2AC →-AB →.故选C.5.已知向量a 和b 不共线,向量AB →=a +m b ,BC →=5a +3b ,CD →=-3a +3b ,若A ,B ,D 三点共线,则m =()A .3B .2C .1D .-2答案A解析因为A ,B ,D 三点共线,所以存在实数λ,使得BD →=λAB →,BD →=BC →+CD →=2a +6b ,所以2a +6b =λa +mλb ,=λ,=mλ,解得m =3.故选A.6.矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2+μ2=()A .58B .14C .1D .516答案A解析DE →=AE →-AD →=14AC →-AD →=14(AB →+AD →)-AD →=14AB →-34AD →,∴λ=14,μ=-34.∴λ2+μ2=116+916=58.故选A.7.正方形ABCD 中,E 在CD 上且有CE →=2ED →,AE 与对角线BD 交于F ,则AF →=()A .13AB →+23AD→B .34AB →+14AD→C .14AB →+34AD→D .13AD →+AB→答案C解析如图,∵在正方形ABCD 中,E 在CD 上且有CE →=2ED →,AE 与对角线BD 交于F ,∴DE =13AB ,且DE ∥AB ,∴△DEF ∽△BAF ,可得EF AF =13,可得AF =34AE ,∴AF →=34AE →=34(AD→+DE →)+13AB =14AB →+34AD →.故选C.8.(2023·滁州模拟)已知P 为△ABC 所在平面内一点,AB →+PB →+PC →=0,|AB →|=|PB →|=|PC →|=2,则△ABC 的面积为()A .3B .23C .33D .43答案B解析设BC 的中点为D ,AC 的中点为M ,连接PD ,MD ,BM ,如图所示,则有PB →+PC →=2PD →.由AB →+PB →+PC →=0,得AB →=-2PD →,又D 为BC 的中点,M 为AC 的中点,所以AB →=-2DM →,则PD →=DM →,则P ,D ,M 三点共线且D 为PM 的中点,又D 为BC 的中点,所以四边形CPBM 为平行四边形.又|AB →|=|PB →|=|PC →|=2,所以|MC →|=|BP →|=2,则|AC →|=4,且|BM →|=|PC →|=2,所以△AMB 为等边三角形,∠BAC =60°,则S △ABC =12×2×4×32=2 3.故选B.二、多项选择题9.下列式子中,结果为零向量的是()A .AB →+BC →+CA →B .AB →+MB →+BO →+OM →C .OA →+OB →+BO →+CO →D .AB →-AC →+BD →-CD →答案AD解析利用向量运算,易知A ,D 中的式子结果为零向量.故选AD.10.点P 是△ABC 所在平面内一点,且满足|PB →-PC →|-|PB →+PC →-2PA →|=0,则△ABC 不可能是()A .钝角三角形B .直角三角形C .等腰三角形D .等边三角形答案AD解析因为点P 是△ABC 所在平面内一点,且|PB →-PC →|-|PB →+PC →-2PA →|=0,所以|CB →|-|(PB→-PA →)+(PC →-PA →)|=0,即|CB →|=|AB →+AC →|,所以|AB →-AC →|=|AC →+AB →|,等式两边平方并化简得AC →·AB →=0,所以AC →⊥AB →,∠BAC =90°,则△ABC 一定是直角三角形,也有可能是等腰直角三角形,不可能是钝角三角形和等边三角形.故选AD.11.(2023·安徽合肥期末)在△ABC 中,D ,E ,F 分别是边BC ,CA ,AB 的中点,点G 为△ABC 的重心,则下列结论中正确的是()A .AB →-BC →=CA →B .AG →=13(AB →+AC →)C .AF →+BD →+CE →=0D .GA →+GB →+GC →=0答案BCD解析如图,对于A ,AB →-BC →=AB →+CB →=2EB →≠CA →,故A 错误;对于B ,点G 为△ABC 的重心,则AG →=23→=23×12(AB →+AC →)=13(AB →+AC →),故B 正确;对于C ,AF →+BD →+CE →=12(AB →+BC →+CA →)=0,故C 正确;对于D ,GA →=-2GD →=-2×12(GB →+GC →),故GA →+GB →+GC →=0,故D 正确.故选BCD.三、填空题12.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.答案12解析∵向量a ,b 不平行,∴a +2b ≠0,又向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,=μ,=2μ,解得λ=μ=12.13.已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC →=a ,CA →=b ,给出下列命题:①AD →=12a -b ;②BE →=a +12b ;③CF →=-12a +12b ;④AD →+BE →+CF →=0.其中正确的命题是________.答案②③④解析BC →=a ,CA →=b ,AD →=12AB →+12AC →=12(AC →+CB →)+12AC →=12CB →+AC →=-12a -b ,故①错误;BE →=BC →+12CA →=a +12b ,故②正确;CF →=12(CB →+CA →)=12(-a +b )=-12a +12b ,故③正确;AD→+BE →+CF →=-b -12a +a +12b +12b -12a =0,故④正确.14.(2024·丽江模拟)在△ABC 中,点D 在线段AC 上,且满足|AD →|=13|AC →|,点Q 为线段BD上任意一点,若实数x ,y 满足AQ →=xAB →+yAC →,则1x +1y 的最小值为________.答案4+23解析由题意知,点D 满足AD →=13AC →,故AQ →=xAB →+yAC →=xAB →+3yAD →,由Q ,B ,D 三点共线,可得x +3y =1,x >0,y >0,则1x +1y=x +3y )=4+3y x +x y ≥4+23,当且仅当3yx =x y ,即x =3-12,y =3-36时等号成立.所以1x +1y 的最小值为4+2 3.15.如图,在平行四边形ABCD 中,AB →=2AE →,AF →=FD →,点G 为CE 与BF 的交点,则AG →=()A .25AB →+15AC→B .15AB →+25AC→C .15AB →+415AC→D .310AB →+25AC→答案A解析由AB →=2AE →,AF →=FD →,知E ,F 分别为AB ,AD 的中点.如图,设AC 与BF 的交点为P ,易得△APF ∽△CPB ,所以AP CP =AF CB =AF AD =12,所以AP →=13AC →.因为E 是AB 的中点,所以AE →=12AB →.由P ,G ,B 三点共线知,存在m ∈R ,满足AG →=mAP →+(1-m )AB →=13mAC →+(1-m )AB →.由C ,G ,E 三点共线知,存在n ∈R ,满足AG →=nAE →+(1-n )AC →=12nAB →+(1-n )AC →,所以13mAC →+(1-m )AB →=12nAB →+(1-n )AC →.又因为AC →,AB →为不共线的非零向量,所以m =12n ,=1-n ,=35,=45,所以AG →=25AB →+15AC →.16.(多选)(2024·武汉模拟)瑞士数学家欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:三角形的外心、垂心和重心都在同一直线上,而且外心和重心间的距离是垂心和重心间的距离之半.这个定理就是著名的欧拉线定理.设△ABC 中,点O ,H ,G 分别是其外心、垂心、重心,BC 边的中点为D ,则下列结论中正确的是()A .GH →=2OG →B .OD ∥AHC .AH →=3OD →D .OA →=OB →=OC→答案AB解析由题意作图,如图所示,易知BC 的中点D 与A ,G 共线.对于A ,由题意,得AG →=2GD →,OD ⊥BC ,AH ⊥BC ,所以OD ∥AH ,所以GH →=2OG →,所以A ,B 正确;对于C ,由题意,知AG =2GD ,又GH =2OG ,∠AGH =∠DGO ,所以△AGH ∽△DGO ,所以AH →=2OD →,所以C 错误;对于D ,向量OA →,OB →,OC →的模相等,方向不同,所以D 错误.故选AB.17.如图,已知正六边形ABCDEF ,M ,N 分别是对角线AC ,CE 上的点,使得AM AC =CNCE=r ,则B ,M ,N 三点共线时,r 的值为________.答案33解析连接AD ,交EC 于点G ,设正六边形的边长为a ,由正六边形的性质知,AD ⊥CE ,AD ∥CB ,G 为EC 的中点,且AG =32a ,则CA →=CG →+GA →=12CE →+32CB →,又AM AC =CNCE =r (r >0),则CA →=CM →1-r ,CE →=CN →r ,故CM →1-r =CN →2r +32CB →,即CM →=1-r 2r CN →+3(1-r )2CB →,若B ,M ,N三点共线,则1-r 2r +3(1-r )2=1,解得r =33或r =-33(舍去).18.经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m >0,n >0,则m +n 的最小值为________.答案43解析设OA →=a ,OB →=b .由题意知OG →=23×12(OA →+OB →)=13(a +b ),PQ →=OQ →-OP →=n b -m a ,PG→=OG →-OP →+13b ,由P ,G ,Q 三点共线,得存在实数λ,使得PQ →=λPG →,即n b -m a =+13λb ,m ==13λ,消去λ,得1n +1m =3.于是m +nm +n )+n m +≥13×(2+2)=43,当且仅当m =n =23时,m +n 取得最小值,为43.。

(完整版)平面向量全部讲义

(完整版)平面向量全部讲义

第一节平面向量的概念及其线性运算1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.例1.若向量a与b不相等,则a与b一定()A.有不相等的模B.不共线C.不可能都是零向量D.不可能都是单位向量例2..给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB=DC等价于四边形ABCD为平行四边形;③若a=b,b=c,则a=c;④a=b等价于|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c.其中正确命题的序号是()A.②③B.①②C.③④D.④⑤CA2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb例3:化简AC→-BD→+CD→-AB→得() A.AB→B.DA→C.BC→D.0例4:(1)如图,在正六边形ABCDEF中,BA+CD+EF=()A.0B.BE C.AD D.CF(2)设D,E分别是△ABC的边AB,BC上的点,AD=12AB,BE=23BC.若DE=λ1AB+λ2AC(λ1,λ2为实数),则λ1+λ2的值为________.巩固练习:1.将4(3a+2b)-2(b-2a)化简成最简式为______________.2.若|OA→+OB→|=|OA→-OB→|,则非零向量OA→,OB→的关系是() A.平行B.重合C.垂直D.不确定3.若菱形ABCD的边长为2,则|AB-CB+CD|=________4.D是△ABC的边AB上的中点,则向量CD等于()A.-BC+12BA B.-BC-12BA C.BC-12BA D.BC+12BA5.若A,B,C,D是平面内任意四点,给出下列式子:①AB+CD=BC+DA;②AC+BD=BC+AD;③AC-BD=DC+AB.其中正确的有()A.0个B.1个C.2个D.3个6.如图,在△ABC中,D,E为边AB的两个三等分点,CA→=3a,CB→=2b,求CD→,CE→.DD12巩固练习1。

