第25章《概率初步》
2024九年级数学上册“第二十五章 概率初步”必背知识点
2024九年级数学上册“第二十五章概率初步”必背知识点一、随机事件与概率1. 随机事件定义:在一定条件下,可能发生也可能不发生的事件,称为随机事件。
对比:与随机事件相对的是确定事件,确定事件又分为必然事件和不可能事件。
必然事件是事先能肯定它一定会发生的事件;不可能事件是事先能肯定它一定不会发生的事件。
2. 概率的定义一般定义:在大量重复实验中,如果事件A发生的频率m/n稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p。
取值范围:概率的取值范围是0≤p≤1。
特别地,P(必然事件)=1,P(不可能事件)=0。
二、概率的计算方法1. 理论概率在一次试验中,如果包含n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=m/n。
2. 列举法求概率列表法:当试验中存在两个元素且出现的所有可能的结果较多时,常用列表法列出所有可能的结果,再求出概率。
树状图法:当试验涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树状图法。
三、用频率估计概率原理:在大量重复试验中,如果事件A发生的频率m/n 稳定于某一个常数p,那么可以认为事件A发生的概率为p。
即,频率可以作为概率的近似值,随着试验次数的增加,频率会越来越接近概率。
四、概率的应用与理解1. 概率的意义概率是对事件发生可能性大小的量的表现,它反映了随机事件的稳定性和规律性。
2. 游戏公平性判断游戏公平性需要计算每个事件的概率,并比较它们是否相等。
如果概率相等,则游戏公平;否则,游戏不公平。
五、综合应用概率知识在解决实际问题中的应用:如抽奖、天气预测、投资决策等领域的概率计算和分析。
示例题目1. 理论概率计算例题:从一副扑克牌中随机抽取一张,求抽到红桃的概率。
解析:一副扑克牌共有54张 (包括大王和小王),其中红桃有13张。
因此,抽到红桃的概率为P=13/54。
2. 列举法求概率例题:一个不透明的袋子中装有3个红球和2个白球,每个球除颜色外都相同。
数学九年级上册第二十五章《概率初步》小结与复习(共27张PPT)
B)
A.布袋中有2个红球和5个其他颜色的球
B.如果摸球次数很多,那么平均每摸7次,就有2次
摸中红球
C.摸7次,就有2次摸中红球
D.摸7次,就有5次摸不中红球
2.下列事件中是必然事件的是( D ) A.从一个装有蓝、白两色球的缸里摸出一个球,摸 出的球是白球 B.小丹的自行车轮胎被钉子扎坏 C.小红期末考试数学成绩一定得满分 D.将油滴入水中,油会浮在水面上
第二十五章 概率初步
小结与复习
复习目标
1.梳理本章的知识要点,回顾与复习本章知识. 2.巩固并能熟练运用列举法、列表法和树状图法求 概率.(重、难点) 3.能应用频率估计概率解决生活中的实际问题.
要点梳理
一、事件的分类及其概念
事件
不可能事件:必然不会发生的事件
随机事件:在一定条件下可能发生也可能不发生 的事件
考点二 概率的计算 例2 (1)一个口袋中装有3个红球,2个绿球,1 个黄球,每个球除颜色外其他都相同,搅匀后
1
随机地从中摸出一个球是绿球的概率是___3___.
(2)三张分别画有平行四边形、等边三角形、圆的 卡片,它们的背面都相同,现将它们背面朝上,
从中任取一张,卡片上所画图形恰好是中心对称 2
(2) 如果只考虑中奖因素,你将会选择去哪个超市购 物?说明理由.
(2) 选甲超市.理由如下: ∵P(甲)>P(乙), ∴选甲超市.
成活 数
47
235 369 662 1335 3203 6335 8073 12628
成活 频率
0.94
0.87 0.923 0.883 0.89 0.915 0.905 0.897 0.902
由此可以估计该种幼树移植成活的概率约为( C ) (结果保留小数点后两位)
人教版数学九年级上册第25章:概率初步复习课件
-40%=60%,所以口袋中白色球的个数=10×60%=6,即布袋中白色球
的个数很可能是6.故选C.
章末复习
专题五 利用概率判断游戏的公平性
【要点指点】通过计算概率判断游戏是否公平是概率知识的一 个 重要应用, 解决游戏是否公平的问题, 应先计算游戏参与者获 胜的概率, 若概率相等, 则游戏公平;若概率不相等, 则游戏不公 平.
章末复习
例5 色盲是伴X染色体隐性先天遗传病, 患者中男性远多于女 生, 从 男性体检信息库中随机抽取体检表, 统计结果如下表:
根据表中数据, 估计在男性中, 男性患色盲的概率为___0_.0_7__ (结 果保留小数点后两位).
章末复习
分析 视察表格发现, 随着抽取的体检表的增多, 在男性中, 男性患色 盲的频率逐渐稳定在0.07附近, 所以估计在男性中, 男生患色盲的概 率为 0.07.
章末复习
例3 一个不透明的袋子中装有4个黑球, 2个白球, 这些球除颜色 不同 外其他都相同, 从袋子中随机摸出1个球, 摸到黑球的概率 是( D ).
章末复习
相关题3 如果从包括小军在内的 10名大学生中任选1名作 为 “保护母亲河”的志愿 者, 那么小军被选中的概 率是( C ).
解析 共有 10 种等可能的结果,小军被选中的结果有 1 种,故 P(小军 被选中)=110.
章末复习
解 (1)获奖的学生中男生3名, 女生4名, 男生、女生共7名, 故参加颁奖 大会的学生是男生的概率为 . (2)从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会, 用列表法 列出所有可能的结果如下:
章末复习
∵共有12种等可能的结果, 其中是1名男生、1名女生的结果有6种, ∴从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会, 刚好是 1名男生、1名女生的概率为
第25章 概率初步
第二十五章概率初步25.1随机事件与概率第1课时随机事件(一)一.课前预习:1.自学导航阅读教材128127—P内容,思考下列问题:(1)什么是随机事件?(2)确定性事件包括_________和________事件. 2.诊断检测:(1)现实世界中的事件分、、、三类.其中与是确定性事件.(2)确定事件的特点是;随机事件的特点是.(3)“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是.(填“必然事件”、“不可能事件”或“随机事件”)(4)下列问题中是必然事件的有;是不可能事件的有;是随机事件的有(填序号即可).(1)如果a>b,那么a-b>0;(2)a2+b2=-1(其中a,b都是实数);(3)一元二次方程x2+2x+3=0无实数解;(4)2010年2月有29天;(5)相等的圆心角所对的弧相等;(6)随机抛掷一枚骰子,出现朝上一面是6.二.例题解析例1.小明掷一个质地均匀的正方形骰子,骰子的六个面分别有1至6的点数.请思考:掷一次骰子,观察向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于2,可能吗?这是什么事件?(3)出现的点数是6,可能吗?这是什么事件?(4)你能列举与(3)相似的事件吗?例2. 袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件:A.摸出的三个球中至少有一个球是黑球;B.摸出的三个球都是白球;C.摸出的三个球都是黑球;D.摸出的三个球中有两个球是白球.其中是不可能事件的为(填序号);是必然事件的为;是随机事件的为.三.小结提炼.四.巩固训练1.下列事件:A.袋中只有5个红球,能摸到红球;B.袋中有3个红球,2个白球,能摸到红球;C.袋中有2个红球,3个白球,能摸到红球;D.袋中只有5个白球,能摸到红球.上述事件中,是必然事件的有;是随机事件的有;是不可能事有.2.下列语句中是必然事件的是()A.两个分数相加和一定是整数B.两个分数相乘积一定是整数C.两个互为相反数的和为0D.两个互为相反数的积为03.下列说法正确的是()A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生4. 小红花2元钱买了一张彩票,你认为小红中大奖的事件是()A.必然事件B.随机事件C.不可能事件D.确定事件5.下列事件你认为是必然事件的是()A.中秋节的晚上总能看到圆圆的月亮;B.明天是晴天C.打开电视机,正在播广告;D.两数相乘,同号得正,异号得负五.拓展提升1.下列成语故事所描述事件为必然发生的是()A.水中捞月B.拔苗助长C.守株待兔D.水涨船高2.“清明时节雨纷纷”是事件(填“必然”、“不可能”、“随机”)第2课时随机事件的可能性大小一、课前预习:1.自学导航阅读教材129128—P内容,思考下列问题:(1)必然事件发生的可能性是_______;不可能事件发生的可能性是_______;随机事件发生的可能性在_______之间.(2)正确区分描述事件发生的可能性大小的关键词,如“一定”、“很可能”、“可能”、“不太可能”等词语,对事件发生可能性作出评价和预测.2.诊断检测:(1).如图,有甲、乙、丙3个转盘,这3个转盘在转动过程中指针停在黑色区域的可能性()A.甲转盘最大B.B.乙转盘最大C.丙转盘最大D.甲、乙、丙转盘一样大(2)从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是()A.抽出一张红心B.抽出一张红色KC.抽出一张梅花JD.抽出一张不是Q的牌(3)某班有65名同学,把他们按1到65进行编号,并把编号写在同样的卡片上,洗匀后,随机抽取一张,则抽到1~10号同学的可能性抽到5的倍数的可能性;抽到奇数号码同学的可能性抽到偶数同学的可能性.(填﹥、﹤或=) (4)我校某小班,有男生14人,女生16人.其中男生11人住校,女生13住校.现随机抽取一名学生.则:a.抽到一名住校女生;b.抽到一名住校男生;c.抽到一名男生.其中可能性由小到大排列正确的是()A.cbaB.acbC.cabD.bca二.例题解析例1.判断下列事件中,哪些事件发生的可能性是一样的?哪些不是?为什么?(1)掷一枚骰子,出现2点朝下或5点朝上的机会;(2)从一副扑克牌中任取一张,取到大王或红心6的可能性;(3)掷两次骰子,出现点数和是6或2的可能性;(4)从装有3个红球和5个白球中任取一球,取到红球或白球的可能性;(5)从编号为1—10的10张卡片中任取一张,取到偶数或3的倍数的编号的可能性.例2..一个不透明的口袋里有5个除颜色外都相同的球,其中有2个红球,3个黄球.(1)若从中随意摸出一个球,求摸出红球的可能性;(2)若要使从中随意摸出一个球是红球的可能性为,求袋子中需再加入几个红球?三.小结提炼.四.巩固训练1.从一副扑克牌中,任意抽取一张,抽到的可能性较小的是()A.红心B.黑桃C.梅花D.小王2.我班语文科代表在期末考试中的语文成绩为150分,你认为这个事件的可能性()A.一定B.很可能C.可能D.不大可能25-1-13.分别向如图所示的四个区域随机掷一枚石子,石子落在阴影部分可能性最小的是()A.B.C.D.4.一个袋中装有6个红球、4个黄球、3个白球,每个球除颜色外完全相同,从袋中任意摸出一个球,那么摸出的可能性最小.5.有五张不透明卡片,分别写有实数,﹣1,,,π,除正面的数不同外其余都相同,将它们背面朝上洗匀后,从中任取一张卡片,取到的数是无理数的可能性大小是.五.拓展提升1.下列事件中不是必然事件的是()A.对顶角相等;B.同位角相等;C.四边形的内角和是360o;D.等腰梯形是轴对称图形.2.有4条线段,长度分别为2,3,5,7,从中任取三条,所得三条线段能构成三角形的可能性多大?第3课时概率一.课前预习:1.自学导航阅读教材134130—P的内容,思考下列问题:(1)概率的意义:.(2)概率的计算:当A是必然事件时,P(A)= ;当A是不可能事件时,P(A)= ;任一事件A的概率P(A)的范围是.2.诊断检测:(1) 下列说法错误的是()A.必然事件发生的概率为1;B.不可能事件发生的概率为0;C.不确定事件发生的概率为0;D.随机事件发生的概率介于0和1之间.(2)下列说法正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次.(3)从1—10这10个数中随机取出一个数,取出的数是3的倍数的概率是()A.21B.51C.31D.103二.例题解析例1.掷一个各面分别标有1,2,3,4,5,6的正六面体骰子,观察向上一面的点数,求下列事件的概率:(1)点数为1;(2)点数为偶数;(3)点数大于0且不大于4.例2. 一个不透明口袋中装有6个红球,9个黄球,3个白球,这些球除颜色外没有任何其他区别,现从中任意摸出一个球.(1)计算摸到的是白球的概率;(2)若要使摸到白球的概率为41,则需要在里边再放入多少个白球?例3.见课本132页例2.三.小结提炼.四.巩固训练1.从分别写有-4,-3,-2,-1,0,1,2,3,4的九张一样的卡片中,任意抽取一张卡片,则所抽取的卡片数字的绝对值小于2的概率是.2.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯恰好是绿灯的概率是 .3.在围棋盒中有6颗黑色棋子和n 颗白色棋子,随机的取出一颗棋子,如果它是黑色棋子的概率为53,则n = .4.在半径为2的圆形木板中有一个内接正方形,现随机的往圆内投以飞镖,落在正方形的概率为 .(注:π取3) 5.请你用除颜色外都相同的6个小球设计满足下列条件的游戏:摸到白球的概率为21,摸到红球的概率为31,摸到黄球的概率为61,则应放 个白球, 个黄球. 6.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”.下列说法正确的是( ) A .抽10次奖必有一次抽到一等奖 B .抽一次不可能抽到一等奖 C .抽10次也可能没有抽到一等奖 D .抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖7. 从-3,-2,6这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是 .五.拓展提升1.从数﹣2,﹣,0,4中任取一个数记为m ,再从余下的三个数中,任取一个数记为n ,若k =mn ,则正比例函数y =kx 的图象经过第三、第一象限的概率是 .2.如图25-1-3是两个完全相同的正方形木板重叠的.其中一个正方形的顶点恰好落在另一个正方形的中心处,现有一只小狗在上面走动,则小狗恰好走在重叠区域的概率是 .25.2 用列举法求概率第4课时 用列举法求概率(一)一.课前预习: 1.自学导航 阅读教材137136—P 的内容,思考下列问题:(1)列举法求概率的前提条件是试验中的每一个结果是___________发生的.(2)对某个试验进行两次操作时,可利用________法或________法求出概率. 2.诊断检测: (1)一个袋中装有2个红球和1个黄球,从中任意摸出两个个球,则摸出的两个球都是红球的概率为 . (2)将一枚质地均匀的硬币先后抛掷两次,则至少出现一次正面向上的概率为( ) A . B . C . D .(3)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后放回搅匀....后.,再从中随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为( )A .B .C .D . (4)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回...,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为( ) A .B .C .D .