高中数学 第25讲 平面向量的概念及其线性运算配套课件

高中数学 第25讲 平面向量的概念及其线性运算配套课件
返回目录
第25讲 平面向量的概念及其线性运算
双 向
固•

础• •
• —— 知 识 梳 理 —— 一、向量的有关概念及表示
名称 向量
定义
表示
在平面中,既有
________又有__方__向____ 大小 的量
用 a,b,c,…,或A→B, B→C,…表示
向量 的模
向量 a 的__大__小____,也 就是表示向量 a 的有向
点 面 讲 考 向
1.平面向量有关的概念 2.平面向量的线性运算
选择(1) 解答(1)
2012年广东T8(C)
选择(1) 2012年广东T3(A)

3.向量共线定理
选择(2) 解答(1)
2012年浙江T5(B)
• 4.向量线性运算
选择(2) 2012年天津T7(C)
• 说明:A表示简单题,B表示中等题,C表示难题, 考频分析2012年课标地区真题卷情况.
实数λ与向量a的 (2)当λ>0时,λa
积是一个 向_量_______,这
与a的方向 相同________;当
种运算叫做向
λ<0时,λa与
数量乘 的________,
a的相方反 向
记λ作a ________
______;当λ
=0时0 ,λa= ________
(1)对向量加法的 分配律:
λ(a+b)= λa+__λb______ (2)对实数加法的
1.零向量的问题 (1)0 的模为 0,没有方向.( )
(2)零向量与任意向量平行,零向量与任意向量垂
直.( )
[答案] (1)× (2)√
返回目录
第25讲 平面向量的概念及其线性运算

平面向量的概念及线性运算PPT课件

平面向量的概念及线性运算PPT课件

42
33
C.1a 1b D.1a 2b
24
33
u u u ru u u ru u u r 解 析 :如 图 ,A F A D D F
由题意知, DE: BE 1: 3 DF: AB,
DF 1uAuBur. 3
uuur AF
1
a 1b 1g(1 a 1b)
2a1b.
2 2 32 2 3 3
答案:B
u u u ru u u r u u u ru u u r 3 .平 面 上 有 三 点 A 、 B 、 C ,设 m A B B C ,n A B B C ,若 向 量 m ,n 的 长 度 恰 好 相 等 ,则 有 ( )
A.A、B、C三点必在同一直线上 B.△ABC必为等腰三角形且∠B为顶点 C.△ABC必为直角三角形且∠B为直角 D.△ABC必为等腰直角三角形
O uuA u ra,O uuB u rb,则
uuur abBA.
(5)实数与向量积的定义:
实数λ与向量a的积是一个向量,记作λa,|λa|=|λ||a|,当λ>0时 ,λa与a方向相同;λ<0时,λa与a方向相反;λ=0时,λa=0.
(6)向量的加法、减法和向量的数乘的综合运算通常叫做向量 的线性运算.向量加法的交换律表达式为a+b=b+a;向量加 法的结合律表达式为(a+b)+c=a+(b+c).
uuu r uuu r 5.已 知 V ABC的 三 个 顶 点 A、B、C及 平 面 内 一 点 P满 足 PAPB
uuur PC0,则 P点 是 V ABC的 ( )
A.外 心 B.内 心
C.重 心 D.垂 心
解 析 :以 PA 、PB为 邻 边 作 平 行 四 边 形 A PB D .如 图 所 示 ,则

平面向量讲义

平面向量讲义

平面向量第一节 平面向量的概念及线性运算一、基础知识1.向量的有关概念(1)向量的定义及表示:既有大小又有方向的量叫做向量.以A 为起点、B 为终点的向量记作AB ―→,也可用黑体的单个小写字母a ,b ,c ,…来表示向量.(2)向量的长度(模):向量AB ―→的大小即向量AB ―→的长度(模),记为|AB ―→|. 2.几种特殊向量单位向量有无数个,它们大小相等,但方向不一定相同;与向量a 平行的单位向量有两个,即向量a |a |和-a|a |.3.向量的线性运算❷多个向量相加,利用三角形法则,应首尾顺次连接,a+b+c表示从始点指向终点的向量,只关心始点、终点.4.共线向量定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使得b =λa . 只有a ≠0才保证实数λ的存在性和唯一性.二、常用结论(1)若P 为线段AB 的中点,O 为平面内任一点,则OP ―→=12(OA ―→+OB ―→).(2)OA ―→=λOB ―→+μOC ―→(λ,μ为实数),若点A ,B ,C 三点共线,则λ+μ=1. 考点一 平面向量的有关概念[典例] 给出下列命题: ①若a =b ,b =c ,则a =c ;②若A ,B ,C ,D 是不共线的四点,则AB ―→=DC ―→是四边形ABCD 为平行四边形的充要条件; ③a =b 的充要条件是|a |=|b |且a ∥b ; ④若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是________.[解析] ①正确.∵a =b ,∴a ,b 的长度相等且方向相同,又b =c ,∴b ,c 的长度相等且方向相同,∴a ,c 的长度相等且方向相同,故a =c . ②正确.∵AB ―→=DC ―→,∴|AB ―→|=|DC ―→|且AB ―→∥DC ―→,又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形, 则AB ―→∥DC ―→且|AB ―→|=|DC ―→|,因此,AB ―→=DC ―→.③不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.④不正确.考虑b =0这种特殊情况. 综上所述,正确命题的序号是①②. [解题技法] 向量有关概念的关键点 (1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制. (3)相等向量的关键是方向相同且长度相等. (4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任意向量共线. [题组训练] 1.给出下列命题:①两个具有公共终点的向量,一定是共线向量;②λa =0(λ为实数),则λ必为零; ③λ,μ为实数,若λa =μb ,则a 与b 共线.其中错误的命题的个数为( ) A .0 B .1C .2 D .3解析:①错误,两向量共线要看其方向而不是起点或终点.②错误,当a =0时,不论λ为何值,λa =0.③错误,当λ=μ=0时,λa =μb =0,此时,a 与b 可以是任意向量.故错误的命题有3个,故选D.2.设a 0为单位向量,下列命题中:①若a 为平面内的某个向量,则a =|a |·a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0,假命题的个数是( )A .0B .1C .2D .3解析:向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.考点二 平面向量的线性运算[典例] (1)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB ―→=( ) A.34AB ―→-14AC ―→ B.14AB ―→-34AC ―→C.34AB ―→+14AC ―→ D.14AB ―→+34AC ―→ (2)如图,在直角梯形ABCD 中,DC ―→=14AB ―→,BE ―→=2EC ―→, 且AE ―→=r AB ―→+s AD ―→,则2r+3s =( )A .1B .2C .3D .4[解析] (1)作出示意图如图所示.EB ―→=ED ―→+DB ―→=12AD ―→+12CB ―→=12×12(AB ―→+AC ―→)+12(AB ―→-AC ―→)=34AB ―→-14AC ―→.故选A. (2)根据图形,由题意可得AE ―→=AB ―→+BE ―→=AB ―→+23BC ―→=AB ―→+23(BA ―→+AD ―→+DC ―→)=13AB ―→+23(AD ―→+DC ―→)=13AB ―→+23⎝⎛⎭⎫AD ―→+14AB ―→=12AB ―→+23AD ―→. 因为AE ―→=r AB ―→+s AD ―→,所以r =12,s =23,则2r +3s =1+2=3.[解题技法] 向量线性运算的解题策略(1)常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行四边形法则,求差用三角形法则,求首尾相连的向量的和用三角形法则.(2)找出图形中的相等向量、共线向量,将所求向量与已知向量转化到同一个平行四边形或三角形中求解. (3)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.(4)与向量的线性运算有关的参数问题,一般是构造三角形,利用向量运算的三角形法则进行加法或减法运算,然后通过建立方程组即可求得相关参数的值.[题组训练]1.设D 为△ABC 所在平面内一点,BC ―→=3CD ―→,则( )A .AD ―→=-13AB ―→+43AC ―→ B .AD ―→=13AB ―→-43AC ―→C .AD ―→=43AB ―→+13AC ―→ D .AD ―→=43AB ―→-13AC ―→解析: 由题意得AD ―→=AC ―→+CD ―→=AC ―→+13BC ―→=AC ―→+13AC ―→-13AB ―→=-13AB ―→+43AC ―→.2.在正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC ―→=λAM ―→+μAN ―→,则实数λ+μ=________. 解析:如图,∵AM ―→=AB ―→+BM ―→=AB ―→+12BC ―→=DC ―→+12BC ―→,①AN ―→=AD ―→+DN ―→=BC ―→+12DC ―→,②由①②得BC ―→=43AN ―→-23AM ―→,DC ―→=43AM ―→-23AN ―→,∴AC ―→=AB ―→+BC ―→=DC ―→+BC ―→=43AM ―→-23AN ―→+43AN ―→-23AM ―→=23AM ―→+23AN ―→,∵AC ―→=λAM ―→+μAN ―→,∴λ=23,μ=23,λ+μ=43.考点三 共线向量定理的应用[典例] 设两个非零向量a 与b 不共线,(1)若AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3a -3b ,求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 同向.[解] (1)证明:∵AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3a -3b ,∴BD ―→=BC ―→+CD ―→=2a +8b +3a -3b =5(a +b )=5AB ―→,∴AB ―→,BD ―→共线. 又∵它们有公共点B ,∴A ,B ,D 三点共线.(2)∵k a +b 与a +k b 同向,∴存在实数λ(λ>0),使k a +b =λ(a +k b ), 即k a +b =λa +λk b .∴(k -λ)a =(λk -1)b .∵a ,b 是不共线的非零向量,∴⎩⎪⎨⎪⎧ k -λ=0,λk -1=0,解得⎩⎪⎨⎪⎧ k =1,λ=1或⎩⎪⎨⎪⎧k =-1,λ=-1, 又∵λ>0,∴k =1.1.向量共线问题的注意事项(1)向量共线的充要条件中,当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,注意待定系数法和方程思想的运用.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得到三点共线.[题组训练]1.在四边形ABCD 中,AB ―→=a +2b ,BC ―→=-4a -b ,CD ―→=-5a -3b ,则四边形ABCD 的形状是( ) A .矩形 B .平行四边形C .梯形 D .以上都不对解析:选C 由已知,得AD ―→=AB ―→+BC ―→+CD ―→=-8a -2b =2(-4a -b )=2BC ―→,故AD ―→∥BC ―→.又因为AB ―→与CD ―→不平行,所以四边形ABCD 是梯形.2.已知向量e 1≠0,λ∈R ,a =e 1+λe 2,b =2e 1,若向量a 与向量b 共线,则( ) A .λ=0 B .e 2=0C .e 1∥e 2 D .e 1∥e 2或λ=0解析:选D 因为向量e 1≠0,λ∈R ,a =e 1+λe 2,b =2e 1,又因为向量a 和b 共线,存在实数k ,使得a =k b ,所以e 1+λe 2=2k e 1,所以λe 2=(2k -1)e 1,所以e 1∥e 2或λ=0.3.已知O 为△ABC 内一点,且AO ―→=12(OB ―→+OC ―→),AD ―→=t AC ―→,若B ,O ,D 三点共线,则t =( )A.14B.13C.12D.23解析:选B 设E 是BC 边的中点,则12(OB ―→+OC ―→)=OE ―→,由题意得AO ―→=OE ―→,所以AO ―→=12AE ―→=14(AB ―→+AC ―→)=14AB ―→+14t AD ―→,又因为B ,O ,D 三点共线,所以14+14t =1,解得t =13,故选B.4.已知O ,A ,B 三点不共线,P 为该平面内一点,且OP ―→=OA ―→+AB―→|AB ―→|,则( )A .点P 在线段AB 上B .点P 在线段AB 的延长线上C .点P 在线段AB 的反向延长线上D .点P 在射线AB 上解析:由OP ―→=OA ―→+AB ―→|AB ―→|,得OP ―→-OA ―→=AB ―→|AB ―→|,∴AP ―→=1|AB ―→|·AB ―→,∴点P 在射线AB 上,故选D.第二节 平面向量基本定理及坐标表示一、基础知识1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1e 2叫做表示这一平面内所有向量的一组基底. (1)基底e 1,e 2必须是同一平面内的两个不共线向量,零向量不能作为基底; (2)基底给定,同一向量的分解形式唯一;(3)如果对于一组基底e 1,e 2,有a =λ1e 1+λ2e 2=μ1e 1+μ2e 2,则可以得到⎩⎪⎨⎪⎧λ1=μ1,λ2=μ2.2.平面向量的坐标运算(1)向量的加法、减法、数乘向量及向量的模:设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.若a =b ,则x 1=x 2且y 1=y 2. (2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1), |AB ―→|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.当且仅当x 2y 2≠0时,a ∥b 与x 1x 2=y 1y 2等价.即两个不平行于坐标轴的共线向量的对应坐标成比例.考点一 平面向量基本定理及其应用[典例] 如图,以向量OA ―→=a ,OB ―→=b 为邻边作平行四边形OADB ,BM ―→=13BC ―→,CN―→=13CD ―→,用a ,b 表示OM ―→,ON ―→,MN ―→. [解] ∵BA ―→=OA ―→-OB ―→=a -b ,BM ―→=16BA ―→=16a -16b ,∴OM ―→=OB ―→+BM ―→=16a +56b .∵OD ―→=a +b ,∴ON ―→=OC ―→+13CD ―→=12OD ―→+16OD ―→=23OD ―→=23a +23b ,∴MN ―→=ON ―→-OM ―→=23a +23b -16a -56b =12a -16b .综上,OM ―→=16a +56b ,ON ―→=23a +23b ,MN ―→=12a -16b .[解题技法]1.平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.2.应用平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面向量的一组基底,基底可以有无穷多组.(2)利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或数乘运算.[题组训练]1.在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB ―→=a ,AC ―→=b ,则P Q―→=( )A.13a +13b B .-13a +13b C.13a -13b D .-13a -13b 解析:由题意知P Q ―→=PB ―→+B Q ―→=23AB ―→+13BC ―→=23AB ―→+13(AC ―→-AB ―→)=13AB ―→+13AC ―→=13a +13b .2.