二.例题解析例1.口袋中装有10个小球,其中2个红球,3个黄球,其余的都是白球,请计算从口袋中任意摸出一个球是下列情况的概率分别是多少? (1)红球 (2)黄球(3)不是白球 (4)不是黄球例2. 端午节当天,小明带了四个粽子(除味道不同外,其它均相同),其中两个是大枣味的,另外两个是火腿味的,准备按数量平均分给小红和小刚两个好朋友.(1)请你用树状图或列表的方法表示小红拿到的两个粽子的所有可能性.(2)请你计算小红拿到的两个粽子刚好是同一味道的概率.三.小结提炼. 四.巩固训练1.某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的机会是( ) A .B .C .D .2.从1,-2,3三个数中,随机抽取两个数相乘,乘积是正数的概率为( )A.0B.31 C. 1 D.32 3.从8,18,12,42中随机抽取一个根式与2是同类二次根式的概率是 .4.哥哥与弟弟玩游戏:三张大小、质地相同的卡片上分别标有数字1、2、3,将标有数字的一面朝下,哥哥从中任意抽取一张,记下数字后放回洗匀,然后弟弟从中任意抽取一张,计算抽得的两数之和,如果和为奇数,则弟弟胜;和为偶数,则哥哥胜.该游戏对双方 .(填“公平”或“不公平”)5. 两个正四面体骰子的各面上分别标明数字1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为( ) A .B. C . D. 6.在一个不透明的盒子中,共有“一白三黑”四个围棋子,其除颜色外无其他区别.(1)随机地从盒子中提出1子,则提出的是白子的概率是多少?(2)随机地从盒子中提出1子,不放回再提出第二子,请用列表的方法表示出所有可能的结果,并求出恰好提出“一黑一白”的概率是多少?五.拓展提升1.点P 的坐标是(a ,b ),从﹣2,﹣1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是 .2. 某商店举办有奖销售活动,办法如下:凡购货满100元者获兑奖卷1张,多够多得.每10000张奖券为一个开奖单位,设特等奖一个,奖金10000元,一等奖10个,奖金各1000元,二等奖100个,奖金各100元.①一张兑奖卷中一等奖的概率是多少?中奖的概率是多少?②这种促销办法与商品价格打九五折相比,哪一个方法向顾客让利更多?③得两张兑奖卷都不中奖的概率是多少?④通过计算,你会选择摸奖,还是打折,为什么?3.一枚均匀的正方体骰子,六个面分别标有数字1,2,3,4,5,6,连续抛掷两次,朝上的数字分别是m ,n ,若把m ,n 作为点A 的横、纵坐标,那么点A (m ,n )在函数y =2x 的图像上的概率是多少?第5课时 用列举法求概率(二)一.课前预习: 1.自学导航阅读教材139138—P 的内容,思考下列问题:411634383(1)对某个试验进行三次或三次以上操作时,可利用_______________法求出概率.(2)概率等于所求事件结果数与总结果数之比.即.______)( A P2.诊断检测:(1)有5张卡片分别写有数字1、1、2、2、3,它们的背面相同,现将它们洗匀背面朝上,从中任取一张是数字2的概率是( ) A.51 B.52 C.32 D.21 (2)一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为( ) A .518 B.13 C.215D.115(3)掷两枚普通硬币,落地出现一个正面,一个反面的概率是 .(4)有6张卡片上分别写着从1到6的一个自然数,从中任取2张,则两张卡片数字之和为偶数的概率是 .(5)盒子里分别放有3张写有整式a +1,a +2,2的卡片,从中随机抽取2张卡片上的整式分别作为分子和分母,则能组成分式的概率是 . 二.例题解析例1.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果; (2)求出两个数字之和能被3整除的概率.例2.某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A 、B 、C 、D ,并将统计结果绘制成两幅不完整的统计图.请根据图中的信息解答下列问题:(1)补全条形统计图(2)该年级共有700人,估计该年级足球测试成绩为D 等的人数为 人;(3)在此次测试中,有甲、乙、丙、丁四个班的学生表现突出,现决定从这四个班中随机选取两个班在全校举行一场足球友谊赛.请用画树状图或列表的方法,求恰好选到甲、乙两个班的概率.三.小结提炼. 四.巩固训练1. 在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( ) A .B .C .D . 2.安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为( ) A .13 B .19 C .12 D .233. 从A ,B ,C ,D 四人中用抽签的方法,任选2人去打扫公共场地,选中A 的概率是 . 4.从1,2,-3,4四个数中,随机抽取两个数相加,和是正数的概率是 . 5. 一签筒内有四支签,分别标记号码1、2、3、4.每次取一支且取后不放回,再取第二支签,若每一种结果发生的机会都相同,则这两支签的号码数总和是奇数的机率为.151358386. 在不透明的口袋中,有四个形状、大小、质地完全相同的小球,四个小球上分别标有数字,2,4,,现从口袋中任取一个小球,并将该小球上的数字作为平面直角坐标系中点P的横坐标,且点P 在22x y =的图像上,则点P 落在正比例函数图象上方的概率是 . 7.本校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了1000米跑步测试.按照成绩分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.(1)根据给出的信息,补全两幅统计图;(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?(3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000米比赛.预赛分别为A 、B 、C 三组进行,选手由抽签确定分组,请利用画树状图或列表的方法,求甲、乙两人恰好分在同一组的概率是多少?五.拓展提升1.从﹣32,﹣1,0,1这四个数中,任取一个数作为m 的值,恰好使得关于x ,y 的二元一次方程组22x y mx y -=-⎧⎨-=⎩有整数解,且使以x 为自变量的一次函数y =(m +1)x +3m ﹣3的图象不经过第二象限,则取到满足条件的m 值的概率为 . 2.甲、乙两个盒子中装有质地、大小相同的小球,甲盒中有2个白球,1个黄球和1个蓝球;乙盒中有1个白球,2个黄球和若干个蓝球.从乙盒中任意摸取一球为蓝球的概率是从甲盒中任意摸取一球为蓝球的概率的2倍. (1)求乙盒中蓝球的个数; (2)从甲、乙两盒中分别任意摸取一球,求这两球均为蓝球的概率.第6课时 用列举法求概率(三)一.课前预习: 诊断检测: (1)某市中考体育男生抽测项目规则是:从立定跳远、实心球、引体向上中随机抽取一项;从50米、25×8米、100米中随机抽取一项.恰好抽中实心球和50米的概率是 . (2)随机掷一枚质地均匀的硬币三次,至少有一次正面朝上的概率是 . (3)一个不透明的袋子中装有3个小球,它们除分别标有的数字1,3,5不同外,其他完全相同.任意从袋子中摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之和为6的概率是 . (3)我校为提高教师业务素质,扎实开展了“课内比教学”活动.在一次数学讲课比赛中,每个参赛选手都从两个分别标有“A”、“B”内容的签中,随机抽取一个作为自己的讲课内容,本期有三个青年教师参加这次讲课比赛,则有两个抽中内容“A”,一个抽2131-xy =中内容“B”的概率是.(4)学生甲与学生乙玩一种转盘游戏.如图25-2-2是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“1”、“2”、“3”、“4”表示.固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分界线,则都重转一次.在该游戏中乙获胜的概率是()A. B. C. D.二.例题解析例1、一个袋子中装有3个红球和2个黄球,这些球的形状、大小.质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是多少?例2.从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数;请画出树状图并写出所有可能得到的三位数例3.重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)扇形统计图中九年级参赛作文篇数对应的圆心角是度,并补全条形统计图;(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.三.小结提炼.四.巩固训练1. 从-2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是.2.抛掷一枚硬币三次,出现“一正两反”的概率是.3.小明、小芳、小飞在一起做游戏,需要确定做游戏的先后顺序,他们约定用“石头、剪子、布”的方式确定,则在一回合中,三人都出“石头”的概率是.4.三个袋中各装有2个球,其中第一个和第二个袋中各有一个红球和一个黄球,第三个袋中有一个黄球和一个黑球,现从三个袋中个摸出一个球,则摸出2个黄球和一个红球的概率为.5.A、B、C、D四人做相互传花球游戏,第一次A 传给其他三人中的一人,第二次由拿到花球的人再传给其他三人中的一人,第三次由拿到花球的人再传给其他三人中的一人,请用树形图分析第三次花1 4123456球传回A的概率.6.中央电视台的“中国诗词大赛”节目文化品位高,内容丰富,某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应的扇形的圆心角为度,并将条形统计图补充完整.(2)此次比赛有四名同学获得满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.五.拓展提升1.从﹣2,﹣1,﹣23,0,1,2这六个数字中,随机抽取一个数记为a,则使得关于x的方程213axx+=-的解为非负数,且满足关于x的不等式组321x ax->⎧⎨-+≤⎩只有三个整数解的概率是.2.在一个不透明的口袋里装有四个分别标有1、2、3、4的小球,它们的形状、大小等完全相同.小明先从口袋里随机不放回地取出一个小球,记下数字为x;小红在剩下有三个小球中随机取出一个小球,记下数字y. (1)计算由x、y确定的点(x,y)在函数y=-x+5图象上的概率;(2)小明、小红约定做一个游戏,其规则是:若x、y满足xy>6,则小明胜;若x、y满足xy<6,则小红胜.这个游戏规则公平吗?说明理由;若不公平,怎样修改游戏规则才对双方公平?第7课时用列举法求概率(四)一.课前预习:1.“上升数”是指在一个数中,右边的数字比左边的数字大的自然数(如:12,567,2368等).任取一个两位数,是“上升数”的概率为 . 2.从1---9这9个自然数中任取一个,时货的倍数的概率是 .3.在一个不透明的口袋中,装有若干个除颜色外其余都相同的球,如果口袋中有5个红球且摸到红球的概率是31,则口袋中球的总数为 . 4.随机掷一枚硬币两次,落地后至多有一次反面朝上的概率是 .5.经过十字路口的汽车,它可能继续直行,也可能左转或右转,如果这三种可能性大小相同,则有三辆车经过该十字路口时,至少有两辆车直行的概率为 . 二.例题解析例1.小明与小亮玩游戏,他们将牌面数字分别是2,3,4的三张扑克牌充分洗匀后,背面朝上放在桌面上.规定游戏规则如下:先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再从中随机抽出一张牌,将牌面数字作为个位上的数字.如果组成的两位数恰好是2的倍数.则小明胜;如果组成的两位数恰好是3的倍数.则小亮胜.你认为这个游戏规则对双方公平吗?请用画数状图或列表的方法说明理由.例2.有人说连续抛掷一枚硬币3次,出现三个正面和先掷出2个正面再掷出一个反面的机会是一样的.你同意这种说法吗?变式:有人说连续抛掷一枚硬币3次,出现三个反面和先掷出2个反面和一个正面的机会是一样的吗?例3.为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有的小微企业按年利润w (万元)的多少分为以下四个类型:A 类(w <10),B 类(10≤w <20),C 类(20≤w <30),D 类(w ≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是 ,扇形统计图中B 类所对应扇形圆心角的度数为 度,请补全条形统计图;(2)为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D 类企业的4个参会代表中随机抽取2个发言,D 类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.三.小结提炼. 四.巩固训练2.一张圆桌旁有四个座位,A 先坐在如图25-2-4所示的位置上,B ,C ,D 三人随机坐到其他位置上,那么A 与B 不相邻的概率是 .3.小明随机地在如图25-2-5所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为( )。
人教版九年级上册第25章概率初步第25章全章热门考点整合应用课件数学
谢谢
考点 3 两种思想
思想1 数形结合思想
6.一个均匀的正方体各面上分别标有数字1,2,3,
4,6,8,其表面展开图如图,抛掷这个正方体,
则朝上一面的数字恰好等于朝下一面的数字的2倍
的概率是( C )
2
1
A.
B.
3
2
C. 1
D. 1
3
6
根据其表面展开图,得出三组相对的面分别
是6对3,4对2,8对1. 故P(朝上一面的数字恰好 等于朝下一面的数字的2倍)= 2 1 . 故选C.
则黑球有(x-1)个,白球有(x+3)个,
共有球x+(x-1)+(x+3)=3x+2(个).
根据题意,得
x-1 3 x+2
=
1 4
,பைடு நூலகம்
解得x=6.
经检验x=6是原方程的解且符合题意.
所以x-1=5.
因此估计口袋中有5个黑球.
(2)若小王取出的第一个球是白球,将它放在桌上, 闭上眼睛从口袋中余下的球中再任意取出1个球, 取出红球的概率是多少?
63
思想2 方程思想
7.一个口袋中放有红球、白球和黑球若干个,每个 球除了颜色以外没有任何区别,已知红球比黑球 多1个,比白球少3个. (1)小王通过大量重复试验(每次取1个球,放回搅 匀后再取第二个)发现,取出黑球的频率稳定在 1 左右,请你估计口袋中黑球的个数. 4
解:(1)设口袋中红球有x个,
(2)若该班参加“吉他社”与“街舞社”的人数相同, 请你计算“吉他社”对应扇形的圆心角的度数;
人教版九年级上册数学教学课件 第25章 概率初步25.1.1 随机事件
(4)你能列举与事件(3)相 似的事件吗?
(1)上述活动中的事件,必然事件和 不可能事件的区别在哪里?
(2)怎样的事件称为随机事件呢?
随机事件的特 点:可能发生 也可能不发生.
袋中装有4个黑球,2个白球,这些球的形 状、大小、质地等完全相同,在看不到球的 条件下,随机地从袋子中摸出一个球.
【解析】图中有9块黑色 方块,15块白色方块,所以 停在白色方块上的可能 性大.
学生课堂行为规范的内容是: 按时上课,不得无故缺课、迟到、早退。 遵守课堂礼仪,与老师问候。 上课时衣着要整洁,不得穿无袖背心、吊带上衣、超短裙、 拖鞋等进入教室。 尊敬老师,服从任课老师管理。 不做与课堂教学无关的事,保持课堂良好纪律秩序。
检测反馈
1.下列事件中,是必然事件的为( C ) A.抛掷一枚质地均匀的硬币,落地后正面朝上 B.江汉平原7月份某一天的最低气温是-2℃ C.通常加热到100℃时,水沸腾 D.打开电视,正在播放节目《男生女生向前冲》
【解析】选项A和D是随机事件;选项B是 不可能事件;选项C是必然事件,故选C.
2.下列说法正确的是( ) A.如果一件事情发生的机会只有十万分之
九年级数学上 新课标 [人]
第二十五章 概率初步
学习新知
检测反馈
(1)太阳从西边下山; (2)某人的体温是100℃; (3)a2+b2=-1(其中a,b都是实数);
(4)水往低处流; (5)酸和碱反应生成盐和水; (6)三个人性别各不相同;
(7)一元二次方程x²+2x+3=0无实数解.
学习新知
3.下列事件: ①在足球赛中,弱队战胜强队; ②任意取两个有理数,这两个数的和为正数; ③任取两个正整数,其和大于1; ④长分别为3,5,9厘米的三条线段能围成一 个三角形.其中确定事件的个数是( )
第25章概率初步
第25章,概率初步随机事件与概率--知识讲解【要点梳理】要点一、确定事件与不确定事件 1.确定事件在一定条件下,有些事情我们事先能肯定它一定发生,这些事情称为必然事件.有些事情我们事先能肯定它一定不会发生,这些事情称为不可能事件.必然事件与不可能事件统称为确定事件. 2.不确定事件也有许多事情我们事先无法肯定它会不会发生,这些事情称为不确定事件,也称为随机事件. 要点诠释:要知道事件发生的可能性大小首先要确定事件是什么类型.一般地,必然发生的事件发生的可能性最大,不可能发生的事件发生的可能性最小,随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小可能不同.要点二、频率与概率 1.频率与概率的定义频率:在n 次重复试验中,不确定事件A 发生了m 次,则比值称为事件A 发生的频率.无论是掷质地均匀的硬币还是掷图钉,在试验次数很大时正面朝上(钉尖朝上)的频率都会在一个常数附近摆动,这就是频率的稳定性.概率:我们把刻画事件A 发生的可能性大小的数值,称为事件A 发生的概率,记作P (A ).事件A 的概率是一个大于等于0,且小于等于1的数,即.2.频率与概率的关系事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近.可见,概率是频率的稳定值,而频率是概率的近似值. 要点诠释:①事件A 的概率是一个大于等于0,且小于等于1的数,即,其中P(必 然事件)=1,P(不可能事件)=0,0<P(随机事件) <1.②概率是事件在大量重复实验中频率逐渐稳定到的值,即可以用大量重复实验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同,两者存在一定的偏差是正常的,也是经常的.mn【典型例题】类型一、确定事件与不确定事件1.指出下列事件中,哪些是不可能事件?哪些是必然事件?哪些是不确定事件?①若 a、b、c都是实数,则a(bc)=(ab)c;②没有空气,动物也能生存下去;③在标准大气压下,水在 90℃时沸腾;④直线 y=k(x+1)过定点(-1,0);⑤某一天内电话收到的呼叫次数为 0;⑥一个袋内装有形状大小完全相同的一个白球和一个黑球,从中任意摸出 1个球则为白球.举一反三【变式1】下列事件是必然事件的是( ).A.明天要下雨;B.打开电视机,正在直播足球比赛;C.抛掷一枚正方体骰子,掷得的点数不会小于1;D.买一张彩票,一定会中一等奖.【变式2】下列说法中,正确的是( ).A.生活中,如果一个事件不是不可能事件,那么它就必然发生;B.生活中,如果一个事件可能发生,那么它就是必然事件;C.生活中,如果一个事件发生的可能性很大,那么它也可能不发生;D.生活中,如果一个事件不是必然事件,那么它就不可能发生.2. 在一个不透明的口袋中,装有10个除颜色外其它完全相同的球,其中5个红球,3个蓝球,2个白球,它们已经在口袋中搅匀了.下列事件中,哪些是必然发生的?哪些是不可能发生的?哪些是可能发生的?(1)从口袋中任取出一个球,它恰是红球;(2)从口袋中一次性任意取出2个球,它们恰好全是白球;(3)从口袋中一次性任意取出5个球,它们恰好是1个红球,1个蓝球,3个白球.举一反三【变式】甲、乙两人做掷六面体骰子的游戏,双方规定,若掷出的骰子的点数大于3,则甲胜,若掷出的点数小于3,则乙胜,游戏公平吗?若不公平,请你设计出一种对于双方都公平的游戏.类型二、频率与概率3.关于频率和概率的关系,下列说法正确的是()A. 频率等于概率B. 当实验次数很大时,频率稳定在概率附近C. 当实验次数很大时,概率稳定在频率附近D. 实验得到的频率与概率不可能相等【总结升华】概率是频率的稳定值,而频率是概率的近似值.(1)计算表中各场次比赛进球的频率;(2)这位运动员每次投篮,进球的概率约为多少?【总结升华】频率和概率的关系:当大量重复试验时,频率会稳定在概率附近.举一反三【变式】某射手在同一条件下进行射击,结果如下表所示:击中靶心频率()(1)计算表中击中靶心的各个频率(精确到0.01);(2)这个射手射击一次,击中靶心的概率约是多少(精确到0.1)?一、选择题1.“抛一枚均匀硬币,落地后正面朝上”这一事件是( ) .A.随机事件B.确定事件C.必然事件D.不可能事件2.下列说法正确的是().A.“购买1张彩票就中奖”是不可能事件B.“概率为0.0001的事件”是不可能事件(第7题图)(第10题图)C .“任意画一个三角形,它的内角和等于180°”是必然事件D .任意掷一枚质地均匀的硬币10次,正面向上的一定是5次 3.“明天降水概率是30%”,对此消息下列说法中正确的是( ). A .明天降水的可能性较小 B .明天将有30%的时间降水C .明天将有30%的地区降水D .明天肯定不降水4.某市决定从桂花、菊花、杜鹃花中随机选取一种作为市花,选到杜鹃花的概率是( ) .A .1B .12C .13D .05.事件A :打开电视,它正在播广告;事件B :抛掷一个均匀的骰子,朝上的点数小于7;事件C :在标准大气压下,温度低于0℃时冰融化.3个事件的概率分别记为P(A)、P(B)、 P(C),则P(A)、P(B)、 P(C)的大小关系正确的是( ). A .P(C)<P(A)=P(B) B . P(A)< P(B)<P(C) C .P(C)< P(B)<P(C) D . P(C)< P(A)<P(B)6. 小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,综合题9个,她从中随机抽取1个,抽中数学题的概率是( ).A .201 B .41C .51D .31 7.一只小狗在如图所示的方砖上走来走去,最终停在阴影方砖上的概率是( ). A .154 B .31 C .51 D .1528.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( ). A .12 B .14 C .16 D .1129. 在一个不透明的盒子中装有a 个除颜色外完全相同的球,这a 个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a 的值大约为( ).A .12B .15C .18D .2110.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是( ).A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C .暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D .掷一个质地均匀的正六面体骰子,向上的面点数是4 二、填空题 11. 从 - 1, 0,31, ,3中随机任取一数, 取到无理数的概率是 . 12.在一次抽奖活动中,中奖概率是0.12,则不中奖的概率是 . 13.随机掷一枚均匀的硬币两次,两次正面都朝上的概率是.14. 为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有 条鱼.15.有长度分别为2cm ,3cm ,4cm ,7cm 的四条线段,任取其中三条能组成三角形的概率是 .16.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个白球的概率是61,则口袋里有蓝球 个.三、解答题(本大题共6小题,共44分) 17.从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率: (1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.18.节能灯根据使用寿命分成优等品、正品和次品三个等级,其中使用寿命大于或等于8000小时的节能灯是优等品,使用寿命小于6000小时的节能灯是次品,其余的节能灯是正品,质监部门对某批次的一种节能灯(共200个)的使用寿命进行追踪调查,并将结果整理成下表.6000≤t<7000 80 0.40 7000≤t<8000 b 0.15 8000≤t<900060 c 合计2001(1)根据分布表中的数据,在答题卡上写出a ,b ,c 的值;(2)某人从这200个节能灯中随机购买1个,求这种节能灯恰好不是次品的概率.19.小颖为九年级1班毕业联欢会设计了一个“配紫色”的游戏:如图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,游戏者同时转动两个转盘,两个转盘停止转动时,若有一个转盘的指针指向蓝色,另一个转盘的指针指向红色,则“配紫色”成功,游戏者获胜,求游戏者获胜的概率.20.一个不透明的布袋里装有2个白球,1 个黑球和若干个红球,它们除颜色外其余都相同. 从中任意摸出1个球,是白球的概率为12. (1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回...,再摸出1个球,请用列表或画树状图等方法求出两次摸到的球都是白球的概率.红蓝 蓝红红(第19题图)。
第二十五章“概率初步”简介
从《数学标准》看,本章属于“统计与概率”领域,对于该领域的内容,本套教科书共安排了四章,这四章采用统计和概率分开编排的方式,前三章是统计,最后一章是概率。
一方面,概率与统计相对独立,另一方面概率又以统计为依托。
本章概率知识的学习要以前三章的统计部分的知识为基础。
本章教学时间约需14课时,具体分配如下(仅供参考):25.1 概率约4课时25.2 用列举法求概率约4课时25.3 利用频率估计概率约2课时25.4 课题学习约2课时数学活动小结约2课时一、教科书内容和课程学习目标(一)本章知识结构框图(二)教科书内容本章的主要内容是随机事件的定义,概率的定义,计算简单事件概率的方法,主要是列举法(包括列表法和画数行图法),利用频率估计概率。
中心内容是体会随机观念和概率思想。
全章共包括3节:25.1 概率学生在前两个学段已经接触到了一些与可能性有关的初步知识,在本节将学习更加数学化和抽象化地描述可能性的知识──概率。
在25.1.1节中,教科书通过设置的问题1的抽签问题和问题2的掷骰子问题,让学生来感受到,在一定条件下重复进行实验时,有些事件是必然发生的,有些事件是不可能发生的,有些事件是有可能发生也有可能不发的。
教科书为了避免出现太多的概念,所以没有给出必然事件和不可能事件的概念,只给出了随机事件的概念。
在学习了问题1和问题2后,学生就能够判断一个事件是必然会发生的事件、不可能发生的事件还是随机事件。
问题3是一个摸球问题,通过这个问题要使学生在前两个学段知识的基础上进一步认识随机事件发生的可能性,即:一般地,随机事件发生的可能性有大有小,不同的随机事件发生的可能性大小有可能不同。
通过问题3的学习,使学生能够初步判断几个事件发生的可能性的相对大小。
在学习了25.1.1节的随机事件以及随机发生的可能性大小的基础上,25.1.2节给出了对事件发生可能性的更加抽象和更加数学化的描述──概率。
教科书设置了一个投币实验,一方面让学生亲自动手实验获得数据,另一方面还给出投币实验的历史数据,为学生发现规律提供帮助。
第二十五章概率初步学情与教材分析
第25章概率初步学情分析与教材分析(一)学情分析:“概率初步”是《课程标准》“统计与概率”的重要内容. 本章是学生在已经了解了统计知识的相关知识,掌握了方差、频率等知识的基础上继续学习概率的相关知识. 由于学生初学概率,面对概率意义的描述,学生容易产生困惑:概率是什么?概率是否就是频率?何时用列表法,何时用树状图等等问题都有待师生一起去探索. 因此,学生对这部分内容学习是一大难点. 但这部分内容在人们的生活和生产建设中有着广泛的应用,也是今后运用概率知识解决实际问题的预备知识,所以它在教材中处于非常重要的地位.本章共包含三部分内容,分别是:随机事件与概率、用列举法求概率、用频率估计概率. 本章既有理论知识,又有实验研究,内容丰富. 本章的教学,无论是在知识上,还是对学生能力的培养上,都有着十分重要的作用.须注意的是,本学段的概率内容还处在一个比较初级的水平,就《课程标准》来看,这个阶段的学生并没有学习概率中的乘法,所以他们还只能用列表法和树形图法计算一些简单的概率问题.因此,如果问题超过3步的难度,学生完成起来就会非常吃力.所以一般来说,不宜将问题的难度超过3步.(二)教材分析:1.核心素养在随机事件的学习中,通过抽样体会样本及估计结果的随机性,培养学生的随机观念;在用概率解决日常生活中遇到的问题时(如抽奖等),培养学生的概率思想;通过用列表和画树状图求概率,提高学生用枚举的数学思想方法解决问题的能力;通过频率估计概率,进一步培养学生“用样本估计总体”的统计思想.2.本章学习目标(1)了解必然事件、不可能事件和随机事件的概念;(2)在具体情境中了解概率的意义,体会概率是描述不确定现象发生可能性大小的数学概念,理解概率的取值范围的意义;(3)能够运用列举法(包括列表、画树状图)计算简单随机试验中事件发生的概率;(4)能够通过随机试验,获得事件发生的频率;知道通过大量重复试验,可以用频率估计概率,了解频率与概率的区别与联系;(5)通过实例进一步丰富对概率的认识,并能解决一些简单的实际问题.3.课时安排本章教学时间约需6课时,具体分配如下(仅供参考):25.1 随机事件与概率2课时25.2 用列举法求概率 2课时25.3 用频率估计概率1课时章末回顾+检测题1课时4.本章重点(1)随机事件的特点;(2)在具体情境中了解概率意义;(3)运用列表法或树状图法计算事件的概率.5.本章难点(1)对生活中的随机事件作出准确判断;(2)对频率与概率关系的初步理解;(3)能根据不同情况选择恰当的方法进行列举,解决较复杂的事件概率的计算问题.。
第二十五章 概率初步教材分析
• 25.3利用频率估计概率 约2课时
• 25.4课题学习
约2课时
• 数学活动
• 小结
约2课时
五.本章的内容安排和教学建议
一.全章引入
建议本章引入部分应该安排1课时.