已知在△ABC 中,点O 满足OA ―→+OB ―→+OC ―→=0,点P 是OC 上异于端点的任意一点,且OP ―→=m OA ―→+n OB ―→,则m +n 的取值范围是________.解析:依题意,设OP ―→=λOC ―→ (0<λ<1),由OA ―→+OB ―→+OC ―→=0,知OC ―→=-(OA ―→+OB ―→), 所以OP ―→=-λOA ―→-λOB ―→,由平面向量基本定理可知,m +n =-2λ,所以m +n ∈(-2,0).考点二 平面向量的坐标运算[典例] 已知A (-2,4),B (3,-1),C (-3,-4).设AB ―→=a ,BC ―→=b ,CA ―→=c ,且CM ―→=3c ,CN ―→=-2b , (1)求3a +b -3c ;(2)求M ,N 的坐标及向量MN ―→的坐标.[解] 由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42). (2)设O 为坐标原点,∵CM ―→=OM ―→-OC ―→=3c ,∴OM ―→=3c +OC ―→=(3,24)+(-3,-4)=(0,20). ∴M (0,20).又∵CN ―→=ON ―→-OC ―→=-2b ,∴ON ―→=-2b +OC ―→=(12,6)+(-3,-4)=(9,2), ∴N (9,2),∴MN ―→=(9,-18). [变透练清]1.(变结论)本例条件不变,若a =m b +n c ,则m =________,n =________.解析:∵m b +n c =(-6m +n ,-3m +8n ),a =(5,-5),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.2.已知O 为坐标原点,向量OA ―→=(2,3),OB ―→=(4,-1),且AP ―→=3PB ―→,则|OP ―→|=________.解析:设P (x ,y ),由题意可得A ,B 两点的坐标分别为(2,3),(4,-1),由AP ―→=3PB ―→,可得⎩⎪⎨⎪⎧x -2=12-3x ,y -3=-3y -3,解得⎩⎪⎨⎪⎧x =72,y =0,故|OP ―→|=72.[解题技法]1.平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用“向量相等,则其坐标相同”这一原则,通过列方程(组)来进行求解. 2.向量坐标运算的注意事项(1)向量坐标与点的坐标形式相似,实质不同. (2)向量坐标形式的线性运算类似多项式的运算.(3)向量平行与垂直的坐标表达形式易混淆,需清楚结论推导过程与结果,加以区分. 考点三 平面向量共线的坐标表示[典例] 已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线;(2)若AB ―→=2a +3b ,BC ―→=a +m b ,且A ,B ,C 三点共线,求m 的值. [解] (1)∵a =(1,0),b =(2,1),∴k a -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2),∵k a -b 与a +2b 共线,∴2(k -2)-(-1)×5=0,∴k =-12.(2)AB ―→=2(1,0)+3(2,1)=(8,3),BC ―→=(1,0)+m (2,1)=(2m +1,m ). ∵A ,B ,C 三点共线,∴AB ―→∥BC ―→,∴8m -3(2m +1)=0,∴m =32.[解题技法]1.平面向量共线的充要条件的2种形式(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0. (2)若a ∥b (b ≠0),则a =λb . 2.两个向量共线的充要条件的作用判断两个向量是否共线(或平行),可解决三点共线的问题;另外,利用两个向量共线的充要条件可以列出方程(组),求参数的值.[题组训练]1.已知向量a =(1,2),b =(-3,2),若(k a +b )∥(a -3b ),则实数k 的取值为( ) A .-13 B.13C .-3D .3解析:选A k a +b =k (1,2)+(-3,2)=(k -3,2k +2).a -3b =(1,2)-3(-3,2)=(10,-4), 则由(k a +b )∥(a -3b )得(k -3)×(-4)-10×(2k +2)=0,所以k =-13.2.已知在平面直角坐标系xOy 中,P 1(3,1),P 2(-1,3),P 1,P 2,P 3三点共线且向量OP 3―→与向量a =(1,-1)共线,若OP 3―→=λOP 1―→+(1-λ)OP 2―→,则λ=( )A .-3B .3C .1D .-1解析:设OP 3―→=(x ,y ),则由OP 3―→∥a 知x +y =0,于是OP 3―→=(x ,-x ).若OP 3―→=λOP 1―→+(1-λ)OP 2―→,则有(x ,-x )=λ(3,1)+(1-λ)(-1,3)=(4λ-1,3-2λ),即⎩⎪⎨⎪⎧4λ-1=x ,3-2λ=-x ,所以4λ-1+3-2λ=0,解得λ=-1,故选D.3.在梯形ABCD 中,AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________. 解析:∵在梯形ABCD 中,DC =2AB ,AB ∥CD ,∴DC ―→=2AB ―→. 设点D 的坐标为(x ,y ),则DC ―→=(4-x,2-y ),AB ―→=(1,-1), ∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 第三节 平面向量的数量积一、基础知识1.向量的夹角(1)定义:已知两个非零向量a 和b ,如图所示,作OA ―→=a ,OB ―→=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角,记作〈a ,b 〉.只有两个向量的起点重合时所对应的角才是两向量的夹角. (2)范围:夹角θ的范围是[0,π].当θ=0时,两向量a ,b 共线且同向;当θ=π2时,两向量a ,b 相互垂直,记作a ⊥b ;当θ=π时,两向量a ,b 共线但反向. 2.平面向量数量积的定义已知两个非零向量a 与b ,我们把数量|a ||b | cos θ叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ,其中θ是a 与b 的夹角.规定:零向量与任一向量的数量积为零. 3.平面向量数量积的几何意义 (1)一个向量在另一个向量方向上的投影设θ是a ,b 的夹角,则|b |cos θ叫做向量b 在向量a 的方向上的投影,|a |cos θ叫做向量a 在向量b 的方向上的投影.(2)a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 投影和两向量的数量积都是数量,不是向量. 4.向量数量积的运算律(1)交换律:a ·b =b ·a .(2)数乘结合律:(λa )·b =λ(a ·b )=a ·(λb ). (3)分配律:(a +b )·c =a ·c +b ·c .向量数量积的运算不满足乘法结合律,即(a ·b )·c 不一定等于a ·(b ·c ),这是由于(a ·b )·c 表示一个与c 共线的向量,a ·(b ·c )表示一个与a 共线的向量,而c 与a 不一定共线.5.平面向量数量积的性质设a ,b 为两个非零向量,e 是与b 同向的单位向量,θ是a 与e 的夹角,则 (1)e ·a =a ·e =|a |cos θ.(2)a ⊥b ⇔a ·b =0.(3)当a 与b 同向时,a ·b =|a||b|;当a 与b 反向时,a ·b =-|a||b|. 特别地,a ·a =|a|2或|a|=a ·a .(4)cos θ=a ·b|a ||b |.(5)|a ·b |≤|a||b|.6.平面向量数量积的坐标表示已知两个非零向量a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则(1)|a |=x 21+y 21; (3)a ⊥b ⇔x 1x 2+y 1y 2=0;(2)a ·b =x 1x 2+y 1y 2;_ (4)cos θ=x 1x 2+y 1y 2x 21+y 21 x 22+y 22.二、常用结论汇总1.平面向量数量积运算的常用公式(1)(a +b )·(a -b )=a 2-b 2;(2)(a ±b )2=a 2±2a ·b +b 2. 2.有关向量夹角的两个结论(1)两个向量a 与b 的夹角为锐角,则有a ·b >0,反之不成立(因为夹角为0时不成立); (2)两个向量a 与b 的夹角为钝角,则有a ·b <0,反之不成立(因为夹角为π时不成立).考点一 平面向量的数量积的运算[典例] (1)若向量m =(2k -1,k )与向量n =(4,1)共线,则m ·n =( ) A .0 B .4C .-92D .-172(2)在如图所示的平面图形中,已知OM =1,ON =2,∠MON =120°,BM ―→=2MA ―→,CN ―→=2NA ―→,则BC ―→·OM ―→的值为( )A .-15B .-9C .-6D .0[解析] (1)∵向量m =(2k -1,k )与向量n =(4,1)共线,∴2k -1-4k =0,解得k =-12,∴m =⎝⎛⎭⎫-2,-12,∴m ·n =-2×4+⎝⎛⎭⎫-12×1=-172. (2)法一:如图,连接MN .∵BM ―→=2MA ―→,CN ―→=2NA ―→,∴AM AB =AN AC =13.∴MN ∥BC ,且MN BC =13.∴BC ―→=3MN ―→=3(ON ―→-OM ―→).∴BC ―→·OM ―→=3(ON ―→·OM ―→-OM ―→2)=3(2×1×cos 120°-12)=-6.法二:在△ABC 中,不妨设∠A =90°,取特殊情况ON ⊥AC ,以A 为坐标原点,AB ,AC所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,因为∠MON =120°,ON =2,OM =1,所以O ⎝⎛⎭⎫2,32,C ⎝⎛⎭⎫0,332,M ⎝⎛⎭⎫52,0,B ⎝⎛⎭⎫152,0.故BC ―→·OM ―→=⎝⎛⎭⎫-152,332·⎝⎛⎭⎫12,-32=-154-94=-6.[解题技法] 求非零向量a ,b 的数量积的策略(1)若两向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,则需要通过平移使它们的起点重合,再计算.(2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出向量a ,b ,然后根据平面向量的数量积的定义进行计算求解.(3)若图形适合建立平面直角坐标系,可建立坐标系,求出a ,b 的坐标,通过坐标运算求解. [题组训练]1.已知矩形ABCD 中,AB =2,BC =1,则AC ―→·CB ―→=( ) A .1 B .-1C.6D .2 2 解析:选B 设AB ―→=a ,AD ―→=b ,则a ·b =0,∵|a |=2,|b |=1,∴AC ―→·CB ―→=(a +b )·(-b )=-a ·b -b 2=-1.2.已知向量a ,b 满足a ·(b +a )=2,且a =(1,2),则向量b 在a 方向上的投影为( ) A.55 B .-55C .-255 D .-355解析:由a =(1,2),可得|a |=5,由a ·(b +a )=2,可得a ·b +a 2=2, ∴a ·b =-3,∴向量b 在a 方向上的投影为a ·b |a |=-355.3.在△ABC 中,已知AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1,M 为BC 上的一点,且AM ―→=λAB ―→+μAC ―→(λ,μ∈R),且AM ―→·BC ―→=0,则 λμ的值为________.解析:法一:∵BC ―→=AC ―→-AB ―→,AM ―→·BC ―→=0,∴(λAB ―→+μAC ―→)·(AC ―→-AB ―→)=0,∵AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1,∴-λ|AB ―→|2+μ|AC ―→|2=0,即-4λ+μ=0,∴λμ=14.法二:根据题意,建立如图所示的平面直角坐标系,则A (0,0),B (0,2),C (1,0),所以AB ―→=(0,2),AC ―→=(1,0),BC ―→=(1,-2).设M (x ,y ),则AM ―→=(x ,y ),所以AM ―→·BC ―→=(x ,y )·(1,-2)=x -2y =0,所以x =2y ,又AM ―→=λAB ―→+μAC ―→,即(x ,y )=λ(0,2)+μ(1,0)=(μ,2λ),所以x =μ,y =2λ,所以λμ=12y 2y =14.