教学形式可以自由选择.概率起源的故事和 “摸球游戏”与概率论的故事.也可举生活 实例,渗透随机观念,如天气预报中的降水 概率为90%的意义等.
二.本章知识结构框图
本章的主要内容是随机事件的定义,概率的 定义,计算简单事件概率(古典概率类型)的方法, 主要是列举法(包括列表法和画树形图法),利用 频率估计概率(试验概率)。中心内容是体会随机 观念和概率思想。
三.本章的考试说明要求
基本要求: 1、能借助频率的概念或已有的知识与 生活经验去理解、区分不可能事件、必 然事件和随机事件的含义; 2、在具体情境中了解概率的意义,知 道大量重复实验时频率可作为事件发生 概率的估计值;
第二十五章概率初步 教材分析
一. 地位和作用 二.本章知识结构框图
三.本章的学习目标 四. 本章的课时安排
五.本章的内容安排和教学建议
六.本章编写特点 七.几个值得关注的问题
一. 地位和作用
本章属于“统计与概率”领域,在本 套教科书中该领域的内容共四章,按统计和 概率分开编排,前三章是统计,最后一章是 概率.从安排的顺序上,概率与统计相对独 立。
本章许多内容是以统计部分的知识为 依托、为基础的,比如利用频率估计概率等。
一. 地位和作用
本章内容在旧版本教材中并没有涉及, 是新课标实施后的新增内容,可是近两年, 这部分知识在中考的课标卷中已经开始频频 出现。
概率的初步这部分内容几乎是课改地区 必考的知识点。可见《概率初步》这章内容 还是非常重要的,需要引起我们广大教师的 重视。
新听课记录2024秋季九年级人教版数学上册第二十五章概率初步《用频率估计概率:用频率估计概率》
听课记录:2024秋季九年级人教版数学上册第二十五章概率初步《用频率估计概率》教学目标(核心素养)1.知识与技能:学生能够理解频率与概率的关系,掌握通过大量重复试验用频率估计概率的方法。
2.过程与方法:通过动手实验、数据分析等过程,培养学生观察、记录、分析和解决问题的能力。
3.情感态度价值观:培养学生严谨的科学态度,理解随机现象中的规律性,增强对概率论的兴趣和探索欲。
导入教师行为:•展示一个抛硬币的动画或实物演示,连续抛掷几次后,让学生猜测下一次是正面向上还是反面向上。
•引导学生思考:为什么我们不能准确预测每一次抛掷的结果,但可以通过多次抛掷来估计正面或反面向上的可能性?•引出本节课的主题:“今天我们将学习如何用频率来估计概率,并通过实验来验证这一方法的有效性。
”学生活动:•观看抛硬币的演示,思考并回答教师的提问。
•对即将学习的内容产生好奇心,期待通过实验来验证理论。
过程点评:导入环节通过直观的抛硬币实验,引导学生思考随机现象中的规律性,有效激发了学生的学习兴趣和探究欲望。
教学过程教师行为:•解释频率与概率的概念及其关系,强调在大量重复试验下,某一事件发生的频率会趋近于该事件发生的概率。
•组织学生进行分组实验,每组分配一定数量的硬币和记录表,要求每组进行至少100次抛掷,并记录正面和反面向上的次数。
•巡回指导,观察学生的实验过程,确保数据的准确性和实验的有效性。
•实验结束后,引导学生计算正面或反面向上的频率,并与理论上的概率(0.5)进行比较。
•讨论实验结果与理论概率之间的差异及其原因,如实验误差、样本量大小等。
学生活动:•认真听讲,理解频率与概率的概念及其关系。
•分组进行实验,按照要求抛掷硬币并记录数据。
•计算频率,并与理论概率进行比较,讨论实验结果。
•积极参与讨论,分析实验结果与理论概率差异的原因。
过程点评:教学过程注重学生的动手实践和数据分析能力的培养。
通过分组实验和讨论交流,学生不仅掌握了用频率估计概率的方法,还学会了如何分析实验结果和解释实验现象。
九年级数学上册第二十五章概率初步知识点归纳总结(精华版)(带答案)
九年级数学上册第二十五章概率初步知识点归纳总结(精华版)单选题1、七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为( )A .932B .516C .38D .716答案:C分析:首先设正方形的面积,再表示出阴影部分面积,然后可得概率.解:设“东方模板”的面积为4,则阴影部分三角形面积为1,平行四边形面积为12,则点取自黑色部分的概率为:1+124=38,故选C .小提示:此题主要考查了概率,关键是表示图形的面积和阴影部分面积.2、在一个不透明的口袋中,放置3个黄球,1个红球和n 个蓝球,这些小球除颜色外其余均相同,课外兴趣小组每次摸出一个球记录下颜色后再放回,并且统计了蓝球出现的频率(如图所示),则n 的值最可能是( )A .4B .5C .6D .7 答案:C分析:根据图知,经过大量实验,蓝球出现的频率稳定在0.6附近,再根据频率公式逐项判断即可.解:根据图知,经过大量实验,蓝球出现的频率稳定在0.6附近, 则n1+3+n =0.6,当n =4时,41+3+4=0.5≠0.6,故A 不符合题意; 当n =5时,51+3+5=59≠0.6,故B 不符合题意; 当n =6时,61+3+6=0.6,故C 符合题意; 当n =7时,71+3+7=711≠0.6,故D 不符合题意;∴n 的值最可能是6, 故选:C .小提示:本题考查频数与频率,能从图中获取到蓝球出现的频率稳定在0.6附近是解答的关键.3、如图,电路连接完好,且各元件工作正常.随机闭合开关S 1,S 2,S 3中的两个,能让两个小灯泡同时发光的概率为( )A .16B .12C .23D .13答案:D分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能让两个小灯泡同时发光的情况,再利用概率公式求解即可求得答案. 解:画树状图得:∵共有6种等可能的结果,能让两个小灯泡同时发光的有2种情况,∴能让两个小灯泡同时发光的概率为26=13;故选:D.小提示:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.4、一只不透明的袋子中装有若干个白球和红球,共计20个,这些球除颜色外都相同.将球搅匀,每次从中随机摸出一个球,记下颜色后放回、再搅匀、再摸球,通过大量重复摸球试验后,发现摸到白球的频率稳定于0.3,由此可估计袋子中红球的个数约为()A.6B.14C.5D.20答案:B分析:根据白球的概率可估计红球的概率,即可求解.解:红球的个数为:20×(1−0.3)=14(个),故选:B.小提示:本题考查用频率估计概率,当进行大量重复试验时,频率稳定在概率附近.5、一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,再放回,不断重复上述过程.小明共摸了100次,其中80次摸到白球.根据上述数据,小明可估计口袋中的白球大约有()A.18个B.15个C.12个D.10个答案:C分析:小明共摸了100次,其中80次摸到白球,20次摸到黑球,摸到黑球与摸到白球的次数之比为1:4,由此可估计口袋中黑球和白球个数之比为1:4;即可计算出白球数.解:由题可得:3÷100−8080=12(个).所以答案是:12.小提示:本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.6、小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是( ) A .12B .23C .16D .56答案:C分析:利用列表法或树状图即可解决.分别用r 、b 代表红色帽子、黑色帽子,用R 、B 、W 分别代表红色围巾、黑色围巾、白色围巾,列表如下:1种,根据概率公式,恰好为红色帽子和红色围巾的概率是16. 故选:C .小提示:本题考查了简单事件的概率,常用列表法或画树状图来求解.7、不透明袋中装有除颜色外完全相同的a 个白球、b 个红球,则任意摸出一个球是红球的概率是( ) A .ba+b B .ba C .aa+b D .ab 答案:A分析:根据概率公式直接求解即可. ∵共有(a +b)个球,其中红球b 个∴从中任意摸出一球,摸出红球的概率是ba+b . 故选A .小提示:本题考查了简单概率公式的计算,熟悉概率公式是解题的关键.8、如图所示的是由8个全等的小正方形组成的图案,假设可以随意在图中取一点,那么这个点取在阴影部分的概率是( )A .38B .12C .58D .1 答案:A分析:根据阴影部分的面积所占比例得出概率即可. 解:由图知,阴影部分的面积占图案面积的38,即这个点取在阴影部分的概率是38,故选:A .小提示:本题主要考查几何概率的知识,熟练根据几何图形的面积得出概率是解题的关键. 9、如图,若随机向8×8正方形网格内投针,则针尖落在阴影部分的概率为( )A .12B .58C .9π64D .2564 答案:D分析:利用割补法求得阴影面积,再根据几何概率计算求值即可; 解:将上边和左边的弓形面积补到下边和右边可得阴影面积为5×5=25, 该图形总面积为8×8=64, ∴针尖落在阴影部分的概率=2564, 故选: D .小提示:本题考查了几何概率:事件的概率可以用部分线段的长度(部分区域的面积)和整条线段的长度(整个区域的面积)的比来表示.10、如图是一个游戏转盘.自由转动转盘,当转盘停止转动后,指针落在数字1,2,3,4所示区域内可能性最大的是( )A.1号B.2号C.3号D.4号答案:C分析:根据圆周角可得1区域的圆心角度数,然后计算各个区域的可能性,比较大小即可得.解:1区域的圆心角为:360°−50°−125°−65°=120°,∴落在1区域的可能性为:120°360°=13,落在2区域的可能性为:50°360°=536,落在3区域的可能性为:125°360°=2572,落在4区域的可能性为:65°360°=1372,∵536<1372<13<2572,∴落在3区域的可能性最大,故选:C.小提示:题目主要考查可能性的计算及大小比较,理解题意,掌握可能性的计算方法是解题关键.填空题11、一个事件经过500次的试验,某种结果发生的频率为0.32,那么在这一次试验中,该种结果发生的概率估计值是___________.答案:0.32分析:由题意依据大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率进行分析即可.解:一个事件经过500次的试验,某种结果发生的频率为0.32,那么在这一次试验中,该种结果发生的概率估计值是0.32.所以答案是:0.32.小提示:本题考查利用频率估计概率,解答本题的关键是掌握频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.12、如图,数学活动小组自制了一个飞镖盘.若向飞镖盘内投掷飞镖(落在边界线重新投掷),则飞镖落在阴影区域的概率是_____.答案:13分析:利用阴影部分面积除以总面积=投掷在阴影区域的概率,进而得出答案.解:由题意可得,投掷在阴影区域的概率是:39=13.所以答案是:13.小提示:此题主要考查了几何概率,求出阴影部分面积与总面积的比值是解题关键.13、疫情期间,进入学校都要进入测温通道,体温正常才可进入学校.某校有3个测温通道,分别记为A,B,C通道.学生可随机选取其中的一个通道测温进校园,某日早晨,小王和小李两位同学在进入校园时,恰好选择不同通道测温进校园的概率是_____________.答案:23分析:画树状图展示所有9种等可能的情况数,找出符合条件的情况数,然后根据概率公式求解即可.画树状图为:共有9种等可能的情况,其中小王和小李从不同通道测温进校园的有6种情况,侧小王和小李两位同学在进入校园时,恰好选择不同通道测温进校园的概率是69=23,所以答案是:23.小提示:本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式计算事件A 或事件B 的概率.14、小强、小亮、小文三位同学玩投硬币游戏.三人同时各投出一枚均匀硬币,若出现三个正面向上或三个反面向上,则小强赢;若出现两个正面向上和一个反面向上,则小亮赢;若出现一个正面向上和两个反面向上,则小文赢.有下列说法:①小强赢的概率最小;②小文和小亮赢的概率相等;③小文赢的概率是38;④这是一个公平的游戏.其中,正确的是__________(填序号). 答案:①②③分析:利用树状图得出三人分别赢得概率,然后依次判断即可. 解:画树状图得:所以共有8种可能的情况.三个正面向上或三个反面向上的情况有2种,所以P (小强赢)=28=14;出现2个正面向上一个反面向上的情况有3种,所以P (小亮赢)=38;出现一个正面向上2个反面向上的情况有3种,,所以P (小文赢)=38, ∵14<38,∴小强赢的概率最小,①正确; 小亮和小文赢的概率均为38,②正确; 小文赢的概率为38,③正确;三个人赢的概率不一样,这个游戏不公平,④错误; 所以答案是:①②③.小提示:题目主要考查利用树状图求概率,熟练掌握运用树状图求概率的方法是解题关键.15、有三张完全一样正面分别写有字母A ,B ,C 的卡片.将其背面朝上并洗匀,从中随机抽取一张,记下卡片上的字母后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的字母相同的概率是_________. 答案:13分析:根据题意列出图表得出所有等情况数和抽取的两张卡片上的字母相同的情况数,然后根据概率公式即可得出答案.解:根据题意列表如下:3种情况, 所以P (抽取的两张卡片上的字母相同)=39=13.小提示:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验. 解答题16、寒冬战疫,西安常安,感谢每一位为这座城拼命的人!一个不透明的口袋里装有分别标有汉字“西”、“安”、“常”、“安”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球. (1)若从中任取一球,球上的汉字刚好是“安”的概率为多少?(2)甲从中任取一球,不放回,再从中任取一球,请用画树状图或列表法,求出甲取出的两个球上的汉字恰能组成“西安”的概率。
九年级数学上册同步精品课堂(人教版)第25章 概率初步(单元总结)(解析版)
第二十五章概率初步单元总结【思维导图】【知识要点】知识点一事件概率的概念:某种事件在某一条件下可能发生,也可能不发生,但可以知道它发生的可能性的大小,我们把刻划(描述)事件发生的可能性的大小的量叫做概率.事件类型:①必然事件:有些事情我们事先肯定它一定发生,这些事情称为必然事件.②不可能事件:有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件.③不确定事件:许多事情我们无法确定它会不会发生,这些事情称为不确定事件.【典例分析】1.(2019·莆田第二十五中学初三期末)“射击运动员射击一次,命中靶心”这个事件是()A.确定事件 B.必然事件 C.不可能事件 D.不确定事件【答案】D【解析】“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选D.2.(2017·重庆十八中初三期中)下列说法正确的是()A.打开电视,它正在播广告是必然事件B.要考察一个班级中的学生对建立生物角的看法适合用抽样调查C.在抽样调查过程中,样本容量越大,对总体的估计就越准确D.甲、乙两人射中环数的方差分别为S甲2=2,S乙2=4,说明乙的射击成绩比甲稳定【答案】C【解析】试题分析:A.打开电视,它正在播广告是随机事件,A错误;B.要考察一个班级中的学生对建立生物角的看法适合用全面调查,B错误;C.在抽样调查过程中,样本容量越大,对总体的估计就越准确,C正确;D.甲、乙两人射中环数的方差分别为,,说明甲的射击成绩比乙稳定,D错误;故选C.3.(2017·成都树德中学博瑞实验学校初一期末)下列事件为必然事件的是()A.任意买一张电影票,座位号是偶数B.打开电视机,正在播放动画片C.两角及一边对应相等的两个三角形全等D.三根长度为2cm、3cm、5cm的木棒首尾相接能摆成三角形【答案】C【详解】A、任意买一张电影票,座位号是偶数是随机事件;B、打开电视机,正在播放动画片是随机事件;C、两角及一边对应相等的两个三角形全等是必然事件;D、三根长度为2cm、3cm、5cm的木棒首尾相接能摆成三角形是不可能事件.故选C.4.(2018·成都七中嘉祥外国语学校初三期中)下列事件中是必然事件的是()A.任意画一个正五边形,它是中心对称图形x-有意义,则实数x>3B.实数x3C.a,b均为实数,若a38,b4,则a>bD.5个数据是:6,6,3,2,1,则这组数据的中位数是3【答案】D【解析】解:A.任意画一个正五边形,它是中心对称图形,是不可能时事件,故本选项错误;x-有意义,则实数x>3,是不可能时事件,应为x≥3,故本选项错误;B.实数x3C.a,b均为实数,若a=38,b=4,则a=2,b=2,所以,a=b,故a>b是不可能事件,故本选项错误;D.5个数据是:6,6,3,2,1,则这组数据的中位数是3,是必然事件,故本选项正确.故选D.5.(2018·福建省泉州第一中学初三期中)下利事件中,是必然事件的是()A.将油滴在水中,油会浮在水面上B.车辆随机到达一个路口,遇到红灯C.如果,那么D.掷一枚质地均匀的硬币,一定正面向上【答案】A【解析】选项A,将油滴在水中,油会浮在水面上,是必然事件;选项B,车辆随机到达一个路口,遇到红灯,是随机事件;选项C,如果,那么,是随机事件;选项D,掷一枚质地均匀的硬币,一定正面向上,是随机事件,故选A.知识点二概率计算概率的计算一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为利用列举法求概率方法一:直接列举法求概率当一次试验中,可能出现的结果是有限个,并且各种结果发生的可能性相等时,通常采用直接列举法。
人教版九年级数学上册课件第25章知识梳理
4
情景引入
成语中的事件
中国文化博大精深,而成语更是其中的一份魂宝在数学中,我们
知道有必然事件、不可能事件、随机事件等,而有些成语,恰恰能很 好地解释这些数学中的概念.例如:
必然事件:瓮中捉鳖、春暖花开、落叶归根、流水不腐、生老病 死、瓜熟蒂落、水到渠成.