考点二 平面向量数量积的性质考法(一) 平面向量的模[典例] (1)已知非零向量a ,b 满足a ·b =0,|a |=3,且a 与a +b 的夹角为π4,则|b |=( )A .6B .32C .2 2D .3(2)已知向量a ,b 为单位向量,且a ·b =-12,向量c 与a +b 共线,则|a +c |的最小值为( )A .1 B.12C.34 D.32[解析] (1)∵a ·b =0,|a |=3,∴a ·(a +b )=a 2+a ·b =|a ||a +b |cos π4,∴|a +b |=32,将|a +b |=32两边平方可得,a 2+2a ·b +b 2=18,解得|b |=3,(2)∵向量c 与a +b 共线,∴可设c =t (a +b )(t ∈R),∴a +c =(t +1)a +t b ,∴(a +c )2=(t +1)2a 2+2t (t +1)·a ·b +t 2b 2,∵向量a ,b 为单位向量,且a ·b =-12,∴(a +c )2=(t +1)2-t (t +1)+t 2=t 2+t +1≥34,∴|a +c |≥32,∴|a +c |的最小值为32,考法(二) 平面向量的夹角[典例] (1)已知平面向量a ,b 的夹角为π3,且|a |=1,|b |=12,则a +2b 与b 的夹角是( )A.π6B.5π6C.π4D.3π4(2)已知向量a =(1,3),b =(3,m )且b 在a 方向上的投影为-3,则向量a 与b 的夹角为________. [解析] (1)因为|a +2b |2=|a |2+4|b |2+4a ·b =1+1+4×1×12×cos π3=3,所以|a +2b |= 3.又(a +2b )·b =a ·b +2|b |2=1×12×cos π3+2×14=14+12=34,所以cos 〈a +2b ,b 〉=(a +2b )·b |a +2b ||b |=343×12=32,所以a +2b 与b 的夹角为π6.(2)因为b 在a 方向上的投影为-3,所以|b |cos 〈a ,b 〉=-3,又|a |=12+(3)2=2,所以a ·b =|a ||b |cos 〈a ,b 〉=-6,又a ·b =3+3m ,所以3+3m =-6,解得m =-33,则b =(3,-33),所以|b |=32+(-33)2=6,所以cos 〈a ,b 〉=a ·b|a ||b |=-62×6=-12,因为0≤〈a ,b 〉≤π,所以a 与b 的夹角为2π3.考法(三) 平面向量的垂直[典例] (1)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2C.3π4D .π(2)已知向量AB ―→与AC ―→的夹角为120°,且|AB ―→|=3,|AC ―→|=2.若AP ―→=λAB ―→+AC ―→,且AP ―→⊥BC ―→,则实数λ的值为________.[解析] (1)设a 与b 的夹角为θ,因为|a |=223|b |,(a -b )⊥(3a +2b ), 所以(a -b )·(3a +2b )=3|a |2-2|b |2-a ·b =83|b |2-2|b |2-223|b |2cos θ=0,解得cos θ=22,因为θ∈[0,π],所以θ=π4. (2)由AP ―→⊥BC ―→,知AP ―→·BC ―→=0,即AP ―→·BC ―→=(λAB ―→+AC ―→)·(AC ―→-AB ―→)=(λ-1)AB ―→·AC ―→-λAB ―→2+AC ―→2=(λ-1)×3×2×⎝⎛⎭⎫-12-λ×9+4=0,解得λ=712. [解题技法]1.利用坐标运算证明两个向量的垂直问题若证明两个向量垂直,先根据共线、夹角等条件计算出这两个向量的坐标;然后根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.[题组训练]1.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( ) A .-4 B .-3C .-2 D .-1解析: ∵(m +n )⊥(m -n ),∴(m +n )·(m -n )=m 2-n 2=(λ+1)2+1-(λ+2)2-4=0,解得λ=-3.故选B. 2.已知非零向量a ,b 的夹角为60°,且|b |=1,|2a -b |=1,则|a |=( ) A.12B .1C. 2 D .2 解析: ∵非零向量a ,b 的夹角为60°,且|b |=1,∴a ·b =|a |×1×12=|a |2,∵|2a -b |=1,∴|2a -b |2=4a 2-4a ·b +b 2=4|a |2-2|a |+1=1,∴4|a |2-2|a |=0,∴|a |=12,故选A.3.已知向量a ,b 满足|a |=1,|b |=2,a +b =(1,3),记向量a ,b 的夹角为θ,则t a n θ=________. 解析:∵|a |=1,|b |=2,a +b =(1,3),∴(a +b )2=|a |2+|b |2+2a ·b =5+2a ·b =1+3,∴a ·b =-12,∴cosθ=a ·b|a |·|b |=-14,∴sin θ=1-⎝⎛⎭⎫-142=154,∴t a n θ=sin θc os θ=-15. 第四节 平面向量的综合应用 考点一 平面向量与平面几何[典例] 在平行四边形ABCD 中,|AB ―→|=12,|AD ―→|=8.若点M ,N 满足BM ―→=3MC ―→,DN ―→=2NC ―→,则AM ―→·NM ―→=( )A .20B .15C .36D .6[解析] 法一:由BM ―→=3MC ―→,DN ―→=2NC ―→知,点M 是BC 的一个四等分点,且BM =34BC ,点N 是DC 的一个三等分点,且DN =23DC ,所以AM ―→=AB ―→+BM ―→=AB ―→+34AD ―→,AN ―→=AD ―→+DN ―→=AD ―→+23AB ―→,所以NM ―→=AM ―→-AN ―→=AB ―→+34AD ―→-⎝⎛⎭⎫AD ―→+23AB ―→=13AB ―→- 14AD ―→,所以AM ―→·NM ―→=⎝⎛⎭⎫AB ―→+34AD ―→·⎝⎛⎭⎫13AB ―→-14AD ―→=13⎝⎛⎭⎫AB ―→+34AD ―→·⎝⎛⎭⎫AB ―→-34AD ―→= 13⎝⎛⎭⎫AB ―→2-916AD ―→2=13⎝⎛⎭⎫144-916×64=36,故选C.法二:不妨设∠DAB 为直角,以AB 所在直线为x 轴,AD 所在直线为y 轴建立如图所示的平面直角坐标系.则M (12,6),N (8,8),所以AM ―→=(12,6),NM ―→=(4,-2),所以AM ―→·NM ―→=12×4+6×(-2)=36,故选C.[题组训练]1.若O 为△ABC 所在平面内任一点,且满足(OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0,则△ABC 的形状为( ) A .等腰三角形 B .直角三角形C .正三角形 D .等腰直角三角形解析:选A 由(OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0,得CB ―→·(AB ―→+AC ―→)=0,∵AB ―→-AC ―→=CB ―→, ∴(AB ―→-AC ―→)·(AB ―→+AC ―→)=0,即|AB ―→|=|AC ―→|,∴△ABC 是等腰三角形.2.已知P 为△ABC 所在平面内一点,AB ―→+PB ―→+PC ―→=0,|AB ―→|=|PB ―→|=|PC ―→|=2,则△ABC 的面积等于( )A. 3 B .23C .3 3 D .4 3解析:由|PB ―→|=|PC ―→|得,△PBC 是等腰三角形,取BC 的中点D ,连接PD (图略),则PD ⊥BC ,又AB ―→+PB ―→+PC ―→=0,所以AB ―→=-(PB ―→+PC ―→)=-2PD ―→,所以PD =12AB =1,且PD ∥AB ,故AB ⊥BC ,即△ABC 是直角三角形,由|PB ―→|=2,|PD ―→|=1可得|BD ―→|=3,则|BC ―→|=23,所以△ABC 的面积为12×2×23=2 3.3.如图,在扇形OAB 中,OA =2,∠AOB =90°,M 是OA 的中点,点P 在弧AB 上,则PM ―→·PB ―→的最小值为________.解析:如图,以O 为坐标原点,OA ―→为x 轴的正半轴,OB ―→为y 轴的正半轴建立平面直角坐标系,则M (1,0),B (0,2),设P (2cos θ,2sin θ),θ∈⎣⎡⎦⎤0,π2,所以PM ―→·PB ―→=(1-2cos θ,-2sin θ)·(-2cos θ,2-2sin θ)=4-2cos θ- 4sin θ=4-2(cos θ+2sin θ)=4-25sin(θ+φ)⎝⎛⎭⎫其中sin φ=55,c os φ=255,所以PM ―→·PB ―→的最小值为4-2 5.答案:4-2 5考点二 平面向量与解析几何[典例] 已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. [解] (1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b , 所以-3cos x =3sin x .则t a n x =-33.又x ∈[0,π],所以x =5π6. (2)f (x )=a ·b =(cos x ,sin x )·(3,-3)=3cos x -3sin x =23cos ⎝⎛⎭⎫x +π6. 因为x ∈[0,π],所以x +π6∈⎣⎡⎦⎤π6,7π6,从而-1≤cos ⎝⎛⎭⎫x +π6≤32. 于是,当x +π6=π6,即x =0时,f (x )取到最大值3;当x +π6=π,即x =5π6时,f (x )取到最小值-2 3.[题组训练]1.已知向量OA ―→=(k,12),OB ―→=(4,5),OC ―→=(10,k ),且A ,B ,C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________.解析:∵AB ―→=OB ―→-OA ―→=(4-k ,-7),BC ―→=OC ―→-OB ―→=(6,k -5),且AB ―→∥BC ―→,∴(4-k )(k -5)+6×7=0,解得k =-2或k =11.由k <0,可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y -3=0.2.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP ―→·FP ―→的最大值为________.解析:由题意,得F (-1,0),设P (x 0,y 0),则有x 204+y 203=1,解得y 20=3⎝⎛⎭⎫1-x 204,因为FP ―→=(x 0+1,y 0),OP ―→=(x 0,y 0),所以OP ―→·FP ―→=x 0(x 0+1)+y 20=x 20+x 0+3⎝⎛⎭⎫1-x 204=x 204+x 0+3,对应的抛物线的对称轴方程为x 0=-2,因为-2≤x 0≤2,故当x 0=2时,OP ―→·FP ―→取得最大值224+2+3=6.考点三 平面向量与三角函数[典例] 已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A ―→+PB ―→+PC ―→|的最大值为( )A .6B .7C .8D .9[解析] 由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,知线段AC 为圆的直径,设圆心为O ,故P A ―→+PC ―→=2PO ―→=(-4,0),设B (a ,b ),则a 2+b 2=1且a ∈[-1,1],PB ―→=(a -2,b ),所以P A ―→+PB ―→+PC ―→=(a -6,b ).故|P A ―→+PB ―→+PC ―→|=-12a +37,所以当a =-1时,|P A ―→+PB ―→+PC ―→|取得最大值49=7.[解题技法]平面向量与三角函数的综合问题的解题思路(1)若给出的向量坐标中含有三角函数,求角的大小,解题思路是运用向量共线或垂直的坐标表示,或等式成立的条件等,得到三角函数的关系式,然后求解.(2)若给出的向量坐标中含有三角函数,求向量的模或者向量的其他表达形式,解题思路是利用向量的运算,结合三角函数在定义域内的有界性或基本不等式进行求解.[题组训练]1.已知a =(cos α,sin α),b =(cos(-α),sin(-α)),那么a ·b =0是α=k π+π4(k ∈Z)的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:∵a ·b =cos α·cos(-α)+sin α·sin(-α)=cos 2α-sin 2α=cos 2α,若a ·b =0,则cos 2α=0,∴2α=2k π±π2(k ∈Z),解得α=k π±π4(k ∈Z).∴a ·b =0是α=k π+π4(k ∈Z)的必要不充分条件.故选B.2.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n = (cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角A ,B 的大小分别为( )A.π6,π3B.2π3,π6C.π3,π6D.π3,π3解析:选C 由m ⊥n ,得m ·n =0,即3cos A -sin A =0,由题意得cos A ≠0,∴t a n A =3,又A ∈(0,π),∴A =π3.又a cos B +b cos A =2R sin A cos B +2R sin B cos A =2R sin(A +B )=2R sin C =c (R 为△ABC 外接圆半径),且a cos B +b cos A =c sin C ,所以c =c sin C ,所以sin C =1,又C ∈(0,π),所以C =π2,所以B =π-π3-π2=π6.。

平面向量-讲义(学生版)

平面向量-讲义(学生版)
平面向量
一、 平面向量的线性运算
1. 基础概念
(1)相等向量:同向且等长的有向线段表示同一向量,或相等向量. (2)平行向量:如果向量的基线互相平行或重合,则称这些向量共线或平行.
向量 平行于向量 ,记作 // . (3)零向量:长度等于零的向量,叫做零向量,记作: .
零向量的方向不确定,零向量与任意向量平行.
B.
C.
的两条对角线相交于点 ,且
D.
,则
( ).
A. B. C. D.
3. 两个定理
(1)平面向量基本定理:如果 和 是一平面内的两个不平行的向量,那么该平面内的任一向量 ,
存在唯一的一对实数 , ,使

(2)平面向量的三点共线定理:若 、 、 三点共线,则
,且

经典例题 7. 如图,在
中,点 为线段 上靠近点 的三等分点,点 在 ,则实数 的值为( ).
C. 若
,则
D. 若
,则 与 的夹角为
,则( ).
25. 如图,在矩形
中,

,点 为
,则
的值是( ).
的中点,点 在边
上,若
8
A.
B.
C.
D.
巩固练习
26. 已知向量


,若
,则实数

27. 已知向量 A.
, B.
,若
,则实数 的值为( ).
C.
D.
28. 设向量

,且
,则

29. 已知
为等腰直角三角形,
经典例题
1. 下列命题:
①平行向量一定相等;
②不相等的向量一定不平行;
③平行于同一个向量的两个向量是共线向量;

第一节平面向量的概念及线性运算课件共105张PPT

第一节平面向量的概念及线性运算课件共105张PPT

又知B→O=λA→B+μA→C,
∴λ=-23,μ=13,∴λ-2μ=-23-2×13=-43,故选D.
4.[多选]如图所示,点A,B,C是圆O上的三点,线段OC与线段AB交于圆内一 点P,若A→P=λA→B,O→C=μO→A+3μO→B,则( AC )
知识点二 向量的线性运算 向量运算 定义 法则(或几何意义)
运算律
加法
求两个向 量和的运

交换律:a+b=_b_+__a_;
结合律:(a+b)+c=a+ (__b_+__c___)
向量运算
定义
法则(或几何意义)
运算律
减法
求a与b的相反 向量-b的和的 运算
a-b=a+(_-__b__)
数乘
求实数λ与向量a 的积的运算
②错误:长度等于1个单位的向量,叫做单位向量,即单位向量的模都为1,但 是方向不确定,所以单位向量不一定都相等.
③错误:向量本身不能比较大小,向量的模可以比较大小.正确说法:若|a|= 2,|b|=1,则|a|>|b|.
④正确:因为a=b,所以a,b的长度相等且方向相同.又b=c,所以b,c的长 度相等且方向相同.所以a,c的长度相等且方向相同,故a=c.
⑤错误:若向量A→B=C→D,则|A→B|=|C→D|且A→B∥C→D,所以直线AB与CD平行或重 合,故A,B,C,D四点不一定能构成平行四边形.正确说法:已知A,B,C,D是 不共线的四点,若向量A→B=C→D,则A,B,C,D四点能构成平行四边形.
⑥错误:零向量与任一向量平行,故当a∥b,b∥c时,若 b=0,则a,c不一定
方/法/指/导(来自课堂的最有用的方法) 向量线性运算的解题策略
(1)常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行 四边形法则,求差用三角形法则,求首尾相连向量的和用三角形法则.