不可能事件:长生不老、刻舟求剑、饮鸩止渴、掩耳盗铃、缘木 求鱼、竹篮打水、偷天换日.
率为( B )
A. B. C. D. 2.一个不透明的布袋中装有分别标着数字1,2,3,4的四个相同的乒 乓球,现从袋中随机摸出两个乒兵球,则这两个乒兵球上的数字之和
大于5的概率为( B )
A. Bபைடு நூலகம் C. D.
19
知识点三:列举法求随机事件的概率
巩固练习
3.在一个不透明的袋子里装有一个黑球和一个白球,它们除 颜色外其余都相同,随机从中摸出一个球,记下颜色后放回 袋子中,充分摇匀后再随机摸出一个球,两次都摸到黑球的 概率是( A )
23
知识点三:列举法求随机事件的概率
巩固练习
2.(安徽中考改编)如图,管中放置着三根同样绳子AA1、BB1、 CC1.小明先从左端A、B、C三个绳头中随机选两个打一个结, 再从右端A1、B1、C1三个绳头中随机选两个打一个结,求绳 子能连结成一个封闭圆的概率.
24
知识点三:列举法求随机事件的概率
归纳总结
用列表或画树状图的方法求事件概率.值得注意的是: 在列表或画树状图时,要注意是“放回”还是“不放回”问题, 不放回时列表要去掉对角线.通过列表法或树状图法展示 所有可能的结果求出n,再从中选出符合事件的结果数目 m,然后利用概率公式求事件的概率.
25
知识点四:用频率估计概率
九上数学第25章《概率初步》全章教案
第二十五章概率初步25.1随机事件与概率25.随机事件了解必然发生的事件、不可能发生的事件、随机事件的特点.了解随机事件发生的可能性是有大有小的,不同的随机事件发生的可能性的大小不同.重点随机事件的特点.难点判断现实生活中哪些事件是随机事件.一、情境引入分析说明下列事件能否一定发生:①今天不上课;②煮熟的鸭子飞了;③明天地球还在转动;④木材燃烧会放出热量;⑤掷一枚硬币,出现正面朝上.二、自主探究1.提出问题教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球,分组讨论从这三个袋子里摸出黄色乒乓球的情况.学生积极参加,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的.2.概念得出从上面的事件可看出,对于任何事件发生的可能性有三种情况:(1)必然事件:在一定条件下必然要发生的事件;(2)不可能事件:在一定条件下不可能发生的事件;(3)随机事件:在一定条件下可能发生也可能不发生的事件.3.随机事件发生的可能性有大小袋子中有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的情况下,随机地从袋子中摸出一个球.(1)是白球还是黑球?(2)经过多次试验,摸出的黑球和白球哪个次数多?说明了什么问题?结论:一般地,随机事件发生的可能性有大小,不同的随机事件发生的可能性的大小有可能不同.三、巩固练习教材第128页练习四、课堂小结(学生归纳,老师点评)本节课应掌握:(1)必然事件,不可能事件,随机事件的概念.(2)一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.五、作业布置教材第129页 练习1,2.25. 概 率1.在具体情境中了解概率的意义,体会事件发生的可能性大小与概率的值的关系. 2.理解概率的定义及计算公式P(A)=mn ,明确概率的取值范围,能求简单的等可能性事件的概率.重点在具体情境中了解概率的意义,理解概率定义及计算公式P(A)=mn .难点了解概率的定义,理解概率计算的两个前提条件.活动1 创设情境(1)事件可以分为哪几类?什么是随机事件?随机事件发生的可能性一样吗?(2)在同样的条件下,某一随机事件可能发生也可能不发生,那么它发生的可能性究竟有多大?能否用数值进行刻画呢?这节课我们就来研究这个问题. 活动2 试验活动试验1:每位学生拿出课前准备好的分别标有1,2,3,4,5号的5根纸签,从中随机地抽取一根,观察上面的数字,看看有几种可能.(如此多次重复)试验2:教师随意抛掷一枚质地均匀的骰子,请学生观察骰子向上一面的点数,看看有几种不同的可能.(如此可重复多次)(1)试验1中共出现了几种可能的结果?你认为这些结果出现的可能性大小相等吗?如果相等,你认为它们的可能性各为多少?(2)试验2中共出现了几种可能的结果?你认为这些结果出现的可能性大小相等吗?如果相等,你认为它们的可能性各为多少?活动3 引出概率1.从数量上刻画一个随机事件A 发生的可能性的大小,我们把它叫做这个随机事件A 的概率,记为P(A).2.概率计算必须满足的两个前提条件:(1)每一次试验中,可能出现的结果只有有限个; (2)每一次试验中,各种结果出现的可能性相等.3.一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率P(A)=________.4.随机事件A 发生的概率的取值范围是________,如果A 是必然发生的事件,那么P(A)=________,如果A 是不可能发生的事件,那么P(A)=________.活动4 精讲例题例1 下列事件中哪些是等可能性事件,哪些不是? (1)运动员射击一次中靶心与不中靶心; (2)随意抛掷一枚硬币反面向上与正面向上;(3)随意抛掷一只可乐纸杯杯口朝上,或杯底朝上,或横卧;(4)分别从写有1,3,5,7,9中一个数的五张卡片中任抽1张结果是1,或3,或5,或7,或9.答案:(1)不是等可能事件;(2)是等可能事件;(3)不是等可能事件;(4)是等可能事件. 例2 学生自己阅读教材第131页~132页例1及解答过程.例3 教师引导学生分析讲解教材第132页例2.想一想:把此题(1)和(3)两问及答案联系起来,你有什么发现?例4 教师引导学生分析讲解教材第133页例3. 活动5 过关练习教材第133页 练习第1~3题.,这些球除了颜色外都相同.从袋子中随机地摸出一个球,它是红色与它是绿色的可能性相等吗?两者的概率分别是多少?2.一个质地均匀的小正方体骰子,六个面分别标有数字1,2,2,3,4,4,掷骰子后,观察向上一面的数字.(1)出现数字1的概率是多少?(2)出现的数字是偶数的概率是多少?(3)哪两个数字出现的概率相等?分别是多少?答案:,P(摸到红球)=58,P(摸到绿球)=38;2.(1)16;(2)23;(3)数字1和3出现的概率相同,都是16,数字2和4出现的概率相同,都是13.活动6 课堂小结与作业布置 课堂小结1.随机事件概率的意义,等可能性事件的概率计算公式P(A)=mn.2.概率计算的两个前提条件:可能出现的结果只有有限个;各种结果出现的可能性相同. 作业布置教材第134页~135页 习题第3~6题. 用列举法求概率(2课时)第1课时 用列举法和列表法求概率1.会用列举法和列表法求简单事件的概率.2.能利用概率知识解决计算涉及两个因素的一个事件概率的简单实际问题.重点正确理解和区分一次试验中涉及两个因素与所包含的两步试验. 难点当可能出现的结果很多时,会用列表法列出所有可能的结果.活动1 创设情境我们在日常生活中经常会做一些游戏,游戏规则制定是否公平,对游戏者来说非常重要,其实这就是一个游戏双方获胜概率大小的问题. 下面我们来做一个小游戏,规则如下:老师向空中抛掷两枚同样的一元硬币,如果落地后一正一反,老师赢;如果落地后两面一样,你们赢.请问:你们觉得这个游戏公平吗?学生思考计算后回答问题:把其所能产生的结果全部列出来,应该是正正、正反、反正、反反,共有四种可能,并且每种结果出现的可能性相同.(1)记满足两枚硬币一正一反的事件为A ,则P(A)=24=12;(2)记满足两枚硬币两面一样的事件为B ,则P(B)=24=12.由此可知,双方获胜的概率一样,所以游戏是公平的.当一次试验涉及两个因素,并且可能出现的结果数目比较少时,我们看到结果很容易被全部列出来;若出现结果的数目较多时,要想不重不漏地列出所有可能的结果,还有什么更好的方法呢?我们来看下面的这个问题.活动2 探索交流例1 为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A ,B 两个带指针的转盘分别被分成三个面积相等的扇形,转盘A 上的数字分别是1,6,8,转盘B 上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同).每次选择2名同学分别拨动A ,B 两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次).作为游戏者,你会选择哪个装置呢?并请说明理由.在这个环节里,首先可以让学生自己用列举法列出所有的情况,很多学生会发现列出所有的情况会有困难,会漏掉一些情况.这个时候可以要求学生分组讨论,探索交流,然后引导学生将实际问题转化为数学问题,即“停止转动后,哪个转盘指针所指数字较大的可能性更大呢?”由于事件的随机性,我们必须考虑事件发生概率的大小.此时,首先引导学生观看转盘动画,同学们会发现这个游戏涉及A ,B 两个转盘,即涉及两个因素,与上节课所讲授单转盘概率问题相比,可能产生的结果数目增多了,变复杂了,列举时很容易造成重复或遗漏.怎样避免这个问题呢?实际上,可以将这个游戏分两步进行,教师指导学生构造下列表格:BA 45 7 1 68分析:首先考虑转动,可能出现的结果就会有3个;接着考虑转动B 盘:当A 盘指针指向1时,B 盘指针可能指向4,5,7三个数字中的任意一个.当A 盘指针指向6或8时,B 盘指针同样可能指向4,5,7三个数字中的任意一个,这样一共会产生9种不同的结果.学生独立填写表格,通过观察与计算,得出结论(即列表法).B A 4 5 7 1 (1,4) (1,5) (1,7) 6(6,4)(6,5)(6,7)8(8,4) (8,5) (8,7) 从表中可以发现:A 盘数字大于B 盘数字的结果共有5种,而B 盘数字大于A 盘数字的结果共有4种.∴P(A 数较大)=59,P(B 数较大)=49,∴P(A 数较大)>P(B 数较大),∴选择A 装置的获胜可能性较大.在学生填写表格过程中,注意向学生强调数对的有序性.由于游戏是分两步进行的,我们也可用其他的方法来列举.即先转动B 盘,可能出现4,5,7三种结果;第二步考虑转动A 盘,可能出现1,6,8三种情况.活动3 例题精讲通过上面例1的分析,学生对用列表法求概率有了初步的了解,为了帮助学生熟练掌握这种方法,教师引导学生分析解决教材第136页例2.然后引导学生进行题后小结:当一个事件要涉及两个因素并且可能出现的结果数目较多时,通常采用列表法.运用列表法求概率的步骤如下:(1)列表;(2)通过表格计数,确定公式P(A )=mn 中的m 和n 的值;(3)利用公式P(A )=mn计算事件发生的概率.活动4 过关练习教材第138页 练习第1~2题. 活动5 课堂小结与作业布置 课堂小结引导学生从知识、方法、情感三方面来谈一谈这节课的收获,要求每个学生在组内交流,派小组代表发言.作业布置教材第139页~140页 习题第1~3题和第5题.第2课时 用树状图求概率1.理解并掌握用树状图求概率的方法,并利用它们解决问题.2.正确认识在什么条件下使用列表法,在什么条件下使用树状图法.重点理解树状图的应用方法及条件,用画树状图的方法求概率. 难点用树状图列举各种可能的结果,求实际问题中的概率.一、复习引入用列举法求概率的方法.(1)总共有几种可能,即求出n ;(2)每个事件中有几种可能的结果,即求出m ,从而求出概率.什么时候用列表法?列举所有可能的结果的方法有哪些? 二、探索新知 画树状图求概率例1 甲口袋中装有2个相同的球,它们分别写有字母A 和B ;乙口袋中3个相同的球,它们分别写有字母C ,D 和E ;丙口袋中2个相同的球,. (1)取出的三个球上恰好有1个、2个和3个元音字母的概率分别为多少?(2)取出的三个球上全是辅音字母的概率是多少?例1与上节课的例题比较,有所不同:要从三个袋子里摸球,即涉及到三个因素.此时同学们会发现用列表法就不太方便,可以尝试树状图法.本游戏可分三步进行.分步画图和分类排列相关的结论是解题的关键.从图形上可以看出所有可能出现的结果共有12个,即:A A A A A AB B B B B BC CD DE E C C D D E E H I H I H I H I H I H I (幻灯片上用颜色区分)这些结果出现的可能性相等.(1)只有一个元音字母的结果(黄色)有5个,即ACH ,ADH ,BCI ,BDI ,BEH ,所以P (1个元音)=512;有两个元音的结果(白色)有4个,即ACI ,ADI ,AEH ,BEI ,所以P (2个元音)=412=13;全部为元音字母的结果(绿色)只有1个,即AEI ,所以P (3个元音)=112.(2)全是辅音字母的结果(红色)共有2个,即BCH ,BDH ,所以P (3个辅音)=212=16.通过例1的解答,很容易得出题后小结:当一次试验要涉及3个或更多的因素时,通常采用“画树形图”. 运用树状图法求概率的步骤如下:(幻灯片) ①画树状图;②列出结果,确定公式P (A )=mn 中m 和n 的值;③利用公式P (A )=mn 计算.三、巩固练习教材第139页 练习四、课堂小结本节课应掌握:1.利用树状图法求概率.2.什么时候用列表法,什么时候用树状图法,各自的应用特点:有两个元素且情况较多时用列表法,当有三个或三个以上元素时用树状图法.五、作业布置教材第140页习题6,9.用频率估计概率1.当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2.会设计模拟试验,能应用模拟试验求概率.重点对利用频率估计概率的理解和应用.难点对利用频率估计概率的理解.一、情境引入某篮球运动员在最近的几场大赛中罚球投篮的结果如下:投篮次数n 8 10 12 9 16 10进球次数m 6 8 9 7 12 7进球频率错误!(1)计算表中各次比赛进球的频率;(2)这位运动员投篮一次,进球的概率约为多少?解答:(1),,,,0.75,;(2)0.75.二、自主探究利用频率估计概率1.试验要求:(1)把全班分成10或12组,每组中有一名学生投掷硬币,另一名同学做记录,其余同学观察试验,计算结果,各组必须在同样条件下进行.(2)明确任务,每组掷币50次,认真统计“正面朝上”的频数,算出“正面朝上”的频率,整理试验的数据,并记录下来.2.各组汇报试验结果:把各组试验数据汇报给教师,教师积累后填入表格,板书,学生计算出累加后的频率.(由于试验次数较小,有可能有些组的最后结果和自己的猜想有出入)3.根据列表填在教材第142页图中,观察频率变化情况,小组交流后阐述所得结论.4.思考:教材第143页“思考”.5.问题1:教材第144页问题1.分析:幼树的成活率是实际问题中的概率,在这个实验过程中,移植总数无限,每一棵小苗成活的可能性不相等,所以不能用列举法求概率,只能用频率估计概率.解:教师引导学生完成方法总结:(1)先计算出每次试验的频率;(2)观察频率活动情况,选择最接近且围绕波动的频率数作为概率.用频率估计概率的应用教材第145页问题2分析:学生阅读表25-6提供的信息:(1)估测出损坏率.(实质也是概率问题)(2)算出完好柑橘的质量.(3)计算出实际成本,再确定定价.三、巩固练习教材第147页练习.四、课堂小结(1)利用频率估计概率,建立在大量重复试验的基础上.(2)利用频率估计概率,得到的概率是近似值.五、作业布置教材第147~148页习题1,2,5.。
人教版数学九年级上册第25章-概率初步(教案)
1.理解概率的基本性质,如非负性、规范性、可加性等。
2.掌握互斥事件和独立事件的概率计算方法。
25.4概率的应用
1.能运用概率知识解决实际问题。
2.了解概率在生活中的应用,提高解决问题的能力。
二、核心素养目标
1.培养学生运用数学语言描述随机现象,提高抽象概括能力。
2.培养学生运用概率知识进行问题分析,提升逻辑推理和数学思维能力。
此外,在教学过程中,我尝试采用小组讨论和实验操作的方式,让学生在实践中学习概率。从学生的反馈来看,这种教学方式取得了较好的效果,大家积极性很高,课堂氛围活跃。但同时,我也注意到,在小组讨论过程中,部分学生依赖性强,不够主动。因此,我需要在组织小组活动时,更加注重激发学生的主观能动性,引导他们积极参与讨论,提高合作能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《概率初步》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过不确定的情况?”(如抛硬币、抽奖等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索概率的奥秘。
在讲解概率的性质和应用时,我发现学生对于理论知识的应用还不够熟练。为了帮助学生更好地将所学知识运用到实际问题中,我计划在后续的教学中,增加一些与生活密切相关的综合题,让学生在解决问题的过程中,深化对概率性质的理解。
最后,我觉得在课堂教学过程中,要关注学生的个体差异。对于学习困难的学生,要给予更多的关心和指导,帮助他们克服难点,提高学习兴趣。同时,对于学有余力的学生,可以适当增加拓展性内容,激发他们的学习潜能。
2.教学难点
-理解随机事件的抽象概念:学生对随机事件的理解可能存在困难,需要通过具体实例和生活情境帮助学生理解。
人教版九年级上册(新)第25章《概率初步》全章试题含答案
人教版九年级上册(新)第25章《概率初步》全章试题班级: 姓名: 分数一、单选题1.“抛一枚均匀硬币,落地后正面朝上”.这一事件是 ( )A. 随机事件B. 确定事件C. 必然事件D. 不可能事件 2.下列说法不正确的是A .选举中,人们通常最关心的数据是众数( )B .从1、2、3、4、5中随机取一个数,取得奇数的可能性比较大C .必然事件的概率为1D .某游艺活动的中奖率是60%,说明参加该活动10次就有6次会获奖3.在一个不透明的口袋中,装有3个红球,2个白球,除颜色不同外其余都相同,则随机从口袋中摸出一个球为红色的概率是( ) A .31 B .52 C .51 D .53 4.在一个不透明袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是( ) A .14 B .13C .12D .23 5.为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼,如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的可估计为( )A .3000条B .2200条C .1200条D .600条6.下表是某种抽奖活动中,封闭的抽奖箱中各种球的颜色、数量,以及它们所代表的奖项:为了保证抽奖的公平性,这些小球除了颜色外,其他都相同,而且每一个球被抽中的机会均相等,则该抽奖活动抽中一等奖的概率为( ) A.16 B. 51C. 310D. 12 7.某奥体中心的构造如图所示,其东、西面各有一个入口A 、B ,南面为出口C ,北面分别有两个出口D 、E .聪聪若任选一个入口进入,再任选一个出口离开,那么他从入口A 进入并从北面出口离开的概率为( ) A .16 B .15 C .13D .12第8题图8. 如图,正方形ABCD 内接于⊙O ,⊙O 的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 内的概率是( )A .π2 B .2π C .π21D .π29.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为( )A.14 B. 12 C. 34D. 1 10. 从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M :“这个四边形是等腰梯形” .下列判断正确的是( ) A .事件M 是不可能事件 B .事件M 是必然事件 C .事件M 发生的概率为 15D .事件M 发生的概率为 25二、填空题11.一个盒子内装有大小、形状相同的四个球,其中红球1个,绿球1个,白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是 ; 12.同时抛掷两枚硬币正面均朝上的概率为____ .13.在一个木制的棱长为3的正方体的表面涂上颜色,将它的棱三等分,然后从等分点把正方体锯开,得到27个棱长为l 的小正方体,将这些小正方体充分混合后,装入口袋,从这个口袋中任意取出一个第7题图小正方体,则这个小正方体的表面恰好涂有两面颜色的概率是 .14.在一个不透明的袋子里装有黄色、白色乒乓球共40个,除颜色外其他完全相同.小明从这个袋子中随机摸出一球,放回.通过多次摸球实验后发现,摸到黄色球的概率稳定在15%附近,则袋中黄色球可能有___________个.15.一只盒子中有红球m 个,白球8个,黑球n 个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m +n = .16.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5、6、7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙获胜.这个游戏 .(填“公平”或“不公平”).17. 在x 2□2xy□y 2的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是___________.18.从-2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是 .19. 从-2、-1、0、1、2这5个数中任取一个数,作为关于x 的一元二次方程20x x k -+= 的k 值,则所得的方程中有两个不相等的实数根的概率是 .20.如图,第(1)个图有1个黑球;第(2)个图为3个同样大小球叠成的图形,最下一层的2个球为黑色,其余为白色;第(3)个图为6个同样大小球叠成的图形,最下一层的3个球为黑色,其余为白色;;则从第(n )个图中随机取出一个球,是黑球的概率是 .三、解答题21.有3张形状材质相同的不透明卡片,正面分别写有1、2、-3,三个数字.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字作为一次函数b kx y +=中k 的值;第二次从余下的两张卡片中再随机抽取一张,上面标有的数字作为b 的值.(1)k 的值为正数的概率是 ; (2)用画树状图或列表法求所得到的一次函数b kx y +=的图像经过第一、三、四象限的概率.22.小英与她的父亲、母亲计划清明小长假外出旅游,初步选择了苏州、常州、上海、南京四个城市,由于时间仓促,他们只能去其中一个城市,到底去哪一个城市三个人意见不统一,在这种情况下,小英父亲建议,用小英学过的摸球游戏来决定,规则如下:①在一个不透明的袋子中装一个红球(苏州)、一个白球(常州)、一个黄球(上海)和一个黑球(南京),这四个球除颜色不同外,其余完全相同;②小英父亲先将袋中球摇匀,让小英从袋中随机摸出一球,父亲记录下其颜色,并将这个球放回袋中摇匀,然后让小英母亲从袋中随机摸出一球,父亲记录下它的颜色;③若两人所摸出球的颜色相同,则去该球所表示的城市旅游,否则,前面的记录作废,按规则②重新摸球,直到两人所摸出球的颜色相同为止.按照上面的规则,请你解答下列问题:(1)已知小英的理想旅游城市是常州,小英和母亲随机各摸球一次,,请用画树状图或列表法求两人均摸出白球的概率是多少?(2)已知小英母亲的理想旅游城市是上海,小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是多少?参考答案一、填空题1、A2、D 3、D 4、A 5、A 6、A 7、A 8、A 9、B 10、B 二、填空 11、61、12、41 13、4914、6 15、 8 16: 不公平 17、21 18、31 19、53 20、21n三、解答题 21、(1)32 (2)3222、答案:解:(1)画树状图得:········· 2分∵共有16种等可能的结果,均摸出白球的只有1种情况,·········3分∴小英和母亲随机各摸球一次,均摸出白球的概率是:;·········5分(2)由(1)得:共有16种等可能的结果,至少有一人摸出黄球的有7种情况,··6分∴小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是:.·········8分。
最新人教版九年级数学上册第二十五章《概率初步》本章概要
第二十五章概率初步
本章概要
在自然界和人类社会中,严格确定的现象十分有限,不确定现象(又称随机现象,即在相同的条件下重复同样的试验,其试验结果却不确定,以至于在试验之前无法预料哪一个结果会出现)却是大量存在的,而概率正是对随机现象的一种数学的描述,它能够帮助我们更好地认识随机现象,并对生活中的一些不确定情况作出决策.
从许多随机事件入手,研究了一些简单的随机事件发生的可能性(概率),并对一些现象作出了合理的解释和公平的评判.但对随机事件及其发生的概率的认识是一个较长的认知过程,对概率的理解随着其数学活动经验的不断加深而逐步得到发展.本章在具体情境中了解概率的意义,并会运用列举法(包括列表、画树形图)计算简单事件发生的概率.能运用树形图和列表法计算简单事件发生的概率.通过试验,获得事件发生的频率;知道大量重复试验时频率可作为事件发生概率的估计值,紧接着通过实例进一步丰富对概率的认识,并能解决一些实际问题.
学习策略
了解概率的意义,理解现实世界中不确定现象的特点,树立一定的随机观念是本章的重点和难点.我们要主动地参与对事件发生概率的感受和探索,通过现实世界中熟悉和感兴趣的问题,丰富对概率背景的认识,积累大量的活动经验.在学习中,必须亲自经历对随机现象的探索过程,亲自感受“试验——收集试验数据——分析试验结果”的过程,以获得事件
发生
的概率,消除一些错误的经验,体会不确定现象的特点.