第1讲 平面向量的概念及线性运算

第1讲 平面向量的概念及线性运算

第1讲平面向量的概念及线性运算1.了解向量的实际背景.2.理解平面向量的概念,理解两个向量相等的含义.3.理解向量的几何表示.4.掌握向量加法、减法的运算,并理解其几何意义.5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.6.了解向量线性运算的性质及其几何意义.1.向量的有关概念(1)向量:既有大小又有□1方向的量叫做向量,向量的大小叫做向量的□2模.(2)零向量:长度为□30的向量,其方向是任意的.(3)单位向量:长度等于□41个单位长度的向量.(4)平行向量:方向相同或□5相反的非零向量,又叫共线向量,规定:0与任意向量共线.(5)相等向量:长度相等且方向□6相同的向量.(6)相反向量:长度相等且方向□7相反的向量.2.平面向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算□8三角形法则□9平行四边形法则(1)交换律:a +b =□10b +a ;(2)结合律:(a +b )+c=□11a +(b +c )减法求a 与b 的相反向量-b 的和的运算叫做a 与b 的差□12三角形法则a -b =□13a +(-b )数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa与a的方向□14相同;当λ<0时,λa与a的方向□15相反;当λ=0时,λa=□160(1)结合律:λ(μa)=□17λμa=□18μ(λa);(2)第一分配律:(λ+μ)a=□19λa+μa;(3)第二分配律:λ(a+b)=□20λa+λb3.共线向量定理向量a(a≠0)与b共线的充要条件是:存在唯一一个实数λ,使□21b=λa.共线向量定理中易忽视“a≠0”,若忽视“a≠0”,则λ可能不存在;也可能有无数个.常用结论1.若P为线段AB的中点,O为平面内任一点,则OP→=12(OA→+OB→).2.若G为△ABC的重心,则有(1)GA→+GB→+GC→=0;(2)AG→=13(AB→+AC→).1.思考辨析(在括号内打“√”或“×”)(1)向量与有向线段是一样的,因此可以用有向线段来表示向量.()(2)若两个向量共线,则其方向必定相同或相反.()(3)若向量AB→与向量CD→是共线向量,则A,B,C,D四点在一条直线上.()(4)当两个非零向量a,b共线时,一定有b=λa,反之亦成立.()答案:(1)×(2)×(3)×(4)√2.回源教材(1)已知a,b是两个不共线向量,向量b-t a与12a-32b共线,则实数t =.解析:因为b-t a与12a-32b共线,所以存在λ∈R,使得b-t a=λ(12a-32b),t ,=1,=-23,=13.答案:13(2)若AB →=3a ,CD →=-5a ,且|AD →|=|BC →|,则四边形ABCD 的形状是.解析:因为AB→=3a ,CD →=-5a ,故AB →∥CD →,且|AB →|≠|CD →|.又|AD →|=|BC →|,所以四边形ABCD 是等腰梯形.答案:等腰梯形(3)在平行四边形ABCD 中,BC 的中点为M ,且AB →=a ,AD →=b ,用a ,b 表示AM→=.解析:AM →=AB →+BM →=AB →+12AD →=a +12b .答案:a +12b平面向量的概念例1(1)如图所示,O 是正六边形ABCDEF 的中心,则与BC→相等的向量为()A.BA →B.CD →C.AD→ D.OD→解析:D A ,B 选项均与BC →方向不同,C 选项与BC →长度不相等,D 选项与BC →方向相同,长度相等.(2)(多选)下列命题中正确的是()A.向量AB→的长度与向量BA →的长度相等B.向量a 与b 平行,则a 与b 的方向相同或相反C.两个有共同起点且相等的向量,其终点必相同D.两个终点相同的向量,一定是共线向量解析:AC对于A ,向量AB →与向量BA →的长度相等,方向相反,故A 正确;对于B ,向量a 与b 平行,且a 或b 为零向量时,不满足条件,故B 错误;对于C ,两个有共同起点且相等的向量,其终点也相同,故C 正确;对于D ,两个终点相同的向量,不一定是共线向量,故D 错误.反思感悟平行向量有关概念的四个关注点(1)非零向量的平行具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.(4)a|a |是与a 同方向的单位向量.训练1(1)(2024·福州模拟)如图,在正△ABC 中,D ,E ,F 均为所在边的中点,则以下向量和FC→相等的是()A.EF →B.FB →C.DF→ D.ED→解析:D ∵EF→,FB →,DF →与FC →方向不同,∴EF →,FB →,DF →与FC →均不相等;∵ED→与FC →方向相同,长度相等,∴ED →=FC →.(2)(多选)下列说法中正确的是()A.单位向量都相等B.任一向量与它的相反向量不相等C.若|a |=|b |,则a 与b 的长度相等,与方向无关D.若a 与b 是相反向量,则|a |=|b |解析:CD 对于A ,单位向量方向不同时并不相等,A 错误;对于B ,0的相反向量为0,B 错误;对于C ,|a |=|b |,则a 与b 的长度相等,与方向无关,C 正确;对于D ,相反向量是长度相等,方向相反的向量,D 正确.平面向量的线性运算向量的线性运算例2(2024·德宏州质量监测)在△ABC 中,若AD 为BC 边上的中线,点E在AD 上,且AE =2ED ,则EB →=()A.23AB →-13AC →B.23AC →-13AB →C.76AB →-56AC →D.76AC →-56AB →解析:A 如图所示.在△ABC 中,因为AD 为BC 边上的中线,所以D 为BC 的中点.由平行四边形法则,得AD→=12(AB →+AC →).又点E 在AD 上,且AE =2ED ,所以EA→=-23AD →,所以EB→=EA →+AB →=-23AD →+AB →=-23×12(AB →+AC →)+AB→=-13AB →-13AC →+AB→=23AB →-13AC →.故选A.根据向量线性运算求参数例3(2024·江西重点中学协作体第一次联考)如图,在平行四边形ABCD 中,M 为BC 的中点,AC 与MD 相交于点P .若AP→=xAB →+yAD →,则x +y =()A.1B.43C.53D.2解析:B 因为在平行四边形ABCD 中,M 为BC 的中点,AC 与MD 相交于点P ,所以AD CM =AP PC =2,所以AP →=23AC →=23(AB →+AD →).又AP →=xAB →+yAD →,所以x =y =23,x +y =43.故选B.反思感悟平面向量线性运算的常见类型及解题策略(1)向量求和用平行四边形法则或三角形法则;求差用向量减法的几何意义.(2)求参数问题可以通过向量的运算将向量表示出来,进行比较,求参数的值.训练2(1)(2024·茂名模拟)在△ABC 中,AB→=c ,AC →=b .若点M 满足MC →=2BM →,则AM →=()A.13b +23c B.23b -13c C.53c -23b D.23b +13c 解析:A由题意可得AM →=AB →+BM →=AB →+13BC →=AB →+13(AC →-AB →)=13AC →+23AB →=13b +23c .故选A.(2)在△ABC 中,AB =2,BC =33,∠ABC =30°,AD 为BC 边上的高.若AD →=λAB →+μAC →,则λ-μ=.解析:如图,∵AD 为BC 边上的高,∴AD ⊥BC .∵AB =2,∠ABC =30°,∴BD =3=13BC ,∴AD →=AB →+BD →=AB →+13BC→=AB →+13(AC →-AB →)=23AB →+13AC →.又AD →=λAB →+μAC →,∴λ=23,μ=13,故λ-μ=13.答案:13共线向量定理及应用例4(1)已知平面向量a ,b 不共线,AB→=4a +6b ,BC →=-a +3b ,CD →=a +3b ,则()A.A ,B ,D 三点共线B.A ,B ,C 三点共线C.B ,C ,D 三点共线D.A ,C ,D 三点共线解析:D 对于A ,BD →=BC →+CD →=-a +3b +(a +3b )=6b ,与AB →不共线,A 不正确;对于B ,AB→=4a +6b ,BC →=-a +3b ,则AB →与BC →不共线,B 不正确;对于C ,BC→=-a +3b ,CD →=a +3b ,则BC →与CD →不共线,C 不正确;对于D ,AC →=AB →+BC →=4a +6b +(-a +3b )=3a +9b =3CD →,即AC →∥CD →,又线段AC 与CD 有公共点C ,所以A ,C ,D 三点共线,D 正确.故选D.(2)(2024·枣庄期末)已知D 为线段AB 上的任意一点,O 为直线AB 外一点,A 关于点O 的对称点为C .若OD→=xOB →+yOC →,则x -y 的值为()A.-1B.0C.1D.2解析:C依题意可得A ,B ,D 三点共线,所以OD →=λOA →+(1-λ)OB →.因为A关于点O 的对称点为C ,所以OC→=-OA →,又OD →=xOB →+yOC →,所以OD →=xOB →-yOA →y =λ,=1-λ,则x -y =1-λ+λ=1.故选C.反思感悟利用共线向量定理解题的策略(1)a ∥b ⇔a =λb (b ≠0)是判断两个向量共线的主要依据.注意待定系数法和方程思想的运用.(2)当两向量共线且有公共点时,才能得出三点共线,即A ,B ,C 三点共线⇔AB→,AC →共线.(3)若a 与b 不共线且λa =μb ,则λ=μ=0.(4)OA →=λOB →+μOC →(λ,μ为实数),若A ,B ,C 三点共线,则λ+μ=1.训练3(1)(多选)已知向量a ,b 是两个不共线的向量,且向量m a -3b 与a+(2-m )b 共线,则实数m 的取值可以为()A.-1B.3C.4D.3解析:AD由a ,b 不共线易知a +(2-m )b 为非零向量,因为向量m a -3b与a +(2-m )b 共线,所以存在实数λ,使得m a -3b =λ[a +(2-m )b ],所以=λ,3=λ(2-m ),得m =-1或m =3.故选AD.(2)如图,在△ABC 中,AD →=2DB →,P 为CD 上一点,且满足AP →=mAC →+12AB →(m ∈R ),则m 的值为()A.-34 B.-14C.14D.34解析:C由AD→=2DB →,可得AB →=32AD →,即AP→=mAC →+12AB →=mAC →+34AD →.因为C ,P ,D 三点共线,所以m +34=1,m =14.故选C.限时规范训练(三十五)A 级基础落实练1.化简2(a -3b )-3(a +b )的结果为()A.a +4b B.-a -9b C.2a +b D.a -3b解析:B2(a -3b )-3(a +b )=2a -6b -3a -3b =-a -9b .2.(多选)下列命题中,正确的是()A.若a ∥b ,b ∥c ,则a ∥cB.在△ABC 中,AB→+BC →+CA →=0C.若两个单位向量互相平行,则这两个单位向量相等或相反D.如果非零向量a ,b 的方向相同或相反,那么a +b 的方向与a ,b 之一的方向一定相同解析:BC对于A 选项,0平行于任何向量,若b =0,满足a ∥b ,b ∥c ,但不一定满足a ∥c ,故A 错误;对于B 选项,首尾顺次相接,正确;对于C 选项,两个单位向量互相平行,这两个单位向量相等或相反(大小相等,方向相反),故C 正确;对于D 选项,当a +b =0时,零向量的方向是任意的,故D 错误.3.(2024·枣庄调研)已知a ,b 是两个不共线的平面向量,向量AB →=λa +b ,AC →=a -μb (λ,μ∈R ),若AB→∥AC →,则有()A.λ+μ=2 B.λ-μ=1C.λμ=-1 D.λμ=1解析:C因为AB →∥AC →,所以存在实数k 使AB →=kAC →.因为AB→=λa +b ,AC →=a -μb (λ,μ∈R ),所以λa+b=k(a-μb),=k,=-kμ,所以λμ=-1.故选C.4.设a=(AB→+CD→)+(BC→+DA→),b是一个非零向量,则下列结论不正确的是()A.a∥bB.a+b=aC.a+b=bD.|a+b|=|a|+|b|解析:B由题意得,a=(AB→+CD→)+(BC→+DA→)=AC→+CA→=0,且b是一个非零向量,所以a∥b成立,所以A正确;由以上可知a+b=b,所以B不正确,C正确;由|a+b|=|b|,|a|+|b|=|b|,所以|a+b|=|a|+|b|,所以D正确.5.如图,BC,DE是半径为1的圆O的两条直径,BF→=2FO→,且FC→=λFD→+μFE→,则λ+μ等于()A.1B.2C.3D.4解析:D∵FC→=FO→+OC→=4FO→=4×12(FD→+FE→)=2FD→+2FE→,∴λ=μ=2,∴λ+μ=4.6.在△ABC中,BD→=13BC→,若AB→=a,AC→=b,则AD→等于()A.23a+13b B.13a+23bC.13a-23b D.23a-13b解析:A 如图,过点D 分别作AC ,AB 的平行线交AB ,AC 于点E ,F ,则四边形AEDF 为平行四边形,所以AD →=AE →+AF →.因为BD →=13BC →,所以AE→=23AB →,AF →=13AC →,所以AD →=23AB →+13AC →=23a +13b .7.已知向量a ,b 不共线,且c =λa +b ,d =a +(2λ-1)b ,若c 与d 共线反向,则实数λ的值为.解析:由于c 与d 共线反向,则存在实数k 使c =k d (k <0),于是λa +b =k [a +(2λ-1)b ],整理得λa +b =k a +(2λk -k )b .由于a ,b =k ,λk -k =1,整理得2λ2-λ-1=0,解得λ=1或λ=-12.因为k <0,所以λ<0,故λ=-12.答案:-128.如图,在平行四边形ABCD 中,E 为DC 边的中点,且AB →=a ,AD →=b ,则BE→=.解析:BE→=BA →+AD →+12DC →=-a +b +12a =b -12a .答案:b -12a9.若点O 是△ABC 所在平面内的一点,且满足|OB →-OC →|=|OB →+OC →-2OA →|,则△ABC 的形状为.解析:OB →+OC →-2OA →=(OB →-OA →)+(OC →-OA →)=AB →+AC →,OB →-OC →=CB →=AB →-AC →,∴|AB→+AC →|=|AB →-AC →|.故A ,B ,C 为矩形的三个顶点,△ABC 为直角三角形.答案:直角三角形10.设e 1,e 2是两个不共线的向量,已知AB →=2e 1-8e 2,CB →=e 1+3e 2,CD →=2e 1-e 2.(1)求证:A ,B ,D 三点共线;(2)若BF →=3e 1-k e 2,且BF →∥BD →,求实数k 的值.解:(1)证明:由已知得BD →=CD →-CB →=(2e 1-e 2)-(e 1+3e 2)=e 1-4e 2,因为AB →=2e 1-8e 2,所以AB →=2BD →,又AB→与BD →有公共点B ,所以A ,B ,D 三点共线.(2)由(1)知BD →=e 1-4e 2,若BF →=3e 1-k e 2,且BF →∥BD →,可设BF →=λBD →(λ∈R ),所以3e 1-k e 2=λe 1-4λe 2,即(3-λ)e 1=(k -4λ)e 2,又e 1,e 2是两个不共线的向量,-λ=0,-4λ=0,解得k=12.11.如图,在△ABC中,D为BC的四等分点,且靠近B点,E,F分别为AC,AD的三等分点,且分别靠近A,D两点,设AB→=a,AC→=b.(1)试用a,b表示BC→,AD→,BE→;(2)证明:B,E,F三点共线.解:(1)在△ABC中,因为AB→=a,AC→=b,所以BC→=AC→-AB→=b-a,AD→=AB→+BD→=AB→+14BC→=a+14(b-a)=34a+14b,BE→=BA→+AE→=-AB→+13AC→=-a+13b.(2)证明:因为BE→=-a+13b,BF→=BA→+AF→=-AB→+23AD→=-a+23(34a+14b)=-12a+16b=12(-a+13b),所以BF→=12BE→,即BF→与BE→共线,且有公共点B,所以B,E,F三点共线.B级能力提升练12.设P,Q为△ABC内的两点,且AP→=25AB→+15→,AQ→=14AB→+23AC→,则△ABP 的面积与△ABQ的面积之比为()A.45B.85C.43D.310解析:D 如图,设AM →=25AB →,AN →=15AC →,∴AP→=25AB →+15AC →=AM →+AN →,由平行四边形法则知NP ∥AB ,∴△ABP 的面积与△ABC 的面积之比为15,同理,由AQ→=14AB →+23AC →,可得△ABQ 的面积与△ABC 的面积之比为23,∴△ABP 的面积与△ABQ 的面积之比为15∶23=310.13.(2024·南昌联考)已知O 是△ABC 的外心,且OA →+OB →+CO →=0,则∠ACB =()A.π2B.2π3C.π3D.π4解析:B 设AB 的中点为D ,如图所示.由OA →+OB →+CO →=0,得OA→+OB →=OC →,则2OD→=OC →,所以D 是OC 的中点.因为OA =OB ,AB 的中点为D ,所以AB ⊥OD ,因此有cos ∠AOD =cos ∠BOD =OD OA =12,则∠AOD =∠BOD =π3.因为OA =OB =OC ,所以△OAC ,△OBC 是等边三角形,所以∠ACB =∠ACO +∠BCO =π3+π3=2π3.故选B.14.经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,(m >0,n >0).(1)证明:1m +1n 为定值;(2)求m +n 的最小值.解:(1)证明:设OA→=a ,OB →=b .由题意知OG →=23×12(OA →+OB →)=13(a +b ),PQ →=OQ →-OP →=n b -m a ,PG→=OG →-OP →=(13-m )a +13b ,由P ,G ,Q 三点共线得,存在实数λ,使得PQ →=λPG →,则n b -m a =λ(13-m )a +13λb ,m =λ(13-m ),=13λ,消去λ得1n +1m =3.(2)由(1)知,1m +1n =3,于是m +n =13(1m +1n)(m +n )=13(2+nm+mn)≥13(2+2)=43.当且仅当m=n=23时,m+n取得最小值,最小值为43.。