我们要积极参与试验过程,亲自动手操作试验,收集试验数据,分析试验数据,并与同伴进行交流.
现实中往往存在着一些生活经验,这些经验是我们学习的基础,但其中也有一些是错误的,逐步消除错误的经验,建立正确的随机观念是学习概率的一个重要目标,要实现这一目标,我们必须经历对随机现象的探索过程.。
第25章 概率初步
第二十五章概率初步25.1.1 随机事件课前:教材导读目标导航:1.了解随机事件、必然事件和不可能事件的意义.2.理解随机事件发生的可能性大小,分析随机事件与其他事件之间的关系.3.由实验归纳总结随机事件发生的可能性大小.互动质疑预习课本P127~P129,回答下列问题:下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边下山;(2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数);(4)水往低处流;(5)酸和碱反应生成盐和水;(6)三个人性别各不相同;(7)一元二次方程x2+2x+3=0无实数解.思考我们把上面的事件(1)、(4)、(5)、(7)称为必然事件,把事件(2)、(3)、(6)称为不可能事件,那么请问:什么是必然事件?什么又是不可能事件呢?它们的特点各是什么?课中:质疑探究合作探究活动一:5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到的纸签上的数字的情况从签筒中随机(任意)地取一根纸签.请考虑以下问题:(1)抽到的序号是0,可能吗?这是什么事件?不可能,这是不可能事件.(2)抽到的序号小于6,可能吗?这是什么事件?可能,这是必然事件.(3)抽到的序号是1,可能吗?这是什么事件?可能,这是随机事件.(4)你能列举与事件(3)相似的事件吗?略.活动2:小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数。
请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?思考:(1)上述两个活动中的两个事件(3)与必然事件和不可能事件的区别在哪里?(2)怎样的事件称为随机事件呢?略.【探究回眸】指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件。
人教版九年级数学上册第25章《概率初步》教案
第二十五章概率初步1、了解必然事件、不可能事件和随机事件的概念、2、在具体情境中了解概率的意义,体会概率是描述不确定现象发生可能性大小的数学概念,理解概率的取值范围的意义、3、能够运用列举法(包括列表、画树状图)计算简单随机试验中事件发生的概率、4、能够通过随机试验,获得事件发生的频率;知道通过大量重复试验,可以用频率估计概率,了解频率与概率的区别与联系、5、通过实例进一步丰富对概率的认识,并能解决一些简单的实际问题、经历试验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率、渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力、在合作探究学习过程中,激发学生学习的好奇心与求知欲,体验数学的价值与学习的乐趣、通过概率意义和计算教学,渗透辩证思想教育、“概率初步”是“统计与概率”领域的重要内容,在日常生活和生产中有广泛的应用,它与“统计”有关知识联系紧密,同时也是以后学习更深的“概率与统计”知识的基础,对概率的意义、求法及应用的学习与探究可以发展思维能力,有效改善学习方式,掌握认识事物的一般规律,对社会生活中的一些现象作出预测、概率是初中数学的重要内容,从数量上刻画了某个事件发生的可能性的大小,在我们日常生活中有着重要的意义、本章的主要内容包括事件的类型,概率的意义、计算方法、应用以及用频率或通过模拟试验来估计概率的大小、具体内容有概率的意义、用列举法求概率、利用频率估计概率、统计与概率的实际应用、概率问题是近年中考的热点之一,由单一的选择题、填空题延伸到分值较高的解答和应用题,甚至可以设计成开放探索题、本章内容不论在基础知识和数学思想方法上,还是在对能力培养上都非常重要、【重点】运用列表法或树状图法计算事件的概率、【难点】能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题、1、通过实例让学生感受事件发生的可能性的大小及概率的意义、2、用列举法求概率时,首先要让学生准确判断在事件中每一种情况发生的可能性是相同的,较简单的可以直接利用公式P(A)=来求,需要两步或两步以上试验操作时,可以借助“树状图”来计算、3、要注意利用试验与估测的方法来理解概率和频率,尽管随机事件在每次试验中发生与否具有不稳定性,但只要试验的条件不变,这一事件出现的频率会随着试验次数的增加而趋于稳定,这个稳定的值就可以作为该事件发生的概率、4、通过对具体问题的模拟试验,感受通过统计数据推测的合理性,进一步体会统计与概率的关系、25、1随机事件与概率1、了解必然事件、不可能事件和随机事件的概念,知道随机事件发生有可能性大小之分、2、了解概率的意义、学生经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力、在合作探究学习过程中,激发学生的好奇心与求知欲,体验数学的价值与学习的乐趣、通过概率意义教学,渗透辩证思想教育、【重点】会判断现实生活中哪些事件是随机事件、【难点】随机事件的特点、概率的意义、25、1、1随机事件了解必然发生的事件、不可能发生的事件、随机事件的特点,会判断哪些事件是必然事件、不可能事件、随机事件,知道随机事件发生有可能性大小之分、经历试验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念、体验从事物的表象到本质的探究过程,感受到数学的科学性及生活中丰富的数学现象、【重点】随机事件的特点,会判断现实生活中哪些事件是随机事件、【难点】随机事件的概念、【教师准备】多媒体课件1~4,装有乒乓球的不透明袋子、【学生准备】复习小学学过的分数和初中学过的整式、导入一:播放一段天气预报,引出一句古语:“天有不测风云”、【课件1】请说明下列事件是否一定发生、(1)太阳从西边下山;(2)某人的体温是100 ℃;(3)a2+b2=-1(其中a,b都是实数);(4)水往低处流;(5)酸和碱反应生成盐和水;(6)一元二次方程x2+2x+3=0有实数解、教师给出上述问题并问“上述结果是确定的吗”、学生阅读、观察、思考、回答问题、[设计意图]首先,这几个事件都是学生能熟知的生活常识和学科知识,通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,提出这些问题符合由浅入深的理念,容易激发学生学习的积极性、导入二:同学们,今天我们先来玩一个摸球游戏、三个不透明的袋子中均装有10个乒乓球,挑选多名同学来参加游戏、游戏规则:每人每次从自己选择的袋子中摸出一球,记录下颜色,放回,搅匀,重复前面的试验,每人摸球5次、按照摸出黄色球的次数排序,次数最多的为第一名,其次为第二名,最少的为第三名、教师事先准备的三个袋子中分别装有10个白色的乒乓球;5个白色的乒乓球和5个黄色的乒乓球;10个黄色的乒乓球、学生积极参加游戏,通过操作和观察,归纳猜测出在第1个袋子中摸出黄色球是不可能的,在第2个袋子中能否摸出黄色球是不确定的,在第3个袋子中摸出黄色球是必然的、教师适时引导学生归纳出必然发生的事件、随机事件、不可能发生的事件的特点、[设计意图]通过生动、活泼的游戏,自然而然地引出必然发生的事件、随机事件和不可能发生的事件,不仅能够激发学生的学习兴趣,并且有利于学生理解,能够巧妙地实现从实践认识到理性认识的过渡、一、认识必然事件、不可能事件、随机事件思路一在学生讨论、归纳的基础上,教师板书必然事件、不可能事件的定义:在一定条件下必然会发生的事件称为必然事件;必然不会发生的事件称为不可能事件,必然事件和不可能事件统称为确定性事件、【课件2】5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序、签筒中有5根形状、大小均相同的纸签,上面分别标有出场的序号1,2,3,4,5、小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机(任意)地取一根纸签、请考虑以下问题:(1)抽到的序号是0,可能吗?这是什么事件?(2)抽到的序号小于6,可能吗?这是什么事件?(3)抽到的序号是1,可能吗?这是什么事件?(4)你能列举出与事件(3)相似的事件吗?提出问题,探索概念:(1)上述活动中的必然事件和不可能事件的区别在哪里?(2)怎样的事件称为随机事件呢?结合问题,师生总结随机事件的特点:可能发生也可能不发生、思路二请同学们把下面的事件根据发生的可能性进行分类、【课件3】(1)通常加热到100 ℃时,水沸腾;(2)姚明在罚球线上投篮一次,命中;(3)掷一次骰子,向上的一面是6点;(4)度量三角形的内角和,结果是360°;(5) 经过城市中某一有交通信号灯的路口,遇到红灯;(6)某射击运动员射击一次,命中靶心;(7)太阳东升西落;(8)人离开水可以正常生活100天;(9)正月十五雪打灯;(10)宇宙飞船的速度比飞机快、学生根据自己的观察,说出上述事件分三类:(1)(7)(10)、(4)(8)、(2)(3)(5)(6)(9)、教师追问:各类事件各有什么特点?请同学们自己总结一下、学生思考后说:(1)(7)(10)是必然发生的事件;(4)(8)是不可能发生的事件;(2)(3)(5)(6)(9)是可能发生也可能不发生的事件、引导学生归纳必然事件、不可能事件、随机事件的定义、[设计意图]学生积极思考,回答问题,进一步夯实必然发生的事件、随机事件和不可能发生的事件的特点、在充分比较后,达到加深理解的目的、二、随机事件发生的可能性大小组织学生进行摸球试验:袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球、教师提出问题:我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B,(1)事件A和事件B是随机事件吗?(2)哪个事件发生的可能性大?教师提出要求:学生通过试验观察结果,思考并阐述自己得出的结论及理解、教师进一步引导学生试验,归纳得出结论:一般地,随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小有可能不同、[设计意图]“摸球”试验操作方便、简单且可重复,又为学生所熟知,学生做起来感觉亲切、有趣,并且容易依据生活经验猜到正确结论,这样易于激发学生的学习热情、三、例题讲解【课件4】在200件产品中,有192件一级品,8件二级品,则下列事件:①在这200件产品中任意选出9件,全部是一级品;②在这200件产品中任意选出9件,全部是二级品;③在这200件产品中任意选出9件,不全是一级品;④在这200件产品中任意选出9件,至少一件是一级品、其中,是必然事件;是不可能事件;是随机事件、在这200件产品中任意选出1件,级品的可能性大、(如果没有请填“无”)教师引导学生理解题意,尝试答题、学生完成解答过程:其中,④是必然事件;②是不可能事件;①③是随机事件、在这200件产品中任意选出1件,一级品的可能性大、[设计意图]学生利用所学内容进行解答,在巩固知识的同时,把随机事件和随机事件的可能性大小结合在一起、[知识拓展]必然事件是指一定能发生的事件,其发生的可能性是100%;不可能事件是指一定不能发生的事件,其发生的可能性是0;随机事件发生的可能性在0~1之间、1、在一定条件下,必然会发生的事件称为必然事件;必然不会发生的事件称为不可能事件,必然事件和不可能事件统称为确定性事件;可能发生也可能不发生的事件称为随机事件、2、一般地,随机事件发生的可能性有大有小,不同的随机事件发生的可能性的大小有可能不同、1、下列事件中,是必然事件的为()A、抛掷一枚质地均匀的硬币,落地后正面朝上B、江汉平原7月份某一天的最低气温是-2 ℃C、通常加热到100 ℃时,水沸腾D、打开电视,正在播放节目《男生女生向前冲》解析:选项A和D是随机事件;选项B是不可能事件;选项C是必然事件、故选C、2、下列说法正确的是 ()A、如果一件事情发生的机会只有十万分之一,那么它就不可能发生B、如果一件事情发生的可能性是100%,那么它就一定会发生C、买彩票的中奖率是1%,那么买100张彩票,就有一张中奖D、一个口袋中有10个质地均匀的小球,其中9个白球,只有一个红球,那么从中任取一个球,一定是白球解析:选项A中事件发生的可能性虽然很小,但也有可能发生;选项B中的事件是必然事件,所以它一定会发生;选项C中买彩票的中奖率是1%,说明中奖的可能性小,有时买100张彩票也可能不中奖;选项D中的事件是随机事件、故选B、3、下列事件:①在足球赛中,弱队战胜强队;②任意取两个有理数,这两个数的和为正数;③任取两个正整数,其和大于1;④长分别为3,5,9厘米的三条线段能围成一个三角形、其中确定性事件的个数是()A、1个B、2个C、3个D、4个解析:①在足球赛中,弱队战胜强队,此事件为随机事件、②两个有理数的和有可能是正数、负数或零,此事件为随机事件、③任取两个正整数,其和大于1,此事件为确定性事件中的必然事件、④长分别为3,5,9厘米的三条线段能围成一个三角形,此事件为确定性事件中的不可能事件、故确定性事件为③和④,一共有2个确定性事件、故选B、4、一个小球在如图所示的地面上随意滚动,小球“停在黑色方块上”与“停在白色方块上”的可能性哪个大?(方块的大小、质地均相同)解:图中有9块黑色方块,15块白色方块,所以停在白色方块上的可能性大、25、1、1 随机事件一、认识必然事件、不可能事件、随机事件二、随机事件发生的可能性大小三、例题讲解一、教材作业【必做题】教材第128页的练习,教材第129页练习的1~3题、【选做题】教材第135页习题25、1的7题、二、课后作业【基础巩固】1、在一个质地均匀的正方体的六个面上,分别标有1,2,3,4,5,6,“抛出正方体,落地后朝上的一面标有6”这一事件是()A、必然事件B、随机事件C、不可能事件D、以上都不对2、下列事件是不可能事件的是()A、某个数的绝对值小于0B、0的相反数为0C、某两个数的和为0D、某两个负数的积为正数3、某次国际乒乓球比赛中,只有甲、乙两名中国选手进入最后决赛,那么下列事件为必然事件的是()A、冠军属于甲B、冠军属于乙C、冠军属于中国人D、冠军属于外国人【能力提升】4、袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球、下列事件是必然事件的是()A、摸出的三个球中至少有一个球是黑球B、摸出的三个球中至少有一个球是白球C、摸出的三个球中至少有两个球是黑球D、摸出的三个球中至少有两个球是白球5、下列是随机事件的是()A、角平分线上的点到角两边的距离相等B、三角形任意两边之和大于第三边C、面积相等的两个三角形全等D、三角形内心到三边距离相等6、随意从一副扑克牌中抽到Q和K的可能性大小是()A、抽到Q的可能性大B、抽到K的可能性大C、抽到Q和K的可能性一样大D、无法确定7、如果一件事情不发生的可能性为99、99%,那么它()A、必然发生B、不可能发生C、很有可能发生D、不太可能发生8、在某校艺体节的乒乓球比赛中,李东同学顺利进入总决赛,且个人技艺高超,有同学预测“李东夺冠的可能性是80%”,对该同学的说法理解正确的是()A、李东夺冠的可能性比较小B、李东和他的对手比赛10局,他一定赢8局C、李东夺冠的可能性比较大D、李东肯定赢9、一个袋子中装有除颜色外都相同的6个红球和4个黄球,从袋子中任意摸出一个球,则:(1)“摸出的球是白球”是什么事件?