高一数学平面向量的概念及线性运算PPT优秀课件

高一数学平面向量的概念及线性运算PPT优秀课件

a+b=λLeabharlann a-b),即(λ-1)a=(1+λ)b,
∴ λ-1=0 1+λ=0
,λ 无解,故假设不成立,即 a+b 与 a-b 不平行,故选 D.
错源二:向量有关概念理解不当
【例2】 如图,由一个正方体的12条棱构成的向量组成了一个集合M,则集合M的元 素个数为________.
错解:正方体共有12条棱,每条棱可以表示两个向量,一共有24个向量.答案是24. 错解分析:方向相同长度相等的向量是相等向量,故AA1―→=BB1―→=CC1―→ = DD1―→ , AB―→ = DC―→ = D1C1―→ = A1B1―→ , AD―→ = BC―→ = B1C1―→=A1D1―→.错解的原因是把相等的向量都当成不同的向量了. 正解:12条棱可以分为三组,共可组成6个不同的向量,答案是6. 答案:6
错解分析:错解一,忽视了 a≠0 这一条件.错解二,忽视了 0 与 0 的区别,AB―→+
BC―→+CA―→=0;错解三,忽视了零向量的特殊性,当 a=0 或 b=0 时,两个等号同时
成立.
正解:∵向量 a 与 b 不共线,
∴a,b,a+b 与 a-b 均不为零向量.
若 a+b 与 a-b 平行,则存在实数 λ,使
∴|AM―→|=12|AD―→|=12|BC―→|=2.故选 C.
【例2】 (2010年安徽师大附中二模)设O在△ABC的内部,且OA―→+OB―→+ 2OC―→=0,则△ABC的面积与△AOC的面积之比为( ) (A)3 (B)4 (C)5 (D)6
解析:由 OC―→=-12(OA―→+OB―→),设 D 为 AB 的中点, 则 OD―→=12(OA―→+OB―→), ∴OD―→=-OC―→,∴O 为 CD 的中点, ∴S△AOC=12S△ADC=14S△ABC,∴SS△△AAOBCC=4.故选 B.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量的概念及线性运算讲义一、知识梳理1.向量的有关概念名称 定义备注向量 既有大小,又有方向的量;向量的大小叫做向量的长度(或称模) 平面向量是自由向量零向量 长度为0的向量;其方向是任意的 记作0单位向量 长度等于1个单位长度的向量 非零向量a 的单位向量为±a|a |平行向量(共线向量) 方向相同或相反的非零向量 0与任一向量平行或共线 相等向量 长度相等且方向相同的向量 两向量只有相等或不等,不能比较大小相反向量长度相等且方向相反的向量0的相反向量为02.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(3)交换律:a +b =b +a ;(4)结合律:(a +b )+c =a +(b +c )减法求a 与b 的相反向量-b 的和的运算a -b =a +(-b )数乘求实数λ与向量a 的积的运算(6)|λa |=|λ||a |;(7)当λ>0时,λa 与a 的方向相同;当λ<0时,λa 与a 的方向相反;当λ=0时,λa =0(8)λ(μa )=(λμ)a ; (9)(λ+μ)a =λa +μa ; (10)λ(a +b )=λa +λb3.向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa .注意:1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即A 1A 2—————→+A 2A 3—————→+A 3A 4—————→+…+A n -1A n —————————→=A 1A n —————→,特别地,一个封闭图形,首尾连接而成的向量和为零向量. 2.若P 为线段AB 的中点,O 为平面内任一点,则OP →=12(OA →+OB →).3.OA →=λOB →+μOC →(λ,μ为实数),若点A ,B ,C 共线,则λ+μ=1.二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)向量与有向线段是一样的,因此可以用有向线段来表示向量.( ) (2)|a |与|b |是否相等与a ,b 的方向无关.( ) (3)若a ∥b ,b ∥c ,则a ∥c .( )(4)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( ) (5)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( ) (6)若两个向量共线,则其方向必定相同或相反.( ) 题组二:教材改编2.已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA →=a ,OB →=b ,则DC →=______,BC →=________.(用a ,b 表示)3.在平行四边形ABCD 中,若|AB →+AD →|=|AB →-AD →|,则四边形ABCD 的形状为________. 题组三:易错自纠4.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________.6.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.三、典型例题题型一:平面向量的概念 1.给出下列四个命题: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件; ③若a =b ,b =c ,则a =c ; ④a =b 的充要条件是|a |=|b |且a ∥b . 其中正确命题的序号是( ) A .②③ B .①② C .③④D .②④2.设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题的个数是( ) A .0B .1C .2D .3思维升华:向量有关概念的关键点 (1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制. (3)相等向量的关键是方向相同且长度相等. (4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任何向量共线. 题型二:平面向量的线性运算 命题点1:向量的线性运算典例 (1)在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →等于( ) A.23b +13c B.53c -23b C.23b -13c D.13b +23c (2)如图,在△ABC 中,点D 在BC 边上,且CD =2DB ,点E 在AD 边上,且AD =3AE ,则用向量AB →,AC →表示CE →为( )A.29AB →+89AC →B.29AB →-89AC →C.29AB →+79AC → D.29AB →-79AC → 命题点2:根据向量线性运算求参数典例 (1)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________,y =______. (2)在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是 思维升华:平面向量线性运算问题的常见类型及解题策略(1)向量加法或减法的几何意义.向量加法和减法均适合三角形法则.(2)求已知向量的和.一般共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.(3)求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较,求参数的值. 跟踪训练 (1)如图,在正方形ABCD 中,点E 是DC 的中点,点F 是BC 上的一个靠近点B 的三等分点,那么EF →等于( )A.12AB →-13AD →B.14AB →+12AD →C.13AB →+12DA →D.12AB →-23AD → (2)如图,直线EF 与平行四边形ABCD 的两边AB ,AD 分别交于E ,F 两点,且与对角线AC 交于点K ,其中,AE →=25AB →,AF →=12AD →,AK →=λAC →,则λ的值为______.题型三:共线向量定理的应用 典例 设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.引申探究 若将本例(1)中“BC →=2a +8b ”改为“BC →=a +m b ”,则m 为何值时,A ,B ,D 三点共线? 思维升华:(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系.当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立,若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.跟踪训练 (1)已知向量AB →=a +3b ,BC →=5a +3b ,CD →=-3a +3b ,则( ) A .A ,B ,C 三点共线 B .A ,B ,D 三点共线 C .A ,C ,D 三点共线D .B ,C ,D 三点共线(2)已知A ,B ,C 是直线l 上不同的三个点,点O 不在直线l 上,则使等式x 2OA →+xOB →+BC →=0成立的实数x 的取值集合为( ) A .{0} B .∅ C .{-1}D .{0,-1}四、反馈练习1.以下命题:①|a |与|b |是否相等与a ,b 的方向无关;②两个具有公共终点的向量,一定是共线向量;③两个向量不能比较大小,但它们的模能比较大小;④单位向量都是共线向量.其中,正确命题的个数是( ) A .0 B .1 C .2 D .3 2.设a 是非零向量,λ是非零实数,下列结论中正确的是( ) A .a 与λa 的方向相反B .a 与λ2a 的方向相同C .|-λa |≥|a |D .|-λa |≥|λ|·a3.在四边形ABCD 中,设AD →=a ,BC →=b ,那么AC →+BD →等于( ) A .a -b B .a +b C .b -aD .不能确定4.已知AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则下列一定共线的三点是( ) A .A ,B ,C B .A ,B ,D C .B ,C ,DD .A ,C ,D5.如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为( )A .1B .2C .3D .46.设a ,b 不共线,AB →=2a +p b ,BC →=a +b ,CD →=a -2b ,若A ,B ,D 三点共线,则实数p 的值为( ) A .-2 B .-1 C .1 D .2答案 B7.已知两个非零向量a ,b 满足|a +b |=|a -b |,则下列结论正确的是________.(填序号) ①a ∥b ;②a ⊥b ;③|a |=|b |;④a +b =a -b .8.已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC →=a ,CA →=b ,给出下列命题:①AD →=12a-b ;②BE →=a +12b ;③CF →=-12a +12b ;④AD →+BE →+CF →=0.其中正确命题的序号为________.9.如图所示,在△ABC 中,D 为BC 边上的一点,且BD =2DC ,若AC →=mAB →+nAD →(m ,n ∈R ),则m -n =________.10.在直角梯形ABCD 中,A =90°,B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →,则μ的取值范围是________.11.已知P ,Q 为△ABC 中不同的两点,且3P A →+2PB →+PC →=0,QA →+QB →+QC →=0,则S △P AB ∶S △QAB 为________.12.如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,试用a ,b 表示向量AO →.13.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m =________. 14.已知点D 为△ABC 所在平面上一点,且满足AD →=15AB →-45CA →,若△ACD 的面积为1,则△ABD 的面积为________.15.设G 为△ABC 的重心,且sin A ·GA →+sin B ·GB →+sin C ·GC →=0,则角B 的大小为______.。

相关文档
最新文档