(2)“摸出的球是红球”是什么事件?(3)“摸出的球不是绿球”是什么事件?(4)摸出哪种颜色球的可能性大?【拓展探究】10、如图所示,第一列表示各盒中球的颜色、个数情况,第二列表示摸到红球的可能性大小,请你用线把它们连接起来、【答案与解析】1、B(解析:抛掷一个质地均匀的正方体,落地后朝上的那一面有可能标有1,也有可能标有2,3,4,5,6,所以“抛出正方体,落地后朝上的一面标有6”是随机事件、)2、A(解析:任何实数的绝对值都不小于0,所以选项A是不可能事件;选项B 是必然事件;选项C是随机事件;选项D是必然事件、)3、C(解析:因为进入决赛的都是中国人,所以冠军一定属于中国人,即“冠军属于中国人”是必然事件、)4、A(解析:由于袋子中装有4个黑球和2个白球,摸出的三个球的情况有如下三种:两个白球和一个黑球,一个白球和两个黑球,三个黑球,因此摸出的三个球中至少有一个球是黑球,所以“摸出的三个球中至少有一个球是黑球”是必然事件、)5、C(解析:“角平分线上的点到角两边的距离相等”是必然事件;“三角形任意两边之和大于第三边”是必然事件;“三角形内心到三边距离相等”是必然事件;面积相等的两个三角形不一定全等,所以选项C是随机事件、)6、C(解析:因为在一副扑克牌中,Q和K的数量相同,所以抽到它们的可能性相同、)7、D(解析:一件事情不发生的可能性为99、99%,说明这个事件是随机事件,这个事件发生的可能性不大,即不太可能发生、)8、C(解析:李东夺冠的可能性是80%,只能说明李东夺冠的可能性较大,不能说明比赛10局,李东一定赢8局,也不能说明李东一定赢、)9、解:(1)“摸出的球是白球”是不可能事件、(2)“摸出的球是红球”是随机事件、(3)“摸出的球不是绿球”是必然事件、(4)摸出红球的可能性大、10、解:由题意知各盒中总球数都是10,所以摸到红球的可能性大小与每个盒中红球的个数有关、①中不可能摸到红球;②中不太可能摸到红球;③中可能摸到红球;④中很可能摸到红球;⑤中一定能摸到红球、连线如下图所示、本节课的设计旨在遵循从具体到抽象、从感性到理性的渐进认识规律,以学生感兴趣的摸球游戏、抽签、掷骰子游戏引导学生分清什么是必然事件,什么是不可能事件,什么是随机事件,增加学生的学习兴趣、学生分组讨论的质量不佳、活动的时间把握不够好,以致后面学生的练习量不足,对学生的易错点发现得不够,关注学生的学习过程不够全面、指导学生联系生活实际,思考事件发生的可能性、练习(教材第128页)解:(1)是必然事件;(4)是不可能事件;(2)(3)(5)(6)是随机事件、练习(教材第129页)1、解:“落在海洋里”的可能性更大、2、解:(1)不能、(2)抽到黑桃的可能性大、(3)增加一张红桃或减少一张黑桃,使黑桃与红桃张数相同,可使可能性大小相同、3、解:例如:明天会下雪;经过一个十字路口碰到红灯;买一张彩票中大奖等都是随机事件、在写有0,1,2,…,9的这十张卡片上,任取一张,得到一个大于10的数是不可能事件,得到一个小于10的数是必然事件、(答案不唯一)实施新课标以来,在数学教学中应该注意数学来源于生活又服务于生活的原则,为学生创设情境,使学生置身于这些情境中不知不觉地学习数学知识,并在学习过程中始终关注学生情感态度的变化和发展,以教师为引导,学生为主体来开展教学,在这样的背景下,教师组织教学就有更高的要求、当然,如果教师能时刻关注学生,运用人性化、充满灵性、悟性的教学,那么学生就更能感受到数学无处不在的魅力、在小学阶段,学生已经了解了随机现象发生的可能性,本节课主要是在此基础上对随机事件进行进一步的研究、本节课的重点为随机事件的特点,难点为判断现实生活中哪些事件是随机事件、为了能突破这一重难点,本节课设计了多个游戏,让学生真正地参与到活动中去,在参与中消化知识、(2014·南平中考)一个袋中只装有3个红球,从中随机摸出一个是红球、下列说法中正确的是 ()A、可能性为3B、属于不可能事件C、属于随机事件D、属于必然事件〔解析〕本题考查了事件可能性的判断,解题的关键是紧扣定义、因为袋子中只装有红球,所以摸出一个球是红球属于必然事件,并且必然事件的概率,即可能性大小为1、故选D、25、1、2概率1、在具体情境中了解概率的意义,体会事件发生的可能性大小与概率的值的关系、2、理解概率的定义及计算公式P(A)=、经历试验操作、观察、思考和总结,理解随机事件的概率的定义,掌握概率的求法、理解概率的意义,渗透辩证思想,感受数学与现实生活的联系,体会数学在现实生活中的应用价值、【重点】随机事件的概率的定义;“事件A发生的概率是P(A)=(在一次试验中有n种等可能的结果,其中事件A包含m种)”的求概率的方法及运用、【难点】了解概率的定义,理解概率计算的两个前提条件、【教师准备】多媒体课件1~8、【学生准备】1枚质地均匀的硬币、导入一:老师有一个小麻烦,请大家一起来想想办法、【课件1】周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去、我很为难,真不知该把球票给谁、请大家帮我想个办法来决定把球票给谁、学生制订方案:抓阄、抽签、猜拳、投硬币……教师对学生的较好想法予以肯定、追问:为什么要用抓阄、投硬币的方法呢?由学生讨论:这样做公平,能保证小强与小明得到球票的可能性一样大、在学生讨论发言后,教师给予评价并归纳总结、[设计意图]提供的问题情境贴近学生生活,不仅能提高学生参与的积极性,而且让学生在潜意识中开始接触概率、导入二:同学们,我们一起玩一个游戏好不好?【课件2】抛出你手中的硬币,记录抛出结果、抛掷硬币向上一面的结果有几种可能?正面和背面朝上的可能性大小是多少?学生抛掷硬币、回答,教师引导学生注意到因为硬币质地均匀,所以每个面朝上的可能性大小相等、[设计意图]以学生熟悉的抛掷硬币为例,让学生初步体会用数值刻画随机事件发生的可能性大小,以及用数值刻画的合理性,从定性分析到定量刻画、一、概率的意义思路一在学生观察、归纳的基础上,教师板书概率定义:一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A)、思路二进行试验:抛掷一枚质地均匀的骰子,向上一面的点数有几种可能?每种点数出现的可能性大小是多少?学生思考、回答,教师引导学生注意到因为骰子形状规则、质地均匀,又是随机掷出,所以点数出现的可能性大小相等,我们用表示每一种点数6出现的可能性大小、刻画了试验中随机事件发生的可能性大小、一般地,对于一教师指出:6个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A)、[设计意图]给出概率的定义,让学生通过抽签、掷骰子的实例初步了解概率的意义、二、求概率的方法【课件3】掷骰子、抛硬币等试验有哪些共同特点?学生思考、交流,教师适当引导,启发学生注意到,以上试验有两个共同特点:①每一次试验中,可能出现的结果只有有限种;②每一次试验中,各种结果出现的可能性相等、【课件4】从分别写有数字1,2,3,4,5的五个纸团中随机抽取一个,你能求出“抽到偶数”“抽到奇数”这两个事件的概率吗?学生思考、交流,教师适当引导,启发学生注意到对于具有上述特点的试验,用事件所包含的各种可能的结果数在全部可能的结果总数中所占的比,表示事件发生的概率、学生回答问题,教师进行纠正点拨、“抽到偶数”这个事件包含抽到2,4这两种可能的结果,在全部5种可能的结果中所占的比为、于是“抽到偶数”的概率P(抽到偶数)=;同理,“抽到奇数”的概率P(抽到奇数)=3、教师追问:对于具有上述特点的试验,如何求某事件的概率?师生归纳结论:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中m种结果,那么事件A发生的概率P(A)=、【课件5】根据上述求概率的方法,事件A发生的概率P(A)的取值范围是怎样的?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年度九年级上册单元测试
第25章《概率初步》
班级:___________ 姓名:___________ 分数:___________
一、选择题(每小题5分,共25分)
1.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是( )
A .103
B .259
C .209
D .5
3 2.用图中两个可自由转动的转盘做“配紫色”游戏;分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是( )
A .123
B .125
C .83
D .8
5 3.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为( )
A .2513
B .2512
C .254
D .2
1 4.用直角边长分别为2、1的四个直角三角形和一个小正方形(阴影部分)拼成了如图所示的大正方形飞镖游戏板.某人向该游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是( )
A .31
B .41
C .51
D .55 5.某班学生做“用频率估计概率”的实验时,给出的某一结果出现的频率折线图,则符合这一结果的实验可能是( )
A .抛一枚硬币,出现正面朝上
B .从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数
C .从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球
D .一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃
第2题 第4题 第5题
二、填空题(每小题5分,共25分)
6.某中学为了解初三学生的视力情况,对全体初三学生的视力进行了检测,将所得数据整理后画出频率分布直方图,已知图中从左到右第一、二、三、五小组的频率分别为0.05,0.1,0.25,0.1,如果第四小组的频数是180人,那么该校初三共有_____位学生.
7.从﹣3、0、2
1这三个数中,随机抽取一个数,记为a , 关于x 的一次函数y=﹣x+a 的图象经过第一象限的概率为_____.
8.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字为p ,随机摸出另一张卡片,其数字记为q ,则满足关于x 的方程x2+px+q =0有实数根的概率是_____.
9.一个不透明的袋中装有除颜色外均相同的8个红球和m 个黄球,从中随机摸出一个,摸到红球的概率为7
4,则m=_____. 10.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据: 次数 1 2 3 4 5 6 7 8 9 10
黑棋数 1 3 0 2 3 4 2 1 1 3
根据以上数据,估算袋中的白棋子数量为_______枚. 第11题
三、解答题(每小题10分,共50分)
11.如图两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.同时转动两个转盘,当转盘停止后,计算指针所指区域内的数字之和.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止.
(1)请你通过画树状图或列表的方法分析,并求指针所指区域内的数字和小于10的概率;
(2)小亮和小颖小亮和小颖利用它们做游戏,游戏规则是:指针所指区域内的数字和小于10,小颖获胜;指针所指区域内的数字之和等于10,为平局;指针所指区域内的数字之和大于10,小亮获胜.你认为该游戏规则是否公平?请说明理由;若游戏规则不公平,请你设计出一种公平的游戏规则.
12.一透明的口袋中装有3个球,这3个球分别标有1,2,3,这些球除了数字外都相同.
(1)如果从袋子中任意摸出一个球,那么摸到标有数字是2的球的概率是多少?
(2)如果一次摸两个球,用树状图或列表法求出摸到的两个球标有的数字的积为奇数的概率;
(3)小明和小亮玩摸球游戏,游戏的规则如下:先由小明随机摸出一个球,记下球的数字后放回,搅匀后再由小亮随机摸出一个球,记下数字.谁摸出的球的数字大,谁获胜.请你用树状图或列表法分析游戏规则对双方是否公平?并说明理由.
13.现有四位“抗疫”英雄(依次标记为A、B、C、D).为了让同学们了解他们的英雄事迹,张老师设计了如下活动:取四张完全相同的卡片,分别在正面写上A、B、C、D四个标号,然后背面朝上放置,搅匀后请一位同学从中随机抽取一张,记下标号后放回,要求大家依据抽到标号所对应的人物查找相应“抗疫”英雄资料.
(1)班长在这四种卡片中随机抽到标号为C的概率为___________;
(2)用树状图或列表法求小明和小亮两位同学抽到卡片是不同“抗疫”英雄标号的概率.
14.2020春开学为防控冠状病毒,学生进校园必须戴口罩,测体温,江阴初级中学开通了三条人工测体温的通道,每周一分别由王老师、张老师、李老师三位老师给进校园的学生测体温(每个通道一位老师),周一有小卫和小孙两学生进校园,在3个人工测体温通道中,可随机选择其中的一个通过.
(1)求小孙进校园时,由王老师测体温的概率;
(2)求两学生进校园时,都是王老师测体温的概率.
15.为了解某校中学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如图统计图表:根据以上提供的信息,解答下列问题:
节目人数(名)百分比
最强大脑 5 10%
朗读者15 b%
中国诗词大会 a 40%
出彩中国人10 20%
(1)x= ,a= ,b= ;
(2)补全上面的条形统计图;
(3)在喜爱《最强大脑》的学生中,有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加潍坊市组织的竞赛活动,请用树状图或列表法求出所抽取的2名同学恰好是1名男同学和1名女同学的概率.
四、附加题(10分)
一粒木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是平的.将它从一定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下.由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如下表:实验次数20 40 60 80 100 120 140 160
“兵”字面朝上频数14 a 38 47 52 66 78 88
相应频率0.7 0.45 0.63 0.59 0.52 b 0.56 0.55
(1)请直接写出a,b的值;
(2)如果实验继续进行下去,根据上表的数据,这个实验的频率将稳定在它的概率附近,请你估计这个概率是多少;
(3)如果做这种实验 2 000次,那么“兵”字面朝上的次数大约是多少?。